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1. Introduction

Humans have been extracting naturally occurring minerals from the earth for thousands

of years. In southern Africa, around 43,000 years ago, iron was discovered near the

earth’s surface by ancient human beings. Methodically, prehistoric people used open-pit

mining to extract ore and waste from the top down. Open-pit mines might be older than

underground mines, but the human could also remove orebodies that lied a considerable

distance below the surface in the past. From around 3,000 to 1,900 BC, an underground

mine in England was exploited to retrieve flint from far below the surface of the earth. In

underground mining, miners dug shafts instead of ultimately revealing the mining face

and used ladders to retrieve the hard stone (cf. Gregory, 1980).

First attempts for applying operations research techniques in mining industries have

presumably been taking place in the early 1960s, where Helmut Lerchs and Ingo F.

Grossmann developed an algorithm to find the optimum design for an open-pit mine

(cf. Musingwini, 2016). However, that algorithm for open-pit design is not published

until 1965. Thus, Lerchs and Grossmann (1965) is the first published work that expresses

a problem in a mining company as an optimization problem, where an exact solution

approach is provided.

According to Newman et al. (2010), the mining process can be divided into five stages:

1. prospecting, 2. exploration, 3. development, 4. exploitation, and 5. reclamation. First

of all, geologists use visual observation and physical measurements of the earth’s prop-

erties to locate mineral deposits. Geologists assess the deposit’s value by drilling holes

in the exploration process to measure the mineral concentration and its variability in

the orebody. Tonnage-grade curves are generated by interpolation techniques reflecting

the possible benefits of exploiting the orebody for a given set of economic parameters.

During the development stage, access rights to the land are acquired, and the ground

is prepared to be mined by removing overlying waste. Moreover, the mining method is

determined, production capacity and infrastructure capital are calculated, and a detailed

engineering design is achieved. Ore is extracted from the ground at the exploitation stage

through the surface and/or underground mining methods. It is transported in trucks (via

haulage ramps) or in shafts to the surface. There, it can be stored (and ultimately sent
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to a processing plant), sent directly to a processing plant, or taken to a dump. The

last stage, reclamation, consists of restoring, to the extent possible, the region in which

mining took place to its natural state. In mining, operations research (OR) has been

mainly used for the stages of development and exploitation. Mine planners must make

decisions about when and how both surface and underground mining will be carried out.

Extraction decisions consist of deciding how the material can be retrieved and what to

do with the material extracted. Since resources, e.g., machines and workers, are used to

extract ore, there are also decisions on what kind of resources to use, and how to allocate

them.

It is very widespread to classify decision problems according to their time horizons.

For example, Newman et al. (2010) classify the existing approaches and models in

mining according to the planning horizon or the hierarchy level into long-term (strategic),

medium-term (tactical), and short-term (operational) problems. On the strategic level,

mine layout and design models are determined. Scheduling models for mine production

belong to the tactical level, and models for mine operating equipment allocation are part

of the operational level. Furthermore, Bjørndal et al. (2012) and Leal Gomes Leite et al.

(2020) propose a similar categorization. Bjørndal et al. (2012) classify the occurring

problems in mining companies into strategic mine planning, tactical mine planning, and

operational mine planning including transportation. Analogously, Leal Gomes Leite et al.

(2020) consider 1. layout and design problems, 2. production and scheduling problems,

and 3. operational equipment allocation problems on strategic, tactical, and operational

planning levels, respectively.

In this work, we consider one of the biggest German potash mines and address three

optimization problems on three different planning levels. Each optimization problem

deals with a specific objective function and particular constraints that are relevant for

the corresponding planning level.

First, we consider a so-called “extraction program planning” for a time horizon of one

month on the tactical planning level. The related quality-oriented objective function aims

at an even extraction of potash regarding the potassium content. For mathematically

formulating the objective function, the amount of potassium contained in the output

must be determined. Since the amount of total output is a priori unknown, the potassium

amount can be determined primarily using non-linear constraints. The principal challenge

is the linearization of the corresponding constraints, which has not been considered in

the literature. Moreover, a solution procedure is proposed that solves realistically-sized

problem instances regarding the quality-related objective function for the first time in

a reasonable amount of time. The result of the extraction program planning provides
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a statement about at what point in time which block (from a given set of blocks) is

available or expected to be processed. A block is a part of the orebody that is retrieved

by a detonation.

Next, we deal with a “preliminary (conceptual) planning of machines” within a time

horizon of one week. That problem can be classified between the tactical and operational

planning levels and investigates whether the results of the extraction program planning

can be implemented for the first week. For this purpose, a machine scheduling problem to

minimize the makespan is taking into account. That means we minimize the maximum

completion time of the blocks that have to be processed within the first week of the

following month according to the plan. In this regard, a mixed-integer linear program

is formulated, where particular circumstances in an underground mine (e.g., reentry)

are considered, and small-sized problem instances can be solved optimally. The main

challenge is to provide a solution approach that can find near-optimal solutions for large-

sized problem instances. In practice, it is very common that a job that is released will be

scheduled on an idle machine without any delay, i.e., non-delay scheduling is applied. We

propose a heuristic approach considering conscious delays in front of production stages.

That means a job will not be scheduled on an idle machine in a production stage if there

are some prioritized jobs in previous stages that are not completed yet; however, they can

reach the current stage in a specific time interval. We show that in the problem at hand,

so-called active scheduling provides more promising results than non-delay scheduling.

Based on the achieved results, a prioritization of the excavation sequence will be passed

on to the lower planning level in form of priority values.

Finally, a “detailed shift planning” considering a simultaneous assignment of machines

and workers is taken into account on the operational planning level. That problem

pursues an even progress in the underground mine under consideration. Within a work

shift, i.e., during a relatively short time horizon, the skill levels of assigned workers

cannot be neglected. Thus, we also deal with a personnel allocation problem. Moreover,

to provide solutions that can be put into practice, different kinds of setup times must

be considered, depending on the processing sequence of the operations on machines and

workers. The major challenge is to express the specific circumstances of a work shift

mathematically, e.g., considering workers’ breaks for a possible delay in the processing

time of a job, determining the processed percentage of a job during a work shift, observing

removal and changeover times, etc. A part of real constraints is mathematically for-

mulated in a relaxed program as part of a heuristic solution approach. The proposed

heuristic procedure consists of two steps. In the first step, a relaxed program neglecting

some setup times is solved, and the typically unfeasible solution achieved is repaired
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in the second step by inserting the neglected times. Furthermore, we mathematically

formulate all the problem specifications and introduce a compact mixed-integer linear

program using TSP-variables. The introduced mixed-integer linear program can be

easily customized to be applied in other industries and outperforms the existing solution

approaches.

The results of a problem on each planning level are “plan data” for the next lower

planning level and “actual data” for the next upper planning level. Thus, a constant

comparison between plan and actual data between different planning levels supports

the decision-making process. In this regard, decision-makers can react early enough by

rescheduling the activities or equipping the mine with the needed resources to achieve

the goals defined for each planning level.

The remainder of this thesis is organized as follows: In Chapter 2, we give a short

introduction to the mining method considered in this thesis, discuss the individual steps

of the extraction process, and describe a typical spatial division of an underground mine.

Subsequently, the problem specifications on each planning level are given. Chapter 3

introduces the publications integrated into this cumulative dissertation thesis. In this

regard, contributions of each publication to the related problem and contributions of the

authors to each publication are described. In Chapter 4, the results of the work are

summarized, and an outlook on further research is given.



2. Optimization problems on different

planning levels in a potash

underground mine

Potash ores are mainly found in deep deposits in Germany. As a result, potash mines

are usually underground mines with a deposit that extends over a vast area, known as

a flat-bedded deposit. According to Musingwini (2016), even though the planning logic

is the same, optimization in underground mine planning is less specified and used than

in open-pit mine planning. O’Sullivan et al. (2015) assert that due to the complex

nature of precedence constraints, the characteristics of the operations and activities,

and the irregularity of the blocks’ size and shape, scheduling in underground mines is

more complex than scheduling in open-pit mines. Musingwini (2016) argues that the

most significant difference in difficulty between open-pit and underground mine planning

stems from the fact that open-pit mines’ mining direction is essentially down and outward

to the pit limits. However, depending on the mining process used, there are various

permutations in the direction of mining in underground mines (cf. Seifi et al., 2021a).

A drill-and-blast technique using the room-and-pillar mining method is the most widely

used extraction method for flat-bedded deposits of limited thickness. By employing the

room-and-pillar mining method, a grid-like structure appears. The reason is that the

material is extracted across a horizontal plane, and pillars are left to protect the roof (cf.

Hamrin, 2001; Schulze et al., 2016; and Seifi et al., 2021a). Figure 2.1 demonstrates a

grid structure caused by the room-and-pillar mining method.

Using a conventional drill-and-blast technique, mining activities are carried out at the salt

faces (cf. Fig. 2.1). More explicitly, nine discrete mining operations must be performed

at a salt face in chronological order to remove the material. Those mining operations are

listed below (K+S AG, 2013):

(1) scaling the mine roof and sidewalls,

(2) removing the scaled material,
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salt face

pillar
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Figure 2.1.: Grid structure caused by the room-and-pillar mining method. Reprinted
from Schulze et al. (2016).

(3) bolting the roof with anchors,

(4) drilling large diameter boreholes,

(5) removing drilling dust,

(6) drilling blast holes,

(7) filling blast holes with explosive substances,

(8) blasting,

(9) transporting broken material to a feeder breaker.

In the first step, layers of salt loosened by detonation are detached by scaling machines

to provide security and prevent any possible danger to miners and mining machines. The

salt accumulated in the previous process step is then removed with small loaders during

mining operation (2). In the third step, roof bolters are used to install anchor bolts, which

connect the individual rock layers in the roof with one another and thus give them more

stability. In the fourth process step, a drill jumbo drills three horizontally arranged large-

hole bores, each with a diameter of 280 mm and a length of seven meters. Those drill

holes create the necessary cavity for the rock to collapse during blasting. The starting

point of the drilling is determined on the salt face by laser aiming devices and marked

in color. The inclination of the hole bores is either specified by the mine surveying or

results from geological explorations. Subsequently, during mining operation (5), the dust

created by the drilling is removed with a small loader so that the following process steps

can be carried out on a level surface. In the sixth step, a computer-controlled drilling

machine records the drilling depth of the large-hole bores. After the drill arm or the
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drill carriage has been calibrated in the primary position, several blast holes are drilled

with an air-water flush according to a drilling pattern. The number of blast holes to be

drilled and thus the choice of the appropriate drilling scheme is primarily based on the

given mining width and height. The subsequent blasting work is also mechanized. In

mining operation (7), so-called blast trucks, which are filled with explosive substances

at the beginning of each work shift, supply the blasting locations. The blast holes are

then filled with the explosives via loading hoses using compressed air. The detonators

are also inserted into the depth of the borehole via the charging hoses. After all the blast

holes have been filled, the ignition wires are connected to one another and subsequently

to mobile ignition distributors. The detonation (mining operation 8) is ignited centrally

through a ripple control device near the shaft during the work shift change. The time

between work shifts is long enough for the toxic, explosive clouds to escape. Following the

detonation, a three-dimensional block of potash is extracted, and chambers, also known

as rooms, are built in the direction of the mining activity. During mining operation (9),

diesel or electrically powered sheltered trucks with a shovel capacity of up to 20 tonnes

pick up the blasted crude material in the next work shift and transport it to the nearest

feeder breaker. The position of a salt face will be shifted after completing all mining

operations by the corresponding block’s length in the mining activity direction. Thus,

a new salt face becomes available that can be processed on the next occasion. Mining

operations (1) to (9) repeat and can therefore be called a production cycle (cf. Schulze,

2016; Schulze et al., 2016; Seifi et al., 2021b).

The area of the underground mine under consideration is about 624 square kilometers

(cf. Clausen, 2013). To achieve a proper operation, some smaller spatial areas, so-called

mining districts, are considered for underground mines. A potash underground mine

may have up to 5 mining districts. It must be noted that the machines and workers

assigned to a particular mining district cannot generally be exchanged with the other

mining districts. A mining district can be several square kilometers in size. Accordingly,

several tipple areas are designed for a mining district to split the region into smaller parts

and avoid long transportation routes caused by this spatial expansion. According to the

size of a mining district, four to six tipple areas are usually included. The key element

in a tipple area is a feeder breaker that is a machine for crushing and breaking down the

extracted potash to precise measurements. The mining operations are carried out on a

salt face, as previously mentioned. Following that, the explosion occurs in the mining

direction, resulting in the extraction of a block of potash. After the detonation and

removing the extracted potash, a new salt face appears, which is the current working

place. An underground location is defined as a chain of consecutive blocks extracted

one after the other in a specific mining direction. The material removed from each
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underground location must be delivered to one particular feeder breaker. In this regard,

to a feeder breaker, the underground locations in a radius of 100 meters are assigned. In

general, there are five to 11 underground locations assigned to a specific feeder breaker,

i.e., included in a tipple area (cf. Seifi et al., 2021b).

Figure 2.2 shows three underground locations and the assigned feeder breaker. The

illustrated underground locations (UL 1 to UL 3) have different lengths in terms of

the number of containing blocks. The solid-lined squares denote the room caused by the

extraction of a block of potash. The dashed squares indicate the blocks in an underground

location that can be removed within a given planning horizon. The number of blocks,

which can be extracted in an underground location within a given time horizon, can be

determined according to the geological and mining investigations. In Fig. 2.2, UL 1 and

UL 2 have two and three blocks, respectively, that are available and can be excavated

according to the plan for the considered planning horizon. In UL 3, on the other hand,

no more blocks can be removed within the planning horizon.
1

tipple area
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salt faces

fe
ed
er

b
re
ak
er

Figure 2.2.: A tipple area with associated underground locations. Adapted from Clausen
(2013), p. 23.
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Removing a block is a job that is processed in different stages. Note that blasting (mining

operation 8) does not require any resources. By considering mining operations (9) and

the mining operations (1) to (7) as production stages, our job (removing a block of

potash) must be processed in eight stages. The operation on each stage is processed by

exactly one machine and one worker. In the underground mine under consideration, some

identical or uniform (mobile) machines are used for processing each mining operation.

That means a particular operation of a job will be completed on one of the available

machines in the corresponding production stage. Since a machine is coped by a skilled

worker, the processing time of an individual operation depends on the assigned machine’s

speed and the skill level of the assigned worker. Accordingly, the sum of the processing

times for the mining operations is the processing time required to remove a block (cf.

Schulze et al., 2016; Seifi et al., 2021b; and Seifi et al., 2021a). For better clarity, we

summarize in Table 2.1 the aforementioned mining terms.

Table 2.1.: Definitions of the mining terminology introduced. Reprinted from Seifi et al.
(2021b).

Term Definition
block a cube of material with known dimensions removed after a detonation
feeder breaker a crushing machine in a tipple area where the lumps extracted from the

underground locations assigned to this tipple area are delivered to
mining district the largest unit of an underground mine that comprises some smaller

units (see the definition of a tipple area)
pillars parts of underground mines that are not extracted to support the roof

from collapsing
room a space of known dimensions created after a detonation
salt face a place at which the mining operations are conducted, i.e., it is the front

side of the block that is extracted
tipple area the largest unit of a mining district that is characterized by the assigned

underground locations and a feeder breaker
underground
location

a chain of consecutive blocks that can be removed in the mining direction

In Section 2.1, the problem of “extraction program planning” is described that is occurring

on the tactical planning level. The results of that problem provides the right selection

and sequence of the blocks to be processed during the next month. Subsequently, in

Section 2.2, “preliminary (conceptual) planning of machines” is discussed that is mainly

used to validate the results achieved by “extraction program planning” within a time

horizon of one week. In addition, the results of preliminary (conceptual) planning of

machines can be passed on to the operational planning level as block sequence prioritiz-

ation. Thus, that problem connects the tactical planning level to the operational planning

level and can be categorized on the tactical-operational planning level (cf. Newman et al.,
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2010). Finally, in Section 2.3, the problem of “detailed shift planning” is introduced that

occurs on the operational planning level and takes a simultaneous assignment of machines

and workers into consideration. For each problem, the considered objective function and

the corresponding restrictions are given.

2.1. Extraction program planning

In this section, we describe a block selection and sequencing problem on the tactical

planning level. The problem specification is based on the description introduced in Seifi

et al. (2021b).

The major valuable minerals in potash ores are potassium chloride and sodium chloride.

Especially, potassium chloride is essential because it is most commonly used as a fertilizer

and is an additive in the chemical and medical industry as well as human and animal

food processing (cf. Chesworth, 2008; USGS, 2011; Schulze et al., 2016). The crude

salt extracted in an underground mine is transported to the surface and then to the

processing plants. In above-ground processing plants, potassium chloride is separated

from potash by flotation, recrystallization, or electrostatic separation1. Like every other

device, the processing plants above ground have an optimal operating point at which

they perform best. Various variables may be used to assess this point depending on

the considered device. If the potassium content of the removed potash is equal to a

given value, the processing plants above ground considered in this work have the most

cost-effective performance.

By removing a block of potash, the length of the large-hole bores and the drilling pattern

of the blast holes determine the dimensions of the excavation. In that way, the amount

of crude material expected to be excavated is known. Based on geological and mining

investigations, the potassium content in a block in percent can be estimated. Thus, the

quality of a block can be quantified by the percentage of potassium contained in the

corresponding block, the so-called quality value of a block (in percent). If we multiply

the quality value of a block by the amount of potash extracted from that block, the

amount of potassium obtained is determined.

The amount of potassium extracted within a particular time interval, i.e., the quality

of the removed potash, depends on the quality values of blocks excavated in that time.

Moreover, the excavation sequence affects the quality value of the output within the sub-

1100% potassium chloride is exactly equal to 63.17% potassium oxide. Thus, the percentage of
potassium in the potassium chloride is the equivalent content of potassium oxide by weight (cf. Heinz
and von der Osten, 1982, p. 147).
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intervals included in a planning horizon. Note that, on the one hand, the blocks vary in

terms of the volume and the quality, and on the other hand, not all the available blocks

can be processed within a specific time horizon. If the quality value greatly fluctuates, we

speak of a non-homogeneous output that leads to high costs for above-ground processing.

Since quality fluctuations are highly probable by the excavation, quality-oriented mining

of blocks plays a decisive role in reducing the processing costs. In this regard, we want

to answer two questions: 1. which blocks should be excavated (i.e., block selection), and

2. if a block is extracted at which time it must be removed (i.e., block sequencing).

We defined an underground location as a chain of available blocks that can be removed

during a given planning horizon. One specific block in an underground location can

be processed only if the previous blocks in the same underground location have been

extracted. Accordingly, each block can have one direct predecessor and one direct

successor block. In other words, there are precedence relationships between the blocks in

an underground location. As mentioned, the time needed to remove a block is the sum

of processing times required for every single mining operation. On the tactical planning

level, because of a relatively long time horizon, the processing times required for the

extraction of blocks are estimated. Hence, not the assigned machines and workers for

each mining operation, but the dimensions or shapes of blocks are crucial factors for

determining the corresponding processing times. Additionally, the current status of a

block at the beginning of the planning horizon must be considered to estimate the needed

processing time. A block for which all mining operations must be processed has a longer

processing time in comparison to a block for which not all the mining operations (e.g.,

only mining operation 5–9) must be carried out.

We mentioned that the extracted material from an underground location is first trans-

ported to the assigned feeder breaker in the corresponding tipple area via loaders. Feeder

breakers are connected by a conveyor belt system to a central bunker system close to the

shaft. From the shaft, the removed material finally reaches the surface. The conveyor

system, the bunker, and the processing plants above ground have all a limited capacity.

Accordingly, for each tipple area and each mining district, an upper limit of the output

must be observed. On the other hand, a lower limit for the total output over the planning

horizon must be considered, since the primary task of a mining company is the extraction

of raw minerals. In this regard, in each work shift and every mining district, a minimum

output must also be satisfied.

The quality of the potash regarding the potassium content must lie in a prescribed

tolerance range during a predefined time interval that is typically shorter than the entire

planning horizon. Therefore, the given planning horizon on the tactical planning level
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(e.g., one month) is divided into some smaller sub-intervals (e.g., weeks). The length of

the planning horizon and the corresponding sub-intervals can be customized depending

on the current state of the mine. Let Ab in tonnes be the amount of potash extracted

from block b. Moreover, let Qb in percent be the quality value of block b. We assume

that a set of blocks B is removed during a specific time interval. The quality value of

the entire output q (in %) is the weighted average of the quality values of the extracted

blocks and calculated as follows:

q =

∑
b∈B

Qb · Ab∑
b∈B

Ab
.

We said that the processing plants above ground perform economically best at the optimal

operation point. That point is represented by a quality target value in percent. The

aim of our optimization problem is that q deviates as little as possible from the given

quality target value. To determine the deviations, we distinguish between a negative

and a positive deviation. If q is less than the quality target value, a negative deviation

is a case. Analogously, there is a positive deviation if q is greater than the quality

target value. In order to formulate the objective function, the absolute value of the

deviation of q from the predetermined quality target value in each sub-interval must be

first determined. Note that the amount of material extracted within a particular time

interval must be known so that the value of q and accordingly the values of negative and

positive deviations can be calculated. However, the value of the denominator of q, i.e.,

the entire output, is a priori unknown with the result that some non-linear constraints

in the mathematical formulation are required for determining the deviations from the

target value; those constraints must be then linearized. The objective is to minimize the

average of the calculated deviations over the number of sub-intervals contained in the

planning horizon.

In summary, a quality-oriented objective function must be minimized, where the following

constraints are observed:

Precedence relationships between the blocks in an underground location;

Minimum limit of the output over the entire planning horizon, in each work shift, and

for every mining district;

Maximum limit of the output for each tipple area and every mining district within

every single work shift; and

Quality tolerance range over each certain sub-interval in the planning horizon.
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2.2. Preliminary (conceptual) planning of machines

In this section, we describe a machine scheduling problem that can be classified between

the tactical and the operational planning level with regard to the considered planning

horizon. The problem specification is based on the description introduced in Schulze

et al. (2016).

As part of the preliminary (conceptual) planning of machines, it is examined whether

the number of blocks determined from extraction program planning (see Section 2.1) can

be removed for the next week. We said that removing a block is a job that consists

of some operations (mining operations described above). As mentioned before, blasting

(mining operation 8) does not require any resources, and mining operations (9) and

mining operations (1) to (7) are the production stages. According to a planning horizon

of one week, the workers do not have to be considered on this planning level, and the

only resources are the available machines in each production stage.

In the problem at hand, a so-called reentry, which plays a crucial role in the production

cycle, must be given special attention. After completing the first process step, the

remaining production cycle for each block should be completed within a defined period of

time to ensure the safety of personnel; otherwise, there is a risk of rock layers falling due

to the rock pressure. The mining operations (2) to (6) should therefore be finished within

τ > 0 time units after completing mining operation (1). If during or with the completion

of mining operation k, (2) ≤ k ≤ (6), however, τ time units are achieved or exceeded,

a renewed scaling is necessary for safety reasons. That means process step (1) must be

carried out once again (cf. Fig. 2.3) before the next process step k + 1, as planned, can

be processed. As a result, the roof and side walls are continually monitored to ensure

that loose material does not detach unexpectedly.

368 M. Schulze et al.

(threaded rods up to 1.2m in length). The roof anchors are installed onto the roof
structure in order to bind the salt layers together and give them a greater degree of
stability. Then, large drill jumbos are used to drill three adjacent horizontal boreholes
with a diameter of 0.28m and a length of 7m (step 4). The large boreholes act on the
one hand as a direction guideline for the drilling of blast holes and on the other hand as a
collecting area for material generated during blasting. The resultant dust as well as the
loosematerial are removedwith small loaders (step 5) to improve work conditions and
to increase productivity in subsequent steps. In the sixth step, a computer-controlled
drilling machine is used to drill about 60 holes with a diameter of 0.03 m 7 m deep
into the rock according to a set plan. The blast holes are then filled with explosive
substances carried by blast trucks (step 7). The blasting always takes place between
work shifts, when one shift has left the salt face and the next is waiting for the elevator
to go down (step 8). After the detonation, sheltered trucks with shovels take the crude
material away from the salt face and deliver it to the tipple. Steps (1)–(9) repeat and can
therefore be treated as a production cycle. Each step of the production cycle (except
the blasting) requires a specific machine type that only exists in a limited number.
Thus, the availability of machines has to be considered as an important restriction in
the block excavation planning process of an underground mine.

In order to guarantee safeness for all miners, the production cycle should, once
started, be performed within a certain time interval. Hence, after completing the first
step, steps (2)–(6) have to be finished within τ > 0 time units. If τ is achieved or
exceeded with the completion of step i, (2) ≤ i ≤ (6), a security precaution is made
after i in which the roof is scaled once more, i.e., the first step is revisited (cf. Fig. 3).
Thus, the roof and side walls are controlled continuously, so that loose material does
not become detached unexpectedly. When the scaling process is finished, step i + 1
and the succeeding steps of the production cycle are executed.

The time period, in which we check the achieving or exceeding of τ , lies between
the end of the first step and the end of the sixth step, i.e., steps (7)–(9) are not considered
in the calculation. This decision is based on the following reasons: a return to step
(1) after filling the blast holes is unnecessary, since the blasting is performed in step
(8). Subsequently, the crude material is delivered to the tipple with “sheltered” trucks
(diesel or electric) and so, the miners are adequately protected against the possibility
of rockfall.

The described scheduling problem in potash mining, where a block excavation
sequence has to be found taking into account a limited number of machines as well as
a possible return to step (1) for safety purposes, is part of an industry project funded
by a German potash provider. The aim is to minimize the maximum completion time
of excavations (i.e., the makespan or the schedule length). In what follows, we take
advantage of the fact that the problem can be transformed into a hybrid flow shop

step 1 step k step 1 step k+1

scaling (2) ≤ k ≤ (6)        scaling

. . .

τ > 0
t

Fig. 3 Execution of steps over the time axis, where τ time units are exceeded and step (1) is revisited
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Figure 2.3.: Execution of mining operations over the time axis, where τ time units are
exceeded and mining operation (1) is revisited. Reprinted from Schulze et al.
(2016).

When checking whether τ time units have been reached or exceeded, mining operations (7)

to (9) are not taken into account. This restriction is due to the fact that it is no longer

necessary to scale again after the blast holes have been filled with the subsequent blasting.
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The blasted material is then transported away by large front shovel loaders equipped with

protected cabins so that the employees are well protected against possible falling layers

of rock. We assume that a repetition of the first process step has to be carried out at

most once for each block since a value for τ , which is valid in practice, is usually much

greater than the minimum duration of an entire production cycle.

Our problem has structural similarities to the known hybrid flow shop (HFS) scheduling

problem; a set of jobs must be processed on different production stages, and in every

production stage, a given number of machines is available. Basic HFS scheduling problems

have the following characteristics (see, e.g., the surveys of Ruiz and Vázquez-Rodŕıguez,

2010, as well as Ribas et al., 2010):

� jobs must be processed in k ≥ 2 production stages (separated by unlimited buffers);

� there are
∣∣Mk

∣∣ ≥ 1 parallel machines in production stage k, where there is at least

one production stage with more than one machine;

� jobs are not preemptable and have several operations that have to be processed on

machines, following the same production flow; and

� Each machine in each production stage can process at most one job at a time and

each job can be processed by at most one machine at a time.

Accordingly, we can classify our problem as a k-stage HFS scheduling problem with

k = 8 if we consider removing a block as a job, and mining operations (1) to (7) as

well as mining operation (9) as production stages. Figure 2.4 illustrates the resulting

production environment with eight production stages. Note that production stage (8)

does not have to be illustrated in the environment.370 M. Schulze et al.
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Fig. 4 Production environment of the proposed HFS scheduling problem

The proposed scheduling problem in undergroundmining is a k-stageHFS schedul-
ing problem if we identify

• the production stages with steps (1)–(7) and step (9) of our production cycle,
• the machines at each stage with the underground machines used in the different
steps (e.g., step 1 requires scaling machines, step 2 small loaders), and

• a job with a block excavation in an underground location.

The resulting production environment inwhichblock excavations are executed consists
of eight stages and is depicted in Fig. 4. Step (8) must not be considered in the
environment, since the blasting does not need any vehicle or machine. Note that the
depicted numbers of machines per stage (1–5 parallel machines) reflect realistic sizes
for a mining district (or region) with up to 30 underground locations.

Almost all steps of our production cycle require a different set of special mobile
machines. Only steps (2) and (5) make use of the same small loaders (given in gray
color in Fig. 4) in order to remove the scaled material or the drilling dust. Hence,
a job may revisit the same machines in the HFS and a reentrant problem has to be
considered. Repeated use of the same machines by the same job means that there
may be resource conflicts among jobs at different levels in the process. Moreover, if
τ time units are achieved or exceeded with the completion of step i, (2) ≤ i ≤ (6),
the respective job has to revisit the first stage (scaling machines) for safety reasons,
i.e., a situation-related reentry appears.We assume that a situation-related reentry may
happen only once, since a practical relevant value of τ is significantly higher than the
minimum processing time of the whole production cycle. Figure 4 shows the paths
of two jobs through the system of machines, where job 2 performs a situation-related
reentry after leaving stage 5. At the revisit of stage (1), the same (as in the previous
path) or a different machine can be used.

Usually, the machine fleet consists of undergroundmachines with different features
(e.g., shovel volume, exhaust gas emission, feed rate). Therefore, the processing time
p jmk ∈ N of job j at stage k depends on the specific machine m within the stage, i.e.,
unrelated parallel machines must be taken into account.

123

Figure 2.4.: Production environment of the proposed HFS scheduling problem. Reprinted
from Schulze et al. (2016).
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In the considered problem, the machines used in production stages (2) and (5) are the

same small loaders. Those are represented in gray color in Fig. 2.4. That means if a

machine is processing a job in stage (2), that machine cannot be used to process another

job in stage (5). Furthermore, a job has to revisit the first stage if τ time units are

achieved or exceeded with the completion of step k, (2) ≤ k ≤ (6) for the corresponding

job, i.e., a situation-related reentry must be taken into account. The production paths of

two different jobs are shown in Fig. 2.4. We see that job 2, after completion in production

stage (5), has to be processed in production stage (1), where no situation-related reentry

for job 1 must be considered.

Figure 2.5 illustrates five underground locations u1 to u5. For example, block j7 at

location u2 can be excavated only if the preceding production cycle for block j6 at the

same underground location is completed. Thus, a precedence relationship between the

jobs of an underground location must be observed. That means at the beginning of the

planning horizon, only a subset of jobs J0 = {j1, j6, j9, j15, j17} ⊂ J can be processed.

Dynamically, new jobs become available at different points in time, i.e., if a job is

completed, the direct successor job in the same underground location can be operated

on. Scheduling in potash mining 371
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Fig. 5 Mining district with five underground locations u1, . . . , u5 and 2–6 blocks per underground location

In order to excavate one block of a certain underground location, e.g., block j2
at location u1 (cf. Fig. 5), it is necessary that all steps of the preceding production
cycle have been finished, i.e., the preceding block j1 is completely removed. Hence,
precedence constraints between jobs of an underground location exist and only a
subset of jobs (here jobs j1, j6, j9, j15, and j17) is available for excavation at time zero.
New jobs appear dynamically, i.e., at each point in time, where a block excavation is
completed and the block just removed is not the last block in an underground location.

In summary, we obtain a k-stage HFS scheduling problem with reentry, unrelated
parallel machines, and precedence constraints between jobs. HFS are usually found in
common manufacturing environments for products like concrete blocks (Grabowski
and Pempera 2000), circuit boards (Jin et al. 2002), label stickers (Lin and Liao 2003),
steel (Voß andWitt 2007; Kreutz et al. 2000), or solar cells (Chen et al. 2013). Further-
more, examples are found in non-manufacturing areas like container handling systems
(Chen et al. 2006, 2007; Fereidoonian and Mirzazadeh 2011). Gupta (1988) showed
that HFS scheduling problems restricted to two processing stages, even for the case in
which one stage contains onemachine and the other stage twomachines, areNP-hard
in the strong sense.

In what follows, we confine our literature review on the one hand to k-stage
HFS scheduling problems containing reentry, unrelated parallel machines, and job-
precedences and on the other hand to scheduling problems in underground mining.

Choi et al. (2005) proposed a 4-stage HFS scheduling problem with identical paral-
lel machines. Two types of jobs are considered: jobs that can be completed after being
processed once at the stages and jobs with reentrant flows, i.e., jobs that should visit
processing stages twice. For each job, a due date is given and the objective is to mini-
mize the total tardiness of jobs. The problem is solved using list-scheduling algorithms
(also known as dispatching rule-based or priority rule-based algorithms), where the
job with highest priority among all jobs at a stage is assigned to the idle machine with
highest priority at the stage. Choi et al. (2011) considered a reentrant HFS scheduling
problem with five stages and identical parallel machines per stage. In reentrant flows,
each job may visit serial stages two or more times. Multiple performance measures
are considered: system throughput, mean flow time, mean tardiness, and the number
of tardy jobs. A real-time scheduling mechanism is suggested in which a decision
tree is used to select an appropriate dispatching rule. Cho et al. (2011) developed a
Pareto genetic algorithm with local search strategies in order to solve a reentrant HFS
scheduling problem with k ≥ 5 stages, where each stage consists of identical parallel
machines. The objectives are to minimize the makespan and to minimize the total
tardiness. A solution is represented by a permutation of n jobs which indicates the
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Figure 2.5.: Precedence relationship between the jobs in an underground location.
Reprinted from Schulze et al. (2016).

Altogether, we have an 8-stage hybrid flow shop scheduling problem, where reentry and

precedence relationship between jobs of an underground location must be taken into

consideration. The aim is to minimize the maximum completion time of excavations,

i.e., makespan. On the one hand, the results show whether the solution obtained from

the tactical planning level can be implemented in the first week. On the other hand,

with the aid of achieved results, a prioritization of the block sequence is derived, which

is passed on to the lower planning level in form of priority values.
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2.3. Detailed shift planning

In this section, we describe a shift scheduling problem with a simultaneous assignment

of machines and workers on the operational planning level. The problem specification is

based on the description introduced in Seifi et al. (2019) and Seifi et al. (2021a).

Flexible planning and control of the extraction are some of the characteristics that become

possible because of a flat-bedded deposit in an underground mine. As mentioned before,

the room-and-pillar mining method is the most applied extraction method in potash

underground mines. That method is particularly characterized by a vast expansion

of the deposit and the resulting large number of potential extraction points, the so-

called working places. The flexibility of a plan results from the large number of working

places. However, creating work orders for staff and mobile equipment in work shifts can

be complex. The fact that different mining operations must be processed at different

working places makes the planning more difficult. Furthermore, it must be taken into

account that not all the available working places can be processed, and a production cycle

started for a working place cannot necessarily be completed within a planning horizon of

one work shift. Thus, providing a schedule to determine which working places in which

sequence must be processed plays a decisive role. In the field of scheduling, the fact

that only a subset of the given set of jobs can be processed during a prescribed planning

horizon is less studied. In the considered problem, the machines are mobile, i.e., the jobs

are not delivered to the machines, but a skilled worker drives a particular machine to

a job. Hence, a simultaneous assignment of machines and workers must be considered,

where not all workers can drive and handle all machines. Additionally, workers have

different skill levels based on their experiences, leading to different handling times with

a machine. Considering the different speeds of the machines, the processing time of an

operation strongly depends on the assigned machine and worker. A further important

point that is less investigated in the field of personnel scheduling is that a worker can

change an assigned machine within a work shift (cf. Schulze and Zimmermann, 2017;

Van den Bergh et al., 2013). The equipment and resources (e.g., machines and workers)

assigned to a particular mining district cannot be exchanged with other mining districts

during a work shift. It is therefore reasonable that we schedule a work shift for each

mining district separately.

As mentioned in Section 2.2, without considering the workers, the production environment

can be classified as a variant of a hybrid flow shop (HFS) scheduling problem within a

time horizon of one week (cf. Schulze et al., 2016). In the problem on the operational

planning level, because of many uncertainties affecting the availability of machines, we
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consider a planning horizon of one work shift. As a result, a “reentry” (see Section 2.2)

is not considered.

The production environment in our shift scheduling problem is another variant of a hybrid

flow shop scheduling problem, where the characteristics of the basic HFS scheduling

problem are as follows (cf. Section 2.2):

(i) we have eight production stages;

(ii) there are at least two machines in production stage nine;

(iii) we consider the operations as non-preemptable because the assigned machines

complete the processing of the operations regardless of possible interruptions. After

any possible interruption (e.g., because of the workers’ breaks or at the end of the

work shift), the processing continues at the next available opportunity by the same

machine; and

(iv) although different working places can have different states so that the order of

operations for different jobs can begin with different operation index numbers; but,

a job must be processed in at least one stage.

For our machine scheduling problem, some further aspects must be taken into account:

(v) it is possible that the processing of a job or an operation is interrupted at the end

of the work shift, and not all available jobs have to be processed within a work

shift (job selection);

(vi) the machines must be driven to jobs, and driving times must be considered as setup

times; and

(vii) mining-specific requirements imply precedence relationships between the jobs.

Considering the points (v) to (vii), we classify our problem as a variant of a HFS

scheduling problem. The points (vi) and (vii) are described in the following in more

detail.

Each machine in a production stage must be handled by an operator, i.e., a worker. It

must be taken into account that not all workers can be assigned to all machines since

workers have different skills. The workers who are eligible for a machine may have

different skill levels, i.e., they can process the same job with different processing times.

Thus, during a short planning horizon, the role of workers cannot be neglected. Causing

different processing times is not the only reason for integrating a worker assignment to

our machine scheduling problem. For a worker who goes from one machine to another

assigned machine, a changeover time must be considered. Moreover, some setup times
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must be performed on the new assigned machine by the worker. Those setup and

changeover times are considerable regarding the duration of a work shift. Hence, assigning

and sequencing of the workers largely affect the results of our problem.

The setup times that must be considered in our problem depend on machines, the

processing sequence of operations on machines, and the processing sequence of operations

by workers. In this regard, we can distinguish between 1. machine- and sequence-

dependent setup times, 2. sequence-dependent changeover times, and 3. machine- and

sequence-dependent removal times. Those times are described below in detail.

machine- and sequence-dependent setup times lh

A worker must perform preventive maintenance, the so-called first technical services,

for a machine before starting an operation. The time of the first technical services

only depends on the machine. Whether preventive maintenance must be done

or not depends on the processing sequence of the operations; either the machine

processes the first allocated operation within the considered work shift, or the

assigned worker has changed his machine. Note if a worker goes to a new assigned

machine, the first technical services must be performed even if the new assigned

machine was already in use.

Moreover, driving times between two operations that are processed by the same

machine, i.e., driving times from a working place to another working place, depend

on the driving speed of the assigned machine and the locations of the corresponding

jobs. That means the driving times are machine- and sequence-dependent, too.

sequence-dependent changeover times lh

As mentioned before, workers can change the assigned machines within the work

shift under consideration. If a worker has to process two operations with two

different machines, he is picked up by a transport vehicle or walks on foot to the

new assigned machine. The new machine is parked near the location of the previous

operation processed on that machine, and the driving speed of the transport vehicle

or the walking speed of a worker is assumed as constant. Hence, the occurring times

to change a machine are sequence-dependent changeover times.

machine- and sequence-dependent removal time lh

If a machine is not going to be used anymore within the work shift under consider-

ation, it must be cleaned and fueled (last technical services). That would be a

case if the machine processed the last operation assigned, which is known only if

we have a schedule a priori or if the work shift is over. The time needed for the

last technical services depends, analogous to the first technical services, only on

the considered machine. In the case that the work shift is not over yet, we have to
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know the processing sequence of the operations on a machine to determine the last

operation processed. Thus, removal times are machine- and sequence-dependent.

As mentioned above, we schedule a work shift for one mining district. In a mining

district, some specific mining requirements (MR) must be taken into account:

MR (1) According to the labor law, a miner has to make a ∆-minute break during his

work shift. The workers’ breaks must start within a given time interval [ϕα, ϕω].

Note that taking a break causes a possible delay in processing an operation. That

means the break of a worker may interrupt the processing of an operation, but the

assigned worker will continue with the same operation after his break. The value

of ϕω is set so that if a worker starts his break at ϕω, the break will be finished

before the corresponding work shift is over.

MR (2) In an underground location, it is not allowed that two operations are processed

at the same time. For safety reasons, not more than one machine can be utilized

in an underground location at the same time. As a result, there are disjunctive

constraints between the different working places of an underground location.

MR (3) It is very desirable that all the working places of an underground location

have the same state, i.e., the underground location is evenly progressed. For

many reasons, it is, however, not a case, i.e., different mining operations must

be processed for different working places of an underground location (cf. Fig. 2.6).

As a result, the working places in an underground location must be prioritized. In

an underground location, the currently available jobs with mining operation (9)

have the greatest priority and must be processed at first. If none of the currently

available jobs requires mining operation (9), a job with the smallest operation type

number has the greatest priority value.

Figure 2.6 illustrates a tipple area with four underground locations (I) to (IV).

The underground locations have two to three working places. The number in

parentheses is the mining operation that has to be done next for the related

working place. In underground location (II), the jobs with mining operation (9)

have a greater priority value in comparison to the job with mining operation (1).

Besides, between those jobs, there is a disjunctive constraint according to MR (2).

Taking MR (2) and MR (3) into account, in underground location (III), the job

with mining operation (3) is first completed before starting with the other job. A

similar situation is given in underground location (IV), where the job with mining

operation (5) must be first completed before starting with the job with mining

operation (6). For underground location (I), MR (2) must only be respected.
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Figure 2.6.: The prioritization between working places in an underground location.
Adapted from Seifi et al. (2021a).

MR (4) As mentioned, an operation can be interrupted at the end of the work shift.

Suppose there is such an interrupted job from the previous work shift in an under-

ground location. In that case, we can start the processing of an operation in that

underground location only if the interrupted operation from the last work shift

is processed during the current work shift. Note that the interrupted operation

does not have to be the first operation processed in the corresponding underground

location.

MR (5) Due to the high time required for the calibration to be prepared, the drilling of

large diameter boreholes (mining operation 4) is not allowed to be interrupted. In

other words, those operations can be started only if they can be completed by the

end of the work shift.

MR (6) In order to reduce the number of machine changes and the involved risk, the

number of machine changes is limited by two in the underground mine under

consideration. That means a maximum of two different workers can be assigned to

a machine, and a worker can be assigned to a maximum of two different machines

during one work shift.

In the presented problem, we pursue the goal that the mine is evenly progressed. In

this regard, we consider an amount of crude material for each operation of a job that
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is expected to be excavated after the completion of the operation. For each mining

operation, a target value for the output should be achieved within a work shift. The

target values are predetermined from a superordinate planning level with the aid of

constant comparison of target and actual data of the excavated raw material. At the

end of the work shift, the amount of material extracted is calculated for each operation.

In this regard, if an operation of a job is interrupted at the end of the work shift, the

percentage of that operation that has been processed within the work shift must be

determined. Accordingly, the lower deviation from the predefined target value is figured

out. Lower deviation means, if the excavated material exceeds the target value, the

difference will not be considered in the objective function. The aim of the optimization

problem under consideration is to minimize the lower deviations accumulated over all of

the mining operations so that the progress of mining stays consistent.
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https://doi.org/10.1007/s00291-021-00618-z (cf. Appendix A)
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The scientific quality, depth, and validity of articles can be primarily evaluated with the

help of rankings. Three of the papers considered in this cumulative dissertation have

been published in journals that are assessed by the “Association of University Teachers

for Business Administration (VHB).” The first version of the ranking was developed in

2003. Table 3.1 shows the ranking values achieved for the relevant journals and the

number of articles published in the respective journals. The ranking value “A” means

that the corresponding journal is a leading scientific journal in the field of operations

research1.

1Quelle: https://vhbonline.org/fileadmin/user_upload/JQ3_OR_01.pdf
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Journal Ranking Number of papers
OR Spectrum A 2
European Journal of Operational Research A 1

Table 3.1.: Ranking values of the relative journals.

One other paper is published in “Mining goes Digital,” the proceedings of the internation-

al symposium application of computers and operations research in the mineral industry

(APCOM). APCOM is one of the leading conferences in the field of mining that not

only focuses on geostatistics and resource estimation but has broadened its horizon to

information and communication technology in the mineral industry. Mining goes Digital

is a collection of high-quality, peer-reviewed papers covering recent developments in, e.g.,

geostatistics and resource estimation, mine planning, scheduling and dispatch, internet

of things, robotics, etc.

In what follows, we denote the papers with the numbers indicated above. Paper I and

Paper II address the problems introduced in Sections 2.1 and 2.2, respectively. Papers III

and IV both deal with the problem described in Section 2.3. The publications are given

in Appendix A to D. In the following sections, the contributions of the published papers

to the related problems are given. Furthermore, the authors’ contributions of each paper

are described.

3.1. Paper I

In this paper, we deal with a block selection and sequencing problem with a quality-

oriented objective function in terms of the potassium contained in the entire output.

A quality-related objective function is less studied in the literature. Since the amount

of material removed within a planning horizon is a priori unknown, determining the

quality values of the extracted material requires some non-linear constraints. The major

contribution of this paper is to linearize those constraints to introduce a mixed-integer

linear mathematical program that can be used to solve small-sized problem instances

to optimality. Some precedence relationships, maximum and minimum limits of the

output, and a quality tolerance range must be observed to generate a feasible solution.

Another contribution of Paper I is to show that the problem under consideration is NP-

hard in the strong sense even if the quality-related constraints are neglected. That is

the reason why a MILP-solver cannot find feasible solutions for the most challenging

problem instances. From a practical point of view, the significant contribution of Paper I

is to develop a solution approach that finds high-quality solutions for realistically-sized
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problem instances. In this regard, a problem-specific heuristic solution procedure is

proposed. Furthermore, we show that a subtle combination of the proposed heuristic with

the mathematical program improves the results found by the heuristic considerably.

The paper is written by three authors:

Cinna Seifi, Marco Schulze, and Jürgen Zimmermann.

Paper I is published in OR Spectrum in 2021 and is in press. Articles in press are

accepted, peer reviewed articles that are not yet assigned to volumes/issues, but are

citable using DOI. The author of this dissertation thesis is the first author of Paper I.

The contributions of every author to each part of this paper is given below:

Literature study kj

Primarily Cinna Seifi with the collaboration of Marco Schulze

Linearization of the mathematical formulation kj

Cinna Seifi

Showing the NP-hardness in the strong sense kj

Cinna Seifi

Providing the heuristic approach kj

Primarily Cinna Seifi with the collaboration of Marco Schulze

Implementation of the mathematical model and the heuristic approach kj

Cinna Seifi

Generating the test instances kj

Primarily Cinna Seifi with the collaboration of Marco Schulze

Evaluating the results kj

Primarily Cinna Seifi with the collaboration of Marco Schulze

Manuscript kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Jürgen

Zimmermann

Revision after review kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Jürgen

Zimmermann



26 Overview of the publications

3.2. Paper II

The paper considers a machine scheduling problem that appears in potash mining, where

a block excavation sequence has to be found. One of the major contributions of Paper II

is to introduce a mixed-integer linear program for a hybrid flow shop scheduling problem

taking “reentry” into consideration with the result that small-scale instances can be

solved to optimality. Moreover, reasonable lower bounds are provided to evaluate the

results that are not proven to be optimal. The most significant contribution of the paper

is to suggest a heuristic solution procedure in order to solve larger problem instances.

In this regard, a priority rule-based construction procedure embedded in a multi-start

environment is developed. The proposed heuristic solution procedure performs very

well for medium-sized instances. The basic multi-start algorithm is then extended to

an advanced multi-start algorithm that considers conscious delays of jobs in front of

production stages. For large-sized problem instances, the advanced multi-start algorithm

results are shown to be best compared to the other procedures.

The paper is written by four authors:

Marco Schulze, Julia Rieck, Cinna Seifi, and Jürgen Zimmermann.

Paper II is published in OR Spectrum in 2016. The author of this dissertation thesis is

the third author of Paper II. The contributions of every author to each part of this paper

is given below:

Literature study kj

Marco Schulze and Julia Rieck

Introducing the mixed-integer linear mathematical formulation kj

Marco Schulze and Julia Rieck with the collaboration of Jürgen Zimmermann

Providing the lower bounds kj

Marco Schulze and Julia Rieck

Providing the constructive multi-start heuristic kj

Marco Schulze and Julia Rieck with the collaboration of Cinna Seifi

Providing the advanced multi-start heuristic kj

Cinna Seifi

Modifying the Giffler-Thompson procedure kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Julia Rieck

Implementation of the mathematical model kj

Marco Schulze
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Implementation of the heuristic procedures kj

Cinna Seifi

Generating the test instances kj

Marco Schulze

Evaluating the results kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Julia Rieck

Manuscript kj

Marco Schulze and Julia Rieck with the collaboration of Jürgen Zimmermann

Revision after review kj

Marco Schulze and Julia Rieck with the collaboration of Jürgen Zimmermann

3.3. Paper III

This paper deals with a work shift scheduling problem taking a simultaneous assignment

of machines and workers into account. One of the major contributions of Paper III is to

introduce a mixed-integer linear formulation for a relaxation of the problem considering

the specific processing time and duration of each operation with respect to the breaks

of workers within a work shift. With the aid of the proposed mathematical program,

the processed part of each operation during the work shift must also be determined.

On the other hand, some restrictions regarding the setup times are neglected. Another

contribution is to propose a solution approach that provides high-quality solutions for

realistically-sized problem instances within an adequate time limit. In this regard, a two-

stage solution approach is proposed, where the relaxed mathematical program provides

a schedule in the first stage. The schedule is generally unfeasible and must be modified

in a second stage by integrating the necessary time intervals that are not considered

in the first stage. A preliminary performance analysis using realistic problem instances

shows that the solutions of our proposed two-stage approach outperform the solutions

currently generated by an existing constructive heuristic procedure proposed by Schulze

and Zimmermann (2017).

The paper is written by three authors:

Cinna Seifi, Marco Schulze, and Jürgen Zimmermann.

Paper III is published in the proceedings of the 39th international symposium application

of computers and operations research in the mineral industry (APCOM) in 2019. The

author of this dissertation thesis is the first author of Paper III. The contributions of

every author to each part of this paper is given below:
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Literature study kj

Cinna Seifi

Considering the workers’ breaks in the processing times kj

Cinna Seifi

Determining the processed part of each operation within a work shift kj

Cinna Seifi

Introducing the two-stage approach kj

Primarily Cinna Seifi with the collaboration of Jürgen Zimmermann

Implementation of the two-stage approach kj

Cinna Seifi

Generating the test instances kj

Primarily Cinna Seifi with the collaboration of Marco Schulze

Evaluating the results kj

Cinna Seifi

Manuscript kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Jürgen

Zimmermann

Revision after review kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Jürgen

Zimmermann

3.4. Paper IV

In this paper, a mixed-integer linear program for a shift scheduling problem is introduced.

The contribution of this paper is to introduce a mixed-integer linear mathematical

program for a real-life shift scheduling problem in a hybrid flow shop production en-

vironment that considers 1. staff scheduling and job selection, 2. sequence- and machine-

dependent setup and removal times, as well as sequence-dependent changeover times,

3. workers’ breaks for a possible delay for the processing of operations, and 4. mining-

specific restrictions in an underground mine. In this regard, a new mixed-integer linear

program using TSP-variables is proposed that is more compact in comparison to a

time-indexed or a position-based mathematical formulation. Moreover, the introduced

mathematical program expresses the very complex problem in a comprehensible and

understandable way. Our performance analysis shows that even though our mathematical
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formulation does not prove the optimality of the solutions found, the achieved solutions

are much better than the solutions provided by the existing approaches.

The paper is written by three authors:

Cinna Seifi, Marco Schulze, and Jürgen Zimmermann.

Paper IV is published in European Journal of Operational Research (EJOR) in 2021

(online available since October 12th, 2020). The author of this dissertation thesis is the

first author of Paper IV. The contributions of every author to each part of this paper is

given below:

Literature study kj

Cinna Seifi

Using TSP-variables to determine the setup, changeover, and removal times kj

Cinna Seifi

Introducing the mixed-integer linear mathematical formulation kj

Cinna Seifi

Implementation of the mathematical model kj

Cinna Seifi

Generating the test instances kj

Primarily Cinna Seifi with the collaboration of Marco Schulze

Evaluating the results kj

Cinna Seifi

Manuscript kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Jürgen

Zimmermann

Revision after review kj

Primarily Cinna Seifi with the collaboration of Marco Schulze and Jürgen

Zimmermann





4. Conclusion

In this cumulative thesis, we addressed optimization problems that are dealt with on

different planning levels in an underground mine. On every planning level, some specific

circumstances according to the planning horizon are taken into account, where an ap-

propriate objective function is considered.

On the tactical planning level, the optimization problem aims at a steady output of

potash regarding the potassium content. For this purpose, we minimize the deviations

of the output quality value from a prescribed quality target value. The deviations are

calculated for certain sub-intervals within a given planning horizon. In that problem, the

capacities of the available facilities must be respected. Furthermore, a minimum output

from several time-related and geographic-related points of view must be fulfilled. A

solution to that problem provides a set of blocks that should be removed within the next

month. For the problem occurring on the tactical planning level, we introduce a mixed-

integer linear program and a heuristic approach to solve a block selection and sequencing

problem. The performance analysis is conducted on randomly generated 100 problem

instances. The problem instances consist of five test sets of 20 problem instances each.

Moreover, we consider five different levels for the lower limit of the total output. The

greater the considered total output, the more challenging are the problem instances.

The results show that the proposed heuristic approach can find near-optimal solutions

for all problem instances, where the smaller and less challenging problem instances can

be optimally solved using the proposed mixed-integer linear program. For the large-

sized and most challenging problem instances, an initial solution found by the proposed

heuristic approach can be improved with the consecutive use of CPLEX-solver utilized

for the suggested mathematical program. In that way, we can find high-quality solutions

for practice-relevant problems in potash mines within a reasonable amount of time.

On the tactical-operational planning level, the blocks that must be extracted during the

next week (based on the result provided on the tactical planning level) are considered.

Removing a block is a job consisting of several operations that must be processed by

a specific machine and a skilled worker. According to the planning horizon on the

considered planning level, workers can be neglected in the production environment. The
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machine scheduling problem is classified as a hybrid flow shop scheduling problem, where

for safety reasons, reentry must be considered. That means some mining operations have

to be finished within a specific time interval; otherwise, a security precaution is made, and

the first mining operation is visited once more. The objective function is to minimize

makespan to answer whether the blocks can be removed according to the plan in the

next week. In that way, the plan data can be corrected according to the more detailed

prediction made. On the other hand, prioritizing the blocks and the corresponding

underground locations can be passed on to the operational planning level. For the

machine scheduling problem on the tactical-operational planning level, we introduce a

mixed-integer linear program and provide some lower bounds to facilitate the solution

process and evaluate the results achieved. Additionally, we propose a priority rule-

based construction heuristic that is embedded in a multi-start algorithm. The heuristic

procedure is then improved to an advanced multi-start algorithm considering conscious

delays of jobs. We generated six test sets considering the different numbers of jobs and

underground locations. The performance analysis shows that small problem instances

with 30 jobs and five underground locations can be optimally solved with CPLEX-

solver. On the contrary, for larger problem instances with 60 to 240 jobs and 10 to

30 underground locations, the best performance is achieved by the suggested advanced

multi-start heuristic considering a conscious delay of jobs.

On the operational planning level, the available machines and workers during one work

shift are assigned to the mining operations that must be performed at a working place

to remove a block. The underground locations that can be processed during one work

shift are primarily determined based on the prioritization provided on the upper planning

level. The aim is that the mine is evenly progressed at the end of the work shift. For this

purpose, a given amount of material for each mining operation must be achieved. From a

mathematical perspective, a lower deviation from the given target value accumulated over

the mining operations must be minimized. We have to decide which jobs (operations)

are performed in the current work shift, assigning an appropriate machine and worker

to each operation and appointing the job’s right processing time. To provide a realistic

schedule, machine- and sequence-dependent setup and removal times, as well as sequence-

dependent changeover times, must be considered. Moreover, workers’ breaks that typical-

ly cause a delay in the processing of the operations must be taken into account. For that

problem, we first propose a two-stage heuristic approach. In this regard, we formulate

a relaxation of the problem described and introduce an algorithm to generate feasible

solutions using the solution achieved by the relaxation. The results of a preliminary

performance analysis considering realistic problem instances show that the two-stage

approach can find for 70% of the problem instances a better solution than an existing
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heuristic procedure, where the solutions found for the other problem instances are, on

average, 20.3% far from the best solution found. In addition, since a linear mathematical

formulation has not existed for our shift scheduling problem, we formulate a mixed-integer

linear program using TSP-variables taking all the problem’s aspects into consideration.

In contrast to other mathematical formulations, e.g., position-based or time-indexed, the

proposed program is more compact and more promising from a computational point of

view. The proposed mixed-integer linear program outperforms the two-stage approach,

based on the computational study conducted on the realistically-sized problem instances.

In particular, according to the values of the objective function, our MILP can find a

better solution for 81% of the problem instances. We can show that there is no specific

correlation between the number of operations or the number of underground locations in

a problem instance and the performance of the considered approaches.

Further research

on the tactical planning level will consider the uncertainties in terms of the calculated

processing times for removing a block. Furthermore, metaheuristics should be pro-

posed to improve the results or observe some other aspects in an underground

potash mine. After extracting, the material does not have to be immediately pro-

cessed in above-ground processing plants. The storage of the material in a bunker

can change the quality value of the output. That point can be considered to

generate more realistic solutions.

on the tactical-operational planning level will consider machine unavailability accord-

ing to the machine breakdowns. In that case, a possible rescheduling must be taken

into account. Moreover, alternative objective functions related to the objective

functions on the other planning levels can be investigated. Finally, a metaheuristic

can be used to seek the neighborhood of the solutions achieved by the presented

procedure for better results.

on the operational planning level will develop reasonable lower bounds to evaluate the

results achieved by the proposed solution approaches. In addition to an even

progress, the total output is a crucial factor for a mining company. Suppose a

solution is optimal regarding the described objective function. There may exist

some opportunities to improve the total output after achieving the prescribed

target values within a work shift. In this regard, a heuristic solution approach can

be implemented to consider a possible improvement in the total output without

changing the current objective value.
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Abstract
Phosphates, and especially potash, play an essential role in the increase in crop 
yields. Potash is mined in Germany in underground mines using a conventional 
drill-and-blast technique. The most commercially valuable mineral contained in 
potash is the potassium chloride that is separated from the potash in aboveground 
processing plants. The processing plants perform economically best if the amount 
of potassium contained in the output is equal to a specific value, the so-called opti-
mal operating point. Therefore, quality-oriented extraction plays a decisive role in 
reducing processing costs. In this paper, we mathematically formulate a block selec-
tion and sequencing problem with a quality-oriented objective function that aims 
at an even extraction of potash regarding the potassium content. We, thereby, have 
to observe some precedence relations, maximum and minimum limits of the out-
put, and a quality tolerance range within a given planning horizon. We model the 
problem as a mixed-integer nonlinear program which is then linearized. We show 
that our problem is NP-hard in the strong sense with the result that a MILP-solver 
cannot find feasible solutions for the most challenging problem instances at hand. 
Accordingly, we develop a problem-specific constructive heuristic that finds feasible 
solutions for each of our test instances. A comprehensive experimental performance 
analysis shows that a sophisticated combination of the proposed heuristic with the 
mathematical program improves the feasible solutions achieved by the heuristic, on 
average, by 92.5%.

Keywords  Underground mining · Block selection and sequencing · Quality 
objective · Mixed-integer linear programming · Priority rule-based procedure
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1  Introduction

This paper considers one of the biggest German potash mines. In Germany, the pot-
ash ores are generally found in deep deposits. Hence, potash mines are typically 
underground mines with an area-wide expansion of the deposit, a so-called flat-bed-
ded deposit. According to Musingwini (2016), optimization in underground mine 
planning is not as well developed and widely applied as in open pit mine planning, 
although the logic of the planning is the same. O’Sullivan et al. (2015) state by com-
paring the common mathematical formulations for both open-pit and underground 
mining that scheduling in underground mines is more complex than the scheduling 
in the open-pit mines based on the complex structure of precedence constraints, the 
characteristics of the operations and activities, and the irregularity of the size and 
shape of the blocks. Musingwini indicates that the main reason for the complexity 
difference between open-pit and underground mine planning is that the direction of 
mining in open-pit mines is essentially down and outward to the pit limits. However, 
in underground mines, there are numerous permutations of the direction of mining 
depending on the mining method chosen.

The mostly applied extraction method for flat-bedded deposits of limited thick-
ness is a drill-and-blast technique using the room-and-pillar mining method. By the 
use of the room-and-pillar mining method, the material is extracted across a hori-
zontal plane, and pillars, arranged in regular patterns, are left for support purposes. 
Thus, a grid-like structure is formed, as demonstrated in Fig.  1 (Hamrin 2001; 
Schulze et al. 2016).

By employing a conventional drill-and-blast technique, the mining activities are 
conducted at the salt faces (cf. Fig. 1). At each salt face, the following discrete steps 
(mining operations) must be processed in chronological order (K+S 2013): 

1.	 scaling the mine roof and sidewalls,
2.	 removing the scaled material,
3.	 bolting the roof with anchors,
4.	 drilling large diameter boreholes,
5.	 removing drilling dust,

Fig. 1   Grid structure caused 
by the room-and-pillar mining 
method. Reprinted from Schulze 
et al. (2016)
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6.	 drilling blast holes,
7.	 filling blast holes with explosive substances,
8.	 blasting,
9.	 transporting broken material to a feeder breaker.

During mining operation  4 (see the enumerated list above), large drill jumbos 
drill three adjacent horizontal boreholes with a diameter of 0.28 m and a length 
of 7 m at each salt face. The large boreholes act in particular as a direction guide-
line for blasting. After the detonation (mining operation 8), chambers, so-called 
rooms, are created in the direction of the mining activity (cf. Fig. 1). The height 
and the width of the exploded area are then scaled based on a given plan. Thus, 
after each detonation, a three-dimensional block of potash is removed, and a new 
room of the same size arises. During mining operation 9, the raw material is 
delivered using loaders from each salt face to a feeder breaker, where the lumps 
are broken. After completing mining operations 1 to 9, the position of the cur-
rent salt face is shifted by the respective block’s length, exposing a new salt face, 
which can be operated on directly afterward.

The onward transportation of crude materials from feeder breakers takes place 
using a conveyor belt system to a bunker near the shaft. The excavated crushed 
potash is transported from the bunker through the shaft to the surface. The pot-
ash ores are rich in potassium chloride, sodium chloride, and different associ-
ated minerals. Potassium chloride is a valuable salt that is mainly used as a fer-
tilizer. Furthermore, it is an integral additive in the chemical, medical as well 
as human and animal food-processing industry (Chesworth 2008; USGS 2011; 
Schulze et  al. 2016). After transporting the crude salt to the surface, potassium 
chloride is separated from the extracted potash by flotation, recrystallization, 
or electrostatic separation in aboveground processing plants. For each technical 
device, there is an optimal operating point at which the device has the best per-
formance. This point can be determined based on various factors. The processing 
plants above ground can be most cost-effectively utilized if the amount of potas-
sium contained in the extracted material is equal to a specific value. The equiva-
lent content of potassium oxide is often reported to indicate the percentage of 
potassium by weight in the potassium chloride, where 100% potassium chloride is 
precisely equal to 63.17% potassium oxide (cf. Heinz and von der Osten 1982, p. 
147). As mentioned, at a salt face, a block of potash can be unearthed. For each 
block, the amount of potash is measured according to the dimensions of the exca-
vation. Moreover, the potassium contained in each block of potash in percent is 
determined based on geological investigations. The percentage of potassium con-
tained in the extracted potash from a block is defined as the quality value of the 
corresponding block. Accordingly, the quality value of a block multiplied by the 
amount of potash obtained from that block determines the amount of potassium 
contained. In general, the blocks are different regarding the amount and the qual-
ity value of the potash contained. Moreover, not all the available salt faces and 
the corresponding blocks can be mined within a given planning horizon. There-
fore, the quality of the amount of potash extracted within different time intervals 
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strongly depends on the selected blocks and the sequence of the extraction. Vast 
fluctuations in the quality value result in non-homogeneous output that leads to 
high costs for aboveground processing. Because quality fluctuations occur fre-
quently owing to the way in which the potash is extracted, quality-oriented min-
ing of blocks plays a decisive role in reducing the processing costs.

Newman et  al. (2010) classify the existing approaches and models in mining 
companies according to the planning horizon or the hierarchy level into long-term 
(strategic), medium-term (tactical), and medium- and short-term (tactical-operative) 
problems. In this paper, we consider a medium-term planning horizon. Within the 
planning horizon, we want to have a homogeneous output regarding the quality value 
of the extracted potash. More precisely, the quality value of the extracted material 
should deviate as little as possible from a given quality target value so that the min-
eral processing above ground is conducted economically. In this regard, we want to 
answer two questions: 1. which block should be excavated (i.e., block selection), and 
2.  if a block is extracted, the time at which it is extracted (i.e., block sequencing). 
Taken together, we solve a block selection and sequencing problem with a quality-
oriented objective function at a tactical planning level. For our problem, precedence 
relations, maximum and minimum limits of the output, and a quality tolerance range 
have to be taken into account.

The remainder of the paper is organized as follows: In Sect. 2, the characteriza-
tion of the problem at hand and a literature review are given. Sect. 3 introduces a 
mathematical formulation for our problem. Since some constraints are not linear, 
more decision variables and constraints are introduced to linearize the mathematical 
program. Subsequently, we show that our problem is NP-hard in the strong sense. 
Accordingly, in Sect. 4, we devise a constructive heuristic, which is embedded in 
a multi-start environment and provides good, feasible solutions for the problem 
through a sophisticated time-saving procedure. In Sect. 5, based on some generated 
realistic problem instances, we compare the introduced mathematical program and 
the proposed constructive heuristic. We also show if we solve our problem heuristi-
cally and use the feasible solution found as an initial solution for the mathematical 
program, we obtain much better results, especially for large and challenging prob-
lem instances. The paper concludes with a summary of the achieved results and an 
outlook on future research in Sect. 6.

2 � Problem specification and related literature

For a proper operation, from a geographical point of view, underground mines are 
usually divided into smaller spatial areas, so-called mining districts. Accordingly, 
an underground potash mine has, on average, up to 5  mining districts. The area 
of a mining district may be several square kilometers. Due to this spatial expan-
sion, several tipple areas are constructed for a mining district to divide the area into 
smaller parts avoiding long transportation routes. In each mining district, depend-
ing on its area, 4 to 6 tipple areas are involved. In a tipple area, a feeder breaker is 
installed, where the lumps of the extracted potash in that tipple area are delivered 
to and crushed. As mentioned, the mining operations are conducted at a salt face. 
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Subsequently, the detonation occurs in the mining direction, in which a block of pot-
ash is extracted. After mining operation 8 (blasting), a three-dimensional block of 
potash with the known dimensions is removed, and a room is created. A chain of 
consecutive blocks that are extracted one after another in a certain mining direction 
is defined as an underground location. Since a tipple area can have an extent of up 
to a few 100 meters, several underground locations (usually between 5 and 11) are 
assigned to the single tipple areas. That means the blocks of material extracted from 
each underground location are transported to the feeder breaker installed in the cor-
responding tipple area.

Figure  2 illustrates a tipple area with three underground locations (UL  1 to 
UL 3) that are assigned to a feeder breaker, i.e., the potash unearthed from UL 1 
to UL 3 is transported to the illustrated feeder breaker. In UL 1, three blocks are 
already removed in the mining direction. The associated rooms are designated by 
squares with solid lines. After mining a block, a new salt face (a potential block) in 
the mining direction becomes available. Geological sampling and mining investiga-
tions determine how many of the consecutive blocks in an underground location can 
be removed within a considered planning horizon. In Fig. 2, the dashed squares in 
UL 1 and UL 2 indicate the blocks that can be mined according to the plan for the 
considered time horizon. On the contrary, no further block can be removed in UL 3 
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Fig. 2   A tipple area with associated underground locations. Adapted from Clausen (2013), p. 23
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within the planning horizon. For better clarity, we summarize in Table 1 the afore-
mentioned mining terms.

The excavation of a block can only then be started if the previous blocks in 
the same underground location have been fully excavated. A block has, at most, 
one direct predecessor and, at most, one direct successor block in the correspond-
ing underground location. The time needed to remove a block is the sum of the 
processing times of the required mining operations 1 to 9. Each mining operation 
must be processed by one machine and by one skilled worker. According to the 
speed of the assigned machine and the skill level of the assigned worker, dif-
ferent processing times are needed to accomplish a mining operation. Machines 
and workers are scheduled at the beginning of each work shift at an operational 
planning level (see, e.g., Schulze and Zimmermann 2017; Seifi et al. 2019, and 
Seifi et  al. 2020). Since we deal with a block sequencing problem at a tactical 
planning level, the processing times required for the extraction of blocks must 
be estimated. In doing so, the dimensions or shapes of blocks are crucial factors. 
Moreover, the current status of a block at the beginning of the planning horizon 
affects the needed processing time. For example, a block for which mining opera-
tions 3–9 must be carried out has a shorter processing time than a block for which 
all mining operations 1–9 must still be processed.

In every tipple area, the extracted material is initially carried out via the load-
ers from underground locations to the assigned feeder breaker. The conveyance 
of the extracted potash from the particular tipple areas of each mining district 
takes place through a conveyor belt system to a central bunker system close to 
the shaft, from where the material ultimately reaches the surface. The capacities 
of the conveyor system, the bunker, and the processing plants above ground are 
limited. Hence, in each work shift, an upper limit of the output for each tipple 
area and each mining district must be observed. On the other hand, the primary 
task of mining companies is the extraction of raw minerals. Accordingly, a lower 

Table 1   Definitions of the mining terminology introduced

Term Definition

Block A cube of material with known dimensions removed after a detonation
Feeder breaker A crushing machine in a tipple area where the lumps extracted from the under-

ground locations assigned to this tipple area are delivered to
Mining district The largest unit of an underground mine that comprises some smaller units (see 

the definition of a tipple area)
Pillars Parts of underground mines that are not extracted to support the roof from col-

lapsing
Room A space of known dimensions created after a detonation
Salt face A place at which the mining operations are conducted, i.e., it is the front side of 

the block that is extracted
Tipple area The largest unit of a mining district that is characterized by the assigned under-

ground locations and a feeder breaker
Underground location A chain of consecutive blocks that can be removed in the mining direction
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limit for the total output over the planning horizon must be considered. Moreover, 
a minimum output in each work shift and every mining district must be satisfied.

In our problem, we consider a planning horizon (e.g., a month) that is a union 
of some smaller sub-intervals (e.g., weeks). Within those sub-intervals, the quality 
value of the entire extracted potash must be within a given quality tolerance range. 
The assumptions regarding the length of the planning horizon and the correspond-
ing sub-intervals can be customized according to the current situation of the mine at 
hand. Assume that a set of blocks is excavated within a specific time interval. The 
quality value of the entire extracted material within that time interval is the weighted 
average of the quality values of the removed blocks. Due to our objective, the quality 
value of the extracted material should deviate as little as possible from a given qual-
ity target value. The quality target value in percent typically represents the optimal 
operating point of the processing plant above ground. We speak of a negative devia-
tion if the weighted average of the quality of the extracted material is less than the 
quality target value. Analogously, there is a positive deviation if the weighted aver-
age of the quality of the extracted material is greater than the quality target value. 
For formulating the objective function, we first determine the absolute deviation’s 
value of the weighted average of the output quality from the predetermined qual-
ity target value in each considered sub-interval in the planning horizon. The value 
of the weighted average of the output quality and, thus, the values of negative and 
positive deviations are determined based on the amount of material extracted within 
the considered time interval. Since the amount of material removed is not known a 
priori, determining the deviations from the given target value requires some nonlin-
ear constraints in the mathematical formulation that must be linearized. The aim is 
then to minimize the average of the calculated deviations over the number of sub-
intervals considered in the planning horizon.

Altogether, we minimize a quality-oriented objective function observing the fol-
lowing groups of constraints:

Precedence relations between the blocks in an underground location;
Minimum limit of the output over the entire planning horizon, in each work shift, 
and for every mining district;
Maximum limit of the output for each tipple area and every mining district within 
every single work shift; and
Quality tolerance range over each certain sub-interval in the planning horizon.

Newman et al. (2010), Kozan and Liu (2011), as well as Blom et al. (2019) pub-
lished survey articles on the application of operations research methods in the field 
of mining. Lately, Leite et al. (2020) gave a review on state-of-the-art applications 
of operational research techniques to mining problems taking the mentioned surveys 
into account. Leite et al. (2020) consider (1) layout and design problems, (2) produc-
tion and scheduling problems, and (3) operational equipment allocation problems at 
strategic, tactical, and operational planning levels, respectively; consequently, they 
review the published articles in both open-pit and underground mines.

For more convenience, in Table 2, we list the most significant works published 
in the previous decade that introduce a mathematical formulation for a block 
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scheduling problem in the field of mining. Under columns “Constraints,” we 
observe the three types of constraints we deal with in the problem at hand (Qual-
ity, Quantity, and Precedence). The “OF” column specifies whether the objective 
function is quantity- (“Q”) or monetary-related (“M”).

Regarding our quality-related objective function, we first have to calculate the 
weighted average of the output quality. Assume that a set of blocks B is avail-
able to be extracted. Let Ab and Qb be the amount of material (in tonnes) and the 

Table 2   Literature on block selection and sequencing problems

∙ , constraints for the group are considered; −, constraints for the group are not considered

Constraints OF

Quantity Quality Precedence

Bley et al. (2010) ∙ − ∙ M
Nehring et al. (2010) ∙ ∙ ∙ M
Martinez and Newman (2011) ∙ − ∙ Q
Askari-Nasab et al. (2011) ∙ ∙ ∙ M
Chicoisne et al. (2012) ∙ − ∙ M
Nehring et al. (2012) ∙ ∙ ∙ M
Ramazan and Dimitrakopoulos (2013) ∙ ∙ ∙ M
Clausen (2013) ∙ ∙ ∙ Q
Espinoza et al. (2013) ∙ ∙ ∙ M
Smith and Wicks (2014) ∙ ∙ ∙ Q
Lambert and Newman (2014) ∙ − ∙ M
O’Sullivan and Newman (2015) ∙ ∙ ∙ Q
Montiel and Dimitrakopoulos (2015) ∙ ∙ ∙ M
Lamghari and Dimitrakopoulos (2016) ∙ − ∙ M
Mousavi et al. (2016) ∙ ∙ ∙ M
Jélvez et al. (2016) ∙ − ∙ M
Blom et al. (2016) ∙ ∙ ∙ Other
Liu and Kozan (2016) ∙ − ∙ M
Vossen et al. (2016) ∙ − ∙ M
King et al. (2017) ∙ − ∙ M
Samavati et al. (2017) ∙ − ∙ M
Azzamouri et al. (2018) ∙ ∙ ∙ Q
Reus et al. (2018) ∙ − ∙ M
Samavati et al. (2018) ∙ − ∙ M
Mousavi and Sellers (2019) ∙ ∙ ∙ M
Mai et al. (2019) ∙ ∙ ∙ M
Elsayed et al. (2020) ∙ − ∙ M
Jélvez et al.(2020) ∙ ∙ ∙ M
Campeau and Gamache (2020) − − ∙ M
Rivera Letelier et al. (2020) ∙ ∙ ∙ M
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quality value (in percent) of block b ∈ B , respectively. Moreover, let xb be the 
binary decision variable that is 1 if block b is excavated. Then, the quality value 
of the entire extracted material is the weighted average of the quality values of 
the removed blocks, denoted by q . The value of q (in % ) is calculated as follows:

In the literature, the average proportion of the most valuable mineral contained 
in the ore is indicated as “ore grade.” Martinez and Newman (2011) formulate a 
mixed-integer linear program to minimize the deviations from a given target demand 
for three different ore grades in LKAB’s Kiruna iron ore mine. However, the tar-
get demand for a particular ore grade is given in tonnes. Accordingly, expressed in 
our notation, they only consider the linear term 

∑
b∈B Qb ⋅ Ab ⋅ xb (the amount of 

extracted iron in tonnes) to measure the deviations. Thus, we categorized the pro-
posed objective function as quantity-related. Azzamouri et al. (2018) minimize the 
deviations from the demand for a certain grade of the extracted material, where the 
objective function and the related constraints are formulated quantity-oriented, too. 
Analogously, Clausen (2013) determines the amount of potassium oxide contained 
in the extracted potash in tonnes to minimize the deviations from a given target 
value in an underground potash mine.

In the literature, the quality-related constraints are mostly known as “grade con-
trol constraints” or “grade blending constraints.” Those constraints ensure that q is 
within a permitted tolerance range [Q−,Q+] . Thus, the following inequalities must 
apply:

If we multiply both sides of the above inequalities with the denominator of q , we 
obtain linear constraints (see, e.g., Rivera Letelier et al. 2020). Except for Montiel 
and Dimitrakopoulos (2015) and Blom et  al. (2016), all the quality-related con-
straints observed in the papers from Table  2 are linear grade control constraints. 
Montiel and Dimitrakopoulos (2015) maximize discounted profits in an open-pit 
copper mine. They penalize the deviations regarding mining, processing, transporta-
tion, and blending targets and consider a penalty cost in the objective function. In 
the problem they consider, multiple material types are sent to the available processes 
or to stockpiles where they are blended to meet the quality requirements. The grade 
of the material handled in a given period corresponds to the grade of the stockpiles. 
Montiel and Dimitrakopoulos emphasize in their work that the corresponding blend-
ing constraint is nonlinear; consequently, the authors propose a risk-based heuristic 
approach to tackle the problem without suggesting any linear mathematical formu-
lation. Blom et al. (2016) consider a multiple mine, multiple time-period, open-pit 
production scheduling problem. The authors define the productivity of a mine in 
terms of the desirable utilization of dig and trucking resources, i.e., dig and truck-
ing resources should be fully utilized. In each period, ore produced at each mine 

q =

∑
b∈B Qb ⋅ Ab ⋅ xb∑

b∈B Ab ⋅ xb
.

Q−
≤

∑
b∈B Qb ⋅ Ab ⋅ xb∑

b∈B Ab ⋅ xb
≤ Q+.
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is transported by rail to a set of ports and blended into products for shipping. The 
objective function minimizes the deviation between the composition of port prod-
ucts and desired bounds and maximizes the productivity achieved at each mine. The 
observed objective function is denoted by “Other” in Table 2. The authors propose 
a nonlinear mathematical program to ensure blending constraints at each port while 
generating schedules for each mine. To tackle the problem, Blom et  al. suggest a 
decomposition-based algorithm that can find high-quality solutions.

Our literature review suggests that no one, to the best of our knowledge, has intro-
duced a linearization of the nonlinear quality-related constraints taking a quality-
oriented objective function into account. It is straightforward to show that the sched-
uling problems observing upper and lower limits for the operational resources are 
NP-hard. The computational time required for solving NP-hard problems may be 
affected by the numerical parameters of the input data. A NP-hard problem in the 
strong sense is still NP-hard even when all of its numerical parameters are bounded 
by a polynomial in the length of the input. The contributions of this paper are:

•	 to introduce a linear mathematical program for the problem described;
•	 to show that the problem at hand is NP-hard in the strong sense; and
•	 to introduce a solution approach that provides high-quality solutions for realisti-

cally sized problem instances.

In the next section, we first introduce the original mathematical program in its non-
linear structure and then linearize the corresponding nonlinear constraints. Lastly, 
we show that our problem is NP-hard in the strong sense.

3 � Mathematical model

In this section, we introduce a linear mathematical program for the block selection 
and sequencing problem described in Sect.  2. From an operational point of view, 
we consider �max sub-intervals in the given planning horizon. Each sub-interval � 
consists of several periods, where each period represents one work shift in the corre-
sponding sub-interval. Each work shift is represented by time interval (t − 1, t] . Let 
Tmax denote the number of work shifts in the planning horizon under consideration. 
Thus, a planning horizon of Tmax work shifts is a union of time intervals (t − 1, t] for 
t = 1, 2,… , Tmax and the point in time 0. Our mathematical formulation is based on 
the discrete completion times for the extraction of the blocks that are selected and 
mined in the considered planning horizon. Accordingly, we only focus on the dis-
crete points in time that represent the end times of work shifts in the planning hori-
zon. Note that a completion time at point 0 is not relevant since the point in time 0 is 
not the end time of any work shift in the planning horizon under consideration. Let 
T  be the set of positive, discrete points in time in the entire planning horizon. More-
over, let T1, T2,… , T�max

 be the disjoint subsets of T  , where 
⋃

�∈{1,…,�max}
T� = T  . 

The elements of T� are the positive, discrete points in time that represent the end 
times of the work shifts contained in sub-interval � . In Fig. 3, a planning horizon 
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with Tmax = 12 work shifts and �max = 3 sub-intervals is depicted. The whole plan-
ning horizon is a union of disjoint time intervals [0, 4], (4, 6], and (6, 12]. Since the 
point in time 0 is not the end time of any work shift in T  , we have T = {1, 2,… , 12} , 
where T1 = {1, 2, 3, 4} , T2 = {5, 6} , and T3 = {7, 8,… , 12}.

Table  3 demonstrates the sets, parameters, and decision variables used in the 
mathematical program. Note that the auxiliary decision variable q� is used for better 
clarity in the mathematical formulation and is calculated by definition as follows:

The mathematical program for our problem is formulated as follows:

subject to

q� =

∑
t∈T�

∑
b∈B Qb ⋅ Ab ⋅ xbt

∑
t∈T�

∑
b∈B Ab ⋅ xbt

∀� ∈ {1,… , �max}.

(1)minimize
1

�max

∑

�∈{1,…,�max}

(�+
�
+ �−

�
)

(2)
∑

t∈T

xbt ≤ 1 ∀b ∈ B

(3)
∑

t∈T

t ⋅ xbt = cb ∀b ∈ B

(4)Zb ≤ cb +M ⋅ (1 −
∑

t∈T

xbt) ∀b ∈ B

(5)
∑

t∈T

xlt ≤
∑

t∈T

xbt ∀(b, l) ∈ V

(6)cb ≤ cl − Zl ⋅

(
∑

t∈T

xlt

)
+M ⋅ (1 −

∑

t∈T

xlt) ∀(b, l) ∈ V

1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

=1 =2 =3

Fig. 3   The planning horizon and the associated sub-intervals
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Table 3   Sets, parameters, and decision variables used in the mathematical program

Sets

B Set of blocks in an underground mine
Bk Set of blocks assigned to tipple area k ∈ Kr

Br Set of blocks assigned to mining district r ∈ R

Kr Set of tipple areas in mining district r ∈ R

R Set of mining districts in an underground mine
T Set of positive, discrete points in time in the given planning horizon
T� Set of positive, discrete points in time contained in sub-interval � ( T𝜏 ⊂ T )
V Set of precedence relations between blocks with each element representing an ordered pair of 

blocks; if (b, l) ∈ V ∶ b, l ∈ B , b must be completed before l can be started

Parameters

Ab Amount of potash contained in block b in tonnes
M A constant number with a sufficiently large value (big-M)
P− Minimum output that must be achieved over the planning horizon
P−
r

Minimum output that must be achieved for mining district r over the planning horizon
P−
t

Minimum output that must be achieved within time interval (t − 1, t]

P+
kt

Upper limit of the output for tipple area k within time interval (t − 1, t]

P+
rt

Upper limit of the output for mining district r within time interval (t − 1, t]

Qb Percentage of potassium contained in the extracted material from block b (quality value of block b)
Q− Lower limit of the quality tolerance range in %
Q+ Upper limit of the quality tolerance range in %
Q� Quality target value within sub-interval � in %
Tmax Number of work shifts considered in the planning horizon
�max Number of sub-intervals considered in the planning horizon
Zb Processing time required to extract block b measured in work shifts

Decision variables

cb Positive continuous decision variable; completion time of block b
�−
�

Positive continuous decision variable; negative deviations of the output quality from the quality 
target value over sub-interval �

�+
�

Positive continuous decision variable; positive deviations of the output quality from the quality 
target value over sub-interval �

xbt Binary decision variable; 1, if the excavation of block b is completed in time interval (t − 1, t] , and 
the material removed is available at point in time t; 0, otherwise

Auxiliary decision variables

�−
bt

Positive continuous decision variable that substitutes the product of decision variables xbt and �−
�

�+
bt

Positive continuous decision variable that substitutes the product of decision variables xbt and �+
�

q� Weighted average of the quality value of the extracted blocks during sub-interval �
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We minimize the average of the positive and negative deviations of the quality of 
the output from a given quality target value over the predetermined sub-intervals 
(cf. objective function  (1)). A block can be excavated at most once within the 
entire planning horizon (constraint set  (2)). By definition of decision variable xbt , 
if xbt = 1 , the point in time t represents the completion time of block b. Constraint 
set (3) determines the completion times of blocks. Note that if a block is not exca-
vated, the completion time is 0. Constraint set  (4) guarantees that the completion 
time of a block must be greater than or equal to its processing time, i.e., the mining 
of a block must start during the considered planning horizon. Constraint set (4) is 
active only if a block is excavated. In the corresponding big-M formulation, we can 
choose M equal to Tmax . Constraint sets  (5) and (6) observe a precedence relation 

(7)
∑

t∈T

∑

b∈B

Ab ⋅ xbt ≥ P−

(8)
∑

b∈B

Ab ⋅ xbt ≥ P−
t

∀t ∈ T

(9)
∑

t∈T

∑

b∈Br

Ab ⋅ xbt ≥ P−
r

∀r ∈ R

(10)
∑

b∈Br

Ab ⋅ xbt ≤ P+
rt

∀r ∈ R,∀t ∈ T

(11)
∑

b∈Bk

Ab ⋅ xbt ≤ P+
kt

∀k ∈ Kr ∶ r ∈ R,∀t ∈ T

(12)
∑

t∈T�

∑

b∈B

(Qb − Q−) ⋅ Ab ⋅ xbt ≥ 0 ∀� ∈ {1,… , �max}

(13)
∑

t∈T�

∑

b∈B

(Q+ − Qb) ⋅ Ab ⋅ xbt ≥ 0 ∀� ∈ {1,… , �max}

(14)q� − Q� ≤ �+
�

∀� ∈ {1,… , �max}

(15)Q� − q� ≤ �−
�

∀� ∈ {1,… , �max}

(16)xbt ∈ {0, 1} ∀b ∈ B, ∀t ∈ T

(17)cb ≥ 0 ∀b ∈ B

(18)�+
�
, �−

�
≥ 0 ∀� ∈ {1,… , �max}
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between blocks b and l. If the ordered pair (b, l) is in V , block l cannot be mined if 
block b is not excavated (constraint set (5)). Moreover, constraint set (6) ensures that 
the completion time of block l must be at least by Zl time units greater than the com-
pletion time of block b if block l is ever processed. Constraint sets (7) to (11) ensure 
the minimum and maximum limits of the output. Constraint sets (12) and (13) guar-
antee that the weighted average of the quality value of the excavated blocks during 
every sub-interval ( q� ) is within a permitted tolerance range. Those constraints are 
like “grade control constraints” or “grade blending constraints” explained in Sect. 2.

Constraint sets (14) and (15) determine the lower bounds for �+
�
 and �−

�
 , respectively. 

Since objective function (1) must be minimized, �+
�
 and �−

�
 take the value of the positive 

and negative deviations of the quality of the output from Q� . However, the constraint 
sets are inherently nonlinear. We write the mathematical formula of q� in the inequali-
ties and reduce the left-hand side of each inequality to a common denominator. If we 
multiply both sides of the inequalities by the common denominator, we obtain the fol-
lowing nonlinear inequalities:

In order to formulate a mixed-integer linear program, we introduce positive continu-
ous decision variables �+

bt
 and �−

bt
 to substitute the products xbt ⋅ �+�  and xbt ⋅ �−�  on the 

right-hand sides of the above inequalities, respectively. We, therefore, have the fol-
lowing constraint sets:

By substituting a product of a binary decision variable and a continuous decision 
variable, the upper bound for the substitution variable (here �+

bt
 and �−

bt
 ) must be 

determined. The upper bound is related to the maximum value that the continuous 
decision variable can take if the binary decision variable is 1. Furthermore, the sub-
stitution variable takes the value 0 if the binary decision variable is 0. Constraint 
sets (14-2) and (15-2) guarantee that decision variables �+

bt
 and �−

bt
 take the value of 

zero for all t ∈ T� if block b is not excavated within sub-interval � . Note that each 
block can be mined only once within the entire planning horizon. Thus, it is suf-
ficient if we consider the summation of decision variables �+

bt
 ( �−

bt
 ) and xbt over the 

points in time t ∈ T� . Otherwise, if a block is removed at any point in time t ∈ T� , 
the left-hand side of constraint set (14-2) (constraint set (15-2)) can at most have the 
value of Q+ − Q� ( Q� − Q−):

∑

t∈T�

∑

b∈B

(Qb − Q�) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ xbt ⋅ �
+
�

∀� ∈ {1,… , �max}

∑

t∈T�

∑

b∈B

(Q� − Qb) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ xbt ⋅ �
−
�

∀� ∈ {1,… , �max}

(14-1)
∑

t∈T�

∑

b∈B

(Qb − Q�) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ �
+
bt

∀� ∈ {1,… , �max}

(15-1)
∑

t∈T�

∑

b∈B

(Q� − Qb) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ �
−
bt

∀� ∈ {1,… , �max}
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Note that the maximum values of the positive deviation ( �+
�
 ) and the negative devia-

tion ( �−
�
 ) are bounded by Q+ − Q� and Q� − Q− , respectively. Subsequently, the fol-

lowing constraint sets determine the values of �+
�
 and �−

�
 that are used in (1):

If we replace constraint sets (14), as well as (15) by constraint sets (14-1), (14-2), 
and (14-3) as well as constraint sets (15-1), (15-2), and (15-3), respectively, we have 
a mixed-integer linear program, where constraint set (16) indicates that decision var-
iables xbt are binary, and in addition to non-negativity constraint sets (17) and (18), 
the following non-negativity constraint set must be considered:

We denote the proposed mixed-integer linear program for our block selection and 
sequencing problem with BSSP.

In what follows, we show that our block selection and sequencing problem is NP
-hard in the strong sense. We introduce a restricted case of BSSP (RBSSP) to which a 
pseudo-polynomial transformation from the well-known 3-PARTITION problem can 
be easily constructed.

We consider an underground mine that has one mining district, over a planning 
horizon of Tmax = T work shifts with �max = 1 . Let the number of blocks be n = 3T . 
We assume that there is only one block in each underground location ( V = � ). Let the 
processing time of all blocks be equal to 1 work shift. Hence, constraint sets  (3) to 
(6) do not have to be observed. Moreover, we assume that the maximum output for 
each tipple area is a very large number with the result that constraint set (11) is always 
satisfied. Since there is only one mining district in the restricted problem, constraint 
sets (7) and (9) are the same. By assuming the minimum output for the entire planning 
horizon equal to 

∑
t∈T P

−
t
 , constraint sets  (7) and (9) are redundant. Furthermore, let 

the quality value of all blocks be equal to Q with Q− < Q < Q+ . Thus, the deviation 
from the quality target value is a constant number regardless of which blocks have been 
excavated. Consequently, all of the quality-related constraint sets are met. We assume 
P+
1t
= P−

t
= (

∑3T

b=1
Ab)∕T . Hence, we can denote P+

1t
= P−

t
 with P. Consequently, the 

restricted problem, RBSSP, can be formulated as follows:

(14-2)
∑

t∈T�

�+
bt
≤ (Q+ − Q�) ⋅

∑

t∈T�

xbt ∀b ∈ B,∀� ∈ {1,… , �max}

(15-2)
∑

t∈T�

�−
bt
≤ (Q� − Q−) ⋅

∑

t∈T�

xbt ∀b ∈ B,∀� ∈ {1,… , �max}

(14-3)
∑

t∈T�

�+
bt
≤ �+

�
∀b ∈ B,∀� ∈ {1,… , �max}

(15-3)
∑

t∈T�

�−
bt
≤ �−

�
∀b ∈ B,∀� ∈ {1,… , �max}

(19)�+
bt
, �−

bt
≥ 0 ∀b ∈ B,∀t ∈ T
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s. t.

3T∑

b=1

xbt ≤ 1 ∀t ∈ {1,… , T}     (cf. constraint set (2))

3T∑

b=1

(Ab ⋅ xbt) ≥ P ∀t ∈ {1,… , T}     (cf. constraint set (8))

3T∑

b=1

(Ab ⋅ xbt) ≤ P ∀t ∈ {1,… , T}    (cf. constraint set (10))

RBSSP is not an optimization, but a so-called feasibility problem, i.e., a specific 
decision problem. In this restricted problem, we intend to determine T subsets B1 , 
B2 , … , BT of blocks that are removed at points in time 1, 2,… , T  , respectively, sub-
ject to the constraint sets of the problem.

Garey and Johnson (1979) showed that 3-PARTITION is NP-complete in the 
strong sense.

•	 3-PARTITION
	   Input: a finite set U = {u1, u2,… , u3m} , a bound X ∈ ℕ , and a size s(ub) ∈ ℕ for 

each b = 1,… , 3m , such that X
4
< s(ub) <

X

2
 for each b and 

∑3m

b=1
s(ub) = mX.

	   Question: are there m disjoint subsets U1,U2,… ,Um of U such that: 

If we consider each element ub of the given set U in 3-PARTITION as a block b ∈ B 
in RBSSP, a transformation from an arbitrary instance of 3-PARTITION to an 
instance of RBSSP is given by T = m , Ab = s(ub) , and P = X . This transformation 
can be performed in time polynomially in the input length. The length of the con-
structed RBSSP-instance is polynomially related to the length of the given 3-PAR-
TITION instance. Furthermore, the largest number in the constructed instance is 

Min. Constant number

xbt ∈ {0, 1} ∀b ∈ {1,… , 3T}, ∀t ∈ {1,… , T}

∑

ub∈Ub

s(ub) = X ∀b ∈ {1,… ,m}?



1 3

Solution procedures for block selection and sequencing in…

equal to the largest number of the given 3-PARTITION instance; consequently, the 
conditions of a pseudo-polynomial transformation are met. In a solution of RBSSP, 
we have T subsets of B . Those subsets play the same role as the sets U1,… ,Um in 
the desired partition of U in the 3-PARTITION. As a result, a solution for RBSSP 
exists if and only if the desired partition exists for the given 3-PARTITION instance. 
Thus, RBSSP is NP-complete in the strong sense, and optimization problem BSSP 
is NP-hard in the strong sense.

For NP-hard problems in the strong sense, an optimal solution, especially for 
large and challenging problem instances, cannot generally be found using a MILP-
solver within a reasonable amount of time. In the next section, we propose a heu-
ristic approach that solely seeks a subset of the feasible region using some rules to 
provide good, feasible solutions.

4 � Heuristic solution procedure

In this section, we introduce a constructive heuristic that is embedded in a so-called 
multi-start algorithm. Constructive heuristics gradually generate a complete solu-
tion based on a partial solution. In our heuristic algorithm, at each point in time t, 
eligible blocks are determined according to two different factors. On the one hand, 
a block is eligible if it can be completed at the considered point in time according to 
its processing time and the completion status of its predecessors. On the other hand, 
a block is not eligible if its extraction results in an overrun of the upper limit of the 
output in the associated tipple area and the related mining district. Based on a spe-
cific priority rule, the elements of the eligible set are prioritized. Then, a roulette-
wheel selection procedure is applied to randomly select a block that is scheduled 
next in the planning horizon (its completion time is set to t). After that, the status 
of the mine and, accordingly, the eligible set are updated. The selection procedure 
continues until the eligible set at the considered point in time is empty. By the use of 
the roulette-wheel selection procedure, the next block to be scheduled is randomly 
selected from the eligible set. That means, if the method is carried out several times 
in a multi-start environment, it is very likely that a large number of feasible solu-
tions are generated. Table 4 outlines the sets, parameters, and variables used in our 
heuristic algorithm.
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Algorithm 1 describes the developed multi-start heuristic in detail. 

In our minimization problem, all of the decision variables are non-negative. Thus, 
the objective function cannot take a value smaller than 0. With the prescribed value 
of 𝜉 > 0 , we denote a tiny quality tolerance value of the production process. Accord-
ingly, a feasible solution is called an optimal solution if the associated value of the 
objective function lies in the narrow interval [0, �] . For a given problem instance, 
feasible solutions are generated using priority rule Ψ until the objective value of a 
feasible solution is within the predefined interval or a given time limit is exceeded 
(while-loop at line 2). Within an initialization step (line 3 in Alg. 1), we store for 
each block b ∈ B the associated mining district Rb and tipple area Kb . Moreover, we 
store the blocks with no predecessor block in set E . For all b ∈ E , the earliest start 
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time is 0 ( esb = 0 ). Furthermore, the residual capacities �res
rt

 and �res
kt

 are set to the 
corresponding maximum limits of the output P+

rt
 and P+

kt
 , respectively.

After the initialization step, we pass the entire planning horizon in a for-loop 
(line 4). For the current point in time t, we determine the related sub-interval � 
and put those blocks from E into set ET  that can be completed until t (if-condition 
at line 7). At the beginning of the planning horizon ( t = 1 ), the earliest start times 
of all blocks b ∈ E are 0. Accordingly, only the blocks b ∈ E with processing 
times Zb = 1 can be added to ET  . If no block can be inserted into ET  , the output at 
the point in time t is 0. Hence, constraint set (8) is violated, and no feasible solu-
tion can be found. Thus, the algorithm terminates (line  10). Otherwise, blocks 
from ET  are reconsidered according to the residual capacities of the correspond-
ing mining districts and tipple areas. For block b ∈ E

T  , if Ab does not exceed the 
associated residual capacities (if-condition at line 13), b is inserted into ECT  . In a 
realistic problem instance, we always have:

max
b∈B

{Ab} ≤P+
Rb,t

∀t ∈ T, and

max
b∈B

{Ab} ≤P+
Kb,t

∀t ∈ T.

Table 4   Sets, parameters, and variables used in the heuristic algorithm

Sets

E Set of blocks that have no predecessor, or their predecessor blocks are already excavated

E
CT Set of blocks that can be excavated regarding the considered point in time and the considered 

output capacities ( ECT ⊂ E
T )

E
T Set of blocks that can be excavated regarding the considered point in time ( ET ⊂ E)

Parameters

� A tiny number that is set to 0.0001
Kb Tipple area that contains block b ∈ B

Ψ Prescribed priority rule; Ψ ∈ {1, 2, 3, 4}

Rb Mining district that contains block b ∈ B

� A tiny quality tolerance value of the production process

Variables

b∗ Selected block from ECT  (using a roulette-wheel-selection procedure)
esb Earliest start time of block b according to the completion time of its predecessor; if block b 

does not have any predecessor, esb is 0
�b Probability value of block b
�b Priority value of block b according to prescribed priority rule Ψ
�res
kt

Residual capacity of the output for tipple area k in time interval (t − 1, t]

�res
rt

Residual capacity of the output for mining district r in time interval (t − 1, t]

q
b

�
New value of q� if block b is mined next in sub-interval � in %
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Therefore, at least one block from ET  (if there is any) can always be inserted into 
E
CT  at each point in time. The block that must be scheduled next is selected from 

E
CT  according to the given priority rule Ψ (line 16). For our heuristic, we consider 

four different priority rules. Based on priority rule Ψ ∈ {1, 2, 3, 4} , we determine for 
each block b in ECT  a priority value �b . In the following, we explain the way how �b 
is calculated according to a specific priority rule.

priority rule 1: �b =
1

|Qb − Q� | + �

For this rule, we put emphasis on the quality value of a block. A block with 
a smaller deviation from the quality target value takes a larger priority value. 
This priority rule gives a block that may contribute to a better objective func-
tion value a greater probability to be extracted next. Since some blocks may 
have no deviation from the quality target value, we add a tiny number 𝜖 > 0 to 
the denominator of the fraction. In our work, we set � = 0.0001.
priority rule 2: �b =

Ab

|Qb − Q� | + �

For priority rule 2, we additionally consider the amount of material extracted 
from a block. If quality values of blocks are the same, a block with a larger 
amount of material is given a larger priority value, or—in other words—for the 
same amount of material, a block that has a smaller deviation from the qual-
ity target receives a larger priority value (like priority rule 1). Using priority 
rule 2, the lower limits of output are also considered to avoid generating infea-
sible solutions.
priority rule 3: �b =

1

|qb
�
− Q� | + �

Here, we calculate the value of qb
�
 that represents the change of q� if block b 

is excavated next. A block takes a larger priority value if its excavation results 
in a smaller deviation from the quality target value. We can, therefore, give 
a more considerable priority value to the blocks that allow the best possible 
improvement in the objective function value in each step.

priority rule 4: �b =
{

�, if P−
Rb

is achieved;

Ab, otherwise.

Priority rule 4 helps to avoid infeasible solutions in terms of constraint set  (9). 
For block b, if the lower limit of the output for the corresponding mining district 
Rb is achieved, we set the priority value of block b equal to a tiny number 𝜖 > 0 . 
Otherwise, block b receives a priority value equal to Ab . Using priority rule 4, we 
focus only on finding feasible solutions regarding the lower limits of output.

According to the priority values, all blocks b ∈ E
CT  receive a probability value �b 

as follows:

�b =
�b∑

l∈ECT �l
.
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We apply a roulette-wheel selection procedure, where each block occupies an area 
on the roulette-wheel proportional to its �b-value (Michalewicz and Fogel 2004, 
Sect. 6.1). That is equivalent to partitioning the interval [0, 1] into |ECT| parts, where 
the b-th sub-interval (part) has the width �b representing block b. Subsequently, a 
random number between 0 and 1 is generated. The sub-interval that contains the 
random number determines block b∗ . At lines  17 and  18, the associated residual 
capacities and the value of q� are updated. If b∗ has a successor l (line 19), we insert 
l in E . The earliest start time of l is set equal to the completion time of b∗ , i.e., esl = t 
(line  21). Block b∗ is then removed from ECT  . Moreover, all blocks b ∈ E

CT  with 
Rb = Rb∗ and Kb = Kb∗ , for which Ab > 𝜌res

Rb∗ ,t
 or Ab > 𝜌res

Kb∗ ,t
 , have to be removed from 

E
CT  (lines 22 and 23). The repeat-until-loop in Alg. 1 will be executed until ECT  is 

empty.
After violating the condition of the repeat-until-loop, t is incremented by one. 

The entire for-loop at line  4 will be executed for all t ∈ T  . We then check the 
feasibility of the solution found according to constraint sets (7), (8), (9), (12), and 
(13). Feasible solutions are stored, and infeasible solutions are discarded.

We observe the loops in Alg. 1 to determine the time complexity of the pre-
sented heuristic approach in every run. The for-loop at line  4 is executed Tmax 
times. Moreover, the for-loop at line 6 and the repeat-until-loop are conducted, at 
most, |B| times. Line 11, the for-loop at line 12, as well as line 16, if-condition at 
line 19, and lines 22 and 23 within the repeat-until-loop have, at most, |B| steps. 
Accordingly, the algorithm has a time complexity of O(Tmax ⋅ |B|2) that implies 
a pseudo-polynomial algorithm. Note that in practical applications, Tmax is given 
as a constant number. Therefore, the time complexity of the algorithm is O(|B|2) , 
and the heuristic proposed is polynomial.

In the next section, we compare the results achieved by a MILP-solver with 
the solutions provided by the proposed heuristic approach. Moreover, we intro-
duce a sophisticated combination of the heuristic and the mathematical program 
to improve the results obtained by the heuristic procedure for the most challeng-
ing problem instances, for which our MILP-solver cannot find a feasible solution 
within a reasonable amount of time.

5 � Computational study

In this section, we perform an experimental performance analysis for the proposed 
mixed-integer linear program and the constructive heuristic. The computational 
study is executed on randomly generated problem instances that are based on real-
world data derived from Clausen (2013). Table 5 shows some parameters that are 
typical for a potash mine and used to generate realistic problem instances.

To normalize the problem instances, we set the number of blocks in each mining 
district r equal to 325. Thus, the problem instances with more underground locations 
have fewer blocks in each underground location and vice versa.

The allowed maximum output in each mining district r for time interval (t − 1, t] 
depends on the number of loaders available in the corresponding mining district 
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during the associated time interval. A loader can typically transport 750 tonnes of 
crude material within a work shift. In each work shift, 1 to 4 loader(s) are available 
so that P+

rt
∈ {750, 1500, 2250, 3000} . The minimum output in each mining district 

depends on the capacity of loaders, too. The parameter P−
r
 can be determined as a 

certain percentage � of the capacity of all the available loaders in mining district r 
within the entire time horizon:

The parameter � varies between 70% and 90% , with a step size of 5% . Furthermore, 
the lower limit of the total output is the sum of P−

r
 over the mining districts con-

tained in the underground mine:

The upper limits of the output for tipple areas P+
kt

 are randomly chosen from the set 
{1000, 2000,… , 5000} . Those numbers are given due to the characteristics of typi-
cal feeder breakers. Even though the parameters P+

kt
 have different values in terms of 

tipple areas k, they are the same for all time intervals (t − 1, t] in the planning hori-
zon. In each time interval (t − 1, t] , an output greater than 0 has to be achieved. We 
set the parameter P−

t
 as follows:

We consider a planning horizon of one month that without loss of generality, is sup-
posed to have only four weeks. Each sub-interval � represents a time interval of one 
week ( �max = 4 ). A week contains 18 work shifts, so that the planning horizon has 
Tmax = 72 work shifts.

P−
r
= � ⋅

∑

t∈T

P+
rt

∀r ∈ R.

P− =
∑

r∈R

P−
r
.

P−
t
= min

b∈B
{Ab} ∀t ∈ T.

Table 5   Parameters used to generate realistic problem instances

Parameters Symbols Values

Number of mining districts in an underground mine 1–5
Number of tipple areas in each mining district 4–6
Number of underground locations in each tipple area 5–11
Number of blocks in each underground location 5–10
Amount of material contained in each block in tonnes Ab 700–1200
Quality value of each block in % Qb 9.8–16.2
Lower limit of the quality value of the output in % Q− 11.1
Upper limit of the quality value of the output in % Q+ 14.1
Quality target value for each sub-interval in % Q� 12.6
Processing time of the first blocks in each underground location 

measured in work shifts
Zb 1–9

Processing time of other (not the first) blocks in each underground 
location measured in work shifts

6–12
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The quality values of blocks are stated in percentage and usually have decimals. 
We multiply the quality values of blocks and, accordingly, the quality parameters 
from Table 5 by 100 to avoid rounding errors. For example, a quality value of 13.7% 
is 1370 in a problem instance. As mentioned in Sect. 4, from a practical point of 
view, a solution is called an optimal solution if the associated value of the objective 
function lies within the small interval of [0, �] with 𝜉 > 0 . Parameter � is the quality 
tolerance value of the production process and is chosen to be 0.1% . Like the quality 
values of blocks, we multiply � by 100 as well; � is, therefore, equal to 10.

We distinguish between 5 different test sets according to the number of mining 
districts. Hence, there is 1 mining district in the first test set, 2 mining districts in the 
second test set, and so on (5 mining districts in the fifth test set). We randomly gen-
erated 20 problem instances for each test set using the introduced parameter ranges. 
Additionally, we consider five different levels of � , i.e., � ∈ {70%, 75%,… , 90%} , 
concerning the lower limit of the output ( P−

r
 and accordingly P− , see above). Thus, 

we have 100 problem instances for each �-level. Test sets with 5 mining districts rep-
resent the largest problem instances. On the other hand, the problem instances with a 
�-level of 90% are the most challenging problem instances to solve.

We used GAMS 24.9 to implement our mixed-integer linear program and solved 
the problem instances using CPLEX 12.7.1. We set the solver parameters in the way 
that the solution procedure terminates in the following cases: 

1.	 if a solution found is optimal;
2.	 if a solution found is in the predefined interval [0, 10]; or
3.	 if a time limit of 1800 s is exceeded.

The corresponding solution procedure is called CPLEX. According to the cases 
mentioned above, if we say that CPLEX finds an optimal solution for a problem 
instance, case 1. or case 2. holds.

The heuristic algorithm is implemented in the programming language �++ and 
executed with the compiler Microsoft Visual Studio 2010. Since we use four differ-
ent priority rules in the heuristic, we set the upper limit of the solution time equal to 
450 s for each priority rule. Thus, for each problem instance, we run the multi-start 
heuristic approach for 1800 ( 4 × 450 ) s to have a relatively fair comparison with the 
results of CPLEX, which has a time limit of 1800 s, too. The resulting multi-start 
heuristic approach with four randomized priority rules is called MSH-4R.

All tests are executed on an Intel(R) i7-7700K@4.20GHz machine with 64 GB 
RAM under Windows 10.

We can compare the results achieved by CPLEX and MSH-4R from different 
aspects. On the one hand, the number of problem instances for which no feasible 
solution can be provided is important. On the other hand, we want to know whether 
a feasible solution obtained is optimal, and if not, what can be said about the solu-
tion quality. We discussed that the problem instances with a �-level of 90% are the 
most challenging problem instances to solve, and the ones with 5 mining districts are 
the largest problem instances. Accordingly, the results of each solution procedure for 
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each �-level and regarding the size of the problem instances are of most interest. Our 
computational study suggests the following results:

•	 In general, the greater the problem instances, the more time CPLEX needs to 
find an optimal solution.

•	 For �-levels of 70% to 85% , CPLEX finds an optimal solution for almost all 
problem instances. However, for the most challenging problem instances with 
� = 90% , CPLEX can hardly find any feasible solution.

•	 MSH-4R can find for all of the problem instances at least one feasible solution 
that is not far from the best solutions found.

•	 MSH-4R using priority rule 3 provides the most high-quality solutions in com-
parison to the other priority rules.

•	 If we use the solutions found by MSH-4R using priority rule 3 as initial solu-
tions for CPLEX, the results found for the most challenging problem instances 
are improved by, on average, 92.5%.

A detailed explanation of the results achieved by the solution approaches is given in 
the following.

Table 6 compares the results achieved by CPLEX with the solutions found by 
MSH-4R. Each row in Table 6 shows the information for a test set that consists of 
20 problem instances. Columns # Optimal depict the number of test instances for 
which CPLEX and MSH-4R could find an optimal solution (see the explanation 
for an optimal solution above). The number of test instances for which a feasible 
solution could be found but the optimality of the solution could not be proven or 
shown is given under columns # Feasible for both solution procedures. Columns 
# Unknown present the number of test instances for which no feasible solution is 
found within the considered time limit (1800 s). Note that the numbers appearing 
under each column cannot be greater than 20. Columns Solution time report the 
average solution time in seconds for the considered 20 problem instances in each 
test set. According to the setting, the average solution time cannot be greater than 
1800 s. Analogous to CPLEX, MSH-4R terminates if a solution found by a given 
priority rule is in the predefined interval [0, 10]. In that case, we say that MSH-
4R finds an optimal solution for a problem instance. Note that MSH-4R is not 
able to state whether a feasible solution with an objective function value greater 
than 10 is optimal or not. For a problem instance solved by MSH-4R, an optimal 
solution may be found by using any priority rule. In those cases, the procedure 
terminates before the time limit (450  s) is exceeded for the respective priority 
rule. The time in seconds under Solution time MSH-4R is the sum of solution 
times taken by every priority rule and cannot be greater than 1800 s ( 4 × 450).

We see in Table 6 that CPLEX could find for the whole 100 problem instances 
with � = 70% an optimal solution. The greater the number of mining districts in 
a test set, the more time CPLEX needs to find an optimal solution. For � = 70% , 
the solution time is, on average, 14 s for the 20 problem instances with 1 mining 
district and 132  s for problem instances with 5  mining districts. For the whole 
100 problem instances with � = 70% , CPLEX needed, on average, 53 s to prove 
the optimality of the solutions found. For � = 75% , there is the same trend. All 
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of the test instances are solved to optimality by CPLEX; the solution time is, on 
average, 26 s for problem instances with 1 mining district and 330 s for problem 
instances with 5 mining districts. Notably, the computational times are higher (for 
the 100 problem instances with � = 75% , the computational time is, on average, 
187.6  s) since the problem instances are more challenging. For �-levels of 80% 
and 85% , the same trend can be seen. For � = 80% ( � = 85% ), CPLEX could opti-
mally solve 98 (90) problem instances. At the �-level of 80% ( 85% ), the solution 
time is, on average, 202 (324) s for the 20 problem instances with 1 mining dis-
trict and 676 (1020) s for the 20 problem instances with 5 mining districts. For 
the other problem instances with � = 80% and � = 85% that could not be solved 
to optimality, CPLEX could find a feasible solution (cf. columns # Feasible). For 

Table 6   Comparison of the results achieved by CPLEX with the solutions found by MSH-4R (each row 
represents a test set including 20 problem instances)

�[in %] |R| # Optimal # Feasible # Unknown Solution time 
[s]

Ave. deviation 
from best. [ %

100
]

CPLEX MSH-
4R

CPLEX MSH-
4R

CPLEX MSH-
4R

CPLEX MSH-
4R

CPLEX MSH-
4R

70 1 20 7 0 13 0 0 14 1392 0.00 7.42
2 20 3 0 17 0 0 22 1615 0.00 8.40
3 20 0 0 20 0 0 44 1800 0.00 14.60
4 20 2 0 18 0 0 52 1740 0.00 12.74
5 20 0 0 20 0 0 132 1800 0.00 13.35

75 1 20 7 0 13 0 0 26 1392 0.00 7.42
2 20 3 0 17 0 0 62 1621 0.00 8.40
3 20 0 0 20 0 0 241 1800 0.00 14.60
4 20 2 0 18 0 0 279 1740 0.00 12.74
5 20 0 0 20 0 0 330 1800 0.00 13.35

80 1 18 7 2 13 0 0 202 1392 0.00 6.48
2 20 3 0 17 0 0 230 1615 0.00 8.40
3 20 0 0 20 0 0 404 1800 0.00 14.60
4 20 2 0 18 0 0 473 1740 0.00 12.75
5 20 0 0 20 0 0 676 1800 0.00 13.35

85 1 18 7 2 13 0 0 324 1392 0.02 5.74
2 17 3 3 17 0 0 568 1615 0.00 7.13
3 18 0 2 20 0 0 788 1800 0.00 14.04
4 19 2 1 18 0 0 904 1740 0.00 12.51
5 18 0 2 20 0 0 1020 1800 0.00 12.86

90 1 7 6 1 14 12 0 1241 1460 0.00 1.07
2 0 2 1 18 19 0 1800 1668 0.00 0.36
3 0 0 0 20 20 0 1800 1800 – 0.00
4 0 1 0 19 20 0 1800 1762 – 0.00
5 0 0 0 20 20 0 1800 1800 – 0.00
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the most challenging problem instances with � = 90% , CPLEX could find for only 
seven  problem instances with 1  mining district an optimal solution within, on 
average, 1241  s. Furthermore, for only two other problem instances, a feasible 
solution could be found by CPLEX. In other words, for 91 problem instances at 
the �-level of 90% , CPLEX cannot find any feasible solutions within a reasonable 
amount of time.

On the contrary, MSH-4R was able to find an optimal solution for 12 problem 
instances each at the �-levels of 70% , 75% , 80% , and 85% as well as for nine problem 
instances with � = 90% (altogether 57 of the whole 500 problem instances). Hence, 
it cannot be said at which level MSH-4R works best. MSH-4R could find for every 
problem instance at every level and with every size at least one feasible solution (the 
numbers under # Unknown MSH-4R are all 0), even for the �-level of 90% . To evalu-
ate the solution quality of the results achieved by MSH-4R, we calculate the average 
of the absolute deviations from the best solutions found (in %

100
 ), which is stated in 

the last columns Ave. deviation from best of Table 6. The following example illus-
trates how the deviation from the best solution found is calculated.

Example 1  Let 6.64 be the objective function value of the best solution found by 
CPLEX ( SC ), and 24.34 the objective function value of the best solution found by 
MSH-4R ( SH ). Since SC ≤ � = 10 is true, we consider SC as an optimal solution. 
Accordingly, the deviation of SC from the best solution found is 0, and the deviation 
of SH from an optimal solution is SH − � = 14.34

%

100
.

Now, let SC = 16.34 and SH = 30.71 . The best solution found is SC and, con-
sequently, the deviation of SC from the best solution found is 0. Independent of 
whether we can prove the optimality of SC or not, the deviation of SH from the best 
solution found is SH − SC = 14.37

%

100
.

For the problem instances with � = 70% , the solutions found by MSH-4R devi-
ate, on average, 11.30 %

100
 ( 0.113% ) from the optimal solution found by CPLEX. The 

minimum value is for the test set with 1 mining district (7.42 %

100
 ), and the maximum 

value belongs to the test set with 3 mining districts (14.60 %

100
 ). For � = 70% , MSH-

4R could find for only 12 problem instances an optimal solution. Hereby, seven prob-
lem instances that are solved to optimality by MSH-4R have 1 mining district. On 
the other hand, for the test set with 3 mining districts, no optimal solution is found 
by MSH-4R. Since the average is calculated over the whole 20 problem instances for 
each test set, the differences regarding the average deviations from the best solutions 
found can be explained by the different number of optimal solutions found for each 
test set. The same trend exists at �-levels of 75% , 80% , and 85% , where the solutions 
found by MSH-4R deviate, on average, 11.3, 11.12, and 10.45 %

100
 from the best solu-

tion found, respectively. We can conclude that the quality of the solutions found by 
MSH-4R is quite promising for the �-levels of 70% , 75% , 80% , and 85% , where opti-
mal solutions for 388 of 400 problem instances are known, which is a strong meas-
ure to evaluate the results. In addition, we see that for � = 90% , where CPLEX could 
find for only nine problem instances a feasible solution, MSH-4R found for all of the 
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100 problem instances at least one feasible solution. Therefore, it is reasonable to 
use MSH-4R to solve the problem instances at the �-level of 90%.

In the next step, we compare the applied priority rules in MSH-4R (cf. Sect. 4) 
in Table  7. The first columns on the left-hand side of Table  7 show the number 
of problem instances for which a specific priority rule exclusively found the best 
solution. For example, in the first row of Table  7, the sum of the numbers under 
Number of best-known solutions exclusively found for rules 1 to 4 is 14. That means 
there are six problem instances in the test set for which the best solution could be 
found by means of at least two different priority rules. At the same line, we see 
that, e.g., priority rule 2 could exclusively find the best solutions for two problem 
instances, which means that the other priority rules could not find the best solution 
for those problem instances. We see in Table 7 that for 407 of the whole 500 prob-
lem instances, the best solutions were exclusively obtained using priority rule  3, 

Table 7   Comparison among 4 priority rules (each row represents a test set including 20 problem 
instances)

� [in%] |R| Number of best-known solutions 
exclusively found

Average tbs ( tfs ) for the best (first) feasible solution 
[s]

Rule 1 Rule 2 Rule 3 Rule 4 Rule 1 Rule 2 Rule 3 Rule 4

70 1 2 0 12 0 186 (0.00) 196 (0.00) 153 (0.00) 186 (0.00)
2 0 0 18 0 249 (0.00) 182 (0.00) 209 (0.00) 260 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 210 (0.00) 223 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 250 (0.00) 258 (0.00)
5 1 0 19 0 231 (0.00) 260 (0.00) 240 (0.00) 267 (0.00)

75 1 2 0 12 0 185 (0.00) 196 (0.00) 153 (0.00) 207 (0.00)
2 0 0 18 0 249 (0.00) 181 (0.00) 209 (0.00) 148 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 210 (0.00) 224 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 250 (0.00) 200 (0.00)
5 1 0 19 0 231 (0.00) 260 (0.00) 240(0.00) 223 (0.00)

80 1 2 0 12 0 186 (0.00) 196 (0.00) 153 (0.00) 228 (0.00)
2 0 0 18 0 249 (0.00) 181 (0.00) 209 (0.00) 174 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 209 (0.00) 187 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 236 (0.00) 224 (0.00)
5 1 0 19 0 231 (0.00) 259 (0.00) 239 (0.00) 194 (0.00)

85 1 2 0 12 0 186 (0.00) 195 (0.00) 153 (0.00) 238 (0.00)
2 0 0 18 0 249 (0.00) 182 (0.00) 210 (0.00) 194 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 210 (0.00) 232 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 236 (0.00) 204 (0.00)
5 1 0 19 0 231 (0.00) 260 (0.00) 240 (0.00) 254 (0.00)

90 1 3 1 11 0 144 (0.00) 180 (0.00) 190 (0.00) 234 (0.00)
2 0 3 15 0 216 (0.00) 217 (0.00) 227 (0.00) 197 (0.00)
3 0 4 16 0 212 (0.05) 245 (0.00) 261 (0.00) 257 (0.00)
4 1 3 13 0 250 (0.00) 196 (0.00) 214 (3.00) 246 (0.05)
5 0 7 12 1 201 (0.25) 220 (0.05) 214 (0.10) 230 (0.00)



	 C. Seifi et al.

1 3

which suggests priority rule 3 as the most potent rule. Remember that priority rule 3 
enables the best possible improvement regarding the objective function in each step.

Let tbs and tfs be the times in seconds that are taken to find the best (bs) and the 
first feasible solution (fs), respectively. Those times are given on the right-hand side 
of Table 7. MSH-4R using priority rules 1, 2, 3, and 4 needed, on average, 225, 202, 
213, and 220 s, respectively, to find the best feasible solutions. The first feasible 
solution could be quickly found by MSH-4R regardless of the applied priority rules 
(e.g., priority rules 2 and 4 find the first feasible solution by no longer than, on aver-
age, 0.05 s).

We saw that CPLEX performs for � = 90% worse, in particular, with respect to 
the number of feasible solutions found (cf. Table 6). At the �-level of 90% , where we 
have the most challenging problem instances, and where it is tough to find a feasible 
solution by a MILP-solver, MSH-4R can find at least one feasible solution for each 
problem instance. In the following, we introduce another solution approach to tackle 
the problem instances with � = 90% . The idea is to support CPLEX by starting with 
an initial feasible solution that is found by MSH-4R. We distinguish between the fol-
lowing kinds of initial solutions:

first solution (fs): MSH-4R using priority rules 2 and 4 is the fastest approach 
to find a feasible solution (cf. Table 7). That may be the case because both prior-
ity rules consider the amount of material of a block for determining the priority 
values to observe the lower limits of output. If we observe the quality of the solu-
tions found, MSH-4R using priority rule 2 (priority rule 4) could exclusively find 
the best solution for 18 problem instances (one problem instance) with � = 90% . 
Remember that priority rule  2 considers both block’s amount of material and 
the block’s quality deviation from the quality target. By contrast, priority rule 4 
focuses only on the amount of material, which justifies the higher quality of the 
solutions found using priority rule 2 than using priority rule 4. Thus, we solve 
the problem instances at the �-level of 90% by MSH-4R using priority rule 2 and 
store the time tfs . Then, we give the first feasible solution found as an initial solu-
tion to CPLEX and set the upper limit of time equal to 1800 − tfs seconds. The 
corresponding solution approach is called CPLEX with fs.
best solution (bs): Table 7 shows that MSH-4R using priority rule 3 performs 
best among all four priority rules. MSH-4R using priority rule  3 could exclu-
sively find for 67  problem instances with � = 90% the best solution within, on 
average, 221.2  s. Hence, we solve the problem instances at the �-level of 90% 
by MSH-4R using priority rule 3, set the upper limit of the solution time equal 
to 250 s, and store the best feasible solution found. Then, we solve the problem 
instances by CPLEX using the best feasible solutions found by MSH-4R as an 
initial solution with a time limit of 1550 s. The corresponding solution approach 
is called CPLEX with bs.

Table 8 depicts that using an initial solution leads to a much better performance of 
CPLEX at the �-level of 90% . Without using an initial solution, CPLEX could find 
for only nine of 100  problem instances a feasible solution (thereof seven optimal 
solutions) within, on average, 1688 s (cf. Table 6, last 5 rows). If we apply CPLEX 
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with fs, 42  problem instances can be solved to optimality within, on average, 
1414.2 s. Typically, the larger the problem instances, the harder it is to solve. For 
the problem instances with 1 mining district, CPLEX with fs could find an optimal 
solution for 12 of 20 problem instances. For the problem instances with 5 mining 
districts, only five of 20 problem instances can be solved to optimality by CPLEX 
with fs. CPLEX with bs performs even better, where 45 problem instances can be 
optimally solved within, on average, 1403 s (some more problem instances within 
some less time in comparison to CPLEX with fs). The same trend regarding the size 
of the instances is recognizable. We can see that 14 of 20 problem instances with 
1 mining district and five of 20 problem instances with 5 mining districts can be 
solved to optimality by CPLEX with bs.

Finally, we compare the results achieved by MSH-4R with the combination of 
MSH-4R and CPLEX. For this purpose, the average of the absolute deviations from 
the best solution known is depicted in Table 9 for each test set with � = 90% . Let SHi

 
be the objective function value of the best solution found by MSH-4R for problem 
instance i. Moreover, let Sfs

Ci
 and Sbs

Ci
 denote the objective function values of the solu-

tions found by CPLEX with fs and bs for problem instance i, respectively. The num-
bers in parentheses are the average of (SHi

− S
fs

Ci
)∕(SHi

) as well as (SHi
− Sbs

Ci
)∕(SHi

) 
over the problem instances in every corresponding test set. We see that the solutions 

Table 8   Comparison of the solutions found by CPLEX with and without initial solutions (each row rep-
resents a test set including 20 problem instances)

� [in%] |R| CPLEX with fs CPLEX with bs

# Opt. # Feas. Solution time [s] # Opt. #Feas. Solution time [s]

90 1 12 8 922 14 6 789
2 12 8 1115 11 9 1298
3 5 15 1626 7 13 1567
4 8 12 1651 8 12 1575
5 5 15 1757 5 15 1786

Table 9   Comparison of the 
solutions found by MSH-4R 
with the results achieved by 
CPLEX using initial solutions 
(each row represents a test set 
including 20 problem instances)

� [in%] |R| Average deviation from the best solution found 
[

%

100
]

MSH-4R CPLEX with fs 
(improvement)

CPLEX with bs 
(improvement)

90 1 3.11 0.98 ( 68.5%) 0.03 ( 99.0%)
2 5.11 1.96 ( 61.6%) 0.27 ( 94.7%)
3 8.88 2.43 ( 72.6%) 0.72 ( 91.9%)
4 8.11 1.93 ( 76.2%) 0.57 ( 93.0%)
5 7.70 1.22 ( 76.2%) 1.21 ( 84.3%)
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found by CPLEX with an initial solution are much better than the solutions found by 
MSH-4R. In particular, if we first solve a problem instance heuristically using prior-
ity rule  3 and then give the best feasible solution found as an initial solution to 
CPLEX (CPLEX with bs), the solutions are improved by, on average, 92.5%.

6 � Conclusion

In this paper, we introduced a mixed-integer linear program and a heuristic approach 
to solve a block selection and sequencing problem occurring in underground potash 
mines. In the problem under consideration, we minimized the deviations of the out-
put quality value from a prescribed quality target value. The deviations were calcu-
lated for certain sub-intervals within a given planning horizon.

To evaluate the solution approaches, we randomly generated 100  problem 
instances (5 test sets of 20  problem instances each) based on realistic data. We 
solved the problem instances on 5 different levels in terms of the lower limit of the 
output using the proposed mixed-integer linear program and the suggested con-
structive heuristic. We can conclude that if the MILP-solver starts with an initial 
solution, an optimal solution for a problem instance can be found more quickly. We 
can also say, if we solve a problem instance within a reasonable amount of time 
heuristically using introduced priority rule 3 and then give the best feasible solu-
tion found as an input to the MILP-solver, we obtain quite promising results. Hence, 
practice-relevant problems in potash mines can be solved with an acceptable quality 
within an adequate time frame. Consequently, the results achieved could support the 
decisions of underground mining operators to provide the aboveground processing 
plants with homogenous output by a systematic comparison between the actual and 
target performance.

Further research will apply metaheuristics to improve the results achieved by the 
proposed constructive heuristic. Uncertainty regarding the processing times needed 
to excavate the blocks must also be investigated. On the other hand, the material 
excavated in a work shift can be stored in a bunker during a specific time interval. 
That can lead to another value of the output quality in comparison to having all the 
material conveyed directly to the surface. Ongoing research can distinguish those 
cases to make the generated solutions more realistic.
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salt face

pillar

room

Fig. 1 Grid structure caused by the room-and-pillar mining method

1 Introduction to potash mining

Potash represents mined and manufactured salts that contain the element potassium
(K) in water-soluble form. Main locations where potash is currently being mined are
Canada, Russia, Belarus, China, and Germany. Typically, potash mines are under-
ground mines (in contrast to open pits), since this kind of ore is generally found in
deep deposits. The deposits are a naturally occurring mixture of potassium chloride
(KCl) and sodium chloride (NaCl). In above-ground processing plants, the KCl is
separated by flotation, recrystallization, or electrostatic separation. The majority of
KCl produced is used for agricultural fertilizers. Furthermore, it is an input in the
chemical, medical as well as human and animal food-processing industry (Chesworth
2008; USGS 2011).

For flat-bedded deposits of limited thickness (typical for potash, coal, or limestone),
the room-and-pillar mining method is generally applied. Using the method, material
is extracted across a horizontal plane and pillars, arranged in regular patterns, are left
for support purposes. Thus, a grid-like structure is formed, as demonstrated in Fig. 1.
The distance in which pillars are arranged depends on the depth of excavation and
the thermal structure. The paths in mining direction, i.e., the direction in which the
excavation is executed, are often broader than the paths parallel to the salt face. In
order to expose the rooms, material is blasted in blocks (each of which consists of a
volume of material and the corresponding mineral properties) and then removed via
trackless loaders. Potash contained in pillars is unrecoverable, even if pillars contain
valuable material (Hamrin 2001).

During excavation of potash, several miners work at the salt face, where the drilling
and blasting technique is typically used. The technique provides that the miners drill
holes and fill themwith explosive substances. After a subsequent detonation, the crude
material is delivered to a tipple, where the lumps are broken by a crushing machine.
Then, the material is carried to the shaft on a conveyor belt or to an interim storage
facility (a so-called bunker). Figure 2 depicts a ground plan with four underground
locations, in which work can proceed simultaneously. Each underground location is
characterized by a path in mining direction (illustrated by an arc) and a neighboring
pillar row. The sequence of block excavation in location 4 is demonstrated on the right
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Fig. 2 Ground plan and schematic demonstration of block excavation

hand side of Fig. 2, where block 1 is processed first, then block 2, block 3 etc., one after
another. Only if all relevant processing steps of the current block are executed, thework
on the next block can be started. In addition to the “linear” (or chain-like) processing
of blocks, a “lateral” processing must further be performed at regular intervals in order
to insert transits between pillars and to create the preferred grid structure. If possible,
blocks in both directions (i.e., linear and lateral) will be processed simultaneously. For
example, the two blocks with number 4 are excavated at the same time.

The excavation of one block in a potash mine, where the drilling and blasting
technique is applied, typically involves the following nine consecutive steps (K+S AG
2015):

(1) scaling of mine roof and side walls,
(2) removing the scaled material,
(3) bolting of roof with anchors,
(4) drilling large diameter boreholes,
(5) removing the drilling dust,
(6) drilling blast holes,
(7) filling blast holes with explosive substances,
(8) blasting,
(9) transporting broken material to the tipple.

In the first step, loose rock fragments on the mine roof or side walls are carefully
detached using scaling machines. Afterwards, the scaled material is removed with
small loaders (step 2). In the third step, drilling trucks drill holes for roof anchors
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(threaded rods up to 1.2m in length). The roof anchors are installed onto the roof
structure in order to bind the salt layers together and give them a greater degree of
stability. Then, large drill jumbos are used to drill three adjacent horizontal boreholes
with a diameter of 0.28m and a length of 7m (step 4). The large boreholes act on the
one hand as a direction guideline for the drilling of blast holes and on the other hand as a
collecting area for material generated during blasting. The resultant dust as well as the
loosematerial are removedwith small loaders (step 5) to improve work conditions and
to increase productivity in subsequent steps. In the sixth step, a computer-controlled
drilling machine is used to drill about 60 holes with a diameter of 0.03 m 7 m deep
into the rock according to a set plan. The blast holes are then filled with explosive
substances carried by blast trucks (step 7). The blasting always takes place between
work shifts, when one shift has left the salt face and the next is waiting for the elevator
to go down (step 8). After the detonation, sheltered trucks with shovels take the crude
material away from the salt face and deliver it to the tipple. Steps (1)–(9) repeat and can
therefore be treated as a production cycle. Each step of the production cycle (except
the blasting) requires a specific machine type that only exists in a limited number.
Thus, the availability of machines has to be considered as an important restriction in
the block excavation planning process of an underground mine.

In order to guarantee safeness for all miners, the production cycle should, once
started, be performed within a certain time interval. Hence, after completing the first
step, steps (2)–(6) have to be finished within τ > 0 time units. If τ is achieved or
exceeded with the completion of step i, (2) ≤ i ≤ (6), a security precaution is made
after i in which the roof is scaled once more, i.e., the first step is revisited (cf. Fig. 3).
Thus, the roof and side walls are controlled continuously, so that loose material does
not become detached unexpectedly. When the scaling process is finished, step i + 1
and the succeeding steps of the production cycle are executed.

The time period, in which we check the achieving or exceeding of τ , lies between
the end of the first step and the end of the sixth step, i.e., steps (7)–(9) are not considered
in the calculation. This decision is based on the following reasons: a return to step
(1) after filling the blast holes is unnecessary, since the blasting is performed in step
(8). Subsequently, the crude material is delivered to the tipple with “sheltered” trucks
(diesel or electric) and so, the miners are adequately protected against the possibility
of rockfall.

The described scheduling problem in potash mining, where a block excavation
sequence has to be found taking into account a limited number of machines as well as
a possible return to step (1) for safety purposes, is part of an industry project funded
by a German potash provider. The aim is to minimize the maximum completion time
of excavations (i.e., the makespan or the schedule length). In what follows, we take
advantage of the fact that the problem can be transformed into a hybrid flow shop

step 1 step i step 1 step i+1

scaling scaling(2) ≤ i ≤ (6)

. . .

τ > 0
t

Fig. 3 Execution of steps over the time axis, where τ time units are exceeded and step (1) is revisited
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scheduling problem (cf. Sect. 2). However, approaches known from the literature
cannot be used directly in order to solve the problem, as they do not consider all
described constraints, in particular the situation-related revisit of step (1). Since the
consideration of a time-based threshold τ is also relevant for applications in coal, zinc,
and limestone mining as well as for scheduling problems in the chemical industry,
where products are included with a limited shelf life, the problem is of fundamental
importance from a theoretical as well as practical point of view. Preliminary tests have
shown that a targeted planning process can lead to a significant makespan reduction
compared to the current manual planning process (the makespan could be halved in
specific problem situations). As a consequence, there is a need for suitable exact and
heuristic algorithms that can be applied to solve the problem under consideration.

The remainder of the paper is organized as follows: Sect. 2 describes the pro-
posed scheduling problem in more detail. In order to show the originality and the
characteristics of the problem, an overview of the literature on corresponding hybrid
flow shop scheduling problems and on scheduling problems in underground mining is
presented. In Sect. 3, amathematicalmodel is formulated, which can be given to a stan-
dard solver (e.g., CPLEX). Based on the model, we proceed to describe methods for
improving the quality of the model in terms of computation time and solution gap (cf.
Sect. 4). Section 5 is devoted to a basic and an advanced multi-start algorithm that effi-
ciently construct near-optimal solutions. Furthermore, a modified Giffler–Thompson
procedure for constructing active schedules is described. The results of computational
experiments, where realistic instances are considered, are given in Sect. 6. Finally,
conclusions are presented in Sect. 7.

2 Problem specification and related literature

The problem of finding a sequence in which a predefined set of blocks should be
removed from the mine, where a limited number of vehicles or mobile machines is
available, can be treated as a special variant of the hybrid flow shop (HFS) scheduling
problem. Basic HFS scheduling problems are characterized by (see, e.g., the surveys
of Ruiz and Vázquez-Rodríguez 2010, as well as Ribas et al. 2010):

• k ≥ 2 production stages separated by unlimited intermediate buffers (problems are
usually classified into two-stage, three-stage, and k-stage HFS scheduling prob-
lems with k > 3),

• |Mk | ≥ 1 parallel machines at stage k, where at least one stage includes more than
one machine,

• non-preemptable jobs consisting of several operations that have to be processed on
machines, with positive processing times and no setup times, following the same
production flow, where all stages have to be visited (problems in which jobs can
skip stages are named flexible HFS scheduling problems), and

• a production environment in which each machine at each stage can process at most
one job at a time and each job can be processed by at most one machine at a time
(problems in which a job at a certain stage requires more than one machine are
named HFS scheduling problems with multiprocessor tasks).
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Fig. 4 Production environment of the proposed HFS scheduling problem

The proposed scheduling problem in undergroundmining is a k-stageHFS schedul-
ing problem if we identify

• the production stages with steps (1)–(7) and step (9) of our production cycle,
• the machines at each stage with the underground machines used in the different
steps (e.g., step 1 requires scaling machines, step 2 small loaders), and

• a job with a block excavation in an underground location.

The resulting production environment inwhichblock excavations are executed consists
of eight stages and is depicted in Fig. 4. Step (8) must not be considered in the
environment, since the blasting does not need any vehicle or machine. Note that the
depicted numbers of machines per stage (1–5 parallel machines) reflect realistic sizes
for a mining district (or region) with up to 30 underground locations.

Almost all steps of our production cycle require a different set of special mobile
machines. Only steps (2) and (5) make use of the same small loaders (given in gray
color in Fig. 4) in order to remove the scaled material or the drilling dust. Hence,
a job may revisit the same machines in the HFS and a reentrant problem has to be
considered. Repeated use of the same machines by the same job means that there
may be resource conflicts among jobs at different levels in the process. Moreover, if
τ time units are achieved or exceeded with the completion of step i, (2) ≤ i ≤ (6),
the respective job has to revisit the first stage (scaling machines) for safety reasons,
i.e., a situation-related reentry appears.We assume that a situation-related reentry may
happen only once, since a practical relevant value of τ is significantly higher than the
minimum processing time of the whole production cycle. Figure 4 shows the paths
of two jobs through the system of machines, where job 2 performs a situation-related
reentry after leaving stage 5. At the revisit of stage (1), the same (as in the previous
path) or a different machine can be used.

Usually, the machine fleet consists of undergroundmachines with different features
(e.g., shovel volume, exhaust gas emission, feed rate). Therefore, the processing time
p jmk ∈ N of job j at stage k depends on the specific machine m within the stage, i.e.,
unrelated parallel machines must be taken into account.
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Fig. 5 Mining district with five underground locations u1, . . . , u5 and 2–6 blocks per underground location

In order to excavate one block of a certain underground location, e.g., block j2
at location u1 (cf. Fig. 5), it is necessary that all steps of the preceding production
cycle have been finished, i.e., the preceding block j1 is completely removed. Hence,
precedence constraints between jobs of an underground location exist and only a
subset of jobs (here jobs j1, j6, j9, j15, and j17) is available for excavation at time zero.
New jobs appear dynamically, i.e., at each point in time, where a block excavation is
completed and the block just removed is not the last block in an underground location.

In summary, we obtain a k-stage HFS scheduling problem with reentry, unrelated
parallel machines, and precedence constraints between jobs. HFS are usually found in
common manufacturing environments for products like concrete blocks (Grabowski
and Pempera 2000), circuit boards (Jin et al. 2002), label stickers (Lin and Liao 2003),
steel (Voß andWitt 2007; Kreutz et al. 2000), or solar cells (Chen et al. 2013). Further-
more, examples are found in non-manufacturing areas like container handling systems
(Chen et al. 2006, 2007; Fereidoonian and Mirzazadeh 2011). Gupta (1988) showed
that HFS scheduling problems restricted to two processing stages, even for the case in
which one stage contains onemachine and the other stage twomachines, areNP-hard
in the strong sense.

In what follows, we confine our literature review on the one hand to k-stage
HFS scheduling problems containing reentry, unrelated parallel machines, and job-
precedences and on the other hand to scheduling problems in underground mining.

Choi et al. (2005) proposed a 4-stage HFS scheduling problem with identical paral-
lel machines. Two types of jobs are considered: jobs that can be completed after being
processed once at the stages and jobs with reentrant flows, i.e., jobs that should visit
processing stages twice. For each job, a due date is given and the objective is to mini-
mize the total tardiness of jobs. The problem is solved using list-scheduling algorithms
(also known as dispatching rule-based or priority rule-based algorithms), where the
job with highest priority among all jobs at a stage is assigned to the idle machine with
highest priority at the stage. Choi et al. (2011) considered a reentrant HFS scheduling
problem with five stages and identical parallel machines per stage. In reentrant flows,
each job may visit serial stages two or more times. Multiple performance measures
are considered: system throughput, mean flow time, mean tardiness, and the number
of tardy jobs. A real-time scheduling mechanism is suggested in which a decision
tree is used to select an appropriate dispatching rule. Cho et al. (2011) developed a
Pareto genetic algorithm with local search strategies in order to solve a reentrant HFS
scheduling problem with k ≥ 5 stages, where each stage consists of identical parallel
machines. The objectives are to minimize the makespan and to minimize the total
tardiness. A solution is represented by a permutation of n jobs which indicates the
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sequence of jobs to be considered for scheduling at the first stage. Afterwards, jobs
are ordered according to non-decreasing completion times at the stages.

Ruiz and Maroto (2006) proposed a HFS scheduling problem with k ∈ {5, 10, 20}
stages and unrelated parallel machines, sequence-dependent setup times, andmachine
eligibility. A genetic algorithm is presented, where each solution is encoded as a
permutation of n jobs and evaluated using the makespan criterion. In production envi-
ronments with unrelated parallel machines, the calculation of the makespan must be
executed cautiously, since the assignment of a job to the first available machine, which
is, e.g., a very slow machine, can result in a later completion time compared to other
machines. Therefore, jobs are assigned to the machine that can finish the job as soon
as possible at a given stage, taking into account, among other things, different process-
ing speeds. A similar genetic algorithm is proposed by Yaurima et al. (2009) for the
same problem with the additional consideration of limited buffers for storing work
in progress. Xu and Wang (2011) considered 3- and 4-stage hybrid flow shops with
two to four unrelated parallel machines per stage. In order to solve the problem, while
trying to minimize the makespan, an evolutionary algorithm combining differential
evolution and local search is applied. A real-valued (k×n)-matrix is used to encode a
solution, where elementmkj defines that job j is processed on machine number �mkj�
at stage k.

Botta-Genoulaz (2000) studied the scheduling of jobs in a k-stage HFS (k = 4, 5)
with identical parallel machines, when jobs are subject to job-precedence constraints,
minimum time lags, setup and removal times, and due dates. The objective is to mini-
mize the maximum lateness. The problem is solved in two steps: Sequencing jobs on
k machines, applying pure flow shop heuristics, and assigning jobs to the machines at
each stage, using a list-scheduling algorithm. Voß and Witt (2007) dealt with a pro-
duction environment of a German steel manufacturer that consists of 16 stages with
parallel machines. The machines are uniform, i.e., they run with different speeds. At
all stages, breakdowns may occur due to maintenance activities or holidays. The prob-
lem contains due dates, precedence constraints among jobs, and a weighted tardiness
objective function. A mathematical model based on the resource-constrained project
scheduling problem is presented and a heuristic solution procedure using dispatching
rules is applied.

The literature on undergroundmining (regardless of whether an unsupported, a sup-
ported, or a caving method is used) can be classified according to the planning horizon
into strategic, tactical, and operational problems (see, e.g., the surveys proposed by
Weintraub et al. 2007; Newman et al. 2010). Strategic problems may consider how to
geographically position facilities such as mills or haulage systems. Tactical problems
are needed to determine whether or not to mine a block in an underground location
in a particular time period. Operational problems consider machine allocations and/or
machine capacities and entail targeted dispatching rules. The focus of the paper on
hand is to generate a so-called “master” plan for block excavations in which activities
or jobs have to be assigned to machines. The problem under consideration can be cat-
egorized between the tactical and operational planning level. Therefore, the following
literature review covers newer approaches to determine block excavation or activity
sequences and to dispatch vehicles or machines.
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Carlyle and Eaves (2001) proposed a mixed-integer programming model in order
to analyze development and production scenarios for an underground platinum and
palladium mine. The model takes as input the planned mine layout, the ore quality as
well as the costs for mining activities (e.g., drilling and preparation) and produces as
output a near-optimal schedule of activities that maximizes the discounted ore revenue
over a given planning horizon (i.e., 10 and 20 quarters). Rahal et al. (2003) considered
a kimberlite diamond mine with several mine sections consisting of blocks. Blocks
are characterized by a specific ore quality and waste rate. The goal of the study is to
find a production schedule (i.e., the tonnage to be excavated from blocks in planning
periods) such that the deviation of the ideal depletion and the deviation from a tar-
get production rate is minimized. Further, minimum and maximum production and
waste rates for blocks as well as precedence constraints between blocks are taken into
account. A mixed-integer linear model is introduced and embedded in a rolling plan-
ning horizon approach. Sarin and West-Hansen (2005) investigated an underground
coal mine consisting of sections processed with the three mining methods: longwall,
room-and-pillar, and retreat mining. Given a mine layout, the problem is to schedule
the mining of sections so as to maximize the net present value. A solution methodol-
ogy based on Benders’ decomposition is used to solve problems with a time horizon
of 100 weeks. Newman and Kuchta (2007) formulated a multi-period mixed-integer
linear program for iron ore production. The model determines whether or not to start
mining an aggregated block in a given time period. The aim is to minimize deviations
from planned production quantities. A decomposition method is applied, where a
tractable model with aggregated periods is built. Then, using information gained from
the aggregated model, the original model is solved. Nehring et al. (2010b) considered
a production scheduling problem focusing on sublevel stoping operations, where a
decision is made on which stope is excavated in which period. A mixed-integer linear
programming model is presented in order to maximize the net present value. Martinez
and Newman (2011) extended the model proposed by Newman and Kuchta (2007)
by incorporating a finer level, where individual production blocks (instead of aggre-
gated blocks) are applied. Instances with a time horizon of 42-months are solved using
an optimization-based heuristic algorithm. Epstein et al. (2012) proposed a problem
to optimize production plans for copper mines considering underground and open-
pit ore deposits, multiple products, and multiple downstream processing plants. One
major decision is how to allocate mineral from the different mines to the downstream
processes. A general multi-commodity network flow problem is developed in order to
maximize the net present value. Approximate solutions are generated with rounding
heuristics. Finally, O’Sullivan and Newman (2015) pursued the objective of determin-
ing a schedule for activities (e.g., block excavation, pillar extraction and backfilling)
in a lead and zinc mine in order to maximize the quantity of metal produced. A math-
ematical formulation is provided and exact as well as heuristic methods are used to
reduce the problem size. Instances with a time horizon of up to 156 weeks are solved.

Gamache et al. (2005) considered the problem of dispatching, routing and schedul-
ing load-haul-dump vehicles, whenever they need to be assigned to a new task. Each
dispatching decision is based on a predetermined criterion, e.g., minimizing cycle
time or waiting time, and takes into account the current excavation progress of the
mine, the current traffic on all bi-directional road segments, and operational equip-
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ment constraints. To solve the problem, a shortest-path algorithm is presented. Later on,
Beaulieu and Gamache (2006) proposed an enumeration algorithm based on dynamic
programming for tackling the aforementioned fleet management problem. Saayman
et al. (2006) introduced the problem of optimizing an autonomous vehicle dispatch
system. The simulated environment is based on the layout of a diamond mine imple-
menting a block cave mining technique. Five different dispatching strategies are used
over one week in order to maximize the total tons produced, to keep the ore level
between adjacent draw points as even as possible, and to have only few crusher shut-
downs. Simsir and Ozfirat (2008) presented a simulation model in order to assess
the efficiency of shearer-loaders, stage-loaders, crushers, and conveyor belts in a coal
mine. Nehring et al. (2010a) considered a short-term scheduling and machine allo-
cation problem, where the focus is on sublevel stoping operations. A mixed-integer
linear programming model is proposed in order to minimize the deviation from tar-
getedmetal production. Themodel optimizes the shift based schedule and allows rapid
equipment reassignment to take place as underground operating conditions change. In
Nehring et al. (2012), the task of integrating short- and medium-term production plans
is addressed by combining the short-term objective of minimizing deviations from
production targets with the medium-term objective of maximizing net present value.
Apart from dealing with the extraction of each stope and its subsequent ore movement,
all production drilling and backfilling activities are incorporated into a mathematical
model. Instances considering 18-month periods are solved using CPLEX.

The review shows that hybridflowshop scheduling problems are studied extensively
in the literature. However, there is still a shortcoming between previously published
problems and the proposed scheduling problem in underground mining, since a new
and complex combination of constraints is imposed. Furthermore, articles focusing on
underground mining do not consider both block excavation sequences and machine
allocations. Additionally, machine allocation problems include only one or a few
machine type(s), neglect safety-related restrictions, and reposition machines by using
enhanced shortest-path algorithms. To the best of our knowledge, the problem pre-
sented in this paper has not been studied in the literature and thus no exact or heuristic
solution algorithm exists.

3 Model formulation

In order to describe the proposed problem of finding a block excavation sequence
in underground mining more precisely, a mixed-integer linear model formulation is
presented. The notation used in the optimization model is summarized in Table 1.

Objective function (1) denotes the makespan which is to be minimized. Constraints
(2) specify the makespan as the latest completion time of a job at stage 8, i.e., the last
stage in the production environment.

Minimize Cmax (1)

subject to Cmax ≥ C j8 j ∈ J (2)
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Table 1 Sets, parameters, and variables (alphabetically ordered in each subsection)

Sets

J Set of jobs

Jα Set of jobs that are the first jobs in an underground location, i.e., that are available at time
zero, Jα ⊆ J

Jω Set of jobs that are the last jobs in an underground location, Jω ⊆ J

Ju Set of jobs that belong to underground location u ∈ U

K Set of production stages, |K | = 8

K ′ Set of production stages, where a situation-related reentry can occur, K ′ = {2, . . . , 6}
Mk Set of parallel machines at stage k ∈ K

U Set of underground locations, where each underground location u ∈ U contains at least
one job

Parameters

Ĉ j Completion time of job j ∈ Jα with κ j > 1 at the first production stage; Ĉ j ≤ 0, since

Ĉ j lies before or at the beginning of the planning period

κ j Production stage at which job j ∈ J will be processed at the beginning of the planning
period, i.e., 1 ≤ κ j ≤ 8 for all j ∈ Jα and κ j = 1 for all j ∈ J\Jα

p jmk Processing time of job j ∈ J on machine m ∈ Mk at stage k ∈ K

τ Time units that lie between the completion times at stages one and k ∈ K ′, whose
achieving or exceeding will result in a situation-related reentry

� Suitably large number

z j,κ j−1 Reference point for all jobs j ∈ J in order to identify a situation-related re-entry (if there
is one) at stage k ∈ {max{κ j , 2}, . . . , 6}; we set z j,κ j−1 := 0

Decision variables

Cmax Makespan

C jk Completion time of job j ∈ J at stage k ∈ {κ j , . . . , 8}
C j,κ j−1 Earliest start time of job j ∈ J at production stage κ j

C�
j Completion time of job j ∈ J at the first stage if j is processed for the second time

xi jk 1, if job i ∈ J precedes job j ∈ J at stage k ∈ {3, 4, 6, 7, 8}: i < j , k ≥ max{κi , κ j }; 0,
otherwise

x̂i jkk′ 1, if job i ∈ J (currently positioned at production stage k) is processed before job j ∈ J
(currently positioned at stage k′): i < j , k, k′ ∈ {2, 5}; 0, otherwise

xθ,η
i j 1, if job i ∈ J precedes job j ∈ J at the first stage, where job i is processed for the first

(θ = 1) or the second (θ = 2) time and job j is processed for the first (η = 1) or the
second (η = 2) time: i < j ; 0, otherwise

ŷ jm 1, if job j ∈ J is assigned to machine m ∈ M1 at the first stage, but for the second time; 0,
otherwise

y jmk 1, if job j ∈ J is assigned to machine m ∈ Mk at stage k ∈ {κ j , . . . , 8}; 0, otherwise
z jk 1, if τ time units are achieved or exceeded with the completion of job j ∈ J at stage

k ∈ {max{κ j , 2}, . . . , 6}; 0, otherwise

Constraints (3) ensure that the completion time of job j at stage k > κ j (k = κ j )
is larger than or equal to the completion time (earliest start time) of j at the previous
stage (at stage k) plus the processing time of j on the chosen machine at stage k.
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C jk ≥ C j,k−1 +
∑

m∈Mk

p jmk y jmk j ∈ J ; k ∈ {κ j , . . . , 8} (3)

We assume that the jobs in a specific underground location are numbered con-
secutively. Figure 5 shows, for example, that jobs j1, . . . , j5 belong to underground
location u1 and jobs j6, j7, j8 belong to underground location u2. Moreover, sets Jα

and Jω maybe specified by Jα = { j1, j6, j9, j15, j17} and Jω = { j5, j8, j14, j16, j20}.
Consequently, equalities (4) guarantee that the completion time of job j at stage 8 is
equal to the earliest start time of the succeeding job j +1 at the first stage, where both
jobs are part of the same underground location.

C j+1,0 = C j8 j ∈ J\Jω (4)

Equalities (5) ensure that each job j is assigned to exactly onemachine at each stage
k ≥ κ j . Constraints (6)–(9) guarantee that decision variables z jk, z j,k+1, . . . , z j6 are
equal to one if the difference between the completion time of job j at the first stage
and the completion time of j at stage k ∈ {max{κ j , 2}, . . . , 6} achieves or exceeds τ

time units. Hence, a situation-related reentry occurs between stages 2 and 6 if decision
variable z j6 is equal to one. In that case, job j returns to the first stage and is there
assigned to a machine m ∈ M1 (cf. constraints (10)).

∑

m∈Mk

y jmk = 1 j ∈ J ; k ∈ {κ j , . . . , 8} (5)

τ ≤ C jk − C j1 + �(1 − z jk) j ∈ J : κ j = 1; k ∈ K ′ (6)

τ > C jk − C j1 − �z jk j ∈ J : κ j = 1; k ∈ K ′ (7)

τ ≤ C jk − Ĉ j + �(1 − z jk) j ∈ Jα : κ j > 1; k ∈ {max{κ j , 2}, . . . , 6} (8)

τ > C jk − Ĉ j − �z jk j ∈ Jα : κ j > 1; k ∈ {max{κ j , 2}, . . . , 6} (9)

z j6 =
∑

m∈M1

ŷ jm j ∈ J : κ j ≤ 6 (10)

The difference (z j,k−1 − z jk) of decision variables is equal to −1 if a situation-
related reentry appears for job j at stage k. Then, disjunctive constraints (11) and (12)
determine the completion time of the respective job j at the first stage, where j is
processed for the second time, and the completion time of job j at stage k + 1, where
j continues its production cycle afterwards.

C�
j ≥ C jk +

∑

m∈M1

p jm1 ŷ jm − �(1 + z j,k−1 − z jk) j ∈ J ; k ∈ {max{κ j , 2}, . . . , 6} (11)

C jk ≥C�
j +
∑

m∈Mk

p jmk y jmk−�(1+z j,k−2−z j,k−1) j ∈ J ; k ∈ {max{κ j +1, 3}, . . . , 7} (12)

Resource precedence relations identify the sequence in which jobs are processed
on the same machines. In order to include the characteristics of different stages (i.e.,
at stages 3, 4, 6, 7, 8 jobs are processed once, at stages 2, 5 the same machines may
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be revisited, and at stage 1 jobs may be processed twice due to a situation-related
reentry), we distinguish between three categories of constraints.

The excavation of blocks is performed in such a way that at most one job j ∈ Ju

that belongs to underground location u is processed at a specific point in time. As
a result, only jobs that belong to different underground locations, say, e.g., u and û,
compete for machines at stages k ∈ {3, 4, 6, 7, 8}. Hence, constraints (13) and (14)
specify the completion time of job j for the case in which job i precedes job j .

Cik ≥ C jk + pimk − �(2 − yimk − y jmk + xi jk) i ∈ Ju, j ∈ J û : i < j; u,

û ∈ U : u 	= û;m ∈ Mk; k ∈ {3, 4, 6, 7, 8} : k ≥ max{κi , κ j } (13)

C jk ≥ Cik + p jmk − �(3 − yimk − y jmk − xi jk) i ∈ Ju, j ∈ J û : i < j;
u, û ∈ U : u 	= û;m ∈ Mk; k ∈ {3, 4, 6, 7, 8} : k ≥ max{κi , κ j } (14)

With inequalities (15) and (16), the completion time of job j at stage k ∈ {2, 5},
where the same mobile machines are used, is determined analogously for the situation
in which job i precedes job j .

Cik ≥ C jk̃ + pimk − �(2 − yimk − y jmk̃ + x̂i jkk̃) i ∈ Ju, j ∈ J û : i < j; u,

û ∈ U : u 	= û;m ∈ Mk ∪ Mk̃; k, k̃ ∈ {2, 5} : k ≥ κi , k̃ ≥ κ j (15)

C jk̃ ≥ Cik + p jmk̃ − �(3 − yimk − y jmk̃ − x̂i jkk̃) i ∈ Ju, j ∈ J û : i < j; u,

û ∈ U : u 	= û;m ∈ Mk ∪ Mk̃; k, k̃ ∈ {2, 5} : k ≥ κi , k̃ ≥ κ j (16)

In order to determine the completion times of jobs at the first stage, four different
cases have to be considered. Inequalities (17) and (18) (inequalities (23) and (24))
state the case in which job i precedes job j and both jobs are processed for the first
(second) time. Constraints (19) and (20) (constraints (21) and (22)) specify the event
that job i precedes job j , where j (i) is processed for the first and i ( j) is processed
for the second time.

Ci1 ≥ C j1 + pim1 − �(2 − yim1 − y jm1 + x1,1i j )

m ∈ M1; i, j ∈ J : i < j, κi = κ j = 1 (17)

C j1 ≥ Ci1 + p jm1 − �(3 − yim1 − y jm1 − x1,1i j )

m ∈ M1; i, j ∈ J : i < j, κi = κ j = 1 (18)

C�
i ≥ C j1 + pim1 − �(2 − ŷim − y jm1 + x2,1i j )

m ∈ M1; i, j ∈ J : i < j, κi ≤ 6, κ j = 1 (19)

C j1 ≥ C�
i + p jm1 − �(3 − ŷim − y jm1 − x2,1i j )

m ∈ M1; i, j ∈ J : i < j, κi ≤ 6, κ j = 1 (20)

Ci1 ≥ C�
j + pim1 − �(2 − yim1 − ŷ jm + x1,2i j )

m ∈ M1; i, j ∈ J : i < j, κi = 1, κ j ≤ 6 (21)
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C�
j ≥ Ci1 + p jm1 − �(3 − yim1 − ŷ jm − x1,2i j )

m ∈ M1; i, j ∈ J : i < j, κi = 1, κ j ≤ 6 (22)

C�
i ≥ C�

j + pim1 − �(2 − ŷim − ŷ jm + x2,2i j )

m ∈ M1; i, j ∈ J : i < j, κi , κ j ≤ 6 (23)

C�
j ≥ C�

i + p jm1 − �(3 − ŷim − ŷ jm − x2,2i j )

m ∈ M1; i, j ∈ J : i < j, κi , κ j ≤ 6 (24)

Finally, constraints (25) to (32) impose the domains of decision variables.

C jk ≥ 0 j ∈ J ; k ∈ {κ j − 1, . . . , 8} (25)

C�
j ≥ 0 j ∈ J (26)

xi jk ∈ {0, 1} i, j ∈ J : i < j; k ∈ {3, 4, 6, 7, 8} : k ≥ max{κi , κ j } (27)

x̂i jkk̃ ∈ {0, 1} i, j ∈ J : i < j; k, k̃ ∈ {2, 5} : k ≥ κi , k̃ ≥ κ j (28)

xθ,η
i j ∈ {0, 1} i, j ∈ J : i < j; θ, η ∈ {1, 2} (29)

ŷ jm ∈ {0, 1} j ∈ J ; m ∈ M1 (30)

y jmk ∈ {0, 1} j ∈ J ; m ∈ Mk; k ∈ {κ j , . . . , 8} (31)

z jk ∈ {0, 1} j ∈ J ; k ∈ {max{κ j , 2}, . . . , 6} (32)

A solution of the problem can be visualized in a Gantt-chart, where Cmax :=
max j∈Jω C j8 indicates the makespan. Figure 6 depicts a Gantt-chart for a problem
instance with three underground locations, u1, u2, u3, seven jobs, j1, . . . , j7, and
(|Mk |)k∈K = (1, 2, 1, 1, 2, 1, 2, 1) machine(s) at stages 1–8. Each job is placed over
the time axis and the processing times of jobs j1, j4, . . . , j7 at production stages are
individually given. Jobs j1 and j6 perform a situation-related reentry, i.e., stage 1 is
revisited.

0

u1

6 1 7 8 j2 j3

u2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

u3

1 2 3 4 5 6 1 7 8 1 2 3 4 5 6 7 8

Cmax

τ

τ

j1

j4 j5

j6 j7

Ĉj1 Cj1,6 Cj1
Cj1,7 Cj1,8 Cj2,8 Cj3,8

Fig. 6 Feasible solution for an instance with three underground locations
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The set of first jobs, that are available at time zero, is Jα = { j1, j4, j6}with κ j1 = 6
and κ j4 = κ j6 = 1. The first stage involves only one machine and job j6 is processed
first. Hence, job j4 has towait in front of themachine until j6 is completed and j1 has to
wait until j4 is completed (the waiting times are depicted as gray boxes). Additionally,
job j4 has to wait in front of stages 6 and 8 with |M6| = |M8| = 1, until job j6 is
finished. Stage 7 involves two machines and therefore jobs j4 and j6 can be processed
simultaneously for some time units (the time units are depicted as light-gray box).
Since j6 arrives first, it is assigned to the fastest machine. Thus, j4 has to use a slower
machine and has to accept a longer duration (the additional duration is demonstrated
as hatched box). The same holds true for jobs j5 and j7; since j7 is processed on the
fastest machine at stage 5 (which is equal to stage 2), job j5 has to utilize a slower
one.

4 Improvements in modeling

In order to find exact solutions to the problem under consideration, the model pre-
sented in Sect. 3 can be tackled with standard solvers (e.g., CPLEX). Since already
for small-scale instances running times are quite long, we provide the solver with sup-
plementary knowledge such as lower and upper bounds for the makespan as well as
additional constraints (cf. Sect. 4.1–4.3). Preliminary tests have shown that the follow-
ing modeling techniques result in significant improvements in terms of computation
time and solution gap.

4.1 Initial solution and makespan upper bound

The solution process of a standard solver, which uses a branch-and-bound or branch-
and-cut algorithm, is usually faster if a feasible initial solution (i.e., a leaf of the
enumeration tree) is provided. Using the multi-start procedure described in Sect. 5.2,
we are able to determine a good initial solution (C̃, x̃, ỹ, z̃) and a corresponding upper
bound C̃max on the objective function value. Since a strong linear programming (LP)
relaxationwill benefit from choosing a small “large number” in disjunctive constraints,
we set � := C̃max.

4.2 Makespan lower bounds

Good makespan lower bounds inform about the quality of upper bounds and can serve
to prune parts of the enumeration tree. In what follows, we introduce four different
lower bounds. One specifies the time it takes at least to process blocks of an under-
ground location (lower bound LB0) and the other three determine in a stage-based
perspective a waiting time, a stagnation time as well as the time it takes at least to
process all jobs (lower bounds LB,LB, and L̂B).

Precedence constraints exist between jobs that belong to one underground location
(cf. Fig. 5). As a precedence relation for a job j ∈ Ju, with j /∈ Jα , is given by an
immediate predecessor and for a job j ∈ Ju,with j /∈ Jω, by an immediate successor,
the precedence constraints can be interpreted as “chain constraints” for underground
locations. Considering the chain constraints, a chain-based lower bound LB0 may be
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calculated by the longest time it takes to handle the chain of an underground location,
assuming that all jobs are processed on the fastest machines. Hence, we obtain

LB0 := max
u∈U

⎧
⎨

⎩
∑

j∈Ju

8∑

k=κ j

min
m∈Mk

{p jmk}
⎫
⎬

⎭ .

An “unavoidable” situation-related reentry can be integrated in LB0 by the addi-
tion of the term ϒ j minm∈M1{p jm1}, where indicator ϒ j is equal to 1, if condition∑

k∈{max{κ j ,2},...,6} minm∈Mk {p jmk} ≥ τ is satisfied for job j , and 0, otherwise. Since
the benchmark instances provided by our cooperation partner and described in Sect. 6.1
do not involve unavoidable situation-related reentries, we neglect hereafter the con-
sideration of ϒ j .

Santos et al. (1995) considered a common HFS with identical parallel machines
and computed a stage-based lower bound. In what follows, the determination of the
described stage-based lower bound is enhanced in such a way that it is suitable for
the problem under consideration with unrelated parallel machines and precedence
constraints among jobs. Further, we assume that each stage must be passed by at least
one job, i.e., at least one job j with κ j ≤ k exists for all k ∈ K . Initially, a “head”
Hjk is calculated in order to determine the minimum time that must elapse before job
j reaches stage k. The first jobs that will pass stage k are either jobs j ∈ Jα with
k ≥ κ j or jobs j + 1 (if there are any) with j ∈ Jα and k < κ j . Therefore, heads can
be calculated as follows:

Hjk :=
k−1∑

h=κ j

min
m∈Mh

{p jmh} j ∈ Jα; k ∈ {κ j , . . . , 8} (33)

Hj+1,k :=
8∑

h=κ j

min
m∈Mh

{p jmh} +
k−1∑

h=1

min
m∈Mh

{p j+1,m,h} j ∈ Jα : |Ju | ≥ 2;
k ∈ {1, . . . , κ j − 1}. (34)

Jobs j ∈ Jα with k < κ j that belong to an underground location consisting of
only one element (i.e., |Ju | = 1) must not be considered at stage k; as a result, we set
Hjk := � (i.e., the head is equal to a suitably large number).

Afterwards, a “tail” Tjk is computed that contains information about the time that
must at least elapse before a last job j ∈ Jω, departing stage k ∈ {κ j , . . . , 8}, leaves
the system. Thus, the tails are computed by

Tjk :=
8∑

h=k+1

min
m∈Mh

{p jmh}.

Again, we set Tjk := � for jobs j ∈ Jω ∩ Ju with k < κ j and |Ju | = 1.
The head- and tail-values are ordered according to non-decreasing values; let Hk(i)

and Tk(i) be the i-th smallest values. Assuming that |Mk | machines are available at
stage k, a lower bound may be specified by
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LB := max
k∈K

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎢⎢⎢

1∣∣Mk
∣∣

⎛

⎜⎜⎝Ak +
∑

j∈J
κ j≤k

min
m∈Mk

{
p jmk
}+ Bk

⎞

⎟⎟⎠

⎤

⎥⎥⎥⎥⎥

⎫
⎪⎪⎬

⎪⎪⎭

with a waiting time of Ak := ∑|Mk |
i=1 Hk(i) and a setting or stagnation time of Bk :=

∑|Mk |
i=1 Tk(i). The lower bound considers the |Mk | jobs with the smallest processing

times in the head and in the tail section, and the minimal processing times of all jobs
at stage k. Note that if less than |Mk | jobs exist, |Mk | is reduced to the number of
allocatable jobs. When dividing by |Mk |, it is assumed that there are at least |Mk |
machines at previous and subsequent stages (if fewer machines are available, times
Ak and Bk would increase).

Hidri and Haouari (2011) extended the lower bound presented in Santos et al.
(1995) by introducing different calculations of waiting and stagnation times. In order
to compute the waiting time, an interstage h is investigated, with 1 ≤ h < k. Then,
the |Mh | earliest availability times Hh(1), . . . , Hh(|Mh |) of machines at stage h are
determined. These availability times are taken into account when the |Mk | fastest jobs
μ1, . . . , μ|Mk | are assigned to the machines at stage h. The assignment is performed
according to the shortest processing time (SPT) first rule. The resulting completion
times Cμ1,h, . . . ,Cμ|Mk |,h are the flow times that must at least elapse between time

zero and the exit of job μi , i = 1, . . . , |Mk |, at stage h. For the problem at hand and
jobs j ∈ J with k > κ j , the time lag between the exit at interstage h and the start of
processing at stage k may be computed by

L jhk :=
k−1∑

l=max{κ j ,h+1}
min
m∈Ml

{p jml}.

We denote the i-th smallest value by Lhk(i). Jobs j ∈ Jα with k ≤ κ j receive a
large value, i.e., L jhk := �. Consequently, we are able to determine the waiting

time as Ahk := ∑
∣∣Mk
∣∣

i=1 (Cμi ,h + Lhk(i)). Let I be a problem instance of the HFS
scheduling problem.A corresponding symmetric instance I−1 is obtained by reversing
the ordering of stages. Both instances I and I−1 have the same optimal makespan
values and A−1

lk is a valid value for the stagnation time Bkl , k, l ∈ K : k < l ≤ 8.
Hence, a lower bound can now be computed by

LB := max
h,k,l∈K

1≤h<k<l≤8

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎢⎢⎢

1

|Mk |

⎛

⎜⎜⎝Ahk +
∑

j∈J
κ j≤k

min
m∈Mk

{p jmk} + Bkl

⎞

⎟⎟⎠

⎤

⎥⎥⎥⎥⎥

⎫
⎪⎪⎬

⎪⎪⎭
,

Additionally, Hidri and Haouari (2011) described another possibility to determine
the waiting and stagnation times. Thereby, a release date r j := Hjh is investigated
for each job j at stage h (instead of availability times for machines). The jobs are
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ordered according to non-decreasing r j -values and separated in one-time-unit blocks.
Then, these one-time-unit blocks are assigned to the existing |Mh | machines at stage
h using the shortest remaining processing time (SRPT) first rule. With the SRPT-rule,
it may happen that the one-time-unit blocks of a job are not scheduled consecutively.
For a problem instance with two jobs, one stage, two identical parallel machines, and
the data r j1 = 0, r j2 = 1, p j1,mi ,k1 = 5, p j2,mi ,k1 = 2, i = 1, 2, the assignment
of one-time-unit blocks is performed in such a way that a one-time-unit block of
j1 is scheduled at machine mi , i = 1, 2, at time t = 0. At t = 1, both jobs are
available and the remaining processing time of j1 is equal to 3 while the remaining
processing time of j2 is equal to 2. Therefore, the one-time-unit blocks of j2 are
included. Job j1 is completed at time Č j1,k1 = 4 and j2 at time Č j2,k1 = 2. The
procedure terminates iff |Mk | jobsμ1, . . . , μ|Mk | are scheduled completely. Then, the

waiting time is determined by A′
hk := ∑|Mk |

i=1 (Čμi ,h + Lhk(i)). The same bounding
procedure can be applied on the symmetric instance for computing B ′

kl and we obtain
the lower bound

L̂B := max
h,k,l∈K

1≤h<k<l≤8

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎢⎢⎢

1∣∣Mk
∣∣

⎛

⎜⎜⎝A
′
hk +
∑

j∈J
κ j≤k

min
m∈Mk

{
p jmk
}+ B ′

kl

⎞

⎟⎟⎠

⎤

⎥⎥⎥⎥⎥

⎫
⎪⎪⎬

⎪⎪⎭
.

To summarize, a stage-based lower bound LB1 for the proposed scheduling problem
in underground mining may be determined by

LB1 := max
h,k,l∈K

1≤h<k<l≤8

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎢⎢⎢

1

|Mk |

⎛

⎜⎜⎝Ahk +
∑

j∈J
κ j≤k

min
m∈Mk

{p jmk} + Bhk

⎞

⎟⎟⎠

⎤

⎥⎥⎥⎥⎥

⎫
⎪⎪⎬

⎪⎪⎭
,

with Ahk := max{Ak, Ahk, A′
hk} and Bhk := max{Bk, Bkl , B ′

kl}. Further, a good
overall lower bound LBmax can be computed as follows:

LBmax := max{LB0,LB1}. (35)

In order to illustrate the calculation of lower bounds, in particular of lower bound
LB at stage 4 (LB4 for short), we consider a mining district with 25 underground
locations u1, . . . , u25. Figure 7 depicts that locations u1, . . . , u6 involve 1–5 blocks
and locations u7, . . . , u25 involve 2 blocks (they are identical in length, processing
times, and mining progress). The production stage at which job j ∈ Jα will be
processed at the beginning of the planning period is given by κ j ≥ 1. We assume
that each stage contains exactly three identical parallel machines (i.e., |Mk | = 3 for
all k ∈ K and index m can be eliminated). Furthermore, the processing times of
job j at stages k ∈ K are identical, i.e., p j1 = · · · = p j8. Hence, index k can be
neglected in the processing times. The table in the upper part of Fig. 7 shows the job
processing times as well as the heads and tails for all relevant jobs at the fourth stage.
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u1 u2 u3 u4 u5 u6 u7 . . . u25

κj1 = 1

j1

j2

j3

j4

j5

κj6 = 1

j6

j7

κj8 = 1

j8

κj9 = 1

j9

j10

j11

κj12 = 8

j12

j13

κj14 = 7

j14

κj15 = 1

j15

j16
. . .

κj51 = 1

j51

j52

jobs j1, . . . , j5 j6, j7 j8 j9, . . . , j11 j12 j13 j14 j15, . . . , j52

pj 5 10 19 20 26 10 15 30

jobs j1 j6 j8 j9 j13 j14 j2ξ+1, ξ ∈ {7, . . . , 25}
Hj4 15 30 57 60 56 Θ 90

jobs j5 j7 j8 j11 j13 j14 j2ξ, ξ ∈ {8, . . . , 26}
Tj4 20 40 76 80 40 Θ 120

Fig. 7 Mining district with 25 underground locations u1, . . . , u25

In order to calculate the heads for jobs j1, j6, j8, j9 and j2ξ+1 with ξ ∈ {7, . . . , 25}
condition (34) must be used, the head for j13 is calculated by condition (33), i.e.,
Hj13,4 = p j12 + 3 · p j13 = 56, and the head for j14 is set to �.

Using the data, lower bound LB4 is computed by

LB4 =

⎡

⎢⎢⎢⎢⎢

1

3

⎛

⎜⎜⎝Hj1,4 + Hj6,4 + Hj13,4︸ ︷︷ ︸
A4

+
52∑

j=1
j 	=12,14

p j + Tj5,4 + Tj7,4 + Tj13,4︸ ︷︷ ︸
B4

⎞

⎟⎟⎠

⎤

⎥⎥⎥⎥⎥

=
⌈
1

3
(101 + 1274 + 100)

⌉
= 492.

By determining lower bounds LBk for all stages k ∈ K , we obtain the stage-based
lower bound LB = maxk∈K LBk = 492. Furthermore, the chain-based lower bound
can be calculated by LB0 = p j15 · 8 + p j16 · 8 = 480. Just for the sake of more
information: LB = 483, L̂B = 484, and thus LBmax = 492.

4.3 Domain reductions and additional constraints

A proper definition of domains of continuous decision variables helps the solver to
early identify an empty solution space at an enumeration node. We consider decision
variables C jk, j ∈ J, k ∈ {κ j , . . . , 8}, and C�

j , j ∈ J, (cf. constraints (25) with
k ≥ κ j instead of k ≥ κ j − 1 and (26)) and compute tighter domains. The earliest
completion time EC jk of job j ∈ Ju at stage k ∈ {κ j , . . . , 8}, can be obtained by

EC jk :=
∑

i∈Ju
i< j

8∑

h=κ j

min
m∈Mh

{pimh} +
k∑

h=κ j

min
m∈Mh

{p jmh}.
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With a predefined upper bound C̃max, the latest completion time LC jk of job j at stage
k ∈ {κ j , . . . , 8}, may be computed as follows:

LC jk := C̃max −
∑

i∈Ju
j<i

∑

h∈K
min
m∈Mh

{pimh} −
8∑

h=k+1

min
m∈Mh

{p jmh}.

Thus, we obtain the following stronger constraints:

EC jk ≤ C jk ≤ LC jk j ∈ J ; k ∈ {κ j , . . . , 8} (36)

EC j2 + min
m∈M1

{p jm1} ≤ C�
j ≤ LC j6 + min

m∈M1
{p jm1} j ∈ J : κ j ∈ {1, 2} (37)

EC j,κ j + min
m∈M1

{p jm1} ≤ C�
j ≤ LC j6 + min

m∈M1
{p jm1} j ∈ J : 3 ≤ κ j ≤ 6. (38)

Additional constraints in the model can influence the behavior, scope, and interac-
tion of the solver solution process. In particular, achieving a better result in terms of
computation time is possible by adding the constraints

8∑

k=κ j

∑

m∈Mk

y jmk = (8 − κ j ) + 1 j ∈ J (39)

∑

k∈{3,4,6,7,8}
k≥max{κi ,κ j }

xi jk ≤ min{γi , γ j } i, j ∈ J : i < j, where γi = 1(2 | 3 | 4 | 5)
if κi = 8(7 | 6 or 5 | 4 | 3, 2 or 1).

(40)

Equalities (39) count the number of assignments to machines at stages. Since each
job must be assigned to exactly one machine at a stage, the number of assignments
must be equal to (8− κ j ) + 1. If two jobs are processed on the same machine at stage
k ∈ {3, 4, 6, 7, 8}, they must have the order “i before j” or “ j before i”. Hence, the
number of those resource precedence relations between jobs i and j with κi = κ j = 1
is at most 5, and the number decreases if one job, i.e., i or j , starts at a later stage at
the beginning of the planning period (cf. inequalities (40)).

5 Solution procedure

In order to solve medium- and large-scale instances of the proposed underground
mine scheduling problem, a construction procedure, which is based on priority rules,
has been developed (cf. Sect. 5.1). The choice of a construction procedure or pri-
ority rule-based method, respectively, has been inspired by the promising results
provided by Choi et al. (2005), Ruiz and Maroto (2006), Ruiz et al. (2008), Lee
(2009), and Li et al. (2013). The construction procedure is embedded in a multi-
start algorithm in order to generate different near-optimal solutions (cf. Sect. 5.2).
Since the basic version of the construction procedure does not integrate conscious
delays or waiting times in front of production stages, a more sophisticated method
is developed in a second step (cf. Sect. 5.3). In addition, motivated by Kreutz et al.
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(2000), Baykasoǧlu et al. (2014), and Rossi et al. (2015), a modified version of the
Giffler–Thompson algorithm is considered as a third heuristic solution procedure (cf.
Sect. 5.4).

5.1 Construction procedure

The construction procedure schedules, at specific discrete points in time, all jobs that
are eligible with respect to precedence and resource constraints. Hence, the approach
has some similarity to the classical parallel schedule-generation scheme provided by
Kelley (1963) as well as Bedworth and Bailey (1982), or to the corresponding priority
rule-based method described by Kolisch (1996). The structure of the construction
procedure is based on an initialization, an outer loop, and an inner loop.

In the initialization, a sequence of machines at stages k ∈ K is determined for each
job j ∈ J . Correspondingly, we order themachines 1, . . . , |Mk | at stage k according to
non-decreasing processing times; machine m jk(i) denotes the i-th fastest machine for
job j at stage k. Afterwards, jobs j ∈ Jα that are first jobs in underground locations
are considered, since only these jobs are available at time zero. Depending on the
mining progress, each job j ∈ Jα will be processed at stage κ j at the beginning of
the planning period. Thus, j is inserted in an artificial buffer Bκ j in front of stage
κ j .

In each iteration of the outer loop, the schedule time t∗ ≥ 0 is specified, i.e., the
earliest point in time at which a job can be feasibly scheduled on an idle machine
at some stage k∗. Note that schedule times t∗ are monotonically non-decreasing. In
the event that several jobs can be scheduled at t∗ at different stages, stage k∗ with
the smallest index number is chosen. The buffer Bk∗ in front of stage k∗ includes all
unscheduled jobs that are candidates for scheduling.

The inner loopmainly consists of two phases: job selection andmachine allocation.
In the job selection, a priority-rule is used in order to determine job j∗ ∈ Bk∗ to be
scheduled next. A large number of different priority rules have been examined in the
literature for scheduling problems (see, e.g., Panwalkar and Iskander 1977; Haupt
1989). Preliminary tests have shown that the following priority rules are efficient for
the problem under consideration:

FIFO-rule (first in first out), i.e., choice of job j∗ with
max
j∈Bk∗

{ 1
t j

}, where t j is the arrival time of job j in buffer Bk∗ ; if job j arrives at time

zero, we set t j := 1.
MWR-rule (most work remaining first), i.e., choice of job j∗ with

max
j∈Bk∗

⎧
⎪⎪⎨

⎪⎪⎩

8∑

k=k∗
min
m∈Mk

{p jmk} +
∑

i∈Ju
j<i∧ j∈Ju

∑

k∈K
min
m∈Mk

{pimk}

⎫
⎪⎪⎬

⎪⎪⎭
.

Let � ⊆ Mk∗
be the set of idle machines at current stage k∗. In the machine

allocation phase, job j∗ is assigned to an idle machine from set �. Two alternative
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j∗ π(j∗) = 100, [1, 2, 3, 4, 5]

jI π(jI) = 200, [1, 3, 2, 4, 5]

jII π(jII) = 150, [4, 2, 1, 5, 3]

jIII π(jIII) = 120, [4, 5, 1, 2, 3]

1

2

3

4

5

•

stage k∗, |Mk∗ | = 5, |Ω| = 4

Fig. 8 Assignment Method [b] for a problem instance with five machines at stage k∗

assignment methods are implemented. In the first (Method [a]), job j∗ is assigned
to the fastest idle machine; i.e., j∗ is assigned to idle machine m j∗k∗(i), where i is
as small as possible. In the second method (Method [b]), j∗ is assigned to an idle
machine (that is not necessarily the fastest) with respect to arriving jobs with a higher
priority value than j∗. Thereby, all jobs, which will arrive at stage k∗ in time interval
[t∗, t∗+ p j∗,m j∗k∗(i),k∗), wherem j∗k∗(i) is idle and i as small as possible, are considered
in order to anticipate a better assignment for these jobs at a subsequent point in time.
Note that if more than |�| − 1 such jobs exist, the |�| − 1 best, according to the
priority values, are selected. We assume that the respective jobs are ordered in such a
way that the first job, jI, has the highest, the second job, jII, the second highest etc.
priority value. In this order, the jobs are temporarily assigned to machines, which are
then marked as “blocked”. In order to incorporate that a machine, which is in use at
schedule time t∗, could possibly be idle at time t∗ + 1, all machines at stage k∗ (idle
or not idle) are taken into account. For jobs jI, jII etc., the fastest machine, which is
not blocked, is chosen. In the last step, job j∗ is assigned to machine m j∗k∗(i), where
i is as small as possible, idle and not blocked.

Figure 8 exemplifies assignmentMethod [b] for a problem instance with |Mk∗ | = 5
machines at stage k∗, four of them are idle and machine 4 (in gray color) is currently in
use. The priority values π( j) as well as the machine orders [m jk∗(1), . . . ,m jk∗(5)] are
depicted next to the respective jobs j ∈ { j∗, jI, jII, jIII}. Job j∗ is selected in the job
selection phase and jobs jI, jII, and jIII with a higher priority value will arrive until the
processing time of job j∗ on machine m j∗k∗(1) = 1 at stage k∗ has elapsed. Job jI is
considered first in the machine allocation phase (the priority value is the highest) and
is temporarily assigned to machine 1 (illustrated with a dashed arc). Consequently,
machine 1 is marked as blocked. Then, job jII is temporarily assigned to machine 4
and job jIII to machine 5 (because 4 is blocked). Finally, job j∗ is actually assigned
to machine 2 (illustrated with a continuous arc) that is idle and not blocked.

After the machine allocation phase, the completion time C̃ j∗,k∗ ≥ 0 of job j∗ at
stage k∗ can be computed. Furthermore, job j∗ must be included in the “next” buffer
in front of a stage. Thereby, we distinguish between the following if-statements:

(1) if job j∗ performs the regular production cycle without a situation-related reentry
and k∗ ∈ K\{8} then insert j∗ in buffer Bk∗+1 in front of stage k∗ + 1.
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(2) if a situation-related reentry is identified for job j∗ at stage k∗ ∈ K ′ then insert
j∗ in buffer B1 and store pair ( j∗, k∗).

(3) if job j∗ is completed at the first stage (k∗ = 1) for the second time, i.e., j∗ is part
of a pair ( j∗, k′), k′ ∈ K ′, as a result of if-statement (2) then insert j∗ in buffer
Bk′+1.

(4) if k∗ = 8 then set j∗ as “finished,” initialize succeeding job j∗ + 1 (if existing)
in the respective underground location, and insert j∗ + 1 in buffer B1.

The job selection and themachine allocation phases are solved at stage k∗ as long as
buffer Bk∗ is not empty and further idle machines exist (inner loop of the procedure).
The algorithm terminates if all jobs are set as finished. The corresponding algorithm
is depicted in Algorithm 1.

Algorithm 1 Construction procedure
Input: problem instance I , priority rule
Specification of machines m jk(i) for all j ∈ J, k ∈ K , i = 1, . . . , |Mk | {Initialization}
Insertion of jobs j ∈ Jα in corresponding buffers Bκ j
while a job exists that is not set as “finished” do {Outer loop}

Specification of schedule time t∗ ≥ 0
Determination of stage k∗ with idle machine(s) at time t∗ and with Bk∗ 	= ∅
while buffer Bk∗ 	= ∅ and an idle machine exists at stage k∗ do {Inner loop}

Job selection: choice of job j∗ with highest priority value to be scheduled
Machine allocation: assignment of job j∗ to

[a] idle machine m j∗k∗(i), where i is as small as possible or
[b] idle machine m j∗k∗(i), where i is as small as possible and not marked as
“blocked”

Determination of C̃ j∗,k∗
Insertion of j∗ in the “next” buffer according to if-statements (1)–(4)

return solution (C̃, x̃, ỹ, z̃) and upper bound C̃max.

5.2 Multi-start algorithm

The construction procedure is embedded in amulti-start algorithm, where the priority
values are used in order to determine selection probabilities for jobs. Particularly,
within the job selection phase, the priority values of jobs are employed directly or
in a position-based fashion. In the first case, we define π( j) as the priority value of
job j . In the second case, we order all jobs in buffer Bk∗ according to non-decreasing
priority values and set π( j) := σ if job j is on position σ in the respective list. The
selection probability ψ j of job j ∈ Bk∗ is then computed by

ψ j := π( j)∑
i∈Bk∗ π(i)

. (41)

Afterwards, job j∗ is chosen by the roulette-wheel selection, where each job occupies
an area on the roulette wheel proportional to itsψ-value (Michalewicz and Fogel 2004,
Sect. 6.1). The algorithm terminates once a stopping criterion is satisfied, e.g., after a
prescribed computation time or a prescribed number of generated solutions.
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5.3 Advanced multi-start algorithm

The multi-start algorithm (based on the construction procedure presented in Sect. 5.1)
generates a set of so-called non-delay schedules. A schedule is termed non-delay if
no job, which can be scheduled with respect to precedence and resource constraints,
waits in front of a stage. (Baker 1974, Sect. 7.2) proved that the set of non-delay
schedules must not contain an optimal solution for flow and job shop scheduling
problems with regular objective functions and more than three machines. Moreover,
Baker (1974) showed that the set of active schedules contains at least one optimal
solution. A schedule is termed active if it is not possible to construct another schedule,
through changes in the order of processing on the machines, with at least one job at
a stage finishing earlier and no job finishing later. A non-delay schedule is always
active but the reverse is not necessarily true (Pinedo 2008, Sect. 2.3). For the problem
under consideration, where unrelated parallel machines exist, a non-delay schedule
must not be active. This is due to the fact that an available job can be finished earlier
on a machine that is currently occupied instead of being scheduled on an idle machine.

In order to illustrate the difference between non-delay aswell as active (and not non-
delay) schedules, we consider a system with two jobs, j1, j2 belonging to different
underground locations, u1, u2, that have to be scheduled at stages 7 and 8, where
|M7| = |M8| = 1. Job j1 is in buffer B7 at schedule time t∗ and job j2 will arrive
in B7 at time t∗ + 1. The processing times are p j1,7 = 5, p j1,8 = 1, p j2,7 = 2, and
p j2,8 = 3 (index m can be eliminated).

A non-delay schedule is depicted on the left hand side of Fig. 9, where j1 starts
its processing immediately at time t∗ at stage 7. Thus, j2 has to wait four time units
(waiting time is given as a gray box) until the machine at stage 7 becomes idle. Both
jobs can be assigned to the machine at stage 8 without waiting times and the resulting
makespan is equal to t∗ + 10. An active, but not non-delay, schedule is given on the
right hand side of Fig. 9, where the order of processing at stages is reversed. Thus, job
j1 must accept a conscious waiting time of one time unit (demonstrated as a hatched
box), i.e., the machine is kept idle for one time unit. In spite of the consideration
of a conscious delay, the makespan is decreased to t∗ + 9 (obviously an optimal
solution).

The example demonstrates the usefulness of conscious delays or waiting times
of jobs in front of stages when regarding the makespan. Therefore, the algorithm
presented in Sects. 5.1 and 5.2 is enhanced so that the resulting advanced multi-start
algorithm determines active schedules that must not be necessarily non-delay.

t∗ t∗+10

u1

u2

· · · 7 8

· · · 7 8

j1

j2

t∗ t∗+9

u1

u2

· · · 7 8

· · · 7 8

j1

j2

Fig. 9 Non-delay schedulewithCmax = t∗+10 and active, but not non-delay, schedulewithCmax = t∗+9
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In order to integrate conscious delays of jobs in front of stages, the job selection
phase is adapted. Let Pk∗ be the set of jobs that are in process at schedule time t∗ and
that will be included in buffer Bk∗ , after processing at their current stage, according
to if-statements (1)–(4). In a first step, set Bk∗ is extended to set Ek∗ := Bk∗ ∪ Pk∗
of eligible jobs. The minimum completion time of a job in Ek∗ can be calculated by
δ(t∗) := min j∈Ek∗ minm∈Mk∗ {C jmk∗}, whereC jmk∗ is the earliest possible completion
time of job j on machinem ∈ Mk∗

at stage k∗. Note that the δ(t∗)-value is determined
by job j̃ ∈ Ek∗ on machine m̃. We set

δ′(t∗) := δ(t∗) − (1 − �) p j̃m̃k∗ ,

with � ∈ (0, 1]. In order to ensure that no job in Ek∗ will be started at time δ′(t∗)
or later, the set of eligible jobs is updated in a second step. Let S jk∗ be the earliest
possible start time of job j at stage k∗. Then, we receive

E ′
k∗ := Ek∗\{ j ∈ Ek∗ | S jk∗ ≥ δ′(t∗)}. (42)

In the machine allocation phase, again two alternative assignment methods are
implemented. In the first (Method [c]), job j∗ ∈ E ′

k∗ is assigned to machine m∗ that
can finish j∗ as early as possible. In the second method (Method [d]), a priority value
for machine m ∈ Mk∗

is defined as the completion time of j∗ on machine m at stage
k∗, i.e., π(m) := C j∗mk∗ . The selection probability ψm of machinem ∈ Mk∗

can then
be computed by

ψm := 1/π(m)∑
m∈Mk∗ 1/π(m)

. (43)

The resulting inner loop of the multi-start algorithm is described in Algorithm 2.

Algorithm 2 Inner loop of the advanced multi-start algorithm
while buffer Bk∗ 	= ∅ and an idle machine exists at stage k∗ do {Inner loop}

Job selection: choice of job j∗ from set E ′
k∗ (cf. condition (42)) using the roulette-

wheel selection (cf. condition (41))
Machine allocation: assignment of job j∗ to

[c] machine m∗ that can finish j∗ as early as possible, or
[d] machine m∗ specified by the roulette-wheel selection (cf. condition (43))

Determination of C̃ j∗,k∗
Insertion of j∗ in the “next” buffer according to if-statements (1)–(4)

Note that it is not ensured that all active schedules can be generated in the course
of the procedure, since it is possible that a job at stage k∗ − 2 (which is not an ele-
ment of Ek∗ ) causes the minimum completion time at stage k∗. Moreover, assignment
Method [d] can lead on the one hand to schedules that are not active, but on the other
hand to active schedules that could not be generated by assignment Method [c].

In order to show different schedules that can be generated by the advanced multi-
start algorithm, the following example is considered. We assume that only two jobs
j1 and j2 are not set as “finished” at schedule time t∗. Job j2 is currently in process
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at stage 6 and will be completed at C̃ j2,6 = t∗ + 5. Job j1 is in buffer B8 and both
machines at stage 8 (i.e., |M8| = 2) are idle. Hence, E ′

8 = { j1} holds and due to
p j1,m1,8 = 180 as well as p j1,m2,8 = 190, j1 is assigned to the first machine (cf.
assignment Method [c]). This leads to C̃ j1,8 = t∗ + 180. Afterwards, j2 is scheduled
at stage 7 (|M7| = 1) with C̃ j2,7 = t∗+20. Given the processing times p j2,m1,8 = 140
and p j2,m2,8 = 180, j2 is finally processed on the second machine at stage 8 (note
that the first machine is occupied by j1). The makespan can then be calculated by
Cmax = C̃ j2,8 = (t∗ + 20) + 180 = t∗ + 200. For the case in which Method [d] is
applied, j1 could also be assigned to the second machine at stage 8 which results in
C̃ j1,8 = t∗ +190. Assuming that j2 is then assigned to the first machine at stage 8, we
get C̃ j2,8 = (t∗ +20)+140 = t∗ +160 and a reduced makespan of Cmax = t∗ +190.

5.4 Modified Giffler–Thompson procedure

A systematic approach for generating active schedules for production scheduling
problems is presented by Giffler and Thompson (1960), the Giffler–Thompson (GT)
procedure. In what follows, a modified version of the GT-procedure is applied, where
the concept of a schedule time t∗ is not used. In each iteration, the completion times
of all eligible jobs j ∈ Ek on machines m ∈ Mk at each stage k ∈ K are determined.
The minimum completion time can then be calculated by

δ′′ := min
k∈K min

j∈Ek

min
m∈Mk

{C jmk}. (44)

Note that the δ′′-value is determined by stage k∗ and job j̃ ∈ Ek∗ on machine m̃. In
order to generate active schedules, the set of eligible jobs Ek∗ at stage k∗ must be
reduced as follows:

E ′
k∗ := Ek∗\{ j ∈ Ek∗ | S jk∗ ≥ δ′′ − (1 − �) p j̃m̃k∗}, (45)

with � ∈ (0, 1]. Afterwards, a job j∗ ∈ E ′
k∗ will be chosen by the roulette-wheel

selection (cf. condition (41)) and will be assigned to machine m∗ that can finish j∗
as early as possible. The algorithm terminates if all jobs are set as finished. The
corresponding algorithm is depicted in Algorithm 3.

Let us consider the example described in Sect. 5.3 again. The minimum completion
time is determined by job j2 ∈ E7 and we get δ′′ := t∗ + 20. Consequently, j2 is
assigned to the machine at stage 7. In the following iteration, both jobs are eligible,
i.e., E8 = { j1, j2}. Within the job selection phase, both jobs have a positive selection
probability and, thus, both makespans Cmax = t∗ + 190 and Cmax = t∗ + 200 can be
generated.

6 Computational study

This section covers the results of an extensive computational study that was conducted
in order to investigate the performance of the presented solution methods. We start
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Algorithm 3Modified GT-procedure
Input: problem instance I , priority rule
Insertion of jobs j ∈ Jα in corresponding buffers Bκ j
while a job exists that is not set as “finished” do

Specification of δ′′ with k∗, j̃ and m̃ (cf. condition (44))
Job selection: choice of job j∗ ∈ E ′

k∗ (cf. condition (45)) using the roulette-
wheel selection (cf. condition (41))
Machine allocation: assignment of job j∗ to machine m∗ that can finish j∗ as early
as possible
Determination of C̃ j∗k∗
Insertion of j∗ in the “next” buffer according to if-statements (1)–(4)

return solution (C̃, x̃, ỹ, z̃) and upper bound C̃max.

by describing the composition and generation of problem instances (cf. Sect. 6.1). In
our performance analysis, we used GAMS 24.0 to model and CPLEX 12.6 to solve
small-scale instances to optimality. Moreover, medium- and large-scale instances are
tackled by the basic and advancedmulti-start aswell as themodifiedGiffler–Thompson
algorithm (cf. Sect. 6.2). All tests are executed on an Intel i7X990@3.47GHzmachine
with 24 GB RAM. The algorithms are implemented in C++ and compiled under MS
Visual Studio 2010.

6.1 Benchmark instances

The computational tests have been performed on 600 randomly generated instances
that are derived from real-world data provided by our cooperation partner. The under-
ground mine under consideration consists of several mining districts, where every
district is equipped with a predefined machine fleet (Fig. 4 shows realistic numbers of
machine types for a typical potash mine). Each mining district is composed of “tipple
areas,” where a tipple area involves 2–10 underground locations, which provide the
associated tipple with crude material. The length of underground locations (i.e., the
number of jobs in a chain) that has to be extracted within a given planning period (e.g.,
month) depends, among other factors, on the depth of excavation as well as on the salt
face characteristics (i.e., composition of crude salt, quality of potash). The instances
comprise 30–240 jobs and consist of 5–30 underground locations. Hence, our test
set covers a wide range of possible ground plans for mining districts. We distinguish
between instances with an identical number of jobs per underground location and
instances with a diverse number, where the number varies within a predefined range.
Although a steady and consistent mining progress is preferred that results in identical
chain lengths, both situations may occur in underground mining, since excavations
may be perturbed due to machine breakdowns or other technical failures and diverse
chain lengths appear. Furthermore, we consider five types of machine arrangements:
exactly one (two, or three) machine(s) per stage, or 1–2 (1–3) machines per stage,
where the number is randomly determined. Note that instances with only one machine
per stage can be regarded as baseline scenarios that typically do not exist in prac-
tice. Table 2 shows the different test sets with their specific characteristics. For each
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Table 2 Detailed information on test sets used in the performance analysis

Test set |J | |U | Identical Diverse |Mk |
1 30 5 6 1–8 1 2 3 1–2 1–3

2 60 10 6 3–9 1 2 3 1–2 1–3

3 120 20 6 3–9 1 2 3 1–2 1–3

4 120 15 8 6–10 1 2 3 1–2 1–3

5 240 30 8 6–10 1 2 3 1–2 1–3

6 240 20 12 8–16 1 2 3 1–2 1–3

combination of identical and diverse chain length as well as machine arrangement, 10
instances were generated.

The processing time p jmk of job j on machine m is defined randomly within the
range 85–105 (min) for stage k = 1 and within the ranges 30–45, 120–135, 60–70,
40–55, 165–200, 100–130, 130–250 for stages k = 2, 3, 4, 5, 6, 7, 8. Thus, a block
excavation needs approximately 1000 min non-stop working time at the salt face, i.e.,
it can be executed within three 8-h work shifts. By contrast, our cooperation partner
currently needs 13 work shifts for an excavation; 9 work shifts are the target value of
our partner, derived by the simple assumption that each step of the production cycle
lasts exactly one work shift plus one backup shift. Considering a smooth workflow,
test sets 1 to 3 refer to a planning period of one month and test sets 4 to 6 to a planning
period of two months.

6.2 Performance analysis

We begin our analysis by considering small- and medium-scale instances with up
to 120 jobs. Each instance is solved using model (1)–(32), plus stronger constraints
(36)–(38), as well as valid inequalities (39) and (40). In order to improve the bounding
accuracy and to speed up the solver, a constraint Cmax ≥ LBmax as well as mixed-
integer rounding cuts provided by CPLEX are added. Furthermore, an initial solution
(C̃, x̃, ỹ, z̃) is given to the solver, which is generated by the basic multi-start algorithm
with priority rule “Random”, where the job to be scheduled next is selected randomly,
and a stopping criterion of 1000 generated solutions. Since the problem under consid-
eration isNP-hard and therefore difficult to solve to optimality, we used a maximum
computation time of |J | minutes after which the best solution found is returned.

Table 3 shows the computational results, where the different test sets are given
by the names |J |_|U |_|Mk | in order to demonstrate the impact of numbers of jobs,
underground locations, and machines per stage. In column “#Opt” (“#Feas”), the
number of instances solved to optimality (feasibility, but not to optimality) within
the time limit is given. Column tcpu displays the average computation times (s) for
all optimally solved instances. Finally, column “Gap1” shows the average gap (%)
between the best integer solution UBMIP and the best lower bound LBMIP found by
the solver, i.e., we calculate UBMIP−LBMIP

LBMIP · 100% for each instance and obtain Gap1

by arithmetic averaging. Analogously, “Gap2” describes the average gap (%) between
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Table 3 Computational results for the MIP-model

Identical Diverse

#Opt #Feas tcpu Gap1 Gap2 #Opt #Feas tcpu Gap1 Gap2

30_5_1 10 0 91.36 0.00 4.10 10 0 18.46 0.00 1.80

30_5_2 1 9 10.30 1.59 4.43 10 0 7.02 0.00 0.30

30_5_3 2 8 19.99 1.71 2.67 8 2 69.46 0.42 0.84

30_5_1–2 10 0 438.93 0.00 3.06 10 0 102.30 0.00 1.46

30_5_1–3 8 2 215.14 0.45 3.51 10 0 38.46 0.00 1.50

60_10_1 6 4 5.03 0.69 0.69 4 6 750.21 0.88 0.88

60_10_2 0 10 – 7.98 7.98 0 10 – 5.70 5.80

60_10_3 0 10 – 9.34 10.47 6 4 1369.04 0.59 0.65

60_10_1–2 6 4 170.72 0.41 0.41 3 7 3.54 2.57 2.68

60_10_1–3 4 6 3.85 0.72 0.72 3 7 3.77 4.07 4.07

120_20_1 6 4 1148.55 0.31 0.31 6 4 7.37 0.13 0.13

120_20_2 0 10 – 9.39 9.39 0 10 – 12.32 12.32

120_20_3 0 10 – 16.71 16.71 0 10 – 26.87 26.90

120_20_1–2 4 6 8.21 0.15 0.15 5 5 7.94 2.04 2.04

120_20_1–3 3 7 8.93 1.28 1.28 3 7 9.31 1.35 1.35

120_15_1 4 6 6.45 0.62 0.62 5 5 6.15 0.47 0.47

120_15_2 0 10 – 9.38 9.38 0 10 – 12.27 12.27

120_15_3 0 10 – 15.50 15.50 0 10 – 16.77 17.03

120_15_1–2 3 7 8.85 0.34 0.34 2 8 8.68 1.56 1.56

120_15_1–3 3 7 9.46 2.29 2.29 3 7 7.97 1.40 1.40

UBMIP and the best lower bound LBmax found by condition (35). Note that 0% is
included in the average gap-calculation if an instance is solved to proven optimality.

The model formulation performs well for small-scale instances with 30 jobs. In
particular, most instances with 1, 1–2, or 1–3 machines per stage are solved to proven
optimality. For the remaining instances with |J | = 30 and two or three machines per
stage, the average Gap1-values given by the solver are relatively small (lower than
2%). The results for instances with 60 or 120 jobs are not as good as expected. Less
than a third of these instances are solved to optimality within the time limit and the
average Gap1-values achieve up to 26.87%. Particularly, instances with two or three
machines per stage perform poorly. Here, the relatively large number of machines
allows jobs to quickly pass through the system, where several job sequences result
in good makespans, i.e., in (near-)optimal solutions. Therefore, the effort to prove an
optimal solution is significantly higher than for instances with, e.g., only one machine
per stage. Furthermore, the results show that instances with |J | = 120 and |U | = 15
are harder to solve than instances with |J | = 120 and |U | = 20. The same holds to
be true for instances with an identical number of jobs per underground location and a
diverse number. The solver finds optimal solutions for 35%of all “identical”-instances
and for 44% of all “diverse”-instances. These results emerge from a different number
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Table 4 Number of instances for which the best-known solution is jointly or exclusively found

Number of best-known solutions found Number of best-known solutions exclusively found

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

30_5 66 63 65 66 66 65 0 0 0 0 0 34

60_10 56 51 46 60 64 64 6 2 1 4 11 22

120_20 42 41 47 61 52 67 1 0 7 12 5 25

120_15 31 30 33 53 54 61 3 2 3 14 18 25

240_30 40 39 41 62 61 53 1 0 2 20 19 15

240_20 36 35 38 62 66 56 1 1 2 14 22 14

of constraints (13)–(16), which are generated for all jobs i ∈ Ju and j ∈ J û with
i < j, u, û ∈ U, and u 	= û. Obviously, a large number of constraints (in instances
with |U | = 20 and in “diverse”-instances) supports the solver during the branch-and-
bound algorithm. Finally, a comparison of Gap1- and Gap2-values demonstrate that
the solver is often not in the position to increase the given lower bound LBmax.

In order to analyze the effects of modeling techniques described in Sect. 4, each
instance with 30 jobs is solved using only model (1)–(32). In comparison to the results
presented in Table 3, the outcomes are significantly worse; 68 instances (instead of
79 instances) are solved to proven optimality. Furthermore, the average computation
times increased by 41% and the average solution gaps increased from 0.42 to 1.08%.

We continue our analysis by considering all instances with up to 240 jobs. Each
instance is solved with the basic multi-start algorithm presented in Sects. 5.1 and 5.2
by using the following combinations of priority-rules and assignment methods:

(1) Random-rule, where job j∗ ∈ Bk∗ is selected randomly,
(2) FIFO-rule and assignment Method [a],
(3) FIFO-rule (position-based) and assignment Method [a],
(4) MWR-rule and assignment Method [a],
(5) MWR-rule (position-based) and assignment Method [a],
(6) MWR-rule and assignment Method [b].

For each setting (1)–(6), 10,000 solutions are generated. Hence, the algorithm termi-
nates after 60,000 solutions and returns the best (non-delay) solution found so far. Note
that settings (4) and (6) are equal for instances with exactly one machine per stage,
and the execution of assignment Method [b] is only suitable for the MWR-rule. In
order to illustrate that all chosen settings generate best-known solutions, we consider
each setting and count the number of instances for which the best-known solution by
multi-start is found or exclusively found.

Table 4 shows the results. Since the highest value in each cell could be equal to 100,
the numbers of best-known solutions found are quite large (in the interval [30,67]).
For the case in which a best-known solution is exclusively found, settings (4)–(6)
perform best (the maximum value per column lies in the interval [20,34]). As the
number of jobs in underground locations do not influence that much the results of

123



Scheduling in potash mining 395

Table 5 Comparison of MIP-model and basic multi-start algorithm

tcpu Gap3 MS = MIP MS < MIP MS > MIP dev<0 dev>0

30_5_1 63.35 6.04 3 0 17 – 3.61

30_5_2 59.70 3.63 5 0 15 – 1.63

30_5_3 58.90 2.86 5 0 15 – 1.43

30_5_1–2 62.10 4.51 5 0 15 – 2.95

30_5_1–3 61.90 4.26 6 0 14 – 2.45

60_10_1 149.70 0.75 14 5 1 0.19 0.31

60_10_2 126.55 6.91 0 11 9 0.94 1.26

60_10_3 114.80 5.83 6 5 9 0.74 1.00

60_10_1–2 137.00 1.52 11 5 4 0.57 0.62

60_10_1–3 137.00 1.92 11 7 2 1.42 0.58

120_20_1 393.25 0.13 12 8 0 0.22 –

120_20_2 341.60 7.42 0 20 0 3.08 –

120_20_3 309.50 16.20 0 20 0 4.49 –

120_20_1–2 336.90 0.82 11 8 1 0.74 0.81

120_20_1–3 316.35 0.93 6 11 3 0.73 0.31

120_15_1 375.45 0.38 8 10 2 0.34 0.05

120_15_2 316.90 7.70 0 20 0 2.80 –

120_15_3 288.60 12.99 0 20 0 2.81 –

120_15_1–2 336.25 0.64 7 12 1 0.51 0.36

120_15_1–3 317.05 1.31 6 11 3 1.01 0.45

multi-start, a further distinction between instances of types “identical” and “diverse”
is not considered.

Table 5 summarizes the results obtained by comparing the MIP- and the multi-start
solutions. In column tcpu the average computation times (s) of themulti-start (MS) algo-
rithm are given. Column “Gap3” shows the average gap (%) between the best integer
solution UBMS found by multi-start and the lower bound LBmax. Furthermore, col-
umn “MS = MIP” (“MS<MIP”, “MS>MIP”) indicates the number of solutions for
which the heuristic value is equal to (smaller, larger than) the MIP-solution. Columns
“dev<0” and “dev>0” depict the corresponding average negative and positive devia-
tions (%), i.e., we calculate UBMIP−UBMS

UBMIP · 100% as well as UBMS−UBMIP

UBMIP · 100% and
obtain dev<0 as well as dev>0 by arithmetic averaging.

The multi-start algorithm offers the advantage of fast run times (lower than 7 min
for instances with 120 jobs) along with good results. For small-scale instances with
30 jobs, where the MIP-model usually finds the optimal solution within the time limit,
the results of multi-start are slightly poorer than the results of CPLEX. However,
both methods are generally able to produce the same objective function values for
medium-scale instances with 60 jobs. For instances with 120 jobs, the multi-start
algorithm performs best. By comparing the Gap3-values to the Gap2-values in Table 3,
it becomes apparent that the values decrease for large-scale instances. This fact also
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Table 6 Comparison of MIP-model and advanced multi-start algorithm

tcpu Gap3 M̃S = MIP M̃S < MIP M̃S > MIP dev<0 dev>0

30_5_1 25.40 3.54 9 0 11 – 1.07

30_5_2 25.00 2.87 2 0 18 – 0.54

30_5_3 25.10 2.24 4 0 16 – 0.60

30_5_1–2 25.25 2.71 9 0 11 – 0.80

30_5_1–3 25.15 3.00 6 0 14 – 0.68

60_10_1 75.10 0.71 15 5 0 0.28 –

60_10_2 61.70 5.62 0 17 3 1.51 0.80

60_10_3 53.30 5.48 0 12 8 0.64 0.84

60_10_1–2 70.30 1.34 12 7 1 0.60 0.29

60_10_1–3 70.05 1.70 12 8 0 1.61 –

120_20_1 282.05 0.11 12 8 0 0.28 –

120_20_2 233.45 5.32 0 20 0 4.97 –

120_20_3 216.70 11.58 0 20 0 8.31 –

120_20_1–2 228.70 0.49 10 10 0 1.12 –

120_20_1–3 215.55 0.74 7 13 0 0.82 –

120_15_1 254.40 0.38 9 11 0 0.31 –

120_15_2 208.35 5.44 0 20 0 4.84 –

120_15_3 199.80 9.91 0 20 0 5.46 –

120_15_1–2 222.85 0.45 7 13 0 0.70 –

120_15_1–3 210.65 0.78 6 14 0 1.40 –

emphasizes the efficiency of ourmulti-start algorithm for realistic instances.Moreover,
the average negative as well as the positive deviations are approximately 1.9%.

In order to integrate conscious delays and to generate active and not necessarily non-
delay schedules, each instance is solved by the advanced multi-start and the modified
Giffler–Thompson algorithm (cf. Sect. 5.3–5.4). Thereby, the following priority-rules
are used:

(i) Random-rule, where job j∗ ∈ Ek∗ is selected randomly,
(ii) FIFO-rule,
(iii) FIFO-rule (position-based),
(iv) MWR-rule,
(v) MWR-rule (position-based).

Within the job selection phase, we used � = {ε, 0.1, 0.3, 0.6, 1} in order to deter-
mine the set of eligible jobs. Preliminary tests have shown that the described �-values
on average lead to good objective function values.

When applying the advanced multi-start algorithm (M̃S), each setting (i)–(v) was
combinedwith assignmentMethod [c] aswell as assignmentMethod [d]. The stopping
criterionwas set to 60,000 solutions, i.e., 2000 solutions for each combinationof setting
(i)–(v) and each �-value withMethod [c] as well as 400 solutions for each combination
of setting (i)–(v) and each �-value with Method [d], respectively. In order to obtain
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Table 7 Comparison of MIP-model and modified Giffler–Thompson algorithm

tcpu Gap3 GT = MIP GT < MIP GT > MIP dev<0 dev>0

30_5_1 37.30 3.54 7 0 13 – 0.90

30_5_2 38.25 2.68 7 0 13 – 0.45

30_5_3 40.95 2.08 6 0 14 – 0.46

30_5_1–2 39.65 2.47 8 0 12 – 0.33

30_5_1–3 42.85 2.77 7 0 13 – 0.39

60_10_1 76.30 0.72 14 5 1 0.30 0.17

60_10_2 75.50 5.39 0 18 2 1.58 0.41

60_10_3 77.80 5.30 0 12 8 0.74 0.56

60_10_1–2 75.60 1.24 12 8 0 0.72 –

60_10_1–3 77.25 1.57 12 8 0 1.89 –

120_20_1 241.05 0.13 12 7 1 0.27 0.16

120_20_2 240.55 5.24 0 20 0 5.04 –

120_20_3 240.30 11.80 0 20 0 8.14 –

120_20_1–2 233.55 0.47 10 10 0 1.15 –

120_20_1–3 229.45 0.73 7 13 0 0.84 –

120_15_1 231.65 0.42 9 11 0 0.23 –

120_15_2 226.30 5.45 0 20 0 4.82 –

120_15_3 230.00 9.75 0 20 0 5.60 –

120_15_1–2 229.40 0.50 7 12 1 0.69 0.04

120_15_1–3 226.75 0.86 6 13 1 1.40 0.03

a fair comparison of results, the modified Giffler–Thompson algorithm (GT) is also
terminated after 60,000 solutions, i.e., 2400 solutions for each combination of setting
(i)–(v) and each �-value.

At first, we compared the MIP-solutions to the advanced multi-start (modified
Giffler–Thompson) solutions (cf. Tables 6, 7). The results show that both algorithms
outperform the basic multi-start algorithm. The total number of instances with the
same or a smaller objective function value than the MIP-model is higher, i.e., 318
(321) instead of 289 in Table 5. Moreover, the average Gap3-values as well as the
average positive deviations decrease, e.g., the Gap3-values decrease from 4.3 to 3.2%
(3.2%). Further, the average negative deviations increase from1.37 to 2.19% (2.23%).
The average run time for all instances decreases from 472 to 346 (351) s. Note that
an analysis of solutions for instances with 60 jobs and a stopping criterion of 150s
(instead of 60,000 solutions) showed similar results as described in Tables 5, 6, and 7.

Considering all aforementioned numbers in brackets, which refer to the modified
Giffler–Thompson procedure, we can say that this procedure performs slightly better
than the advancedmulti-start algorithm.However, both algorithms are obviously better
than the basic multi-start. A detailed comparison of the modified Giffler–Thompson
procedure and basic as well as advanced multi-start algorithms is given in Table 8.
Column “GT < MS” includes the number of solutions for which GT performs better
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than MS; the corresponding average negative deviation is given in brackets behind.
Column “devBest(GT)” depicts the average deviation (%) between the best integer
solution UBGT found by GT and the best known solution UBBest, i.e., we calculate
UBGT−UBBest

UBBest · 100% and obtain devBest(GT) by arithmetic averaging.

The strength of the modified Giffler–Thompson procedure compared to the basic
multi-start algorithm appears when regarding the results in columns “GT < MS
(dev<0)”. For 326 out of 600 instances, GT produces lower objective function values.
Moreover, the average negative deviations between GT and MS, which are equal to
1.72%, are larger than the average positive deviations, which are equal to 0.13%.

As expected, the modified Giffler–Thompson procedure performs very well for
instances with 30 or 60 jobs compared to the advanced multi-start algorithm. In par-
ticular, this is emphasized by the results in columns “devBest(GT)” and “devBest(M̃S)”.
When regarding larger instances with 120 or 240 jobs, the results show that the GT
and M̃S generate the same objective function values for 46% of the instances, while
for 30% of the instances M̃S generates better results. The behavior can be explained
as follows: For instances with 30 or 60 jobs, algorithm GT outperforms M̃S since
the set of active schedules is relatively small and the probability of finding a (near-)
optimal solution is higher for GT. For larger instances with 120 or 240 jobs, the set of
active schedules is quite large. Therefore, it is highly probable that GT and M̃S deliver
similar solutions.

7 Conclusion

The paper considers an underground mine scheduling problem that appears in potash
mining, where a block excavation sequence has to be found. The problem is modeled
as a mixed-integer linear program and small-scale instances are solved with standard
optimization software. In order to facilitate the solution process, additional constraints,
lower bounds, and an initial solution are given to the solver. Furthermore, a priority
rule-based construction procedure is developed in order to solve large-scale problem
instances. The procedure is embedded in a basic multi-start algorithm, which is then
extended to an advanced multi-start algorithm that considers conscious delays of jobs
in front of stages. In addition, amodified version of theGiffler–Thompson procedure is
developed. Computational experiments are conducted on randomly generated problem
instances that resemble the structure of realistic applications.

The results show that theMIP-model is efficient for instances with 30 jobs and 1, 1–
2, or 1–3 machine(s) per stage. The corresponding branch-and-cut algorithm is able to
solve 58 instances to proven optimality and for the remaining two instances the average
gap is lower than 0.5% after a 30 min time limit. For the cases in which the number
of jobs and the number of machines per stage are increased, the proposed heuristic
solution procedures should be used. In particular, the modified Giffler–Thompson
procedure performs verywell for instanceswith up to 60 jobs. For larger instanceswith
up to 240 jobs, the results obtained by the advanced multi-start algorithm are slightly
better than by themodifiedGiffler–Thompson procedure. In practice, it is common that
an available machine is not kept idle when a job could be assigned to it. This approach
is considered in the basic multi-start algorithm. However, the results show that this
variant seems not to be an appropriate choice for solving the presented problem.
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Future research will include the consideration of other real-life conditions, e.g.,
machine failures, stochastic job processing times, and repositioning of vehicles. Fur-
ther, the minimization of the flow time per job is an alternative objective function.
Additionally, the improvement of lower bounds by considering a combined stage for
the current stages 2 and 5 would be an interesting topic. In order to explore the search
space more efficiently, a metaheuristic (e.g., a genetic algorithm) could finally be
implemented, where the presented procedures are used as a basis.

Acknowledgments The benchmarks presented herein may be downloaded from http://www.wiwi.
tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/.
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ABSTRACT: We consider a short-term production scheduling problem in a German potash 
underground mine where drill-and-blast mining operations have to be assigned to machines and 
workers and scheduled simultaneously. In addition, several mining-specific requirements have to 
be taken into account. In order to solve the problem at hand, we propose a two-stage solution 
approach. In the first stage, we apply a mixed-integer linear program where some time-consuming 
restrictions are neglected. Afterward, we modify the obtained schedule by integrating the neces-
sary time intervals that were dismissed within the mathematical model. Since an existing heu-
ristic solution procedure for the same problem is currently in use in a German potash mine, we 
will present results for computational experiments conducted on problem instances derived from 
real-world data in order to evaluate the performance of the two solution approaches.

1 PROBLEM DESCRIPTION AND LITERATURE REVIEW

This paper addresses a short-term production scheduling problem in a German potash under-
ground mine that was already studied by Schulze & Zimmermann (2017) as well as Schulze 
et al. (2017) who proposed a rule-based constructive procedure. The extraction of the examined 
potash mine is done by room-and pillar mining method and the excavation of potash is based 
on drilling and blasting technique. This kind of underground mining is characterized by eight 
consecutive sub-steps, i.e., operations, that can be seen as a production cycle: scaling the roof, 
bolting the roof with expansion-shell bolts, drilling large diameter bore holes, removing the 
drilled material, drilling blast holes, filling the blast holes with an explosive substance, blasting, 
and transportation of the broken material to a crusher. For each operation, except blasting, one 
special mobile machine out of a set of identical or uniform machines is required that is handled 
by a worker with the corresponding qualification, i.e., skill. Hence, the underlying problem con-
sists of the determination of a shift schedule where (i) a set of jobs1 has to be selected and deter-
mined for execution, (ii) start times of the selected jobs have to be specified, and (iii) machines 
and workers have to be assigned to the jobs simultaneously while the individual skills of the 
workers as well as the technological-based precedence relations for the jobs have to be taken 
into account. The objective is the minimization of the average positive deviation between a 
predetermined quantity and the amount of extracted crude salt, cumulated over all operations.

Taking the aforementioned characteristics into consideration, we deal with two different 
problem types that have to be solved simultaneously, that is a machine scheduling problem 
on the one hand, and an employee timetabling problem on the other hand. The machine 

1. Note that a job is characterized by the corresponding operation type from the production cycle and 
the place within the mine where the operation has to be executed.
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scheduling problem can be classified as a variant of a so-called hybrid flow shop (HFS) sched-
uling problem, if  we identify each mining operation from the production cycle as a stage, 
see Schulze et al. (2016). Note that we assume the mining operations as non-preemptable, 
because an assigned machine stays at the corresponding working place after an interruption 
(due to workers’ breaks or end of a shift) and processing will be resumed at the next possible 
occasion. In comparison to the classical HFS scheduling problem, due to the short planning 
horizon of one single working shift, it is not possible to perform all mining operations at all 
working places. Thus, on the one hand, it has to be decided whether a job at a working place 
will be processed within the shift under consideration or not, and on the other hand, some 
possible interruption of the processing of a job at the end of the working shift must be taken 
into account.

The machines in the problem at hand are mobile and travel from job to job, therefore, no 
buffers are needed between the stages. Instead, we have to consider driving times between 
jobs that are processed by the same machine what results in sequence-dependent setup times. 
In addition, there are so-called technical services that have to be performed for the machines. 
Before processing the first operation assigned to a machine, a preventive maintenance (first 
technical services) must be done. After processing the last job assigned to a machine as well 
as before the end of the working shift if  a job has to be interrupted, each machine must be 
cleaned and fueled (last technical services). Furthermore, for the case in which a worker 
changes his machine, he has to perform the first technical services for the new machine.

The second problem type, an employee timetabling problem, comprises the assignment of 
suitable workers to machines within a working shift. We assume that a worker can handle at 
most one machine at the same time and a machine can be operated by at most one worker 
at the same time. Since the workers have particular skills on different levels, not all workers 
can handle all machines. The different skill levels result in different handling times for each 
machine. Furthermore, the machines on each stage can have different speeds, which means 
that the processing time of a job depends on both the assigned worker and machine.

In order to generate a schedule that is accepted from the shift supervisor and that meets 
legal obligations, we furthermore have to satisfy the following mining-specific requirements.

R1:  Due to legal regulations, a Δ-minute break for the workers has to be incorporated in the 
schedule within a predetermined time window. It has to be noted that the break can lead 
to a delay in the processing of a job.

R2:  We have to consider disjunctive constraints for subsets of jobs that are physically close 
to each other (these jobs “belong” to so-called underground locations). Due to security 
reasons, it is not allowed that more than one machine is processing there at the same 
time, i.e., only one job in an underground location can be processed at any point in time.

R3:  Although a consistent progress at all working places of the underground locations would 
be desirable, different excavation states appear, i.e., not the same operation can be per-
formed there. In order to achieve a harmonized state, we prioritize the jobs in an under-
ground location in a way that the progress strives for consistency.

R4:  Jobs that are interrupted at the end of the pre-shift have a higher priority than the other 
jobs within the same underground location.

R5:  The operations that symbolize the step drilling large diameter bore holes are non-inter-
ruptible. If  those operations cannot be finished until the end of the corresponding work-
ing shift, they must not be started.

R6:  The number of assigned worker to a machine is limited by two. That means no more than 
two workers can be assigned to a machine and a worker is not allowed to work on more 
than two machines during a working shift.

In the literature, most works concerning machine scheduling neglect the assignment of 
workers, while in the field of employee timetabling (i.e., staff  scheduling and personnel 
assignment) the machine scheduling problem is rarely considered. Therefore, we confined our 
literature review to the integrated employee timetabling and machine scheduling problems. 
An overview of the studied literature is given in Table 1, where the abbreviations in column 
production environment characterize, whether the authors analyzed a flow shop (FSP), job 
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shop (JSP), open shop (OSP), or hybrid job shop (HJSP) scheduling problem. Moreover, we 
indicate what kind of objective function as well as formulation is considered within the cor-
responding study.

In brief, our literature review shows that the approaches discussed in the studies are not 
suitable for the problem at hand what is mainly due to the aspects that we consider (i) a 
selection of jobs, (ii) setup times for machines and workers, (iii) possible interruption of jobs 
at the end of the shift, (iv) breaks that could delay the processing of jobs, and (v) that the 
workers can change their machine within a working shift. In the next section, we introduce a 
two-stage approach to tackle the problem.

2 TWO-STAGE APPROACH

In our two-stage approach, we first solve a relaxation of the problem described in the previ-
ous section using a MIP solver and then, we repair the solution found and generate a feasi-
ble one. First, we describe the relaxation (R-Model) of our short-term scheduling problem, 
where some restrictions concerning the breaks or technical services are omitted.

Let J be the set of jobs in the underground mine under consideration. Binary decision vari-
ables bj are 1 if j J  is processed. Moreover, we introduce binary decision variables xjw and yjm 
that are 1 if j is processed by worker w WjWW  and machine m GjG ,  respectively. Gj and Wj are 
subsets of the set of available machines G and workers W that can process job j. We also define 
binary decision variables jwm that are 1 if worker w and machine m are assigned to job j.

 m G
jm j

jG

y bjm j j J∑ ∀jbj jj
 (1)

 w W
jw j

jW

x bjw j j J∑ ∀jbj jj
 (2)

 x y w m Gjw jm jwm jj w WW jG+ ≤yjm ∀ ∀ ∈ ∀WW ∈1 z jj J+ ∀z jjj ∈ JJ ,  (3)

 z j w m Gjwm jx w jj J w jG≤ ∀x jjjx w j ∈ ∀JJ ∈ ∀WjW ,jw WjW  (4)

 z j w m Gjwm jy m jj J wjj jG≤ ∀y jjjy m jj ∈ ∀JJ ∈ ∀WjW ,jw WWjW  (5)

Let PTjwT m be the given parameter that denotes the processing time of job j by worker w 
and machine m. The actual processing time of job j is then p z PTj jz wm jwT mm Gw W jGjW

⋅z∑∑∑∑ .  In 

Table 1. Literature review.

Production 
environment

Objective 
function Formulation

Daniels & Mazzola (1994) FSP makespan time-indexed
Daniels et al. (2004) FSP makespan time-indexed
Huq et al. (2004) FSP multi-obj. seq.-based
Artigues et al. (2006) JSP empl. cost time-indexed
Artigues et al. (2009) JSP multi-obj. seq.-based
Puttkammer et al. (2011) FSP multi-obj. time-indexed
Mencia et al. (2013) JSP flow time
Ramya & Chandrasekaran (2014) JSP empl. cost time-indexed
Frihat et al. (2014) HJSP empl. cost seq.-based
Benavides et al. (2014) FSP makespan seq.-based
Guyon et al. (2014) JSP empl. cost
Agnetis et al. (2014) JSP makespan seq.-based
Campos Ciro et al. (2016) OSP flow time seq.-based
Ahmadi-Javid & Hooshangi-Tabrizi (2017) JSP makespan seq.-based
Santos et al. (2018) JSP throughput time-indexed
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this paper, we use a sequence-based formulation for our R-Model. So, we introduce binary 
decision variables vjr  that are 1 if  job j is completed before job r is started.

 v v j r J j rjr rj+ ≤vrj ∀ ∈r ≠1 j∀jj  (6)

We have to consider a break for each worker (see R1) that leads to the absence of this 
worker in a specific time. Each worker w has to make a Δ-minute break so that the start time 
of the break ρw lies in a predefined interval [ , ].h α ωϕω  In our relaxation, we do not allow 
that the processing of a job overlaps the break of the worker who processes this job. How-
ever, the break may overlap the drive between two jobs or the technical services that may be 
executed for a machine.

 ϕ ραϕϕ ≤ ∀ρw w W∈  (7)

 ρ ϕω
wρρ w W≤ ∀ϕωϕϕ  (8)

 
S M x M j J w Wj wS j

s
jw jW( ) −( ) ∀ ∈jj ∀ ∈wωw (1 1Ms ) + ( ,  (9)

 
ρ ωw jρρ j

s
jw jω j x Mjw j J w Wj+ −( ) ∀ ∈jj ∀ ∈w� 1sS Mω s≤ +Mω jω sωω ( ,  (10)

 
ρw jρρ j jω e

jw jS M x M j J w Wj≤ S + (( ) (( ) ∀ ∈jj ∀ ∈wM1 ω jω eωω ) 1( ,  (11)

 
S p M j w Wj jS p w j

e
jw jW≤pjp + Mj

e ( ) ∀ ∀ ∈wρw + j
e 1 ,x M j Jjw ) ∀ ∈jj  (12)

 ω ω δjω sωω j
e

jδ j J+ ≤ω jω eωω + ∀δ jδ jj1  (13)

 δ ωj jδ ωδ s j J∀ω jω sωω jj  (14)

 δ ωj jδ ωδ e j J∀ω jω eωω jj  (15)

If  the start time of the break of a worker, who processes job j, is during the processing of  
j j j( )j

s
j
e ,j

s
j
e
j
e  binary decision variable δj takes the value of 1 and a Δ-minute break 

must be considered for the duration of j, additionally.
At the beginning of the working shift, the first technical services tdmddα  must be performed 

on machine m and the assigned worker drives d jm0dd  time units to the first job.

 m G
m jm jjj m jjj j

jG

d yjmjj S bj j M j J∑ ≤ Sj ( ) ∀ ∈jj( mtdm d jmjj+ d jmj
α d  (16)

At each working place in an underground location, several operation types must be exe-
cuted in a specific order related to the prescribed production cycle. Let ul jl  be the under-
ground location of j, mlj be the working place of j in ulj, and orderj be the position of j in the 
given order for mlj. In a working place, always job j with the minimum value of orderj must be 
completed before any job r with a greater value of orderr can be started.

 b b j r J j r ul ul ml ml order orderr jb bb j rl ul j rl mll j rr orderr∀b jjjb ∈ ≠J j ul ml <r ∈J , ,ul j rl ul ,  (17)

 

S p S b b M
j r J j l ul ml ml order
j jS p j rSS j rb bb

j rul j rl mll jr
+pjp ≤⋅ −(( )

∀ ∈j rj ≠ r ull <ml orderml jr
δ j Δ

r J∈r , ,j rullul jl , ordeoo rrrr
 (18)

For jobs that are processed by the same worker, a precedence relation must be considered. 
As mentioned in Sect. 1, if  a worker changes his machine, he has to go to the new machine 
(transfer time), has to do the first technical services, and he can drive the machine to the loca-
tion of the new job. In our relaxed model, we neglect the time for the case, where a worker 
changes his machine.
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S p S x x v M

j r J j w W W
j jS p j rSS jw rw jr

j rW WW W

+pjp ≤⋅ (( )) −( )
∀ ∈j rj ≠ ∀r ∈

δ j Δ M2 x xjw 1− ) + (
r J∈r ,

 (19)

 

S p S x x M v M

j r J j w W W
r jS pS r jS jw rw jr

j rW WW W

+pjp ≤⋅ −(( ) +

∀ ∈j rj ≠ ∀r ∈

δ r Δ 2

r J∈r ,
 (20)

Moreover, if  two jobs are processed by the same machine, a driving time between the jobs 
must be taken into account.

 

S p d S v M

j r J j m G G
j jS p jrd m j r jSS y m ryjj m jM v rjj

jG

+pjp +SrS ( )) (( )
∀ ∈j rj ≠ ∀r ∈ ∩

jδ MM2 y yy ry m 1− y ) (
r J∈r , rrG

 (21)

 

S p d S y y M v M

j r J j m G G
r jS pS rjdd m rjj j jS y m ryjj m jM v rjj

j rG G

+pjp +SjS − y( )
∀ ∈j rj ≠ ∀r ∈

rδ 2

r J∈r ,
 (22)

After processing the last job on a machine, last technical services must be performed for 
the machine. Let Shift be the duration of the working shift. The following constraints guar-
antee that if  the processing of a job exceeds Shift (idj  =  1), continuous decision variable 
grad jwd m  specifies, which percentage of j is achieved during the shift.

 
S p td y ShiftS d M j Jj jS p j

m G
m jd y m jShiftSS idjj

jG

+pjp ⋅ + ⋅ yy + ∀id M jjjid ∈∑δ j
ωΔ  (23)

 
Shift Sff p td y id M j Jj jS p j

m G
m jd yd m jidjj

jG

+SjS tdd −+ (( ) ∀ ∈jj∑∑δ ωΔ 1  (24)

 
S grad PT td y Shift if dj jS

w W m G
jwd m jPTT wm

m G
m jd yd jidm Shiftffjj

j jW m G jG

gradd tdd ≤ ShiftffShiftff (
W mjW m

∑ ∑∑ ∑ ∑∑δ ω 1 )) ∀ ∈M j∀ J  (25)

 
S grad PT td y Shift if d jj jS

w W m G
jwd m jPTT wm

m G
m jd yd m jShift iff djj

j jW m G jG

gradd tdd ≥ ShiftffShiftff ∈jj
W mjW m

∑ ∑∑ ∑ ∑∑δ ω JJ  (26)

Consequently, if  a job is processed (bj = 1) and its duration does not exceed the working 
shift (idj = 0), gradjwm must take the value of 1.

 w W m G
jwm j j

j jW m G

grad j jid b Mj j J
W mjW m

∑ ∑ +jid j≤ (( ) ∀ ∈jj  (27)

 
1 ( ) ≤ ∀∑ ∑id b M1) grad j J∀ ∈j jd b

w W∈ m G∈
jwd m

j jW m G∈
 (28)

For the other mining-specific requirements R2–R5, we formulate the following constraints. 
Note that we write j r  if  job j must be completed before job r can be started.

R2:

 

S p S b b M v M

j r J j l ul
j jS p j rSS j rb bb jr

j rul

+pjp ≤⋅ (( )) −( )
∀ ∈j rj ≠ r ul jl

δ j Δ Mb bjb b 1− + (
r J∈r ,

 (29)

 

S p S b b M v M

j r J j l ul
r jS pS r jS j rb bb jr

j rull

+pjp ≤⋅ −(( ) +

∀ ∈j rj ≠ r ul jl

δ r Δ

r J∈r ,
 (30)
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R3:

 b b j r J j r ul ul j rr jb bb j rl ul∀b jjjb ∈ ≠J jr ∈J ,ul jl ull ≺  (31)

 
S p S b b M j r J j l ul j rj jS p j rSS j rb bb j rull+pjp ⋅ ≤ −(( ) ∀ ∈j rj ≠ ul jlδ j Δ : ,r J j∈r ≠ r ≺  (32)

R4:

 b b j r J j ul ul started dr jb bb j rl ull j rd∀b jjjb ≠J j =ul started: ,r j r∈ ≠J j , started jd 1 0startedrstartedd =  (33)

R5:

 id j jd j J yp= ∀ 4j J t jj J type∀jjj =typejtypeJJ  (34)

To realize R6, we introduce binary decision variables mawm that are 1 if  w is assigned to m.

 y x j w W m Gjm jw wm j jW m G+ ≤xjw ∀ ∈ ∀ ∈ ∀WjW,j J1 mawm+ ∀ma jjwm ∈J  (35)

 m G
wmma w W∑ ≤ ∀  (36)

 w W
wmma m G∑ ≤ ∀  (37)

Let tonj be the expected amount of material after processing of job j and tonk
pre  be the 

predetermined quantity (target value) for production step k. We can determine the lower 
deviation from tonk

pre  for each production step by the following constraints.

 
ton grad ton dev k Kk

pre

j J type kw W m G
jwd m jton k

j je kw W jG

grad ≤ dev ∈
=typejeJ ∈ ∈W mW

∑ ∑∑ ∑ ∑∑
:

 (38)

Our goal is to have a consistent progress so that the following function must be minimized.

 
devkk K

2∑  

If  we determine the maximum lower deviation as follows:

 dev devd k Kk
max ∀devdd max ,  (39)

we can then approximate the quadratic objective function by the following linear one.

 k K
k

maxdev dk evdd∑  (40)

After finding a solution for R-Model (Min. (40) s.t. (1)–(39)), the solution is used as an 
input for Algorithm 1 to generate a feasible solution for the problem instance at hand. In 
Algorithm 1, we first determine the sequence of the processing of jobs for each machine 
and each worker. After that, for each machine m, between two consecutive jobs j and r that 
are processed by different workers, a first technical service must be inserted before starting r. 
Subsequently, start times of all of the jobs that have to be started after the completion of r 
must be updated. For each worker w, if  w changes his machine and goes from machine m to 
m′, we eventually have to consider last technical services if  w processed the last task on m. The 
worker then goes to the parking location of m′, performs first technical services, and drives 
m′ to the location of the next job. Consequently, start times of all of the related jobs must be 
updated. Then, we check if  there are overlaps between breaks of workers and the activities 
that workers have to perform. In this case, we consider the effect of workers’ breaks on start 
times or durations of jobs and update the start times of all of the affected jobs. The steps 
above are repeated until there are no more changes in start times of jobs.
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3 COMPUTATIONAL STUDY

To show the suitability of our proposed solution approach, we compare the results of our 
two-stage approach with the heuristic procedure introduced by Schulze & Zimmermann 
(2017). For this purpose, we generated 100 test instances based on the case study presented in 
Schulze & Zimmermann (2017), which depict realistic problems in a German potash under-
ground mine. In Algorithm 2, an overview of the constructive heuristic approach is given (for 
more details see Schulze & Zimmermann (2017) and Schulze (2016)).

Algorithm 1. Repair solution.

 1: Input: problem instance D, solution of R-Model
 2: repeat
 3: For each machine, determine the sequence of processed jobs by this machine;
 4: For each worker, determine the sequence of processed jobs by this worker;
 5: for all processed jobs j do

 6: S Sj jS S1

 7: for all machines m do
 8:  if two consecutive jobs j and r on m are performed by different workers then
 9:   Insert the time for first technical services for m before Sr

10:   for all jobs j′ with vrj′ = 1 do
11:    update Sj′
12: for all workers w do
13:  if two consecutive jobs j and r on w are performed by different machines then
14:     Insert the potential last technical services for the machine assigned to j, the transfer time, 

first technical services for the machine assigned to r, and the driving time from the direct 
predecessor of r on the assigned machine to r

15:   for all jobs j′ with vrj′  = 1 do
16:    update Sj′
17: for all workers w do
18:   if the break of w, who processes job j, overlaps any of the first technical services for the 

machine assigned to j, driving times to j, the processing of j, or the last technical services for 
the machine assigned to j then

19:   Consider the break of w for Sj or the duration of j
20:   for all jobs j′ with vjj′  = 1 do
21:    update Sj′

22: for all jobs j with typej = 4 do
23:  Eliminate j if  the processing of j exceeds the duration of the working shift
24: until Sj jS S j

1 = ∀SjS
25: Determine the objective value according to the new schedule
26: return The feasible schedule

Algorithm 2. Constructive heuristic introduced by Schulze & Zimmermann (2017).

 1: Initialization (* construction *)
 2: Priority-based scheduling
 3: Staff changes (* improvement *)
 4: repeat
 5:  Scheduling downstream operations
 6:  Staff changes
 7:  Replenishment
 8: until total amount of potash cannot be increased
 9: Job reassignment
10: Insertion of technical services (* post-processing *)
11: Insertion of breaks for workers
12: return solution
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The heuristic procedure is embedded in a multi-start algorithm, where jobs, machines, and 
workers are chosen based on selection probabilities that are determined by priority values. For 
the heuristic approach in this paper, we use the setting that is currently used in the underground 
mine under consideration. In the corresponding assigning method, jobs and workers are ran-
domly chosen, and machines are selected regarding the shortest driving times to the selected 
job or regarding the shortest processing time based on the selected job and the selected worker.

All tests are executed on an Intel i7–7700 K@4.20 GHz machine with 64 GB RAM under Win-
dows 10. The heuristic algorithm is implemented in Xpress IVE 8.4. For the two-stage approach, 
we used GAMS 25.1 and GUROBI solver 8.1.0 to solve R-Model and C++ to generate a feasible 
solution with the aid of Algorithm 1. Since we schedule only one working shift, we set an upper time 
limit of 900 seconds for both approaches that symbolizes a typical duration of a shift handover.

To compare the results achieved by the procedures, we use the value of devkk K
2∑  that 

shows how consistent the desired progress could be implemented at the end of the working 
shift compared to the given state at the beginning of the working shift.

Table 2 presents the number of best solutions found and an average gap to the best solu-
tion found. Let SiSS*  be the solution found for instance i by procedure * and Sbest be the best 
solution found. We calculate S S

S
iS best

iSS

*

*  to determine the gap for instance i (gapi). The numbers 
presented under “Gap to the best solution found” are obtained by arithmetic averaging over 
all instances. Note that the number in parentheses is the obtained gap by arithmetic averaging 
over the number of the instances for which the solution found is not equal to the best solution 
found (i.e., gapi ≠ 0).

We see that the two-stage approach can find for 70 instances the best solution, where the 
solutions found for the other 30 instances are 20.3% far from the best solution found. On 
the other hand, the solutions found by the constructive heuristic are on average 45.2% worse 
than the best solutions found. This number gets significantly worse (64.6%) if  we make an 
average over the 70 instances for which the heuristic could not find the best solution. So, we 
can conclude that our two-stage approach performs quite promising.

4 CONCLUSION

In this paper, we consider a shift scheduling problem where machines and workers are simul-
taneously assigned to a selection of the available jobs. We formulate a relaxation of the prob-
lem described in Sect. 1 and introduced an algorithm to generate feasible solutions using the 
solution achieved by the relaxation. The results of a preliminary performance analysis using 
realistic instances show that the solutions of our proposed two-stage approach clearly out-
perform the solutions which are currently generated by a constructive heuristic procedure.

Future work concerns the development of good lower bounds for our problem. Moreover, the 
total output can additionally be taken into account. Considering the trade-off between the pre-
sented objective function and the total excavated amount of material could provide new insights.
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linear formulation outperforms both existing solution procedures for the problem at hand. 
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1. Introduction 

The dynamics in the commodities industry has put mining op- 

erators under constant pressure to stabilize operating margins. This 

fact provides a good challenge and opportunity for using digital 

tools and operations research techniques to increase the efficiency 

and effectiveness of the mine’s production and engineering pro- 

cesses ( Schulze, Mathiak, & Haney, 2017 ). 

In this paper, we address a short-term production scheduling 

problem in a potash mine, where a discontinuous production cy- 

cle using drilling and blasting takes place. For the same problem, 

Schulze and Zimmermann (2017) and Schulze et al. (2017) pro- 

posed a rule-based constructive procedure, and Seifi, Schulze, and 

Zimmermann (2019) devised a two-stage approach. We show that 

the problem can be mathematically formulated as a mixed-integer 

linear program using TSP-variables. The results, achieved in a rea- 

sonable amount of time using the proposed mathematical formu- 

lation, clearly surpass the results obtained by the existing solution 

approaches. 

Due to the flat-bedded deposit, the room-and-pillar mining 

method is applied in the underground potash mine under con- 

sideration. The main characteristics of this mining method are an 

area-wide expansion of the deposit and a resulting high number of 

possible extraction points, the so-called working places. The exca- 

vation of potash at the working places is based on the drilling and 

∗ Corresponding author. 

E-mail address: cinna.seifi@tu-clausthal.de (C. Seifi). 

blasting technique. This means that the underground production 

process follows discrete process steps which need to be conducted 

in a specific order. On the one hand, the high number of working 

places allows a very flexible planning and control of the extrac- 

tion, but on the other hand, it is especially complex to generate 

work orders in shifts for the personnel and mobile equipment. The 

complexity is reinforced by the fact that not all working places are 

in the same state (i.e., different process steps are required at dif- 

ferent working places) and not all currently available process steps 

can be operated within a single work shift. As a consequence, it is 

imperative to decide, for the work shift under consideration, which 

working places are processed and in which order. Hence, we have 

to consider a selection and sequencing problem which is less stud- 

ied in the field of scheduling. Moreover, in contrast to classical ma- 

chine scheduling problems (e.g., flow or job shop) where the jobs 

that have to be processed are “delivered” to the necessary pro- 

duction stages (machines), we consider mobile machines that have 

to drive to the working places. For this reason, we have to con- 

sider planning-dependent driving times of machines, i.e., the driv- 

ing times depend on the job-sequence on the respective machine. 

Also, we have to consider a simultaneous assignment of machines 

and workers, where it must be taken into account that the mo- 

bile machines have different speeds and that the workers have dif- 

ferent skills with different experiences, i.e., skill levels ( Schulze & 

Zimmermann, 2017 ). Hence, the processing times are strongly de- 

pendent on the assigned machine and worker. Another important 

aspect that is less investigated in the field of personnel scheduling 

is that a worker can change an assigned machine within a work 

https://doi.org/10.1016/j.ejor.2020.10.007 

0377-2217/© 2020 Elsevier B.V. All rights reserved. 
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shift (cf. Van den Bergh, Beliën, De Bruecker, Demeulemeester, and 

De Boeck (2013) ). 

The remainder of the paper is organized as follows: in 

Section 2 an explicit description of the problem at hand, as well 

as a comprehensive literature review are given. In Section 3 , we 

introduce a mixed-integer linear program (MILP) formulation for 

our shift scheduling problem using TSP-variables, where a suitable 

set of operations has to be selected for execution. The introduced 

MILP-model is verified and validated based on a small example 

in Appendix A . In Section 4 , we evaluate the performance of the 

developed MILP-model in comparison to two existing approaches 

using problem instances derived from real-world data. Moreover, 

a detailed comparison of the solution approaches for problem in- 

stances with similar characteristics is given in Appendix B . The pa- 

per concludes with a summary of the achieved results and an out- 

look on further research. 

2. Problem specification and related literature 

In this section, we describe our shift scheduling problem and 

give a literature review on existing approaches for solving shop 

scheduling problems with a simultaneous assignment of machines 

and multi-skilled workers. 

Potash mines are usually underground mines, which are di- 

vided into several mining districts . Each mining district may com- 

prise an area of several square kilometers. Due to this spatial ex- 

tent, several tipple areas (usually between three and six) are con- 

sidered for a mining district. The key element in a tipple area is 

a feeder breaker, where the lumps are broken and the material is 

carried to a shaft or an interim storage facility on a conveyor belt. 

To each feeder breaker, a number of underground locations (usu- 

ally between three and eleven) can be assigned. An underground 

location is the smallest section in an underground mine and in- 

volves working places that have a short geographical distance to 

each other. In order to extract the crude salt in an underground 

potash mine, the room and pillar mining method using the drilling 

and blasting technique is generally applied. In this method, to ex- 

pose the rooms, the material is blasted in blocks , and pillars are left 

for support purposes (see Schulze, Rieck, Seifi, and Zimmermann 

(2016) for more details about the room and pillar mining method). 

At each working place to remove a block, the following nine min- 

ing operations (process steps) must be processed in a chronologi- 

cal order: (1) a front-end loader transports the crude salt from the 

working place to the assigned feeder breaker; (2) a scaling ma- 

chine detaches loose rock fragments from the roof or side walls; 

(3) a small loader removes the detached material from the working 

place; (4) a roof bolter installs anchor bolts onto the roof structure; 

(5) a drilling jumbo drills three adjacent horizontal boreholes; (6) a 

small loader removes the resultant dust 1 ; (7) a blasthole drilling 

machine drills several blastholes into the salt face; (8) a charging 

vehicle fills the blastholes with explosive substances; and (9) the 

blasting that occurs between the work shifts. After completing the 

whole nine mining operations at a working place, the salt face 

moves on in the length of the extracted block, and a new work- 

ing place becomes available K+S AG (2013) . 

Fig. 1 illustrates a tipple area that consists of four underground 

locations. The underground locations in this figure have two to 

three working places. The number given in parentheses is the spe- 

cific mining operation that has to be done next for the associated 

working place. For many reasons, working places usually have dif- 

ferent states, which means mining operations that have to be exe- 

cuted next at different working places are not the same. 

1 Note that mining operations (3) and (6) make use of the same small loaders. 

Fig. 1. The relation between a working place and an underground location in a 

tipple area. 

The work that has to be done at each working place can be con- 

sidered as a job that consists of several operations; each of those 

represents one of the nine mining operations explained above. 

Since blasting (mining operation (9)) does not require any ma- 

chines or workers, we only consider the mining operations (1) 

to (8) as production stages . Processing an operation of a job in a 

production stage requires exactly one machine and one worker. In 

the present mine, there are some identical or uniform (mobile) 

machines available for each mining operation (production stage) so 

that operation k of a job will be done on one of the available ma- 

chines in the k −th production stage. Note that the machines must 

be handled (and moved) by a worker with appropriate skill. With- 

out considering the workers, the production environment can be 

classified as a variant of a hybrid flow shop (HFS) scheduling prob- 

lem (see Schulze et al. (2016) ). According to Ruiz and Vázquez- 

Rodríguez (2010) , variants of HFS scheduling problems have the 

following attributes in common (which is the case for the problem 

at hand, too): 

(i) a set of jobs has to be processed in at least two stages 

–we have eight stages in our problem that need resources 

(machines and workers); 

(ii) in at least one stage there is more than one machine avail- 

able 

–in the present mine, there are at least two machines in 

stage one; 

(iii) each machine can operate at most one operation and an op- 

eration must be processed without preemption by at most 

one machine at the same time 

–that is always the case in our problem. We consider the op- 

erations as non-preemptable because the assigned machines 

complete the processing of the operations regardless of pos- 

sible interruptions. After any possible interruption (e.g., be- 

cause of the workers’ breaks or at the end of the work shift), 

the processing continues at the next available opportunity 

by the same machine; and 

(iv) a job might skip any number of stages; however, it is pro- 

cessed in at least one of them 

–although, different working places can have different states 

so that the order of operations for different jobs can begin 
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with different operation index numbers; but, a job must be 

processed in at least one stage. 

From an operational point of view (e.g., because of many uncer- 

tainties affecting the availability of machines), we consider a plan- 

ning horizon of one work shift. As a result, the processing of an 

operation or a job may typically be interrupted at the end of the 

work shift, since processing the whole eight operations for a job 

is not generally possible within this short time horizon. 2 Further- 

more, because of the large number of available working places, we 

cannot process all of the pending jobs within a work shift. Thus, it 

must be decided whether an operation of a job is processed within 

the current shift or not. 

As mentioned, each machine in each production stage must be 

handled by a worker with an appropriate skill. For assigning a 

worker to a machine, it must be noted that not all workers can 

cope with all machines, i.e., workers have particular skills. More- 

over, workers who can deal with a machine have different skill 

levels, which lead to different handling times with a specific ma- 

chine. Besides the fact that the available machines in each produc- 

tion stage can have different speeds, the effect of the different skill 

levels of workers on the processing time of an operation cannot be 

neglected. Furthermore, we have to consider some setup times and 

changeover times if a worker changes his machine. These times de- 

pend on the processing-sequence of the operations assigned to a 

worker on different machines, and their durations in comparison 

to the duration of a work shift are not negligible. Hence, assign- 

ing the proper workers to machines for processing the operations 

in the right sequence plays a decisive role in the solution to the 

problem at hand. 

In addition to the setup and changeover times mentioned 

above, there are some setup times and removal times that are 

machine- and sequence-dependent. The occurrence of the setup, 

changeover, and removal times and their dependence on the se- 

quence of the processing of the operations are explained below: 

setup time Before processing the first operation allocated 

to a machine, a preventive maintenance (first 

technical services) must be done. Also, if a 

worker changes his machine, he has to perform 

the first technical services for the new machine 

for safety reasons regardless of whether the 

new machine was already in use or not. The du- 

ration of the first technical services is constant 

for each machine and does not depend on the 

operation assigned to a machine. However, the 

sequence of the processing of operations on a 

machine or by a worker must be determined. 

Therefore, we consider these times as machine- 

and sequence-dependent setup times. In addi- 

tion, since the machines are mobile, there are 

driving times between operations that are pro- 

cessed by the same machine. Driving times be- 

tween two operations depend on their locations 

and the driving speed of the machine that pro- 

cesses these operations. Hence, we can consider 

the driving times as machine- and sequence- 

dependent setup times, too. 

changeover time If a worker processes two consecutive opera- 

tions on different machines, he has to change 

his machine and go to the current position of 

the second machine. Whether the worker walks 

to the new machine or is picked up by a trans- 

2 Note that mining operation (9) always takes place between the work shifts and 

does not require any resources. 

port vehicle depends on the geographical dis- 

tance to the new machine. The walking speed 

of all workers, as well as the driving speed of 

the transport vehicle, can be considered as con- 

stant. Moreover, the number of transport vehi- 

cles is large enough such that they are always 

available when they are needed. Consequently, 

the time that a worker needs to change the 

machine depends only on the location of the 

first operation and the location of the new ma- 

chine. The parking position of a machine is usu- 

ally near the location of the previous operation 

done by this machine so that changeover time 

has to be considered as sequence-dependent. 

removal time After processing the last operation allocated to 

a machine as well as before the end of the 

work shift if an operation has to be interrupted, 

each machine must be cleaned and fueled (last 

technical services). Like the first technical ser- 

vices, performing the last technical services de- 

pends on the machine and the sequence of the 

processing of operations on the machine (the 

last operation assigned to a machine within the 

work shift must be determined). As a result, 

the last technical services can be considered 

as machine- and sequence-dependent removal 

times. 

Until now, we described the production environment and 

pointed out the importance of considering the workers in our 

problem. Since the workers and machines are principally assigned 

to one specific mining district and cannot be exchanged between 

different mining districts during a work shift, we take only one 

mining district in our shift scheduling problem into consideration. 

In a mining district, besides the circumstances mentioned above, 

there are some mining-specific requirements (MR) that must be 

fulfilled: 

MR (1) In accordance with labor law, workers have to take a δ- 

minute break within a predetermined time interval in 

each work shift. It may be the case that a worker has to 

interrupt the processing of an assigned operation to take 

his break. After the break, the worker will continue with 

the interrupted operation. Therefore, the workers’ break 

can lead to a delay in the processing of an operation. 

MR (2) There are disjunctive constraints between the operations 

of different jobs in an underground location. In an un- 

derground location, for security reasons, it is not allowed 

that more than one machine is applied at the same time. 

Therefore, only one operation of a job (working place) in 

an underground location can be processed at any point 

in time. 

MR (3) In an ideal situation, a consistent progress is given at all 

working places of an underground location, i.e., the same 

operation type can be performed for all jobs in an under- 

ground location. However, excavations may be perturbed 

due to machine breakdowns or other technical failures, 

and a different excavation state may appear for differ- 

ent jobs. In this situation, the jobs (working places) in an 

underground location are prioritized according to their 

next operation. In an underground location, a job with 

the smallest operation index number has the highest pri- 

ority. 

MR (4) In addition to MR (3), in an underground location, op- 

erations that are interrupted at the end of the last shift 

have a higher priority. That means, if there is a job 

(working place) with an operation that is started but not 
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Fig. 2. An example of different jobs in two underground locations. 

completed in the last shift, the operations of the other 

jobs in this underground location can be processed if and 

only if the interrupted operation is processed, too. 

MR (5) Operations on stage (5) are non-interruptible. That 

means, if those operations cannot be completed until the 

end of the work shift, they must not be started. 

MR (6) In the present mine, not more than two different work- 

ers can be assigned to a machine to process different op- 

erations. Also, a worker cannot be assigned to more than 

two different machines during the work shift. That is a 

decision of the superordinate planning level to reduce the 

number of machine changes and the risk involved. 

Each operation of a job is characterized by an amount of crude 

material which is expected to be excavated after the completion 

of the operation. For each mining operation, a target value for 

the output is given that should be achieved within a work shift. 

The target values are predetermined from a superordinate planning 

level with the aid of a constant comparison of target and actual 

data of the excavated raw material. At the end of the work shift, 

the amount of material that is extracted is calculated for each op- 

eration. In this regard, if an operation of a job is interrupted at 

the end of the work shift, the percentage of this operation that 

has been processed within the work shift must be determined. Ac- 

cordingly, the lower deviation from the predefined target value is 

figured. Lower deviation means, if the excavated material exceeds 

the target value, the difference will not be considered in the ob- 

jective function. The aim of the optimization problem under con- 

sideration is to minimize the lower deviations, cumulated over all 

of the mining operations so that the progress of mining stays con- 

sistent. 

Fig. 2 illustrates two underground locations, each of which has 

two working places. Jobs (working places) are numbered from 

job 1 to job 4, and the associated mining operations are given. Let 

O kj denote operation k of job j . As mentioned, jobs can have dif- 

ferent states. In underground location (I), for job 1, the operations 

seven and eight, and for job 2, only operation eight must be com- 

pleted. In underground location (II), for both jobs 3 and 4, opera- 

tion eight has to be processed. For the problem illustrated in Fig. 2 , 

a feasible schedule for machines and workers is given in Fig. 3 . 

In underground location (I), O 71 has a smaller index number 

and, therefore, a higher priority than O 82 (see MR (3)). For the pro- 

cessing of O 71 , worker w 1 is assigned to a blasthole drilling ma- 

chine. At the beginning of the work shift, w 1 performs the first 

technical services on the blasthole drilling machine and moves 

(drives) the machine from its parking position at the beginning of 

the shift to the location of O 71 . Because of MR (2), no operation 

of job 2 can be processed before the completion of O 71 . Moreover, 

MR (2) implies that in underground location (II), there is a disjunc- 

tive constraint between O 83 and O 84 . According to the schedule, 

O 83 is processed first in underground location (II) by worker w 2 

and by charging vehicle (i). Analogously to w 1 for the blasthole 

drilling machine, w 2 does the first technical services for charging 

vehicle (i), drives the machine to the location of O 83 , and begins 

with the processing. Regarding the schedule, w 1 has to process O 84 

on charging vehicle (i) after completion of O 71 , where after com- 

pleting O 83 , w 2 is assigned to charging vehicle (ii) to process O 82 . 

Since O 71 is the last task allocated to the blasthole drilling ma- 

chine, w 1 performs the last technical services and then, goes to the 

current position of charging vehicle (i). w 1 has to wait till O 83 is 

completed, do the first technical services 3 , and drive the machine 

to the assigned operation O 84 . On the other hand, w 2 goes to the 

current position of charging vehicle (ii), takes his break, does the 

first technical services, and moves the machine to the location of 

O 82 . w 1 takes a break during the processing of the assigned task. 

The processing duration of operation O 84 without considering the 

worker’s break is given in a dashed-box. O 84 is the last operation 

assigned to charging vehicle (i), and w 1 performs the last techni- 

cal services for the machine. O 81 cannot be processed according to 

the schedule (not all operation can be processed during the work 

shift). O 82 cannot be completed within the work shift and must be 

interrupted at the end of the work shift. Therefore, the duration 

of the last technical services, that must be done for the machine 

within the work shift, must be considered. As a result, only a cer- 

tain part of operation O 82 is processed during the work shift. Let 

ton kj be the tonnage that is excavated if O kj is completed. More- 

over, let P kj be the needed processing time for completing the op- 

eration O kj by a particular worker and a specific machine, and 

˜ P k j 

be the part of the processing of operation O kj that is performed 

during the work shift. If we denote the excavated tonnage for op- 

eration k with T k , then T 7 is equal to ton 71 , and T 8 is calculated as 

follows: 

T 8 = 

˜ P 82 

P 82 

· ton 82 + ton 83 + ton 84 . 

Let the target value (the tonnage that is expected to be excavated) 

for mining operation k be ton e 
k 
. Our problem aims to minimize the 

accumulated lower deviations from the target values over the eight 

mining operations. That value is determined as follows: 

8 ∑ 

k =1 

max { ton 

e 
k − T k , 0 } . 

In the literature, there are several works studying scheduling 

problems in underground mines or HFS scheduling problems. For 

instance, Newman, Rubio, Caro, Weintraub, and Eurek (2010) give 

an overview of operations research methods used for scheduling 

problems in underground mines, and Allahverdi (2015) presents a 

comprehensive survey on scheduling problems with setup times. 

Considering human operators in a machine scheduling problem 

is known as Dual Resourced Constrained (DRC) system. Xu, Xu, and 

Xie (2011) and Ammar, Pierreval, and Elkosentini (2013) present 

overviews on contributions that considered DRC systems. The au- 

thors categorize the challenges regarding the workers based on 

(i) worker flexibility; (ii) worker assignment; and (iii) transfer costs 

of workers. According to worker flexibility, a flexibility level is in- 

troduced. For instance, a flexibility level of 2 means that a worker 

is capable of operating two different machines. In our work, the 

workers can operate a subset (or the set) of available machines 

with different skills; however, we limit the number of machine 

changes. Regarding the worker assignment, Xu et al. introduce a 

where / when -rule which dictates when a worker can be transferred 

to another production stage and where that worker is to be as- 

signed when he is eligible for transfer. In the problem at hand, 

we have no additional constraints according to that classification 

3 Note that a worker, who changes his machine, has to do the first technical ser- 

vices for the new machine, regardless of whether the machine was already in use. 
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Fig. 3. A feasible solution to the problem illustrated in Fig. 2 

Table 1 

Literature review. 

Production Objective Mathematical Setup times 

environment function formulation 

Daniels et al. (2004) FSP makespan time-indexed –

Huq et al. (2004) FSP makespan seq.-based machine-dependent 

Artigues et al. (2006) JSP multi-obj. time-indexed job-dependent 

Artigues et al. (2009) JSP multi-obj. seq.-based job-dependent 

Puttkammer et al. (2011) JSP multi-obj. time-indexed –

Mencía et al. (2013) JSP flow time – –

Ramya and Chandrasekaran (2014) JSP empl. cost time-indexed –

Frihat et al. (2014) FJSP empl. cost seq.-based –

Benavides, Ritt, and Miralles (2014) FSP makespan seq.-based –

Guyon et al. (2014) JSP empl. cost time-indexed –

Agnetis, Murgia, and Sbrilli (2014) JSP makespan seq.-based –

Behnamian (2014) HFSP diff. obj. – seq.-dependent 

Yazdani, Zandieh, Tavakkoli-Moghaddam, and Jolai (2015) JSP makespan seq.-based –

Campos Ciro et al. (2016) OSP flow time non-linear/seq.-based machine-/job-dependent 

Mencía, Sierra, Mencía, and Varela (2016) JSP makespan – –

Paksi and Ma’ruf (2016) FJSP tardiness – –

Ahmadi-Javid and Hooshangi-Tabrizi (2017) JSP makespan seq.-based seq.-dependent 

Zhang, Wang, and Xu (2017) JSP makespan seq.-based –

Santos et al. (2018) FJSP throughput time-indexed –

Kress et al. (2019) FJSP diff. obj. TSP-var./seq.-based seq.-dependent 

Yazdani et al. (2019) FJSP multi-obj. – –

Meng et al. (2019) FJSP problem-specific pos.-based –

Gong et al. (2020) FJSP diff. obj. pos.-based –

FSP: Flow shop scheduling problem; FJSP: Flexible job shop problem; HFSP: Hybrid flow shop scheduling problem; JSP: Job shop scheduling problem; OSP: Open shop 

scheduling problem; pos.-based: position-based MILP; seq.-based: sequence-based MILP; seq.-dependent: sequence-dependent; time-indexed: time-indexed MILP 

where and when a worker can be transferred to another produc- 

tion stage. Also, Xu et al. and Ammar et al. mention that most pa- 

pers did not give any consideration to costs and/or delays caused 

by worker transfer across different work stations. In our problem, 

we consider the delays caused by worker transfer. 

To the few works that consider a transfer cost for human op- 

erators belong, e.g., Araz (2005) and Uzun Araz and Salum (2010) , 

that propose a heuristic procedure and simulation-based schedul- 

ing approaches for a parallel machine scheduling problem. In what 

follows, we confine our literature review to the integrated worker 

assignment and shop scheduling problems in the last two decades. 

In Table 1 , we summarized the papers regarding the production 

environments, the objective functions, the proposed mathematical 

formulations (if there is any), and whether some setup times are 

considered or not. Note that “multi-obj.” means that the papers 

use multiple objective functions, where “diff. obj.” means that the 

same problem is solved using different objective functions. 

In terms of the production environment, most of the studies 

deal with JSPs (e.g., Artigues, Gendreau, and Rousseau (2006) ) or 

FJSPs (e.g., Frihat, Sadfi, and Hadj-Alouane (2014) ). In comparison, 

FSPs are considered less in the literature (e.g., Daniels, Mazzola, 

and Shi (2004) ). The work of Behnamian (2014) is the only one 

that considers a hybrid flow shop scheduling problem but without 

suggesting any mathematical formulation. 
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In the view of objective functions to be considered, the most 

common one is makespan (e.g., Daniels et al. (2004) ), while 

flow time (e.g., Mencía, Sierra, and Varela (2013) ), employee cost 

(e.g., Ramya and Chandrasekaran (2014) ), tardiness (e.g., Paksi 

and Ma’ruf (2016) ), and throughput (e.g., Santos, Fukasawa, and 

Ricardez-Sandoval (2018) ) are also used as objective functions in 

the reviewed papers. Artigues et al. (2006) and Artigues, Gendreau, 

Rousseau, and Vergnaud (2009) consider a linear combination of a 

production cost and an employee satisfaction cost as an objective 

function to be minimized. Puttkammer, Kleber, Schulz, and Inder- 

furth (2011) minimize a multi-objective function considering the 

lateness and the employee cost. In the work of Yazdani, Zandieh, 

and Tavakkoli-Moghaddam (2019) , a multi-objective function con- 

cerning makespan as well as critical and total machine workload 

is taken into account. Behnamian (2014) heuristically solves one 

problem with different objectives, i.e., makespan, earliness, tardi- 

ness, and employee cost. Kress, Müller, and Nossack (2019) con- 

sider two objective functions, makespan and total tardiness. In the 

work of Gong et al. (2020) , makespan, total worker cost, and a 

problem specific objective function, are taken into consideration. 

The reviewed studies generally use time-indexed (e.g., Daniels 

et al. (2004) ) or sequence-based (e.g., Huq, Cutright, and Mar- 

tin (2004) ) mathematical formulations. Meng, Zhang, Zhang, and 

Ren (2019) and Gong et al. (2020) propose a position-based math- 

ematical formulation. Only Kress et al. (2019) use TSP-variables 

to formulate a vehicle routing problem in their work, which is 

showed to be a potent formulation for considering the driving 

times for the mobile machines. For workers’ constraints, Kress 

et al. use a sequence-based formulation. Daniels et al. (2004) , 

Huq et al. (2004) , Artigues et al. (2006) , Artigues et al. (2009) , 

Puttkammer et al. (2011) , Kress et al. (2019) , Meng et al. (2019) , 

and Gong et al. (2020) use MILP solver or suggest some exact pro- 

cedures to solve small problem instances. Frihat et al. (2014) and 

Guyon, Lemaire, Pinson, and Rivreau (2014) apply decomposi- 

tion and cut generation for solving larger problem instances 

up to 100 operations. They show that the proposed exact ap- 

proaches outperform the solutions achieved by a MILP solver. 

Santos et al. (2018) solve larger instances using a MILP solver to 

optimality, which is probably possible because of the structure of 

the problem instances. In the test instances, 200 jobs must be pro- 

cessed on 25 processing units, where each processing unit has up 

to 10 identical machines, and the number of available workers is 

large enough. In other works mentioned in Table 1 , the authors 

use some heuristic procedures to tackle large problem instances. 

Finally, in terms of setup times, Artigues et al. (2006) , 

Artigues et al. (2009) , and Campos Ciro, Dugardin, Yalaoui, and 

Kelly (2016) consider some job-dependent removal times. In the 

work of Campos Ciro et al. (2016) , some machine-dependent setup 

times are also considered. Behnamian (2014) , Ahmadi-Javid and 

Hooshangi-Tabrizi (2017) , and Kress et al. (2019) observe some 

sequence-dependent setup times, while Huq et al. (2004) take 

machine-dependent setup times into account. None of the papers 

mentioned in Table 1 deals with the setup times caused by the 

workers. 

To the best of our knowledge, the published works on DRC 

systems did not consider the following aspects: (i) operating a 

subset of available jobs and operations; (ii) possible delays for 

the processing of the operations because of the workers’ breaks; 

(iii) changeover times for workers; and (iv) possible interruptions 

of jobs at the end of the work shift. In summary, our literature 

review suggests that the solution procedures discussed in the lit- 

erature are not suitable for our shift scheduling problem. 

As mentioned before, Schulze and Zimmermann (2017) and 

Seifi et al. (2019) deal with our problem, but they do not intro- 

duce a linear program for the problem. Hence, solving the problem 

using a MILP solver is not possible. In Section 3 , we formulate a 

mixed-integer linear program (MILP) using TSP-variables to model 

the problem mathematically. 

3. Mathematical model 

In this section, we introduce a MILP-formulation for the prob- 

lem explained in Section 2 . Since we consider sequence-dependent 

setup, changeover, and removal times, it is necessary to determine 

the exact processing-sequence of the operations on the assigned 

machines and the assigned workers. For this purpose, a position- 

based formulation is theoretically appropriate. Accordingly, we 

linearized the non-linear position-based program suggested by 

Schulze and Zimmermann (2017) . Preliminary tests showed that 

the corresponding mixed-integer linear program, because of a large 

number of decision variables, cannot be generated for even small 

problem instances using a MILP solver within a reasonable amount 

of time. Seifi et al. (2019) propose a sequence-based formulation 

for a relaxation of the problem at hand. By complementing the 

formulation with additional decision variables and constraints, the 

exact processing-sequence of the operations on the machines and 

the workers can be determined. Although this extended formula- 

tion is better than a position-based one, it is still not good enough 

to be used for real problem instances. 

The straightforward way to determine the sequencing of the 

processing of the operations is to use the traveling salesman prob- 

lem (TSP) variables. Queyranne and Schulz (1994) investigate five 

different formulations for a single machine scheduling problem 

from a polyhedral point of view and suggest the use of the TSP- 

variables, especially for the problems with changeover or setup 

times. Our preliminary tests showed that a formulation based on 

TSP-variables outperforms the other kinds of formulations. 

For better clarity, we divide our mathematical formulation into 

seven parts. Note that the parts 1 to 5 of the proposed formulation 

can be used to formulate any job or flow shop scheduling problem 

with worker constraints. 

1. assigning one worker and one machine to an operation, and 

determining the processing-sequence of the operations on 

each machine and each worker; 

2. determining the setup, changeover, and removal times; 

3. considering the specific processing time and duration of 

each operation with respect to MR (1); 

4. observing the precedence relations between the operations; 

5. determining the processed part of each operation during the 

work shift; 

6. formulating the mining-specific requirements MR (2) to 

MR (6); and 

7. providing the objective function. 

Notably, in part 1, it can be customized if a subset or the set of 

available jobs must be processed. The problem-specific setup times 

can be adjusted in part 2 of the formulation. In part 3, the pro- 

cessing times of operations can be adapted regarding the fact if 

the breaks of workers are considered or not. Moreover, in part 4, 

problem-specific precedence relations between the operations can 

be considered. Finally, the planning horizon (if it is a work shift or 

not) and the interruptibility of the operations at the end of a work 

shift (if we consider a work shift) can be easily tailored in part 5. 

In Table 2 , we first introduce the sets and the parameters which 

are used in our program and are known in advance. 

1. Assigning one worker and one machine to an operation, and de- 

termining the processing-sequence of the operations on each machine 

and each worker 

For all O kj ∈ �, we introduce binary decision variables B kj and 

X k jwm 

. B kj is 1 if the processing of O kj is started within the work 

shift, and X k jwm 

is 1 if machine m ∈ M k and worker w ∈ W k pro- 

cess operation O kj . Since any operation is processed by exactly one 
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Table 2 

The sets and parameters used in MILP. 

Sets 

J Set of jobs 

K Set of production stages (mining operations) 

M Set of machines 

M k Set of machines in stage k ∈ K 
� Set of operations O kj , k ∈ K , j ∈ J 
W Set of workers 

W k Set of workers who can be assigned to stage k ∈ K 
Parameters 

χ Duration of a work shift in minutes 

d 0 jm Driving time of machine m ∈ M from the parking location at the beginning of the work shift to job j ∈ J in minutes 

d jrm Driving time of machine m ∈ M from job j ∈ J to job r ∈ J ( j � = r ) in minutes 

δ Duration of the break of workers in minutes 

ϕα Earliest start time of workers’ break 

ϕω Latest start time of workers’ break 

pt k jwm Processing time of operation O kj ∈ �, if it is processed by worker w ∈ W k and machine m ∈ M k in minutes 

σ kj Binary information, 1 if operation O kj ∈ � was interrupted at the end of the last shift; 0 otherwise 

t co 
jr 

Changeover time when a worker changes his machine and goes from job j ∈ J to job r ∈ J ( j � = r ) in minutes 

td αm Time for the first technical services that must be done for machine m ∈ M in minutes 

td ω m Time for the last technical services that must be done for machine m ∈ M in minutes 

ton kj Estimated output of operation O kj ∈ � in tonnes 

ton e 
k 

Given target value of output for stage (mining operation) k ∈ K in tonnes 

u j Underground location of Job j ∈ J 

worker and one machine but has not to be necessarily processed 

within a work shift, the following constraint set must be consid- 

ered: ∑ 

w ∈ W k 

∑ 

m ∈ M k 

X k jwm 

= B k j j ∈ J; k ∈ K : O k j ∈ � (1) 

To determine the processing-sequence of operations on a 

worker and a machine respectively, we use, as mentioned, so- 

called TSP-variables. In this regard, we introduce a dummy oper- 

ation O 00 ∈ � (and accordingly J 0 := J ∪ {0}, K 

0 := K ∪ {0}) that can 

be considered as the start city in TSP. Like the cities in TSP, each 

operation, that is processed within the work shift, has exactly one 

predecessor operation and exactly one successor operation on the 

assigned worker and the assigned machine. O 00 is the first and the 

last operation processed by each worker and each machine. Conse- 

quently, there is a route for each worker (each machine), beginning 

with O 00 , that visits all the operations processed by this worker 

(this machine) and returns to operation O 00 . Let binary decision 

variable Y W 

k j,k ′ r,w 

be 1 if operation O kj is processed directly before 

operation O k ′ r by worker w . Constraint sets (2) and (3) appoint the 

sequencing of the operations processed by worker w . ∑ 

r∈ J 0 

∑ 

k ′ ∈ K 0 : 
O 

k ′ r ∈ �∧ 
O 

k ′ r � = O k j ∧ w ∈ W k ′ 

Y W 

k ′ r,k j,w 

= 

∑ 

m ∈ M k 

X k jwm 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k (2) 

∑ 

r∈ J 0 

∑ 

k ′ ∈ K 0 : 
O 

k ′ r ∈ �∧ 
O 

k ′ r � = O k j ∧ w ∈ W k ′ 

Y W 

k j,k ′ r,w 

= 

∑ 

m ∈ M k 

X k jwm 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k (3) 

Constraint sets (4) and (5) guarantee that O 00 can be the predeces- 

sor and the successor of maximum one operation for each worker, 

respectively. ∑ 

j∈ J 

∑ 

k ∈ K: 
O k j ∈ �∧ 

w ∈ W k 

Y W 

00 ,k j,w 

≤ 1 w ∈ W (4) 

∑ 

j∈ J 

∑ 

k ∈ K: 
O k j ∈ �∧ 

w ∈ W k 

Y W 

k j, 00 ,w 

≤ 1 w ∈ W (5) 

Since we do not process all eligible operations within the work 

shift, it is necessary to make sure that Y W 

k j,k ′ r,w 

for k , k ′ ∈ K and j , 

r ∈ J ( O k j � = O k ′ r ) can only take the value of 1 if both operations O kj 

and O k ′ r are processed. 

2 Y W 

k j,k ′ r,w 

≤
∑ 

m ∈ M k 

X k jwm 

+ 

∑ 

m ∈ M k ′ 

X k ′ rwm 

j, r ∈ J; k, k ′ ∈ K : O k j , O k ′ r ∈ � : O k j � = O k ′ r ; w ∈ W k ∩ W k ′ (6) 

Analogously, we introduce the binary decision variables Y M 

k j,k ′ r,m 

. 

With the aid of the following sets of constraints, the sequencing of 

the operations processed by a specific machine is determined: ∑ 

r∈ J 0 

∑ 

k ′ ∈ K 0 : 
O 

k ′ r ∈ �∧ 
O 

k ′ r � = O k j ∧ m ∈ M k ′ 

Y M 

k ′ r,k j,m 

= 

∑ 

w ∈ W k 

X k jwm 

j ∈ J; k ∈ K : O k j ∈ �; m ∈ M k (7) 

∑ 

r∈ J 0 

∑ 

k ′ ∈ K 0 : 
O 

k ′ r ∈ �∧ 
O 

k ′ r � = O k j ∧ m ∈ M k ′ 

Y M 

k j,k ′ r,m 

= 

∑ 

w ∈ W k 

X k jwm 

j ∈ J; k ∈ K : O k j ∈ �; m ∈ M k (8) 

∑ 

j∈ J 

∑ 

k ∈ K: 
O k j ∈ �∧ 
m ∈ M k 

Y M 

00 ,k j,m 

≤ 1 m ∈ M (9) 

∑ 

j∈ J 

∑ 

k ∈ K: 
O k j ∈ �∧ 
m ∈ M k 

Y M 

k j, 00 ,m 

≤ 1 m ∈ M (10) 

2 Y M 

k j,k ′ r,m 

≤
∑ 

w ∈ W k 

X k jwm 

+ 

∑ 

w ∈ W k ′ 

X k ′ rwm 

j, r ∈ J; k, k ′ ∈ K : O k j , O k ′ r ∈ � : O k j � = O k ′ r ; m ∈ M k ∩ M k ′ (11) 

Note that the subtour elimination is realized if we consider 

a precedence relation between the operations that are processed 

by the same worker or by the same machine (see constraint 

sets (26) and (27) ). 

2. Determining the setup, changeover, and removal times 

We classify two groups of activities that must be done for any 

operation: (1) preceding activities that are done before the start of 

the processing of an operation; and (2) succeeding activities that are 

performed after the completion of the processing of an operation. 

According to that classification, we can associate the first technical 
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Fig. 4. Preceding and succeeding activities of an operation (cf. Fig. 3 ). 

services and the driving times with the preceding activities. On the 

other hand, possible changeover and removal times belong to the 

succeeding activities. Let A 

p 

k j 
and A 

s 
k j 

be the duration of the preced- 

ing and succeeding activities that must be performed for operation 

O kj , respectively. Fig. 4 illustrates these activities for the feasible 

schedule illustrated in Fig. 3 . 

Both preceding and succeeding activities for operation O kj are 

performed by worker w, who processes O kj . Utilizing that classifi- 

cation, we can easily formulate the precedence relations between 

the operations that use the same resource if we know the values 

of A 

p 

k j 
and A 

s 
k j 

. 

The value of the non-negative decision variable A 

p 

k j 
for opera- 

tion O kj that is processed by worker w and machine m depends on 

the predecessor operation on w, and m . Let 	 be a constant num- 

ber with a sufficiently large positive value. For A 

p 

k j 
, we formulate 

the following constraints: ∑ 

m ∈ M k 

(d 0 jm 

+td αm 

) · Y M 

00 ,k j,m 

≤ A 

p 

k j 
+ 	(1 −B k j ) j ∈ J; k ∈ K : O k j ∈ � (12) 

∑ 

r∈ J 

∑ 

k ′ ∈ K: 
O 

k ′ r ∈ �: 

O 
k ′ r � = O k j 

∑ 

m ∈ M k ∩ M k ′ 
d r jm · Y M 

k ′ r,k j,m 
≤ A p 

k j 
+	(1 − B k j ) j ∈ J; k ∈ K : O k j ∈ � (13) 

∑ 

m ∈ M k ∩ M k ′ 

d r jm 

· Y M 

k ′ r,k j,m 

+ 

∑ 

m ∈ M k 

td αm 

· X k jwm 

≤ A 

p 

k j 
+ 	

( 

1 −
∑ 

m ∈ M k ∩ M k ′ 

Y M 

k ′ r,k j,m 

) 

+ 	

( ∑ 

m ∈ M k ′ 

X k ′ rwm 

−
∑ 

m ∈ M k 

X k jwm 

+ 1 

) 

+ 	(2 − B k j − B k ′ r ) 

j, r ∈ J; k, k ′ ∈ K : O k j , O k ′ r ∈ � : O k j � = O k ′ r ; w ∈ W k (14) 

Constraint set (12) makes sure that at the beginning of the work 

shift, the first technical services and the driving time from the 

parking location of machine m to job j are considered. In this case, 

O kj is the first operation assigned to machine m (see A 

p 
71 

, A 

p 
83 

, and 

A 

p 
82 

in Fig. 4 ). If O k ′ r is processed immediately before O kj by ma- 

chine m , constraint set (13) guarantees the consideration of d rjm 

. 

Constraint set (14) ensures that the first technical services for O kj 

must be additionally taken into account if O k ′ r is directly scheduled 

before O kj on the same machine; still O kj is processed by worker w, 

and O k ′ r by a different worker (see A 

p 
84 

in Fig. 4 ). 

For A 

s 
k j 

, constraint set (15) considers the last technical services 

for O kj if it is the last operation assigned to machine m (see A 

s 
84 

in Fig. 4 ), and constraint set (16) guarantees the consideration of 

the changeover times if worker w, who processed O kj , performs 

directly another operation on a different machine (see A 

s 
71 

and A 

s 
83 

in Fig. 4 ). ∑ 

m ∈ M k 

td ω m 

· Y M 

k j, 00 ,m 

≤ A 

s 
k j + 	(1 − B k j ) j ∈ J; k ∈ K : O k j ∈ � (15) 

∑ 

m ∈ M k 

td ω m 

· Y M 

k j, 00 ,m 

+ 

∑ 

w ∈ W k 

t co 
jr · Y W 

k j,k ′ r,w 

≤ A 

s 
k j + 	

( ∑ 

m ∈ M k ∩ M k ′ 

Y M 

k j,k ′ r,m 

) 

+ 	(2 −B k j −B k ′ r ) j, r ∈ J; k, k ′ ∈ K : O k j , O k ′ r ∈ � : O k j � = O k ′ r (16) 

3. Considering the specific processing time and duration of each 

operation with respect to MR (1) 

Let S kj be the non-negative decision variable to denote the start 

time of operation O kj . We indicate the actual processing time of O kj 

after assigning a particular worker and a specific machine with P kj 

that can be calculated as follows 4 : 

P k j := 

∑ 

w ∈ W k 

∑ 

m ∈ M k 

pt k jwm 

· X k jwm 

It must be noted that the duration of the processing of an opera- 

tion, and therefore its completion time may be extended because 

of the break of the worker who processes that operation (see O 84 

in Fig. 4 ). Hence, to determine the right completion time of any 

operation, mining requirement MR (1) must be taken into account 

(cf. Section 2 ). 

MR (1) Each worker has to take a δ−minute break. The start 

time of the break must lie in a given interval [ ϕ 

α , ϕ 

ω ]. We define 

positive decision variable 
w 

to denote the start time of the break 

of worker w . 

ϕ 

α ≤ 
w 

≤ ϕ 

ω w ∈ W (17) 

Additionally, we introduce binary decision variables �s 
k j 

and �e 
k j 

to determine if the break of a worker starts during the processing 

of O kj . 

�s 
k j = 

{ 

1 , if the break of worker w ∈ W k , who processes O k j , 

is not taken before S k j − A 

p 

k j 
; 

0 , otherwise. 

4 Note that P kj are decision variables that have not to be additionally introduced 

in the mathematical model. We use P kj instead of the explicit summation for better 

clarity. 
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Fig. 5. Values of �s 
k j 

and �e 
k j 

depending on 
w . 

�e 
k j = 

{ 

1 , if the start time of the break of worker w ∈ W k , 
who processes O k j , is before S k j + P k j ; 

0 , otherwise. 

Fig. 5 illustrates the dependence of the values taken by �s 
k j 

and �e 
k j 

on the start time of the break of worker w, who processes O kj . Both 

variables �s 
k j 

and �e 
k j 

must take the value of 1 if and only if 
w 

lies during the processing of O kj . For this purpose, we formulate 

the following constraint sets: 


w 

+ δ ≤ S k j − A 

p 

k j 
+ 	 · �s 

k j + 	

( 

1 −
∑ 

m ∈ M k 

X k jwm 

) 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k (18) 

S k j ≤ 
w 

+ 	(1 − �s 
k j ) + 	

( 

1 −
∑ 

m ∈ M k 

X k jwm 

) 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k (19) 


w 

≤ S k j + P k j + 	(1 − �e 
k j ) + 	

( 

1 −
∑ 

m ∈ M k 

X k jwm 

) 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k (20) 

S k j + P k j + A 

s 
k j ≤ 
w 

+ 	 · �e 
k j + 	

( 

1 −
∑ 

m ∈ M k 

X k jwm 

) 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k (21) 

Note that constraint sets (19) to (21) additionally guarantee that 

the break of a worker cannot be taken during the preceding and 

succeeding activities of an operation. The following constraint sets 

ensure that binary decision variables �kj take the value of 1 if and 

only if �s 
k j 

= 1 and �e 
k j 

= 1 : 

�s 
k j + �e 

k j ≤ 1 + �k j j ∈ J; k ∈ K : O k j ∈ � (22) 

2�k j ≤ �s 
k j + �e 

k j j ∈ J; k ∈ K : O k j ∈ � (23) 

Thus, the right duration of an operation is equal to P k j + δ · �k j , 

and accordingly, the completion time of O kj can be determined as 

follows 5 : 

C k j := S k j + P k j + δ · �k j 

5 Note that C kj are decision variables that have not to be introduced additionally 

and are used for better clarity. 

4. Observing the precedence relations between the operations 

As mentioned, the production environment can be classified as 

an HFS scheduling problem. Constraint sets (24) and (25) guaran- 

tee that a job is processed in the chronological order in the stages. 

B k ′ j ≤ B k j j ∈ J; k, k ′ ∈ K : k < k ′ ∧ O k j , O k ′ j ∈ � (24) 

C k j ≤S k ′ j + 	(2 −B k j − B k ′ j ) j ∈ J; k, k ′ ∈ K : k < k ′ ∧O k j , O k ′ j ∈ � (25) 

Constraint sets (26) and (27) ensure a precedence relation be- 

tween the operations that are processed by the same worker and 

by the same machine, respectively. 

C k j + A 

s 
k j ≤ S k ′ r − A 

p 

k ′ r + 	

( 

1 −
∑ 

w ∈ W k ∩ W k ′ 

Y W 

k j,k ′ r,w 

) 

j, r ∈ J; k, k ′ ∈ K : O k j , O k ′ r ∈ � : O k j � = O k ′ r (26) 

C k j ≤ S k ′ r − A 

p 

k ′ r + 	

( 

1 −
∑ 

m ∈ M k ∩ M k ′ 

Y M 

k j,k ′ r,m 

) 

j, r ∈ J; k, k ′ ∈ K : O k j , O k ′ r ∈ � : O k j � = O k ′ r (27) 

Note that if Y M 

k j,k ′ r,m 

= 1 , we must not consider A 

s 
k j 

in the prece- 

dence relation between O kj and O k ′ r on machine m . A 

s 
k j 

takes a 

value greater than zero if: (I) O kj is the last operation assigned to 

the machine; or (II) worker w, who processed O kj , has changed his 

machine. In case (I), Y M 

k j,k ′ r,m 

is zero (constraint set (27) is satis- 

fied), and in case (II), A 

s 
k j 

leads to a delay for the operation that 

will be consequently processed by worker w (not for the successor 

operation on machine m ) (see A 

s 
83 

in Fig. 4 , where O 83 and O 84 are 

processed by the same machine). 

5. Determining the processed part of each operation during the 

work shift 

As explained, the operations can be interrupted at the end of 

the work shift. In this regard, we define binary decision variables 

I kj as follows: 

I k j = 

{ 

1 , if C k j plus the removal time needed for the assigned 

machine is after the end of the work shift; 
0 , otherwise. 

Obviously, I kj is 0 if operation O kj is not processed during the work 

shift: 

I k j ≤ B k j j ∈ J; k ∈ K : O k j ∈ � (28) 

With the aid of the following constraint sets, decision variables I kj 

take the right values: 

C k j + 

∑ 

m ∈ M k 

td ω m 

· Y M 

k j, 00 ,m 

≤ χ + 	 · I k j j ∈ J; k ∈ K : O k j ∈ � (29) 

χ ≤ C k j + 

∑ 

m ∈ M k 

td ω m 

· Y M 

k j, 00 ,m 

+ 	(1 − I k j ) j ∈ J; k ∈ K : O k j ∈ �

(30) 

Assume machine m processes O kj . If I kj is 1, C k j (= S k j + P k j + δ ·
�k j ) + td ω m 

lies after the end of the work shift. In this case, we 

have to determine the percentage of O kj that is processed dur- 

ing the work shift. Let ˜ P k j be the executed part of O kj (see O 82 in 

Fig. 4 ). Then, ̃  P k j = ρ · P k j with ρ ∈ [0, 1], where ρ can be calculated 

as follows: 

ρ = 

χ − (S k j + δ · �k j + td ω m 

) 

P k j 
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Remember that P kj has the value of pt k jwm 

if worker w and ma- 

chine m are assigned to O kj . If we write 
∑ 

w ∈ W k 

∑ 

m ∈ M k 
pt k jwm 

·
X k jwm 

instead of P kj and reformulate the above fraction, we have 

the following equation: ∑ 

w ∈ W k 

∑ 

m ∈ M k 

pt k jwm 

· ρ · X k jwm 

= χ − (S k j + δ · �k j + td ω m 

) 

We substitute the product ρ · X k jwm 

by the non-negative contin- 

uous decision variable G k jwm 

that takes a value greater than 0 if 

and only if X k jwm 

is 1. The percentage of O kj that is processed dur- 

ing the work shift is G k jwm 

· 100% . Through the following constraint 

sets, the value of G k jwm 

will be correctly appointed: 

G k jwm 

≤ X k jwm 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k ; m ∈ M k (31) 

S k j + 

∑ 

w ∈ W k 

∑ 

m ∈ M k 

pt k jwm 

· G k jwm 

+ δ · �k j + 

∑ 

m ∈ M k 

td ω m 

· Y M 

k j, 00 ,m 

≤ χ + 	(1 − I k j ) j ∈ J; k ∈ K : O k j ∈ � (32) 

Clearly, we can maximally operate 100 percent of any operation 

( G k jwm 

≤ 1 ). Moreover, if B k j = 1 and I k j = 0 , the excavated per- 

centage of O kj must be 100 ( G k jwm 

= 1 ). ∑ 

w ∈ W k 

∑ 

m ∈ M k 

G k jwm 

≤ B k j j ∈ J; k ∈ K : O k j ∈ � (33) 

∑ 

w ∈ W k 

∑ 

m ∈ M k 

G k jwm 

≤ B k j + I k j j ∈ J; k ∈ K : O k j ∈ � (34) 

B k j − I k j ≤
∑ 

w ∈ W k 

∑ 

m ∈ M k 

G k jwm 

j ∈ J; k ∈ K : O k j ∈ � (35) 

6. Formulating the mining-specific requirements MR (2) to MR (6) 

Let V k j,k ′ r be a binary decision variable that is 1 if O kj is com- 

pleted before O k ′ r is started. Moreover, Z wm 

is a binary decision 

variable that is 1 if worker w is assigned at least one time to 

machine m to process any operation. For mining-specific require- 

ments MR (2)–(6) (cf. Section 2 ), we formulate the following self- 

explanatory constraint sets: 

MR (2) 

C k j ≤ S k ′ r + 	(1 − V k j,k ′ r ) + 	(2 − B k j − B k ′ r ) 

j, r ∈ J : j � = r ∧ u j = u r ; k, k ′ ∈ K : O k j , O k ′ r ∈ � (36) 

C k ′ r ≤ S k j + 	 · V k j,k ′ r + 	(2 − B k j − B k ′ r ) 

j, r ∈ J : j � = r ∧ u j = u r ; k, k ′ ∈ K : O k j , O k ′ r ∈ � (37) 

MR (3) 

B k ′ r ≤ B k j 

j, r ∈ J : j � = r ∧ u j = u r ; k, k ′ ∈ K : O k j , O k ′ r ∈ � ∧ k < k ′ (38) 

C k j ≤ S k ′ r + 	(2 − B k j − B k ′ r ) 

j, r ∈ J : j � = r ∧ u j = u r ; k, k ′ ∈ K : O k j , O k ′ r ∈ � ∧ k < k ′ (39) 

MR (4) 

k ′ r ≤ B k j j, r ∈ J : j � = r ∧ u j = u r ; k, k ′ ∈ K : O k j , 

O k ′ r ∈ � ∧ σk j = 1 ∧ σk ′ r = 0 (40) 

MR (5) 

I k j = 0 j ∈ J; k = 5 : O 5 j ∈ � (41) 

MR (6) ∑ 

m 

′ ∈ M k 

X k jwm 

′ + 

∑ 

w 

′ ∈ W k 

X k jw 

′ m 

≤ 1 + Z wm 

j ∈ J; k ∈ K : O k j ∈ �; w ∈ W k ; m ∈ M k (42) 

∑ 

m ∈ M 

Z wm 

≤ 2 w ∈ W (43) 

∑ 

w ∈ W 

Z wm 

≤ 2 m ∈ M (44) 

7. Providing the objective function 

Our optimization problem aims to minimize the accumulated 

lower deviations of the output from the predetermined target val- 

ues (cf. Section 2 ). We introduce positive continuous decision vari- 

ables D k , which take the value of the lower deviation for stage k 

from a given target value ton e 
k 

(an amount of material in tonnage 

that is expected to be completed in stage k within the work shift). 

t on 

e 
k −

∑ 

j∈ J: 
O k j ∈ �

∑ 

w ∈ W k 

∑ 

m ∈ M k 

t on k j · G k jwm 

≤ D k k ∈ K (45) 

We only take the lower deviations into account. If the output for 

a stage exceeds the target value, we do not consider the difference 

( D k = 0 ). 

From an operational point of view, we want to have consistent 

progress, i.e., if there are some lower deviations, they should be 

distributed as evenly as possible between the processing stages. 

For this purpose, a quadratic objective function would be appro- 

priate. ∑ 

k ∈ K 
D 

2 
k (QOF) 

Preliminary tests on small instances showed that the optimal 

solution is the same, regardless of having a quadratic or a linear 

objective function. That is maybe the case, because the number of 

available machines, in comparison to the available operations, is 

quite small. Hence, we use a linear objective function to approxi- 

mate the quadratic one that allows finding better solutions within 

a given time limit. We introduce positive continuous decision vari- 

able D 

max that takes the value of the maximum lower deviation 

from a target value. 

D k ≤ D 

max k ∈ K (46) 

Our modified linear objective function can then be formulated as 

follows: ∑ 

k ∈ K 
D k + D 

max (MLOF) 

We denote the minimization problem using (MLOF) as the objec- 

tive function and subject to constraints (1) –(46) as MILP . In our 

MILP, the number of integer decision variables is of the order of 

| J 0 | 2 · | K 

0 | 2 · max 
{

max k ∈ K {| W k |} , max k ∈ K {| M k |} 
}

(cf., e.g., Y W 

k j,k ′ r,w 

). 

On the other hand, the number of constraints is of the order 

of | J| 2 · | K| 2 · max 
{

max k ∈ K {| W k |} , max k ∈ K {| M k |} 
}

(cf., e.g., constraint 

sets (6) and (11) ). Finally, the number of continuous decision vari- 

ables is of the order of | J| · | K| · max k ∈ K {| W k |} · max k ∈ K {| M k |} (cf. 

G k jwm 

). In Appendix A , we indicate the values of the decision vari- 

ables of our MILP model for the feasible solution illustrated in 

Fig. 3 (given in Section 2 ). 

In Section 4 , we use some realistic problem instances to com- 

pare the results achieved by the presented MILP to the results pro- 

vided using the heuristic approach introduced by Schulze and Zim- 

mermann (2017) and the two-stage procedure developed by Seifi

et al. (2019) . 
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4. Computational study 

In Section 4.1 , we first present the essential data to generate 

the problem instances and give a brief overview of the constructive 

heuristic introduced by Schulze and Zimmermann and of the two- 

stage procedure suggested by Seifi et al. After that, we describe the 

performance analysis and compare the solution approaches based 

on the values of 
∑ 

k ∈ K D 

2 
k 
. In Subsect. 4.2 , we divide the generated 

test instances according to the number of operations and the num- 

ber of underground locations into 4 groups. Then, we compare the 

results achieved by our MILP and by the two-stage procedure con- 

sidering the values of 
∑ 

k ∈ K D k + D 

max (MLOF) . 

4.1. Generation of the test instances and the primary comparison of 

the results 

As mentioned before, machines and workers cannot be ex- 

changed between different mining districts during a work shift. 

Thus, we consider only one mining district in our shift schedul- 

ing problem. To generate realistic problem instances, we used data 

from practice that characterize a typical mining district that gen- 

erally has 4–6 tipple areas. Typically, a mining district has a pre- 

scribed minimum and maximum number of underground locations 

and working places. In our setting, there are 14–35 underground 

locations as well as 28–46 working places in the mining district. 

Consequently, we can assign 3–6 underground locations to each 

tipple area and 1–3 working places to each underground location. 

The allocation of underground locations (and their corresponding 

working places) to different tipple areas contributes only to de- 

termining the distances between the jobs. However, the associated 

underground location for each working place (job), u j , is used in 

the mathematical program to guarantee some mining-specific re- 

quirements for different jobs in the same underground location (cf. 

Section 2 ). 

At the beginning of the work shift, the processing of a job can 

begin on any production stage k ∈ K . Accordingly, each job must be 

processed in stages k to | K |. Note that the jobs (working places) 

that start with operations (1) and (2) appear more often. 6 More- 

over, not all of the jobs must be processed in production stages (4), 

(5), and (6). The installation of anchor bolts (stage (4)) is not nec- 

essarily needed for each working place (job). Also, drilling of large 

diameter boreholes (stage (5)), and consequently, removing the re- 

sultant dust (stage (6)) must not be performed if the salt face has 

a certain shape. Thus, operations (4), (5), and (6) are neglected for 

jobs with a certain probability in our problem instances. Note that 

each underground location includes only the operations of jobs, 

which can be theoretically processed during the work shift if the 

preceding operations are processed by the most skillful worker and 

by the speediest machine. 

The number of available identical/uniform machines for each 

production stage is given in Table 3 . 

As mentioned, it is expected that the processing of a job in a 

production stage provides a specific amount of crude material. This 

amount of material is a random number from 1 to 20, which is 

multiplied by 50 in tonnes. It must be taken into account that the 

expected amount of material for all operations of a job is the same. 

In the mining district under consideration, there are 6–15 work- 

ers available during one work shift. Each worker can operate at 

least one and at most all of the available machines. The process- 

ing times of the operations of jobs are first determined based on 

machine speeds. The results are then divided by the skill levels of 

workers who can deal with those machines. If a worker can handle 

6 Because the detonation (mining operation (9)) takes place between the work 

shifts, and mining operation (1) can last one work shift. 

Table 3 

Number of available machines in each production 

stage. 

Production stage Number of machines 

(1) 2–6 

(2) 1–3 

(3) and (6) 1–2 

(4) 1–2 

(5) 1–2 

(7) 1–2 

(8) 1–2 

a machine, his skill level on that machine is an element of the set 

{0.7, 0.8, 0.9, 1}, which is determined randomly. 

All other parameters from Table 2 in Section 3 , e.g., the tar- 

get values of output for production stages, driving times between 

the jobs, etc., are chosen based on the case study presented in 

Schulze and Zimmermann (2017) . We made the generated problem 

instances available online. 7 

The constructive heuristic procedure proposed by Schulze and 

Zimmermann (2017) is embedded in a multi-start algorithm. Using 

the multi-start algorithm, priority values are used to determine se- 

lection probabilities for jobs, machines, and workers. Schulze and 

Zimmermann studied several assigning methods regarding the way 

that jobs, machines, and workers are chosen. In this paper, we 

apply the combination that is currently used in the underground 

mine under consideration. In the corresponding assigning method, 

jobs and workers are randomly chosen, and machines are selected 

either 1. regarding the shortest driving times to the selected job; 

or 2. regarding the shortest processing time based on the cho- 

sen job and worker (for more detail, see Schulze and Zimmer- 

mann (2017) and Schulze (2016) ). In what follows, we denote the 

applied constructive heuristic with CH . 

Seifi et al. (2019) propose a two-stage approach to tackle the 

problem. They suggest a sequence-based formulation for a relax- 

ation of the problem. In the relaxed program, if a worker processes 

two consecutive operations on different machines, the succeeding 

activities for the first operation and the preceding activities for 

the second operation are not considered. Moreover, the breaks of 

workers may overlap the preceding or the succeeding activities of 

the operations processed by the associated workers. In the first 

stage, the relaxed program is solved by a MILP solver, and in the 

second stage, the solution achieved is fixed by inserting the ne- 

glected time intervals (for more detail, see Seifi et al. (2019) ). In 

the following, we denote the two-stage approach with 2SA . 

We generate feasible solutions for 100 realistic problem in- 

stances using MILP, 2SA, and CH. All tests are executed on an 

Intel i7-7700K@4.20GHz machine with 64 GB RAM under Win- 

dows 10. CH is implemented in Xpress IVE 8.8. For the first stage of 

2SA (relaxed program) and MILP, we used GAMS 31.2 and GUROBI 

solver 9.0.2. The second stage of 2SA is implemented in Visual Stu- 

dio 2017 by programming language C ++ . For all three solution ap- 

proaches, we set an upper time limit of 3600 seconds. CH is em- 

bedded in a multi-start algorithm, where a roulette-wheel selec- 

tion is applied to choose the jobs, workers, and machines according 

to their probability values. Hence, different solutions can be gen- 

erated within 3600 seconds for each single problem instance. CH 

finds the best solution within, on average, 343.4 seconds. For 2SA, 

we solve the relaxation of the problem using the GUROBI solver 

(first stage) with an upper time limit of 3600 seconds. The time 

for generating a feasible solution using the solution found in the 

first stage is negligible. In the first stage of 2SA, the GUROBI solver 

7 https://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/ 

forschung/benchmark-instances/ 
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Table 4 

Comparison of MILP to 2SA and CH. 

MILP 2SA MILP CH 

# best solutions found 69 31 84 16 

Gap 1 7.5% 24.4% 3.4% 97.8% 

Gap 2 24.3% 35.3% 21.4% 116.4% 

can find the best feasible solution within, on average, 1893.16 sec- 

onds. Our MILP cannot prove the optimality of any of the test in- 

stances within 3600 seconds, and the gap of the results achieved 

by MILP to the lower bound is, on average, 71.15%. That is prob- 

ably the case since lower bounds of 23 test instances are 0, and 

the corresponding gap is 100%. Moreover, the GUROBI solver in our 

MILP needs, on average, 2557.22 seconds to find the best feasible 

solution, which probably means that the lower bounds cannot be 

improved to prove the optimality of the feasible solutions found. 

However, the contribution of this paper is to introduce a mixed- 

integer linear program for the problem described in Section 2 that 

can find good feasible solutions for realistic problem instances. 

Clearly, CH is the quickest approach to find a feasible solution. 

As explained in Section 3 , the value of 
∑ 

k ∈ K D 

2 
k 

shows how con- 

sistent the desired progress could be implemented at the end of 

the work shift compared to the given state at the beginning of the 

work shift. We argued that using a modified linear objective func- 

tion (MLOF) for our MILP is usually sufficient to provide a good 

solution even for the quadratic objective function. To gauge the ef- 

ficiency of our claim, we take the value of 
∑ 

k ∈ K D 

2 
k 
, in this subsec- 

tion, as a basis to compare the results achieved by MILP, 2SA, and 

CH. Since CH is directly tailored for 
∑ 

k ∈ K D 

2 
k 
, a comparison of MILP 

and 2SA with CH concerning the provided values of (MLOF) is not 

reasonable. 

Seifi et al. showed that 2SA outperforms CH. In this paper, we 

compare the results achieved by MILP to 2SA and CH, respectively. 

For problem instance i , we denote the solution found by proce- 

dure ∗ with ξ ∗
i 

. Moreover, the best solution found is indicated by 

ξ best 
i 

. Let f ( ξ i ) be the objective value for solution ξ i . We calcu- 

late 
f (ξ ∗

i 
) − f (ξbest 

i 
) 

f (ξbest 
i 

) 
· 100% to determine the gap ( gap 

∗
i 
) of the solution 

found by procedure ∗ with respect to the best solution found for 

problem instance i . To evaluate the results achieved by the proce- 

dures, we define the parameters Gap 

1 and Gap 

2 . Gap 

1 is obtained 

by arithmetic averaging of the gap values over all of the problem 

instances. Gap 

2 is calculated by arithmetic averaging of the gap 

values over the set of the problem instances for which the solu- 

tion found by the considered procedure ∗ is not equal to the best 

solution found (i.e., gap 

∗
i 

� = 0 ). Table 4 presents the number of best 

solutions found using each approach, as well as Gap 

1 and Gap 

2 . 

In comparison to 2SA, MILP finds for 69% of the problem in- 

stances the best solution. For the case, that both procedures do not 

find the best solution, the values of the sum of quadratic lower de- 

viations of the solutions found by MILP are, on average, better than 

those values achieved by 2SA (24.3% vs. 35.3%). 

In comparison to CH, MILP finds for 84% of the problem in- 

stances the best solution. Moreover, for the other 16 problem in- 

stances, MILP finds a solution whose objective value is, on average, 

21.4% far from the objective value of the best solution found by CH. 

This value is 116.4% for CH, which shows that the solutions found 

by MILP are much better than the solutions achieved by CH. 

4.2. Comparison of MILP and 2SA in more detail 

MILP and 2SA can be investigated concerning the values of 

(MLOF) since 2SA uses (MLOF) as the objective function in the first 

Fig. 6. Depicting of available operations of all jobs through their quartiles. 

Fig. 7. Depicting of underground locations through their quartiles. 

stage. According to the values of (MLOF) , MILP can find for 81% of 

the instances a better solution. The value of Gap 

1 for the solution 

achieved by MILP is, on average, 10.2%, where that value for 2SA is 

equal to 21.9%. To find out whether there is a correlation between 

the number of operations or the number of underground locations 

in a problem instance and the quality of the solutions achieved 

by MILP and 2SA, we analyze the problem instances according to 

those numbers. The box plots in Figs. 6 and 7 illustrate the dis- 

tribution of the number of available operations of all jobs and the 

number of underground locations in our 100 generated problem 

instances, respectively. 

There are 63 to 150 operations of jobs with a median of 110 

as well as 16 to 32 underground locations with a median of 22.5. 

Let Q 1 , Q 2 , and Q 3 be the first, second, and third quartile, respec- 

tively. By definition, Q 1 is the middle number between the small- 

est number (min ) and the median (for operations Q 1 = 91 and for 

underground locations Q 1 = 19 ). Q 2 is the median, and Q 3 (for op- 

erations 126 and for underground locations 27) is the middle num- 

ber between the median and the highest value (max ). Thus, each 

problem instance can only belong to one of the four intervals [min , 

Q 1 ), [ Q 1 , Q 2 ), [ Q 2 , Q 3 ), and [ Q 3 , max ] according to the number of 

operations or the number of underground locations. In Table 5 , the 

number of problem instances in each interval, the percentage of 

the problem instances for which MILP finds a better solution than 

2SA (according to the values of (MLOF) ), and Gap 

1 values for 2SA 

and MILP are given. 

We see in Table 5 that in all four intervals, the number of best 

solutions found by MILP is much higher than the number of best 

solutions obtained by 2SA. The values of Gap 

1 also show that the 

quality of the solutions found by MILP in all of the four intervals is 

much better than the quality of the solutions found by 2SA. Over- 

all, the results show that a pattern cannot be recognized, and there 

is no particular correlation between the number of operations or 

the number of underground locations in a problem instance and 

the performance of the considered approaches. 

Finally, we calculate 
f (ξ2SA 

i 
) − f (ξMILP 

i 
) 

f (ξMILP 
i 

) 
· 100% for all of the prob- 

lem instances. The arithmetic average of the fraction above over 

100 problem instances is equal to 16.1%. It shows that the objective 

values of the results found by MILP are, on average, distinctly bet- 

ter than the objective values of the results obtained by 2SA. Hence, 

we can conclude that MILP significantly outperforms both exist- 

ing procedures if we solve problem instances that are typical for 

potash underground mines. 
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Table 5 

Analysis of the results achieved by MILP in comparison to 2SA based on the number of operations and the 

number of underground locations in problem instances. 

According to the number of operations [min , Q 1 ) [ Q 1 , Q 2 ) [ Q 2 , Q 3 ) [ Q 3 , max ] 

# problem instances 24 25 23 28 

MILP < 2SA 95.8% 72% 73.9% 82.1% 

Gap 1 for 2SA 14.8% 21.9% 29.5% 23.6% 

Gap 1 for MILP 5.7% 9.9% 11.3% 10.0% 

According to the number of underground locations [min , Q 1 ) [ Q 1 , Q 2 ) [ Q 2 , Q 3 ) [ Q 3 , max ] 

# problem instances 22 24 27 27 

MILP < 2SA 81.8% 75% 85.2% 81.4% 

Gap 1 for 2SA 14.1% 22.1% 24.6% 25.5% 

Gap 1 for MILP 7.1% 13.7% 11.5% 7.1% 

5. Conclusions 

In this paper, we consider a shift scheduling problem with a 

simultaneous assignment of machines and workers in a German 

potash mine. In the first step, we classify our shift scheduling 

problem as a variant of a hybrid flow shop scheduling problem 

where we have to 

• decide which jobs (operations) are performed in the current 

work shift; 
• consider sequence-dependent setup, changeover, and re- 

moval times; 
• assign an appropriate machine and worker to each operation 

and thus appoint the processing time of the job; 
• observe workers’ breaks. 

Next, we formulate a mixed-integer linear program using TSP- 

variables for our shift scheduling problem. In contrast to position- 

and sequence-based formulations, the proposed program is more 

compact and more promising from a computational point of view. 

It should be emphasized that the proposed formulation can be eas- 

ily adapted for other flow and job shop scheduling problems with 

worker constraints. The results of a performance analysis based on 

a set of realistic problem instances show that the solutions of our 

proposed mixed-integer linear program outperform the solutions 

which are currently constructed by means of the existing proce- 

dures. 

Future work concerns the development of good lower bounds 

for our shift scheduling problem and the investigation of general 

hybrid flow shop problems with the presented extensions. More- 

over, the total output can be considered as an important objective. 

Assume that target values for the production stages are achieved. 

Then in an optimal solution, there is no need to schedule the 

other available operations that can lead to more crude salt. For this 

reason, a local search procedure would be of interest, where the 

achieved solutions can be enhanced concerning the total output. 

Appendix A. Verification and validation of the MILP 

In this section, we indicate the values of the decision variables 

of our MILP for the feasible solution in Fig. 3 . In this way, we 

show how the constraints of MILP guarantee the feasibility of a 

solution. We denote the blasthole drilling machine with m 1 , the 

charging vehicle (i) with m 2 , and charging vehicle (ii) with m 3 . 

Hence, we have W 7 = { w 1 , w 2 } , W 8 = { w 1 , w 2 } , M 7 = { m 1 } , and 

M 8 = { m 2 , m 3 } . Constraint set (1) implies that the following deci- 

sion variables have the value 1: 

B 71 = B 83 = B 84 = B 82 = 1 , 

X 71 ,w 1 ,m 1 
= X 83 ,w 2 ,m 2 

= X 84 ,w 1 ,m 2 
= X 82 ,w 2 ,m 3 

= 1 . 

Constraint sets (2) to (6) guarantee in collaboration with con- 

straint set (26) the following tours for w 1 and w 2 : 

Y W 

00 , 71 ,w 1 
= Y W 

71 , 84 ,w 1 
= Y W 

84 , 00 ,w 1 
= 1 , 

Y W 

00 , 83 ,w 2 
= Y W 

83 , 82 ,w 2 
= Y W 

82 , 00 ,w 2 
= 1 . 

Analogously, constraint sets (7) to (11) with constraint set (27) de- 

termine the tours for machines m 1 , m 2 , and m 3 : 

Y M 

00 , 71 ,m 1 
= Y M 

71 , 00 ,m 1 
= 1 , 

Y M 

00 , 83 ,m 2 
= Y M 

83 , 84 ,m 2 
= Y M 

84 , 00 ,m 2 
= 1 , 

Y M 

00 , 82 ,m 3 
= Y M 

82 , 00 ,m 3 
= 1 . 

Constraint set (12) determines the preceding activities of oper- 

ation O kj according to the fact if O kj is the first operation assigned 

to a machine. In this example, we have: 

d 0 , 1 ,m 1 
+ td αm 1 

≤ A 

p 
71 

, 

d 0 , 3 ,m 2 
+ td αm 2 

≤ A 

p 
83 

, 

d 0 , 2 ,m 3 
+ td αm 3 

≤ A 

p 
82 

. 

Constraint set (13) considers the preceding activities regarding the 

driving times if operation O kj has a real predecessor on the as- 

signed machine. For our example, it is the case only for operation 

O 84 : 

d 3 , 4 ,m 2 
≤ A 

p 
84 

. 

For activating constraint set (14) , two operations must be pro- 

cessed successively on the same machine and by different work- 

ers. Since operation O 84 is operated directly after operation O 83 

on machine m 2 ( Y M 

83 , 84 ,m 2 
= 1 ), constraint set (14) is active if ∑ 

m ∈ M 

k ′ X k ′ rwm 

−∑ 

m ∈ M k 
X k jwm 

+ 1 is 0. That is the case for O 83 , O 84 , 

and w 1 , since 
∑ 

m ∈ M 8 
X 83 ,w 1 ,m 2 

= 0 and 

∑ 

m ∈ M 8 
X 84 ,w 1 ,m 2 

= 1 : 

d 3 , 4 ,m 2 
+ td αm 2 

≤ A 

p 
84 

. 

Note that the value of A 

p 
84 

must satisfy both of the above inequal- 

ities. Hence, A 

p 
84 

has to take the maximum value of the left-hand 

sides of the inequalities. 

Constraint set (15) considers the succeeding activities for the 

last jobs assigned to a machine. For our example, we have: 

td ω m 1 
≤ A 

s 
71 , 

td ω m 2 
≤ A 

s 
84 , 

td ω m 3 
≤ A 

s 
82 . 

Constraint set (16) is only active if two real operations O kj 

and O k ′ r are not processed successively on the same machine 

( 
∑ 

m ∈ M k ∩ M 

k ′ Y 
M 

k j,k ′ r,m 

= 0 ). Although constraint set (16) is active for 

many operations, the left-hand side of the inequality has the value 
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0, unless O kj is the last task of the assigned machine or if the same 

worker operates O kj and O k ′ r . In the following, we only list the con- 

straints that have a number greater than 0 on the left-hand side: 

t d ω m 1 
+ t co 

14 ≤ A 

s 
71 , 

t co 
32 ≤ A 

s 
83 , 

td ω m 2 
≤ A 

s 
84 , 

td ω m 3 
≤ A 

s 
82 . 

Analogously, A 

s 
71 

takes the maximum value of the left-hand sides 

of the inequalities, i.e., t d ω m 1 
+ t co 

14 
. 

Constraint sets (17) to (23) are explicitly described in Section 3 . 

Note that �s 
84 

= 1 and �e 
84 

= 1 , and subsequently, �84 = 1 . 

Constraint sets (24) and (25) are not active in our example. For 

operations O 71 and O 84 according to constraint set (26) , we have: 

C 71 + A 

s 
71 ≤ S 84 − A 

p 
84 

. 

According to constraint set (27) for operations O 83 and O 84 , we 

write: 

C 83 ≤ S 84 − A 

p 
84 

. 

Bear in mind that S 84 has to take the maximum value of the left- 

hand sides of the corresponding inequalities above. Besides, A 

s 
83 

cannot affect the start time of operation O 84 . For operations O 83 

and O 82 , according to constraint set (26) , the following inequality 

must apply: 

C 83 + A 

s 
83 ≤ S 82 − A 

p 
82 

. 

The reason why O 82 cannot be started at point C 83 + A 

s 
83 

+ A 

p 
82 

in 

time is that according to constraint set (18) , we have: 


w 2 
+ δ ≤ S 82 − A 

p 
82 

. 

In our example, 
w 2 
+ δ is after C 83 + A 

s 
83 

. Note that 
w 2 
cannot 

be between S 83 + P 83 and S 83 + P 83 + A 

s 
83 

according to constraint 

set (21) . 

According to constraint sets (29) and (30) , the following values 

of I kj are correct: 

I 71 = 0 , I 83 = 0 , I 84 = 0 , I 82 = 1 . 

Consequently, constraint set (32) is only active for O 82 . Since �82 = 

0 , Y M 

82 , 00 ,m 3 
= 1 , and according to constraint set (31) , only G 82 ,w 2 ,m 3 

can take a value greater than zero. Therefore, we have: 

G 82 ,w 2 ,m 3 
≤ χ − S 82 − td ω m 3 

pt 82 ,w 2 ,m 3 

. 

For operations O 71 , O 83 , and O 84 , B kj are 1, and I kj are zero. Con- 

straint sets (34) and (35) imply that 
∑ 

w ∈ W k 

∑ 

m ∈ M k 
G k jwm 

for those 

operations are 1. 

For MR (2), V 71,82 and V 83,84 take the value 1. Regarding MR (3), 

O 71 is processed before O 82 . MR (4) and MR (5) are not consid- 

ered in our example. Considering MR (6) (constraint set (42) ), the 

following values of Z wm 

are correct: 

Z w 1 ,m 1 
= Z w 1 ,m 2 

= Z w 2 ,m 2 
= Z w 2 ,m 3 

= 1 . 

Accordingly, constraint sets (43) and (44) are satisfied. 

Constraint set (45) determines the value of positive continuous 

decision variables D k . Since D k must be minimized in the objective 

function, the term ∑ 

j∈ J: 
O k j ∈ �

∑ 

w ∈ W k 

∑ 

m ∈ M k 

ton k j · G k jwm 

has to take its maximum value. G 82 ,w 2 ,m 3 
, therefore, takes the 

value of 
χ−S 82 −td ω m 3 

pt 82 ,w 2 ,m 3 

and G 71 ,w 1 ,m 1 
, G 83 ,w 2 ,m 2 

, and G 84 ,w 1 ,m 2 
are 1. 

For k = 1 , we have: 

t on 

e 
1 − t on 71 · G 71 ,w 1 ,m 1 

≤ D 1 , 

and for k = 8 , we have: 

t on 

e 
8 − t on 83 · G 83 ,w 2 ,m 2 

− ton 84 · G 84 ,w 1 ,m 2 
− ton 82 · G 82 ,w 2 ,m 3 

≤ D 8 . 

Note that except G 82 ,w 2 ,m 3 
, G 71 ,w 1 ,m 1 

, G 83 ,w 2 ,m 2 
, and G 84 ,w 1 ,m 2 

, all 

other G k jwm 

are 0 (cf. constraint set (31) ). D k takes the value of 0 

if the value of the left-hand side of the inequality is negative since 

D k is a positive decision variable. 

Appendix B. A detailed comparison between similar test 

instances 

In what follows, we consider 8 test instances from the 100 gen- 

erated realistic instances that have the following characteristics: 

1) the number of operations is between 91 ( Q 1 ) and 126 ( Q 3 ); 

2) the number of available workers is between 9 and 12; 

3) the number of available machines at processing stage 1 is 

between 3 and 5; and 

4) the number of available machines at processing stage 2 is 

between 2 and 3. 

The number of machines at processing stages 1 and 2 are more 

important than the number of machines at other processing stages. 

On the one hand, the jobs that start with operations (1) and (2) ap- 

pear more often, and on the other hand, the number of machines 

at these processing stages can be more than 2. In Table B.6 , the 

numbers of underground locations, jobs, operations, workers, and 

total machines (the information regarding the size of the instances) 

are given for every single instance. Under the column “# Machines”, 

the numbers in parentheses are the number of machines at each 

processing stage as follows: (| M 1 |, | M 2 |, | M 3 | or | M 6 |, | M 4 |, | M 5 |, 

| M 7 |, | M 8 |). 

For comparing the results achieved by MILP, 2SA, and CH, we 

consider the value of (MLOF) ( = 

∑ 

k ∈ K D k + D 

max ). We set an up- 

per time limit of 3600 seconds for each approach. In Table B.7 , the 

values of (MLOF) achieved by each approach are given. The num- 

bers in columns “time” are the times in seconds that MILP, 2SA, 

and CH needed to find the best feasible solution. The best value of 

MLOF is underlined in each row. Note that MILP cannot prove the 

optimality for any of the problem instances. 

We see in Table B.7 that CH could find for 2 instances and 

MILP for 6 instances the solutions with the best value of (MLOF) . 

Table B.6 

The key information of the chosen instances. 

instance # UL # Jobs # Operations # Workers # Machines 

1 19 37 99 11 13 (3, 3, 2, 1, 1, 2, 1) 

2 22 42 114 10 13 (4, 2, 1, 1, 1, 2, 2) 

3 23 46 110 10 17 (5, 3, 2, 2, 2, 2, 1) 

4 28 45 108 12 13 (5, 3, 1, 1, 1, 1, 1) 

5 19 38 105 11 14 (5, 2, 1, 2, 2, 1, 1) 

6 24 45 120 11 14 (4, 3, 2, 1, 2, 1, 1) 

7 18 40 91 12 13 (3, 3, 1, 1, 2, 2, 1) 

8 24 46 118 11 13 (4, 2, 2, 2, 1, 1, 1) 

Table B.7 

Values of (MLOF) and the times needed to find the corresponding solutions for the 

results achieved by MILP, 2SA, and CH. 

instance MILP time (sec) 2SA time (sec) CH time (sec) 

1 3714.5 3469.7 5054.5 1680.5 4199.0 2,168.4 

2 820.6 3365.5 1802.4 1965.5 4665.0 2.8 

3 4051.8 3310.7 6011.6 2693.8 4008.0 0.6 

5439.7 3524.1 6615.0 221.9 6622.0 5.1 

5 5766.3 3240.9 6347.3 3590.3 7949.0 4.9 

6 5468.6 1660.5 5423.7 756.8 4870.0 6.9 

7 6535.4 1823.2 6844.8 314.3 7018.0 171.1 

8 3175.8 3069.9 5010.6 264.9 3559.0 5.5 
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Table B.8 

The Gap to the best solution found considering the values of MLOF. 

instance MILP 2SA CH 

1 0.0% 36.1% 13.0% 

2 0.0% 119.6% 468.5% 

3 1.1% 50.0% 0.0% 

4 0.0% 21.6% 21.7% 

5 0.0% 10.1% 37.9% 

6 12.3% 11.4% 0.0% 

7 0.0% 4.7% 7.4% 

8 0.0% 57.8% 12.1% 

Table B.9 

Some information derived from the GUROBI solver while using MILP. 

instance # nodes 

# integer 

variables 

# continuous 

variables # constraints gap to LB 

1 11,145 100,703 2227 248,468 50.2% 

2 7561 123,783 2028 312,503 100.0% 

3 7793 101,701 2350 261,361 64.9% 

4 2456 122,024 2567 299,652 57.4% 

5 14,751 106,575 2002 267,661 97.7% 

6 4361 145,476 2846 359,921 80.9% 

7 3095 96,545 2312 232,384 69.5% 

8 10,934 136,370 2390 340,905 22.4% 

MILP, 2SA, and CH find the best feasible solution, on average, af- 

ter 2,933.1, 1,436.0, and 295.7 seconds, respectively. Let ξ ∗ be the 

solution found by approach 

∗ and f ( ξ ∗) be the value of (MLOF) for 

ξ ∗. The best solution found, ξ best , is the solution for which: 

f (ξ best ) = min { f (ξMILP ) , f (ξ 2SA ) , f (ξ CH ) } . 
A gap to the best solution found is calculated as follows: 

Gap = 

f (ξ ∗) − f (ξ best ) 

f (ξ best ) 
. 

Table B.8 presents the values of Gap to the best solution found. Re- 

garding the values of (MLOF) , the Gap to the best solution found 

is, on average, 1.7% for MILP, 38.9% for 2SA, and 70.1% for CH. Al- 

though 2SA could not find the best solution for any of the problem 

instances, it can find a much better solution than CH considering 

the Gap-values. CH is clearly the quickest way to find a feasible so- 

lution (cf. Table B.7 ) and finds the best solution for 2 (over 8) prob- 

lem instances. However, the average quality of the solution found 

by CH is comparably the worst. 

In Table B.9 , some information derived from the GUROBI solver 

while solving an instance using MILP is summarized. For every in- 

stance, the number of nodes that a search tree required to find the 

best solution, the number of integer and continuous decision vari- 

ables, the number of constraints, and the gap to the lower bound 

found by the GUROBI solver are given. The default setting of the 

GUROBI solver uses the formula “ f (ξMILP ) −LB 

f (ξMILP ) 
” to determine the gap 

to lower bounds ( LB ). Therefore, the gap to the lower bound is 

100% if the lower bound is equal to 0. Considering Table B.6 , we 

cannot identify any correlation between the size of an instance and 

the number of nodes that a search tree required to find the best 

feasible solution. Moreover, there is no noticeable trend that links 

the size of an instance to the gap to the lower bound found by the 

GUROBI solver after 3600 seconds. 

The gap to the lower bound found by the GUROBI solver af- 

ter 3600 seconds is, on average, 67.9%. The fact that on the one 

hand, our MILP provides better solutions than CH and 2SA, and 

on the other hand, the gap to the corresponding lower bound is 

still big, shows that it is tough to find reasonable lower bounds for 

such a hard problem. Note that for test instance 2, the gap to the 

lower bound is 100%. However, our MILP could find the best solu- 

tion among MILP, 2SA, and CH, where the gap to the best solution 

found by 2SA is 119.6% and by CH is 468.5% (cf. Table B.8 ). 
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