Study on the structure formation and transport
properties of nanoparticulate, nanoporous
media using particle-based stochastic methods

Cumulative Doctoral Thesis

(Kumulative Dissertation)
to be awarded the degree of
Doctor of Engineering

( Dr.-Ing.)

Submitted by
Hector Fernando
Rusinque Olaya

from Bogota, Colombia

approved by the Faculty of Mathematics/Computer Science and
Mechanical Engineering,

Clausthal University of Technology

Date of oral examination
Nov. 15, 2021

Dean: Prof. Dr. J. P. Miiller

Chairperson of the Board of Examiners: Prof. Dr.-Ing. Thomas Turek
Supervising Tutor: Prof. Dr.-Ing. Gunther Brenner

Reviewer: Prof. Dr. rer. nat. Alfred Weber

Reviewer: Jun.-Prof. Dr. Nina Merkert (geb. Gunkelmann)






Acknowledgements

First, I would like to thank my supervisors, Professor Gunther Brenner, Professor Alfred
Weber as well as Junior Professor Nina Gunkelmann, whose expertise was invaluable in

formulating the research questions and methodology.

I would also like to thank my colleagues Eugenia Barthelmie, Helena Fedianina, and
Aurina Martinez for their immense support and feedback as co-authors on the publica-
tions. Of course, I cannot be more grateful to Heidi Andresen-Tanumihardja, who always

assisted me and did not let me forget my organizational duties.

I could not have made this long journey without the unconditional support of my dear
parents and my lovely, annoying siblings. Finally, I would like to thank my beloved wife,
Juliana Rivas Botero, for her stimulating discussions, wise advice and sympathetic ear.

You are always there for me.






Abstract

Porous materials are used in several technical applications such as filtration, engineer-
ing, geosciences and biophysics. This work focuses on the modeling of mass trans-
port phenomena occurring in the pore network and during the formation of nanopartic-
ulate nanoporous clusters using particle-based stochastic methods. Traditionally, macro-
scopic quantities such as the porosity and tortuosity [1] are used in models as average
global parameters to estimate the transport properties of porous media. However, these
macroscopic approaches fail to quantify the influence of structural heterogeneities of the
medium on mass transport phenomena. This effect can be taken into account by resolving
the computational domain on the pore-scale, as it is done in particle-based approaches [2,
3]. One of the advantages of particle-based methods is their efficient use on modern multi-
core hardware architectures due to their good scalability [4, 5]. In this thesis, a Brownian
dynamics solver used to model the motion of tracers in porous media was developed
and optimized for parallel computing using the OpenMP and MPI libraries. A further
particle-based model used, known as fast lubrication dynamics, is implemented in the
open-source software LAMMPS. With the help of this software, the motion of colloidal
nanoparticles is modeled. For this purpose, a customized pairwise interaction modeling
screened Coulomb forces between particles had to be developed. In addition, different
external fields (e.g. velocity fields, electric fields, pressure fields, etc.) are computed us-
ing open-source applications such as Fenics and an in-house lattice Boltzmann solver in

order to evaluate their influence on the motion of nanoparticles or tracers.

In this work, mass transport phenomena in porous media are addressed, where the ef-
fect of heterogeneities in the porous structure and the hindering effect of narrow pores on
the mass transport properties of the aforementioned media are studied. Among the main
achievements of this work is the development of a particle-based model capable of com-
puting the diffusivity of nanoporous media. In addition, the formation and structure prop-
erties of nanoparticulate clusters are investigated. One of the highlights of this study is a

proposed formation mechanism of nanoparticulate clusters produced via spray-drying.
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1 Introduction

Porous materials have a wide range of applications in practice. All applications of these
materials are based on their property of being traversed by cavities or pores, and thus
providing a large fluid/solid interface per unit volume. Therefore, porous systems are
used e.g. in adsorption processes, gas-solid reactions or in heterogeneous catalysis. For
heterogeneous catalysis, the catalytically active components are usually applied to the
inner surface of porous substrates. It is at these reactive centers that the conversions of
reactants to products take place. Apart from the reaction kinetics, the mass transport of
the components to and from these catalytic sites plays an important role in the overall
kinetics of the heterogeneously catalyzed reaction. This mass transport is influenced to a

considerable extent by the pore structure of the porous medium.

Due to the complex structure of engineered porous materials, an exact prediction of the
mass transport through the pore system is infeasible. Experimental methods for its deter-
mination are very time-consuming and labor-intensive, so that attempts are often made to
estimate the mass transport on the basis of more easily accessible characteristic quanti-
ties of the porous materials. In this context, the porosity and the pore size are the focus
of interest. However, the experimental methods for determining these quantities usually
require simplified models of the porous structure in order to be able to evaluate the mea-

surement results.

When manufacturing porous materials for chemical reaction engineering, it is essential
to provide sufficient surface area for the catalyzed reaction or for the adsorption process.
Moreover, the reactants should be able to reach the reactive centers as quickly as possible,
i.e. the diffusive mass transport inside the porous materials should be optimized. For
the optimization of the manufacture of such materials, there is therefore great interest
in procedures for characterizing the pore structure and in methods for determining the

influence of this structure on mass transport.

Previous attempts to estimate the influence of the pore structure on mass transport have
been made using model systems to describe porous materials on the basis of experimen-
tally determined values for the porosity and the pore size distribution. Pore systems have
often been assumed to be cylindrical capillaries with different spatial arrangements. The
parallel pore model describes the cavity of porous materials as a bundle of parallel cap-
illaries with uniform and constant radius. This idea has been extended with the addition

of a distribution of capillary diameters corresponding to the experimentally determined
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pore size distribution ¢ as well as with a random orientation of the capillaries / and the

introduction of converging and diverging capillaries $

An alternative method of modeling porous materials consists of replicating the solid ma-
terial instead of the pore space. For this purpose, clusters of spheres have often been
numerically generated, whose porosity and/or particle size distribution match those of the
porous material of interest. The resulting pore geometry is irregular and thus no longer
easily describable. The porous media hereby considered are mostly sphere packings, i.e.
clusters of spherical particles, which are packed into compact arrangements. If a sphere
packing is randomly formed, two characteristic regions can be identified according to
their structural order degree. While a highly ordered, structured arrangement dominates
the region near to the boundaries of the structure, a random unstructured arrangement pre-
dominates in the inner bulk region of the structure far away from the packing boundaries.
The presence of these two regions with different porous structures introduces a further
challenge in both the characterization and modeling of such heterogeneous porous media.
On the one hand, a porous medium can be characterized, for instance, by its porosity or
transport properties such as permeability, tortuosity and diffusive hindrance (a measure
of the inhibition of diffusion due to finite size effects). However, the characterization
of porous materials is usually complex, since their intrinsic transport properties correlate
strongly with the intricate pore structure of the medium. On the other hand, continu-
ous models, which consider porous materials as effective media, use global properties as
descriptors for the modeled material. Particle-based methods have been used to simu-
late particle trajectories in order to determine the mass transport properties of the porous

structure.

Nanoporous materials are of particular interest for this work, as they offer exceptional cat-
alytic properties due to their large surface area to volume ratio. This can be exploited to
increase the catalytic activity of a material in heterogeneous catalysis, since the number of
active sites, at which the desired reaction takes place, increases. However, if the pore size
narrows to the same order of magnitude as the molecule size, the mobility of the molecules
becomes dramatically hindered. This slows down the overall kinetics of the catalysis as
the reactants can hardly reach the active sites inside the porous structure and the products
can barely escape the intricate and narrow pore network. Thus, when designing a catalytic
nanoporous material, a pore size has to be chosen so that a balance/compromise is main-
tained between the associated surface-to-volume ratio and the mobility of the molecules.
A further strategy to address hindered mass transport induced by narrow pore sizes is to

reduce the fraction of nanopores by using a hierarchical-porous structure. In this way, the

®H. W. HAYNES JR. & L. F. BROWN. AIChE Journal, 17: 491-494, 1971.
"MARVIN F.L. JOHNSON & WARREN E. STEWART. J. of Catalysis, 4: 248-252, 1965.
8RICHARD N. FOSTER & JOHN B. BUTT. AIChE Journal, 12: 180-185, 1966.



larger pores serve as transport channels for the diffusing molecules to reach the narrower
reaction pores faster?!! In the case of adsorption applications, hindered mass transport
phenomena can be utilized to capture and remove pollutants such as COy and HCI from a

gas or liquid mixture with the help of a nanoporous medium such as zeolites !?

In this work, mass transport processes occurring during the formation of porous structures
and within their pore network are modeled using particle-based stochastic approaches.
Stochastic methods such as Langevin dynamics, Brownian dynamics and fast lubrication
dynamics used in the present study are based on classical Newtonian dynamics with the
addition of a random force, which is used to reproduce Brownian motion. Although these
particle-based techniques are computationally more complex in comparison to continuum
approaches, they enable us to spatially resolve local heterogeneities that play an important
role in mass transport processes. This also allows us to couple different kind of fields
or pairwise interactions together in the same model in a rather straightforward way by
superposition. For instance, external fields such as a bulk velocity field or an electric field
are computed in a previous step e.g. solving numerically the Navier-Stokes equations or
the Boltzmann equation for the flow, and solving the Poisson equation for the electric
field. These external fields are given as input for the particle solver, which superimposes
them to the stochastic thermal force in order to describe the mass transport of a particle

ensemble at a nano-scale.

In order to reduce the time required to generate the results, an algorithm was developed
to run the simulations on parallel computers. Parallel computers offer the possibility to
distribute the computational work, which is performed on a PC or a workstation on one
processor, to several processors and to perform it there in parallel, i.e. simultaneously.
The time gain that can be achieved in this way is known as the speed-up. Thus, on high-
performance computers, namely the North-German Supercomputing Alliance (HLRN), a
considerable time gain can be achieved. However, the maximum speed-up is limited by
the communication between the processes for the purpose of data exchange and synchro-

nization as well as by work that cannot be parallelized.

The fundamental condition for the use of a parallel computer is therefore to have paral-
lelizable computational work, so that the work on the respective processor is as indepen-
dent as possible from the work on the other processors. This condition is fulfilled in the
Browninan and Langevin dynamics solvers used in this study, as the simulated particle
trajectories depend only on the structure of the porous material and the particle prop-

erties. The influence of other particles in the system is taken into account only by the

YROBERT GUTTEL & THOMAS TUREK. Energy Technol., 4: 44-54, 2016.
01 CHEN et al. Chem. Eng. J., 349: 428-437, 2018.

ITIAN YIN et al. J. Mater. Chem. A, 6: 8441-8448,2018.

2RAVI SHARMA et al. Chem. Eng. J., 381: 122512, 2020.
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Stokes-Einstein relation

Thus, the above algorithms, which serially simulate a number of particles, were paral-
lelized by having several processors share this number of particles. For this purpose, the
so-called master-slave principle was used, i.e. there is one processor (the master) which
distributes the work to the other processors and collects the results. Each slave processor
takes over the simulation of the flight of a particle. The master is notified by the slave
when the simulation is complete and hands over the next particle to the slave for simula-
tion. This ensures that none of the processors used is idle by having to wait for another
processor to do its work. The speed gain from this approach is proportional to the number
of processors used minus the master. The MPI (Message Passing Interface) programming

tool was used to implement this algorithm.

One of the priorities of this study is to use in-house or open-source software. Open-
source tools are used to generate random sphere packings (i.e. porous media) as well as to
calculate external fields such as electric and velocity fields and to compute mass transport
via a continuum model, which constitutes an alternative approach to the particle-based

models mainly used in the mass transport calculations carried out.

The main objective of this work is to address the above described issues using particle-
based stochastic methods, which can be synthesized in the following overarching scien-
tific question: How are the structure formation and transport properties of nanoparticu-
late, nanoporous media affected by changes in pore size, external and pairwise interac-

tions?

The structure formation and transport properties of nanoparticulate clusters produced by
evaporation of aerosols has been studied by several authors!42° Nevertheless, the inter-
actions considered in the numerical models of this work differ from previous works in
that, for example, long-range interactions such as electrostatic forces and hydrodynamic
interactions (HIs), i.e., forces resulting from momentum transfer between NPs through
the solvent, are often not considered in numerical models due to the dramatic increase in

computational complexity that they imply.

The above question is approached by studying the effect of confinement and pore size on

mass transport, as well as the effect of pairwise electric interactions (i.e. electric forces)

I3A. EINSTEIN. Ann. d. Phys., 322: 549-560, 1905.

M. MEZHERICHER et al. Chem. Eng. Sci., 66: 884-896, 2011.

ISMICHAEL P. HOWARD et al. J. Chem. Phys., 149: 094901, 2018.

16K ATARZYNA JABELCZYNSKA et al. Adv. Powder Technol., 29: 3542-3551, 2018.
I7SABRINA ZELLMER et al. ACS Nano, 9: 10749-10757, 2015.

8 THOMAS BREINLINGER et al. J. Am. Ceram. Soc., 98: 1778-1786, 2015.
1“THOMAS BREINLINGER et al. Powder Technol., 283: 1-8, 2015.

20WENDONG LIU et al. ACS Nano, 13: 4972-4979, 2019.



and an external electric field on the formation of nanoparticulate, nanoporous media as

follows

* Publication 1: Confinement effect on the mass transport properties and porous

structure of porous media.

* Publication 2: Hindering effect of pore size on the mass transport properties of

porous media.

* Publication 3: Effect of electric forces on the formation of nanoparticulate, nanoporous

clusters via spray-drying.

* Publication 4: Effect of an external electric field on the formation of nanoparticu-

late, nanoporous clusters via electro deposition.

Here, Brownian dynamics (BD) are used to model mass transport within the pore net-
work of a particulate cluster. The model is presented in the first publication, where the
confinement effect on the packing process of a cluster is also addressed. Based on the
presented BD approach, a novel model to capture the hindering effect of narrow pores on
the mass transport within nano-pores is presented in the second publication. The knowl-
edge gathered in the first and second publications are the basis for the proposed formation
mechanism of nanoparticulate spray-dried clusters, presented in Chapter 5. The forma-
tion of nanoparticulate clusters is a complex process that involves a variety of packing
mechanisms resulting in structured or unstructured arrays. In this work, it will be shown
that by adding metallic salts during the cluster formation, the pore size of a nanoparticu-
late cluster can be adjusted. This effect on the pore size is caused by both mass transport,
which is affected by hindered diffusion, and by the formation/crystallization of the added
salt within the pores of the cluster. For this Chapter the more complex model, namely
Fast Lubrication dynamics, is used in order to consider hydrodynamic interactions and
electrostatic (DLVO) interactions between the NPs. A further method for the formation
of nanoparticulate clusters using Langevin dynamics with an external electrostatic field is

presented in the third publication.
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1.1 Publication 1: Confinement effect on the mass transport
properties and porous structure of porous media

There are different types of external fields that can affect the motion of nanoparticles,
e.g. shear flow, electric, laser-optical and magnetic fields as well as confinement. In
this publication titled Numerical study of dispersive mass transport in homogeneous and
heterogeneous porous media?' the influence of confinement on the porous structure and
mass transport properties of porous media is addressed. In addition, the performance of a
particle-based stochastic approach, in this case Brownian dynamics, is compared to that
of a continuum approach, namely the method of volume averaging. See graphical abstract
in Fig. 1.1 and Chapter 3. One of the highlights and

Contribution as main author Writing, literature research and numerical calcula-

tions.

1.2 Publication 2: Hindering effect of pore size on the mass
transport properties of porous media

In this publication titled Mass transport in porous media at the micro- and nanoscale:
A novel method to model hindered diffusion?* the hindering effect of pore size on the
diffusivity in the pore structure of porous media. This effect arises from the pairwise
interaction between the diffusing molecules and the wall atoms of the porous medium.

See graphical abstract in Fig. 1.2 and Chapter 4.

Contribution as main author Writing, literature research and numerical calcula-

tions.

2IHECTOR RUSINQUE et al. Comm. Compu. Inf. Sci., 1199: 104-121, 2020.
22HECTOR RUSINQUE & GUNTHER BRENNER. Microporous Mesoporous Mater., 280: 157-165, 2019.
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Figure 1.1: Graphical abstract of publication 1. (a) Porosity profile of a heterogeneous
random sphere-packing along the vertical axis. (b) Projection of the particle-center coor-
dinates on the plane perpendicular to the flow. (c) Streamlines through the sphere packing
near the top and bottom confining walls as well as in the center of the packing. (d) Green-
highlighted hexagonal configurations induced by the confining walls.
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OSolute molecule

@ Wall atom
f Hindrance to diffusion

Figure 1.2: Graphical abstract of publication 2. (a) Nanoparticulate cluster. (b),(c),(d)
Molecules with different sizes diffusing in individual pores and random walks of these
molecules. (e) Schematic representation of the pairwise interactions between a diffusing
molecule and the wall atoms hindering diffusion.
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Figure 1.3: Graphical abstract of publication 3. Bulk structure of nanoparticulate clusters
at two different solid volume fractions, ® = 0.30 and ® = 0.45 and three different electric
surface potentials ¢p o = 115mV, ¢y, = 50 mV and 9o = O0mV.
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12

b Bl e T

Figure 1.4: Graphical abstract of publication 4. (a) Nanoparticulate cluster (b) Schematic
representation of the charged particles, the deposit and the electrodes of the deposition
chamber. (c) Random walks of the charged particles. (d) Deposit pattern on the lower
electrode (substrate).
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1.3 Publication 3: Effect of electric forces on the formation of
nanoparticulate, nanoporous clusters via spray-drying

In this Chapter titled the mechanism of formation of nanoparticulate clusters via spray-
drying is presented and discussed. Further, confinement effects and pore-size hindering
effects are also discussed. Here, the focus of the numerical calculations is on the effect
of the pairwise electric interactions on the bulk structure of the clusters, which dominates
the global structure of the clusters produced in the experiments. See graphical abstract in
Fig. 1.3.

Contribution as main author Main writer, literature research, numerical calcula-
tions and interpretation of the experiments. The experiments were conducted mainly by
Aurina Martinez-Arias at the Institute of Particle Technology at the TU Clausthal. Further
co-authors are Juliana Rivas-Botero who conducted the particle size characterization us-
ing DLS and professor Alfred Weber from the Institute of Particle Technology, as well as
professor Gunther Brenner from the Institute of Applied Mechanics, who as supervisors

supported me by giving advice and observations.

1.4 Publication 4: Effect of an external electric field on the
formation of nanoparticulate, nanoporous clusters via
electro deposition

In this publication titled Numerical study of the controlled electrodeposition of charged
nanoparticles in an electric field?® the effect of an external electric field on the formation

of nanoparticulate clusters is studied. See graphical abstract in Fig. 1.4 and Chapter 6.

Contribution as main author Writing, literature research and numerical calcula-

tions.

As mentioned above, the papers published in the context of this work are presented in the

following chapters, with a final chapter devoted to a final discussion.

BHECTOR RUSINQUE et al. J. Aerosol Sci., 129: 28-39, 2018.






2 Theory and Methods

2.1 Fundamentals of diffusion

2.1.1 Transport diffusion and self-diffusion

In principle, a distinction can be made between two diffusion phenomena: Transport dif-
fusion and self-diffusion. Transport diffusion results phenomenologically from a concen-
tration gradient of particles in a system, while self-diffusion results from the permanent
change of microdynamic interactions of particles uniformly distributed in a system: ther-

mal or Brownian motion.

Quantitatively, the process of self-diffusion is observable either by measuring the local
change of a small amount of labeled particles in the total aggregate of all particles or by
observing the local change of all individual particles in a defined time interval and sub-
sequently calculating the mean square of displacement of these particles. In the process
of self-diffusion, no macroscopic concentration gradient is needed. The 1st Fick’s law

provides the fundamental definition of diffusion

0Cy
00 837@ )

Jai=—D 2.1
where J, ; represents the diffusion flux of component A in the direction %, D, the diffu-
sion coefficient and the last term of this equation symbolizes the concentration gradient of
the component A with respect to the coordinate x;. Although the concentration gradient is
responsible for the diffusion taking place in a system, the thermal (Brownian) force acting
on a given diffusing particle (e.g. a solute molecule of A) from a thermodynamic point of
view is the gradient of the chemical potential j; with respect to a spatial coordinate z;,°
for low concentrations of A (i.e. activity coefficient equals 1) it applies
FP o ou - 0
o0x; 0x;

kp and T are the Boltzmann constant and the absolute temperature, respectively.

(ksTInCl), (2.2)

Alternatively to this thermodynamic and deterministic approach, a stochastic model of

the thermal force can be used as follows

3A. EINSTEIN. Ann. d. Phys., 322: 549-560, 1905.
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(FF) =0, (2.3)
(FP(0)EP(t)) = 2kgTR;6(t) . (2.4)

The angle brackets indicate an ensemble average and 0(¢) the Dirac delta function. R;;

stands for the hydrodynamic resistance tensor.

In case of free (unbounded) diffusion in an isotropic medium, taken into account the

Einstein’s relationship for the Diffusion coefficient,

kT

Dy = 22 2.5
7 (2.5)

where the scalar/isotropic version of R is known as the (hydrodynamic) drag coefficient.
For low Reynolds numbers, this coefficient is given by the Stoke’s law R = 67nr,, where
7 stands for the viscosity of the unbounded solvent and 7, for the hydrodynamic radius of
the diffusing particle or solute molecule. For this case, one can represent the stochastic

Brownian Force as follows

FP = /2D, Wi(t), (2.6)

which includes Gaussian white noise W;(¢). Numerically, this is realized by generating
for each Cartesian coordinate a normally distributed random number with zero mean p =

0 and variance s? = 124%

As in other methods based on Newtonian N-body dynamics, such as Langevin and Brow-
nian dynamics, the external forces acting on the particles can be distinguished into con-
servative forces F'*' and the interactions with the solvent. The latter are described by the
fluctuation-dissipation theorem, namely the fluctuating Brownian force F'® and its coun-
terpart, the dissipative hydrodynamic force '™, the force exerted on the particle by the

fluid. This results in the following equation of motion for the NPs

du;
dt

m

= F'+ FP + F7, 2.7)
where U; is the particle translational/rotational velocity vector and F'* is a conservative
force arising from interparticle or external potentials.

When the particle Reynolds number is small, the hydrodynamic force exerted on the par-

ticles in a suspension in the absence of bulk shear flow is, i.e. fluid velocity v; = 0

24H G SCHUSTER & WOLFAM JUST. Deferministic Chaos. Wiley, 1994.
2> GIORGIO VOLPE & GIOVANNI VOLPE. Am. J. Phys., 81: 224-230, 2013.
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7

F' = —R,;U; (2.8)

where the hydrodynamic interactions are directly proportional to the particle transla-

tional/rotational velocities U.

In absence of neighbor particles (i.e. in absence of momentum transfer between neighbor
particles via the solvent/medium), the resistance tensor of the medium can be simplified

to reciprocal value of the drag coefficient, so that we obtain the following equation

FH = —6mnr,|U; — vy, (2.9)

where v; 1s the fluid velocity at the center of the particle position.

Depending on the constraints and/or simplifications made to the Eq 2.7, the numerical
approach considered receives different names. If the hydrodynamic forces are simpli-
fied by not considering the hydrodynamic exchange with neighboring particles, then this
approach is called Langevin dynamics (LD), see Chapter 6. If to this simplification/con-
straint the inertial term (on the left hand of the equation) can be neglected, then it is given
the name of Brownian dynamics (BD), see Chapters 3 & 4. This is very often the case for
Brownian particles moving on a relatively long time scale, e.g. colloids in time scales of

practical experiments, i.e. ¢ > 1 s, see Chapter 6.

In the case where hydrodynamic interactions with neighboring particles are considered,
Stoksean dynamics (SD) is used. For this case, simplified/accelerated approaches have
been developed, such as accelerated Stoksean dynamics (ASD) or Fast Lubrication dy-
namics (FLD), see Chapter 5.

In this work, various external fields like the velocity field v; or electric field F' are cal-
culated to be given as input for the particle transport simulations: i.e. the Brownian or
Langevin dynamics solvers, which describe the effective mass transport of a particle en-
semble on a pore scale. These fields are determined using different methods, e.g. by
numerically solving the Navier-Stokes equations or the Boltzmann equation for the flow
and by solving the Poisson equation for the electric field. Since the theory behind the
methods for determining the external fields is not described in detail in the studies pub-
lished in the framework of this dissertation, the theoretical support for these topics is

presented.
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2.2 External fields: Velocity field
2.2.1 Liouville’s equation

There is a system consisting of N particles. Each of these particles has m degrees
of freedom, i.e. each has m location and momentum coordinates. Each particle (the
k-th particle) can be defined by general position and momentum coordinates xgk) =
(xgk),xgk),...,x,gj)> or pgk) = (pgk),pgk),...,pgf)> with £ = 1,2,..., N. The N parti-
cle system can be understood as a point with 2n = 2m N coordinates of this hyperspace

(higher dimensional space), called phase space, at any time2°

The N-particle distribution density f*¥) in phase space can be used to characterize an
ensemble, i.e. the totality of quantum states of the physical N particle system. The
N particle distribution density determines the probability f®)(z;, p;)d"z - d"p that the

system is located in the infinitesimal volume element of the phase space d"x - d"p?¢
According to Liouville’s theorem any volume element of this phase space
dp =d"z - d"p = deydas...dx, - dpidps...dp, = d:L’Z(-l)d:L’Z(-Q)...deN) . dpgl)dpz(?)...dpgm,

is conserved over time. Due to this incompressibility, the distribution density along a
trajectory remains constant and, analogous to the continuity equation for incompressible

d
flow &p(t, z;(t)) = 0, their total differential disappears, this can be represented with

index notation by?%?’

d

= M (¢, 24(t), pi(t)) =

N P rofN de 9™ dn.
o1 [af o O ) 0

=1

If the redundant sum characters in the index notation are omitted and the corresponding

dz; dp; L .
variables are replaced by p; = mu;, d—i = u; bzw. Pi _ F;, the Liouville equation is
reduced to ) ) o

0 0 F, 0
f—+ui-f— — - / =0. (2.11)
ot ox; m  Ou,;

2.2.2 Boltzmann equation

The system of equations of the Liouville equation consists of a gigantic number of vari-
ables in the order of Avogadro’s constant. Consequently, a numerical solution of the
Liouville equation is impractical at the current state of the art?’ Various approaches can

be used to simplify the Liouville equation, including the linear response function and

26G. CHEN. MIT-Pappalardo Seri. Mech. Eng., Oxford University Press, 2005.
27S. HARRIS. Dover Books on Physics, Dover Publications, 2012.
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the Boltzmann equation?® A simplification of the latter is applied in the context of this

work.

In Boltzmann’s transport equation, the 2n-dimensional phase space is reduced to six di-
mensions by introducing a one-particle distribution function by averaging the N-particle

distribution function over the remaining (N — 1) particles in the system?°

N!

After determining the averaged single particle distribution density, the Liouville equation
can be averaged over the spatial and momentum coordinates of the remaining (N — 1)
particles. After averaging, the Boltzmann equation is obtained with f(1) = f 428

of L of dwi  Of dpi _ <0f)
Stoss

ot Tom @t Top, ar \ot

(2.13)

If one sets the equation as a function of location and velocity coordinates, the following

0 0 F, 0 _(Of
(it ot aw) 1= (5o 1

Here the left side of the equation is the total differential of f with particle mass m, particle

equation results

velocity u; and external force F; consisting of the accumulation, transport and field terms,

ot

collisions of the individual particles. A rigorous treatment of the collision integral consists

respectively, while (—f is the scattering or collision integral which detects the
Stoss

in the use of the Boltzmann collision term (Stosszahlansatz).

The Stosszahlansatz is a multidimensional integral in which f is non-linearly related

(%{) = —/'“/f(f, @) f(T, da, YW (U, 04 — @, @) T Puad*
Stoss

+ / - / F@ @ O (T, @ OW (T iy — @, @) T Paada . (2.15)

Here, the first term on the right-hand side represents the transition rate of the particles that
change from quantum states , @4 to u*, @ when they collide. The second term stands

for the transition rate of the particles into the quantum states u, i 4.

The transition rate W can be determined using the Fermis Golden Rule from quantum
mechanical perturbation theory. It is assumed that at any given time the number of parti-
cles with velocities before the impact (i, @4 and afterwards «*, @*) is uncorrelated. This
is known as the assumption of molecular chaos. In addition, it is assumed that the mean
free path length of the particles is large, i.e. that the volume fraction of the gas particles is

so small that only two collisions can be considered. One of the properties of the transition

*A. A. MOHAMAD. , Springer—Verlag London, 2011.
SDIETER HANEL. , Springer—Verlag Berlin Heidelberg, 2004.
2M.C. SUKOP & D.T. THORNE. , Springer Berlin Heidelberg, 2010.
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rate includes the interchangeability of the particles, from which the above equation can

be reduced to>2°

(@_f) _ /.../W(ﬁ, i — @ @) (F, 0,0 (T, a t)
at Stoss
@O T )Y P adT

However, the solution of the Stosszahlansatz is too complex, which is why the relaxation

(2.16)

time approximation is usually used instead

of IO
(E) Stoss T T ’ (217)

where 7 stands for the relaxation time and f°? for the equilibrium distribution, which in
the case of molecules can be described by the Maxwell distribution ™%, It gives the
probability density that the energy carriers (the molecules) at an absolute temperature 7’
have an energy level £>%
—E
ME) = Ae(ksT> , (2.18)

where kg stands for the Boltzmann constant.
Monoatomic gases can only store energy in the form of kinetic energy and have 3 degrees
of freedom (translation velocities) u,, u, and u.. From this follows
1/2m(u? + u? 4 u2)
kgT '

M (u;) = Aexp (— (2.19)

Here m is the mass of a molecule.

To calculate the factor A the distribution density f™" is normalized.

/ / / M (ug)dupduydu, = 1. (2.20)
0 0 O

If spherical coordinates are used, the following equation is obtained

0o 2w w

///fMW(ui)ufsin(H)dgodOdui:1, (2.21)
00 0

/ 4rru? M (uy)duy = 1, (2.22)
0
kT \ 0 A m \*?
A=125 A= : 2.2
( m ) orkpT (2:23)

If the mean velocity of the particles v; is not zero, the Maxwell distribution shifts by
this mean value. Multiplying the distribution given by the equation 2.18 with the particle
density n = N/V (the ratio of particle number to volume) and replacing the specific gas
constant Ry, = kp/m (from R = Nukg, M = Nym or R, = R/M, where R, Ny
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and M stand for the universal gas constant, the Avogadro number and the molar mass

respectively), the equilibrium distribution>?® is obtained
2
Ay ) = (i —w)” 2.24
) = e ™" err ) (224

In the literature one can find different variants of the relaxation time approximation, where
the relaxation of the system into equilibrium takes place in one or more steps (relaxation
times). Different relaxation parameters are used for each moment of the distribution func-
tion. In addition, the equilibrium distribution depends on the type of energy carriers, e.g.
phonons (elementary excitations of the elastic field) and electrons can be described by the

Bose-Einstein or Fermi-Dirac distributions?®

The Boltzmann equation’
* applies to general non-equilibrium processes,
* describes gas dynamic flow processes,

* applies from the continuum range with Knudsen numbers Kn < 1 to the free

molecular flow with Kn > 1.

e Their moments lead to the conservation equations for mass, momentum and energy

of a frictionless and heat conduction-free flow (Euler equations).

* For small deviations from the thermodynamic equilibrium the Navier-Stokes equa-

tions can be obtained with the help of the Chapman-Enskog development?

* Using the Boltzmann H-theorem, the Maxwell distribution can be derived and the

entropy defined?

2.2.3 Lattice Boltzmann Method

The Lattice Boltzmann method (LBM) can be seen both as a further development of the
Lattice Gas methods and as a direct discretization of the Boltzmann equation. In the
following, the Boltzmann equation (2.14) is introduced with the relaxation time approxi-
mation of the collision integral (2.17) while neglecting the field term (no external forces).
First, the phase space of the equation is discretized by introducing discrete velocity vec-
tors and then the equilibrium distribution 2.24 is discretized by Taylor series expansion of
the Maxwell distribution?%2

Discretization of the velocity space u; via the index «

afa afa _ fOl _foecq _
IR ol —, a=01,..,N—1. (2.25)

D. ARUMUGA PERUMAL & ANOOP K. DASS. Alex. Eng. J., 54: 955 -971, 2015.
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Figure 2.1: Velocity directions of a fluid cell in the D3Q19 model

Here f(z;,u; t) changes to f(x;,u;in,t) = fo(z;,t). While nine discrete velocities
(D2Q9 model) are usually used for LBM calculations of two-dimensional flows, both 15
and 19 discrete velocities (D3Q15/D3Q19 model) are often used for three-dimensional
flows. In this work, the D3Q19 model is used (see Fig. 2.1).

Discretization of the equilibrium distribution 2.24 by Taylor series expansion

(2.26)

fS(n,u;) = win {1 + Ui o Vi (ul,avz> U’va} 7

2 4 2
a; 2a; 2a;

with a, = v/2R,T. The normalization factors of the Maxwell distribution are combined
into a direction-dependent weighting factor w;. For the correct representation of the hy-
drodynamic behavior, the second-order term of the Taylor series must be taken into ac-
count. Nevertheless, the discrete Maxwell distribution should only be used for relatively

low flow velocities (Low Mach Number Approximation)?

To solve the system of partial differential equations, the LBM can be interpreted as two

successive steps: The collision step

folzit + At) = folx,t) + u , (2.27)

T

and the propagation step
folxi +u oAt t + At) = fo(x;, t + At). (2.28)
Initial and boundary conditions

Due to their intrinsic kinetic nature, the boundary conditions of the Lattice-Boltzmann

method cannot be directly compared with those of the macroscopic approaches? For this
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purpose, suitable microscopic observations must be applied which, on a macroscopic
level, reproduce the corresponding behaviour of Dirichlet or Neumann boundary con-

ditions.

Since the distribution functions in the complex porous geometry are a priori unknown, in
the present work each fluid cell of the three-dimensional lattice is initialized in the state of
equilibrium at zero velocity. Periodic boundary conditions are set at inlet and outlet edges
and the flow is driven by a force field (no pressure gradient) acting only in the direction of
flow. The density, viscosity and magnitude of the external force are specified taking into

account the physical and numerical limitations®*>

The realisation of the no-slip condition can be achieved in the simplest case with the help
of the so-called bounce-back rule. Here, the distribution function penetrating a cell de-
fined as a solid is reflected in the next time step with opposite direction and thus returned
to the origin node of the fluid cell. Extrapolation and interpolation-based variants of the
bounce-back rule are available in the literature}> which provide a better representation
of the collisions with the walls. In contrast to the simple bounce-back rule, these do not
guarantee complete mass conservation. For the simulations in this study only the simple

bounce-back rule was used?

2.2.4 Calculation of macroscopic quantities

The moments of the distribution function lead to macroscopic quantities as follows

+o00
plx;,t) = /// (u;)" f(xi,u;, t)du; ,  density as zero moment, (2.29)

+o0
px;, vi(z;,t) = /// (u;)" f(x;,u;,t)du; ,  momentum as first moment.  (2.30)

In the case of discrete distribution functions, the macroscopic quantities are given by

px;,t) = Z (u;)° fla, ui, t) | (2.31)

[0}

plx;, v (z;,t) = Z (ui)" f (@, uit) . (2.32)

«

2.2.5 NavierStokes equations

The Navier-Stokes equations (NSE) are the base for second method used in this work to

compute the bulk flow, specifically in Chapter 32! In this approach, fluids are treated as

2IHECTOR RUSINQUE et al. Comm. Compu. Inf. Sci., 1199: 104-121, 2020.
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a continuum, i.e. when the Knudsen number is significantly less than one (Kn < 1),
which is fulfilled in practice when the mean free path length is significantly shorter than

the characteristic length of the system.

The flow of Newtonian fluids and gases at a continuum level is described using the NSE

with specified initial and boundary conditions

0 d(pu; . .
9P 9puwi) _ 0, continuity equation, (2.33)
8pui N apuiuj _ ok 8Uij

R T

momentum equation. (2.34)

The splitting of the stress tensor consists of normal stresses caused by pressure forces and

shear stresses induced by viscous, frictional forces, as follows
Oij = —Poij + Tij , (2.35)

The momentum equation in differential form for the components 1, x5 and z3 is

Opu;  Opuu; dp 0,
= pk; — — .
A T G PR

(2.36)

It is considered here that a pressure p acts on a fluid of density p and that fluid layers
located next to each other exert a dissipative force on each other during relative movement,
the amount of which is proportional to the viscosity . The contributions of other external
inertial forces are summarized under k;. Thus, an incompressible flow is completely
described by a partial differential equation system with two equations for the two variables
velocity u; and pressure p as a function of position and time.

The flow is incompressible if the density p remains constant along a trajectory. Gravity g;

can be assumed as the only external inertial force. From this follows

d ou; . .
Ep(t, z;i(t)) = 0= azi =0, continuity equation, (2.37)
Ju; u; 0 0, .
P < 81; + ula—j;> = pg; — a—i + 83:7% , momentum equation. (2.38)

2.3 External fields: Electric field

Microscopic Maxwell’s equations

The microscopic Maxwell’s equations link the electric field strength E and the magnetic
flux density B with the charge density p (charge per volume) and the electric current

density J (current per area, across which the charges of the electric current flow).
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Gauss’s law
v-E=2. (2.39)

€0

Physical implications: Electric field lines diverge from each other at positive electric
charges and converge to negative charges, i.e. negative charges are sources of the electric

field, while positive charges act as sinks of the electric field.

Gauss’s law for magnetism
V-B=0. (2.40)

Physical impications: Magnetic field lines do not diverge, i.e. they have no sources; no

magnetic monopoles exist.

Faraday’s law of induction and extended Ampére’s law

0B
E=— 241
V x TR (2.41)
E

Physical implications: Electric and magnetic fields are generated by moving electric
charges; changes in the magnetic field induce a vortex of the electric field (see Eqn. 2.41);
changes in the electric field generate vortex of magnetic field (see Eqn. 2.42); the electric

and magnetic fields induce forces on electric charges.

Electrostatic force

The electromagnetic force, known after the Dutch mathematician and physicist Hendrik
Antoon Lorentz as Lorentz force, is the force that a particle of charge ¢ experiences in
a magnetic or electric field. A magnetic field exerts force on moving charges , while an

electric field acts equally on moving and stationary charges.

F=gqE+qvxB. (2.43)

Here, the charged particle moves with a velocity v; the electromagnetic force can be
seen as the resulting force of two forces: a magnetic force gv x B, and an electric force
qE. The latter is also known as Coulomb force when the magnetic contribution to the
Lorentz force is neglected. For the magnetic force to be negligible, the charges must be
stationary in relation to each other; for slow movements the influence of the magnetic
force is minimal and the Coulomb’s law can still be regarded as approximately correct,

but if the charges move faster in relation to each other, then the full electrodynamic laws
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(including the magnetic force) must be taken into account. This consideration is known as
electrostatic approximation. Further, the charges on the particle must have a spherically

symmetric distribution, i.e. they should be isotropic.

F=gqE+q9vxB (2.44)

The electric field can be derived from the electric potential ¢ as follows

E=-Vo (2.45)

From Gauss’s law 2.39, the Poisson’s equation in the electrostatic approximation is ob-

tained as follows

V. E=V.(-Vy) = -V = g, (2.46)
V2o =L (2.47)
€

Solving the Poisson equation boils down to finding the electric potential ¢ for a given

charge distribution p.

2.3.1 Hard-sphere-like colloids

Additional information is provided in order to bring more clarity and theoretical back-
ground to the formation of clusters from colloidal dispersions. Here, we consider the
colloidal particles as hard-sphere-like colloids with parameters similar to those used in
earlier works 330732 The long-time self-diffusivity of colloidal dispersions of hard-sphere-
like particles at different volume fractions is computed and graphically represented in
Fig. 2.2.

Here, we used two established values for ®,,,,,, namely the glass transition and the melting
volume fraction at ®, = 0.58 and @,,, ~ 0.63, respectively >*~ Further, the solid line in
Fig. 2.2 represents the analytical prediction of Brady ** for the long-time self-diffusivity
when the volume fraction approaches the random-close-packing limit, ® — &, < Pycp.
Strictly speaking, the configuration at the melting volume fraction ®,,, corresponds to a
loose rcp-like structure. Although there is no general consensus about the exact value

of ®,, ~ 0.65 for monodisperse hard-sphere packings, one of the conditions imposed

ISMICHAEL P. HOWARD et al. J. Chem. Phys., 149: 094901, 2018.

SPIETER J. IN’T VELD et al. Phys. Rev. E, 79: 10-13, 2009.

3Ip. R. SCHUNK et al. J. Rheol., 56: 353-384, 2012.

32DAN S BOLINTINEANU et al. Comput. Part. Mech., 1: 321-356, 2014.

3JouN F. BRADY. J. Fluid Mech., 272: 109-133, 1994,

34CLARA WEIS et al. Sci. Rep., 6: 1-15, 2016.

3HEATHER M. SHEWAN & JASON R. STOKES. J Non-Newton Fluid, 222: 72-81, 2014.
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Figure 2.2: Relative diffusivity vs. solid fraction. Hard-sphere case, the most studied
case in literature.

to the rcp structure is mechanical stability 337 This fundamental condition is not ful-
filled by a colloidal rcp-like structure or crystal, as they still have vibrational degrees of

freedom 370

From Fig. 2.2, as the colloidal dispersion approaches the freezing volume fraction ®; ~
0.495, the long-time self-diffusivity moves from the upper viscosity curve that diverges
to the glass transition volume fraction ®,, down to the lower curve that diverges at the
melting volume fraction ®,,,, passing through the analytical prediction of Brady. Notice
that at the glass transition volume fraction, the dispersion switches from a solid dispersed
in a continuous liquid phase to a liquid dispersed in a continuous solid phase, meaning that
the mechanical behavior of the system switches from being dominated by viscous regions
to elastic regions >* Thus, the homogeneous dispersion present below the freezing volume
fraction diverges to ®,, whereas the heterogeneous dispersion of NPs and larger rcp-like

clusters that are formed above the freezing volume fraction ®, diverges to ®,,,.

36VASILI BARANAU & ULRICH TALLAREK. Soft Matter, 10: 3826-3841, 2014.
3TVASILI BARANAU et al. Soft Matter, 12: 3991-4006, 2016.

3JORG BAUMGARTL et al. Soft Matter, 4: 2199, 2008.

397HENGDONG CHENG et al. Phys. Rev. Lett., 85: 1460-1463, 2000.

40R. S. PENCIU et al. Europhys. Lett., 58: 699-704, 2002.






3 Confinement effects on mass transport and
packing arrangement

This chapter was published in the form of a full paper in the proceedings of the conference

Simulation Science 2019

Hector Rusinque, Eugenia Barthelmie, & Gunther Brenner (2020).

Numerical study of dispersive mass transport in homogeneous and heterogeneous porous media
Communications in Computer and Information Science

Simulation Science 2019, 1199, 104—-121.

DOI: 10.1007/978-3-030-45718-1_7 .

3.1 Zusammenfassung

Vielfiltige Anwendungen wie z.B. die Ausbreitung eines Schadstoffs in einem Grund-
wasserleiter, der gezielte Wirkstoff-Transport und Lieferung eines Medikaments in ein
gewiinschtes Gewebe sowie die Effizienz einer Chromatographiesidule konnen anhand
mathematischer hochskalierter Modelle abgebildet werden, bei denen die Vorkenntnis von
effektiven materialabhéngigen Modellparametern vorausgesetzt ist. Zur Erfiillung dieser
Voraussetzung ist eine umfassende Charakterisierung der zu untersucheden pordosen Me-
dien unerldsslich. Dies ist in der Regel aufwindig, da die Stofftransporteigenschaften
stark mit der komplexen Porenstruktur des porésen Mediums korrelieren. Als Modell-
parameter wurden mehrere Deskriptoren vorgeschlagen, wie z.B. die hydraulische Tor-
tuositdt in der Kozeny-Carman-Gleichung und die diffusive Tortuositit, deren reziproker
Wert in der deutschen Literatur hdufig als Laberynth-Faktor bezeichnet wird. Zur Er-
mittlung dieser Parameter konnen hochaufgeldste Modelle in Einsatz kommen. Aller-
dings, wenn das pordse Medium eine heterogene Porenstruktur aufweist, dann scheitern
hochaufgeloste Kontinuumsmodelle und empirische Korrelationen daran, den anisotropen
Charakter solcher Medien zu erfassen. Zur Beschreibung von Transportphdnomenen in
pordsen Medien auf der Porenskala stehen mehrere Modelle zur Verfiigung wie zum

Beispiel die Methode der Volumenmittelung (MVA)#—* die Homogenisierung* und die

“ISTEPHEN WHITAKER. The Method of Volume Averaging. volume 13 Theory and Applications of Trans-
port in Porous Media Kluwer Academic Publishers, 1999. 219

“2F.J. VALDES-PARADA & C.G. AGUILAR-MADERA. Chem. Eng. Trans., 24: 1453-1458, 2011.

“SHELEN D. LUGO-MENDEZ et al. Transport Porous Med., 107: 683-716, 2015.

#“ULRICH HORNUNG, editor. Homogenization and Porous Media. volume 6 Interdisciplinary Applied
Mathematics New York: Springer, 1991. 1-279



28 3 Confinement effects on mass transport and packing arrangement

thermodynamisch eingeschriinkte Mittelwertbildungstheorie?® welche von einem Konti-
nuumsmedium ausgehen, sowie partikelbasierte Methoden wie Brownsche Dynamik (BD),
Langevin Dynamik unter anderen?>*¢* In dieser Studie werden die MVA- und BD-
Ansitze zur Modellierung des Stofftransportes im Hohlraum von homogenen bzw. he-
terogenen porosen Materialien eingesetzt. Dabei werden nach Losung der in jedem Ansatz
involvierten Differentialgleichungen effektive Transportparameter bzw. Deskriptoren der
pordsen Struktur aus den gewonnenen porenskaligen Informationen des Mediums be-

stimmt.

In diesem Kapitel werden zunichst die oben genannten Ansétze vorgestellt und ver-
glichen. AnschlieSSend werden heterogene porose Medien betrachtet, wobei der Einfluss
von Winden (d.h. rdumlichen Einschrinkungen) auf die Struktur von eingeschlossenen
Zufallskugelpackungen untersucht wird und wie diese die Massentransporteigenschaften
der pordsen Kugelpackung beeinflussen. Dariiber hinaus wird die hydraulische Tortuo
sitdt berechnet und ihre Aussagekraft als Deskriptor fiir porése Medien mit der der diff-

usiven Tortuositit verglichen.

Wie man im Ergebnissteil zeigen wird, ist in der strukturierten Geometrie des homogenen
Mediums eine deutliche Korrelation der dispersiven Transporteigenschaften der Medien
mit ihren Tortuositits- und effektiven Porositdtswerten zu erkennen, im Gegensatz zum
heterogenen Medium, in dem keine direkte Korrelation zwischen den betrachteten Pa-
rametern besteht. Dies liegt daran, dass es sich bei den verwendeten Deskriptoren um
Effektivwerte handelt, die nicht in der Lage sind, den dispersiven Effekt zu erfassen, der
durch die ausgeprigte Heterogenitit in der mikroskopischen Porenstruktur hervorgerufen
wird. Anstelle von effektiven Parametern wird die Verwendung einer lokalen hydrauli-
schen Tortuositit vorgeschlagen, deren Implementierung zukiinftigen Arbeiten tiberlassen

wird.

Dariiber hinaus wurde im Vergleichsabschnitt der MVA- und BD-Ansitze im Fall ho-
mogener poroser Medien festgestellt, wie der MVA-Ansatz die Brownsche Dynamik
sowohl hinsichtlich der Genauigkeit als auch der Rechenzeit iibertrifft. Daraus wird
geschlussfolgert, dass diese Methode bei der Beschreibung von homogenen Porenstruk-
turen vorteilhaft ist. Wie bereits erwéhnt, ist ein solches Kontinuumsmodell jedoch nicht
in der Lage, die Anisotropie einer heterogenen Porenstruktur (wie z.B. die einer rdumlich

eingeschriankten Zufallskugelpackungen) zu reproduzieren.

BWILLIAM G. GRAY & CASS T. MILLER. Adv. Water Res., 28: 161-180, 2005.

22HECTOR RUSINQUE & GUNTHER BRENNER. Microporous Mesoporous Mater., 280: 157-165, 2019.
4ToBIAS HEIDIG et al. Chem. Ing. Tech., 86: 554-560, 2014.

4TSIARHEI KHIREVICH et al. J. Chromatogr. A, 1217: 4713-4722, 2010.

“BHARUN KOKU et al. J. Chromatogr. A, 1237: 55-63, 2012.
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3.2 Abstract

A modular simulation approach is used to compute the flow of a fluid and the mass trans-
port of tracers in the void space of computer-generated porous packings. Effective trans-
port properties such as the diffusive tortuosity and the dispersion tensor are determined.
First, we present and compare two different approaches to model mass transport in homo-
geneous porous media. Subsequently, heterogeneous porous media are considered, where
we investigate the effect of walls on the structure of confined random sphere packings and
how it affects the mass transport properties of a sphere packing. In addition, the hydraulic
tortuosity is computed and its performance as a descriptor of porous media is compared
with that of the diffusive tortuosity.

3.3 Introduction

A rigorous characterization of porous media is important for the determination of parame-
ters needed in mathematical models that can describe e.g. the spreading of a contaminant
in an aquifer, the successful delivery of a drug in a desired tissue or the efficiency of
a separation process as in column chromatography. Such a characterization is usually
complex, since mass transport properties correlate strongly with the intricate pore struc-
ture of the porous medium. Usually, upscaled models and correlations failed to capture
the anisotropic nature of heterogeneous porous media’® several descriptors have been
proposed such as the hydraulic tortuosity in the Kozeny-Carman equation?*=>* There are
several models capable of describing transport phenomena in porous media such as the
method of volume averaging (MVA) = Brownian dynamics (BD)?>#%*% homogeniza-
tion}* and the thermodynamically constrained averaging theory* In this study, we used
the MVA and BD approaches in order to describe the motion of molecules diffusing in the
void space of homogeneous and heterogeneous porous materials. After solving the differ-
ential equations involved in each approach, effective transport parameters and descriptors
of the porous structure are determined from the obtained information of the system as will

be explained in detail in the modeling section of this work.

Further, both methods are described and compared considering transport in homogeneous
porous media. Finally, wall effects on mass transport are studied. For this purpose, con-
fined sphere packings were computer-generated and their mass transport properties were

obtained using the BD approach.

4YBEHZAD GHANBARIAN et al. Soil Sci. Soc. Am. J., 77: 1461, 2013.

0P, C. CARMAN. Chem. Eng. Res. Des.,75: S32 —S48, 1937.

31J. BEAR. Dynamics of Fluids In Porous Media. v. 1 American Elsevier, 1972.

52CARL FREDRIK BERG. Transport Porous Med., 103: 381-400, 2014.

535S, M.REZAEI NIYA & A. P.S. SELVADURAL. Transport Porous Med., 121: 741-752, 2018.
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3.4 Modeling and numerical approach

We commence by describing the general system with domain € C R? or in some simula-
tion cases 2 C R?. It is considered a rigid porous medium (a solid phase €2,) completely
filled with a fluid phase with domain €2¢. The fluid flows through the porous medium
carrying a solute (passive point-wise species), which in turn moves via diffusion. The

solid phase is assumed impermeable to mass transport.

We combined two simulation steps in both computational approaches (MVA and BD). In
the first step, the velocity field is computed. In the second step, we simulate the mass

transport using the velocity field obtained in the first step, as input.

3.4.1 Computation of the velocity field

We obtained the velocity fields from the numerical solution of the Stokes equation®*>

or
the Boltzmann equation, using the Lattice Boltzman method (LBM)?°>° As all the porous
structures considered are periodic in at least two directions, we used periodic boundary
conditions for the velocity field on the respective boundaries. The no-slip condition for
viscous flow was applied on the walls and solid-fluid interface. A constant external force
was used as driving force inducing the flow. For the LBM, we chose a force so that the
Reynolds number is kept low enough, i.e., Re < 1, to assure creeping flow. Advective
inertial forces are not considered in the Stokes equations per default, resulting in the

following equations

3 a“f —0, 3.1)

— ox;
op i 0%u; ‘

34B.J. KIRBY. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge
University Press, 2010.

SL.G. LEAL. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes.
Cambridge Series in Chemical Engineering Cambridge University Press, 2010.

D. ARUMUGA PERUMAL & ANOOP K. DASS. Alex. Eng. J., 54: 955 -971, 2015.

SSXIAOWEN SHAN. IMA J. Appl. Math., 76: 650-660, 2011.
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We used the open-source computing platform FEniCS>"-® for solving the Stokes equation

and an in-house solver for the LBM?>°-¢!

3.4.2 Computation of the mass transport

The two different approaches presented in this part can be used to simulate mass transport
in porous media. The first approach, the MVA is based on the solution of the volume-
averaged convection-diffusion equation*! ™3 The second approach uses Brownian dynam-

ics and is based on the solution of the Langevin equation for passive tracers24648

Dispersion via the method of volume averaging

Here, we considered the fluid domain €2y with boundary 0€2y = 0€2 4 U0 ;. OS2, stands
for the entrances and exits of the fluid phase, whereas 0€), represents the fluid-solid
interface. For the fluid domain, the microscale convection-diffusion equation for mass

transport of a scalar (i.e., point-wise) species A is given by

3 3

dC 4 dC 4 PCy
—4 A =_N"D .2 in Q .
o +;uzaxi ; gz i Sy (3.3)
3
—Znipmaﬂ =0, at 9Qy, (3.4)
i=1 Oz;
Cy = Cox;,t), on 8, (3.5)
Cx = Co(z;), when t =0 (3.6)

In the above equations, C'4 is the molar concentration of species A, D, the unbounded
diffusion coefficient (or mixture diffusion coefficient in case of a mixture), u; the velocity
field. The subindex ¢ represents the elements of the velocity vector in Cartesian coordi-

nates, €.g. u; = (U, Uy, Uy).

After applying the MVA to the microscopic convection-diffusion equation;’! we obtain the

following upscaled equation for the case of a homogeneous porous medium*!#?

STMARTIN S. ALNZAS et al. ACM T. Math. Software, 40: , 2014.

SSMARTIN S. ALNZES et al. Arch. Num. Software, 3: , 2015.

PX1A0YI HE & L1 SHI LUO. Phys. Rev. E, 55: 6811-6820, 1997.

60S AURO SuCCL. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathemat-
ics and Scientific Computation). Numerical mathematics and scientific computation Oxford University
Press, USA, 2001.

SIDIETER A. WOLF-GLADROW. Lattice-gas cellular automata and lattice Boltzmann models : an intro-
duction. Springer, 2000. 308
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CA K, SO N D A(CL)
) — D* v
with j = 1,2, 3, and dispersion tensor D;
* 1 * ~ 7%

0%,

where @ stands for the spatial deviation of the velocity field, b; is the associated closure

variable and d;; the identity matrix.

Closure variable The closure variable solves the following boundary-value problem

in a representative periodic cell#**

3 3
ob* 0%t
g —7 :E Do—2) —1a,;, in Q .
ul@aji 2 < 000:1:?) uj, in )y 3.9

i=1

with boundary and periodicity conditions for the fluid phase

3 *

b
— ;nZDOOa—xJZ = njDoo, at ans (310)
by + 17) = biaw), k=1,2,3, (3.11)

and following constraint, which is needed for numerical stability and consistency

(5 =o0. (3.12)

This closure problem (Eq. 3.9-3.12) can be interpreted as a transport equation describing
the convective and diffusive transport of the vectorial entity b; with two sources. On the
one hand, we have a convective volume source being the velocity deviation field @. This
source can be negative or positive depending on the deviation of the local velocity with
respect to the average velocity. In fact, its average over the volume of the fluid phase €2
is zero*' On the other hand, we have a diffusive surface source n; D, whose sign depends
on the orientation of the normal vector n;. Similarly, the average value of the surface

source over €1, is zero!

The effective diffusivity ijﬁ and diffusive tortuosity 7;; are defined using the MVA with
the diffusion equation, i.e., Eq. 3.3-3.6 for the case of no convection u; = 0, as follows

(see averaging procedure by Whitaker in*!)
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Dy 1
D?ﬁ = =Dy | 0i; + Q_f /nzb] dA ) (3.13)

GIors

where the closure variable b; is obtained from the boundary-value problem

> 02b,
_ J :
0= ; (Dooa—z?) , in Q (3.14)
3

b
- ZniDm% =n;Dy, at 08y, (3.15)

i=1 !
bi(zy +1%) = bi(xy), k=1,2,3, periodicity. (3.16)

Note that this implies that the diffusive tortuosity only depends on the geometry of the
porous structure. Further, from the definition of the dispersion tensor (Eq. 3.8), one can
conclude that dispersion not only depends on the geometry of the porous medium but also
on the spatial deviation of the velocity. In fact, for high Péclet numbers, the axial compo-
nent of the dispersion tensor (here D,) is strongly dominated by the velocity deviation,
as shown in the results section of this paper. Notice that dispersive transport is not directly
the superposition of convective and diffusive transport but rather the combined dispersive
effect of the spatial deviation of the velocity and diffusion. A simple scenario to illustrate
this phenomenon is a (non-viscous) plug flow where we will not observe any enhance-
ment of the dispersive effect by increasing the Péclet number as the spatial deviation of
the velocity field is zero. In contrast, in case of viscous pipe flow the dispersive effect of
the diffusive transport is combined to that of the deviation of the velocity with respect to

the mean flow velocity. The latter case is known as Taylor dispersion®

As a descriptor for the hydrodynamic dispersion we have to use one that evaluates the
velocity field. The hydraulic tortuosity 7, was used to describe the anisotropy of porous
structures correlating it with e.g. the permeability tensor**=* We have computed the hy-

draulic tortuosity according to the following equation®*64

Th, = gy - (3.17)

In order to solve the closure problems for 0* and b, we extended the FEM-based FEniCS
solver?”® Thus, after computing the velocity and velocity deviation fields (u; and @), the

results are given as input to the b*-solver.

02R. ARIS. P. Roy. Soc. A. Math. Phy. A, 235: 67-77, 1956.
63 A. KOPONEN et al. Phys. Rev. E, 54: 406410, 1996.
% ARTUR DUDA et al. Phys. Rev. E, 84: 036319, 2011.
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Dispersion via Brownian dynamics

We define the equation of motion of a tracer with position z; and velocity v;, which moves

in the fluid phase through the porous network. This is given by the Langevin equation

ov; ou .
mt = /2 kT Wilt) = (v —w) = 5—, i = 1,23, (3.18)

where m is the mass of the tracer, v, is the drag coefficient, and U(z;) the particle in-
teraction potential whose negative gradient —0U /Jz; represents the force induced by the

potential. 7" and kg stand for the temperature and Boltzmann constant, respectively.

The first term on the right side of the equation represents the thermal-driving force whose
stochastic behavior is modeled by Gaussian noise WW;(t), a normally distributed random
number with zero mean p = 0 and variance 02 = 12*? The thermal force accounts for

the effect of the solvent on the tracer.

The second term on the right represents the drag force, which is proportional to the relative

velocity of the particle with respect to the bulk flow (v; — u;).

Here, inertial effects can be neglected since the time scale considered spans from the in-
ertial ballistic regime all the way to the diffusive regime?*% This is supported by the fact
that the average motion of a Brownian particle over time and the average over the parti-
cle ensemble are analogous according to the ergodic hypothesis®®®’ because all effective
quantities computed are an average over the total number of tracers. Furthermore, no in-
teraction potential U is considered since we want to model transport of passive scalars as
in the case of the volume-averaged convection-diffusion equation discussed in the previ-
da;

ous section. Applying these simplifications and the term v; = <7* the equation of motion

can be rewritten to

de;
0=¢mwﬂ%ww—%<$—mo, (3.19)

with initial conditions as follows

x; = Xo,i, when t =0, (3.20)
v; = Vp,;, when t =0, (3.21)

2%H G SCHUSTER & WOLFAM JUST. Deterministic Chaos. Wiley, 1994.

2> GIORGIO VOLPE & GIOVANNI VOLPE. Am. J. Phys., 81: 224-230, 2013.

Z’HECTOR RUSINQUE et al. J. Aerosol Sci., 129: 28-39, 2018.

65 XIN BIAN et al. Soft Matter, 12: 6331-6346, 2016.

L. BOLTZMANN. Vorlesungen iiber Gastheorie (translated into English as "Lectures on Gas Theory". )
Vorlesungen iiber Gastheorie J. A. Barth, 1898.

87W. M. DEEN. AIChE Journal, 33: 1409-1425, 1987.
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where X ; and 1} ; are vectors containing the initial positions and velocities, respectively.
Note that in Brownian dynamics (BD) the temperature can be controlled as with a ther-
mostat, thus approximating the canonical ensemble. The above initial-value problem was
numerically integrated by applying the leapfrog method®® using an in-house C++ code
parallelized with MPI and OpenMP. The velocity field of the bulk flow u; was taken from
the solution of the LBM.

By tracking the position of the particles with the Lagrangian method, one can compute

the mean square displacement (Ax7;(t)) of the particle ensemble

(Axfy(t)) = %Z(x?(t) = {@i())(25 (1) = (2;(1)) (3.22)

where (...) indicates averaging over the tracer ensemble and N is the number of tracer
particles. From its time derivative, the elements of the dispersion tensor D;; can be cal-

culated®’

Dy = (8% (0), (3.23)
Notice that the off-diagonal elements of the dispersion tensor (D;; for ¢ # j) vanish when
the axial and radial axes of the diffusion ellipsoid coincide with the frame of reference of
the diagonal terms of the tensor/® In the present work this is approximately the case, since
the axial axis of the diffusion ellipsoid is predetermined by the selected main direction of

the bulk flow.

In this study, only the transport of passive scalar tracers is considered. Deviations from
scalar transport can be observed, e.g. when the pore size comes too close to the tracer par-
ticle size?>7"! or the tracer shape diverges strongly from a sphere, as well as when pair-

wise interactions between the diffusing particles are strong and cannot be neglected’>"*

3.5 Results and discussion

3.5.1 Mass transport in homogeneous porous media: Comparison of the
MVA and BD approaches

The flow through an arrangement of in-line cylinders is considered (see Fig. 3.1). The

porosity was varied by increasing the cylinder diameter.

8GUIHUA ZHANG & TAMAR SCHLICK. Mol. Phys., 84: 1077-1098, 1995.

%N. HOZE & D. HOLCMAN. bioRxiv, 227090, 2017.

OD.K. JONES. Diffusion MRI. Oxford University Press, 2010.

""PANADDA DECHADILOK & WILLIAM M. DEEN. Ind. Eng. Chem. Res., 45: 6953-6959, 2006.
72ROBERT EVANS et al. Anal. Chem., 90: 3987-3994, 2018.

BJIE X1AO & X1A0 DONG CHEN. AIChE Journal, 60: 2416-2427, 2014,

*PETR DVORAK et al. Mol. Phys., 8976: , 2018.
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As required by the definition of the closure variables b and b* in the MVA, the system
consists of a representative periodic unit cell of the homogeneous porous medium con-
sidered. The relative values of the radial and axial dispersion coefficients with respect
to the free (unbounded) diffusion coefficient (D, /Dy, and D,, /D, respectively) were

determined with increasing Péclet number (ratio of convection to diffusion).

1.0
0.8
0.6
0.4
0.2
0.0

00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0

(a)e =037 (b)e =0.80 (c)e=0.95

Figure 3.1: Periodic unit cell of the in-line cylinder arrangements with a graphic repre-
sentation of the velocity field for three porosity values. The distance in the x and y axes,
and velocities were normalized by the maximal magnitude of the distance and velocity
field, respectively, and are hence dimensionless. € stands for the porosity of the cells

Dispersion regimes

Low Péclet numbers Pe < 1 (i.e., low bulk-flow velocities) this dispersion regime
is controlled by diffusion, as convection is weak here. Thus, in this range, the value of
the dispersion coefficients is determined solely by the geometry of the porous structure,
making the diffusive tortuosity the descriptor par excellence for this region. In fact, the
relative dispersion coefficients, D,, /D and D,, /D, converge to the reciprocal value
of the diffusive tortuosity (7,," and 7,') as the Péclet number (Pe) goes to zero. This can
be clearly seen in Figure 3.3 in comparison to the values of the diffusive tortuosity shown
in Table 3.1. The diagonal components of the tensor of diffusive tortuosity 7;; assume the

same value since the porous medium is i1SOtropic, i.€., Tpy = Tyy-

The diffusive tortuosity is related to the degree of diffusive paths obstructed by obstacles
(the solid boundaries of the pores). For this reason, its reciprocal value is also known in
literature as obstruction factor. In general, the diffusive tortuosity has a hindering effect on
dispersion, i.e., the higher the tortuosity the lower the value of the dispersion coefficient

in this diffusive regime (see Eqn. 3.13).

High Péclet numbers Pe > 1 (i.e., high bulk-flow velocities) Here the axial disper-
sion is dominated by the spatial deviations of the velocity field. Two main dispersion

phenomena can be distinguished that are caused by these spatial deviations. The first is
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due to velocity gradients between the different stream paths along the porous medium
(e.g. trans-column, trans-channel, inter-channel, and Taylor dispersionéz). The second

effect is induced by the splitting of the flow paths and is known as mechanical dispersion.

These phenomena have an enhancing effect on the dispersion coefficients.
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Figure 3.2: Axial dispersion coefficients as a function of the Péclet number in the in-line
cylinder arrangements considered.
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Figure 3.3: Radial dispersion coefficients as a function of the Péclet number in the in-line
cylinder arrangements considered (see legend in Figure 3.2).

Since the velocity field is the determining parameter in this hydrodynamic regime, we
will try to establish a connection between the dispersion coefficient and the hydraulic

tortuosity in the next section.

Diffusive vs. hydraulic tortuosity

The diffusive and hydraulic tortuosity values are shown in Table 3.1. It is observed that an

increase in porosity leads to a higher diffusive tortuosity, which inversely correlates with
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the dispersion coefficient in the diffusive regime (Pe < 1) as explained above. Regarding
the hydrodynamic regime, at Pe > 1, an increase of the hydraulic tortuosity is likewise
observed as the porosity increases. Here, the axial dispersion coefficient increases with
increasing hydraulic tortuosity and increasing porosity. This correlation is so strong that
the order of the axial dispersion coefficients by porosity reverses at about Pe = 1. How-
ever, the sensitivity of the hydraulic tortuosity is very small as can be seen from the fact

that the hydraulic tortuosity decreases only slightly by the increase of porosity.

The radial dispersion coefficient shows a more complex behavior, as the radial velocities
of the bulk flow are significantly lower than the axial velocities. Consequently, at high
Péclet numbers both the spatial deviation of the velocity as well as the diffusion determine

the dispersive transport.

Table 3.1: Selected descriptors of the porous structure of the in-line cylinders. The diffu-
sive tortuosity values presented were computed with the MVA approach.

el | o [ | e ]| 7ol

0.37 | 0.545 1.83 | 1.0196

0.50 | 0.649 1.54 | 1.0192

0.80 | 0.833 1.20 | 1.0189

0.95 | 0.952 1.05 | 1.0143

MVA vs. BD

As shown in Fig. 3.2 and 3.3, the results delivered by both methods are in good agreement
with each other. Only in the case of the radial dispersion at ¢ = 0.37 (see Fig. 3.3) a slight
discrepancy was observed. This might be explained by the fact that the geometry used in
the BD approach shows a higher diffusive tortuosity of 1.88 (as can bee seen in Fig. 3.2
as the Pe number approaches zero), as opposed to the tortuosity value of 1.54 obtained in
the MVA approach. Another explanation may be the slight differences in the geometry of

the system due to the different discretization methods used/related in/to each approach.

Both approaches are able to deal with homogeneous porous media. In terms of computa-
tional performance MVA is significantly faster, since only one set of differential equations
is solved for each calculation of the dispersion coefficient at a given Péclet number. Just
as expected from a deterministic differential equation, MVA always delivers the same
numerical results which are subject to classical numerical errors, e.g. involving the num-
ber of nodes of the mesh. In contrast, when using BD we have to solve the equation of
motion for each particle of the ensemble considered in the calculations. We compute the

trajectories of 10° tracers so that the fluctuations in the solution do not alter the first three
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significant digits of the dispersion coefficient and diffusive tortuosity values. Further-
more, the BD approach can handle mass transport in heterogeneous porous media, since
no representative periodic unit cell is needed. This method is ideal for small systems
where boundary effects cannot be neglected. In addition, when the BD method is used
in combination with the LBM, we get a mesh-free simulation approach, which can be of

great advantage for complex geometries.

3.5.2 Mass transport in heterogeneous porous media: Confinement effects

EB)H/c;: 8 | (c)H/d =10

Figure 3.4: At the top the sphere packings of finite H/d-ratios are shown. Below, char-
acteristic pathlines close to the wall (z ~ 0) and in the middle of the packing (z = H/2)
are plotted for each packing, respectively.

This section outlines the dispersion in heterogeneous porous structures consisting of con-
fined random sphere packings. Confinement effects on mass transport are particularly
important in column chromatography and can be split into two effects. The first one is
directly related to the highly ordered structure present in the immediate vicinity of the
wall, as opposed to the highly disordered configuration present in the bulk of the packing,

known as random close packing (RCP)7° This effect alters the tortuosity of the pathlines

SR. ANDREW SHALLIKER et al. J. Chromatogr. A, 888: 1-12, 2000.
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affecting the mechanical dispersion. The second wall effect emerges from the steep ve-
locity gradient induced by the presence of the wall, which in turn has an enhancing effect
on the hydrodynamic dispersion. This contribution to dispersion is also known as trans-

column dispersion in literature’®

The investigated packings were generated numerically with different ratios of packing
height to sphere diameter H/d (see Fig. 3.4, which takes part of the images published in
the Master thesis by Rusinque 7). The dispersion coefficients at different Péclet numbers
were computed using the BD approach. The packings were generated using the open-
source software RCP provided by Desmond et al’® In contrast to the previous case, here
the effective porosities were set approximately constant at 0.375 £ 0.005. Each diameter
was spatially resolved with 35 lattice cells. The results of the dispersion coefficients are
shown in Fig. 3.5 and 3.6.

Confinement effect

The confinement effect on the arrangement of the spheres can be seen in Fig. 3.4. Here,
as mentioned above, the walls constrain the spheres to a highly ordered arrangement. The
influence of the walls on the structure of the medium is in the range of 4 to 5 sphere diam-
eters’ Outside this region, the characteristic structural disorder of a RCP configuration
prevails. This effect can be seen in the porosity profile along the axis perpendicular to the
walls (here referred to as the z-axis) of the generated packings: the porosity profiles are

supported by the projections of the sphere centers right below each profile in Fig. 3.8.

"SSTEFAN BRUNS et al. J. Chromatogr. A, 1318: 189-197, 2013.

"THECTOR RUSINQUE et al. Skalenauflosende Berechnung der Diffusion und hydrodynamischen Disper-
sion in inhomogenen porosen Medien. Technische Universitit Clausthal, 2016.

KENNETH W. DESMOND & ERIC R. WEEKS. Phys. Rev. E, 80: 051305, 2009.

ROBERT S. MAIER et al. Phys. Fluids, 15: 3795-3815, 2003.
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Figure 3.5: Axial dispersion coefficients as a function of the Péclet number in the sphere
packings considered.
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Figure 3.6: Radial dispersion coefficients as a function of the Péclet number in the sphere
packings considered.

The narrowest packing examined in this study has a height of 6 sphere diameters which
is why the entire packing is characterized by an ordered structure. The case of an un-
confined sphere packing, i.e. H/d — o0, is modeled by introducing periodic boundary
conditions. The porosity profile of the narrowest packing shows pronounced fluctuations
that are regularly spaced along its entire extent in the z-axis (see Fig. 3.8a), whereas the
porosity fluctuations of the periodic packing are smaller and homogeneously distributed,
see Fig. 3.8d.

To illustrate how the difference in structural disorder between these two extreme cases

affects the convective motion of the tracers, we plotted pathlines near the wall at z ~ 0
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and those in the middle of the packing at = = H/2 (see Fig. 3.4 and 3.7). The pathlines
of the periodic packing (H/d — oo) were also graphically depicted in Fig. 3.7e.

The packings with H/d ratios of 8 and 10 have different volume proportions of ordered
and disordered pore regions. The presence of two pore regions with different structures in
the same packing leads to the development of two significantly different flow conditions
in each region, which results in strongly heterogeneous velocity profiles; heterogeneous
not only in terms of magnitude but in the tortuosity of the stream paths along the pore
network. This in turn leads to a strong dispersion of the diffusing tracers, i.e., to large dis-
persion coefficients. Both, the infinitely extended packing and the narrowest packing have
mainly only one characteristic pore region, i.e., a lesser degree of heterogeneity, which
explains their lower dispersion coefficients (see Fig. 3.5 and 3.6). Similar results were
obtained in the experimental work of Bruns et al., 2013, for column chromatography with

varying ratio of the column diameter to the mean particle diameter’®

Diffusive vs. hydraulic tortuosity

Regarding the selected descriptors, the diffusive tortuosity remains approximately con-
stant around 1.4 for all the packings considered, see Table 3.2. This is a direct conse-
quence of the fact that the effective porosity was set as constant. These results show
the strong correlation of the diffusive tortuosity with the effective porosity of the sphere

packings.

Table 3.2: Selected descriptors of the porous structure of the sphere packings. The tortu-
osity values have a standard deviation of 0.03.

H/d [ | 7 [=] | Tao [=] | 7h,[]
6 0.694 | 1.44 |1.2328
8 0.694 | 1.44 |1.2455

10 0.694 1.44 | 1.2486
00 0.685 1.46 | 1.2723

In contrast, the hydraulic tortuosity increases slightly with increasing packing height.
However, as the descriptors are average (effective) values, neither of them is suitable to
capture the contribution of the heterogeneity in the structure to the dispersive mass trans-
port. As opposed to the homogeneous case, where the hydraulic tortuosity directly cor-
relates with the dispersion coefficient, here an indirect correlation between these two pa-
rameters is observed, meaning that the porous structure with the largest value of hydraulic
tortuosity showed the smallest dispersion coefficient, namely the unconfined sphere pack-
ing with H/d — oc.
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From the results it can be deduced that in cases where heterogeneity is strongly pro-
nounced in the structure of a porous medium, effective descriptors are not well suited to
describe the dispersive mass transport in the medium. Instead, a spatial distribution or
a probability distribution of the local hydraulic tortuosity could be used, whose standard
deviation captures the degree of heterogeneity of a porous medium. A spatial distribution
can be achieved by applying Eq. 3.17 to each plane along a selected axis, from which
a tortuosity profile could be represented (analogous to the porosity profiles in Fig. 3.8).
A probability distribution could be attained by calculating the tortuosity and occurrence
of individual pathlines. These pathlines can be obtained e.g. using a particle tracking
method.

According to the results, the degree of heterogeneity of a porous medium governs disper-
sion against the (effective) diffusive and hydraulic tortuosity in confined sphere packings

at high Péclet numbers.

In a qualitative analysis, we can take the values of the narrowest confined packing H/d =
6 and the unconfined packing H/d — oo as characteristic tortuosity values of the wall
and bulk regions of a packing, respectively. Here, the wall region is to be understood as
the region where the ordered configuration induced by the wall is present, whereas the
bulk region is the region in which the RCP configuration is found. So we can express the
hydraulic tortuosity of the larger confined packings as the volume-weighted average of
the characteristic tortuosity values. In this way, the degree of heterogeneity is related to
the volume fractions of each characteristic region, where a volume fraction of one or zero

indicates a homogeneous medium.

3.6 Conclusions

With the presented approaches we were able to determine and discuss the transport prop-
erties of the homogeneous and heterogeneous porous media considered. In the structured
geometry of the homogeneous case, a clear correlation of the dispersive transport proper-
ties of the media with their tortuosity and effective porosity values can be seen, as opposed
to the heterogeneous case, where there is no direct correlation between the considered pa-
rameters. The reason is attributed to the fact that the used descriptors are effective values
not capable of capturing the dispersive effect induced by the degree of heterogeneity in the
microscopic porous structure. Instead of effective parameters, the use of a local hydraulic

tortuosity is proposed, the implementation of which will be left to future work.

In addition, the MVA and BD approaches were compared in the section of homogeneous

porous media. Here, the method of volume average outperformed Brownian dynamics in
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terms of both precision and computational performance.

Acknowledgment: The authors appreciate the support for this project by the North-
German Supercomputing Alliance (HLRN) as well as by the Lower Saxony Ministry
of Science and Culture within the PhD program "Self-organizing multifunctional struc-
tures for adaptive high performance light-weight constructions". The framework of this
coordinated program is the "Campus for Functional Materials and Functional Structures",
an institution of the Clausthal University of Technology (TUC) in collaboration with the
DLR, German Aerospace Center, in Braunschweig, the BAM, Federal Institute for Mate-
rial Testing, in Berlin, and the Technical University of Braunschweig (TU BS).



45

(a) z= H/2, xy top view (b) z = 0, top view

(e) H/d — >

Figure 3.7: (a)—(d) show selected views of the pathlines in the sphere packing with H/d =
6: close to the wall at z = 0 in (b) and (d), and in the middle of the packing at z = H/2
in (a) and (c). Additionally in (e), a portion of the periodic sphere packing and its related
pathlines are presented.
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Figure 3.8: Porosity profiles along the z-axis and projections of the sphere centers on a
plane perpendicular to the walls, also along the z-axis from left to right.
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4 Hindering effect of pore size on mass transport in
porous media

This chapter was published in the form of a full paper in the scientific journal of Microp-

orous and Mesoporous Materials

Hector Rusinque and Gunther Brenner (2019).
Mass transport in porous media at the micro- and nanoscale: A novel method to model hindered diffus
DOI: 10.1016/J.MICROMESO0.2019.01.037 .

4.1 Zusammenfassung

Im vorliegenden Kapitel wird eine Methode zur Beschreibung des Massentransports in
pordsen Medien vorgestellt. Ingenieurwissenschaftliche Ansitze zur Beschreibung des
Massentransports basieren auf MittelwertgroSSen wie dem effektiven Diffusionskoef-
fizienten®® Dieser unterscheidet sich vom (Bulk-)Diffusionskoeffizienten, da er externe
Faktoren beriicksichtigt, welche die Bewegung der diffundierenden Molekiile beeinflussen,
z. B. die sterische Hinderung, die Tortuositit und die durch Konvektion bedingte Disper-

sionsverstiarkung.

Der hier vorgestellte Ansatz basiert auf einer porenskaligen Simulation der Transport-
prozesse, die im Hohlraum eines nanopordsen Materials ablaufen. Dies erfordert eine
rdumliche Auflosung auf der Nanoskala, wo herkdmmliche kontinuumsmechanische CFD-
Modelle versagen konnen.Stattdessen wird die Lattice-Boltzmann-Methode (LBM) ver-
wendet, um Mikro- und Nanostréme zu berechnen?*® LBM ist ein partikelbasierter pro-
babilistischer Ansatz, der eine diskretisierte Form der Boltzmann-Gleichung 16st, d. h.
eine Transportgleichung fiir seine primér zu untersuchende Variable: die Ein-Partikel-
Wahrscheinlichkeitsverteilungsfunktion (PPDF, vom englischen "one-particle probabi-
lity distribution function"). Nach Integration der Transportgleichung iiber den Phasen-
raum wird ein Kollektiv von wechselwirkenden Teilchen rekonstruiert. Dessen zentraler
Term ist der Kollisionsterm, der die vom Modell angewandten Wechselwirkungsregeln
vorgibt, z. B. nur bindre Kollisionen und die Annahme von molekularem Chaos (siche

Kapitel 4.1). In einem nachfolgenden Simulationsschritt wird das aus dem LBM-Solver

80 ALEXANDER BUFE et al. Chem. Ing. Tech., 89: 1385-1390, 2017.
D. ARUMUGA PERUMAL & ANOOP K. DASS. Alex. Eng. J., 54: 955 -971, 2015.
X TAOWEN SHAN. IMA J. Appl. Math., 76: 650-660, 2011.
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gewonnene Geschwindigkeitsfeld (die ortabhingigen Geschwindigkeiten des Losemit-
tels) als Eingabe fiir die Bewegungsgleichung der geldsten Molekiile verwendet. In
fritheren Studien wurden #hnliche Methoden zur Berechnung des Obstruktionsfaktors®!

und der effektiven Diffusivitit in pordsen Medien**8

verwendet, wobei die gelosten
Molekiile auf punktweise skalare Tracer reduziert werden. In diesen Methoden wird
die Wechselwirkung zwischen den diffundierenden Partikeln und der Porenwand durch
spiegelnde oder diffuse Reflexion des Tracers an der Porenwand erfasst. Im Gegen-
satz dazu wird hier nicht nur die Reflexion an der Wand, sondern auch die hinderliche
Wirkung des durch die nahe gelegenen Wandatome induzierten Kraftfeldes auf die Dif-
fusivitit der gelosten Molekiile beriicksichtigt. Dies wird durch ein neuartiges Wandhin-
derungsmodell auf Basis des Lennard-Jones-Potentials fiir den Fall von van-der-Waals-
Wechselwirkungen zwischen gelosten Molekiilen und Wandatomen modelliert, bei denen
keine physikalische Adsorption an den Porenwiinden stattfindet. AnschlieSSend wird die
Validierung des Modells mit Hilfe von experimentellen und numerischen Daten aus der

Literatur erfolgreich durchgefiihrt.

Dartiiber hinaus wird eine Anpassungsfunktion vorgestellt, die zur Abschitzung des Dif-
fusionshinderungsfaktors einer komplexen Geometrie verwendet werden kann, wenn die
PorengroSSenverteilung des porosen Netzwerks bekannt ist. SchlieSSlich wird ein Mul-
tiskalenansatz vorgestellt und mit einem Anwendungsbeispiel illustriert, wobei die Hin-
dernisfaktoren der Mikro- und Nanoskala in den Simulationen des Stofftransports auf der

groSSeren Skala verwendet werden.

4.2 Abstract

Mass transport in liquid-filled pores at the micro- and nanoscale can play an important role
in applications such as membrane separations, chromatography, and catalytic processes.
In this work, we use Brownian dynamics in order to describe the motion of spherical
solute molecules at a pore-scale. The method can be used to calculate effective param-
eters intrinsically related to the porous medium such as the effective diffusivity and the
hindrance factor for diffusion. The latter is calculated using a novel probabilistic model
derived in the present study, which uses the Lennard-Jones potential to reproduce the
hindering effect of the interaction between solute molecules and the wall atoms on the
diffusivity. In addition, we introduce a fitting function that can be used to estimate the
diffusive hindrance factor of a complex geometry when the pore size distribution of the

porous network is known. Finally, a multiscale approach is presented and illustrated with

81STARHEI KHIREVICH et al. J. Chromatogr. A, 1218: 6489-6497, 2011.
4ToBIAS HEIDIG et al. Chem. Ing. Tech., 86: 554-560, 2014.
4TSIARHEI KHIREVICH et al. J. Chromatogr. A, 1217: 4713-4722, 2010.
“BHARUN KOKU et al. J. Chromatogr. A, 1237: 55-63, 2012.
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an application example, whereby the hindrance factors of the micro- and nanoscale are

used in the simulations of the mass transport at the larger scale.

4.3 Introduction

In this study, a method for the quantification of mass transport in porous media is pre-
sented. Engineering approaches to describe mass transport are based on average quan-
tities such as the effective diffusivity®® This differs from the (bulk) diffusion coefficient,
as it captures external factors influencing the motion of the diffusing molecules, e.g. the

steric hindrance, the tortuosity and dispersion enhancement due to convection.

The present approach is based on a pore-scale simulation of the transport processes oc-
curring within the void space of a nanoporous material. This requires a spatial resolution
at the nanoscale, where conventional continuum mechanics models can fail. Instead, the
Lattice Boltzmann Method (LBM) is used to compute micro- and nanoflows?*¢ In a sub-
sequent simulation step, the velocity field obtained from the LBM solver is given as input

to the equation of motion of the particles (the solute molecules).

In previous studies, similar methods were used to calculate the obstruction factor®! and
the effective diffusivity in porous media ¥ whereby the solute molecules are reduced to
pointwise scalar tracers. In these methods, the interaction between the diffusing particles
and the pore wall is captured by specular or diffuse reflection of the tracer from the pore
wall. In contrast, we consider not only the reflection on the wall but also the hindering
effect of the force field induced by the nearby wall atoms on the diffusivity of the solute
molecules. This is simulated by means of a novel wall hindrance model based on the

Lennard-Jones potential.

The diffusivity of a species is related to its molecule size via the Stokes-Einstein equation
Do = kgT/~s. There are several correction factors found in the literature regarding
aspects such as the shape of the solute molecule, degrees of freedom, binding interactions
with the solvent itself, and the effect of the solute concentration, among others’>’* In
this study, only the deviation from unbounded diffusion D, due to the influence of the
wall atoms is considered. This influence also accounts for the steric effects that a soft
spherical molecule experiences when passing through a narrow pore. The hindrance to

diffusion due to particle-wall interactions has been studied mainly for well-defined pore

72ROBERT EVANS et al. Anal. Chem., 90: 3987-3994, 2018.
BJIE X1A0 & X1A0 DONG CHEN. AIChE Journal, 60: 2416-2427, 2014.
*PETR DVORAK et al. Mol. Phys., 8976: , 2018.
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geometries! 8234 as well as for intricate pore networks such as those found in the void

space of packed beds® or biological tissues®® While normally, the hindrance factor for
diffusion is given as a function of the reduced molecule diameter 2r,,/z (the ratio of
the molecule diameter 2r,, to the pore size x), in this work we introduce an additional
parameter, namely the average bond length among the atoms of the solid phase L,,,, which

affects the strength of the particle-wall interactions (see Figure 4.1).

The presented method will be derived and verified by means of experimental data from
literature. Based on this, mass transport within straight cylindrical pores and packed beds
with different pore scales is considered and effective parameters for the description of this

transport phenomenon are discussed.

4.4 Modeling and Numerical Approach
4.4.1 Equation of Motion of a Particle Ensemble: Mass Transport in Pores

There are models that can be used to simulate the mass transport of pointwise passive
scalars in complex geometries, such as the Convection-Diffusion equation®’ and the Ran-
dom Walk Particle Tracking Method*’ However, the behavior of passive scalars can devi-
ate strongly from that of solute molecules. Our objective here is to derive an equation of
motion that can reproduce the steric effects and hindrance to diffusion that an ensemble

of solute molecules experiences in bounded spaces.

A system is considered, which consists of three molecular entities, namely spherical so-
lute molecules and wall atoms, as well as solvent molecules. The wall atoms constitute
a porous medium whose pores are filled with a liquid consisting of the mixture of solute
and solvent molecules. The motion of the solute molecules is induced by their interac-
tions with the other molecular entities and with each other. Here, we assume that the
mean strength of the interactions occurring in the solution is the same between all the
molecules of the mixture, resulting in the long-range solute-solute interactions approxi-
mately canceling each other out (concept of an ideal solution). Furthermore, it is assumed
that the solvent molecules are significantly smaller than the solute molecules, so that the
the interactions between a solute molecule and the solvent can be modeled according to

the fluctuation-dissipation theorem that quantifies the relation between the fluctuations in

7'PANADDA DECHADILOK & WILLIAM M. DEEN. Ind. Eng. Chem. Res., 45: 6953-6959, 2006.

82ROBERT E BECK & JEROME S SCHULTZ. Biochim. Biophys. Acta, 255: 2733, 1972.

83 EUGENE M RENKIN. J. Gen. Physiol., 38: 225-243, 1954,

84M. P. BOHRER et al. Hindered Diffusion of Dextran and Ficoll in Microporous Membranes. volume 17
1984. 1170-1173

85CHARLES N. SATTERFIELD et al. AIChE Journal, 19: 628-635, 1973.

8JADER ALEAN et al. J. Food Eng., 233: 28-39, 2018.

87C.E. BAUKAL et al. Computational Fluid Dynamics in Industrial Combustion. Industrial Combustion
Taylor & Francis, 2000.
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a system at thermal equilibrium and its response to applied perturbations. When a solute
molecule moves through the solvent, it experiences drag, dissipating kinetic energy. The
solvent molecules respond to this perturbation by turning the dissipated energy into ther-
mal motion (the corresponding fluctuation). This phenomenon can be used to describe
diffusion as given by the Einstein relation (the ratio of the thermal driving force to its

counteracting force, the drag)"?

kT
.

D 4.1)

The force induced by thermal motion on the particle can be interpreted as a body force

g_xi ~ —%(lﬁBTlnC),B

where C' stands for the particle concentration. Further, the drag force is proportional

equals to the negative gradient of the chemical potential, —

to the relative velocity of the solute molecule with respect to the bulk flow velocity with
a proportionality factor +, the drag coefficient. For the special case of an unbounded so-
lution, this coefficient can be modeled by the Stoke’s law v, = 67nr;, where n stands
for the viscosity of the unbounded solvent and 7, for the hydrodynamic radius of a solute

molecule.

With the assumption of an isothermal fluid and considering a particle ensemble consisting

of IV solute molecules in an unbounded fluid, this yields for the £-th particle

ov; olnC
= —kpT — . — U, 4.2
m ot k’B 8331 Vs (Uz Uz) ) (4.2)

where U; stands for the bulk flow velocity.

After considering the solute-solute and solute-solvent interactions, the only interaction
left affecting the motion of a given solute molecule is the interaction with the wall atoms
of the porous medium. Here, we assume van der Waals interactions, which can be ap-

proximated using the negative gradient of the Lennard-Jones potential ¢,, 5

[ o 12 o 6
Sow(rw) == 4€sw ( Sw) - ( Sw) s (43)
Tw Tw

where r is the distance between two interacting particles, € is the depth of the potential

well (usually referred to as ’dispersion energy’), and o is the distance at which the particle-
particle potential energy ¢ is zero (often referred to as ’size of the particle’). Let us now
take a look at how the introduction of the wall field affects the other interactions. The
presence of the wall potential changes the chemical environment of the solvent and solute

molecular entities. This change has an effect on the chemical potential gradient as well as

3A. EINSTEIN. Ann. d. Phys., 322: 549-560, 1905.
88 E. JONES. P Roy. Soc. A. Math. Phy. A, 106: 463-477, 1924.
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on the drag exerted by the solvent, both in the radial direction (perpendicular to the wall).
Consequently, v, must be replaced by a general location-dependent ~y. For a finite number

of solute-wall interactions (M},), this leads to the following equation

v dlnC < Dy (19))
M = —kgT Froa v (v; —U;) — ; “om 4.4)

Now, let us define a local diffusion coefficient D)., (7, ) dependent on the distance to the

wall r,,, as follows

kgT
V(rw)’
where 7(r,,) consists of the wall potential-independent drag ~5 and a wall potential-

Dlocal(rw) - ffd(rw>Doo - (45)

dependent term r4(7y,),
V(rw) = Ys/Ka(rw)- (4.6)

In the following, we will call the wall potential-dependent term x4, the local correction

factor for diffusion. From Eq. 4.6, Equation 4.4 can be rearranged to

My,

Ov; dlnC D, (1)
m— s = —hpT—— = 7a/ka (v: = V) - > B (4.7)

J=1

In the present method it is assumed that the solute moelcules do not generate microflows
due to their interactions with the solvent. This can be taken into account by introducing a
further correction factor to the drift term (affecting the bulk flow velocity U;). This factor
is called the lag coefficient «. and is assumed to be dependent only on the hydrodynamic

V6771 . is defined as the ratio

radius r; and the wall-distance r,, (wall potential-dependent
of the perturbed flow velocity to the unperturbed flow velocity evaluated at the particle

center. From Eq. 4.1 and adding the drift correction x., Equation 4.7 rearranges to

mrgDs OVU; D, 0C

M, :
DOO a w J
—’Ui—i‘liCU'— fed 14 (’I“w)‘

k’BT 6t T C &r, ‘ k?BT = GIZ (48)

We now group the individual wall potentials into an integral wall potential @,, affecting

the k-th particle as follows

My
Dy =Y pulrd). (4.9)
j=1

Averaging Procedure By averaging over the particle ensemble, it yields

S7W. M. DEEN. AIChE Journal, 33: 1409-1425, 1987.
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mD
kgT

An instantaneous quantity of a given molecule (e.g. its velocity) can be averaged over a

812@- . Doo oC Doo agpw
<I€d§> = —@<I€da—x> — <U1> + <I€CUZ'> — ij_T<,ida_xl> (410)

(]

particle ensemble at a given instant, or equivalently, over a long time observing the same
particle®*%” Building on this, we can consider an averaging of instantaneous quantities, v
and &, whereby these are decomposed into time-averaged and fluctuating components (a

concept first introduced by Reynolds, 1985% in the continuum mechanics).

(W) + ¢, 4.11)
()W) + (€Y. (4.12)

¢(t7 xl)
<§(t7 xi>¢<t7 1‘1)>

As the location and chemical nature of the wall atoms do not change in time, the force
fields induced by their potentials are time-independent, meaning that the fluctuation com-
ponents of k4 and k. fall to zero. Taking into account these considerations, with average

hindrance factors Ky = (k4) and K, = (k.), Equation 4.10 can be written as

KyDoom O{vy) K %8(0)

kT ot YO ox; (vi) + Kc(Ui) + (Ae), (4.13)
with average correction term
KyDos 0{Pu)
Ae) = — : 4.14
\Be) kgT Oz (4.14)

We introduce this correction term as an error source of the method, since in the simula-
tions we are not directly computing the wall-solute interactions. Instead, their enhancing
effect on the drag coefficient (i.e. their hindering effect on the diffusivity) is modeled
using a probabilistic approach, which is presented in Section 4.4.1. There, we will focus

on deriving a function for the diffusive hindrance factor K.

It is worth noting that the correction term (Ae) is proportional to the sum of all vectors of
the force field induced by the wall potential (&), implying that for symmetric systems
this term falls to zero under the assumption of an isotropic solid phase. This is the case,
for example, when diffusion takes place within a cylindrical pore or around a spherical
obstacle. Furthermore, it should be noticed that by omitting the direct computation of the
wall potential, the information about the distribution of the solute particles with respect

to the wall is now average.

L. BOLTZMANN. Vorlesungen iiber Gastheorie (translated into English as "Lectures on Gas Theory". )
Vorlesungen iiber Gastheorie J. A. Barth, 1898.
890, REYNOLDS. Phil. Trans. A Math. Phys. Eng. Sci., 186: 123-164, 1895.
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Stochastic Equation of Motion: Brownian Dynamics

This section briefly explains how the deterministic equation of motion derived above is

transformed into a stochastic approach as shown by Langevin, 19087°

When a particle ensemble subject to Brownian motion spreads within an unbounded
medium, there is no preferred direction for the random movements of the particles (isotropic
motion). Consequently, the particles will end up homogeneously distributed over the
space after a certain period of time, compensating for all concentration gradients initially
present. The macroscopic manifestation of this microscopic phenomenon can be used to
reproduce diffusion?’ Diffusive mass transport was modeled in the previous section using
the negative gradient of the chemical potential. In the following, we will replace this de-
terministic term with a stochastic one /2rk4D~ W;(t) containing Gaussian white noise
W;(t). The integral of white noise is used to describe Brownian motion. Numerically,
this is realized by generating a normally distributed random number for each Cartesian

coordinate with zero mean z = 0 and variance s> = 12> Thus, from Eq. 4.8, it follows

M, -

mkgDoo OV; KaDoo 0, (1l)

—= = \/2kqDs Wi(t) — v; U — we 4.15
kBT ot i ( ) Vi kBT j=1 axz ( )

Effective Mass Transport of a Particle Ensemble As the force field induced by
the wall is not directly solved, the local gradients of concentration and the local values of
the drag coefficient in the radial direction of a pore are spatially not resolved. Therefore,
only the average forms of x4 and k., the diffusive and convective hindrance factors i
and K, respectively, are physically meaningful for the equation of motion describing the
effective mass transport of a particle ensemble trough a porous medium. Furthermore,
inertial effects are neglected assuming that the average behavior of a solute molecule over
time and the average over the particle ensemble are equivalent, in accordance with the
ergodic hypothesis®%” This inertia-free behavior can also be explained by the time scales
considered, which are assumed to be longer than the characteristic relaxation time of a
Brownian particle?*%> Thus, from Eq. 4.15, the following simplified equation of motion

for the k-th diffusing particle is obtained

0 = /2K4Do Wi(t) — v; + KU, (4.16)

YDON S. LEMONS & ANTHONY GYTHIEL. Am. J. Phys., 65: 1079-1081, 1997.
2H G SCHUSTER & WOLFAM JUST. Deterministic Chaos. Wiley, 1994.

2> GIORGIO VOLPE & GIOVANNI VOLPE. Am. J. Phys., 81: 224-230, 2013.
BHECTOR RUSINQUE et al. J. Aerosol Sci., 129: 28-39, 2018.

55X N BIAN et al. Soft Matter, 12: 6331-6346, 2016.
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This Lagrangian approach allows us, for example, to obtain the effective diffusivity of the
medium by computing the mean square displacement (Ax?(¢)) of the particle ensemble

and its time derivative

(A(0) = 5 D0 (0) — (@) @17
Degr; = %%m?(t». (4.18)

Wall Hindrance Model: A Probabilistic Approach

When modeling mass transport in a porous medium without spatially resolving the pores,
the solid fraction (1 — ¢) can be thought of as a hindrance (the probability that diffusion
does not occur), while the void fraction ¢ is the probability of diffusion taking place
and can be introduced as a correction factor® Another example is the obstruction factor
K., or its reciprocal, the tortuosity. Here, the sum of the obstruction factor, considered
as probability, with its complementary probability (1 — K) corresponds to all possible
roads or paths that a random walker can take to travel from point A to point B in free
space. By placing obstacles between the two points, a fraction of these paths is blocked.
Consequently, diffusion cannot take place along these paths. The obstruction factor K.
indicates the fraction of free paths left. Thus, diffusion will only take place when at a
given location the events of finding void space ¢ and a free path K. occur simultaneously.
In other words, the probability of diffusion taking place is given by the product of the
probabilities € and K, so that the total correction factor to diffusion is equal to Kiota =

e K .39 if no further hindrance to diffusion is to be considered.

In general, a given hindrance to diffusion P4 ; and its associated correction factor Py o
can be viewed as complementary probabilities or events, so that Py + P40 = 1. If
a further hindrance to diffusion Pp; occurs simultaneously to P, ;, the probability of
diffusion taking place is given by the product of the probabilities (1 — P4 ;)(1 — Pg ).
Building on this consideration, the fundamental idea behind the wall hindrance model is
that there may be a hindrance probability to diffusion f; induced by a wall atom (j) at
a location z; (location-dependent), so that its complementary probability, the correction
factor, is equal to

kj =1—f;. (4.19)

Furthermore, the probability of diffusion taking place at the same location x; when being
hindered by the wall atoms A, B and C, simultaneously, is equal to the product of the
probabilities given by
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a Solute molecule
@ Wall atom
f Wall hindrance

Cylindrical pore

Figure 4.1: Discretization of the pore walls at the atomic level to calculate the interactions
between wall atoms and solute molecules, where 7., is the cutoff radius above which the
interactions are neglected and L., represents the average bond length between a pair of
wall atoms. The chaotic lines within the cylindrical pore represent computed trajectories
(random walks) of selected particles.

ko= (1= fa)(1 = f5)(1 = fo). (4.20)

This results in the following equation for the diffusive hindrance factor of the particle

ensemble

1 N N My 1 N My
—NZKZ ZH 1-fh= NZH/@?. 4.21)
k=1 k: j=1 k=1 j=1

Numerically, this means that the random walkers have to gather all the information about
their surroundings (all the f; - see Figure 4.1), in order to compute the integral hindrance

factor for diffusion, before they can move.

Now, we want to find a function for the hindrance probability f;(z;). Let us assume that
fj(x;) at a given location z; correlates directly with the magnitude of the force induced
()] It is further assumed that the wall

by the j-th wall atom at the same location,
atoms are significantly smaller than the solute molecules, so that the radius of the solute
molecules ,,, coincides with the collision diameter o, (i.e. 05, = 04s/2). This means
that the force || F};(z;)|| is actually the reaction to the force exerted by the solute molecule
on the wall atom, explained by Newton’s third law of motion. Further, we add the con-
straint that the maximal value that f;(x;) can take is one f;(x;) < 1 given by the axiom
of the probability space. We could also add the constraint of the probability f;(z;) being

always equal or bigger than zero given by the same axiom. However, this is a fact, that
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has been questioned by different authors such as Paul Dirac, 1942°! and Burgin, 2009?2
A function that satisfies these requirements may be the normalization of the force acting

on the solute molecule as follows

N
1) = R IR Ty

Where 2(1/9) 5, is the distance at which the Lennard-Jones potential shows its minimum

for 1 (z;) > 2%, (4.22)

(i.e. where the force becomes zero). Beneath this value the repulsion force increases
dramatically, as the collision between the particles is imminent. Here, the collision is
modeled by implementing a bounce-back boundary condition (BC), in this case, diffuse

reflection of the incoming particles from the pore wall.
f(x;) = 0; BC: Diffuse reflextion for r,(z;) < 2%, (4.23)

As already mentioned, under the assumption of van der Waals interactions between wall
atoms and solute molecules, the force F'(r,,(z;)) can be modeled using the Lennard-Jones

potential (Eq. 4.3), with wall distance

i) = i = Zuall = /(01 = 200)? + (22 = 2002)? + (23 — 2003)2,

where ., ; is the location of a given wall atom (a constant). So, ¢,,(r,,) is derived

Ip (1) O s> O °
E(T’w) = —a—xl = 465w 12 rw13 —6 Tw7 €;. (424)

The hindrance probability, a dimensionless normalized force f is obtained by dividing the

force by its maximum as plotted in Figure 4.2

- 13 - 7
2( sw) _ ( sw)
Tw Tw
flro) = — s s for ry(z) =209, (4.25)
2(%5) "~ ()

IP. A. M. DIRAC. P. Roy. Soc. A. Math. Phy. A, 180: 1-40, 1942.
2MARK BURGIN. Extended probabilities: mathematical foundations. arXiv, 2009.
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Figure 4.2: Local hindrance probability f; and its complementary probability k; as a
function of the dimensionless distance between diffusing particle and wall atom.

Validation To validate the wall hindrance model a set of simulations was carried out
considering the motion of a particle ensemble N = 10° in straight cylindrical pores, for
different pore and molecule sizes, 7 < x/fww < 403 and 1.5 < gy, /Eww < 6, respec-
tively (see definition of L, in Fig. 4.1) as well as correction factor for convection equals
one, I, = 1. Notice, as already mentioned, that due to the inherent symmetry of the sys-
tem (the cylindrical pores), the correction term (Ae) (see Eq. 4.14) drops to zero. As can
be seen in Figure 4.3, the validation results show good agreement with the experimental

data from the literature.

In order to solve the function for K, derived above, the equation of motion (Eq. 4.16) is

numerically integrated by applying the leapfrog method %

The leapfrog integration is a second-order method. Though, it requires the same number
of function evaluations per step as the first order Euler scheme. Furthermore, the leapfrog

method is more stable for oscillatory motion in contrast to Euler integration®®,

In molecular dynamics, the Lennard-Jones potential is usually truncated at cutoff radii 7,
between [2.2 — 3]0y, mostly at 7., = 2.504, >°° Here a cutoff radius of 7., = 304,
was used for the simulations. The effect of using a shorter cutoff radius was examined.
As shown by the simulation results plotted in Fig. 4.4b, truncating the Lennard-Jones

potential at a too short cutoff radius can have significant effects on the results obtained.

SGUIHUA ZHANG & TAMAR SCHLICK. Mol. Phys., 84: 1077-1098, 1995.
SETHAN A. MASTNY et al. J. Chem. Phys., 127: 094106, 2007.

%4*STEFAN BECKER et al. Langmuir, 30: 13606-13614, 2014.
%MICHAELA HEIER et al. Mol. Phys., 116: 20832094, 2018.

9%JADRAN VRABEC et al. Mol. Phys., 104: 1509-1527, 2006.
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Figure 4.3: Diffusive hindrance factor K in straight cylindrical pores versus the reduced
molecular diameter A\. The molecular diameter 2r,,is given by 2r,, = 20,.

The error bars in Figures 4.3 and 4.4 arise from the stochastic nature of the diffusion
modeling and represent the standard deviation of various simulation runs (at least 3 runs
for each point with 10° tracer molecules). Due to the short-range interactions, our sim-
ulation results as well as the experimental results from literature are more scattered than
the numerical results for hard spheres from other authors. The dotted lines represent each
molecule size o, considered, whereby, due to their weaker and shorter interactions, the
smallest molecules exhibit the weakest hindrance to diffusion and are therefore closest to
the curves for hard spheres given by the equations of Dechadilok & Deen and Lane &
Rankin.

K, Approximation from the PSD for a Complex Geometry

A complex porous structure can be thought of as a network of cylindrical pores, if the
shape of the individual pores is approximately cylindrical?’*® Let the pore size distri-
bution (referred to the pore volume) of such a porous configuration be g3(z) with units
[m? /m?], fulfilling

/ q3(z)dx = 1.

Tmin

For this case, we can estimate the diffusive hindrance factor of the porous structure as the

(4.26)

sum of the hindrances caused by each cylinder forming the network of pores, when the

average bond length between wall atoms Loy and the molecule radius ,, are known

Ky = / Ky (z)gs(x)de, 4.27)

Tmin

97A.B. ABELL et al. J. Colloid Interf. Sci., 211: 39-44, 1999.
9W. C. CONNER et al. Langmuir, 2: 151-154, 1986.
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Figure 4.4: a) Diffusive hindrance factor Ky .y asa function of the ratios of the distance
0 s and the pore size x to the mean bond length L., in straight cylindrical pores (circles)
with curves fitting the results (solid lines). b) Ky for cutoff radii 7.,/05, = 2.2 and
Teo/Tsw = 3.0.

with the diffusive hindrance factor K for straight cylindrical pores.

A function fitting the results obtained for the straight cylindrical pores is presented

—\Vsw Zww 3/2
Koy = exp (9su/ L) (4.28)
0.162351(2 /L) — 0.266835

with
0 S Kd,cyl S 17

derived within the following intervals of o, and Luw
7 < /Ly < 403,

1.5 < 04w/ Lyw < 6.

In order to evaluate the performance of the fitting function (Eq. 4.28) within the range
considered, Figure 4.4a is presented, where good concordance between fitting curves and

simulation results can be seen.

The pore size distribution of a porous material ¢3(z) can be experimentally obtained, e.g.
via mercury or nitrogen porosimetry, using a model for cylindrical pores;”® so that the
hindrance to diffusion of a given molecule diffusing within a real porous medium can
be estimated from experimental data. For these purpose, the molecular radius r,, and
the average bond length of the solid phase L,,, must be known as well as the pore size

distribution, which has to be properly normalized in order to fulfill Eq. 4.26.
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Figure 4.5: Staggered cylinder arrangement confined in a narrow slit. The bulk flow oc-
curs as a consequence of a force or pressure gradient acting in the positive x-axis direction.
The velocity field is graphically represented in the lower left corner.

Passive Scalar Case: Random Walk Particle Tracking

If we consider passive scalars with negligible inertial effects and radii zero, which results
in negligible wall potential, the diffusive and convective hindrance factors K, and K.,
respectively, take the value 1. This leads to the equation of motion used in the Random
Walk Particle Tracking method (RWPT)?° From Equation 4.16, it follows

This model can be used to indirectly solve the Convection-Diffusion equation or to com-
pute the diffusivity needed in this Eulerian continuum approach®

In order to verify the implementation of the RWPT method, the dispersion of a particle
ensemble N = 10° within a staggered cylinder arrangement confined in a narrow slit is
simulated (see Fig. 4.5). The obtained results plotted in Fig. 4.6a are compared with the
numerical results of Khirevich!® and the experimental data from Eghbali et al!®' These
show a good agreement with the results of Khirevich, as expected since the RWPT method
was also applied in his simulations. The longitudinal diffusivity for the case of Taylor dis-
persion is also simulated and the results are compared with the analytical solution for the
Taylor-Aris dispersion, which can be derived from the Convection-Diffusion equation$?

for the case of shear flow in an open channel or in a pipe (see Fig. 4.6b).

The discrepancy with the experimental values of Eghbali et al. may be explained by the

shape of the solute molecule studied, namely Coumarin 480 (C14H;7NO5). This molecule

% SIARHEI KHIREVICH et al. Commun. Comput. Phys., 13: 801-822, 2013.
100§1ARHEI KHIREVICH. PhD Thesis, 159, 2011.

I0'HAMED EGHBALI et al. Anal. Chem., 81: 705-715, 2009.

62R. ARIS. P, Roy. Soc. A. Math. Phy. A, 235: 67-77, 1956.
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(a) Dispersion in arrays (b) Taylor dispersion

Figure 4.6: a) Longitudinal diffusivity in a staggered cylinder arrangement as a function
of the Péclet number. The effect of the resolution of the lattice used for the discretization
of the geometry is also graphically represented. The resolution used in the simulations of
Khirevich was 200 grid nodes per cylinder diameter, d = 200. b) Taylor dispersion as a
function of the Péclet number compared with its analytical solution.

contains four interconnected rings making its structure very flat and rigid, which differs
strongly from the assumption of a pointwise passive molecule. Here, the necessity of a
correction factor for convection K, > 1 7! regarding the shape of the molecule becomes
evident, since the discrepancy increases with the Péclet number (the ratio of convection
to diffusion Pe = Ud/D..).

4.4.2 Multiscale Numerical Approach

In this section, mass transport in packed beds is considered. These are arranged in a hi-
erarchical pore system consisting of three pore-scales with diameters around x ~ 100 pm
for the largest scale, x ~ 300 nm for the medium scale and x ~ 10nm for the smallest
scale, as shown in Figure 4.7. Hierarchical pore structures can be used in catalytic appli-
cations, where mass transport controls the macrokinetics of the heterogeneous catalytic

process, in order to enhance mass transport.~!!

Macroscopic Approach

Under the continuum assumption, the transport in the microstructure of the porous medium
can be calculated, using a numerical method able to spatially resolve the geometric struc-
ture of the medium. Due to the different length scales, this is de facto not possible, which

is why a modeling of the mass transport at the macroscopic level has to be carried out on

9ROBERT GUTTEL & THOMAS TUREK. Energy Technol., 4: 44-54, 2016.
1011 CHEN et al. Chem. Eng. J., 349: 428437, 2018.
TIAN YIN et al. J. Mater. Chem. A, 6: 8441-8448, 2018.
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Figure 4.7: Hierarchic-nanoporous structure used as a medium in the application exam-
ple. Porescales according to the IUPAC definition for nanoporous materials.

the basis of average quantities and effective transport coefficients. Thus, only the large

pores are spatially resolved in such simulation step. Using local volume averaging, the

convection-diffusion equation is obtained'%*!%
oc - oC 02C -
5 T Uiz = Deasp g + R, (4.30)

where C is the average particle concentration, D.g \vp the effective diffusivity of the
macroporous and mesoporous structure, which can assume the general form of a second-
order tensor for anisotropic pore structures, U; the average velocity field, which describes

convection, and 1 a source term modeling e.g. chemical reactions.

In this paper, the focus is on the modeling of micro- and nanoscales (the microscopic
approach). Within the scope of the research project to which this study is related, the

modeling of the macroscale has already been pursued by Bufe et al®°

Microscopic Approach

Nanoscale Simulation Step The calculation of the diffusivity of the mesoporous
structure Deg ,,,p 1s the first simulation step. This effective diffusivity is given by the

following expression
Deff,mP - KdKTDom (431)

and is required as input for the next simulation step at the microscale.

Here, the nanoscale is directly simulated using the wall hindrance model presented in Sec-

102M. SAHIMI. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to
Modern Approaches. Wiley, 2011.
13DoNALD L. KOCH & JOHN F. BRADY. J. Fluid Mech., 154: 399-427, 1985.
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tion 4.4.1. The equation of motion Eq. 4.16 with the equation for the diffusive hindrance
factor (Eq. 4.21) have to be solved. Furthermore, the effective diffusivity of the meso-
porous structure is computed with the time derivative of the mean square displacement,
Eq. 4.17 and 4.18.

Microscale Simulation Step The (nano-scaled) mesopores are not spatially resolved
in the microscale modelling. Instead, the porous structures at the nanoscale are treated as

an effective medium (see Figure 4.8).

Figure 4.8: a) Macropores (MP) and mesopores (mP) of the microscale. b) Effective
representation of the mesoporous medium.
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Figure 4.9: Time evolution of the diffusivity of a simple cubic arrangement of spheres for
the cases of spatially resolved and non-resolved mesopores (see Fig. 8). The parameters
considered are K; = 1, K; = Degmp/Doc = 0.729, €,,p = 0.454, and eyp = 1.

The RWPT method presented in Section 4.4.1 is used to describe the mass transport at
the microscale. The bridge between the macro- and mesoporous media is established
by a probabilistic penetration model. Here, the probability of a scalar tracer entering
the mesopores from the outer void space P, and the probability of a tracer leaving the

mesopores F,,; can be obtained using the following relations under the assumption of an
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isotropic mesoporous medium!%+10>

Py = EL,/ \/chlP and Py = 1. (4.32)
DMP

Where D,,p = K D, and Dyip = D, are the integral diffusion coefficients within a

representative meso- and macropore, respectively.

Once a tracer particle enters the mesopores, it changes its diffusive motion according to
the effective diffusivity of the mesoporous structure D.g ,,,p given by Eq. 4.31. The ef-
fective diffusivity of the combined system of macro- and mesopores D.g \ip 1S computed

from the time derivative of the mean square displacement (see Eq. 4.17 and 4.18).

In order to verify the implementation of the probabilistic penetration model, the diffu-
sivity of a simple cubic arrangement of spheres for the cases of spatially resolved and
non-resolved mesopores is numerically simulated (see Figure 4.8) as a function of a di-
mensionless time t,,,, until the asymptotic behavior is reached. As can be seen from the

results, shown in Figure 4.9, the implementation was successfully verified.

Application Example

6 in a hierarchical

In this section, the mass transport of a particle ensemble N = 10
pore system like the one shown in Figure 4.7 using the microscopic approach proposed

above.

Nanoscale Simulation Step At the nanoscale, two polydisperse nanosphere pack-
ings were computer generated using the software tool provided by Baranau and Tallarek
(2014)36 In practice, the spheres of the packings are nanoparticles, which stick to each
other due to attractive interactions and friction to form a mesoporous structure!% Two
sphere packings are generated from two particle collectives showing the same size dis-
tribution. These structures are called Building-Blocks and are represented graphically in
Figure 4.8a. The particle size distribution follows a normal distribution, z,, = N(z,, s?)
with Z, = 23.82nm and s = 4.275 nm. Due to the random initial positions of the spheres
in the generation algorithm, and the random (normal-distributed) particle sizes, the gener-
ated packings slightly differ in their resulting void fractions and obstruction factors with
epp1 = 0.49, eppy = 0.47 and K, = 0.735, K

repe = 0.749. Via a sphere inser-
tion method (i.e. the void space of the generated sphere packing is randomly filled with

yBB1

spheres in order to characterize the void space itself), a pore size distribution (PSD) for

104 ANTON DANEYKO et al. J. Chromatogr. A, 1407: 139-156, 2015.

15J0RGE M. RAMIREZ et al. Water Resour. Res., 44: , 2008.

36VASILI BARANAU & ULRICH TALLAREK. Soft Matter, 10: 38263841, 2014.

196 AURINA MARTINEZ ARIAS & ALFRED P. WEBER. J. Aerosol Sci., 131: 1-12, 2019.
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Figure 4.10: On the left, diffusive hindrance factor K, in a computer-generated Building-
Block BB1. Direct simulation and PSD approximations of K, based on normal distribu-
tions V centered at T = Z¢y With different standard deviations. On the right, PSDs ¢3(z)
considered. The distributions are slightly skewed to the left N~ and to the right N, to a
greater extent for ", without changing Z.

the generated Building-Blocks (BB1 and BB2) can be estimated from the particle size of

1107

the filling spheres. The software provided by Baranau et al.”’ could also be used to this

purpose.

Note, that the resulting pore size distributions are shape-dependent, meaning that they
depend, for example, on the shape of the filling material or on the pore shape assumed by
the evaluation model. Several evaluation models can be found in literature that are able
to determine the PSD from an adsorption isotherm (experimentally obtained) for slits as

well as for cylindrical and spherical pores!%:1%?

In this study, we are rather interested in estimating the pore size distribution of BB1 and
BB2 for the case of cylindrical pores. The aim of the latter is to apply the K; approxi-
mation from the PSD g¢3(z), as suggested in Section 4.4.1; since the pore size distribution
of the generated Building-Blocks cannot be calculated using, for example, an isotherm
as mentioned above, we will make some assumptions and evaluate their hypothetical out-
come based on how well this matches the calculated diffusive hindrances. We assume
that the pore size distribution is also normal-distributed, g3(z) ~ N(Z, s?) centered at
the cylindrical pore size ., to which the results of the direct simulation fit best, T = x.,;.
Further, we consider the impact of the standard deviation and of certain level of skewness
in the normal distribution. Here we consider two cases for the variation of the standard
deviation (s; and s5), and three cases for the variation of the skewness of the distribution:

the first with a distribution slightly skewed to the left, further noted as V—, and a second

107VASILI BARANAU et al. Soft Matter, 9: 3361, 2013.
108 INDA S. CHENG & YANG RALPH T. Chem. Eng. Sci., 49: 25992609, 1994.
19§ ALIL U. REGE & RALPH T. YANG. AIChE Journal, 46: 734750, 2000.
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Figure 4.11: On the left, diffusive hindrance factor K, in a computer-generated Building-
Block BB2. Direct simulation and PSD approximations of K, based on normal distribu-
tions V centered at T = T, with different standard deviations. On the right, PSDs ¢5()
considered. The distribution N/ is slightly skewed to the right without changing 7.

distribution slightly skewed to the right, N/, as well as a third one also skewed to the
right but in a larger extent, N'**. The average pore size T is kept constant in all the cases

considered.

Bulk flow (convection) is not considered in this example. The results for the nanoscale

simulation step are shown in Figures 4.10 and 4.11.

Microscale Simulation Step A computer generated, hierarchical-porous structure
containing micro- and mesopores (a structure made of Building-Blocks) is considered, as
shown in Figure 4.7. It is assumed that the macropores contribute 53 % and the mesopores
47 % to the total void space of this structure. From these values of the void space fractions
a total porosity of 64 % can be determined for the generated layer of Building-Blocks.

As already mentioned, in the microscale simulation step only the contours or outer sur-
faces of the Building-Blocks and not their mesopores are spatially resolved. From the
values of the effective diffusivity obtained in the previous simulation step, the simulations

for the microscale are carried out and their results are shown in Figure 4.12.

Discussion With regard to the results obtained for the Building-Blocks BB1 and BB2
(Figures 4.10 and 4.11, respectively), it was found that the diffusive hindrance factor of
BB1 comes closest to the calculated hindrance for a straight cylindrical pore of 12.6 nm
diameter, whereas in the case of BB2 the nearest hindrance corresponds to that shown by
a cylindrical pore size of 11.0 nm. The assumed pore size distributions N'(Z, s?) centered

at these pore sizes show excellent agreement with the results of the direct simulations.

As far as the simulations of mass transport within the layers (made of Building-Blocks
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Figure 4.12: Total hindrance to diffusion, i.e. the obstrucion factor K, and diffusive
hindrance factor K related to the layers made of the Building-Blocks BB1 and BB2.

BB1 and BB2) are concerned, it was found that there is a molecule size above which the
hindrance for the layer consisting of BB2 is stronger, since the K ; curves intersect at some
point between 2 < 0, /fww < 3 (see black curves in Figure 4.12). This can be explained
by the fact that the dominant pore size of the Building-Blocks BB2 (z = 11.0nm) is
smaller than that of the BB1 (z = 12.6nm) (the smaller the pore size, the stronger the
hindrance), while the smaller obstruction factor of the layer made of BB1 constitutes a
stronger hindrance to diffusion. This means, that for small molecule sizes the smaller
obstruction factor of the BB1 layer controls the total hindrance to diffusion, while at large

molecule sizes the stronger hindrance factor for diffusion of the BB2 layer controls it.

4.5 Conclusions

The hindrances to diffusion that an ensemble of solute molecules (spherical, large and
"soft") experiences when passi