
2 Month/Month 2022 Copublished by the IEEE Computer and Reliability Societies 1540-7993/22©2022IEEE

Peter Leo Gorski | INFODAS GmbH
Luigi Lo Iacono | H-BRS University of Applied Sciences
Matthew Smith | University of Bonn, Fraunhofer FKIE

We propose eight usable security principles that provide software developers with a lightweight
framework to help them integrate security in a user-friendly way. These principles should help developers
who must weigh usability and security tradeoffs to facilitate adoption.

C ybersecurity is a basic precondition for our digital
society and should work for everyone, from chil-

dren to grandparents, from citizens to policymakers,
from industry to the military and so on. Security must
also work in a wide range of domains, from casual per-
sonal use to critical infrastructures, each with its own
set of requirements. There are many technical security
measures that can be put in place to fulfill these require-
ments. However, there are major challenges in design-
ing and integrating such measures into systems so that
they are used correctly, or at all. When security fail-
ures inevitably occur, human error is often identified
as the cause. For some security experts and develop-
ers, this has shaped the idea that users are the weakest
link. There is also the related misconception that secu-
rity and usability are incompatible qualities of a digi-
tal system. The growing discipline of “usable security”
addresses this myth1 by developing scientific insights
into how security and usability can be reconciled and
how existing conflicts of requirements can be balanced

from the perspective of the overarching goal of “effec-
tive cybersecurity.”

Since its emergence some 25 years ago, the field of
usable security has offered many important insights into
how security features can be aligned with users’ needs,
abilities, and expectations. However, the transition of
these findings into practice has been less well explored.
Key players in this regard are software developers as
they need to integrate security mechanisms into prod-
ucts in a way that meets security requirements but also
fit users’ capabilities. However, as security is rarely the
main purpose or selling point of a product, developers
have to balance the effort for themselves and their users.
In some cases, (like plain email) very little security was
implemented. In others (like PGP), the implementa-
tion was so complex that adoption was minimal. Both
situations are not ideal.

The body of knowledge in the field of usable security,
which could help address this issue, is often quite spe-
cific. This makes it a less-than-ideal source of guidance
for many software developers with limited resources,
who cannot, for instance, set up and run complex secu-
rity user studies. To see a broader adoption of usable

Digital Object Identifier 10.1109/MSEC.2022.3205484
Date of current version: 7 October 2022

Eight Lightweight Usable Security
Principles for Developers

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://www.orcid.org/0000-0003-0391-4054
http://orcid.org/0000-0002-7863-0622

www.computer.org/security 3

security mechanisms, the challenge is to integrate exist-
ing knowledge from research into software develop-
ment in a lightweight manner that is easily accessible to
developers.

An effective way of sharing insights from research
with developers is aggregating the experience of domain
experts into guiding principles. These broad rules of
thumb have proven helpful, e.g., in the form of security
principles2 and usability principles.3,4

There are also first collections of usable security
principles: for example, Green and Smith present 10
principles for the development of usable cryptographic
libraries;5 Acar et al. do not directly present principles,
but they identified key lessons learned from usable
security for end users that can serve as principles for
developers;6 and Gorski et al. conducted a literature
review of usable security principles from which they
constructed a set of 23 principles.7 However, these
existing resources are either very specialized or very
comprehensive, requiring a fair amount of work and
specialized knowledge to implement.

In this article, we propose a collection of eight usable
security principles that provide developers with a light-
weight and practical framework for thinking about how
to integrate security in an end-user-friendly way. As
such, the principles are not geared toward critical or
high-security domains, where security concerns can
trump usability and adoption of security mechanisms
can be mandated. Instead, these principles are aimed at
helping developers who want good security but must
weigh the tradeoffs and facilitate adoption.

In this, we were inspired by Garfinkel’s second prin-
ciple of “Good Security Now,”8 i.e., we want these prin-
ciples to drive adoption of the usable security mindset
for as many developers as possible now. To this end,
we developed our principles based on those gathered
in the work of Gorski et al.7 However, we wanted our
principles to be more general and lightweight so as
to be easily memorable for developers. Nonetheless,
where possible, we refer to more specialized and com-
prehensive usable security principles to facilitate more
in-depth research. Methodologically, we each inde-
pendently created a list of 10 principles we would rec-
ommend to software developers. We then compared
and discussed our three lists on the basis of literature
and application examples and condensed them into the
eight principles we propose here.

Usable Security Principles
The presented eight principles (see Table 1) are meant to
help developers design more usable security mechanisms
for end users. Not all principles will be applicable to all sit-
uations, and there are certainly application contexts where
security requirements can demand more restrictions

in usability. However, even in situations where security
might trump usability, we believe it is useful to critically
assess whether any of the principles can be applied as
usability does not have to be at odds with security. If done
right, good usability can and will increase security.

Principles

1. Bake It In
If possible, integrate security mechanisms in a way that the
users do not need to interact with them (cf. “Path of Least
Resistance”7). The correlation between decision making
and the effort to act is a broad subject of study in the field
of neuroscience.9 Similar to the fact that every additional
click needed to purchase something reduces the num-
ber of sales, every step required by a security mechanism
reduces the number of users willing to use it. It also often
introduces points of failure where users can make mis-
takes or forget to activate security entirely.

Good examples of this principle are the implemen-
tations of end-to-end encryption enabled by default
in messaging systems such as iMessage or WhatsApp.
These systems indicate that messages and calls are
encrypted at the beginning of every conversation,
but users do not have to do anything to enable this
(see Figure 1). Compared to PGP and S/MIME this
zero-interaction encryption led to billions of users

Table 1. An overview of the proposed usable security principles.

Number Usable security principle: A short description

1 Bake it in; try to integrate security so that your users don’t have
to interact with or put effort into it.

2 Don’t maximize security at the cost of usability; the best
security is of no use if people do not use it.

3 Offer more security to those who want it; enable power users
without burdening everyone else.

4 Protect the needs of the many with the expertise of the few;
enabling experts to detect attacks might be able to deter
attacks in general.

5 Make the language simpler than you think is necessary; many
words and concepts that are well known to you are not well
understood by your end users.

6 Use personal examples; it makes otherwise abstract concepts
much more tangible.

7 Be mindful when delegating decisions to your user; if it’s too
hard for you to automate, it’s probably too hard to decide for
many of your users.

8 Gather users’ mental models and build your system to
address their misconception; talk to your users about their
understanding of a system or concept, you’ll be surprised.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE Security & Privacy Month/Month 2022

having their messages protected, while the manual
effort and expertise needed to use PGP or S/MIME
has led to the longest-running series of usability fail-
ures,11 leaving email security vastly unused.

The challenges for developers are to balance user
motivation and security goals, reduce the physical and
mental effort required to apply a security feature, and
implement security defaults without making them
invisible (cf. “Visibility”7).

2. Don’t Maximize Security at the
Cost of Usability
Ideally, security and usability do not have to be at
odds.1 However, it is not uncommon for higher levels
of security to increase the burden on the end user, and
even small burdens can lead to big problems (cf. “Con-
venience”7). Following the aphorism “perfect is the
enemy of good,” if there is a tradeoff between usability
and security, consider carefully how many users you
might lose or how many might make mistakes on the
road to perfect security (cf. “Good Security Now”7 and
“More Is Not Always Better”6).

The messaging/email example from principle 1 serves
here as well. Many current messengers use a centralized
key management infrastructure that requires trust in the

companies running them to not manipulate the keys. From
a security perspective, this is not as good as the manual/
web-of-trust model used in PGP. However, the central key
management scheme simplified the end-to-end encryp-
tion so significantly that everybody using these messaging
apps can use it. Thus, adoption is much higher compared
to the manual key management of PGP, for example.

A negative example of this principle is overly compli-
cated password policies (see Figure 2). Here, the system
tries to force better security, which leads to many eva-
sion strategies and errors.

3. Offer More Security to Those Who Want It
Principles 1 and 2 argue for zero- or low-effort security
to be the default setting for the majority of users, even
at the cost of some (theoretical) security. However, if it

Figure 1. Bake it in: end-to-end encryption baked into the
WhatsApp messenger.10

Figure 2. Don’t maximize security at the cost of usability:
the negative example of a complex and ineffective
password policy.12

Figure 3. Offer more security to those who want it:
a security measure offered by Signal to ensure the
authenticity of communication partners, which can be
accessed and used only by tapping the user profile icon.
(Source: "Safety number updates", 17 Nov 2016, https://
www.signal.org/blog/safety-number-updates/.)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 5

can be integrated without violating principles 1 and 2,
adding additional options and safeguards for motivated
power users is a good idea (cf. “Appropriate Boundar-
ies” and “Expressiveness”7).

Messenger apps like Signal allow users to manually
verify public keys to ensure the authenticity of com-
munication partners. This increases security for those
willing to invest time and effort in key management and
code audits. To view and verify a safety number, the
user must tap on the icon of their user profile to access
and use this additional security measure (see Figure 3).

4. Protect the Needs of the Many
With the Expertise of the few
To mitigate potential security downsides of principles 1
and 2, it is worth considering whether a security mecha-
nism can be designed in such a way that the vigilance of
a small group of motivated experts can guard the major-
ity of regular users. The fact that power users can check
key fingerprints in Signal means that mass surveillance
would be noticed, and thus the capability of the few pro-
tects the system as a whole. The ability to review source
code also falls into this category (cf. “Expertise”7). Fig-
ure 4 shows Signal’s source code repository, offering the
possibility for experts to conduct code reviews.

Certificate Transparency (CT) (https://certificate.
transparency.dev/) is another good example of this
principle. In a nutshell, a current security weakness
in the Certificate Authority (CA) server certificate
system is that compromised or rogue CAs can cre-
ate certificates for any domain name. Thus, the CA
system is a weakest-link system and enables man-in-
the-middle (MITM) attacks that go undetected by
the majority of users. Improving the security of the
CA system without adding undue burden on the end
users has proved challenging. The CT approach adds
a layer of protection for all users without burdening
the regular user at all. With CT, certificates are pub-
licly logged and a small group of experts can monitor
these logs to detect malicious certificates. Although
this does not directly protect against MITM attacks,
it disincentivizes rogue CAs and detects compro-
mised CAs, which improves the overall security of
the system with no additional knowledge or work
required by the regular users.

5. Make the Language Simpler Than You
Think Is Necessary
“Speak the User’s Language” is a well-known usabil-
ity principle and is particularly relevant for the usabil-
ity of security as well (cf. “Understandability”7). Years
of experience can make us blind to the fact that many
words that seem simple to us, like authenticate, authorize,
private key, public key, certificates, encryption, signature,

or policy might be unknown, only vaguely understood,
or carry nontechnical meanings to many users. Thus,
implementing the general “Keep It Simple” principle
is highly recommendable in a usable security context.
Try to make things as simple as you can and then make
another pass to make it even simpler. It is also a good
idea to let people outside your regular work or social
circle read the texts and repeat, in their own words,
what they think they mean. This ties in with principle 8.
The difficulty is preserving accuracy at the same time.
This principle can also be combined with principle 3 by
offering alternative texts or additional information for
experts.

Security dialogues in messaging apps have under-
gone some evolution in terms of the language used
to communicate complex security matters. We can
also use Figure 3 as an example here, as it describes an
authentication ceremony by comparing (the finger-
prints of) public keys without using the usual techni-
cal terms in the description, such as authentication and
public key.

Figure 4. Protect the needs of the many with the expertise
of the few: Signal transparently publishes source code so
that experts can review it. (Source: https://github.com/
signalapp.)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://certificate.transparency.dev/
https://certificate.transparency.dev/

6 IEEE Security & Privacy Month/Month 2022

Another example is the icons used in web browsers to
inform about a secure connection to a web server. Garron
and Palmer from the Chrome security team explain: “We
have to strike a balance: representing the security state of a
webpage as accurately as possible, while making sure users
are not overwhelmed with too many possible states and
details. We’ve come to understand that our yellow ‘cau-
tion triangle’ badge can be confusing when compared to
the HTTP page icon, and we believe that it is better not
to emphasize the difference in security between these two
states to most users.”13

Chrome 67 added the term Secure to the website
security icon in an attempt to make it simpler and more
understandable (see Figure 5). However, it could still be
misinterpreted by users, like being secure against Inter-
net fraud, which is not correct. Since Chrome 69, only
a gray padlock icon has been implemented, and devel-
opers are thinking about removing the icon altogether.

6. Use Personal Examples
Abstract security and privacy concepts are often hard
to grasp. Principle 5 already takes this into account and
recommends making the language easy to understand.
To help regular users understand and assess their own
actions and the potential consequences, show them, if

possible, personalized examples of what settings mean
or what the consequences of an action are (cf. “Clar-
ity” and “Understandability”7 and Harbach et al.14).

Facebook’s “View As” feature, which allows users to
easily see what information they are making available to
the public, is a good example of this principle (see Fig-
ure 6). The concrete nature of an example is often easier
to understand than abstract rules, and using the actual
personal data makes it more salient.

7. Be Mindful When Delegating
Decisions to Your User
When designing interaction with the users, consider
whether the user is likely to have the expertise and

Figure 6. Use personal examples: Facebook allows users to
preview the effect of their privacy settings with a
“View As” feature.

Figure 7. Be mindful when delegating decisions to your user:
a TLS warning in Chrome caused by a self-signed certificate.

Figure 5. Make the language simpler than you think is
necessary: Chrome completely discarded the term Secure
from the website security icon.13

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 7

motivation to make a good decision. Transport Layer
Security warnings are a negative example. Well-executed
MITM attacks utilize a valid certificate and do not dis-
play a warning. For most users, warnings shown in
response to less well-resourced attacks (e.g., using a
self-signed certificate) are indistinguishable from warn-
ings due to misconfigured servers (see Figure 7). Con-
sequently, giving users an override is dangerous. If you,
the expert, cannot codify a set of rules to automatically
resolve the interaction, it is an indication that the deci-
sion might be too complex for the end user. Removing
the user override moves the burden from the end user

to those administrators who misconfigure their servers.
This step would also fulfill principle 4. At this point, it is
important to highlight that administrators need (domain
specific) usable security measures too.

8. Gather Users’ Mental Models and Build
Your System to Address Their Misconceptions
Even if we follow principles 1–7, it is still possible that
users will misunderstand security issues and/or make
mistakes when interacting with security mechanisms
(cf. “Least Surprise”7). Ideally, full-blown user studies
can be conducted to observe mistakes and build mental
models specific to the security mechanism and the user
group. However, if this is beyond the resources avail-
able, reading about existing mental models in related
fields or having informal conversations with users
can already provide valuable insights into what can go
wrong. It can be a good strategy to directly address the
misunderstandings you encounter.

The message explaining the limitations of private
browsing (i.e., that it does not make the user anony-
mous) is a good example of addressing common mis-
conceptions.15 Figure 8 illustrates the ways in which the
Firefox browser tries to explain what private browsing
actually means.

W e proposed this set of eight usable security
principles for developers who want to inte-

grate or improve security mechanisms in a user friendly
manner. They are not meant to be exhaustive but rather
to be simple and lightweight so that many developers
can adopt them. They should raise awareness that good
usability can improve existing security mechanisms and
introduce them where they are currently lacking. They
are also meant to be a starting point for more compre-
hensive or specific resources7 where we collect these
and other usable security principles. To this end, we
maintain the usablesecurityprinciples.dev website.

Acknowledgment
We thank Jan Tolsdorf and Stephan Wiefling as well
as the anonymous reviewers for their guidance and
insightful comments. This research was partially funded
by European Research Council Grant 678341: Fron-
tiers of Usable Security.

References
 1. M. A. Sasse, M. Smith, C. Herley, H. Lipford, and K.

Vaniea, “Debunking security-usability tradeoff myths,”
IEEE Security Privacy, vol. 14, no. 5, pp. 33–39, Sep./Oct.
2016, doi: 10.1109/MSP.2016.110.

 2. J. H. Saltzer and M. D. Schroeder, “The protection of
in formation in computer systems,” Proc. IEEE, vol. 63,

Figure 8. Gather users’ mental models and build your
system to address their misconceptions: Firefox explains
the features of private browsing to eliminate common
user misconceptions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE Security & Privacy Month/Month 2022

no. 9, pp. 1278–1308, Sep. 1975, doi: 10.1109/PROC.
1975.9939.

 3. J. Nielsen, “Heuristic evaluation,” in Usability Inspection
Methods, J. Nielsen and R. L. Mack, Eds., New York, NY,
USA: Wiley, 1994.

 4. Ergonomics of Human-system Interaction — Part 110:
Interaction Principles, ISO 9241-110, International
Organization for Standardization, Geneva, Switzerland,
2020.

 5. M. Green and M. Smith, “Developers are not the enemy!:
The Need for Usable Security APIs,” IEEE Security Pri-
vacy, vol. 14, no. 5, pp. 40–46, Sep./Oct. 2016, doi:
10.1109/MSP.2016.111.

 6. Y. Acar, S. Fahl, and M. L. Mazurek, “You are not your
developer, either: A research agenda for usable security
and privacy research beyond end users,” in Proc. IEEE
Cybersecurity Develop. (SecDev), 2016, pp. 3–8, doi:
10.1109/SecDev.2016.013.

 7. P. L. Gorski, E. von Zezschwitz, L. Lo Iacono, and M.
Smith, “On providing systematized access to consolidated
principles, guidelines and patterns for usable security
research and development,” J. Cybersecurity, vol. 5, no. 1,
pp. 1–19, Dec. 2019, doi: 10.1093/cybsec/tyz014.

 8. S. Garfinkel, “Design Principles and Patterns for Com-
puter Systems That Are Simultaneously Secure and
Usable,” Ph.D. thesis, Massachusetts Inst. of Technol.,
Cambridge, USA, 2005.

 9. N. Hagura, P. Haggard, and J. Diedrichsen, “Perceptual
decisions are biased by the cost to act,” eLife, vol. 6, p.
e18422, Feb. 2017, doi: 10.7554/eLife.18422.

10. “About end-to-end encryption.” WhatsApp Help Cen-
ter. [Online]. Available: https://faq.whatsapp.com/
general/security-and-privacy/end-to-end-encryption/

11. A. Whitten and J. D. Tygar, “Why Johnny can’t encrypt:
A usability evaluation of PGP 5.0,” in Proc. 8th USENIX
Secur. Symp. (USENIX Security), 1999, pp. 169–183.

12. “Ted sales tweet.” Twitter. [Online]. Available: https://
twitter.com/tedworthy_/status/751365313149726720

13. “Evolving Chrome’s security indicators.” Chromium.
[Online]. Available: https://blog.chromium.org/2018/05/
evolving-chromes-security-indicators.html

14. M. Harbach, M. Hettig, S. Weber, and M. Smith, “Using
personal examples to improve risk communication for
security & privacy decisions,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst. (CHI), 2014, pp. 2647–
2656, doi: 10.1145/2556288.2556978.

15. H. Habib et al., “Away from prying eyes: Analyzing usage
and understanding of private browsing,” in Proc. 14th
Symp. Usable Privacy Secur. (SOUPS), 2018, pp. 159–175.

Peter Leo Gorski leads a research group at INFODAS
GmbH, Köln 50765, Germany. His research inter-
ests include security-enhancing technologies for
critical infrastructures and software development
processes. Gorski received a Ph.D. in computer
science from TU Berlin, Germany. Contact him at
p.gorski@infodas.de.

Luigi Lo Iacono leads the Data and Application Secu-
rity Group at H-BRS University of Applied Sciences,
Sankt Augustin 53757, Germany. His research inter-
ests include security- and privacy-enhancing technolo-
gies for distributed software systems with a particular
focus on their usability. Lo Iacono received a Ph.D. in
computer science from University of Siegen, Germany.
Contact him at luigi.lo_iacono@h-brs.de.

Matthew Smith leads the Behavioural Security Research
Group at the University of Bonn, Bonn 53113, Ger-
many. His research interests lie at the intersection
of technical IT security and privacy and behav-
ioral research with a special focus on security work-
ers such as developers and administrators. Smith
received a Ph.D. in computer science from the Uni-
versity of Marburg, Germany. Contact him at smith@
cs.uni-bonn.de.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

mailto:p.gorski@infodas.de

	Eight Lightweight Usable SecurityPrinciples for Developers
	Principles
	1. Bake It In
	2. Don’t Maximize Security at theCost of Usability
	3. Offer More Security to Those Who Want It
	4. Protect the Needs of the ManyWith the Expertise of the few
	5. Make the Language Simpler Than YouThink Is Necessary
	6. Use Personal Examples
	7. Be Mindful When DelegatingDecisions to Your User
	8. Gather Users’ Mental Models and BuildYour System to Address Their Misconceptions

