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Multiomics surface receptor profiling 
of the NCI‑60 tumor cell panel uncovers novel 
theranostics for cancer immunotherapy
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Abstract 

Background:  Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, 
therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against 
tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-
specific cell surface receptors only.

Methods:  To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow 
cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 
datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface 
profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface recep-
tor biomarkers for colon and renal cancer.

Results:  For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, 
CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further 
data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treat-
ment of renal cancer.

Conclusion:  Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource 
for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the con-
text of cancer immunotherapy.
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Background
Implementation of cancer immunotherapy by immune 
checkpoint inhibitors (ICIs) is one of the most recent 
transforming developments in oncology that strongly 
helped to improve overall survival of patients suffering 

from various cancers [1]. Its principle is based on the 
antibody-mediated blockage of inhibitory immune sign-
aling exerted by tumor cells to unleash the immune sys-
tem, with the overall goal to achieve a sustainable tumor 
elimination by the host’s intrinsic immune response. The 
first established ICIs target the PD1-PDL1 inhibitory axis 
on T cells to activate the cytotoxic T lymphocyte (CTL) 
response [1] and block signaling of the T cell inhibitory 
receptor CTLA-4 [2]. In this context, alternative strate-
gies are to activate not only T cells but also NK-cells [3], 
or to target general immune-inhibitory signaling axes, 
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i.e., the CD47-SIRPα pathway [4]. Conceivably, due to 
the nature of this approach, cancer immunotherapy via 
ICIs is unspecific, can have severe adverse effects and has 
a certain risk of complete therapy failure or could even 
result in an aggravation of the addressed malignancies 
[5]. Hence, there are ongoing efforts to improve immuno-
therapies, especially in terms of specificity, so that only or 
at least mainly tumor cells are killed [6].

Such approaches are based, for example, on bispecific 
antibodies that bind to a tumor antigen and are designed 
to crosslink T cells to the tumor cells via secondary bind-
ing to CD3 or another T cell-specific antigen [7]. In this 
way, cytotoxic T cells should be specifically recruited to 
and kill malignant tumor cells. This concept is further 
elaborated to recruit NK cells, and also has been devel-
oped in the context of chimeric antigen receptor (CAR) T 
cells [7, 8]. CAR T cells are engineered to express an arti-
ficial T cell receptor tumor-specific antigen. Altogether, 
efforts are undertaken to improve efficacy of immuno-
therapy and reduce side-effects by specific targeting of 
malignant tumor cells.

The key to improving and precisely targeting can-
cer immunotherapy is the knowledge of tumor-specific 
biomarkers accessible at the cell surface. Therefore, we 
hypothesized that a novel systematic screening of cancer 
cell lines using a distinct comprehensive flow cytometric 
approach should enable the identification of hitherto uni-
dentified cancer entity-specific cell surface receptors. For 
this, we took advantage of the NCI-60 tumor cell panel, 
a collection of 60 different human cancer cell lines that 
were established to facilitate systematic screening of anti-
tumor drugs (https://​dtp.​cancer.​gov/​disco​very_​devel​
opment/​nci-​60/​cell_​list.​htm) [9–12].

We systematically characterized the expression of 332 
receptors on the surface of the NCI-60 tumor cell collec-
tion using an array of flow cytometry-applicable antibod-
ies. The NCI-60 panel has already been comprehensively 
characterized via transcriptomics and proteomics [13, 
14]. While these latter approaches facilitate the identifi-
cation of tumor biomarkers, they do not give any infor-
mation on differential cell surface expression which is a 
prerequisite to exploit them as immunotherapeutic tar-
gets. Therefore, building on these high-quality public 
data sources, we analyzed the receptorome using flow 
cytometry and present an integrated three-layer multi-
omics approach. As a result of our cell surface receptor 
profiling using the NCI-60 tumor cell panel, we identi-
fied tumor biomarkers and immunotherapeutic targets 
that are readily accessible on the surface of human can-
cer cells via well-characterized antibodies. We anticipate 
new avenues for the development of highly specific and 
targeted immunotherapeutic approaches using the pre-
sented data as a resource.

Methods
Cell culture
The NCI-60 tumor cell panel from the US National Can-
cer Institute was purchased from Charles River Labo-
ratories (Charles River Laboratories Inc., New York, 
NY, USA). All cell lines were cultivated in RPMI-1640 
medium supplemented with 10% fetal calf serum (FCS), 
2 mM l-glutamine and 100  µg ml−1 penicillin–strepto-
mycin. Cells were cultured at 37 °C in an atmosphere of 
5% CO2.

Flow cytometric cell surface receptor screening
Before NCI-60 cells were used for flow cytometric analy-
ses they were cultured from nitrogen stocks and allowed 
to grow for at least 2 weeks (four to five passages at maxi-
mum). Cells were detached by Accutase treatment and 
stained with the LegendScreen Human PE kit (BioLeg-
end) using 332 PE-conjugated antibodies essentially as 
described before [15, 16]. Cell surface expression of the 
332 receptors was measured via flow cytometry using 
the MACSQuant VYB Analyzer (Miltenyi Biotec). Flow 
cytometry data was analyzed with the FlowLogic (Milte-
nyi-Inivai) software to obtain the mean fluorescence 
intensity (MFI) values of each analyzed receptor.

General data curation and quality control
For data quality control, to compare the receptor MFIs 
across 2  weeks, and for the MCIA analysis, R version 
3.3.2 was used. For all other analysis the R version was 
4.1.3 [17]. All analysis scripts including input and output 
data can be found at https://​github.​com/​qbics​oftwa​re/​
QMSFC. The repository comes with a detailed README 
and Anaconda environments to ensure reproducibility of 
the results [18]. For all data sets, as BR.MDAMB468 is 
not present in the microarray data, we removed it from 
the data set. We also removed tumor cell line ME-LOX-
IMVI as it is lacking any melanin production and there-
fore it is most likely not a melanoma cell line [19]. We 
harmonized the cell names and annotated the cells to the 
respective tissue type [20, 21].

Flow cytometry data curation
For quality control, isotype control samples were ana-
lyzed separately from the data related to specific cell sur-
face staining. The 10 isotype controls were removed from 
the full FACS data and considered individually as visible 
in Additional file 1: Fig. S1, Additional file 2: Fig. S2, Addi-
tional file 3: Fig. S3, Additional file 4: Fig. S4, Additional 
file 5: Fig. S5, Additional file 6: Fig. S6. Furthermore, for 
a set of cell lines, a second independent legend screen 
was conducted 1  week after the first sampling to check 
for reproducibility of the procedure, this data is available 
in Additional file 7: Dataset S1. The 25 cell lines of which 
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a 2nd week measurement was performed were indepen-
dently analyzed from the original FACS data (MFI values) 
set. For each of the cell lines, a between paired samples 
correlation test using the R function correlation test with 
method Spearman was executed. Before testing, a Shap-
iro-Wilk test of normality ensured that none of the meas-
urements follow a normal distribution. For each receptor 
of each cell line pair, the log2 fold change was calculated. 
Furthermore, a between paired samples correlation test 
of all week 1 MFI value versus all week 2 MFI values was 
conducted. Before testing, an Anderson-Darling test for 
normality was performed. For further data analyses week 
1 measurements only were used to have consistent data 
for all cell lines. FACS data (MFI values) of the receptor 
expression of the tumor NCI-60 cell line panel was log 
transformed (base 10). For all other downstream analy-
ses, the raw expression values were used that are summa-
rized in the Additional file 8: Dataset S2.

Microarray data curation
Robust multi-array average (RMA) [22] normalized 
microarray data of the NCI-60 cell lines was fetched from 
the Gene Expression Omnibus using accession number 
GSE32474 [12, 23–27]. The HGNC symbols for the Affy-
metrix U133 Plus 2.0 chip were downloaded from the 
Ensemble BioMart Portal [28]. The microarray probes 
were annotated with the HGNC symbols. All unanno-
tated probes were discarded. We observed 37,989 distinct 
HGNC-Affymetrix identifiers and 19,473 unique HGNC 
symbols. We merged the expression values with the same 
HGNC symbol using their mean.

Proteome data curation
MaxQuant [29] processed proteome data of the NCI-60 
cell line panel was downloaded from PRIDE [30] using 
project number PXD005946 [14]. Label-free quantifica-
tion (LFQ) values were log transformed (base 10), and 
previously identified contaminant proteins [14], labeled 
in the dataset with “CON” or “REV”, were removed. Both 
cell lines HOP92 and SR were two times in the proteom-
ics data set. For each duplicate, we removed the cell line 
with more missing values. As the subsequent MCIA anal-
ysis can’t be performed with missing values, we only kept 
proteins with 60 measurements, 514 in total.

Hierarchical clustering
Hierarchical clustering was performed using Spearman 
correlation [31] for the distance metric with ward.D2 for 
the agglomeration.

MCIA
The omicade4 R package [19] was applied as an explora-
tory analysis to the transcriptomic study, the proteomic 

study and the FACS study of 58 cell lines. A customized 
version of the plotting function of omicade4 adds colors 
from the RColorBrewer package (https://​CRAN.R-​proje​
ct.​org/​packa​ge=​RColo​rBrew​er). Using the information 
given in the sample and feature space of the MCIA, cell 
tissue type hits of FACS (LE, ME, CO, RE, CNS) were 
manually selected with selectVar. The resulting FACS 
receptors were annotated with gene identifiers for down-
stream comparison with the RNA-Seq recount2 data 
analysis.

RNAseq data analysis
TCGA recount2 data of CNS, RE, CO, ME, LE was 
downloaded from the recount2 portal. For each of these, 
initial data processing was performed with the recount 
Bioconductor package [32]. Only samples with non-
empty metadata were kept. Samples were filtered for 
“Primary Tumor” and “Solid Tissue Normal”. Only for the 
RE and CO tissue types there were “Solid Tissue Normal” 
samples. For CO, we obtained 500 tumor and 41 normal 
samples, and for RE we obtained 899 tumor and 129 
normal samples, respectively. For both tissue type data, 
DESeq2 was applied in order to identify differentially 
expressed genes [33]. The experimental design formula 
was:
~gdc_cases.demographic.gender +  gdc_cases.demo-
graphic.race + gdc_cases.samples.sample_type.

Genes were classified as differentially expressed with a 
p-adjusted value < 0.05.

Human Protein Atlas data analysis
Available data for tissue protein expression in the Human 
Protein Atlas (HPA, [34]) was used for a systematic inves-
tigation of the eight differentially expressed molecules 
as identified by multi-omics. The expression of those 
eight molecules (CD24, CD26, CD106 [VCAM1], EGFR, 
SSEA4 [TMCC1], TIM1 [HAVCR1], SSEA3 [B3GALT5], 
TRA-1-60R [PODXL]) at the protein level was compared 
in normal renal tubules (in tissue cores of maximum 11 
patients) vs. renal cell carcinoma, clear cell and non-clear 
cell type (in tissue cores of maximum 40 patients). For 
some of these proteins, immunohistochemistry data from 
multiple different antibody clones were available which 
is shown in Additional file 9: Table S1, all of which were 
included in the analysis. For each patient/kidney sample, 
up to two different tissue cores were available. Normal 
and tumor kidney samples were not matched. The cohort 
(n = 23) of renal cell carcinomas comprised 21 clear cell 
renal cell carcinomas (91.3%) and two non-clear cell renal 
cell carcinomas (8.7%) for CD106 (VCAM1). For EGFR 
(n = 40), 31 clear cell renal cell carcinomas (77.5%) and 
nine non-clear cell renal cell carcinomas (22.5%) were 
included.

https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
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Immunohistochemistry staining results were visually 
reviewed and jointly scored for each tissue core by two 
pathologists (K.B. and C.M.S.). The scoring was based 
on staining intensity and the amount of positive cells 
in a three-tiered manner, as follows: Intensity: 0: no 
expression; 1: weak expression; 2: moderate expression; 
3: strong expression. Amount of positive cells: 0: none; 
1: < 25%; 2: 25–75%; and 3: > 75% positive cells. Finally, 
the two values were multiplied, resulting in a modified 
immunoreactivity score (IRS, [35]) of values ranging 
between 0 and 9. In cases with two available tissue cores, 
the mean IRS was used for further analysis.

Data were visualized using GraphPad PRISM v.9.0.0. 
IRS scores of normal vs. tumor tissue were compared 
using the unpaired Mann-Whitney test. Two-tailed exact 
p-values < 0.05 were considered statistically significant. 
Limitations of the analyses: Firstly, the tissue cores of 
normal kidney tissue did not match tissue cores of renal 
adenocarcinoma. In addition, the sample size in the 
Human Protein Atlas was partially very limited and pos-
sibly affected statistical analysis. Moreover, some anti-
bodies showed paradox and contradictory staining, an 
important technical limitation.

The Cancer Proteome Atlas analysis
The Cancer Protein Atlas portal was accessed (https://​
tcpap​ortal.​org/​tcpa/​diffe​renti​al_​analy​sis.​html) in order to 
explore the functional proteomics landscape of all renal 
cell cancer subtypes in regard to EGFR expression. On 
the web interface “By tumor type” and Pan-Can 32 were 
selected. For “Select tumor A” always “Kidney renal clear 
cell carcinoma (KIRC) (445 samples)” was chosen. For 
“Select tumor B” either “Kidney Chromophobe (KICH) 
(63 samples)” or “Kidney renal papillary cell carcinoma 
(KIRP) (208 samples)” was selected. The results were fil-
tered by Protein Marker ID = EGFR and Gene(s) = EGFR.

Results
Cell surface receptor expression of the NCI‑60 tumor cell 
panel
The NCI-60 tumor cell panel is a collection of 60 dif-
ferent human cancer cell lines representing 9 different 
tumor entities: leukemia (LE), lung cancer (LC), colon 
cancer (CO), cancer of the central nervous system (CNS), 
melanoma (ME), ovarian cancer (OV), renal cancer (RE), 
prostate cancer (PR) and breast cancer (BR).

This panel is frequently used in cancer research, and 
various studies have performed detailed analyses of the 
transcriptome and proteome of these cell lines to iden-
tify cancer-specific biomarkers or potential therapeutic 
targets. However, surface residing biomarkers might be 
missed by the latter approaches, since when employing 
standard-proteomics membranes are largely excluded 

in the non-soluble fraction and dynamic internaliza-
tion processes of surface receptors, shedding and other 
mechanism that alter the receptorome are not detected 
by transcriptomics [15]. Furthermore, it remains unclear 
if biomarkers are also differentially expressed at the cell 
surface and may therefore be suitable targets for anti-
body-mediated immunotherapy. To close this important 
gap, we performed a medium-throughput flow cyto-
metric profiling of the NCI-60 tumor cell panel with an 
arrayed set of 342 PE-labeled antibodies (Fig. 1 and Addi-
tional file 8). To probe for measurement reproducibility, 
25 out of the 60 tumor cell lines were randomly selected 
for a subsequent measurement 1  week later, showing 
no significant differences (Spearman correlation coef-
ficient r = 0.91, p < 2.2e−16) in the absolute mean fluo-
rescence intensity (MFI)-values with same laser settings 
(Additional file 7). Importantly, data was matched to the 
corresponding isotype controls (IC) considering their 
background signal when calculating the true intensities. 
Detailed IC data is presented in Additional files 1, 2, 3, 4, 
5 and 6,

Multiomics analyses integrates flow cytometric data, 
proteomics and transcriptomics
It is important to note that differentially expressed recep-
tors might in a first instance represent general tissue 
markers, as well as cancer specific markers. Hence, our 
subsequent workflow aims to screen for common mark-
ers first, eliminate those and then perform subfiltering 
for tissue and cancer specific markers.

To identify the most robustly expressed cell surface 
receptors on the various tumor cell lines, we integrated 
our FACS data with previously generated transcriptomic 
(Tx) and proteomic (Px) profiles of the NCI-60 tumor cell 
panel [13, 14, 19]. To this end, we used multiple co-iner-
tia analysis (MCIA) to exploit the potential of the various 
omics data sets [19].

During data curation, two cell lines had to be removed 
(see “Methods”), eventually ending up with 58 tumor cell 
lines, each yielding 332 features based on flow cytometry, 
514 features from Px and 19,437 from Tx. Spearman dis-
tance was used to create a dendrogram of the various cell 
lines, visualizing their relationship and revealing poten-
tial differences in tumor cell line annotation upon utiliza-
tion of different omics data (Fig. 2).

Of note, flow cytometry-based characterization, i.e., 
relationships between tumor cell lines based on expres-
sion of cell surface receptors, was comparable to the 
annotation based on Tx data, and superior to Px. Flow 
cytometric analysis revealed specific clusters of the 
respective cell lines, in detail of central nervous system, 
renal, melanoma, colon and leukemia tumor cell lines, 
indicating that these might harbor unique identifiers. 

https://tcpaportal.org/tcpa/differential_analysis.html
https://tcpaportal.org/tcpa/differential_analysis.html
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For Tx, only lung cancer-derived tumor cell lines showed 
a more comprehensive clustering when compared to 
FACS, while ovarian, prostate and breast cancer cell lines 
were dispersed in all analyses (Fig. 2).

Comprehensive MCIA integrating all three omics 
approaches (Fig.  3) revealed distinct clusters for the 
individual cancer types (Fig.  3a). In fact, we observed 
a significant contribution of the flow cytometric sur-
face proteome data to the molecular profile of the indi-
vidual tumor cell lines. Furthermore, different tumor 
types showed similar molecular patterns, as they formed 
clusters within the sample space. In agreement to the 
relationship analyses based on the various single omics 
techniques (Fig. 2), the MCIA revealed unique signatures 
predominantly for melanoma (ME; yellow) and leukemia 
(LE; green), but also identifiable clusters for cancer of 
the central nervous system (CNS; red), renal cancer (RE; 
grey) and colon cancer (CO; blue) (Fig. 3a).

Figure 3b shows the variables (transcripts, proteins and 
surface receptors) and their contribution to the cluster-
ing. Moreover, scree plot analysis helped us to determine 
the number of factors that should be considered (Fig. 3c), 
hence the number of principal components (PCs) that 
contribute to variability and help to discriminate tumor 
entities. The first 10 PCs already account for 74.7% of 

the variance and therefore were included into MCIA. 
The pseudo-eigenvalues of the whole NCI-60 data set 
(Fig.  3d), including Tx, Px and flow-cytometry, demon-
strates that the integration of the receptorome data cru-
cially contributes to the total variance of the MCIA and 
is hence an essential denominator to identify biomarkers. 
Table 1 lists cell surface receptors that were identified as 
tissue specific biomarkers based on our MCIA. As antici-
pated, from the lack of clustering (Figs.  2 and 3a), no 
MCIA hits could be retrieved for lung-, breast, ovarian- 
and prostate cancer, which might also reflect the large 
heterogeneity of these cancer entities.

Identification of tumor biomarkers by integration of MCIA 
into recount2 RNA‑seq data
As discussed, the cell surface receptors identified by the 
MCIA do not necessarily represent tumor biomarkers, 
as we are lacking healthy control tissue to compare with 
the tumor cell lines. As an example, leukocyte specific 
marker CD2 is a T cell antigen. Therefore, while it is not 
surprising that MCIA identified CD2 as a leukemia spe-
cific receptor in comparison to all the other cancer enti-
ties, it is conceivable that CD2 is not a tumor marker. 
Having now identified differentially expressed surface 
markers by FACS and MCIA, we would now ideally 

Fig. 1    Flow cytometric profiling of the NCI-60 tumor cell panel. The NCI-60 tumor cell lines were analyzed for expression of 332 cell surface 
receptors by flow cytometry (see “Methods”). Shown is the distribution of the cell surface expression of all measured receptors as log10 mean 
fluorescence intensity (MFI). CNS cancer of the central nervous system, CO colon cancer, LE leukemia, LC lung cancer, BR breast cancer, ME 
melanoma, OV ovarian cancer, PR prostate cancer, RE renal cancer
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match the data with receptoromes of healthy control tis-
sue. Due to the lack of such data, we validated our MCIA 
hits with The Cancer Genome Atlas (TCGA; www.​can-
cer.​gov/​tcga) RNAseq count data, utilizing the recount2 
resource results (https://​jhubi​ostat​istics.​shiny​apps.​io/​
recou​nt/ [32]). This allows to compare data from malig-
nant with those from healthy tissues and hence to dis-
criminate tissue markers from tumor markers. To our 

surprise, we could only retrieve for colon and renal can-
cer comprehensive recount2 RNAseq data from tumor 
as well as healthy tissues. For our other cancer types 
that distinctly clustered by MCIA, we could retrieve no 
TCGA RNAseq count data comparing tumor to normal 
tissue, precluding this type of analyses. The differentially 
expressed genes for colon and renal cancer are listed in 
Additional file  10: Dataset S3 and Additional file  11: 

Fig. 2    Tumor cell line relationship using different omics techniques. A dendrogram of Tx (left), Px (middle) and flow cytometric (right) data 
obtained from the 58 tumor cell lines from the NCI-60 tumor cell panel was build using Spearman distance calculation. Tumor cell lines were color 
coded according to the cancer entity they represent. Blue, colon cancer (CO); brown, ovarian cancer (OV); orange, breast cancer (BR); pink, prostate 
cancer (PR); purple; lung cancer (LC); green, leukemia (LE); grey, renal cancer (RE); red, cancer of the central nervous system (CNS); yellow, melanoma 
(ME)

http://www.cancer.gov/tcga
http://www.cancer.gov/tcga
https://jhubiostatistics.shinyapps.io/recount/
https://jhubiostatistics.shinyapps.io/recount/
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Dataset S4. For both cancer entities, the five (colon) and 
eight (renal) identified MCIA receptors were differen-
tially expressed between healthy and malignant tissues 
and hence represent potential surface accessible tumor 
biomarkers (Table 2).

We next plotted the relative MFIs of the tumor bio-
markers and directly compared receptor expression on 
colon and renal tumor cell lines in the NCI-60 tumor 
cell panel to the other cell lines (Fig.  4). All receptors 
showed increased expression on colon and renal cancer 

Fig. 3    Multiple co-inertia analysis (MCIA) of the NCI-60 panel data. a (top left) The first two principal components of the MCIA plot show similar 
trends in microarray (Tx, circle), proteomics (Px, triangle), and flow cytometry (FACS, square) profiles, suggesting that the most variant sources of 
biological information are similar. The type of shape indicates the respective omics platform. Shapes are connected by lines joining a common 
point representing the maximized covariance reference structure derived from the MCIA analysis. The length of a line models the divergence 
between the data from the same tumor cell line. Colors represent the nine NCI-60 different tissues covered by the tumor cell lines. Central nervous 
system (CNS) and leukemia (LE) cell lines are separated along the first axis (PC1, horizontal). Melanoma (ME) was projected on the positive side of 
the second axis (PC2, vertical). b (top right) The variable space with data from the different omics techniques is colored coded (Tx, black; Px, red; 
FACS, green). A tissue specific feature will be projected in the direction of this tissue. The larger the distance from the origin, the more potentially 
significant a feature is. c (bottom left) A scree plot showing the eigenvalues on the y-axis and the number of PCs on the x-axis. Used to rationalize 
the number of PCs included in the analysis. d (bottom right) The pseudo-eigenvalue space of the NCI-60 data sets summarizes the consensus 
between the platforms, highlighting which omics technique contributes more to the total variance (Tx, black; Px, red; flow cytometry, green)
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cell lines as compared to the remaining tumor cell lines 
from the NCI-60 panel. Expression of CD15, CD104, 
CD324, CD326 and CD49f was specifically enriched on 
the surface of colon cancer-derived cell lines (Fig. 4a, left 
and primary FACS data in in Fig.  4b). Renal cancer cell 
lines in comparison to all other cancer entities expressed 
significantly higher cell surface levels of CD24, CD26, 
CD106 (VCAM1), TIM1, SSEA-3 (B3GALT5), SSEA-4 
(TMCC1), TRA-1-60R (PODXL) and EGFR (Fig. 4a right 
and primary FACS data in Fig. 4b).

Immunohistochemical analysis and validation of kidney 
tumor biomarkers using the human protein atlas
We next addressed the expression of kidney tumor bio-
markers at the protein level by using data from the 

Human Protein Atlas (HPA, www.​prote​inatl​as.​org, [34]). 
CD106 (VCAM1) protein expression tended to be lower 
in healthy renal tubules compared to renal adenocar-
cinoma (Fig.  5a–c). For EGFR, we observed the same 
trend with higher expression in the tumors (Fig.  5d, e). 
whereas one EGFR antibody clone had the opposite 
phenotype (Fig.  5e). Pooled analysis without that clone 
showed a significantly higher protein expression of EGFR 
in tumors compared to healthy tubules (p = 0.0030; exact, 
two-tailed; sum of ranks 199.5, 1397; Mann–Whitney 
U = 121.5; Fig. 5f ). There were no significant differences 
in expression between clear cell and non-clear cell renal 
cell carcinomas for CD106 (n = 23; p = 0.787; df = 5, 
value = 2.428, chi-squared test) and EGFR (n = 44; with-
out CAB068186 antibody; p = 0.432; df = 6; value = 5.919, 
chi-squared test).

  For CD24, we also observed moderately higher protein 
levels in tumors, which is depicted in Additional file 12: 
Fig. S7. For TRA-1-60R (PODXL), there were no signifi-
cant differences detected (Additional file 12, panel d, e). 
Interestingly, and in contrast to the expected outcomes 
from our mRNA analysis, we observed significantly lower 
expression levels of TIM1 (HAVCR1), SSEA4 (TMCC1), 
CD26 and SSEA3 (B3GALT5) in tumors compared to 
healthy renal tubules (Additional file 12, panel f–o). The 
whole data are summarized in Additional file 8: Table S1.

Hence, while previous studies including data summa-
rized in the HPA provided a list of promising candidates 
potentially suitable to use as cancer biomarkers, our data 
now critically expands this knowledge to markers that are 
surface accessible and are therefore candidates for tumor 
specific immunotherapy. Especially CD106 (VCAM1) 
and EGFR seem promising immunotherapeutic targets 
that show higher surface expression levels in the context 
of renal cancer.

Table 1  Tumor cell line specific cell surface markers based on MCIA analysis

Colon cancer (CO) Renal cancer (RE) Melanoma (ME) Central nervous system 
(CNS)

Leukemia (LE)

CD104   CD106   CD1a   CD105   CD100   CD28 

CD15   CD24   CD213a2   CD273B7DC   CD102   CD38 

CD324   CD26   CD317   CD275B7H2   CD11a   CD4 

CD326   EGFR   CD39   CD49e   CD18   CD45 

CD49f   SSEA-3   CD49d   CD80   CD184   CD48 

  SSEA-4   Integrin(a9b1)   MSCA1MSC   CD1b   CD5 

  TIM1   CD1c   CD50 

  TRA-1-60-R   CD1d   CD7 

  CD2   CD84 

  CD27   CD8a 

Table 2  CO and RE cancer cell surface biomarkers based on 
integrated MCIA and recount2

log2FoldChange pvalue padj receptor ID Gene ID

Colon cancer: recount2 analysis filtered by MCIA hits

 0.659 6.844e−10 3.064e−9 CD49f ITGA6

 0.503 1.923e−06 6.064e−06 CD15 FUT4

 0.328 0.016 0.029 CD104 ITGB4

 − 0.431 3.118e−06 9.609e−06 CD326 EPCAM

 − 0.489 2.994e−8 1.144e−7 CD324 CDH1

Renal cancer: recount2 analysis filtered by MCIA hits

 2.304 1.021e−36 1.237e−35 TIM1 HAVCR1

 1.726 4.503e−36 5.309e−35 CD106 VCAM1

 1.464 7.690e−63 2.500e−61 SSEA-4 TMCC1

 1.371 6.499e−11 2.119e−10 SSEA-3 B3GALT5

 1.200 1.296e−32 1.323e−31 EGFR EGFR

 0.681 9.772e−7 2.383e−06 CD26 DPP4

 0.464 1.575e−8 4.375−8 CD24 CD24

 − 1.856 7.622e−41 1.1002e−39 TRA-1-60-R PODXL

http://www.proteinatlas.org
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Receptor expression of kidney cancer subtypes 
by functional proteomics
Reverse Phase Protein Array (RPPA) data of the “The 
Cancer Proteome Atlas” (TCPA, https://​tcpap​ortal.​org/​
tcpa/, [36]) was assessed in order to explore the EGFR 
functional proteomics landscape of all renal cell can-
cer subtypes evaluated in this portal: These are “Kidney 
Chromophobe” (KICH, n = 63), “Kidney renal clear cell 
carcinoma” (KIRC, n = 445), and “Kidney renal papillary 
cell carcinoma” (KIRP, n = 208). Since CD106 (VACM1) 
and EGFR seemed to be promising targets based on our 
previous analysis we checked the dataset for these two 

markers. No data for VCAM1 was found. For EGFR, 
KICH and KIRP were compared against KIRC, since 
KIRC is the most frequent renal cancer subtype. Both 
comparisons revealed a significant difference when com-
paring the expression levels of EGFR (Table 3).

This result is in slight contrast to HPA (Fig.  5), by 
which we did not find kidney cancer subtype specific 
differences in EGFR expression (Fig.  5). This is most 
likely due to the much smaller sample size in HPA with 
only nine non-clear cell renal cell carcinoma. More 
importantly, the TCPA analysis provides an independ-
ent confirmation of the high expression of EGFR in 

Fig. 4    Differential cell surface receptor expression on CO and RE cancer cell lines as compared to other tumor cell lines. a Shown is the relative 
MFI of each of the depicted receptors of each CO (n = 7, left) or RE (n = 8, right) cell line in comparison to all other tumor cell lines in the NCI-60 
panel (NCI). Each symbol represents the specific cell surface receptor expression MFI of one cell line. Statistical significance of overall differences in 
receptor expression (MFI) of CO or RE versus all other cell lines was calculated with a one-way ANOVA with multiple comparisons and a Kruskal–
Wallis test assuming non-gaussian distribution. b Primary FACS plots from representative cell lines of the various tumor entities. Plotted is the size 
of the cells (forward scatter, FSC) vs. the relative fluorescence expression of the respective cell surface marker (PE, mean fluorescence intensity, MFI). 
Note that no representative FACS plots are shown for ovarian cancer (OV), breast cancer (BR), prostate cancer (PR) and lung cancer (LC) because 
these cancer entities did not form clusters based on flow cytometric receptor expression (compare Fig. 2)

https://tcpaportal.org/tcpa/
https://tcpaportal.org/tcpa/
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renal cell cancer and further indicates that EGFR could 
be a subtype specific biomarker for kidney cancer.

Discussion
By employing a comprehensive flow cytometric screen 
and combined multiomics analyses (integrating previ-
ously defined Tx and Px datasets), we identified novel 
specific cell surface expression patterns in five of the 
nine cancer entities represented by the NCI-60 tumor 
cell panel.

In the first instance, these receptors do not repre-
sent tumor biomarkers, as their identification is based 
on comparisons within the NCI-60 tumor cell panel. 
However, by subsequent cross-analysis with the TCGA 
recount2 RNAseq data, which also comprises healthy 

tissue for comparison [32], we could deconvolute our 
data to identify tumor specific biomarkers for two 
tumor entities, i.e., colon and renal cancer.

In theory, MCIA of the NCI-60 tumor cell panel with 
Tx and Px data alone, followed by annotation of bio-
markers to their specific localization, also could have 
enabled the identification of cell surface specific recep-
tor expression. However, implementation of the flow 
cytometric screening data provides several advantages. 
First, it is clear from the MCIA that integration of the 
flow cytometric data critically expands the sample space 
and strongly contributes to the overall variation (Fig. 3). 
Second, by employing flow cytometry, which is an anti-
body-based detection method, we already pre-screen 
for surface markers that can be detected and targeted 
by antibodies, anticipating a subsequent exploitation of 
these receptors for both diagnostic and immunothera-
peutic (i.e., theranostic) applications. On the other hand, 
combining flow cytometry with the already available Tx 
and Px data by MCIA strongly enhanced confidence in 
our hits.

The initial MCIA revealed specific cell surface markers 
allowing to discriminate colon cancer (CO), melanoma 

Fig. 5    Expression of VCAM1 and EGFR in healthy vs. tumor tissue based on HPA data. a Representative tissue cores from the HPA showing 
immunohistochemistry (IHC) staining for VCAM1. Left core, normal kidney; right core, renal cancer. b, c Summarized data for immunoreactive scores 
(IRS) for normal (pooled n = 6) and tumor kidney (pooled n = 23) from two antibodies shown separately (b) and pooled (c). d Representative tissue 
cores from the HPA showing IHC staining for EGFR. Left core, normal kidney; right core, renal cancer. e, f Summarized data for IRS for normal (pooled 
n = 12) and tumor kidney (pooled n = 44) from five antibodies shown separately (e) and pooled (f). In f, antibody CAB068186 which showed 
opposite results was not included. Scale bars, 200 μm

Table 3  Kidney cancer (RE) subtype specific expression analysis 
of EGFR via functional proteomics (TCPA)

Comparison Expression A Expression B pvalue

KIRC vs. KICH 0.74176 0.32398 1.2851e−10

KIRC vs. KIRP 0.74176 0.21612 1.8623e−72
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(ME), renal cancer (RE), cancer of the central nervous 
system (CNS) and leukemia (LE) cancer cell lines from 
all other cell lines within the NCI-60 tumor cell panel 
(Table  1). On the other hand, for the other four cancer 
entities, i.e., lung cancer (LC), breast cancer (BR), ovarian 
cancer (OV) and prostate cancer (PR) we failed to anno-
tate a specific cell surface marker expression pattern, 
which might be due to the large heterogeneity of these 
tumor types.

We were surprised about our difficulties in find-
ing accessible and reliable data to compare our MCIA 
derived potential tumor biomarkers with healthy tissue. 
Only for healthy colon and renal tissue we succeeded 
to extract healthy tissue RNAseq count data from the 
recount2 data base, allowing to cross-validate our can-
cer cell line-derived markers for differential expression 
between malignant and healthy tissue. Direct investi-
gation of the TCGA portal revealed that healthy tissue 
RNAseq count data for skin, bone marrow, and lymph 
nodes is missing. Hence, further work to obtain omics 
data from healthy tissues in case of melanoma (ME), can-
cer of the central nervous system (CNS) and leukemia 
(LE) is warranted to obtain tumor markers for the latter 
tissues, too.

Ultimately, based on our MCIA, we identified CD15, 
CD104 (Integrin-β4), CD324 (E-cadherin), CD326 
(EpCAM), and CD49f as biomarkers for colon cancer and 
CD24, CD26 (DPP4), CD106 (VCAM1), TIM-1, SSEA-3 
(B3GALT5), SSEA-4 (TMCC1), TRA-1-60-R (PODXL) 
and EGFR for renal cancer. Of note, the colon cancer bio-
markers identified by our approach have been proposed 
as potential tumor markers in colorectal cancer before 
[37–43]. These findings raise confidence in our data and 
independently confirm the stringency in our experimen-
tal screening and MCIA on the one hand, but also suggest 
following up on these receptors as structures for tumor-
targeted immunotherapy. Similarly, for renal cancer, 
EGFR and TIM-1 are established tumor biomarkers for 
which immunotherapy has been proposed [44–46] and a 
phase I clinical trial with the goal to treat renal cell car-
cinoma with a TIM-1 targeting antibody indicated effi-
cacy with manageable adverse effects [47]. Beyond that, 
CD24 was also proposed as a renal cancer biomarker 
[48, 49] and is discussed as a “hot candidate” for targeted 
immunotherapy, as it emerged as a novel “don’t eat me”-
signal that is expressed on various tumors and prevents 
their phagocytosis by macrophages [50, 51]. The role of 
CD26 is less explored in renal cancer even though it is 
suggested as a target for immunotherapy in the context 
of other cancer entities including the generation of CD26 
directed CAR-T cells [52–56]. There is less experimental 
evidence establishing the other receptors identified by us 
as renal cancer-specific biomarkers. SSEA-3 and SSEA-4 

as well as TRA-1-60-R are described as stem cell mark-
ers with some associations to renal cancer, that might be 
linked with aggressive tumor progression in vivo [57–61].

Likewise, CD106 (VCAM1) might be an interesting 
and potential novel cell surface biomarker as well as an 
attractive target for immunotherapy in the context of 
renal cancer. Currently, the role of VCAM1 in renal can-
cer is less explored, with data pointing towards protec-
tive roles in this cancer entity [62], as well as a potential 
involvement of VCAM1 in tumor immune evasion [63]. 
Furthermore, VCAM1 plays an important role in anti-
tumor T cell responses and T cell infiltration into tumors 
[64, 65]. For VCAM1, EGFR and CD24 our findings were 
validated with healthy and tumor tissue data obtained 
from the Human Protein Atlas. This set of data provides 
further independent indications that VCAM1, EGFR and 
CD24 are highly expressed in renal cancers and that their 
high expression is a poor prognostic marker for survival 
[49, 66]. Given that EGFR and CD24 are already proposed 
and in the process of being therapeutically exploited, we 
now propose VCAM1 as a novel biomarker and target for 
cancer-specific stratified immunotherapy.

Furthermore, “The Cancer Proteome Atlas” resource 
enabled us to investigate kidney cancer subtype specific 
expression of EGFR, indicating that this receptor is a spe-
cific biomarker for clear cell renal cell carcinoma.

Conclusion
Altogether, our work adds a comprehensive panel of 
potential surface accessible cancer biomarkers which 
need to be further characterized by mining of databases 
and being evaluated in primary patient tumor tissue 
and healthy control tissues. Thus, our distinct approach 
demonstrates the power of open data integration and 
open science for fundamental and translational research. 
Furthermore, efforts to develop immunotherapeutic 
approaches utilizing these biomarkers, as for instance 
CAR T cells and bispecific antibodies for specific and 
direct elimination of these tumors are highly important 
and warranted.
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Additional file 5: Figure S5. Boxplot showing MFIs of all Mouse antibod-
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Additional file 6: Figure S6. Boxplot showing MFIs of Mouse IgG3 
antibodies only.

Additional file 7: Dataset S1. Correlation antibody staining, dataset 
showing the correlation in antibody staining from two different biological 
replicates in 2 subsequent weeks.

Additional file 8: Dataset S2. Dataset including all mean fluorescence 
intensity values (MFIs] from all FACS screens done with the NCI-60 panel.

Additional file 9: Table S1. Table summarizing the results of the HPA 
analysis related to the biomarkers identified for renal cancer.

Additional file 10: Dataset S3. Dataset summarizing the analysis of the 
Recount2 RNAseq data analysis for differential RNA levels in healthy versus 
tumor colon tissue.

Additional file 11: Dataset S4. Dataset summarizing the analysis of the 
Recount2 RNAseq data analysis for differential RNA levels in healthy versus 
tumor renal tissue.

Additional file 12: Figure S7. This figure shows the results of the analysis 
of biomarker expression in normal and tumor kidney by immunohisto-
chemistry based on HPA data.
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