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Abstract
Purpose Preservation surgery can halt the progress of joint degradation, preserving the life of the hip; however, outcome
depends on the existing cartilage quality. Biochemical analysis of the hip cartilage utilizing MRI sequences such as delayed
gadolinium-enhanced MRI of cartilage (dGEMRIC), in addition to morphological analysis, can be used to detect early signs
of cartilage degradation. However, a complete, accurate 3D analysis of the cartilage regions and layers is currently not possible
due to a lack of diagnostic tools.
Methods A system for the efficient automatic parametrization of the 3D hip cartilage was developed. 2D U-nets were trained
on manually annotated dual-flip angle (DFA) dGEMRIC for femoral head localization and cartilage segmentation. A fully
automated cartilage sectioning pipeline for analysis of central and peripheral regions, femoral-acetabular layers, and a variable
number of section slices, was developed along with functionality for the automatic calculation of dGEMRIC index, thickness,
surface area, and volume.
Results The trained networks locate the femoral head and segment the cartilage with a Dice similarity coefficient of 88 ± 3
and 83± 4% on DFA and magnetization-prepared 2 rapid gradient-echo (MP2RAGE) dGEMRIC, respectively. A completely
automatic cartilage analysis was performed in 18s, and no significant difference for average dGEMRIC index, volume, surface
area, and thickness calculated on manual and automatic segmentation was observed.
Conclusion An application for the 3D analysis of hip cartilage was developed for the automated detection of subtle morpho-
logical and biochemical signs of cartilage degradation in prognostic studies and clinical diagnosis. The segmentation network
achieved a 4-time increase in processing speed without loss of segmentation accuracy on both normal and deformed anatomy,
enabling accurate parametrization. Retraining of the networks with the promising MP2RAGE protocol would enable analysis
without the need for B1 inhomogeneity correction in the future.
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Introduction

Hip cartilage quality is an important diagnostic factor in the
treatment planning of hip deformities such as femoroacetab-
ular impingement (FAI) [1,2] and hip dysplasia [3,4]. Left
untreated, such conditions can lead to premature osteoarthri-
tis (OA) [5,6], requiring total joint replacement. Studies
have shown that early surgical correction and chondro-labral
repair can restore hip function, reduce pain, and preserve the
native joint in the long term [1,3,7–9].

Success of preservation surgery is, however, dependent
on a number of factors, including the severity of the existing
cartilage damage. Numerous studies have revealed good out-
comes following early surgical intervention in patients with
pre-existing mild OA, and poor outcome results in patients
with advanced degeneration [3,9]. Differentiating mild OA
frommore advanced OA in order to identify patients likely to
benefit from preservation surgery is, thus, important. Detect-
ing cartilage damage and degeneration at an early stage in
order to maximize the patient’s benefit, particularly in young
patient populations, is also critical.

In clinical routine, cartilage degeneration is most com-
monly assessed manually as a measure of joint space on
standard radiographs. However, this indirect estimation of
the decrease in cartilage thickness reportedly fails to detect
early degenerative changes [2]. The accuracy of radiographic
measurements is also affected by factors relating to 2D pro-
jection, variations in image acquisition technique, and patient
positioning [10,11].

More recently, biochemical magnetic resonance imaging
(MRI) sequences, such as the delayed gadolinium-enhanced
MRI of cartilage (dGEMRIC) technique [7,12], have proved
beneficial in identifying more subtle early changes in car-
tilage quality [13,14]. The protocol provides indirect quan-
tification of glycosaminoglycan depletion, one of the earliest
degenerative changes [5], and early studies have shown prog-
nostic value for premature joint failure prediction following
joint preserving surgery [5]. Cartilage degeneration in cases
of malformation is not, however, spatially uniform [15], and
studies have identified the importance of regional analysis
[16–18]. For example, Kim et al. concluded that the dGEM-
RIC index of the anterior joint may better predict premature
joint failure [8]. Acetabular cartilage degeneration also typ-
ically precedes femoral cartilage damage in FAI and hip
dysplasia [19,20]. Thus, a separate analysis of acetabular and
femoral cartilage, in addition to regional analysis, would the-
oretically provide a better estimation of actual damage to the
joint early in the degeneration process. Cartilage layers are
generally not visible on 3D MRI data making them difficult
to differentiate [14], and analysis of a small number of refor-
matted 2D images provides a limited assessment of regional
differences.

In addition to biochemical analysis,morphological factors
have also been associated with the success of preservation
surgery. For example, the acetabular lunate surface size is
an important consideration for treatment planning [21], with
smaller surface areas associated with failure [22].

To enable more detailed 3D analysis of the hip carti-
lage, automatic segmentation has been previously proposed
[23–26]. We recently demonstrated the feasibility of a
deep learning-based approach for 3D analysis of dGEMRIC
images of patients with FAI and dysplasia deformities [14].

This work describes a complete automated system for
3D cartilage analysis of the hip including: automatic carti-
lage segmentation and modelling; separation of the cartilage
into analysis regions; and a fully automatic biochemical and
morphological assessment of each cartilage section. Such a
tool aims to provide patient-specific diagnosis and decision-
making support and would facilitate standardized longitu-
dinal analysis of cartilage composition in large prospective
trials that aim to monitor the effect of hip joint preserving
surgery and the natural course of osteoarthritis.

Methods

A custom-made software application for the automated seg-
mentation, visualization and analysis of the hip cartilage
was developed and verified (Fig. 1). The C++ application
is designed to run locally on personal computers and uti-
lizes the following libraries: libtorch (PyTorch, version 1.8.2,
RRID:SCR_018536), Insight Segmentation andRegistration
Toolkit (ITK, version 5.2.1, RRID:SCR_001149), Visualiza-
tion Toolkit (VTK, version 9.0.3, RRID:SCR_015013), and
Qt (Trolltech, version 5.15.2).

Patient data

Following approval of all experimental protocols by the
Cantonal Ethics Committee of Bern, Switzerland (KEK-Nr.
171/12), algorithm development and evaluation was per-
formed on 25 MRI datasets. The datasets were from 23
patients (10 males and 13 females) with an average age of 31
± 9 years (range, 20-48 years) with symptomatic hips who
underwent diagnostic study comprising a contrast-enhanced
MRI at 3T, including a 3D dGEMRIC sequence to assess
intra-articular pathology due to structural hip deformity [14].
Patients were consecutively selected in order to have a rep-
resentative sample with different hip deformities, which lead
to 16 hips (64%) with pistol-grip cam deformity, six hips
(24%) with acetabular dysplasia, 10 hips (40%) had a pin-
cer deformity (4 hips due to a deep acetabular socket, 6
hips due to acetabular retroversion). Image datasets were
acquired with a standard dual-flip angle (DFA) using an
isovoxel 3D gradient-echo technique on a 3T scanner (Trio;
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Fig. 1 Program pipeline from
data loading to cartilage quality
metrics computation. FHC:
femoral head centre; ROI:
region of interest

Siemens, Erlangen, Germany) [27] using a 6-channel flexi-
ble body-matrix phased-array coil. The acquired voxel size
of 0.83×0.83×0.8 mmwas interpolated to 0.24×0.24×1
mm producing axial reformatted images. Subsequently, the
25 MRIs were resampled to strict axial planes in LPS (left,
posterior, superior) orientation, while preserving their voxel
size of 0.24 × 0.24 × 1 mm. No additional prescan for B1
correction was performed [28]. The gradient-echo images
obtained at a flip angle of 24 deg are used for automatic
cartilage modelling, as they yield a better morphological
visualization of cartilage than the actual dGEMRIC map.
Since flip angle images represent the raw data for calculating
dGEMRIC indices, the image sets are aligned.

Additionally, a smaller set of 20 MRIs was used with the
more robust 3D magnetization-prepared 2 rapid gradient-
echo (MP2RAGE) sequence to assess the generalizability
of the algorithm. Moreover, MP2RAGEMRI enables a more
accurate T1 mapping of hip cartilage than the 3D DFA tech-
nique at 3.0 T [29]. The MP2RAGE dataset has a voxel size
of 0.5 × 0.5 × 1 mm and was reformatted similarly to the
DFA MRI resulting in voxel size of 0.24 × 0.24 × 1 mm.

Cartilage localization and segmentation

A two-step automatic segmentation algorithmwas developed
for 3Dmodelling of the cartilage. Segmentation is performed
on a cropped subvolume of the original image data to increase
efficiency and to reduce background complexity. Automatic
cropping is performed around the femoral head centre, local-
ized by a deep learning-based landmark detection algorithm.
For both femoral head detection and cartilage segmentation,
a U-Net architecture [30] based on the implementation of
Buda et al. [31] was used with a receptive field width of
140 pixels. It comprises four levels of blocks containing
two convolutional layers with Rectified Linear Unit (ReLU)
activation and one max pooling layer during encoding and
up-convolutional during decoding. The Adam optimizer is
with an initial learning rate of 0.001 for the head centre local-
ization networks and 0.01 for the segmentation networks. A
learning rate scheduler reduced the learning rate by a factor
10 when detecting a plateau on the training loss. The axial
and coronal femoral head detection networks were trained
for 150 and 60 epochs, respectively. The axial, coronal, and
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sagittal segmentation networks were trained for 150, 120,
120 epochs, respectively.

For femoral head localization, the U-Net was trained to
predict the distance of each voxel from the femoral head
centre. For network training, the 3D location of the femoral
head centre was manually picked from each of the 25 image
datasets and a 3D heatmap representing the distance of each
voxel from the picked centre was generated. To avoid ambi-
guities in only one plane, and to lower the variability of the
prediction, an ensemble of two 2D networks, using the axial
and coronal planes, respectively, was used. The predictions
were reconstructed to a3Dvolumeusingvoxel-wisemultipli-
cation, making prediction of a Gaussian-shaped 3D heatmap
possiblewith a2DU-Net.The locationof themaximumvalue
in the 3D heat map was defined as the predicted femoral head
centre.

The size of the images was standardized during prepro-
cessing to 768 × 672 × 160 voxels as a trade-off between
information loss and unnecessary padding. Because of the
reduced accuracy requirement of the femoral head detec-
tion, the axial plane images for the axial plane-based model
were downsampled to 384×336 pixels, to increase the train-
ing and prediction speed. In addition to the ensemble, data
augmentation and early stopping were used to increase the
generalization capabilities.

Prior to segmentation, each image slice is cropped to
368 × 368 × 96 voxels around the femoral head centre.
The area was defined to be sufficiently large to ensure that
the cartilage is always contained within the cropped vol-
ume.

A second network was trained to segment the cartilage
from the cropped image datasets. A 2D solution was pre-
ferred to a 3D network because it is faster, has a lower
memory footprint, and allows a greater number of train-
ing samples to be used from a given dataset. For training,
clinical experts manually segmented each of the 25 datasets
on axial images, while visually confirming accurate seg-
mentation on coronal and sagittal views. Axial, coronal,
or sagittal slices were extracted from the volume and used
for the network training. To improve segmentation accu-
racy, three 2D networks were trained with each of the three
image planes. Combining the three networks with a voxel-
wise majority vote, created an ensemble of an axial, sagittal,
and coronal plane-based network. No downsampling was
used. To reduce the generalization error for this network,
data augmentation and early stopping were used. The largest
connected object was extracted as the segmentation result.
The individual amount of 3D images used for training and
testing and the number of 2D slices per MRI are listed in
Fig. 2.

Cartilage sectioning

The cartilage is sectioned into a variable number of clock
face slices as well as into central and peripheral sections and
into femoral and acetabular layers (Fig. 3b).

In line with previous definitions, the cartilage sections are
defined by a clock face perpendicular to the femoral neck [5,
18,32]. The acetabular teardrop, which reflects the midpoint
of the acetabular notch, defines the 6 o’clock position [14]
and the 3 o’clock and the 9 o’clock positions are anterior and
posterior in both left and right hips [32].

The centre and radius of the femoral head are automat-
ically determined by fitting a sphere to the 3D segmented
cartilage. For this, the least-square sphere estimation algo-
rithm from Yaniv [33] was used, resulting in a sphere fit to
the centre of the cartilage layer.

The cartilage follows the rim of the acetabulum. Thus, the
clock face is positioned perpendicular to the first mechanical
principle axis of the cartilage, Y . The axis Z , points to the
12 o’clock position, is orthogonal to the axis Y , originates
at centre of the fitted sphere, and points in the direction of
the calculated cartilage centroid. The axis X is defined as the
cross-product of Y and Z (Fig. 3).

With the axis Y as symmetry axis and axis Z as reference
axis for the 12 o’clock position, each voxel of the cartilage
is assigned to a section. The number of sectors is defined by
the user.

As the femoral and acetabular cartilage layers cannot
always be visually distinguished inMRI images, especially if
traction is not applied to the leg during image acquisition, an
automated artificial separation of the acetabular and femoral
cartilage was implemented. The radial distance from a spe-
cific voxel to the acetabulum or the femoral head surface is
measured to categorize if the voxel belongs to the femoral or
acetabular layer.

Finally, the cartilage is separated into central and periph-
eral sections with the central area closer to the acetabular
fossa and the peripheral, to the acetabular rim. For an auto-
matic central and peripheral split, a cone is created along the
symmetry axis Y with tip at the centre of the femoral head.

Cartilage quality analysis

Automatic algorithms for the calculation of the dGEMRIC
index, thickness, surface area, and volume of each 3D carti-
lage section, were developed.

The dGEMRIC index of a section is defined as the average
value of all voxels in the T 1GD image within the region
defined by the cartilage section. The volume is calculated as
the number of voxels in each individual section multiplied
by the voxel spacing.

Ameasure of the load surface, defined as the cartilage sur-
face area excluding unwanted section edges, was developed.
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Fig. 2 Twenty-fivemanually segmented axial 3D dual-flip angleMRIs,
additionally resliced into coronal and sagittal images, were used for
network training and testing. The femoral head detection network is
an ensemble of two networks trained with axial and coronal images,

respectively. The segmentation network is an ensemble of 3 networks
individually trained on axial, coronal, and sagittal images, respectively.
For each fold, one-third of the dataset was retained for use as unseen
test data. The remaining two-thirds were used for network training

Fig. 3 A The defined local coordinate system of a right hip depicted
with cartilage (red), femoral head, and acetabulum. B Based on the
local coordinate system and fitted sphere radius, the cartilage is sec-

tioned into a variable number of clock face slices, in this case 4, as well
as into central and peripheral sections and into femoral and acetabular
layers

To reduce the effects of voxel size, smoothing, and the higher
segmentation error typically experienced at the edge of the
structure, the fitted sphere, represented by N = 100′000
equidistant generated points, was utilized. For each point, an
algorithm searches 2mm radially in and out for the presence

of cartilage in the image and assigns the point to the associ-
ated section. The individual section surface area, Ssection , is
then given by Eq. (1) where Nsection is the number of points
in a given sector associated with sectioned cartilage.
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Ssection = Nsection

N
· 4πr2 (1)

The average thickness of each cartilage section is defined
as its volume divided by its surface area. The automatic
cartilage modelling and analysis algorithms were integrated
into a software application. The software loads the two MRI
image datasets in DICOM or NIfTI format as input. The
cartilage is localized and segmented without user input. For
analysis, the user can define the number of sections on the
clockface, enable the femoral and acetabular layers, and the
central/peripheral split.

The3Dmodel of the cartilage is displayedwith the dGEM-
RIC index and thickness rendered on the model surface.
For thickness visualization, a 3D distance map is created
and voxels are projected to a 2D map (azimuth, inclina-
tion) for non-maximum suppression. Similarly, dGEMRIC
indices are projected to create a 2D map of radial averages.
The acetabular and femoral cartilage layers are averaged indi-
vidually in two different 2D maps and projected onto the
inner and outer surface of the cartilage.

Evaluation

The generalization performance of the femoral head centre
detection network and the cartilage segmentation network
was validated on the 25 datasets in a threefold cross-
validation scheme (Fig. 2). The test data were therefore
unseen and not used to train the specific network. Femoral
head detection accuracy was evaluated as the Euclidean dis-
tance between themanually pickedground truth femoral head
centre and the predicted centre.

The automatic cartilage segmentation accuracy was eval-
uated using the Dice similarity coefficient (DSC), the Haus-
dorff distance (HD), and the average surface distance (ASD)
against manual segmentation.

To estimate the segmentation performance onMP2RAGE
MRIs the network was trained with all the 25 DFA images
and tested on the 20 MP2RAGE images using DCS, HD,
ASD against manual segmentation.

To validate the accuracy of the automatic segmentation
for use in cartilage analysis, the cartilage quality metrics,
calculated on both manual and automatic cartilage segmen-
tation’s for four quadrants, were compared for all 25 DFA
image datasets. Normal distribution was evaluated using the
Kolmogorov–Smirnov test. Mean differences were calcu-
lated and comparedwith a paired t test orWilcoxon rank-sum
test. RStudio (version 1.4.1717, RRID:SCR_000432) was
used for statistical analysis.

Results

Cartilage 3Dmodelling

The trained landmark detection algorithm localized the
femoral head centrewith amean and standard deviation accu-
racy of 4.0 ± 1.8 mm (range, 0.9–7.9 mm). The algorithm
thus provides sufficient accuracy for volume cropping (accu-
racy requirement of 10 mm).

Compared to manual segmentation, the automatic seg-
mentation network predicted the hip cartilage with a Dice
similarity coefficient of 88 ± 3% (range, 81–91%), a Haus-
dorff distance of 4.9 ± 1.5 mm (range, 2.5–9.3 mm), and an
average surface distance of 0.2 ± 0.1 mm (range, 0.1–0.4
mm) (N = 25).

On the additional MP2RAGE dataset, the network per-
formed with a Dice similarity coefficient of 83 ± 4% (range,
70–87%), aHausdorff distance of 15.5± 4.6mm(range, 9.5–
30.6 mm), and an average surface distance of 0.5 ± 0.4 mm
(range, 0.2-1.9 mm) against manual segmentation (N = 20).

Cartilage quality analysis

No significant difference in the values of dGEMRIC index
and volume, calculated based on the manual and automatic
segmentations, was found (p >0.05). No overall significant
difference in surface area andvolumewasobserved; however,
a significant error in thickness of 0.3± 0.4 mmwas observed
in the smallest sector and a significant surface area error of
24.0 ± 54.9 mm2 in sector 3–6 and 23.9 ± 53.3 mm2 in
sector 9–12. The mean errors and standard deviation for each
metric per section are summarized in Table 1. The calculated
metrics for the 25 hips are given in Table 2. The graphical
representations of dGMERIC index and thickness in Fig. 4c
and 5c show the overall distribution and critical areas on the
cartilage.

Cartilage quality system

A complete biochemical and morphological analysis of the
cartilage is generated by the software in 18s (15 s for the
segmentation pipeline) with a supported graphics processing
unit (Octa core Intel i7-9700k, Nvidia RTX2080 Ti) and in
4min without a GPU (Octa core Intel i7-9700k) and 11min
on a standard laptop (Quad core Intel i7-8550U).

The software system was used to retrospectively evaluate
the cartilage of two patients after surgical treatment for hip
dysplasia. In one case, dGEMRIC indices, predictive of poor
surgical outcome (< 370ms) [8], were calculated and dis-
played by the system (Fig. 4). This information would not
have been determined from a radiograph or standard diag-
nostic MRI. Such an analysis would have further supported
treatment by total hip arthroplasty. In case 2, the software
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Fig. 4 AMiddle-aged woman with severe hip dysplasia (lateral centre
edge angle of 8◦) and only mild radiographic signs of osteoarthritis.
B Hip MRI showed focal femoroacetabular cartilage thinning but no
obvious signs of general joint degeneration. C 3D cartilage model with

colour-coded dGEMRIC indices shows generalized decreased dGEM-
RIC indices (overall mean 358ms) corresponding to severe biochemical
cartilage damage. D The patient underwent total hip arthroplasty

calculated a small cartilage surface area and high thickness,
typical in hip dysplasia (Fig. 5).

Discussion

Within this work, we propose a system for efficient automatic
analysis of the 3D hip cartilage. The variable sized anal-
ysis sectors enable a comprehensive study of the cartilage
for identification of better diagnostic parameters, thresholds,

and normalization approaches for optimal treatment decision
making.

In contrast to other joints [34], the weight bearing car-
tilage layer in the hip is only 3–4 mm thick and oriented
oblique to standard imaging planes increasing the difficulty
of segmentation. The implemented pipeline based on the effi-
cient 2D U-net, segments the cartilage 4 times faster with a
slightly better accuracy, on an identical dataset, than the net-
work described by Schmaranzer et al. [14] (88% compared to
86% Dice similarity coefficient within 15 seconds compared
to approximately 1minute). The dice similarity coefficient of

Table 1 Comparison between automated cartilage quality metrics calculated from manual and automatic segmented cartilage for four sections

Metric Overall 12–3 3–6 6–9 9–12

dGEMRIC [ms] −0.8 ± 7.9
(−4.2 − 2.7)
p = 0.641

−2.1 ± 10.2
(−6.5 − 2.3)
p = 0.328

−3.5 ± 26.2
(−14.8 − 7.8)
p = 0.531

4.0 ± 11.4
(−0.9 − 9.0)
p = 0.104

−0.3 ± 15.3
(−2.0 − 5.5)
p = 0.244

Thickness [mm] 0.0 ± 0.2
(−0.1 − 0.1)
p = 0.461

0.0 ± 0.2
(−0.1 − 0.1)
p = 0.676

0.3 ± 0.4
(0.1 − 0.5)
p < 0.001*

0.0 ± 0.3
(−0.1 − 0.1)
p = 0.718

0.0 ± 0.2
(−0.1 − 0.1)
p = 0.622

Surface [mm2] 48.9 ± 135.6
(−7.1 − 104.8)
p = 0.084

13.8 ± 43.1
(−4.0 − 31.6)
p = 0.123

−12.6 ± 40.7
(−29.4 − 4.2)
p = 0.134

24.0 ± 54.9
(1.3 − 46.7)
p = 0.039*

23.9 ± 53.3
(1.9 − 45.9)
p = 0.034*

Volume [mm3] 168.6 ± 624.2
(−89 − 426.3)
p = 0.189

27.4 ± 252.7
(−76.9 − 131.7)
p = 0.592

22.4 ± 146.9
(−38.2 − 83.0)
p = 0.453

56.9 ± 160.0
(−9.2 − 122.9)
p = 0.088

61.9 ± 210.3
(−24.9 − 148.7)
p = 0.154

Mean difference ± SD with 95%, confidence intervals in parentheses, and p-values are reported. Number of hips = 25

Table 2 Automated cartilage
quality metrics calculated from
manual segmented cartilage for
four sections

Metric Overall 12–3 3–6 6–9 9–12

dGEMRIC [ms] 569 ± 158 584 ± 167 481 ± 155 523 ± 146 597 ± 163

Thickness [mm] 2.8 ± 0.4 3.3 ± 0.4 3 ± 0.4 2.1 ± 0.4 2.6 ± 0.4

Area [mm2] 2028 ± 466 742 ± 163 258 ± 109 329 ± 99 716 ± 147

Volume [mm3] 5730 ± 1310 2438 ± 556 777 ± 362 706 ± 268 1809 ± 347

Mean values ± SD are reported. Number of hips = 25
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Fig. 5 A Patient with hip dysplasia (lateral centre edge angle of 16◦).B
Hip MRI indicated reduced acetabular coverage. C 3D cartilage model
with colour-coded means of cartilage thickness shows a small surface
area of 2121mm2 and a high cartilage thickness, typically seen in

hip dysplasia. D Periacetabular osteotomy was performed to increase
acetabular coverage (lateral centre edge angle = 31◦), i.e. to correct for
hip dysplasia

83% on the MP2RAGE is lower than on the DFA dataset but
shows that the network can generalize over different modal-
ities and can be retrained on new modalities. In the future,
we will train the networks on a bigger MP2RAGE dataset to
achieve a high segmentation accuracy with accurate T1map-
pings.While these results are promising, deep learning-based
segmentation methods can experience reduced accuracy on
cases not represented in training data. Additional analysis on
a larger dataset is required to further assess the generalizabil-
ity of the algorithm for use in clinical practice. To improve
robustness and confidence in the system, methods for case
specific, real time, segmentation uncertainty assessment, and
guided correction are required.Methods for the identification
of sufficient segmentation accuracy, based on the sensitivity
of the calculated cartilage qualitymetrics, are currently being
developed.

The data used for training and testing cartilage segmenta-
tion were taken from a single centre. Differences in system
calibration and protocols across centres can also reduce
the segmentation accuracy. Domain adaption techniques are
being developed to allow the optimization of the segmenta-
tion network for a specific centre without the need for time
consuming manual MRI annotations [35].

The automated cartilage quality metrics presented herein,
standardizes measures and renders them feasible for use in
clinical practice. No significant difference of automatically
calculated values of average dGEMRIC index and volume,
compared to values presented by Schmaranzer et al. [14],
was found. The measured values of thickness differed sig-
nificantly from previous reported values [14], most likely
because Schmaranzer et al. measured cartilage indirectly as
the distance between the acetabulum and the femoral head
rather than the thickness of the segmented cartilage.

Similar to Schmaranzer et al. [14], significant differences
in thickness and the surface area for some sections between
manual and automatic segmentation (p-value < 0.05) were

observed, demonstrating the sensitivity of these metrics to
the segmentation result. For the overall surface, a 95% con-
fidence interval in the range of −0.7 to 104.8 mm2 was
observed. This is smaller than the difference observed in
diagnostic groups reported bySteppacher et al. [21], and thus,
our approach should enable differentiation of hip deformities
according to size of the cartilage surface area. The difference
in thickness in one sectionwas significant butwithin the reso-
lution of one voxel. Further investigation into the sensitivity
of cartilage thickness and surface area as predictive treat-
ment outcome measures are required to assess the clinical
significance of this uncertainty in measure.

An absolute accuracy evaluation of morphological mea-
sures of the cartilage could not be conducted in this study
because evaluation was performed on patients. In the future,
an analysis on cadaveric specimen would enable verifica-
tion of the presented automatic quality metric calculations to
absolute values.

In contrast to other joints such as the knee, the femoral
and acetabular cartilage layers are in direct contact, making
identification of the layers difficult. Some researchers have
proposed leg traction to achieve a distinct visualization of
the cartilage layers within the MRI data [36], while others
have proposed the use of deformable shape models [23]. In
this work, we have proposed to separate the cartilage along
its midline. This approach, being efficient and robust, allows
for normalization of the dGEMRIC index and identification
in biochemical properties of the cartilage layers.

Conclusion

A more sensitive and specific diagnosis of cartilage quality
through biochemical and morphological assessment in MRI
has potential to support treatment decision making for struc-
tural hip pathologies. The work presented within represents
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the first complete system for automatic cartilage modelling
and analysis, incorporating both regional analysis and layer
differentiation. Ongoing analysis of the predictive power of
the calculated measures in a longitudinal study of the out-
come of preservation surgery, may lead to the identification
of improved diagnostic measures to improve the timing and
patient selection for preservation hip surgery, reducing the
rate of long-term failure and improving patient outcomes.
Allowing a complete assessment in 18 seconds on stan-
dard medical imaging data, with minimal user interaction,
the application is suitable for routine clinical use, comple-
menting existing radiographic analysis including the accurate
MP2RAGE dGEMRIC sequence. This paves the way for the
state-of-the-art diagnosis for a variety of hip deformities.
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