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Abstract
Univariate decision tree induction methods for multiclass classification problems such as CART, C4.5 and ID3 continue
to be very popular in the context of machine learning due to their major benefit of being easy to interpret. However, as
these trees only consider a single attribute per node, they often get quite large which lowers their explanatory value. Oblique
decision tree building algorithms, which divide the feature space by multidimensional hyperplanes, often produce much
smaller trees but the individual splits are hard to interpret. Moreover, the effort of finding optimal oblique splits is very
high such that heuristics have to be applied to determine local optimal solutions. In this work, we introduce an effective
branch and bound procedure to determine global optimal bivariate oblique splits for concave impurity measures. Decision
trees based on these bivariate oblique splits remain fairly interpretable due to the restriction to two attributes per split. The
resulting trees are significantly smaller and more accurate than their univariate counterparts due to their ability of adapting
better to the underlying data and capturing interactions of attribute pairs. Moreover, our evaluation shows that our algorithm
even outperforms algorithms based on heuristically obtained multivariate oblique splits despite the fact that we are focusing
on two attributes only.
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1 Introduction

In recent years, an increasing necessity for interpretable
machine learning models has become apparent. Univariate
decision trees are a popular tool in this context for solving
classification tasks. Their major advantage is that they
are easy to understand and interpret, giving insight into
the underlying data’s structure. Drawbacks of the common
univariate decision tree induction methods are that the
resulting trees often become very large, even after pruning,
and the prediction accuracy is often lower than that of other
classification methods.

To tackle these drawbacks, oblique decision tree induc-
tion algorithms which employ hyperplanes splits have been
developed to produce smaller and more accurate trees.
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Given m attributes X1, . . . , Xm, these splits correspond to
rules of the form

a1X1 + . . . + amXm ≤ b

for a ∈ R
m and b ∈ R. Interpreting these splits, however,

is far more difficult and finding global optimal hyperplanes
has been proven to be NP-complete for some splitting
criteria [1]. Thus, heuristics are necessary for finding local
optimal solutions.

In this work, we propose a branch and bound algorithm
to determine global optimal bivariate oblique splits for
concave impurity measures. These splits correspond to
oblique splits for which only two coefficients aj1 and aj2 for
j1, j2 ∈ {1, . . . , m} are non-zero. Thus, they have the form

aj1Xj1 + aj2Xj2 ≤ b

or equivalently,

a′Xj1 + b′ ≤ Xj2

for suitable parameters a′ and b′. Compared to univariate
decision tree induction algorithms these splits result in
smaller more accurate trees due to the inclusion of an
additional attribute. On the other hand, by allowing only two
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attributes per split, the trees remain fairly interpretable and
the risk of including irrelevant features in the splits during
tree induction is reduced compared to general oblique splits.

To show the strength of bivariate splits, we want to
look at simple data consisting of two attributes X1 and
X2 which is labeled as positive if the ratio X1

X2
is greater

than or equal to a certain value a ∈ R and negative,
otherwise. Clearly, the rule X1

X2
≥ a is equivalent to

X1 ≥ aX2 and can thus be expressed as a bivariate
split. Univariate decision trees, on the other hand, require
a stepwise approximation of this rule. This observation is
illustrated in Fig. 1. Such dependencies are likely to appear
in real-life applications. As an example from the medical
domain there is the so-called waist-to-height ratio which
is a measure for abdominal obesity and, according to a
study from 2010 (see [2]), a superior measure to the well-
known body mass index for the risk of heart attacks. This
measure is defined as WHtR = U

H
where U denotes a

person’s waist circumference and H its height. A WHtR

greater than 0.5 indicates an increased risk of obesity-
related cardiovascular diseases. As we have seen, this rule
can only be approximated by univariate splits while a single
bivariate oblique split suffices to express this rule.

This simple example shows various major benefits of
bivariate splits: First, it is possible to express rules based
on ratios of two attributes. Furthermore, if the rules are
learned algorithmically from data, a human understandable
interpretation is possible. The possibility of creating a two-
dimensional visual representation of the splits also helps to
get a deeper understanding of the data at hand.

Our algorithm is compatible with the very general class
of concave impurity measures which includes the most
commonly used splitting criteria such as entropy, gini
impurity and classification error. This is a major advantage

as it is not restricted to one specific criterion and we obviate
the need to introduce a new criterion specifically designed
for our purposes.

In our evaluation we show that the trees based on
global optimal bivariate oblique splits outperform univariate
decision trees as well as general oblique decision trees in
terms of prediction accuracy and tree size. The biggest
disadvantage of our tree building algorithm is the increased
runtime compared to univariate decision tree induction
algorithms due to the higher complexity of finding bivariate
splits. Nevertheless, due to the efficient implementation
of the branch and bound procedure, acceptable results
are achieved such that our method is applicable in real-
life scenarios. Overall, our proposed bivariate decision
tree induction algorithm is a reasonable alternative when
univariate decision trees fail to give accurate results, yet
interpretation of the data at hand is desired.

2 Related work and contribution

Artificial intelligence is more and more affecting our lives
in a variety of fields such as health care, finance, criminal
justice and defense and researchers have become increas-
ingly aware of the importance of interpretability of machine
learning models. Extensive overviews discussing concepts,
challenges, trends and existing approaches regarding this
topic are, for example, presented in [3, 4]. While there is
a significant amount of research that tries to derive inter-
pretable surrogate models [5], including decision trees [6],
from black-box models such as neural networks, support
vector machines or random forests, some authors plead for
relying on inherently interpretable and transparent predic-
tion models instead [7].

Fig. 1 Comparison of a bivariate split and an approximation by univariate splits for the rule X1
X2

≤ 0.5
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Univariate decision tree algorithms such as CART [8]
and C4.5 [9] which recursively divide the feature space
in a top-down manner by introducing splits minimizing
some splitting criterion induce such inherently interpretable
models. The general aim of finding the smallest binary
decision tree has been proven to be NP-complete [10], yet
the greedy strategy made it possible to induce high-quality
decision trees fast in practice. Nevertheless, the resulting
trees are often not as accurate as other classification
models. Moreover, the data can often not be split in a
compact way by splits involving only a single attribute
which makes interpretation and deriving understandable
rules more complicated.

Oblique decision trees are often smaller and more accu-
rate in practice, yet finding optimal oblique splits is NP-
complete for some splitting criteria [1] including classifi-
cation error. Therefore, efficient heuristics are necessary to
induce the decision trees in a reasonable amount of time
with the greedy recursive partitioning scheme. The first
heuristic was introduced by [8]. They use a deterministic
hill climbing approach to find local optimal oblique splits.
Heath et al. [11] develop a simulated annealing heuris-
tic which perturbs one hyperplane parameter at a time
to escape local optima. Murthy et al. [12] combine these
two approaches by introducing randomization techniques
in the hill climbing approach. Other approaches for find-
ing near optimal oblique splits include meta-heuristics such
as simulated annealing, genetic algorithms and evolutionary
strategies [13] or heuristics based on Householder transfor-
mation [14], linear discriminant analysis [15] and logistic
regression [16]. Although these oblique decision tree induc-
tion approaches generally produce better classifiers, their
main problem is that the oblique splits, involving all of the
variables, are hard to understand and interpret. Thus, one
loses one of the most advantageous properties of tree-based
classification models.

Recently, also integer linear programming has been
employed to determine global optimal univariate and
oblique decision trees of a prior specified maximum size
[17, 18]. Blanquero et al. [19] develop a continuous
optimization formulation instead to determine optimal
randomized oblique decision trees. Additionally, penalty
terms are introduced in the objective function to limit the
number of overall involved attributes and the number of
attributes per split to improve interpretability. The major
drawback of these approaches is that solving the proposed
optimization problems is much more time consuming than
using the top-down strategy and optimal solutions can only
be obtained in a reasonable amount of time for shallow trees
and for small to medium-sized datasets.

A common strategy to obtain interpretable machine
learning models is to restrict the complexity of the model
to be learned beforehand. Lubinsky et al. [20] follows

this approach and investigates different kinds of bivariate
splits as an interpretable alternative to univariate splits
for decision tree induction. He focuses on two-class
classification tasks and shows, by using a brute-force
algorithm for determining the splits, that decision trees
based on bivariate splits, including bivariate oblique splits,
are in fact able to produce much smaller and more accurate
decision trees compared to their univariate counterparts
while remaining interpretable. He states that the brute-force
algorithm is very time consuming and often intractable
for large datasets. He further introduces additive splitting
criteria which enable the development of efficient divide-
and-conquer algorithms. Although these additive splitting
criteria yield good results in terms of accuracy, they are not
as effective as traditional impurity measures such as gini
impurity in terms of tree size.

Bioch et al. [21] also argue that oblique decision trees
based on many variables are hard to interpret and therefore
propose using bivariate oblique splits. They suggest using
the hill climbing approach of [8] for finding good splits as
well as the simpler approach of considering only 45◦ lines
in addition to standard univariate splits. The evaluation of
this approach shows that bivariate oblique decision trees are
superior to univariate decision trees and competitive with
multivariate decision trees in terms of tree size and accuracy.

In this work, we follow Lubinsky and Bioch et al.’s
argumentation that bivariate oblique decision trees can be
a true interpretable alternative to univariate as well as
multivariate decision trees. However, we aim at finding
the best possible split in each node to ensure that we
capture the underlying structure of the data as well as
possible to produce highly accurate and compact decision
trees. This task is computationally intractable for general
oblique splits. In contrast to Lubinsky, we also allow for
an arbitrary amount of classes and we rely on traditional
concave impurity measures including classification error,
entropy and gini impurity. We develop an effective branch
and bound procedure that exploits the concavity of these
impurity measures to compute good lower bounds which is
the key for our branch and bound algorithm. Furthermore,
we evaluate our method to show that it is capable
of producing interpretable, compact and highly accurate
decision trees.

3 Preliminaries

3.1 Bivariate oblique decision tree induction

In this work, we study bivariate oblique decision trees
for multiclass classification problems. Given m real-valued
attributes (or features) X1, . . . , Xm and a set of class labels
L = {1, . . . , k}, a bivariate oblique decision tree is a binary
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rooted tree that classifies each point x ∈ R
m to a certain

label y ∈ L. For that, each internal node is associated
with a rule of the form aXj1 + b ≤ Xj2 for some indices
j1, j2 ∈ {1, . . . , m} and values a, b ∈ R and each leaf
node is associated with a certain class label. Throughout the
remainder of this work, we abbreviate the set of all possible
rules as Θ := {aXj1 + b ≤ Xj2 : j1, j2 = 1, . . . , m; a, b ∈
R}. Depending on the context, we will also sometimes refer
to the rules as split or line, because the expression basically
describes a line in the two dimensional space spanned by
the attributes Xj1 and Xj2 which splits the feature space
into two subspaces. In order to classify a point x ∈ R

m, it
pursues a path from the root to a leaf node according to the
specified rules. If the rule is satisfied, x is sent to the left
sibling and otherwise, x is sent to the right. Finally, the point
is assigned the class label of the leaf node at the end of this
path. An example of a simple bivariate oblique decision tree
of depth two is illustrated in Fig. 2.

To automatically learn such decision trees, we make use
of a training set X := {(xi, yi) : i = 1, . . . , n; xi ∈
R

m; yi ∈ L} that consists of a sequence of n data points
xi ∈ R

m with a corresponding label yi ∈ L. We iteratively
divide the training data into subsets by introducing bivariate
oblique splits that minimize a certain impurity measure.
This process is carried out until all subsets are pure
or no further splitting is possible, i.e., all points in the

subsets have the same attribute values. The resulting leaf
node is then assigned the most frequent label among the
subset of training samples. This algorithm is summarized in
Algorithm 1.

The general idea of iteratively splitting the training set
in a greedy fashion according to some impurity measure

Fig. 2 Simple example of a bivariate oblique decision tree of depth two for a 3-class classification problem
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in a top-down manner forms the base of many univariate
and multivariate decision tree algorithms. Our major
contribution lies in the technique to effectively determine
optimal bivariate oblique splits which we explain in detail in
Section 4. Before that, we take a closer look at the properties
of the underlying impurity measures.

3.2 Concave impurity measures

Similar to common univariate decision tree methods such
as CART and C4.5 our decision tree induction algorithms
iteratively determines splits that minimize a certain impurity
measure. In this work, we focus on so-called concave
impurity measures as introduced in [22]. These impurity
measures are concave functions i : Pk → R≥0 defined
on the probability space Pk := {(p1, . . . , pk) ∈ [0, 1]k :∑k

j=1 pj = 1} that satisfy i(λp+ (1−λ)q) ≥ λi(p)+ (1−
λ)i(q) for λ ∈ [0, 1] and p, q ∈ Pk . Moreover, for every
p ∈ Pk with pj = 1 for some j ∈ {1, . . . , k} it holds that
i(p) = 0. The most popular among those concave impurity
measures are:

– Classification Error: e(p) = 1 − maxj=1,...,k pj

– Entropy: h(p) = −∑k
j=1 pj log pj

– Gini Impurity: g(p) = 1 − ∑k
j=1 p2

j

In our tree building algorithm we iteratively split a
set of training samples into two subsets. To determine
the quality of the split we compute the weighted sum of
impurities of these subsets. This leads to the definition
of frequency-weighted impurity measures: Let i denote a
concave impurity measure, the corresponding frequency-
weighted impurity measure is the function I : R

k →
R≥0 defined by I (n) := ‖n‖1 · i

(
n1‖n‖1

, . . . ,
nk‖n‖1

)
. These

frequency-weighted impurity measures satisfy the following
properties (see [22]):

– Homogeneity: I (λn) = λI (n)

– Strict Concavity: I (m + n) ≥ I (m) + I (n) with
equality if and only if m and n are proportional, i.e.,(

n1‖n‖1
, . . . ,

nk‖n‖1

)
=

(
m1‖m‖1

, . . . ,
mk‖m‖1

)

Finally, this definition lets us define the impurity of a
split θ := aXj1 + b ≤ Xj2 on a set of training samples
X0. The split divides the training samples into two new
subset X1 and X2 such that axi

j1
+ b ≤ xi

j2
for all

(xi, yi) ∈ X1 and axi
j1

+ b > xi
j2

for all (xi, yi) ∈ X2. Let
n1 = (n11, . . . n1k), n2 = (n21, . . . n2k) denote the vector
of absolute frequencies of class labels of the two subsets,
respectively. Then, the impurity of the split is calculated as:

Î (θ,X0) := I (n1) + I (n2)

4 A branch and bound algorithm for optimal
bivariate oblique splits

4.1 General outline

Branch and bound algorithms are successfully used
in the field of operations research to solve difficult
optimization problems. In contrast to heuristic approaches,
they determine global optimal solutions for problems for
which a total enumeration of all feasible solutions is very
time consuming or even impossible. The basic idea behind
a branch and bound algorithm is to recursively divide the
set of solutions of the optimization problem into two or
more subsets and to compute upper and lower bounds for
the value of the objective function of these subsets. This
procedure can be seen as the branching of a rooted tree for
which each node represents a certain subset of the search
space. In case of a minimization problem, the upper bounds
are typically arbitrary feasible solutions of the respective
subsets. If the lower bound of any node exceeds the current
best objective value we know that no solution of this node
can improve the objective value and therefore, no further
branching of it is necessary. This procedure is carried out
until no more unexamined nodes are left. Although branch
and bound procedures usually have exponential worst case-
time complexity, they are widely used in practice when the
bounding operations allow to reduce the domain of feasible
solutions effectively.

Given a set of attributes X1, . . . , Xm, a set of labels
L = {1, . . . , k}, a training set X consisting of n labeled
observations and an impurity measure i, the minimization
problem we are trying to solve is finding features j∗

1 , j∗
2 =

1, . . . , m and values a∗, b∗, ∈ R such that the bivariate
oblique split θ∗ := a∗Xj∗

1
+ b∗ ≤ Xj∗

2
minimizes Î (θ∗,X ).

As [12] observe, the number of distinct bivariate oblique
splits for n data points and two attributes is at most O(

(
n
2

)
).

The general idea behind this result is that any two data
points define a line that has to be considered as a split. This
line can be slightly rotated upwards and downwards. As
every distinct combination of attributes j1, j2 = 1, . . . , m

with j1 
= j2 has to be examined, the overall number of
splits that have to be considered is in the order of O(m2n2).
Deciding which points satisfy a rule for evaluating the
impurity of a split requires an additional factor of O(n).
This results in an overall complexity of O(m2n3) to find
the optimal bivariate oblique split if a brute-force algorithm
is applied. Although the effort is polynomial, especially for
large datasets the explicit enumeration and evaluation of all
possible splits is very time consuming. It should also be kept
in mind that for the top-down approach of Algorithm 1 the
optimization problem has to be solved not only once, but for
every non-leaf node of the resulting decision tree. Thus, an
efficient algorithm to determine optimal bivariate oblique
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splits is crucial for the algorithm to run in a reasonable
amount of time.

Up next, we describe our proposed branch and bound
algorithm for determining optimal bivariate oblique splits
for two attributes. This procedure is carried out for all
combinations j1, j2 = 1, . . . , m with j1 
= j2. We
emphasize the fact that these executions are not completely
separate as we can reuse the impurity of the best split found
for different attributes as an initial bound for the branch and
bound procedure.

Suppose, we want to find the best split aXj1 + b ≤ Xj2

for the two attributes j1 and j2 on X . The parameters that
have to be determined are a, b ∈ R. Therefore, the search
space corresponds to the Euclidean plane R

2. Note, that for
any split aXj1 + b ≤ Xj2 with |a| > 1 there is a split
a′Xj2 + b′ ≤ Xj1 with |a′| ≤ 1 with the same impurity.
For a > 1 the equivalent rules in terms of impurity are
a′ = 1

a
and b′ = − b

a
+ ε for ε > 0 sufficiently small

and for a < −1, the parameters are a′ = 1
a

and b′ =
− b

a
. Hence, by considering any combination of attributes

j1 
= j2 instead of just j2 > j1, we can restrict the search
space to [−1, 1] × R. As we only have to consider slopes
in the range [−1, 1], we can further restrict the range of the
axis intercept b. Let B := min{xi

j2
± xi

j1
: i = 1, . . . , n}

and B := max{xi
j2

± xi
j1

+ ε : i = 1, . . . , n}, then any

rule aXj1 + b ≤ Xj2 with a ∈ [−1, 1] and b > B will
be satisfied and any rule with a ∈ [−1, 1] and b < B

will not be satisfied by all the points in the training data.
Hence, it suffices to consider [−1, 1]×[B, B] as the overall
search space for the parameters a and b. This is also the root
problem of our branch and bound procedure.

Subsequently, we branch on the variables a and b to
divide the problem into smaller subproblems. Hence, all
subproblems that are explored can be characterized by a
region C := [a, a] × [b, b] with a, a ∈ [−1, 1] and b, b ∈
[B, B]. For any such region C, a feasible candidate solution
can be obtained by choosing any a ∈ [a, a] and b ∈ [b, b]
and computing Î (aXj1 + b ≤ Xj2 ,X ). If this solution is
better than the current best solution, we store it as the new
so-called incumbent solution. In Section 4.6, we explain
how a lower bound for any rule within the bounds of C can
be established. If this lower bound is greater than or equal to
the current incumbent solution, the subproblem is pruned.

One peculiarity of our algorithm is that we also introduce
so-called node exploration criteria for the subproblems
C. We say that such an exploration criteria is met, if
we can efficiently enumerate all relevant rules within the
subproblem’s bounds. If such a criteria is met, we explore
the node and prune it. On the one hand, these exploration
criteria help reducing the number of nodes to explore, on the

other hand, they are necessary to ensure that the branch and
bound procedure terminates. We explore these exploration
criteria in more detail in Section 4.3.

If a node is not pruned, we branch on it. This means that
we choose (a, b) ∈ (a, a) × (b, b) and create four new
subproblems C1 := [a, a] × [b, b], C2 := [a, a] × [b, b],
C3 := [a, a] × [b, b] and C4 := [a, a] × [b, b].

Clearly, any univariate split on an attribute Xj2 can be
interpreted as a bivariate oblique split 0Xj1 +b ≤ Xj2 for an
arbitrary attribute Xj1 . As an optimal univariate split can be
found at relatively low costs of O(mn log n) by sorting each
attribute and evaluating each possible value of an attribute
from left to right, it makes sense to start off the branch
and bound procedure with such a split as an initial feasible
solution.

Another technique we have found to be very effective
is normalization. For each feature Xj , we compute the
median Med(Xj ) and the interquartile range IQR(Xj )

of the training samples and replace xi
j by

xi
j −Med(Xj )

IQR(Xj )
.

An optimal rule aX′
j1

+ b ≤ X′
j2

for the transformed
features X′

1, . . . , X
′
m, can afterwards be transformed into an

optimal split a∗Xj1 + b∗ ≤ Xj2 for the original features

by choosing the values a∗ := a
IQR(Xj2 )

IQR(Xj1 )
and b∗ :=

−a
Med(Xj1 )IQR(Xj2 )

IQR(Xj1 )
+ b · IQR(Xj2) + Med(Xj2).

All in all our branch and bound procedure is summarized
in Algorithm 2.

4.2 Preliminary definitions

Before we describe the branching strategy, the node
exploration criteria and the computation of the lower and
upper bounds in detail, we introduce some necessary
definitions for the subproblems C of the branch and bound
procedure. First, we define the set of valid rules of the
subproblem as Θ(C) := {aXj1 + b ≤ Xj2 : (a, b) ∈ C}.

Every subproblem divides the feature space into the three
disjoint regions RU(C) := {x ∈ R

m : axj1 + b ≤
xj2 ∀(a, b) ∈ C}, RL := {x ∈ R

m : axj1 +b > xj2 ∀(a, b) ∈
C} and RI (C) := X \ (RU(C) ∪ RL(C)). Accordingly,
we define XU(C) := {(xi, yi) ∈ X : xi ∈ RU(C)},
XL(C) := {(xi, yi) ∈ X : xi ∈ RL(C)} and XI (C) :=
{(xi, yi) ∈ X : xi ∈ RI (C)} as the set of training samples
in the respective regions. Note, that for all training samples
in XL(C) any rule in Θ(C) is satisfied and for all XU(C)

no rule in Θ(C) can be satisfied. Hence, we also refer to
these regions as lower and upper invariant, respectively.
Uncertainty regarding the location of a point relative to an
optimal rule within C only remains for points in RI (C).
This observation is illustrated in Fig. 3.
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4.3 Node exploration criteria

As already mentioned before, we introduce node explo-
ration criteria in our branch and bound procedure to identify
situations for which we can efficiently enumerate all rele-
vant rules within a subproblem C.

Fig. 3 Illustration of a subproblem C = [a, a] × [b, b] of the branch
and bound procedure

Node Exploration Criterion 1 This criterion is met if
|XI (C)| = 0. In this case any rule in R(C) will be satisfied
by the points in XL(C) and violated by the points in XU(C).
Hence, any split within the subproblem’s bounds will yield
the same impurity. This means that we can simply evaluate
an arbitrary feasible split of the subproblem and no further
exploration is necessary.

Node Exploration Criterion 2 The second criterion is met if
the points in |XI (C)| are not distinguishable, i.e., it holds
that xi

j1
= xi′

j1
=: v and xi

j2
= xi′

j2
for all (xi, yi), (xi′ , yi′) ∈

XI (C). If v ≥ 0, we know that aXj1 + b ≤ Xj2 or
aXj1 + b ≤ Xj2 is an optimal rule within the bounds of
C. Otherwise, either aXj1 + b ≤ Xj2 or aXj1 + b ≤ Xj2

is optimal. Thus, it is possible to test all relevant candidate
solutions of the subproblem.

Node Exploration Criterion 3 The third criterion is based
on an interesting behavior of concave impurity measures
found by [23]. He shows that if a set of labeled data points
could be arbitrarily partitioned into two subsets, there would
exist an optimal partition which does not split any class.
We will generalize this result by showing that if we want
to distribute a set of points among two possibly non-empty
subsets such that the weighted impurity of the two resulting
sets is minimal, there exists an optimal distribution that does
not split any class. Before proving this result, we introduce
the notation u ◦ v = (u1v1, . . . , ukvk)

T to denote the
component-wise product of two vectors u, v ∈ R

k .
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Theorem 1 Let XL(C), XU(C) and XI (C) denote sets of
labeled data points with vectors of absolute frequencies of
class labels nL, nU , nI ∈ N

k . For any frequency-weighted
impurity measure I there exist αL, αU ∈ {0, 1}k with αL +
αU = 1 such that

I (nL+αL◦nI )+I (nU +αU ◦nI ) ≤ I (nL+βL◦nI )+I (nU +βU ◦nI )

for all βL, βU ∈ [0, 1]k with βL + βU = 1.

Proof It is a well-known result that a concave function
defined on a convex polytope attains a minimum at a vertex
of the domain. Such a convex polytope is defined by P :
= [0, 1]k . Moreover, we know that the composition of
a concave function with an affine transformation remains
concave and that the sum of concave functions is again
concave. Therefore, I : P → R≥0 defined by I(β) :
= I (nL + β ◦ nI ) + I (nU + (1 − β) ◦ nI ) is a concave
function. Hence, I is minimized by some α ∈ P ∩ {0, 1}k .
Clearly, this observation is equivalent to the statement of the
theorem.

Suppose all of the points in XI (C) have the same
class label. Theorem 1 tells us that if we could arbitrarily
distribute those points among XL(C) and XU(C), it would
be optimal to put all of the points into one of the sets.
Therefore, if we find two rules aLXj1 + bL ≤ Xj2 and
aUXj1 + bU ≤ Xj2 with (aL, bL), (aU , aU ) ∈ C such that
aLxi

j1
+ bL ≤ xi

j2
and aUxi

j1
+ bU > xi

j2
for all (xi, yi) ∈

XI (C) we know that one of them has minimal impurity
among all other rules within the bounds of C. Therefore, we
can test those lines, choose the one with minimal impurity
and test whether it becomes the new incumbent solution. No
further analysis of the subproblem is needed.

Finding such rules or deciding that they don’t exist can
be carried out with the following method: If there exists
(aL, bL) ∈ C such that aLxi

j1
+ bL ≤ xi

j2
for all (xi, yi) ∈

XI (C), then it also holds that aLxi
j1

+ b ≤ xi
j2

. Thus, we
have to solve the following system of inequalities:

aLxi
j1

+ b ≤ xi
j2

, for all (xi, yi) ∈ XI (C), xi
j1


= 0

aL ≥ a

aL ≤ a.

This is equivalent to

aL ≤min

{

{a} ∪
{

xi
j2

− b

xi
j1

: (xi, yi) ∈ XI (C), xi
j1

> 0

}}

and

aL ≥max

{

{a} ∪
{

xi
j2

− b

xi
j1

: (xi, yi)∈XI (C), xi
j1

< 0

}}

.

The existence of such a value aL is easily verified. Similar
arguments lead to the conclusion that there exists aUxi

j1
+

bU > xi
j1

if and only if there exists aU such that

aU >max

{

{a} ∪
{

xi
j2

− b

xi
j1

: (xi, yi) ∈ XI (C), xi
j1

> 0

}}

and

aU <min

{

{a} ∪
{

xi
j2

− b

xi
j1

: (xi, yi)∈XI (C), xi
j1

< 0

}}

.

Node Exploration Criterion 4 The last node exploration
criteria is met, if there exist a∗, b∗ ∈ R such that a∗xi

j1
+

b∗ = xi
j2

for all (xi, yi) ∈ XI (C). In other words, the points
in XI (C) are colinear. This criterion is necessary to ensure
termination of the branch and bound procedure. Suppose,
for example a ≤ a∗ ≤ a and b ≤ b∗ ≤ b and we are
branching on (a, b) which results in the subproblems C1 :=
[a, a]×[b, b], C2 := [a, a]×[b, b], C3 := [a, a]×[b, b] and
C4 := [a, a]×[b, b]. For one of the subproblems Cl with l ∈
{1, . . . , 4} it holds that (a∗, b∗) ∈ Cl and therefore XI (C) =
XI (Cl). Hence, there will always remain a subproblem for
which the uncertainty set does not change. Clearly, this
means that the first two node exploration criteria are not
sufficient to ensure termination of the branch and bound
procedure. Luckily, in the situation where all points are
colinear, all relevant rules can be efficiently evaluated. This
result is summarized in the following theorem and the proof
yields an efficient algorithm to determine these rules.

Theorem 2 Let C = [a, a] × [b, b] ⊆ R
2 with a < a and

b < b and XI (C) such that there exist a∗, b∗ ∈ R with
a∗xi

j1
+ b∗ = xi

j2
for all (xi, yi) ∈ XI (C). We can find

(a, b) ∈ C such that θ := aXj1 + b ≤ Xj2 has minimal
impurity among all other splits θprime := a′Xj1 + b′ ≤
Xj2 with (a′, b′) ∈ C in O(|XI (C)|) time if the samples
(xi, yi) ∈ XI (C) are sorted by attribute Xj1 , i.e., it holds

that xi
j1

≤ xi′
j1

if i < i′. Otherwise, the time complexity is
O(|XI (C)| log |XI (C)|).
Proof Let nC = |XI (C)| and w.l.o.g. XI (C) =
{(x1, y1), . . . , (xnC , ynC )}. Moreover, we assume that
XI (C) is sorted by attribute Xj1 . Otherwise, we employ
any efficient sorting algorithm to sort the samples in
O(|XI (C)| log |XI (C)|) time.

For all (a, b) ∈ C, we call (X+
(a,b),X

−
(a,b)) with X+

(a,b)
:

= {(xi, yi) ∈ XI (C) : axi
j1

+ b ≤ xi
j2

} and X−
(a,b)

:
= {(xi, yi) ∈ XI (C) : axi

j1
+ b > xi

j2
} a linear

partition of XI (C). Further, let P := {(X+
(a,b),X

−
(a,b)) :

(a, b) ∈ C} denote the set of all possible linear partitions of
XI (C). Clearly, lines that yield the same linear partition will
have the same impurity. Therefore, to find the parameters
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(a, b) ∈ C which lead to a rule of minimal impurity we
have to investigate each possible linear partition and find
according parameters for the line.

Let us first assume that there is no limitation on the
parameters of the line, i.e., C = R

2. In this case P contains
the partitions (X (C),∅), (∅,X (C)). These partitions can,
for example, be realized by choosing the parameters a := a∗
and b := b∗ + ε or b := b∗ − ε, respectively. Further, P
contains the partitions ({(xi′ , yi′) : i′ ≤ i}, {(xi′, yi′) : i′ >

i}) and ({(xi′ , yi′) : i′ > i}, {(xi′, yi′) : i′ ≤ i}) for i =
1, . . . , nC − 1. The lines to create these partitions have to
pass a point on the line segment Li := {(x, a∗x+b∗) : xi

j1
≤

x < xi+1
j1

} or L′
i
:= {(x, a∗x + b∗) : xi

j1
< x ≤ xi+1

j1
} and

need to have a greater or smaller slope than a∗, respectively.
Clearly, if we limit the range of the subproblem to C :

= [a, a] × [b, b] the number of possible linear partitions
reduces. Therefore, we have to check which ones of these
2nC partitions are still realizable.

We start off by introducing a method to find a line that
goes above all points and creates the partition (∅,X (C))

or tells us that such a line does not exist. Suppose, there
exists a line (a, b) ∈ C that satisfies axi

j1
+ b > xi

j2
for

all (xi, yi) ∈ C. Clearly, also axi
j1

+ b > xi
j2

holds. In
other words, we can restrict the search to lines with an axis
intercept of b. Due to the sorting, if x1

j1
≥ 0 it holds that

x
nC

j1
≥ 0 and we choose a := a. Else, if x

nC

j1
≤ 0, we know

that also x1
j1

≤ 0 holds and we choose a := a. In all other
situations, a necessary and sufficient set of conditions for
the parameter a is:

ax1
j1

+ b > x1
j2

ax
nC

j1
+ b > x

nC

j2

a ≥ a

a ≤ a

Since x1
j1

< 0 and x
nC

j1
> 0 we deduce the inequalities

a <
x1
j2

−b

x1
j1

and a >
x

nC
j2

−b

x
nC
j1

. Therefore, if a1 :=

max

{
x

nC
j2

−b

x
nC
j1

, a

}

≥ min

{
x1
j2

−b

x1
j1

, a

}

=: a2, no line above all

of the points is possible. Otherwise, we choose a := a1+a2
2 .

Finding a line beneath all points to create the partition
(X (C),∅) is analogous to the case discussed above. If x1

j1
≥

0, we choose a := a and b := b, if x
nC

j1
≤ 0, we choose

a := a and b := b. Otherwise, we check whether a1 :=
max

{
x1
j2

−b

x1
j1

, a

}

> min

{
x

nC
j2

−b

x
nC
j1

, a

}

=: a2. If this evaluates

to true, no line beneath all points exists. Otherwise, a :=
a1+a2

2 and b := b yields the desired partition.

Next, we want to find lines for the partitions ({(xi′ , yi′) :
i′ ≤ i}, {(xi′, yi′) : i′ > i}) for i = 1, . . . , nC − 1 or decide

that such a line does not exist. This is equivalent to solving
the following linear program for sufficiently small ε > 0:

(LP ) max δ1

s.t. (a + δa)x
i
j1

+ (b + δb) + δ1 = xi
j2

(a + δa)x
i+1
j1

+ (b + δb) − δ2 − ε = xi+1
j2

δa + δ3 = a − a

δb + δ4 = b − b

δa, δb, δ1, δ2, δ3, δ4 ≥ 0

There exists a line for the partition if and only if (LP) has
an optimal solution with an objective value greater than
zero. Such a line is then defined by a := a + δ∗

a and
b := b + δ∗

b for any feasible solution δ∗
a, δ∗

b, δ∗
1 , δ∗

2 , δ∗
3 , δ∗

4 ≥
0 with δ∗

1 > 0. If (LP) has an optimal solution with
δ1 > 0 then it also has an optimal basic solution with
δ1 > 0. As a < a, we further know that in an optimal
basic solution either δa or δ3 must be part of the basis.
Similarly, we know that δb or δ4 must be part of the
basis. Hence, there remain eight bases to be checked:
{δ1, δa, δb, δ2}, {δ1,δa,δb, δ3}, {δ1,δa,δb, δ4}, {δ1, δ3, δb, δ2},
{δ1,δ3,δb,δ4}, {δ1,δa,δ4,δ2}, {δ1,δa,δ4,δ3}, {δ1, δ3, δ4, δ2}.

Similarly, finding a line (a, b) ∈ C such
(X+

(a,b),X
−
(a,b)) = ({(xi′ , yi′) : i′ > i}, {(xi′, yi′) : i′ ≤ i})

for i = 1, . . . , nC − 1 is equivalent to solving the linear
program

(LP ) max δ1

s.t. (a + δa)x
i+1
j1

+ (b + δb) + δ1 = xi+1
j2

(a + δa)x
i
j1

+ (b + δb) − δ2 − ε = xi
j2

δa + δ3 = a − a

δb + δ4 = b − b

δa, δb, δ1, δ2, δ3, δ4 ≥ 0

for small ε > 0 and the same set of basic solutions has to be
evaluated as in the previous case.

Altogether, we introduced a constant time method for all
of the 2nC partitions P which either yields parameters (a, b)

such that (X+
(a,b),X

−
(a,b)) = P or decides that the partition

is not possible.

The necessity of sorting the data points in each
subproblem can be avoided easily. Before starting the tree
building algorithm one creates m arrays of pointers to the
actual training data. These arrays are then sorted according
to the values of the respective attribute. From that point on
one can work with these arrays of pointers instead of the
actual values of the training data.

4.4 Branching strategy

In this section, we present the strategy for choosing the
parameter a or b used for branching a subproblem C :
= [a, a] × [b, b]. We require the computation of the
parameters to be simple, i.e., the time complexity should
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be O(|XI (C)|), because we found that more elaborate
branching strategies could not compensate the drawback of
being able to process less subproblems in the same amount
of time.

Branching strategy 1 The simplest, most obvious choice for

the parameters is a := a+a

2 and b := b+b

2 . A shortcoming of
this strategy is that it does not take into account the position
of the points in RI (C). Hence, we develop a more elaborate
strategy that is still fairly easy to compute.

Branching strategy 2 In the previous section, we introduced
node exploration criteria for situations in which there are
no points in XI (C) or the points in this set are not
distinguishable. Hence, it would be desirable if the number
of uncertain datapoints of the resulting subproblems would
be as small as possible. In the best case, we would evenly
distribute the points in XI (C) among the four subproblems.
Obviously, this is not always possible. It is also very likely
that certain points will have to be in the region of uncertainty
of two or more subproblems, i.e., for (xi, yi) ∈ XI (C) and
two subproblems C′ and C′′ of C it holds that (xi, yi) ∈
XI (C

′) and (xi, yi) ∈ XI (C
′′). Still, it does make sense to

approximate the desired aim by choosing some sort of mean
parameters for branching which we construct as follows: For
each (xi, yi) ∈ XI (C), we find ai ∈ [a, b] and bi ∈ [b, b]
such that aixi

j1
+ bi = xi

j2
. As values for bi , we choose

the mean intercept of all possible lines that pass through the
point (xi

j1
, xi

j2
) that have a slope within the interval [a, a] :

bi :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{b,xi
j2

−axi
j1

}+min{b,xi
j2

−axi
j1

}
2 , if xi

j1
> 0

max{b,xi
j2

−axi
j1

}+min{b,xi
j2

−axi
j1

}
2 , if xi

j1
< 0

xi
j2

, if xi
j1

= 0

It follows that ai = xi
j2

−bi

xi
j1

if xi
j1


= 0. If xi
j1

= 0 we set

ai = a+a

2 . Subsequently, we choose the respective means

a :=
∑

(xi ,yi )∈XI (C)

ai

|XI (C)| and b :=
∑

(xi ,yi )∈XI (C)

bi

|XI (C)|
as the values for branching. The idea of this construction
is illustrated in Fig. 4. In our experiments we found that
this simple strategy outperforms the initial idea of choosing

a := a+a

2 and b := b+b

2 and due to the linear complexity
it does not significantly slow down the branch and bound
procedure.

4.5 Termination of the algorithm

An important issue to be addressed for a branch and bound
algorithm over a continuous domain is the termination of the

Fig. 4 The dashed lines illustrate the lines aiXj1 + bi = Xj2 and the
solid line illustrates the line aXj1 +b = Xj2 from which the branching
parameters are derived

algorithm. The following theorem states that our algorithm
does in fact terminate after a finite number of iterations for
the first branching strategy.

Theorem 3 If for each subproblem C = [a, a] × [b, b]
the point ( a+a

2 ,
b+b

2 ) is chosen for branching, the algorithm
terminates after a finite number of iterations.

Proof To proof this theorem, we have to show that the
branch and bound procedure terminates for each individual
pair of attributes j1, j2 ∈ {1, . . . , m} such that j1 
= j2.
More specifically, for each pair of attributes, the while
loop at line 8 in Algorithm 2 must terminate after a finite
number of iterations. Let’s assume that this is not the case.
Then, there exist attributes j1, j2 with j1 
= j2 and a
sequence (Ck)k∈N = ([ak, ak]×[bk, bk])k∈N of consecutive
subproblems for that particular pair of attributes such that
Ck+1 ⊂ Ck and none of these subproblems satisfies one
of the node exploration criteria. As the first three node
exploration criteria are not satisfied the sets XI (Ck) contain
at least two distinct points and these sets remain equal for
k ≥ kI for some specific kI ∈ N. W.l.o.g we can therefore
assume that there exists X̃ ⊆ X such that XI (Ck) = X̃
for all k ∈ N. Due to the branching strategy, the sequence
converges towards a single point (ã, b̃) ∈ R

2 and for each
ε > 0 there exists kε ∈ N such that for each k ≥ kε it holds
that Ck ⊆ [ã − ε, ã + ε]× [b̃− ε, b̃+ ε]. As the fourth node
exploration criterion is not satisfied, there exists at least one
point (xi, yi) ∈ X̃ such that ãxi

j1
+ b̃ 
= xi

j2
. We define
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d := |ãxi
j1

+ b̃ − xi
j2

|. Clearly, it holds that d > 0 Then, for

ε = d

2(|xi
j1

|+1)
, and any (a′, b′) ∈ [ã−ε, ã+ε]×[b̃−ε, b̃+ε]

we conclude:

– Case 1: xi
j1

≥ 0 and ãxi
j1

+ b̃ − xi
j2

> 0

a′xi
j1

+ b′ − xi
j2

≥ (ã − ε)xi
j1

+ (b̃ − ε) − xi
j2

≥ ãxi
j1

+ b̃ − xi
j2

− ε(xi
j1

+ 1) = d − d

2
= d

2
> 0

– Case 2: xi
j1

< 0 and ãxi
j1

+ b̃ − xi
j2

> 0

a′xi
j1

+ b′−xi
j2

≥ ãxi
j1

+ b̃ − xi
j2

− ε(−xi
j1

+ 1) = d − d

2
= d

2
> 0

– Case 3: xi
j1

≥ 0 and ãxi
j1

+ b̃ − xi
j2

< 0

a′xi
j1

+b′−xi
j2

≤ ãxi
j1

+b̃−xi
j2

+ε(xi
j1

+ 1) = −d + d

2
= −d

2
< 0

– Case 4: xi
j1

< 0 and ãxi
j1

+ b̃ − xi
j2

< 0

a′xi
j1

+b′−xi
j2

≤ ãxi
j1

+b̃ − xi
j2

+ ε(−xi
j1

+1)=−d + d

2
=−d

2
< 0

Thus, in all of the four cases there is no (a′, b′) ∈ [ã −
ε, ã + ε] × [b̃ − ε, b̃ + ε] such that a′xi

j1
+ b′ = xi

j2
.

Hence, (xi, yi) 
∈ XI (Ck) for all k ≥ kε which contradicts
the assumption that (xi, yi) ∈ X̃ which is equivalent to
(xi, yi) ∈ XI (Ck) for all k ∈ N.

The second branching strategy presented in Section 4.4
should be regarded as a suggestion to improve the runtime of
the algorithm in practice. The idea is purely heuristic and for
that reason it is provided without theoretical justification.
Nevertheless, we want to point out the fact that due to
Theorem 3 we can ensure termination for any branching
strategy by combining it appropriately with Branching
Strategy 1.

4.6 Upper and lower bounds

Upper bounds The computation of an upper bound for
the currently observed subproblem can be carried out by
choosing arbitrary parameters a and b such that (a, b) ∈ C

and compute the impurity of the split aXj1 +b ≤ Xj2 . In our
implementation we choose the values used for branching the
subproblem.

Lower bounds For the lower bound of a subproblem C we
exploit the concavity of the impurity measures. In fact, it
turns out that the weighted impurity of the two invariants is
a lower bound for any rule aXj1 +b ≤ Xj2 with (a, b) ∈ C.

Theorem 4 Let I denote a frequency-weighted impurity
measure and let Î denote the corresponding impurity
measure for a bivariate oblique split on the training set X .
For a subproblem C ⊆ R

2 let nL and nU denote the vector
of absolute frequencies of class labels of the setsXL(C) and
XU(C), respectively. Further, let θ := aXj1 + b ≤ Xj2

with (a, b) ∈ C denote a valid rule within the bounds of the
subproblem Then, it holds that

I (nL) + I (nU ) ≤ Î (θ,X )

Proof The rule θ partitions XI (C) into two subsets
X−

I (C),X+
I (C) with class frequencies mL and mU . It

divides the overall set of training samples X into two subsets
XL and XU such that XL = X−

I (C)
.∪ XL(C) and XU =

X+
I (C)

.∪ XU(C). Hence, the impurity of the split is

Î (θ,X ) = I (nL + mL) + I (nU + mU).

Using strict concavity of I , we have

I (nL+mL)+I (nU + mU) ≥ I (nL)+I (mL)+I (nU )+I (mU ) (1)

≥ I (nL) + I (nU ). (2)

4.7 Improved lower bounds for specific impurity
measures

In this section we present two improved lower bounds
for the popular impurity measures entropy and gini
impurity. The improvements are based on the work of
[23] who summarizes useful properties of concave impurity
measures.

Theorem 4 states that the weighted impurity of the
invariants is a lower bound for any rule of the examined
subproblem C. In its proof, we ignored the sum I (mL) +
I (mU) to get from (1) and (2). Thus, if we can lower
bound this sum by some value greater than zero, we can
improve the lower bound of the subproblem. Note, that
this expression corresponds to the impurity of a feasible
partition of the points in XI (C) into two subsets. Recalling
Theorem 1, we know that there exists an optimal partition
of these points that does not split any class. Those optimal
partitions, however, can be very different depending on the
underlying impurity measure.

For the entropy, Breiman shows that an optimal partition
would distribute the points evenly among the subsets.
More precisely, a partition (XL,XU) of XI (C) such that
XL∪̇XU = XI (C) with respective vectors of absolute
frequencies of the class labels mL and mU which does not
split any class minimizes the weighted entropy E(mL) +
E(mU) if it minimizes max{|XL|, |XU |}. If m denotes the
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vector of absolute frequencies of class labels of XI (C) the
result can be derived from the following equation:

E(mL)+E(mU) = −
∑

r∈{L,U}
|Xr |

∑

j=1,...,k:
mrj

=mj

mj

|Xr | log
mj

|Xr |

= −
k∑

j=1

mj log mj +
∑

r∈{L,U}
|Xr | log |Xr |

The first equation stems from the fact either mLj or mRj

is equal to mj as the we only consider partitions which
do not split any class. Unfortunately, determining such
an optimal partition is equivalent to solving the well-
known NP-hard partition problem. Nevertheless, the second
part of the equation is clearly bounded by the expression
|XI (C)| log |XI (C)|

2 which motivates the following theorem.

Theorem 5 Let E denote the frequency weighted entropy
impurity measure and let Ê denote the corresponding
impurity measure for a bivariate oblique split on the
training set X . For a subproblem C ⊆ R

2 let nL and nU

denote the vector of absolute frequencies of the class labels
in the invariants. Further, letm denote the vector of absolute
frequencies of XI (C) and M := |XI (C)|. For any rule
θ := aXj1 + b ≤ Xj2 such that (a, b) ∈ C it holds that

max

⎧
⎨

⎩

∑

r∈{L,U }
E(nr ),

∑

r∈{L,U }
E(nr ) −

k∑

j=1

mj log mj +M log
M

2

⎫
⎬

⎭
≤ Ê(θ,X ).

For the gini impurity Breiman proves that an optimal
partition separates the maximum class from the other
classes. This observation leads to the following theorem.

Theorem 6 Let G denote the frequency weighted gini
impurity measure and let Ĝ denote the corresponding
impurity measure for a bivariate oblique split on the
training set X . Let C, nL, nU and m as in Theorem 5.
Furthermore, let j∗ := arg maxj=1,...,k mj . For any rule
θ := aXj1 + b ≤ Xj2 such that (a, b) ∈ C it holds that

∑

r∈{L,U}
G(nr)+G((m1, . . . , mj∗−1, 0,mj∗+1, . . . , mk)) ≤ Ĝ(θ,X ).

These improved lower bounds are especially useful in the
early stage of the branch and bound procedure when the
number of points in the invariants is still quite low. In this
stage, the lower bound stated in Theorem 4 is quite small
and the additionally added term will have a high proportion
of the value of the improved bound. At a later stage,
when the invariants contain many points the original term
which corresponds to the lower bound stated in Theorem

4 becomes dominant as the invariants already yield a good
picture of any feasible split of the subproblem.

5 Extensions for the tree building algorithm

5.1 Early stopping

As the outer loop of the decision tree induction algorithm
(see Algorithm 1) is a greedy approach, global optimality
of the splits might sometimes not be absolutely essential
and one might want to speed up the algorithm instead.
Nevertheless, even in these situations it is desirable to be
close to the global optimum and to have a global quality
guarantee. Heuristic approaches which yield local optima
usually don’t provide such a guarantee and it is not clear
whether the local optimal solution’s impurity is close to
the best value possible. Branch and bound on the other
hand, although belonging to the class of exact algorithms
for solving optimization problems, can also be employed
heuristically while providing a global quality guarantee.
Instead of pruning subproblems only when the lower bound
lb is smaller than or equal to the upper bound ub, one can
prune whenever lb ≥ (1 − ε)ub for ε ∈ [0, 1]. For such
nodes, no significant improvement is possible. Although
this might lead to pruning the optimal solution, we still
know that an optimal solution’s objective value can only
improve the final solution by a factor of (1 − ε). That way
the decision tree induction can be sped up while ensuring
that the bivariate splits’ are provably near optimal.

5.2 Parallelization

Another benefit of branch and bound algorithms is the fact
that they are easily parallelizable to make the best use
of modern multi-core hardware. Each core can process an
individual subproblem while keeping the current incumbent
solution as a shared resource. For our specific problem
of finding the best bivariate oblique split, we propose
parallelization at attribute level, i.e., the cores are assigned
tuples of attributes and run a full branch and bound
procedure for them (steps 4-27 of Algorithm 2).

5.3 Categorical data

Bivariate oblique splits are only applicable for numerical
data. However, in many application the data to be analyzed
contains categorical features with no specific ordering.
For such situations we propose to use a so-called one-hot
encoding. For each category, we add an additional feature
which is equal to one if the data sample belongs to the
respective category and zero, otherwise. The transformed
dataset can then be processed by our presented algorithm.
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5.4 Decision tree pruning

When decision trees are fully branched, they are usually
overfitted. This means that they describe the training data
perfectly but are incapable of predicting well on unseen
data. A common technique to overcome this problem is to
use pruning methods. An overview over different pruning
methods is presented in [24]. These can be categorized into
two classes, pre- and post-pruning methods. Pre-pruning
methods stop the tree building procedure when certain
criteria are met. For example, if the reduction of the impurity
is below a certain threshold. Post-pruning methods, on the
other hand, are applied after the tree has been fully grown.
If nodes of the tree satisfy certain criteria, they are pruned.
These techniques are independent of the type of split used
for building the tree. Therefore, they are all applicable
with our method and similar results as for other decision
tree induction methods are expected in terms of prediction
accuracy.

6 Evaluation

6.1 Experimental setup

In this section, we provide a comprehensive evaluation of
our proposed method. We compare our method (BiDT)
to our own implementation of the well-known greedy

top-down univariate decision tree building method (DT)
which is also implemented by CART and C4.5 and to the
OC1 decision tree induction algorithm [12]. The latter is
probably the most popular oblique decision tree induction
method which uses a randomized hill climbing approach
to determine local optimal multidimensional hyperplanes
to divide the feature space. Using our own implementation
for the univariate trees ensures maximal comparability to
the bivariate oblique trees as we are basically just omitting
the branch and bound procedure. We implemented our
algorithm in C++ and we carried out all of the experiments
on a computer equipped with an Intel Xeon E3-1231v3
@3.40GHz (4 Cores), 32GB DDR3 RAM running Ubuntu
18.04.

For our experiments we test the three methods on 20
popular datasets from the UCI Learning Repository [25].
The collection contains datasets of variable size ranging
from 80 to 25010 data points, 6 to 256 attributes and 2
to 16 classes. An overview over the examined datasets
is presented in Table 1. Note, that we report the number
of attributes after the application of the one-hot encoding
scheme for categorical features and we dropped samples
with missing values beforehand.

We compare the algorithms with and without an
additional post-pruning step. The chosen pruning method
is minimal cost-complexity pruning introduced by [8]. We
perform 10-fold cross validation to retrieve the following
three quality measures:

Table 1 Dataset description
Dataset Data points Attributes Classes

breast cancer wisconsin 683 9 2

chess krvskp 3196 73 2

congressional voting 232 16 2

dermatology 358 34 6

ecoli 336 7 8

glass 214 9 6

ionosphere 351 34 2

monks problems 1 124 6 2

optical recognition 3823 63 16

parkinsons 195 22 2

pen based recognition 7494 16 10

pima indian diabetes 768 8 2

poker hand 25010 10 10

seeds 210 7 3

semeion 1593 256 10

spect heart 80 22 2

statlog heart 270 13 2

statlog landsat 4435 36 6

tic tac toe 958 27 2

wine 178 13 3
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Table 2 Comparison of
accuracy between
unpruned BiDT, OC1 and
DT

Dataset Accuracy (%)

BiDT OC1 DT

breast cancer wisconsin 94.74±3.06 94.0±3.48 94.15±1.45

chess krvskp 99.56±0.29 98.53±0.47 99.56±0.4

congressional voting 94.87±4.96 93.53±3.5 94.84±5.41

dermatology 97.21±3.2 95.56±3.06 94.42±3.34

ecoli 77.13±4.99 81.6±4.78 82.91±5.15

glass 72.53±9.47 69.2±9.49 68.81±12.14

ionosphere 90.58±5.58 89.46±3.14 88.02±2.52

monks problems 1 100.0±0.0 89.49±8.92 81.28±11.95

optical recognition 94.76±1.55 94.68±1.25 94.71±1.4

parkinsons 87.24±7.33 85.68±8.32 84.16±12.33

pen based recognition 96.54±0.53 96.68±0.5 96.38±0.49

pima indian diabetes 68.5±6.53 69.16±5.79 71.23±7.07

poker hand 85.17±1.43 54.18±0.88 49.89±1.01

seeds 95.71±3.33 91.91±6.41 91.9±6.04

semeion 76.96±3.03 75.27±2.74 74.82±3.6

spect heart 68.75±16.06 71.25±14.84 67.5±8.29

statlog heart 75.93±5.56 74.81±5.69 74.81±6.99

statlog landsat 85.59±1.46 85.66±1.23 84.44±2.32

tic tac toe 94.68±2.05 94.78±2.6 93.73±2.45

wine 90.46±7.05 88.3±9.09 88.86±10.52

Average Rank 1.4 2.1 2.5

– Out-of-sample accuracy
– Tree size in terms of the number of leaf nodes
– Required time for building the trees

We report the runtime of our bivariate oblique decision tree
induction algorithm if the branch and bound procedures
are carried out by a single thread as well as when they
are carried out in parallel by 4 threads simultaneously (see
Section 5.2).

Following Demšar’s proposal [26] for comparing multi-
ple classifiers we perform a Friedman test (see [27, 28]) to
check whether there is a significant difference for at least
two of the methods and subsequently, if a significant differ-
ence is detected, we execute the Holm test (see [29]) with
BiDT as a control method for a post-hoc analysis.

The Friedman test is a non-parametric statistical test
based on ranks to detect differences across measurements
taken by three or more different methods. For each
individual dataset the performances are ranked from best to

worst, i.e., the best classifier has rank one, the second best
has rank two and so forth. Ties are broken by assigning
the average rank. The null-hypothesis being tested is that
the classifiers perform equally well and the differences are
due to random error. Thus, if the null-hypothesis is true the
observed ranks should be equal. If the p-value computed
by the Friedman test is below a certain significance level α

we reject the null-hypothesis and conclude that at least two
methods differ significantly.

If a significant difference is detected by the Friedman
test, the Holm test let’s us decide whether the control
method BiDT performs significantly better or worse than
the other algorithms at a given significance level α. For
each of the methods that BiDT should be compared to,
the null-hypotheses is that the method’s performance is
equal to BiDT’s. The p-values for these null-hypotheses are
computed and ordered from lowest to highest. To control
the family-wise error rate, the Holm test adjusts these p-
values by multiplying it with (k + 1 − i) where k denotes

Table 3 Holm post-hoc test for accuracy of unpruned trees

Algorithm Rank Holm adjusted p-value Hypothesis

OC1 2.1 0.03 Rejected

DT 2.5 1 × 10−3 Rejected

Control method: BiDT, Rank: 1.4
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Table 4 Comparison of accuracy between pruned BiDT, OC1 and DT

Dataset Accuracy (%)

BiDT OC1 DT

breast cancer wisconsin 96.34±1.99 95.02±2.3 95.76±2.88

chess krvskp 99.5±0.42 98.12±1.04 99.25±0.58

congressional voting 97.01±2.7 94.84±3.76 97.01±2.7

dermatology 95.24±3.18 94.44±3.91 92.75±3.85

ecoli 78.78±4.71 82.77±3.95 81.07±4.86

glass 72.85±6.32 63.53±9.14 74.62±8.42

ionosphere 92.58±4.28 86.04±3.93 88.04±5.53

monks problems 1 98.4±3.21 85.32±16.53 79.04±15.96

optical recognition 94.79±1.49 94.45±1.34 94.94±1.23

parkinsons 87.18±8.67 87.16±6.94 84.08±9.64

pen based recognition 96.66±0.71 96.18±0.57 95.61±0.49

pima indian diabetes 74.24±6.74 73.44±4.79 73.32±6.44

poker hand 86.6±1.7 60.22±2.27 54.57±1.75

seeds 94.76±4.49 94.29±4.15 91.9±7.39

semeion 75.58±4.5 75.26±3.09 74.83±4.02

spect heart 65.0±20.0 67.5±18.71 60.0±18.37

statlog heart 74.44±5.75 78.52±3.23 81.85±4.81

statlog landsat 86.47±1.93 86.02±1.52 85.95±1.56

tic tac toe 94.78±2.04 93.12±3.64 92.89±3.61

wine 90.46±5.72 93.27±6.04 87.22±9.31

Average Rank 1.425 2.15 2.425

the number of methods different from the control method
and i denotes the position in the ordering. Thus, smaller p-
values are increased more strongly than higher ones. Then,
starting from the most significant null-hypothesis (based on
the original p-values) the adjusted p-values are compared to
the significance level until it is exceeded for the first time.
All null-hypotheses before that are rejected and the others
are not and we can conclude which methods in fact differ
significantly from the control method.

In our experiments we require a significance level of
α = 0.05 for both, the Friedman and the Holm test.

6.2 Comparison of accuracy

In this section, we compare the accuracy of the three
methods. An overview of our results for the unpruned trees
can be found in Table 2 and for the pruned trees in Table 4.

We report the average accuracy together with the standard
deviation resulting from the 10-fold cross validation. The
best value for each dataset is highlighted in bold. The last
line of the table reports the average rank computed over all
the datasets.

For the unpruned decision trees BiDT is in first place
with a rank of 1.4, OC1 is in second place with a rank of 2.1
and DT is in the third place with a rank of 2.5 (Table 2). The
Friedman test confirms that there is a significant difference
for at least two average ranks with a p-value of 2 × 10−3 <

α. A summary of the subsequent Holm test with BiDT as
control method is presented in Table 3 and we can see that
both OC1’s and DT’s accuracy differs significantly from
BiDT’s. Thus, we conclude that BiDT is the most accurate
of the three methods for the datasets at hand.

We see similar results for the pruned decision trees. BiDT
has the lowest rank of 1.425, OC1 has rank 2.15 and DT has

Table 5 Holm post-hoc test for accuracy of pruned trees

Algorithm Rank Holm adjusted p-value Hypothesis

OC1 2.15 0.02 Rejected

DT 2.425 3 × 10−3 Rejected

Control method: BiDT, Rank: 1.425
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Table 6 Comparison of tree size between unpruned BiDT, OC1 and DT

Dataset Leaves

BiDT OC1 DT

breast cancer wisconsin 15.7±1.19 16.1±1.04 26.4±1.8

chess krvskp 29.4±1.1 11.2±4.19 47.8±1.83

congressional voting 7.7±0.9 3.3±0.46 10.4±0.66

dermatology 8.8±0.6 9.1±1.3 15.8±1.54

ecoli 31.0±1.9 34.2±1.83 45.0±2.28

glass 25.7±1.33 29.1±1.81 37.2±1.47

ionosphere 14.1±1.36 15.3±2.05 21.7±2.33

monks problems 1 5.2±0.4 6.0±1.61 18.5±3.56

optical recognition 71.9±2.17 89.3±3.13 102.1±2.47

parkinsons 8.8±0.6 12.8±1.89 12.5±1.43

pen based recognition 114.8±2.69 98.8±6.84 204.7±6.37

pima indian diabetes 73.0±4.37 74.8±4.85 107.8±6.76

poker hand 1642.86±82.21 3596.79±62.97 6391.36±105.85

seeds 6.4±0.49 9.0±0.89 12.8±1.08

semeion 119.6±4.54 143.1±5.39 185.6±4.25

spect heart 15.2±0.75 16.9±1.76 22.2±1.25

statlog heart 20.5±1.42 20.7±2.33 36.8±1.94

statlog landsat 175.7±5.66 257.9±8.14 301.4±7.89

tic tac toe 35.2±2.53 14.2±5.06 64.6±6.44

wine 5.5±0.8 6.7±1.0 9.8±1.94

Average Rank 1.2 1.85 2.95

rank 2.425 (Table 4). The Friedman test returns a p-value
of 4 × 10−3 and therefore, we reject the null-hypothesis
that the methods perform equally. The Holm test, which is
summarized in Table 5, confirms that both OC1 and DT are
in fact less accurate than BiDT.

6.3 Comparison of tree size

We now present our findings on the tree sizes obtained
by the three algorithms. The results for the unpruned trees
are presented in Tables 6 and 8 summarizes the results for
the pruned trees. Again, the best value for each dataset is
highlighted in bold and the average rank is stated in the last
line of the respective table.

For the unpruned trees we see that BiDT has the lowest
rank of 1.2, OC1 has a rank of 1.85 and DT has the highest
rank of 2.95 (Table 6) and this difference is confirmed to be
significant by the Friedman test with a p-value of 2 × 10−7.

The post-hoc analysis which is summarized in Table 7 rejects
both null-hypotheses which allows the conclusion that BiDT
produces smaller trees than OC1 and DT.

For the pruned trees we get a different result. BiDT
has a slightly higher rank of 1.625 than OC1 which has
a rank of 1.55. DT has the highest rank with a value
2.825 (Table 8). The Friedman test confirms that there is a
significant difference between at least two methods with a
p-value of 3 × 10−5. The post-hoc Holm test, summarized
in Table 9, only confirms that the difference between BiDT
and DT is significant while it does not provide evidence for
a significant difference between BiDT and OC1.

6.4 Comparison of induction times

Lastly, we compare the induction times of the methods.
We include the multi-threaded variant of BiDT, which is
abbreviated by BiDTMT, to check whether a noticable

Table 7 Holm post-hoc test for size of unpruned trees

Algorithm Rank Holm adjusted p-value Hypothesis

OC1 1.85 0.04 Rejected

DT 2.95 6 × 10−8 Rejected

Control method: BiDT, Rank: 1.2
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Table 8 Comparison of tree size between pruned BiDT, OC1 and DT

Dataset Leaves

BiDT OC1 DT

breast cancer wisconsin 3.0±1.79 3.4±2.37 11.5±6.17

chess krvskp 19.2±2.84 4.6±3.88 27.4±5.39

congressional voting 2.0±0.0 2.1±0.3 2.0±0.0

dermatology 5.7±0.49 6.0±0.77 8.1±1.64

ecoli 14.0±7.07 11.4±5.37 17.8±6.48

glass 11.9±3.94 11.7±8.23 13.0±6.08

ionosphere 4.2±1.73 5.0±2.57 7.5±5.82

monks problems 1 5.5±0.67 3.5±1.02 8.7±4.17

optical recognition 34.0±13.25 43.5±20.71 49.9±25.35

parkinsons 2.6±1.2 3.1±1.92 3.7±1.85

pen based recognition 85.0±11.8 65.6±16.47 149.9±33.02

pima indian diabetes 10.3±4.78 10.1±13.97 24.6±15.94

poker hand 504.5±62.47 129.79±52.37 775.64±123.74

seeds 3.4±0.49 3.1±0.3 4.5±1.91

semeion 61.7±18.54 90.0±34.39 96.7±35.94

spect heart 3.5±1.22 2.4±0.92 3.4±2.8

statlog heart 5.6±2.07 3.2±1.47 6.1±2.26

statlog landsat 46.5±36.28 79.7±40.28 78.0±20.42

tic tac toe 14.3±5.49 9.6±9.6 38.6±13.55

wine 3.6±0.49 4.2±1.54 4.3±1.42

Average Rank 1.625 1.55 2.825

difference can be achieved through parallelization. As
suggested in Section 5.2 parallelization is carried out at
attribute level and we employ a total of 4 CPU cores.
For the comparison of induction times, we don’t include a
comparison of the pruned trees as the post-pruning method
is equal for all three methods and its runtime is neglectable
in comparison to the time necessary to grow the trees.
Thus, our findings would be equivalent to the results for the
unpruned trees. Table 10 summarizes the induction times of
our experiments.

Looking at the results, we see that DT has rank 1,
BiDTMT has rank 2.2, OC1 has rank 3.3 and BiDT has rank
3.5. This result obviously reveals a significant difference as
DT is the fastest algorithm for all datasets. Therefore, the
Friedman test yields a p-value of 2 × 10−10. The Holm
test which is summarized in Table 11 confirms that DT is
faster than BiDT. Moreover, the difference between BiDT

and BiDTMT is found significant while there is no evidence
for a significant difference between BiDT and OC1.

6.5 Discussion

Overall these results show the benefits of our proposed
method. The inclusion of an additional attribute allows
bivariate trees to capture the structure of the data better than
univariate trees which results in a higher prediction accuracy
for the majority of the datasets. Moreover, due to the global
optimality of the splits, our bivariate decision tree algorithm
manages to be more accurate than OC1 although the latter
is not restricted to two attibutes per split. Pruning had no
noticable effect on this result.

Without pruning BiDT manages to induce trees with a
fewer amount of leaf nodes than DT and OC1. While it is
not suprising that bivariate splits lead to smaller trees than

Table 9 Holm post-hoc test for size of pruned trees

Algorithm Rank Holm adjusted p-value Hypothesis

OC1 1.55 0.81 Not Rejected

DT 2.825 3 × 10−4 Rejected

Control method: BiDT, Rank: 1.625
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Table 10 Comparison of induction time between unpruned BiDT, BiDTMT, OC1 and DT

Dataset Time (ms)

BiDT BiDTMT OC1 DT

breast cancer wisconsin 133.83±33.25 45.42±10.78 322.28±57.67 8.35±1.57

chess krvskp 7777.9±479.84 2262.02±139.18 3596.21±753.99 282.66±15.67

congressional voting 22.58±3.22 7.16±0.95 61.25±2.03 1.68±0.13

dermatology 72.67±7.89 28.86±3.15 161.31±4.86 9.59±0.84

ecoli 95.61±14.66 34.39±5.29 223.82±15.94 2.16±0.04

glass 112.83±25.22 38.79±10.64 93.36±4.72 1.77±0.26

ionosphere 2852.69±1199.71 1151.15±460.47 339.52±25.29 9.08±1.32

monks problems 1 3.52±0.73 1.42±0.37 24.26±2.63 0.48±0.08

optical recognition 101283.28±30949.24 27191.31±8376.51 21076.68±5826.74 164.77±10.49

parkinsons 176.25±76.02 61.08±32.91 135.29±21.72 4.61±1.11

pen based recognition 24054.65±1496.51 6657.05±496.56 19119.74±1558.83 99.43±9.38

pima indian diabetes 821.33±328.66 314.57±142.13 405.67±63.61 9.58±1.28

poker hand 78540.86±5205.81 21846.84±1413.42 91050.92±4019.96 555.97±94.26

seeds 21.55±10.22 10.6±2.8 73.21±4.12 5.84±1.48

semeion 94820.07±3832.04 26528.1±1679.51 7369.95±697.19 557.37±62.21

spect heart 37.25±4.76 16.8±2.34 43.22±1.1 1.42±0.26

statlog heart 115.35±18.44 38.28±6.35 125.38±13.84 2.58±0.2

statlog landsat 87472.7±25084.71 25936.01±7732.71 15853.02±934.55 245.72±24.91

tic tac toe 544.45±16.72 206.18±15.01 303.37±59.52 55.68±3.49

wine 33.77±18.11 13.32±8.45 41.38±5.0 1.11±0.07

Average Rank 3.5 2.2 3.3 1.0

univariate splits, the fact that BiDT performs better than
OC1 is quite remarkable. As bivariate splits are a special
case of oblique splits, theoretically, oblique decision trees
are always capable of dividing the feature space with an
equal number or fewer splits. The only advantage of BiDT
is that the bivariate splits are provably global optimal while
OC1’s splits are only local optimal. From our experiments
we therefore conclude that global optimal bivariate splits
are often more efficient at dividing the feature space than
local optimal oblique splits. This result further raises the
assumption that global optimal splits are in fact desirable
despite the greedy nature of the outer loop of the top-down
induction algorithm.

For the pruned trees, the difference in tree size between
BiDT and DT can again be explained by the fact that
bivariate splits are more general than univariate splits and

pruning the trees does not yield an advantage for DT. What
is more interesting is the fact that no significant difference is
observed between BiDT and OC1, although the difference
was significant for the unpruned trees. We assume that this
result can also be explained by the fact that BiDT’s splits
are global optimal while OC1’s splits are only local optimal.
The global optimal bivariate splits seem to be stronger and
therefore less likely to be pruned while many local optimal
oblique splits are less important to ensure the accuracy of
the decision trees and are therefore pruned. Although after
pruning our bivariate trees might not be smaller than OC1’s
oblique decision trees, they still have the advantage of being
more interpretable.

The difference in induction time between BiDT and
DT can be explained by the fact determining optimal uni-
variate splits is much less complex than finding optimal

Table 11 Holm post-hoc test for build-up time for unpruned trees

Algorithm Rank Holm adjusted p-value Hypothesis

BiDTMT 2.2 3 × 10−3 Rejected

OC1 3.3 0.62 Not Rejected

DT 1.0 3 × 10−9 Rejected

Control method: BiDT, Rank: 3.5
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bivariate splits or oblique splits in general. No signifi-
cant difference is observed between BiDT’s and OC1’s
induction time and by looking at the results we sus-
pect that they are in the same order of magnitude for
many applications. Interestingly, there is a significant dif-
ference between BiDT’s and BiDTMT’s induction time.
On average BiDTMT is 2.9 times faster than BiDT which
allows the conclusion that our induction algorithm does
in fact profit from parallelization. Parallelization seems to
be especially benefitial for larger datasets such as “opti-
cal recognition”, “pen based recognition” or “poker hand”.
For these datasets the induction time is reduced by a fac-
tor greater than 3.5 which is about the best we can expect,
considering the fact that four CPU cores were employed in
our experiments. The smallest speed-up is achieved for the
“seeds” dataset, yet the induction time is still reduced by a
factor of two.

7 Illustration of interpretability

In this section, we provide an illustrative example to
investigate the interpretability of bivariate decision trees.
For this evaluation we test our induction algorithm on the
“monks problem 1” dataset [30]. It is an artifical dataset
consisting of 124 samples and 6 attributes. Attributes
X1, X2, X4 take values in {1, 2, 3}, attributes X3, X6 in
{1, 2} and X5 in {1, 2, 3, 4}. The labels are assigned
according to the logical rule (X1 = X2)∨(X5 = 1). A label
of 1 means that the rule is satisfied and 0 means that it is
not. The major advantage of using such a artificially crafted
dataset for this exploration is that we can check whether the
decision tree actually captures the underlying structure.

The bivariate decision tree obtained by our algorithm
is shown in Fig. 5. As we can see, the root node’s
rule is univariate and equivalent to X5 ≥ 1.5. As all
values are integer and greater than zero, the negation of
this rule corresponds to X5 = 1 and therefore, Node 2
comprises the positive samples that satisfy the second part
of the disjunction to be learned. What is worth mentioning
here is the observation that the split is in fact univariate
which means that no bivariate split could reduce the
impurity after the initial univariate bound is computed in
Step 2 of Algorithm 2. This is actually desirable as the
inclusion of another variable could cause misinterpretations
or misclassifications. This shows that it is a reasonable
choice to use the best univariate split as an initial solution.

The subtree rooted at Node 1 is responsible for the
condition X1 = X2. We can rewrite the conditions at Node
1 and 3 to X1 ≥ 0.75X2 and X1 ≤ X2 + 0.5 which are
equivalent to X1 ≥ X2 and X1 ≤ X2 for X1, X2 ∈ {1, 2, 3}.
Thus, both conditions are satisfied if and only if X1 = X2

and we can conclude that Node 5 comprises all positive

Fig. 5 Bivariate tree for the “monks problem 1” dataset

samples with X1 = X2 and Node 4 and 6 hold all negative
samples with X1 
= X2. Therefore, Nodes 2 and 5, the
ones with the positive labels, are reached if and only if the
underlying rule is satisfied. Thus, this tree captures the logic
of the dataset perfectly. Furthermore, it is also an oblique
tree of minimal size as at least three splits are necessary to
express the underlying rule.

Overall, this illustrative example shows how bivariate
trees can capture the underlying structure of the data and
how they can be interpreted with some basic algebraic
reasoning.

8 Conclusion and future work

Interpretable machine learning becomes increasingly popu-
lar and decision trees play an import role in this context due
to their easy to understand recursive nature. However, uni-
variate decision trees are sometimes less accurate as other
classification models. One reason for that is that they only
use one feature per split such that complex interactions are
not detected. This also often leads to huge trees which are
also hard to interpret due to their size. Oblique decision trees
can make up for this shortcoming at the cost of an increased
induction time and the loss of interpretability when many
features are involved in the splits. Moreover, the task of find-
ing these oblique splits is far more complex and heuristics
have to be applied to yield local optimal solutions with no
global quality guarantee.
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Bivariate decision trees based on our branch and bound
algorithm overcome the issues of univariate decision trees
while preserving the advantages of oblique trees. They are
fairly interpretable due to the restriction to two attributes
per split and due to the global optimality of the rules they
are often more likely to capture the underlying structure of
the data at hand. Their major disadvantage is the increased
induction time compared to univariate trees. Our efficient
branch and bound algorithm reduces this disadvantage effec-
tively, especially due to the fact that it is easily parallizable
and thus leverages the capabilities of modern hardware. For
these reasons, they are a viable alternative to the commonly
used univariate methods when extremely fast induction is less
important and accurate yet interpretable trees are desired.

As a future work it would be interesting to test
our proposed algorithm against different non-tree-based
classification methods such as neural networks and support
vector machines. Moreover, it would be interesting to
investigate the advantages of bivariate decision trees
in ensemble methods and to take advantage of their
interpretability to analyze real world data.
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