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1 | INTRODUCTION

Climate change mitigation strategies are driving a global
transition towards low carbon energy sources, for which
the role of renewable energy is essential (Cronin
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Abstract

The transition towards decarbonized power systems requires accounting for
the impacts of the climate variability and climate change on renewable energy
sources. With the growing share of wind and solar power in the European
power system and their strong weather dependence, balancing the energy
demand and supply becomes a great challenge. We characterize energy com-
pound events, defined as periods of simultaneous low renewable production of
wind and solar power, and high electricity demand. Using a logistic regression
approach, we examine the influence of meteorological and atmospheric drivers
on energy compound events. Moreover, we assess the spatial coherence of
energy compound events that pose a major challenge within an interconnected
power grid, as they can affect multiple countries simultaneously. On average,
European countries are exposed to winter energy compound events more than
twice per year. The combination of extremely low temperatures and low wind
speeds is associated with a higher probability of occurrence of energy com-
pound events. Furthermore, we show that blocked weather regimes have a
major influence on energy compound events. In particular, Greenland and
European blocking lead to widespread energy compound events that affect
multiple countries at the same time. Our results highlight the relevance of
weather regimes resulting in synchronous spatial energy compound events,
which might pose a greater risk within a potential fully interconnected

European grid.
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et al., 2018). To meet the Paris Agreement targets, Europe
is undergoing a rapid clean energy transition with an
increasing growth in renewable capacity in recent years
(IRENA, 2018). Transitioning to a low-carbon energy sys-
tem will require the impacts of climate variability and
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climate change on renewable energy sources (RES)
to be thoroughly understood (Collins et al, 2018;
IRENA, 2018). In this context, wind and solar power,
with a rapid growth over the past years (EEA, 2020), are
expected to be increasingly important contributors to the
energy mix in Europe. With the increasing share of RES
that are strongly weather-dependent, balancing the
energy demand and supply becomes a great challenge
(Bloomfield et al., 2016; EEA, 2017; von Bremen, 2010).
The fluctuating nature of RES represents a challenge for
reliable energy production as both sources are directly
dependent on weather conditions with a high spatio-
temporal variability (Francois, 2016; Jurasz et al., 2021;
von Bremen, 2010). Moreover, electricity demand is par-
ticularly sensitive to weather conditions (i.e., heating and
cooling), with the temperature being one of the main
drivers of demand patterns (Bloomfield et al., 2018;
Garrido-Perez et al., 2021).

The influence of large-scale atmospheric patterns on
European energy systems has been the subject of several
studies (Bloomfield et al., 2018, 2020; Brayshaw
et al, 2011; Ely et al.,, 2013; Francois, 2016; Grams
et al., 2017; Thornton et al., 2017). In particular, it has
been shown that persistent atmospheric blocking leads to
anomalously low wind speeds and cold temperatures,
resulting in higher residual load (i.e., energy demand
minus energy production, Bloomfield et al., 2018; van der
Wiel, Bloomfield, et al., 2019). The North Atlantic Oscil-
lation (NAO), one of the most important modes of atmo-
spheric variability over the North Atlantic sector in
winter, plays a significant role in European power sys-
tems (e.g., Brayshaw et al, 2011; Ely et al, 2013;
Francois, 2016; Grams et al., 2017; Jerez et al., 2013).
Ravestein et al. (2018) showed the association between
the NAO variability with periods of persistent low wind
speeds over Europe, and thus a reduced wind power gen-
eration and colder temperatures. Recently, Allen et al.
(2021) exploit this association when statistically post-
processing wind speed forecasts. In Europe, mean wind
generation shows strong weather regime dependent fluc-
tuations: cyclonic regimes that can explain periods of
overproduction and blocked regimes that can explain
underproduction (Grams et al., 2017).

Extreme meteorological stress on the electricity sys-
tem poses a serious risk to the European energy security.
This includes periods of low renewable production and
high demand. Raynaud et al. (2018) analysed periods of
low production from renewable power sources, “energy
production droughts,” along with periods of high
demand, “energy supply droughts,” over a number of
European regions. They found a large variability in the
frequency of energy droughts between energy sources
and the considered regions. They showed that wind

droughts were more frequent but shorter than solar
droughts that last longer as a result of the seasonality,
while hydropower droughts were more regionally depen-
dent. Bloomfield et al. (2020) investigated the meteoro-
logical conditions leading to the top 10 events of peak
demand and residual load over Europe. They found that
peak winter demand occurred with high atmospheric
pressure over Russia and Scandinavia and temperatures
and wind speeds below normal conditions across Europe.
They noted a considerable spatial variability in dates of
national peak demand events and renewable energy
generation. Using large ensemble simulations from
global climate models, van der Wiel, Bloomfield,
et al. (2019) analysed the meteorological sensitivity of
European renewable sources. From these simulations,
they extracted 1-in-10 year low renewable energy produc-
tion events and 1-in-10 year high energy residual load
events to examine the meteorological conditions during
low renewable production and high residual load. They
showed that atmospheric blocking situations lead to
long-lasting periods of low energy production. In a simi-
lar framework, van der Wiel, Stoop, et al. (2019) investi-
gated whether four weather regimes capture the
influence of meteorological variability in winter on the
European energy sector.

Detailed analysis from previous works has empha-
sized the complex relationship between meteorology and
energy production and load, including critical situations
(e.g., extreme events) at local and regional scales
(Bloomfield et al., 2019a; van der Wiel, Stoop,
et al., 2019). Such complexity calls for tailored studies to
better understand and quantify the impacts of climate
variability on an energy system largely based on RES. In
particular, understanding the weather conditions associ-
ated with a major risk of a power system failure, that is,
an imbalance between electricity demand and energy
production, is crucial within the context of a clean energy
transition. In their study, van der Wiel, Bloomfield, et al.
(2019) pointed out that high residual load events can be
thought of as examples of compound events that arise
from a combination of multiple drivers and/or hazards
(Raymond et al., 2020; Zscheischler & Seneviratne, 2017).

In contrast to their approach, we do not rely on one
single quantity to assess critical energy events, but
instead, we use a country-wide bivariate definition of
energy compound events based on two quantities: energy
production and energy demand. We define an energy
compound event as an episode of simultaneously low
power production and high electricity demand. This
approach allows us to focus on extreme episodes of
energy compound events, as concurrent low production
and high demand might not necessarily coincide with a
high residual load. Indeed, high residual load values
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might include episodes of low production but moderate
(not extremely high) demand (or vice versa).

With the increasing interconnection between European
electricity grids (EEA, 2019) that are largely based on
RES dependent on weather conditions, assessing such
critical situations that can make the power system more
vulnerable is essential. A more interconnected European
grid can be a strategic response to the multi-day variability
challenge of RES supply (Grams et al., 2017), but it can also
increase their vulnerability under particular situations
(EEA, 2019). Therefore, it is important to consider the
spatial coherence of energy compound events that can
simultaneously affect multiple regions.

Building upon previous research that has shown the
influence of weather regimes on RES supply and demand
(e.g., Bloomfield et al., 2019a; Grams et al., 2017; van der
Wiel, Stoop, et al., 2019), we characterize energy com-
pound events in terms of their frequency, their drivers,
and their spatial coherence across 27 European countries.
Unlike most of the previous studies that analysed the
mean meteorological conditions based on composite
maps corresponding to energy events (e.g., low produc-
tion or high residual load), we apply a logistic regression
approach, which has been used in studies of multivariate
compound events (e.g., Bevacqua et al., 2021; Martius
et al., 2016), to assess the influence of weather conditions
on extreme energy events. Moreover, using the logistic
regression models, we quantify the odds of occurrence of
energy compound events given a combination of certain
weather conditions. The goals of this study are therefore
twofold. First, we characterize energy compound events
across Europe in terms of their frequency of occurrence
and the dominant meteorological drivers associated with
these events, and use a logistic regression approach to
quantify the influence of meteorological drivers on the
odds of occurrence of energy compound events. Second,
we investigate for the first time the spatio-temporal
occurrence of energy compound events across multiple
countries, which can pose a high risk to the power sys-
tem, especially in interconnected regions.

The remainder of this paper is organized as follows.
The data, including the relevant energy indicators and
weather regimes, are introduced in Section 2. In Section 3,
the definition of energy compound events and the logistic
models are described. The results are presented in
Section 4, and Section 5 concludes with a general discus-
sion and conclusions.

2 | DATA

We use daily time series of European energy indicators,
including electricity demand, solar and wind power at a

national level, created by Bloomfield et al. (2019b). These
data are a reconstruction of energy indicators obtained
from the ERAS reanalysis data (Hersbach, 2018) during
1979-2019 and are available from the Reading Research
and Data Repository (https://researchdata.reading.ac.uk/
273/). The data have been used in previous studies
(Bloomfield et al., 2019a, 2020; Otero et al., 2021). In the
following subsections, we briefly summarize the methods
used for the weather-to-energy conversion data, and the
reader is referred to Bloomfield et al. (2019a) for further
details.

Also, from ERAS5, country averages of 2 m tempera-
ture (T2m), near-surface wind speed of 10 m (WS), and
incoming shortwave radiation (SSRD) were used in the
statistical analysis, because they are considered to be the
main predictors of both energy production and electricity
demand. In addition, the corresponding gridded fields
with 1° by 1° spatial resolution, along with mean sea
level pressure, were used for the composite analyses.
Moreover, 500 hPa geopotential height (Z500) has been
used for the weather regimes classification (Grams
et al., 2017).

As shown in previous studies, there is a strong sea-
sonality of energy peak demand and low production
(Bloomfield et al., 2019a; van der Wiel, Stoop,
et al.,, 2019). We performed sensitivity tests that con-
firmed that these critical events were limited to winter
months for most countries, and our analysis, therefore,
focuses on an extended winter season (October-March,
ONDJFM).

2.1 | Energy demand

The electricity demand was reconstructed based on a
multiple linear regression model trained with observed
demand, in giga (10°) watts (GW) units. The training
data were available for two complete years (2016-2017)
and extracted from the ENTSOe transparency platform
(ENTSOE, 2019). The regression model uses both
weather-dependent and human-behaviour-dependent
factors (e.g., the day-of-the-week and long-term socio-
economic trends Bloomfield et al., 2019a). The weather-
dependent model parameters are heating-degree days
(HDDs) and cooling-degree days (CDDs). An HDD
occurs when a country-average T2m falls below 15.5°
(the threshold at which residential heating is required),
whereas a CDD occurs when a country-average T2m is
above 22° and energy is required for residential cooling
(Bloomfield et al., 2019a). Within the model, T2ms is the
only weather-dependent variable that contributes to
fluctuations in demand (Bloomfield et al., 2019a). This
type of statistical regression approach to reconstruct
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long-time series of electricity demand has been used in a
number of similar studies (Francois, 2016; Raynaud
et al., 2018; Thornton et al., 2017).

We use the weather-dependent model version that
neglects the predictors representing human behaviour
(e.g., the weekday and socioeconomic predictors) to high-
light the weather dependence (see further details in
Bloomfield et al., 2019a).

2.2 | Wind and solar power

The capacity factors, defined as the ratio of the total pro-
duced energy to the total installed capacity (%), obtained
from both wind and solar power models were used to cal-
culate the daily national wind and solar power produc-
tion. To do so, for each country, we used as the baseline
the installed capacity of wind and solar corresponding to
2017 (Figure S1; Bloomfield et al., 2019a, 2020). The wind
and solar power datasets captured the overall behaviour
of the national wind and solar power generation well (see
Bloomfield et al., 2019a, and references therein for fur-
ther details).

Wind power capacity factors were obtained from a
physical model that uses bias-adjusted wind speeds
(using the Global Wind Atlas as the “truth”) at an alti-
tude of 100 m above ground from the ERAS5 reanalysis
(Bloomfield et al., 2019a). Calibrated wind speeds are
then passed through a power curve to convert to wind
power capacity factors. Three different power curves were
used for different grid cells of the underlying climate data
set to allow the maximum potential to be extracted from
each grid cell's wind speeds. In each grid cell, either a
class 1, 2, or 3 wind turbine was assigned based on the
1979-2019 mean wind speed. Country-level wind power
generation is calculated by weighting each grid box by
the amount of wind power installed there (in the refer-
ence year 2017).

Solar power capacity factors were modelled following
the empirical formulation of Evans and Florschuetz
(1977), using T2m and incoming surface solar radiation
as inputs. The solar power capacity factors were created
at each grid point and then aggregated to national level,
assuming a uniform distribution of solar panels across
the country (as at the time of model creation, there were
no available data on panel locations).

2.3 | Weather regimes

We use an extended classification of weather regimes
(WRs) provided by Grams et al. (2017), in which a total
of 7-year-round WRs are identified based on 10-day

low-pass-filtered 500 hPa geopotential height anomalies
(Z500) that remove short-term variability (Grams
et al., 2017). The WRs are identified based on a standard
empirical orthogonal function (EOF) analysis on 3-hourly
7500 anomaly patterns, followed by a k-means clustering
of the leading EOFs that attributes each time step to a
specific cluster in the EOF phase space. For our study, we
derive the daily weather regime life cycle from the
3-hourly categorization. The WRs represent strong zonal
flow conditions and blocking over Greenland, Scandina-
via, and Central Europe. This classification also includes
a “no regime” type for those time steps at which none of
the seven regimes fulfils the criteria (Grams et al., 2017).

Three of the seven WRs are cyclonic: the Atlantic
trough regime (AT); the Zonal regime (ZO); and the
Scandinavian trough (ScTr). The cyclonic WRs show as
predominant feature a negative Z500 anomaly. Four of
the seven regimes are considered as blocked: the Atlantic
ridge regime (AR); the European blocking regime
(EuBL); the Scandinavian blocking (ScBL); and the
Greenland blocking (GL; Grams et al, 2017). The
cyclonic types (AT, ZO, ScTr) are dominant in winter,
whereas the blocked regimes tend to dominate in sum-
mer (Grams et al., 2017). Figure S2 (see the supplemen-
tary material) provides a general overview of the relative
frequencies of WRs throughout the year for the period of
study.

Grams et al. (2017) showed that the seven WRs cap-
ture the seasonal variability of the large-scale circulation
states over the Euro-Atlantic region. Moreover, they
found a direct year-round relationship between the WRs
and the surface wind distribution over the North Euro-
Atlantic sector (see further details in Grams et al., 2017).
Recent studies have shown the usefulness of this
extended WR classification. For example, Domeisen et al.
(2020) assessed the wvariability of the tropospheric
response to sudden stratospheric warming events in the
North Atlantic European region in terms of the WRs. In
the context of sub-seasonal predictions, Biieler et al.
(2021) evaluated the forecast skill of these seven WRs in
sub-seasonal reforecasts from the European centre for
medium-range weather forecasts (ECMWF).

3 | METHODS

3.1 | Energy compound events

An energy compound event (ECE) is defined here as a
period of time when low wind and solar energy produc-
tion (LWS) occurs simultaneously with high electricity
demand (HD). For each country, the occurrence of an
ECE can be expressed as follows:
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1 if Pyws(t) <LWS dD(t)>HD
E(t _{ if Pws(t) < wand D(t) > %0 )

0 otherwise

where E(f) is a daily time series characterizing whether
an ECE occurs (E(f) = 1) or does not occur (E(t) = 0) at
each time t. Pws(t) represents the wind and solar power
production at time ¢, while D(¢) is the corresponding elec-
tricity demand. LWS,, is the threshold used to define
LWS events and is fixed as the 10th percentile of Pys(f),
at the country of interest. Similarly, HDgq is the threshold
used to define HD events and is fixed as the 90th percen-
tile of the distributions of D(t). Thus, E(f) = 1 when
Pys(t) is below the 10th percentile of all Pywsg(t) values
and D(t) is above its 90th percentile. Since we focus on
the extended winter, ONDJFM, the LWS,, and HDg, are
country- and season-specific thresholds. Although the
number of instances that Pyg(t) falls below LWS;, and D
(t) exceeds HDg, will individually be the same for each
country, the number of times that this occurs simulta-
neously will vary across the countries (see Figure 1).

3.2 | Logistic regression

We apply a binary logistic modelling approach to quan-
tify the influence of key driving factors of ECEs across
Europe, including both meteorological predictors and
WRs. Preliminary analysis showed that combining mete-
orological variables and WRs in the same model might
hide the significant influence of WRs on the ECEs, as the
meteorological covariates already explain a large propor-
tion of information contained in the WRs. Therefore, we
fit two independent models to quantify the influence of
(1) local meteorological variables and (2) WRs. The

ECEl/year

FIGURE 1
energy compound events (ECEs) for each country over the period
of study 1979-2019.

Observed frequency of occurrence (per year) of
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formulation of the two models can be summarized as
follows:

1. Meteorological logistic regression model

logit(P(t)) = In (1 fKl?(ﬁ)

=po+ /i T2m(t) + f,WS(t) + f5SSRD(t), (2)

where T2m(f), WS(t), and SSRD(t) represent the T2m,
10 m wind speed, and incoming shortwave solar radia-
tion, at time ¢, and P(¢) is the predicted probability that
an ECE will occur given these covariates at this time. f;,
P, and f; are the regression coefficients corresponding to
T2m, WS, and SSRD. The meteorological covariates were
standardized prior to the model fitting. This enables a
direct comparison between their odds ratios (i.e., exp[S]),
interpreted as a multiplicative factor by which the odds
of an ECE occurring increase (or decrease, if exp[f] <1)
as the corresponding covariate increases by one unit
(i.e., one standard deviation), keeping constant the rest of
the covariates included in the model.

2. Regime-dependent logistic regression model

) =§_:1aerwr, (3)

logit(P(t)) = In (1 f(li)(t)

where P(f) is the predicted probability that an ECE will
occur given a certain WR, and ay,, are the regression coeffi-
cients corresponding to each weather regime. The WRs are
introduced as categorical factors in the logistic regression,
and hence it introduces seven auxiliary variables into the
model (i.e., Xy, are either 0 or 1 depending on whether that
regime occurs). Note that one of the categories is set as a
reference (in our case, the reference is 0, i.e., “no regime”).
Therefore, the odds ratios (exp[aw,]) are interpreted as mul-
tiplicative factors that increase (for positive ) or decrease
(for negative a,) (With respect to the reference category)
the probability of occurrence of an ECE for a given WR.

The parameters of the logistic regression models are
estimated using maximum likelihood (ML) estimation.
Since the ECEs we consider are rare, we follow Firth's
method (Firth, 1993) and introduce a likelihood penalty
to reduce the bias of the ML estimates that arises due to a
small effective sample size. This implementation was car-
ried out with the R package logistf (Puhr et al., 2017).

The performance of the logistic regression models
was assessed through common metrics: the Brier score
(BS; Wilks, 2011) and the Brier skill score (BSS;
Wilks, 2011).
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The BS is estimated as:
BS=—"(P(t) - E(1))’, (4)

where N is the total number of observations, P, is the pre-
dicted probability of occurrence of an ECE, and E, is the
observed occurrence of an ECE (i.e., E, = 1 if the event
occurs, and 0 otherwise). BS ranges between 0 and 1,
with lower values indicating a better performance
(Wilks, 2011). The BSS is calculated as:

BS

BSS=1- .
Bsref

()

where BS,¢is the Brier score of a reference forecast. The BSS
can be interpreted as the relative improvement in BS over
the reference forecast. Here we use the climatological event
frequency (i.e., during the period of study) as reference.

In addition to the listed metrics, we have used reli-
ability diagrams, which plot the observed event frequency
against the predictive probability, and can be used as a
direct diagnostic tool for assessing the model perfor-
mance. The reliability diagrams assess how reliable or
calibrated the predictions issued by the logistic regression
model are, whereas the BS and BSS are typically used to
compare competing models or predictions.

4 | RESULTS

4.1 | Characteristics of ECEs

We begin our analysis by examining the observed fre-
quency of occurrence of ECEs for each country along
with the local meteorological conditions that characterize
these events. As illustrated in Figure 1, European coun-
tries are exposed to an ECE more than two times per win-
ter on average. The highest frequency is observed in
northern and central European countries, which are
exposed to more than three ECEs per winter on average.
Despite the high installed capacity of solar and wind in
some countries (e.g., Germany), the frequency of ECE
indicates the existing risks of mismatch between renew-
able production and load. The lowest frequency is
observed in a few countries (e.g., Slovakia, Switzerland,
Greece) with less than one ECE per winter.

Next, we characterize the ECEs in terms of the local
meteorological conditions that dominate during the occur-
rence of an event. For each country, the means of T2m,
WS, and SSRD during ECEs (E(f) = 1) were calculated. To
assess how “extreme” the weather conditions during an

ECE might be, we show the average values of the three
meteorological variables when an ECE occurs, expressed in
terms of percentiles of their climatological distributions.
Additionally, we analysed the mean meteorological condi-
tions during an ECE for each WR. As illustrated in
Figure 2, ECEs are characterized by extremely low tempera-
tures (<5th percentile) everywhere, accompanied by gener-
ally low wind speeds (<10th percentile). We notice a larger
variability of SSRD conditions during ECEs, but in general
SSRD does not seem to have a strong effect, as it is close to
the 50th percentile in most of the central and southern
countries. It must be noted that in winter, solar power is a
very small input to the renewable generation compared
with wind power, and hence does not have as large an
effect on the total energy generated by RES. On average,
moderate-high (>60th) SSRD conditions are observed dur-
ing an ECE in northern countries, due to the presence of
blocked regimes (e.g., GL, EuBL, AR) that lead to increased
SSRD (Figure S3), accompanied by extremely low tempera-
tures and low wind speeds in most of the countries
(Figures S4 and S5). Overall, the dominant conditions that
result in ECEs in most of Europe are extreme cold tempera-
tures and low wind speed. However, we observed distinct
patterns in a few countries (e.g., Switzerland, Slovakia),
where ECE are associated with moderate-high wind speed
(>50th) conditions and low SSRD (<10th), pointing out the
negative correlation between solar and wind power: windy
conditions are generally associated with cloudy days (lower
solar radiation). Moreover, it must be noted that in these
countries, low power production episodes (LWS) are mainly
driven by solar power, due to the small installed wind
power capacity (Figure S1), which can explain these domi-
nant conditions during an ECE.

4.2 | Logistic regression

In this section, we examine the influence of meteorologi-
cal and atmospheric drivers on ECEs based on the logis-
tic regression models. Then, we continue our analysis
with a focus on spatio-temporal ECEs that can affect
multiple countries.

421 |
model

Meteorological logistic regression

The logistic regression models that used meteorological
covariates as predictors obtained low BS in most coun-
tries, ranging from 0.01 to 0.017 (Table S1). Although
these small values are largely attributable to the rarity of
ECEs, the BSS values are positive at all locations, ranging
from 0.13 (Bulgaria) to 0.57 (Ireland), which suggests the
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FIGURE 2 Country-based

percentiles of 2 m temperature
(T2m), 10 m wind speed (WS), and
surface solar radiation (SSRD)
corresponding to their means values
during an energy compound event.

SSRD

1.4,2]
1.2,1.4]
1,1.2]
0.8,1]

0.4,0.6]
0.2,0.4]
0.1,0.2]

FIGURE 3
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Odds ratio corresponding to temperature, 10 m wind speed, and surface solar radiation obtained from the country-based

logistic regression models. Red crosses indicate statistically significant coefficients according to the Wald test at the 5% significance level.
Odds ratios <1 indicate a negative relationship (i.e., associated with a decrease in the outcome), and odds ratio >1 indicate a positive
relationship (i.e., associated with an increase in the probability of an energy compound event).

predictions obtained using the logistic regression model
are significantly more informative than the climatological
event frequency. The differences in the model perfor-
mance in terms of BSS are also reflected in the reliability
diagrams that show the different model performance
across the countries (Figure S6). The best model perfor-
mance is found in Ireland, Portugal, and France, where
the predictions are closer to the observations, in contrast
to a relatively poorer performance shown in a few
countries (e.g., Bulgaria, Switzerland; Figure S6). This
lack of accuracy might be explained by the small number
of events in those countries due to a limited amount of
installed capacity for both wind and solar power, which
makes challenging the characterization of ECEs.

422 |
on ECEs

Influence of meteorological drivers

Figure 3 shows the odds ratio associated with tempera-
ture, wind speed, and solar radiation. The temperature

and wind speed were found to be statistically significant
predictors of ECEs in most countries, and their associated
odds ratio were generally below 1, which indicates an
increasing probability of occurrence of an ECE for
decreasing temperature and wind speed conditions. This
is consistent with peak winter demand events due to cold
temperatures that can be accompanied by below normal
wind speed conditions that result in low wind power pro-
duction (Bloomfield et al., 2018). We observe a larger var-
iability across the countries for the odds ratio of solar
radiation, in terms of the sign, which points to a different
effect of incoming radiation on the occurrence of an
ECE. In a number of countries, the odds ratio corre-
sponding to solar radiation is close to one (e.g., the
United Kingdom, Netherlands, Sweden), which suggests
that solar radiation has little effect on the occurrence of
an ECE in comparison with temperature and wind speed.
In most central and southern countries, there is a higher
probability of occurrence of an ECE with decreasing solar
radiation, while in some northern and western countries,
the odds of occurrence of an ECE are higher with
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increasing solar radiation. This might be explained by the
prevailing atmospheric patterns that can lead to more
insolation, but also colder temperatures (i.e., higher
demand), and thus, a higher probability of an ECE.
Increasing solar radiation could be translated into more
solar power production to help meet the demand. How-
ever, we must note that in winter the potential for solar
generation is lower than in summer, especially in the
northern countries (Bloomfield et al., 2018). Further-
more, in most countries, the installed capacity of solar
generation is relatively low (compared with the installed
wind power capacities; Figure S1).

Similarly to other examples of compound events, the
combination of hazardous weather conditions might
result in the occurrence of an ECE, intensifying the risks
of power failures. Thus, we further examine the odds of
an ECE occurring (see Equation 2) given certain combi-
nations of meteorological conditions. The logistic model
allows us to quantify the probability of occurrence of an
ECE for a combination of meteorological conditions.
Figure 4 shows the predicted probabilities as a function
of the observed meteorological conditions of T2m, WS,
and SSRD for some selected countries. In most cases, the
probability of occurrence of an ECE considerably
increases for extremely low temperatures along with low
wind speeds. In particular, in the case of central
European countries (e.g., France, Germany, Austria), the
maximum probability of an ECE occurs for observed tem-
peratures <—10°C and <—5°C in the case of northwest-
ern countries (Ireland and the United Kingdom). Also, in
the southern countries (e.g., Portugal), low temperatures
are associated with a high ECE probability. Note that the
meteorological conditions represent the country averages.
In general, moderate-high values of SSRD seem to be
associated with a higher probability of ECEs.

423 |
model

Regime-dependent logistic regression

The regime-dependent logistic regression model showed
a poorer performance compared with the meteorological
models, with little predictive skill (Table S2). This indi-
cates that the WRs are less able to capture the behaviour
of the ECEs. Nevertheless, the weather logistic models
can be used in a descriptive way as they provide further
insights into the influence of atmospheric circulation pat-
terns on the occurrence of ECEs.

Figure 5 shows the distinct behaviour of the WRs, in
terms of odds ratios, which reflects the variability
between the high demand and low renewable production
across the countries under the WRs. The cyclonic types
(i.e., AT, ZO, ScTr) significantly decrease the probability

of the occurrence of an ECE. In particular, the lowest
odds ratio is shown by the ZO and AT in the northern
and central countries (e.g., Norway, the United Kingdom,
France). Overall, the odds of an ECE also decrease under
the presence of ScTr in most of Europe. A contrasting
pattern is found in the odds ratios corresponding to the
blocked types (AR, EuBL, ScBL, and GL), during which
the westerly flow is disrupted by stationary anticyclones,
resulting in reduced wind speed (i.e., decreasing power
production). In general, the odds of ECEs slightly
increase in the presence of AR and ScBL, mostly in the
eastern countries where these WRs are statistically signif-
icant. A larger effect is observed in the odds ratios corre-
sponding to EuBL and GL that significantly increase the
odds of an ECE in most of Europe, especially in Central
Europe. The EuBL has a major effect on the odds of
occurrence of ECE, while GL plays a major role in the
odds of ECE in the northern countries (e.g., Sweden,
Norway, Finland; see Figure 6).

Our results show that the probability of occurrence of
an ECE decreases for certain cyclonic conditions, particu-
larly AT and ZO (coincident with the positive NAO), as a
result of higher renewable production, mostly driven by
increased wind power production. These findings are
consistent with previous work that showed the strong
influence of blocked regimes on episodes of peak demand
and low production (Bloomfield et al., 2018; van der
Wiel, Stoop, et al., 2019). Grams et al. (2017) showed that
winter cyclonic regimes are associated with overproduc-
tion of wind power generation in northern and western
Europe, and with a risk of underproduction of wind
power production in southeastern Europe. Moreover,
cyclonic regimes favour mild winter conditions due to
the air mass advection from over the Atlantic Ocean into
the continent (Grams et al., 2017), which results in posi-
tive temperature anomalies. Similarly, van der Wiel,
Stoop, et al. (2019) showed high wind and solar produc-
tion (on average) and less electricity demand during the
positive phase of the NAO. Consistently, here we show a
significant influence of some WRs, particularly the EuBL
and GL, which increase the odds of occurrence of an
ECE across Europe.

4.3 | Spatio-temporal ECEs

The analysis presented above focused on local ECEs
(i.e., an ECE occurring at a country-level scale). However,
synchronous ECEs that occur across multiple countries
can pose a serious risk to the European power system.
The analysis of weather conditions that can result in
spatio-temporal characteristics of ECEs is of major inter-
est to build an interconnected power grid largely
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FIGURE 4 Probability of occurrence of an energy compound event (ECE) derived from the logistic regression models as a function of
2 m temperature (T2m; °C), wind speed (WS; m/s), and surface solar radiation (SSRD; W/m?) for a representative number of countries.

dependent on RES. Therefore, this section provides fur-
ther insights into the spatio-temporal ECEs and the links
with atmospheric drivers. To assess the spatial relation-
ship of ECEs, we first quantified the co-occurrence of
ECEs across the countries. For that, monthly frequencies
of ECEs were used to calculate the Pearson's correlation
coefficients between each country pair. Figure 6 shows
the correlation coefficients for each pair of countries.
ECEs are significantly positively correlated across a large
number of countries. The highest correlation coefficients
are observed across the northwestern countries, such as
France, Belgium, Luxembourg, and the Netherlands.

Similarly, the frequency of ECEs is strongly correlated
across the southern countries (e.g., Spain, Portugal, Italy)
and northern central countries (e.g., Germany, Czech
Republic, Poland, Latvia, Denmark). The correlation
coefficients do not explicitly restrict attention to concur-
rent ECEs; however it allows us to get a better picture of
the spatial relationship between critical energy events
across Europe. Furthermore, we empirically calculated
the frequency of country-pair ECEs (i.e., by simply count-
ing the simultaneous ECEs for each pair of countries),
which showed similar spatial patterns (Figure S7) than
those obtained from correlation analysis (Figure 6).
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43.1 | Climate drivers of spatio-temporal ECEs

Figure 7a illustrates the relative frequency of ECEs occur-
ring during each WR. Note that the number of ECEs dif-
fers across the countries, as shown in Figure 1. On

average, 25% of the ECEs occur during “no regime” (no),
which can be due to the high proportion of days that are
categorized as a “no” regime during the period of study
(Figure S2). Despite the variability in the proportion of
ECEs occurring during the WRs across the countries, it



OTERO ET AL.

Meteorological Applications . - 11 of 15

(8) I- Ill IIIII|I|I|III|IIIII
75

501
25 I
0

AT BEBGCHCZDEDKEL ES FI FRHRHU IE IT LT LU LV NLNOPL PTROSE SI SK UK

Relative frequency of ECE (%)

OpenAcce
Science and Technology for Weather and Climate

no
et . Number of ECE
>40
ScBL 36-40
26-30
21-25
EuBL 16-20
11-15
AR 6-10
5
4
ScTr 3
2
1
Z0
AT

FIGURE 7 (a) Relative frequency of occurrence of an energy compound event (ECE) under each weather regimes (WRs) with respect to

the total number of ECEs for each country. (b) Frequency of ECEs corresponding to each WR, as a function of the number of countries

affected by the ECE.
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FIGURE 8 Anomaly composites of 2 m temperature, 10 m wind speed, and incoming surface solar radiation for the first selected event,
during which 12 countries experienced an energy compound event (ECE). Red stars indicate the countries simultaneously affected by an

ECE. The dominant weather regime was the blocked regime Greenland

can be observed that a large percentage of ECEs occur dur-
ing blocked WRs. In particular, 21% of ECEs occur during
the GL and 15% during EuBL. Overall, there is a high fre-
quency of ECEs during GL in northern countries
(e.g., Norway, Finland, Denmark), while ECEs occur more

blocking.

often during EuBL in central and southern countries
(e.g., France, Netherlands, Austria, Italy). During GL and
EuBL conditions, most of Europe experiences extremely
cold temperatures (Figure S4) and generally low wind
speeds (Figure S5). As shown in Grams et al. (2017), the
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FIGURE 9

Anomaly composites of 2 m temperature, 10 m wind speed, and incoming surface solar radiation for the second selected

event, during which nine countries experienced an energy compound event.

minimum mean wind underproduction occurs during
EuBL, especially in the northern countries, which along
with low temperatures, explain a major percentage of ECE
under EuBL. Similarly, GL leads to high demand, but also
reduced wind speed (less wind production). Also, in
Figure 7b, we show the frequency of WRs as a function of
the number of countries that experienced synchronous
ECEs. In general, the number of countries simultaneously
affected by an ECE increases with blocked regimes. For
example, ECEs affecting more than seven countries at the
same time were predominately associated with GL, EuBL,
and AR regimes.

Based on the frequency analysis shown in Figure 7,
we analysed the meteorological conditions during spatial
ECEs. For that, we first selected the ECEs that affected a
large number of countries. Then, we used seasonal anom-
aly composites of temperature, wind speed, and solar
radiation corresponding to the previous day, the day
after, and the selected day of the ECE.

Figure 8 shows the anomaly composites of tempera-
ture, wind speed, and solar radiation corresponding to an
event in January 1985 that led to a total of 12 European

countries with an episode of concurrent low production
and high demand. The GL regime was the dominant WR
during the event, with a blocking high-pressure system
near southern Greenland and a low-pressure system over
the Atlantic, which corresponds to the negative phase of
the NAO. The GL leads to considerably reduced zonal
flow over northern Europe, where persistent negative
wind speed anomalies are observed (Figure 8, central
row). Moreover, GL was associated with cold conditions
in the northern and eastern European countries, as
shown by the negative temperature anomalies (Figure 8,
first row). It can be noticed that the day before and the
day after the selected ECE (D — 1, D + 1, Figure 9), the
magnitude of the anomalies of wind speed is relatively
small and positive (0.5-1 m/s) in some locations in north-
ern Europe compared with the anomalies observed dur-
ing the selected day. Negative temperature anomalies
(>—10°C) combined with reduced wind speeds lead to
ECEs in most of northern and eastern Europe. Interest-
ingly, some central European countries experienced weak
positive anomalies of solar radiation, which might sug-
gest that solar power generation could partly compensate
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for the decrease of wind power during the demand peaks.
However, it is important to stress the reduced availability
of solar resource in winter due to the seasonal cycle.
Moreover, it must be noticed that the installed solar
capacity is much smaller than the installed wind capacity
(Figure S1), meaning a large proportion of low renewable
energy production is driven by wind power generation.

Similarly to the GL, a blocked EuBL regime was asso-
ciated with spatially concurrent ECEs (Figure 9). During
the EuBL, a blocking ridge expands over central and
western Europe. These WRs lead to large negative anom-
alies of wind speed over most of Europe, particularly in
the central and northern countries. Moreover, during
EuBL, a large part of Europe experienced colder tempera-
tures, with the largest negative anomalies of tempera-
tures in northern Europe (Figure 9). In agreement with
early studies, we show that the European power system
is particularly sensitive to blocked regimes, which favour
combined meteorological conditions that might result in
spatio-concurrent ECEs.

5 | DISCUSSION AND
CONCLUSIONS

Assessing the balance between renewable energy produc-
tion and energy demand requires considering the climate
drivers that can threaten the reliability of energy produc-
tion. Here, we analysed winter ECEs, defined as simulta-
neous episodes of low renewable energy production
(wind plus solar power generation) and high electricity
demand across a total of 27 European countries. We use
a threshold-based approach to identify ECEs.

Based on a logistic regression approach, we assessed
the influence of local meteorological covariates and
atmospheric drivers (WRs) on energy compound events
(ECEs), separately for each country. Furthermore, we
examined the spatial coherence of ECEs that affect multi-
ple countries and can have a major impact on the energy
power system.

We showed that European countries are exposed to
an ECE more than two times per year on average. In gen-
eral, the ECEs are characterized by extremely low tem-
peratures (<5th percentile of the climatological
distribution) and low wind speed (<10th percentile of the
climatological distribution), which translate into a higher
energy demand and lower wind power production.

Results from the meteorological logistic regression
model, fitted with meteorological variables covariates,
indicated the significant influence of temperatures and
wind speed on the odds of ECEs that increase with very
low temperature and low wind conditions. Overall, the
solar radiation had a small effect on the probability of an

ECE occurring. The regime-dependent logistic models,
fitted with weather regime covariates, showed distinct
patterns in the odds ratios corresponding to the different
WRs. We found that the odds of ECEs tend to increase
under the presence of blocked regimes. In particular,
EuBL and GL significantly increase the odds of an ECE
over most of Europe. In general, the cyclonic regimes
were associated with a low probability of occurrence of
ECEs. These results are consistent with previous work
that showed overproduction of wind power during winter
cyclonic regimes and underproduction of wind power
production in southeastern Europe (Grams et al., 2017).

In recent years, the European electricity grids have
increased their level of interconnection (EEA, 2019). Due
to the potential risks of spatially ECEs, which simulta-
neously affect multiple countries, we have further ana-
lysed these events and their atmospheric drivers. With a
simple approach, based on correlation coefficients
between monthly frequencies of ECEs across country
pairs, we showed the spatial relationship between the
ECEs in a large number of countries. Large correlations
were found between neighbouring countries (e.g., France,
Belgium, Luxembourg), likely as a result of similar climate
conditions, and thus, consumption patterns, which lead to
a higher demand (and higher probability of occurrence of
an ECE). Moreover, we showed the link between spatial
ECEs and blocked regimes, specifically the GL and EuBL
that occurred more often during widespread ECEs. This
analysis illustrated that blocked regimes can result in syn-
chronous ECEs that affect multiple regions.

It is worth noting that the results presented here
assume a power system baseline equivalent to 2017. We
acknowledge that assessing ECEs under a different sce-
nario of installed wind and solar capacities will be
required to account for changes in the electricity demand
patterns induced by a warmer climate or evolved energy
system to meet climate mitigation targets. Therefore,
future work might investigate other renewable energy
power system scenarios under a changing climate. Using
climate scenarios, Garrido-Perez et al. (2021) showed a
seasonal shift in the electricity demand peaks from win-
ter to summer in Spain, where the frequency and severity
of extreme electricity demand days are expected to
increase. The methodology presented here could be used
to analyse changes in the frequency of ECEs in summer,
which might be particularly interesting in southern and
western European countries that will experience an
increased electricity demand under a warmer climate
(Wenz et al., 2017).

To conclude, we have shown that European countries
are exposed to ECEs during which it might be challeng-
ing to achieve a balanced electricity transmission system,
due to simultaneous episodes of high demand and low
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production. More importantly, our study illustrated that
synchronous ECEs can affect multiple countries. In par-
ticular, the European power system seems to be vulnera-
ble to blocked WRs that have a large influence on
European renewable energy production and demand.

Given the rapid growth of wind and solar power gen-
eration, and with the promising skill shown by WRs for
sub-seasonal forecasting (Biieler et al., 2021), our study
highlights the relevance of considering WRs that might
result in spatially coincident ECEs that pose a major risk
for interconnected regions. We believe that the energy
sector could greatly benefit from skilful forecasts of WRs
that have shown a major influence on ECEs.
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