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Abstract

Porous materials are used in several technical applications such as filtration, engineer-

ing, geosciences and biophysics. This work focuses on the modeling of mass trans-

port phenomena occurring in the pore network and during the formation of nanopartic-

ulate nanoporous clusters using particle-based stochastic methods. Traditionally, macro-

scopic quantities such as the porosity and tortuosity [1] are used in models as average

global parameters to estimate the transport properties of porous media. However, these

macroscopic approaches fail to quantify the influence of structural heterogeneities of the

medium on mass transport phenomena. This effect can be taken into account by resolving

the computational domain on the pore-scale, as it is done in particle-based approaches [2,

3]. One of the advantages of particle-based methods is their efficient use on modern multi-

core hardware architectures due to their good scalability [4, 5]. In this thesis, a Brownian

dynamics solver used to model the motion of tracers in porous media was developed

and optimized for parallel computing using the OpenMP and MPI libraries. A further

particle-based model used, known as fast lubrication dynamics, is implemented in the

open-source software LAMMPS. With the help of this software, the motion of colloidal

nanoparticles is modeled. For this purpose, a customized pairwise interaction modeling

screened Coulomb forces between particles had to be developed. In addition, different

external fields (e.g. velocity fields, electric fields, pressure fields, etc.) are computed us-

ing open-source applications such as Fenics and an in-house lattice Boltzmann solver in

order to evaluate their influence on the motion of nanoparticles or tracers.

In this work, mass transport phenomena in porous media are addressed, where the ef-

fect of heterogeneities in the porous structure and the hindering effect of narrow pores on

the mass transport properties of the aforementioned media are studied. Among the main

achievements of this work is the development of a particle-based model capable of com-

puting the diffusivity of nanoporous media. In addition, the formation and structure prop-

erties of nanoparticulate clusters are investigated. One of the highlights of this study is a

proposed formation mechanism of nanoparticulate clusters produced via spray-drying.
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1 Introduction

Porous materials have a wide range of applications in practice. All applications of these

materials are based on their property of being traversed by cavities or pores, and thus

providing a large fluid/solid interface per unit volume. Therefore, porous systems are

used e.g. in adsorption processes, gas-solid reactions or in heterogeneous catalysis. For

heterogeneous catalysis, the catalytically active components are usually applied to the

inner surface of porous substrates. It is at these reactive centers that the conversions of

reactants to products take place. Apart from the reaction kinetics, the mass transport of

the components to and from these catalytic sites plays an important role in the overall

kinetics of the heterogeneously catalyzed reaction. This mass transport is influenced to a

considerable extent by the pore structure of the porous medium.

Due to the complex structure of engineered porous materials, an exact prediction of the

mass transport through the pore system is infeasible. Experimental methods for its deter-

mination are very time-consuming and labor-intensive, so that attempts are often made to

estimate the mass transport on the basis of more easily accessible characteristic quanti-

ties of the porous materials. In this context, the porosity and the pore size are the focus

of interest. However, the experimental methods for determining these quantities usually

require simplified models of the porous structure in order to be able to evaluate the mea-

surement results.

When manufacturing porous materials for chemical reaction engineering, it is essential

to provide sufficient surface area for the catalyzed reaction or for the adsorption process.

Moreover, the reactants should be able to reach the reactive centers as quickly as possible,

i.e. the diffusive mass transport inside the porous materials should be optimized. For

the optimization of the manufacture of such materials, there is therefore great interest

in procedures for characterizing the pore structure and in methods for determining the

influence of this structure on mass transport.

Previous attempts to estimate the influence of the pore structure on mass transport have

been made using model systems to describe porous materials on the basis of experimen-

tally determined values for the porosity and the pore size distribution. Pore systems have

often been assumed to be cylindrical capillaries with different spatial arrangements. The

parallel pore model describes the cavity of porous materials as a bundle of parallel cap-

illaries with uniform and constant radius. This idea has been extended with the addition

of a distribution of capillary diameters corresponding to the experimentally determined
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pore size distribution ,6 as well as with a random orientation of the capillaries ,7 and the

introduction of converging and diverging capillaries .8

An alternative method of modeling porous materials consists of replicating the solid ma-

terial instead of the pore space. For this purpose, clusters of spheres have often been

numerically generated, whose porosity and/or particle size distribution match those of the

porous material of interest. The resulting pore geometry is irregular and thus no longer

easily describable. The porous media hereby considered are mostly sphere packings, i.e.

clusters of spherical particles, which are packed into compact arrangements. If a sphere

packing is randomly formed, two characteristic regions can be identified according to

their structural order degree. While a highly ordered, structured arrangement dominates

the region near to the boundaries of the structure, a random unstructured arrangement pre-

dominates in the inner bulk region of the structure far away from the packing boundaries.

The presence of these two regions with different porous structures introduces a further

challenge in both the characterization and modeling of such heterogeneous porous media.

On the one hand, a porous medium can be characterized, for instance, by its porosity or

transport properties such as permeability, tortuosity and diffusive hindrance (a measure

of the inhibition of diffusion due to finite size effects). However, the characterization

of porous materials is usually complex, since their intrinsic transport properties correlate

strongly with the intricate pore structure of the medium. On the other hand, continu-

ous models, which consider porous materials as effective media, use global properties as

descriptors for the modeled material. Particle-based methods have been used to simu-

late particle trajectories in order to determine the mass transport properties of the porous

structure.

Nanoporous materials are of particular interest for this work, as they offer exceptional cat-

alytic properties due to their large surface area to volume ratio. This can be exploited to

increase the catalytic activity of a material in heterogeneous catalysis, since the number of

active sites, at which the desired reaction takes place, increases. However, if the pore size

narrows to the same order of magnitude as the molecule size, the mobility of the molecules

becomes dramatically hindered. This slows down the overall kinetics of the catalysis as

the reactants can hardly reach the active sites inside the porous structure and the products

can barely escape the intricate and narrow pore network. Thus, when designing a catalytic

nanoporous material, a pore size has to be chosen so that a balance/compromise is main-

tained between the associated surface-to-volume ratio and the mobility of the molecules.

A further strategy to address hindered mass transport induced by narrow pore sizes is to

reduce the fraction of nanopores by using a hierarchical-porous structure. In this way, the

6H. W. HAYNES JR. & L. F. BROWN. AIChE Journal, 17: 491–494, 1971.
7MARVIN F.L. JOHNSON & WARREN E. STEWART. J. of Catalysis, 4: 248–252, 1965.
8RICHARD N. FOSTER & JOHN B. BUTT. AIChE Journal, 12: 180–185, 1966.
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larger pores serve as transport channels for the diffusing molecules to reach the narrower

reaction pores faster.9–11 In the case of adsorption applications, hindered mass transport

phenomena can be utilized to capture and remove pollutants such as CO2 and HCl from a

gas or liquid mixture with the help of a nanoporous medium such as zeolites .12

In this work, mass transport processes occurring during the formation of porous structures

and within their pore network are modeled using particle-based stochastic approaches.

Stochastic methods such as Langevin dynamics, Brownian dynamics and fast lubrication

dynamics used in the present study are based on classical Newtonian dynamics with the

addition of a random force, which is used to reproduce Brownian motion. Although these

particle-based techniques are computationally more complex in comparison to continuum

approaches, they enable us to spatially resolve local heterogeneities that play an important

role in mass transport processes. This also allows us to couple different kind of fields

or pairwise interactions together in the same model in a rather straightforward way by

superposition. For instance, external fields such as a bulk velocity field or an electric field

are computed in a previous step e.g. solving numerically the Navier-Stokes equations or

the Boltzmann equation for the flow, and solving the Poisson equation for the electric

field. These external fields are given as input for the particle solver, which superimposes

them to the stochastic thermal force in order to describe the mass transport of a particle

ensemble at a nano-scale.

In order to reduce the time required to generate the results, an algorithm was developed

to run the simulations on parallel computers. Parallel computers offer the possibility to

distribute the computational work, which is performed on a PC or a workstation on one

processor, to several processors and to perform it there in parallel, i.e. simultaneously.

The time gain that can be achieved in this way is known as the speed-up. Thus, on high-

performance computers, namely the North-German Supercomputing Alliance (HLRN), a

considerable time gain can be achieved. However, the maximum speed-up is limited by

the communication between the processes for the purpose of data exchange and synchro-

nization as well as by work that cannot be parallelized.

The fundamental condition for the use of a parallel computer is therefore to have paral-

lelizable computational work, so that the work on the respective processor is as indepen-

dent as possible from the work on the other processors. This condition is fulfilled in the

Browninan and Langevin dynamics solvers used in this study, as the simulated particle

trajectories depend only on the structure of the porous material and the particle prop-

erties. The influence of other particles in the system is taken into account only by the

9ROBERT GÜTTEL & THOMAS TUREK. Energy Technol., 4: 44–54, 2016.
10LI CHEN et al. Chem. Eng. J., 349: 428–437, 2018.
11JIAN YIN et al. J. Mater. Chem. A, 6: 8441–8448, 2018.
12RAVI SHARMA et al. Chem. Eng. J., 381: 122512, 2020.
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Stokes-Einstein relation .13

Thus, the above algorithms, which serially simulate a number of particles, were paral-

lelized by having several processors share this number of particles. For this purpose, the

so-called master-slave principle was used, i.e. there is one processor (the master) which

distributes the work to the other processors and collects the results. Each slave processor

takes over the simulation of the flight of a particle. The master is notified by the slave

when the simulation is complete and hands over the next particle to the slave for simula-

tion. This ensures that none of the processors used is idle by having to wait for another

processor to do its work. The speed gain from this approach is proportional to the number

of processors used minus the master. The MPI (Message Passing Interface) programming

tool was used to implement this algorithm.

One of the priorities of this study is to use in-house or open-source software. Open-

source tools are used to generate random sphere packings (i.e. porous media) as well as to

calculate external fields such as electric and velocity fields and to compute mass transport

via a continuum model, which constitutes an alternative approach to the particle-based

models mainly used in the mass transport calculations carried out.

The main objective of this work is to address the above described issues using particle-

based stochastic methods, which can be synthesized in the following overarching scien-

tific question: How are the structure formation and transport properties of nanoparticu-

late, nanoporous media affected by changes in pore size, external and pairwise interac-

tions?

The structure formation and transport properties of nanoparticulate clusters produced by

evaporation of aerosols has been studied by several authors.14–20 Nevertheless, the inter-

actions considered in the numerical models of this work differ from previous works in

that, for example, long-range interactions such as electrostatic forces and hydrodynamic

interactions (HIs), i.e., forces resulting from momentum transfer between NPs through

the solvent, are often not considered in numerical models due to the dramatic increase in

computational complexity that they imply.

The above question is approached by studying the effect of confinement and pore size on

mass transport, as well as the effect of pairwise electric interactions (i.e. electric forces)

13A. EINSTEIN. Ann. d. Phys., 322: 549–560, 1905.
14M. MEZHERICHER et al. Chem. Eng. Sci., 66: 884–896, 2011.
15MICHAEL P. HOWARD et al. J. Chem. Phys., 149: 094901, 2018.
16KATARZYNA JABŁCZYŃSKA et al. Adv. Powder Technol., 29: 3542–3551, 2018.
17SABRINA ZELLMER et al. ACS Nano, 9: 10749–10757, 2015.
18THOMAS BREINLINGER et al. J. Am. Ceram. Soc., 98: 1778–1786, 2015.
19THOMAS BREINLINGER et al. Powder Technol., 283: 1–8, 2015.
20WENDONG LIU et al. ACS Nano, 13: 4972–4979, 2019.
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and an external electric field on the formation of nanoparticulate, nanoporous media as

follows

• Publication 1: Confinement effect on the mass transport properties and porous

structure of porous media.

• Publication 2: Hindering effect of pore size on the mass transport properties of

porous media.

• Publication 3: Effect of electric forces on the formation of nanoparticulate, nanoporous

clusters via spray-drying.

• Publication 4: Effect of an external electric field on the formation of nanoparticu-

late, nanoporous clusters via electro deposition.

Here, Brownian dynamics (BD) are used to model mass transport within the pore net-

work of a particulate cluster. The model is presented in the first publication, where the

confinement effect on the packing process of a cluster is also addressed. Based on the

presented BD approach, a novel model to capture the hindering effect of narrow pores on

the mass transport within nano-pores is presented in the second publication. The knowl-

edge gathered in the first and second publications are the basis for the proposed formation

mechanism of nanoparticulate spray-dried clusters, presented in Chapter 5. The forma-

tion of nanoparticulate clusters is a complex process that involves a variety of packing

mechanisms resulting in structured or unstructured arrays. In this work, it will be shown

that by adding metallic salts during the cluster formation, the pore size of a nanoparticu-

late cluster can be adjusted. This effect on the pore size is caused by both mass transport,

which is affected by hindered diffusion, and by the formation/crystallization of the added

salt within the pores of the cluster. For this Chapter the more complex model, namely

Fast Lubrication dynamics, is used in order to consider hydrodynamic interactions and

electrostatic (DLVO) interactions between the NPs. A further method for the formation

of nanoparticulate clusters using Langevin dynamics with an external electrostatic field is

presented in the third publication.
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1.1 Publication 1: Confinement effect on the mass transport
properties and porous structure of porous media

There are different types of external fields that can affect the motion of nanoparticles,

e.g. shear flow, electric, laser-optical and magnetic fields as well as confinement. In

this publication titled Numerical study of dispersive mass transport in homogeneous and

heterogeneous porous media,21 the influence of confinement on the porous structure and

mass transport properties of porous media is addressed. In addition, the performance of a

particle-based stochastic approach, in this case Brownian dynamics, is compared to that

of a continuum approach, namely the method of volume averaging. See graphical abstract

in Fig. 1.1 and Chapter 3. One of the highlights and

Contribution as main author Writing, literature research and numerical calcula-

tions.

1.2 Publication 2: Hindering effect of pore size on the mass
transport properties of porous media

In this publication titled Mass transport in porous media at the micro- and nanoscale:

A novel method to model hindered diffusion,22 the hindering effect of pore size on the

diffusivity in the pore structure of porous media. This effect arises from the pairwise

interaction between the diffusing molecules and the wall atoms of the porous medium.

See graphical abstract in Fig. 1.2 and Chapter 4.

Contribution as main author Writing, literature research and numerical calcula-

tions.

21HECTOR RUSINQUE et al. Comm. Compu. Inf. Sci., 1199: 104–121, 2020.
22HECTOR RUSINQUE & GUNTHER BRENNER. Microporous Mesoporous Mater., 280: 157–165, 2019.
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(a) (b)

(c) (d)

Figure 1.1: Graphical abstract of publication 1. (a) Porosity profile of a heterogeneous
random sphere-packing along the vertical axis. (b) Projection of the particle-center coor-
dinates on the plane perpendicular to the flow. (c) Streamlines through the sphere packing
near the top and bottom confining walls as well as in the center of the packing. (d) Green-
highlighted hexagonal configurations induced by the confining walls.
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Wall atom 

Solute molecule 

f Hindrance to diffusion

f1
f4

rco

f6
f3

(b)

(c) (d)

(e)

f5 f2

(a)

Figure 1.2: Graphical abstract of publication 2. (a) Nanoparticulate cluster. (b),(c),(d)
Molecules with different sizes diffusing in individual pores and random walks of these
molecules. (e) Schematic representation of the pairwise interactions between a diffusing
molecule and the wall atoms hindering diffusion.
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(a)

(b) (c) (d)

Figure 1.3: Graphical abstract of publication 3. Bulk structure of nanoparticulate clusters
at two different solid volume fractions, Φ = 0.30 and Φ = 0.45 and three different electric
surface potentials ψ0,2 = 115mV, ψ0,1 = 50mV and ψ0,0 = 0mV.
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(b)(a)

(c)

(d)

1V 4V

Figure 1.4: Graphical abstract of publication 4. (a) Nanoparticulate cluster (b) Schematic
representation of the charged particles, the deposit and the electrodes of the deposition
chamber. (c) Random walks of the charged particles. (d) Deposit pattern on the lower
electrode (substrate).
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1.3 Publication 3: Effect of electric forces on the formation of
nanoparticulate, nanoporous clusters via spray-drying

In this Chapter titled the mechanism of formation of nanoparticulate clusters via spray-

drying is presented and discussed. Further, confinement effects and pore-size hindering

effects are also discussed. Here, the focus of the numerical calculations is on the effect

of the pairwise electric interactions on the bulk structure of the clusters, which dominates

the global structure of the clusters produced in the experiments. See graphical abstract in

Fig. 1.3.

Contribution as main author Main writer, literature research, numerical calcula-

tions and interpretation of the experiments. The experiments were conducted mainly by

Aurina Martinez-Arias at the Institute of Particle Technology at the TU Clausthal. Further

co-authors are Juliana Rivas-Botero who conducted the particle size characterization us-

ing DLS and professor Alfred Weber from the Institute of Particle Technology, as well as

professor Gunther Brenner from the Institute of Applied Mechanics, who as supervisors

supported me by giving advice and observations.

1.4 Publication 4: Effect of an external electric field on the
formation of nanoparticulate, nanoporous clusters via
electro deposition

In this publication titled Numerical study of the controlled electrodeposition of charged

nanoparticles in an electric field,23 the effect of an external electric field on the formation

of nanoparticulate clusters is studied. See graphical abstract in Fig. 1.4 and Chapter 6.

Contribution as main author Writing, literature research and numerical calcula-

tions.

As mentioned above, the papers published in the context of this work are presented in the

following chapters, with a final chapter devoted to a final discussion.

23HECTOR RUSINQUE et al. J. Aerosol Sci., 129: 28–39, 2018.





2 Theory and Methods

2.1 Fundamentals of diffusion

2.1.1 Transport diffusion and self-diffusion

In principle, a distinction can be made between two diffusion phenomena: Transport dif-

fusion and self-diffusion. Transport diffusion results phenomenologically from a concen-

tration gradient of particles in a system, while self-diffusion results from the permanent

change of microdynamic interactions of particles uniformly distributed in a system: ther-

mal or Brownian motion.

Quantitatively, the process of self-diffusion is observable either by measuring the local

change of a small amount of labeled particles in the total aggregate of all particles or by

observing the local change of all individual particles in a defined time interval and sub-

sequently calculating the mean square of displacement of these particles. In the process

of self-diffusion, no macroscopic concentration gradient is needed. The 1st Fick’s law

provides the fundamental definition of diffusion

JA,i = −D∞
∂CA

∂xi

, (2.1)

where JA,i represents the diffusion flux of component A in the direction i, D∞ the diffu-

sion coefficient and the last term of this equation symbolizes the concentration gradient of

the component A with respect to the coordinate xi. Although the concentration gradient is

responsible for the diffusion taking place in a system, the thermal (Brownian) force acting

on a given diffusing particle (e.g. a solute molecule of A) from a thermodynamic point of

view is the gradient of the chemical potential µi with respect to a spatial coordinate xi,13

for low concentrations of A (i.e. activity coefficient equals 1) it applies

FB
i = − ∂µ

∂xi

≈ − ∂

∂xi

(kBT lnCA) , (2.2)

kB and T are the Boltzmann constant and the absolute temperature, respectively.

Alternatively to this thermodynamic and deterministic approach, a stochastic model of

the thermal force can be used as follows

13A. EINSTEIN. Ann. d. Phys., 322: 549–560, 1905.
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�
FB
i

�
= 0 , (2.3)

�
FB
j (0)F

B
i (t)

�
= 2kBTRijδ(t) . (2.4)

The angle brackets indicate an ensemble average and δ(t) the Dirac delta function. Rij

stands for the hydrodynamic resistance tensor.

In case of free (unbounded) diffusion in an isotropic medium, taken into account the

Einstein’s relationship for the Diffusion coefficient,

D∞ =
kBT

R
, (2.5)

where the scalar/isotropic version of R is known as the (hydrodynamic) drag coefficient.

For low Reynolds numbers, this coefficient is given by the Stoke’s law R = 6πηrs, where

η stands for the viscosity of the unbounded solvent and rs for the hydrodynamic radius of

the diffusing particle or solute molecule. For this case, one can represent the stochastic

Brownian Force as follows

FB
i =

�
2D∞ Wi(t) , (2.6)

which includes Gaussian white noise Wi(t). Numerically, this is realized by generating

for each Cartesian coordinate a normally distributed random number with zero mean µ =

0 and variance s2 = 1.24,25

As in other methods based on Newtonian N-body dynamics, such as Langevin and Brow-

nian dynamics, the external forces acting on the particles can be distinguished into con-

servative forces FP and the interactions with the solvent. The latter are described by the

fluctuation-dissipation theorem, namely the fluctuating Brownian force FB and its coun-

terpart, the dissipative hydrodynamic force FH, the force exerted on the particle by the

fluid. This results in the following equation of motion for the NPs

m
dUi

dt
= FH

i + FB
i + FP

i , (2.7)

where Ui is the particle translational/rotational velocity vector and FP is a conservative

force arising from interparticle or external potentials.

When the particle Reynolds number is small, the hydrodynamic force exerted on the par-

ticles in a suspension in the absence of bulk shear flow is, i.e. fluid velocity vi = 0

24H G SCHUSTER & WOLFAM JUST. Deterministic Chaos. Wiley, 1994.
25GIORGIO VOLPE & GIOVANNI VOLPE. Am. J. Phys., 81: 224–230, 2013.
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FH
i = −RijUj , (2.8)

where the hydrodynamic interactions are directly proportional to the particle transla-

tional/rotational velocities U .

In absence of neighbor particles (i.e. in absence of momentum transfer between neighbor

particles via the solvent/medium), the resistance tensor of the medium can be simplified

to reciprocal value of the drag coefficient, so that we obtain the following equation

FH
i = −6πηrs|Ui − vi| , (2.9)

where vi is the fluid velocity at the center of the particle position.

Depending on the constraints and/or simplifications made to the Eq 2.7, the numerical

approach considered receives different names. If the hydrodynamic forces are simpli-

fied by not considering the hydrodynamic exchange with neighboring particles, then this

approach is called Langevin dynamics (LD), see Chapter 6. If to this simplification/con-

straint the inertial term (on the left hand of the equation) can be neglected, then it is given

the name of Brownian dynamics (BD), see Chapters 3 & 4. This is very often the case for

Brownian particles moving on a relatively long time scale, e.g. colloids in time scales of

practical experiments, i.e. t > 1 µs, see Chapter 6.

In the case where hydrodynamic interactions with neighboring particles are considered,

Stoksean dynamics (SD) is used. For this case, simplified/accelerated approaches have

been developed, such as accelerated Stoksean dynamics (ASD) or Fast Lubrication dy-

namics (FLD), see Chapter 5.

In this work, various external fields like the velocity field vi or electric field F P are cal-

culated to be given as input for the particle transport simulations: i.e. the Brownian or

Langevin dynamics solvers, which describe the effective mass transport of a particle en-

semble on a pore scale. These fields are determined using different methods, e.g. by

numerically solving the Navier-Stokes equations or the Boltzmann equation for the flow

and by solving the Poisson equation for the electric field. Since the theory behind the

methods for determining the external fields is not described in detail in the studies pub-

lished in the framework of this dissertation, the theoretical support for these topics is

presented.
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2.2 External fields: Velocity field

2.2.1 Liouville’s equation

There is a system consisting of N particles. Each of these particles has m degrees

of freedom, i.e. each has m location and momentum coordinates. Each particle (the

k-th particle) can be defined by general position and momentum coordinates x
(k)
i =�

x
(k)
1 , x

(k)
2 , ..., x

(k)
m

�
or p

(k)
i =

�
p
(k)
1 , p

(k)
2 , ..., p

(k)
m

�
with k = 1, 2, ..., N . The N parti-

cle system can be understood as a point with 2n = 2mN coordinates of this hyperspace

(higher dimensional space), called phase space, at any time.26

The N -particle distribution density f (N) in phase space can be used to characterize an

ensemble, i.e. the totality of quantum states of the physical N particle system. The

N particle distribution density determines the probability f (N)(xi, pi)d
nx · dnp that the

system is located in the infinitesimal volume element of the phase space dnx · dnp.26

According to Liouville’s theorem any volume element of this phase space

dµ = dnx · dnp = dx1dx2...dxn · dp1dp2...dpn = dx
(1)
i dx

(2)
i ...dx

(N)
i · dp(1)i dp

(2)
i ...dp

(N)
i ,

is conserved over time. Due to this incompressibility, the distribution density along a

trajectory remains constant and, analogous to the continuity equation for incompressible

flow
d

dt
ρ(t, xi(t)) = 0, their total differential disappears, this can be represented with

index notation by,26,27

d

dt
f (N)(t, xi(t), pi(t)) =

∂f (N)

∂t
+

n�

i=1

�
∂f (N)

∂xi

· dxi

dt
+

∂f (N)

∂pi
· dpi
dt

�
= 0 . (2.10)

If the redundant sum characters in the index notation are omitted and the corresponding

variables are replaced by pi = mui,
dxi

dt
= ui bzw.

dpi
dt

= Fi, the Liouville equation is

reduced to
∂f (N)

∂t
+ ui ·

∂f (N)

∂xi

+
Fi

m
· ∂f

(N)

∂ui

= 0 . (2.11)

2.2.2 Boltzmann equation

The system of equations of the Liouville equation consists of a gigantic number of vari-

ables in the order of Avogadro’s constant. Consequently, a numerical solution of the

Liouville equation is impractical at the current state of the art.27 Various approaches can

be used to simplify the Liouville equation, including the linear response function and

26G. CHEN. MIT-Pappalardo Seri. Mech. Eng., Oxford University Press, 2005.
27S. HARRIS. Dover Books on Physics, Dover Publications, 2012.
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the Boltzmann equation.26 A simplification of the latter is applied in the context of this

work.

In Boltzmann’s transport equation, the 2n-dimensional phase space is reduced to six di-

mensions by introducing a one-particle distribution function by averaging the N -particle

distribution function over the remaining (N − 1) particles in the system.26

f (1) =
N !

(N − 1)!

�
· · ·

�
f (N)dx2...dxn · dp2...dpn . (2.12)

After determining the averaged single particle distribution density, the Liouville equation

can be averaged over the spatial and momentum coordinates of the remaining (N − 1)

particles. After averaging, the Boltzmann equation is obtained with f (1) = f 4,5,28

∂f

∂t
+

∂f

∂xi

· dxi

dt
+

∂f

∂pi
· dpi
dt

=

�
∂f

∂t

�

Stoss

. (2.13)

If one sets the equation as a function of location and velocity coordinates, the following

equation results �
∂

∂t
+ ui ·

∂

∂xi

+
Fi

m
· ∂

∂ui

�
f =

�
∂f

∂t

�

Stoss

. (2.14)

Here the left side of the equation is the total differential of f with particle mass m, particle

velocity ui and external force Fi consisting of the accumulation, transport and field terms,

respectively, while
�
∂f

∂t

�

Stoss

is the scattering or collision integral which detects the

collisions of the individual particles. A rigorous treatment of the collision integral consists

in the use of the Boltzmann collision term (Stosszahlansatz).

The Stosszahlansatz is a multidimensional integral in which f is non-linearly related
�
∂f

∂t

�

Stoss

= −
�

· · ·
�

f(�x, �u, t)f(�x, �uA, t)W (�u, �uA −→ �u∗, �u∗
A)d

3�u∗d3�uAd
3�u∗

A

+

�
· · ·

�
f(�x, �u∗, t)f(�x, �u∗

A, t)W (�u∗, �u∗
A −→ �u, �uA)d

3�u∗d3�uAd
3�u∗

A . (2.15)

Here, the first term on the right-hand side represents the transition rate of the particles that

change from quantum states �u, �uA to �u∗, �u∗
A when they collide. The second term stands

for the transition rate of the particles into the quantum states �u, �uA.

The transition rate W can be determined using the Fermis Golden Rule from quantum

mechanical perturbation theory. It is assumed that at any given time the number of parti-

cles with velocities before the impact (�u, �uA and afterwards �u∗, �u∗
A) is uncorrelated. This

is known as the assumption of molecular chaos. In addition, it is assumed that the mean

free path length of the particles is large, i.e. that the volume fraction of the gas particles is

so small that only two collisions can be considered. One of the properties of the transition

4A. A. MOHAMAD. , Springer–Verlag London, 2011.
5DIETER HÄNEL. , Springer–Verlag Berlin Heidelberg, 2004.

28M.C. SUKOP & D.T. THORNE. , Springer Berlin Heidelberg, 2010.
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rate includes the interchangeability of the particles, from which the above equation can

be reduced to5,26

�
∂f

∂t

�

Stoss

=

�
· · ·

�
W (�u, �uA −→ �u∗, �u∗

A){f(�x, �u, t)f(�x, �uA, t)

− f(�x, �u∗, t)f(�x, �u∗
A, t)}d3�u∗d3�uAd

3�u∗
A .

(2.16)

However, the solution of the Stosszahlansatz is too complex, which is why the relaxation

time approximation is usually used instead
�
∂f

∂t

�

Stoss

≈ −f − f eq

τ
, (2.17)

where τ stands for the relaxation time and f eq for the equilibrium distribution, which in

the case of molecules can be described by the Maxwell distribution fMw. It gives the

probability density that the energy carriers (the molecules) at an absolute temperature T

have an energy level E.5,26

fMw(E) = Ae

�
−E
kBT

�
, (2.18)

where kB stands for the Boltzmann constant.

Monoatomic gases can only store energy in the form of kinetic energy and have 3 degrees

of freedom (translation velocities) ux, uy and uz. From this follows

fMw(ui) = A exp

�
−1/2m(u2

x + u2
y + u2

z)

kBT

�
. (2.19)

Here m is the mass of a molecule.

To calculate the factor A the distribution density fMw is normalized.
∞�

0

∞�

0

∞�

0

fMw(ui)duxduyduz = 1 . (2.20)

If spherical coordinates are used, the following equation is obtained

∞�

0

2π�

0

π�

0

fMw(ui)u
2
i sin(θ)dϕdθdui = 1 , (2.21)

∞�

0

4πu2
i f

Mw(ui)dui = 1 , (2.22)

�
2πkBT

m

�3/2

A = 1
to A−−→ A =

�
m

2πkBT

�3/2

. (2.23)

If the mean velocity of the particles vi is not zero, the Maxwell distribution shifts by

this mean value. Multiplying the distribution given by the equation 2.18 with the particle

density n = N/V (the ratio of particle number to volume) and replacing the specific gas

constant Rs = kB/m (from R = NAkB, M = NAm or Rs = R/M , where R, NA
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and M stand for the universal gas constant, the Avogadro number and the molar mass

respectively), the equilibrium distribution5,26 is obtained

f eq(n, ui) =
n

(2πRsT )
3/2

exp

�
−(ui − vi)

2

2RsT

�
. (2.24)

In the literature one can find different variants of the relaxation time approximation, where

the relaxation of the system into equilibrium takes place in one or more steps (relaxation

times). Different relaxation parameters are used for each moment of the distribution func-

tion. In addition, the equilibrium distribution depends on the type of energy carriers, e.g.

phonons (elementary excitations of the elastic field) and electrons can be described by the

Bose-Einstein or Fermi-Dirac distributions.26

The Boltzmann equation5

• applies to general non-equilibrium processes,

• describes gas dynamic flow processes,

• applies from the continuum range with Knudsen numbers Kn � 1 to the free

molecular flow with Kn � 1.

• Their moments lead to the conservation equations for mass, momentum and energy

of a frictionless and heat conduction-free flow (Euler equations).

• For small deviations from the thermodynamic equilibrium the Navier-Stokes equa-

tions can be obtained with the help of the Chapman-Enskog development.5

• Using the Boltzmann H-theorem, the Maxwell distribution can be derived and the

entropy defined.5

2.2.3 Lattice Boltzmann Method

The Lattice Boltzmann method (LBM) can be seen both as a further development of the

Lattice Gas methods and as a direct discretization of the Boltzmann equation. In the

following, the Boltzmann equation (2.14) is introduced with the relaxation time approxi-

mation of the collision integral (2.17) while neglecting the field term (no external forces).

First, the phase space of the equation is discretized by introducing discrete velocity vec-

tors and then the equilibrium distribution 2.24 is discretized by Taylor series expansion of

the Maxwell distribution.4,28,29

Discretization of the velocity space ui via the index α

∂fα
∂t

+ ui,α · ∂fα
∂xi

= −fα − f eq
α

τ
, α = 0, 1, ..., N − 1 . (2.25)

29D. ARUMUGA PERUMAL & ANOOP K. DASS. Alex. Eng. J., 54: 955 –971, 2015.
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Figure 2.1: Velocity directions of a fluid cell in the D3Q19 model

Here f(xi, ui, t) changes to f(xi, ui,α, t) = fα(xi, t). While nine discrete velocities

(D2Q9 model) are usually used for LBM calculations of two-dimensional flows, both 15

and 19 discrete velocities (D3Q15/D3Q19 model) are often used for three-dimensional

flows. In this work, the D3Q19 model is used (see Fig. 2.1).

Discretization of the equilibrium distribution 2.24 by Taylor series expansion

f eq
α (n, ui) = win

�
1 +

ui,αvi
a2s

+
(ui,αvi)

2

2a4s
+

vivi
2a2s

�
, (2.26)

with as =
√
2RsT . The normalization factors of the Maxwell distribution are combined

into a direction-dependent weighting factor wi. For the correct representation of the hy-

drodynamic behavior, the second-order term of the Taylor series must be taken into ac-

count. Nevertheless, the discrete Maxwell distribution should only be used for relatively

low flow velocities (Low Mach Number Approximation).29

To solve the system of partial differential equations, the LBM can be interpreted as two

successive steps: The collision step

fα(xi, t+Δt) = fα(xi, t) +
f eq
α − fα
τ

, (2.27)

and the propagation step

fα(xi + ui,αΔt, t+Δt) = fα(xi, t+Δt) . (2.28)

Initial and boundary conditions

Due to their intrinsic kinetic nature, the boundary conditions of the Lattice-Boltzmann

method cannot be directly compared with those of the macroscopic approaches.4 For this
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purpose, suitable microscopic observations must be applied which, on a macroscopic

level, reproduce the corresponding behaviour of Dirichlet or Neumann boundary con-

ditions.

Since the distribution functions in the complex porous geometry are a priori unknown, in

the present work each fluid cell of the three-dimensional lattice is initialized in the state of

equilibrium at zero velocity. Periodic boundary conditions are set at inlet and outlet edges

and the flow is driven by a force field (no pressure gradient) acting only in the direction of

flow. The density, viscosity and magnitude of the external force are specified taking into

account the physical and numerical limitations.4,5

The realisation of the no-slip condition can be achieved in the simplest case with the help

of the so-called bounce-back rule. Here, the distribution function penetrating a cell de-

fined as a solid is reflected in the next time step with opposite direction and thus returned

to the origin node of the fluid cell. Extrapolation and interpolation-based variants of the

bounce-back rule are available in the literature,4,5 which provide a better representation

of the collisions with the walls. In contrast to the simple bounce-back rule, these do not

guarantee complete mass conservation. For the simulations in this study only the simple

bounce-back rule was used.5

2.2.4 Calculation of macroscopic quantities

The moments of the distribution function lead to macroscopic quantities as follows

ρ(xi, t) =

+∞���

−∞

(ui)
0 f(xi, ui, t)dui , density as zero moment, (2.29)

ρ(xi, t)vi(xi, t) =

+∞���

−∞

(ui)
1 f(xi, ui, t)dui , momentum as first moment. (2.30)

In the case of discrete distribution functions, the macroscopic quantities are given by

ρ(xi, t) =
�

α

(ui)
0 f(xi, ui, t) , (2.31)

ρ(xi, t)vi(xi, t) =
�

α

(ui)
1 f(xi, ui, t) . (2.32)

2.2.5 NavierStokes equations

The Navier-Stokes equations (NSE) are the base for second method used in this work to

compute the bulk flow, specifically in Chapter 3.21 In this approach, fluids are treated as

21HECTOR RUSINQUE et al. Comm. Compu. Inf. Sci., 1199: 104–121, 2020.
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a continuum, i.e. when the Knudsen number is significantly less than one (Kn � 1),

which is fulfilled in practice when the mean free path length is significantly shorter than

the characteristic length of the system.

The flow of Newtonian fluids and gases at a continuum level is described using the NSE

with specified initial and boundary conditions

∂ρ

∂t
+

∂(ρui)

∂xi

= 0 , continuity equation, (2.33)

∂ρui

∂t
+

∂ρuiuj

∂xj

= ρki +
∂σij

∂uj

, momentum equation. (2.34)

The splitting of the stress tensor consists of normal stresses caused by pressure forces and

shear stresses induced by viscous, frictional forces, as follows

σij = −pδij + τij , (2.35)

The momentum equation in differential form for the components x1, x2 and x3 is

∂ρui

∂t
+

∂ρuiuj

∂xj

= ρki −
∂p

∂xi

+ µ
∂2ui

∂x2
j

. (2.36)

It is considered here that a pressure p acts on a fluid of density ρ and that fluid layers

located next to each other exert a dissipative force on each other during relative movement,

the amount of which is proportional to the viscosity µ. The contributions of other external

inertial forces are summarized under ki. Thus, an incompressible flow is completely

described by a partial differential equation system with two equations for the two variables

velocity ui and pressure p as a function of position and time.

The flow is incompressible if the density ρ remains constant along a trajectory. Gravity gi

can be assumed as the only external inertial force. From this follows

d

dt
ρ(t, xi(t)) = 0 ⇒ ∂ui

∂xi

= 0 , continuity equation, (2.37)

ρ

�
∂ui

∂t
+ ui

∂ui

∂xj

�
= ρgi −

∂p

∂xi

+ µ
∂2ui

∂x2
j

, momentum equation. (2.38)

2.3 External fields: Electric field

Microscopic Maxwell’s equations

The microscopic Maxwell’s equations link the electric field strength E and the magnetic

flux density B with the charge density ρ (charge per volume) and the electric current

density J (current per area, across which the charges of the electric current flow).
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Gauss’s law
∇ · E =

ρ

�0
. (2.39)

Physical implications: Electric field lines diverge from each other at positive electric

charges and converge to negative charges, i.e. negative charges are sources of the electric

field, while positive charges act as sinks of the electric field.

Gauss’s law for magnetism
∇ ·B = 0 . (2.40)

Physical impications: Magnetic field lines do not diverge, i.e. they have no sources; no

magnetic monopoles exist.

Faraday’s law of induction and extended Ampère’s law

∇× E = −∂B

∂t
, (2.41)

∇×B = µ0

�
J+ �0

∂E

∂t

�
. (2.42)

Physical implications: Electric and magnetic fields are generated by moving electric

charges; changes in the magnetic field induce a vortex of the electric field (see Eqn. 2.41);

changes in the electric field generate vortex of magnetic field (see Eqn. 2.42); the electric

and magnetic fields induce forces on electric charges.

Electrostatic force

The electromagnetic force, known after the Dutch mathematician and physicist Hendrik

Antoon Lorentz as Lorentz force, is the force that a particle of charge q experiences in

a magnetic or electric field. A magnetic field exerts force on moving charges , while an

electric field acts equally on moving and stationary charges.

F = qE+ qv ×B . (2.43)

Here, the charged particle moves with a velocity v; the electromagnetic force can be

seen as the resulting force of two forces: a magnetic force qv × B, and an electric force

qE. The latter is also known as Coulomb force when the magnetic contribution to the

Lorentz force is neglected. For the magnetic force to be negligible, the charges must be

stationary in relation to each other; for slow movements the influence of the magnetic

force is minimal and the Coulomb’s law can still be regarded as approximately correct,

but if the charges move faster in relation to each other, then the full electrodynamic laws
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(including the magnetic force) must be taken into account. This consideration is known as

electrostatic approximation. Further, the charges on the particle must have a spherically

symmetric distribution, i.e. they should be isotropic.

F = qE+ qv ×B (2.44)

The electric field can be derived from the electric potential ϕ as follows

E = −∇ϕ (2.45)

From Gauss’s law 2.39, the Poisson’s equation in the electrostatic approximation is ob-

tained as follows

∇ · E = ∇ · (−∇ϕ) = −∇2ϕ =
ρ

�
, (2.46)

∇2ϕ = −ρ

�
. (2.47)

Solving the Poisson equation boils down to finding the electric potential ϕ for a given

charge distribution ρ.

2.3.1 Hard-sphere-like colloids

Additional information is provided in order to bring more clarity and theoretical back-

ground to the formation of clusters from colloidal dispersions. Here, we consider the

colloidal particles as hard-sphere-like colloids with parameters similar to those used in

earlier works .15,30–32 The long-time self-diffusivity of colloidal dispersions of hard-sphere-

like particles at different volume fractions is computed and graphically represented in

Fig. 2.2.

Here, we used two established values for Φmax, namely the glass transition and the melting

volume fraction at Φg = 0.58 and Φm ≈ 0.63, respectively .33–35 Further, the solid line in

Fig. 2.2 represents the analytical prediction of Brady 33 for the long-time self-diffusivity

when the volume fraction approaches the random-close-packing limit, Φ → Φm � Φrcp.

Strictly speaking, the configuration at the melting volume fraction Φm corresponds to a

loose rcp-like structure. Although there is no general consensus about the exact value

of Φrcp ≈ 0.65 for monodisperse hard-sphere packings, one of the conditions imposed

15MICHAEL P. HOWARD et al. J. Chem. Phys., 149: 094901, 2018.
30PIETER J. IN’T VELD et al. Phys. Rev. E, 79: 10–13, 2009.
31P. R. SCHUNK et al. J. Rheol., 56: 353–384, 2012.
32DAN S BOLINTINEANU et al. Comput. Part. Mech., 1: 321–356, 2014.
33JOHN F. BRADY. J. Fluid Mech., 272: 109–133, 1994.
34CLARA WEIS et al. Sci. Rep., 6: 1–15, 2016.
35HEATHER M. SHEWAN & JASON R. STOKES. J Non-Newton Fluid, 222: 72–81, 2014.
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Figure 2.2: Relative diffusivity vs. solid fraction. Hard-sphere case, the most studied
case in literature.

to the rcp structure is mechanical stability .36,37 This fundamental condition is not ful-

filled by a colloidal rcp-like structure or crystal, as they still have vibrational degrees of

freedom .37–40

From Fig. 2.2, as the colloidal dispersion approaches the freezing volume fraction Φf ≈
0.495, the long-time self-diffusivity moves from the upper viscosity curve that diverges

to the glass transition volume fraction Φg, down to the lower curve that diverges at the

melting volume fraction Φm, passing through the analytical prediction of Brady. Notice

that at the glass transition volume fraction, the dispersion switches from a solid dispersed

in a continuous liquid phase to a liquid dispersed in a continuous solid phase, meaning that

the mechanical behavior of the system switches from being dominated by viscous regions

to elastic regions .34 Thus, the homogeneous dispersion present below the freezing volume

fraction diverges to Φg, whereas the heterogeneous dispersion of NPs and larger rcp-like

clusters that are formed above the freezing volume fraction Φf , diverges to Φm.

36VASILI BARANAU & ULRICH TALLAREK. Soft Matter, 10: 3826–3841, 2014.
37VASILI BARANAU et al. Soft Matter, 12: 3991–4006, 2016.
38JÖRG BAUMGARTL et al. Soft Matter, 4: 2199, 2008.
39ZHENGDONG CHENG et al. Phys. Rev. Lett., 85: 1460–1463, 2000.
40R. S. PENCIU et al. Europhys. Lett., 58: 699–704, 2002.





3 Confinement effects on mass transport and
packing arrangement

This chapter was published in the form of a full paper in the proceedings of the conference

Simulation Science 2019

Hector Rusinque, Eugenia Barthelmie, & Gunther Brenner (2020).
Numerical study of dispersive mass transport in homogeneous and heterogeneous porous media
Communications in Computer and Information Science
Simulation Science 2019, 1199, 104–121.
DOI: 10.1007/978-3-030-45718-1_7 .

3.1 Zusammenfassung

Vielfältige Anwendungen wie z.B. die Ausbreitung eines Schadstoffs in einem Grund-

wasserleiter, der gezielte Wirkstoff-Transport und Lieferung eines Medikaments in ein

gewünschtes Gewebe sowie die Effizienz einer Chromatographiesäule können anhand

mathematischer hochskalierter Modelle abgebildet werden, bei denen die Vorkenntnis von

effektiven materialabhängigen Modellparametern vorausgesetzt ist. Zur Erfüllung dieser

Voraussetzung ist eine umfassende Charakterisierung der zu untersucheden porösen Me-

dien unerlässlich. Dies ist in der Regel aufwändig, da die Stofftransporteigenschaften

stark mit der komplexen Porenstruktur des porösen Mediums korrelieren. Als Modell-

parameter wurden mehrere Deskriptoren vorgeschlagen, wie z.B. die hydraulische Tor-

tuosität in der Kozeny-Carman-Gleichung und die diffusive Tortuosität, deren reziproker

Wert in der deutschen Literatur häufig als Laberynth-Faktor bezeichnet wird. Zur Er-

mittlung dieser Parameter können hochaufgelöste Modelle in Einsatz kommen. Aller-

dings, wenn das poröse Medium eine heterogene Porenstruktur aufweist, dann scheitern

hochaufgelöste Kontinuumsmodelle und empirische Korrelationen daran, den anisotropen

Charakter solcher Medien zu erfassen. Zur Beschreibung von Transportphänomenen in

porösen Medien auf der Porenskala stehen mehrere Modelle zur Verfügung wie zum

Beispiel die Methode der Volumenmittelung (MVA),41–43 die Homogenisierung,44 und die
41STEPHEN WHITAKER. The Method of Volume Averaging. volume 13 Theory and Applications of Trans-

port in Porous Media Kluwer Academic Publishers, 1999. 219
42F.J. VALDES-PARADA & C.G. AGUILAR-MADERA. Chem. Eng. Trans., 24: 1453–1458, 2011.
43HELEN D. LUGO-MÉNDEZ et al. Transport Porous Med., 107: 683–716, 2015.
44ULRICH HORNUNG, editor. Homogenization and Porous Media. volume 6 Interdisciplinary Applied

Mathematics New York: Springer, 1991. 1–279
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thermodynamisch eingeschränkte Mittelwertbildungstheorie,45 welche von einem Konti-

nuumsmedium ausgehen, sowie partikelbasierte Methoden wie Brownsche Dynamik (BD),

Langevin Dynamik unter anderen.22,46–48 In dieser Studie werden die MVA- und BD-

Ansätze zur Modellierung des Stofftransportes im Hohlraum von homogenen bzw. he-

terogenen porösen Materialien eingesetzt. Dabei werden nach Lösung der in jedem Ansatz

involvierten Differentialgleichungen effektive Transportparameter bzw. Deskriptoren der

porösen Struktur aus den gewonnenen porenskaligen Informationen des Mediums be-

stimmt.

In diesem Kapitel werden zunächst die oben genannten Ansätze vorgestellt und ver-

glichen. AnschlieSSend werden heterogene poröse Medien betrachtet, wobei der Einfluss

von Wänden (d.h. räumlichen Einschränkungen) auf die Struktur von eingeschlossenen

Zufallskugelpackungen untersucht wird und wie diese die Massentransporteigenschaften

der porösen Kugelpackung beeinflussen. Darüber hinaus wird die hydraulische Tortuo

sität berechnet und ihre Aussagekraft als Deskriptor für poröse Medien mit der der diff-

usiven Tortuosität verglichen.

Wie man im Ergebnissteil zeigen wird, ist in der strukturierten Geometrie des homogenen

Mediums eine deutliche Korrelation der dispersiven Transporteigenschaften der Medien

mit ihren Tortuositäts- und effektiven Porositätswerten zu erkennen, im Gegensatz zum

heterogenen Medium, in dem keine direkte Korrelation zwischen den betrachteten Pa-

rametern besteht. Dies liegt daran, dass es sich bei den verwendeten Deskriptoren um

Effektivwerte handelt, die nicht in der Lage sind, den dispersiven Effekt zu erfassen, der

durch die ausgeprägte Heterogenität in der mikroskopischen Porenstruktur hervorgerufen

wird. Anstelle von effektiven Parametern wird die Verwendung einer lokalen hydrauli-

schen Tortuosität vorgeschlagen, deren Implementierung zukünftigen Arbeiten überlassen

wird.

Darüber hinaus wurde im Vergleichsabschnitt der MVA- und BD-Ansätze im Fall ho-

mogener poröser Medien festgestellt, wie der MVA-Ansatz die Brownsche Dynamik

sowohl hinsichtlich der Genauigkeit als auch der Rechenzeit übertrifft. Daraus wird

geschlussfolgert, dass diese Methode bei der Beschreibung von homogenen Porenstruk-

turen vorteilhaft ist. Wie bereits erwähnt, ist ein solches Kontinuumsmodell jedoch nicht

in der Lage, die Anisotropie einer heterogenen Porenstruktur (wie z.B. die einer räumlich

eingeschränkten Zufallskugelpackungen) zu reproduzieren.

45WILLIAM G. GRAY & CASS T. MILLER. Adv. Water Res., 28: 161–180, 2005.
22HECTOR RUSINQUE & GUNTHER BRENNER. Microporous Mesoporous Mater., 280: 157–165, 2019.
46TOBIAS HEIDIG et al. Chem. Ing. Tech., 86: 554–560, 2014.
47SIARHEI KHIREVICH et al. J. Chromatogr. A, 1217: 4713–4722, 2010.
48HARUN KOKU et al. J. Chromatogr. A, 1237: 55–63, 2012.
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3.2 Abstract

A modular simulation approach is used to compute the flow of a fluid and the mass trans-

port of tracers in the void space of computer-generated porous packings. Effective trans-

port properties such as the diffusive tortuosity and the dispersion tensor are determined.

First, we present and compare two different approaches to model mass transport in homo-

geneous porous media. Subsequently, heterogeneous porous media are considered, where

we investigate the effect of walls on the structure of confined random sphere packings and

how it affects the mass transport properties of a sphere packing. In addition, the hydraulic

tortuosity is computed and its performance as a descriptor of porous media is compared

with that of the diffusive tortuosity.

3.3 Introduction

A rigorous characterization of porous media is important for the determination of parame-

ters needed in mathematical models that can describe e.g. the spreading of a contaminant

in an aquifer, the successful delivery of a drug in a desired tissue or the efficiency of

a separation process as in column chromatography. Such a characterization is usually

complex, since mass transport properties correlate strongly with the intricate pore struc-

ture of the porous medium. Usually, upscaled models and correlations failed to capture

the anisotropic nature of heterogeneous porous media,49 several descriptors have been

proposed such as the hydraulic tortuosity in the Kozeny-Carman equation.49–53 There are

several models capable of describing transport phenomena in porous media such as the

method of volume averaging (MVA),41–43 Brownian dynamics (BD),22,46–48 homogeniza-

tion,44 and the thermodynamically constrained averaging theory.45 In this study, we used

the MVA and BD approaches in order to describe the motion of molecules diffusing in the

void space of homogeneous and heterogeneous porous materials. After solving the differ-

ential equations involved in each approach, effective transport parameters and descriptors

of the porous structure are determined from the obtained information of the system as will

be explained in detail in the modeling section of this work.

Further, both methods are described and compared considering transport in homogeneous

porous media. Finally, wall effects on mass transport are studied. For this purpose, con-

fined sphere packings were computer-generated and their mass transport properties were

obtained using the BD approach.

49BEHZAD GHANBARIAN et al. Soil Sci. Soc. Am. J., 77: 1461, 2013.
50P.C. CARMAN. Chem. Eng. Res. Des., 75: S32 –S48, 1937.
51J. BEAR. Dynamics of Fluids In Porous Media. v. 1 American Elsevier, 1972.
52CARL FREDRIK BERG. Transport Porous Med., 103: 381–400, 2014.
53S. M.REZAEI NIYA & A. P.S. SELVADURAI. Transport Porous Med., 121: 741–752, 2018.
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3.4 Modeling and numerical approach

We commence by describing the general system with domain Ω ⊂ R3 or in some simula-

tion cases Ω ⊂ R2. It is considered a rigid porous medium (a solid phase Ωs) completely

filled with a fluid phase with domain Ωf . The fluid flows through the porous medium

carrying a solute (passive point-wise species), which in turn moves via diffusion. The

solid phase is assumed impermeable to mass transport.

We combined two simulation steps in both computational approaches (MVA and BD). In

the first step, the velocity field is computed. In the second step, we simulate the mass

transport using the velocity field obtained in the first step, as input.

3.4.1 Computation of the velocity field

We obtained the velocity fields from the numerical solution of the Stokes equation54,55 or

the Boltzmann equation, using the Lattice Boltzman method (LBM).29,56 As all the porous

structures considered are periodic in at least two directions, we used periodic boundary

conditions for the velocity field on the respective boundaries. The no-slip condition for

viscous flow was applied on the walls and solid-fluid interface. A constant external force

was used as driving force inducing the flow. For the LBM, we chose a force so that the

Reynolds number is kept low enough, i.e., Re � 1, to assure creeping flow. Advective

inertial forces are not considered in the Stokes equations per default, resulting in the

following equations

3�

i=1

∂ui

∂xi

= 0 , (3.1)

∂p

∂xj

−
3�

i=1

�
µ
∂2uj

∂x2
i

�
= fj for j = 1, 2, 3. (3.2)

54B.J. KIRBY. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge
University Press, 2010.

55L.G. LEAL. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes.
Cambridge Series in Chemical Engineering Cambridge University Press, 2010.

29D. ARUMUGA PERUMAL & ANOOP K. DASS. Alex. Eng. J., 54: 955 –971, 2015.
56XIAOWEN SHAN. IMA J. Appl. Math., 76: 650–660, 2011.
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We used the open-source computing platform FEniCS57,58 for solving the Stokes equation

and an in-house solver for the LBM.59–61

3.4.2 Computation of the mass transport

The two different approaches presented in this part can be used to simulate mass transport

in porous media. The first approach, the MVA is based on the solution of the volume-

averaged convection-diffusion equation.41–43 The second approach uses Brownian dynam-

ics and is based on the solution of the Langevin equation for passive tracers.22,46–48

Dispersion via the method of volume averaging

Here, we considered the fluid domain Ωf with boundary ∂Ωf = ∂Ωfe∪∂Ωfs. ∂Ωfe stands

for the entrances and exits of the fluid phase, whereas ∂Ωfs represents the fluid-solid

interface. For the fluid domain, the microscale convection-diffusion equation for mass

transport of a scalar (i.e., point-wise) species A is given by

∂CA

∂t
+

3�

i=1

ui
∂CA

∂xi

=
3�

i=1

D∞
∂2CA

∂x2
i

, in Ωf (3.3)

−
3�

i=1

niD∞
∂CA

∂xi

= 0 , at ∂Ωfs (3.4)

CA = Ce(xi, t) , on ∂Ωfe (3.5)

CA = C0(xi) , when t = 0 (3.6)

In the above equations, CA is the molar concentration of species A, D∞ the unbounded

diffusion coefficient (or mixture diffusion coefficient in case of a mixture), ui the velocity

field. The subindex i represents the elements of the velocity vector in Cartesian coordi-

nates, e.g. ui = (ux, uy, uz).

After applying the MVA to the microscopic convection-diffusion equation,41 we obtain the

following upscaled equation for the case of a homogeneous porous medium41,43

57MARTIN S. ALNÆS et al. ACM T. Math. Software, 40: , 2014.
58MARTIN S. ALNÆS et al. Arch. Num. Software, 3: , 2015.
59XIAOYI HE & LI SHI LUO. Phys. Rev. E, 55: 6811–6820, 1997.
60SAURO SUCCI. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathemat-

ics and Scientific Computation). Numerical mathematics and scientific computation Oxford University
Press, USA, 2001.

61DIETER A. WOLF-GLADROW. Lattice-gas cellular automata and lattice Boltzmann models : an intro-
duction. Springer, 2000. 308
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∂�CA�f
∂t

+
3�

i=1

�ui�f
∂�CA�f
∂xi

=
3�

i=1

∂

∂xi

�
D∗

ij

∂�CA�f
∂xj

�
, (3.7)

with j = 1, 2, 3, and dispersion tensor D∗
ij

D∗
ij = D∞


δij +

1

Ωf

�

∂Ωfs

nib
∗
j dA


− �ũib

∗
j�. (3.8)

where ũ stands for the spatial deviation of the velocity field, b∗i is the associated closure

variable and δij the identity matrix.

Closure variable The closure variable solves the following boundary-value problem

in a representative periodic cell.42,43

3�

i=1

ui

∂b∗j
∂xi

=
3�

i=1

�
D∞

∂2b∗j
∂x2

i

�
− ũj, in Ωf (3.9)

with boundary and periodicity conditions for the fluid phase

−
3�

i=1

niD∞
∂b∗j
∂xi

= njD∞, at ∂Ωfs (3.10)

b∗j(xk + lk) = b∗j(xk), k = 1, 2, 3, (3.11)

and following constraint, which is needed for numerical stability and consistency

�b∗j�f = 0. (3.12)

This closure problem (Eq. 3.9-3.12) can be interpreted as a transport equation describing

the convective and diffusive transport of the vectorial entity b∗i with two sources. On the

one hand, we have a convective volume source being the velocity deviation field ũ. This

source can be negative or positive depending on the deviation of the local velocity with

respect to the average velocity. In fact, its average over the volume of the fluid phase Ωf

is zero.41 On the other hand, we have a diffusive surface source niD∞ whose sign depends

on the orientation of the normal vector ni. Similarly, the average value of the surface

source over ∂Ωfs is zero.41

The effective diffusivity Deff
ij and diffusive tortuosity τij are defined using the MVA with

the diffusion equation, i.e., Eq. 3.3-3.6 for the case of no convection ui = 0, as follows

(see averaging procedure by Whitaker in41)
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Deff
ij =

D∞
τij

= D∞


δij +

1

Ωf

�

∂Ωfs

nibj dA


 , (3.13)

where the closure variable bi is obtained from the boundary-value problem

0 =
3�

i=1

�
D∞

∂2bj
∂x2

i

�
, in Ωf (3.14)

−
3�

i=1

niD∞
∂bj
∂xi

= njD∞, at ∂Ωfs (3.15)

bi(xk + lk) = bi(xk), k = 1, 2, 3, periodicity. (3.16)

Note that this implies that the diffusive tortuosity only depends on the geometry of the

porous structure. Further, from the definition of the dispersion tensor (Eq. 3.8), one can

conclude that dispersion not only depends on the geometry of the porous medium but also

on the spatial deviation of the velocity. In fact, for high Péclet numbers, the axial compo-

nent of the dispersion tensor (here Dxx) is strongly dominated by the velocity deviation,

as shown in the results section of this paper. Notice that dispersive transport is not directly

the superposition of convective and diffusive transport but rather the combined dispersive

effect of the spatial deviation of the velocity and diffusion. A simple scenario to illustrate

this phenomenon is a (non-viscous) plug flow where we will not observe any enhance-

ment of the dispersive effect by increasing the Péclet number as the spatial deviation of

the velocity field is zero. In contrast, in case of viscous pipe flow the dispersive effect of

the diffusive transport is combined to that of the deviation of the velocity with respect to

the mean flow velocity. The latter case is known as Taylor dispersion.62

As a descriptor for the hydrodynamic dispersion we have to use one that evaluates the

velocity field. The hydraulic tortuosity τh was used to describe the anisotropy of porous

structures correlating it with e.g. the permeability tensor.49–53 We have computed the hy-

draulic tortuosity according to the following equation.63,64

τhx =
�
�
u2
x + u2

y + u2
z �

�|ux|�
(3.17)

In order to solve the closure problems for b∗ and b, we extended the FEM-based FEniCS

solver.57,58 Thus, after computing the velocity and velocity deviation fields (uj and ũj), the

results are given as input to the b∗-solver.

62R. ARIS. P. Roy. Soc. A. Math. Phy. A, 235: 67–77, 1956.
63A. KOPONEN et al. Phys. Rev. E, 54: 406–410, 1996.
64ARTUR DUDA et al. Phys. Rev. E, 84: 036319, 2011.



34 3 Confinement effects on mass transport and packing arrangement

Dispersion via Brownian dynamics

We define the equation of motion of a tracer with position xi and velocity vi, which moves

in the fluid phase through the porous network. This is given by the Langevin equation

m
∂vi
∂t

=
�
2γs kBTWi(t)− γs (vi − ui)−

∂U

∂xi

, i = 1, 2, 3, (3.18)

where m is the mass of the tracer, γs is the drag coefficient, and U(xi) the particle in-

teraction potential whose negative gradient −∂U/∂xi represents the force induced by the

potential. T and kB stand for the temperature and Boltzmann constant, respectively.

The first term on the right side of the equation represents the thermal-driving force whose

stochastic behavior is modeled by Gaussian noise Wi(t), a normally distributed random

number with zero mean µ = 0 and variance σ2 = 1.24,25 The thermal force accounts for

the effect of the solvent on the tracer.

The second term on the right represents the drag force, which is proportional to the relative

velocity of the particle with respect to the bulk flow (vi − ui).

Here, inertial effects can be neglected since the time scale considered spans from the in-

ertial ballistic regime all the way to the diffusive regime.23,65 This is supported by the fact

that the average motion of a Brownian particle over time and the average over the parti-

cle ensemble are analogous according to the ergodic hypothesis,66,67 because all effective

quantities computed are an average over the total number of tracers. Furthermore, no in-

teraction potential U is considered since we want to model transport of passive scalars as

in the case of the volume-averaged convection-diffusion equation discussed in the previ-

ous section. Applying these simplifications and the term vi =
dxi

dt
the equation of motion

can be rewritten to

0 =
�

2γs kBTWi(t)− γs

�
dxi

dt
− ui

�
, (3.19)

with initial conditions as follows

xi = X0,i , when t = 0 , (3.20)

vi = V0,i , when t = 0 , (3.21)

24H G SCHUSTER & WOLFAM JUST. Deterministic Chaos. Wiley, 1994.
25GIORGIO VOLPE & GIOVANNI VOLPE. Am. J. Phys., 81: 224–230, 2013.
23HECTOR RUSINQUE et al. J. Aerosol Sci., 129: 28–39, 2018.
65XIN BIAN et al. Soft Matter, 12: 6331–6346, 2016.
66L. BOLTZMANN. Vorlesungen über Gastheorie (translated into English as "Lectures on Gas Theory". )

Vorlesungen über Gastheorie J. A. Barth, 1898.
67W. M. DEEN. AIChE Journal, 33: 1409–1425, 1987.
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where X0,i and V0,i are vectors containing the initial positions and velocities, respectively.

Note that in Brownian dynamics (BD) the temperature can be controlled as with a ther-

mostat, thus approximating the canonical ensemble. The above initial-value problem was

numerically integrated by applying the leapfrog method68 using an in-house C++ code

parallelized with MPI and OpenMP. The velocity field of the bulk flow ui was taken from

the solution of the LBM.

By tracking the position of the particles with the Lagrangian method, one can compute

the mean square displacement �Δx2
ij(t)� of the particle ensemble

�Δx2
ij(t)� =

1

N

N�

n=1

(xn
i (t)− �xi(t)�)(xn

j (t)− �xj(t)�) , (3.22)

where �...� indicates averaging over the tracer ensemble and N is the number of tracer

particles. From its time derivative, the elements of the dispersion tensor Dij can be cal-

culated69

Dij =
1

2

d

dt
�Δx2

ij(t)�. (3.23)

Notice that the off-diagonal elements of the dispersion tensor (Dij for i �= j) vanish when

the axial and radial axes of the diffusion ellipsoid coincide with the frame of reference of

the diagonal terms of the tensor.70 In the present work this is approximately the case, since

the axial axis of the diffusion ellipsoid is predetermined by the selected main direction of

the bulk flow.

In this study, only the transport of passive scalar tracers is considered. Deviations from

scalar transport can be observed, e.g. when the pore size comes too close to the tracer par-

ticle size,22,67,71 or the tracer shape diverges strongly from a sphere, as well as when pair-

wise interactions between the diffusing particles are strong and cannot be neglected.72–74

3.5 Results and discussion

3.5.1 Mass transport in homogeneous porous media: Comparison of the
MVA and BD approaches

The flow through an arrangement of in-line cylinders is considered (see Fig. 3.1). The

porosity was varied by increasing the cylinder diameter.

68GUIHUA ZHANG & TAMAR SCHLICK. Mol. Phys., 84: 1077–1098, 1995.
69N. HOZE & D. HOLCMAN. bioRxiv, 227090, 2017.
70D.K. JONES. Diffusion MRI. Oxford University Press, 2010.
71PANADDA DECHADILOK & WILLIAM M. DEEN. Ind. Eng. Chem. Res., 45: 6953–6959, 2006.
72ROBERT EVANS et al. Anal. Chem., 90: 3987–3994, 2018.
73JIE XIAO & XIAO DONG CHEN. AIChE Journal, 60: 2416–2427, 2014.
74PETR DVOŘÁK et al. Mol. Phys., 8976: , 2018.
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As required by the definition of the closure variables b and b∗ in the MVA, the system

consists of a representative periodic unit cell of the homogeneous porous medium con-

sidered. The relative values of the radial and axial dispersion coefficients with respect

to the free (unbounded) diffusion coefficient (Dxx/D∞ and Dyy/D∞, respectively) were

determined with increasing Péclet number (ratio of convection to diffusion).

(a) (c) (b) 

Figure 3.1: Periodic unit cell of the in-line cylinder arrangements with a graphic repre-
sentation of the velocity field for three porosity values. The distance in the x and y axes,
and velocities were normalized by the maximal magnitude of the distance and velocity
field, respectively, and are hence dimensionless. ε stands for the porosity of the cells

Dispersion regimes

Low Péclet numbers Pe < 1 (i.e., low bulk-flow velocities) this dispersion regime

is controlled by diffusion, as convection is weak here. Thus, in this range, the value of

the dispersion coefficients is determined solely by the geometry of the porous structure,

making the diffusive tortuosity the descriptor par excellence for this region. In fact, the

relative dispersion coefficients, Dxx/D∞ and Dyy/D∞, converge to the reciprocal value

of the diffusive tortuosity (τ−1
xx and τ−1

yy ) as the Péclet number (Pe) goes to zero. This can

be clearly seen in Figure 3.3 in comparison to the values of the diffusive tortuosity shown

in Table 3.1. The diagonal components of the tensor of diffusive tortuosity τii assume the

same value since the porous medium is isotropic, i.e., τxx = τyy.

The diffusive tortuosity is related to the degree of diffusive paths obstructed by obstacles

(the solid boundaries of the pores). For this reason, its reciprocal value is also known in

literature as obstruction factor. In general, the diffusive tortuosity has a hindering effect on

dispersion, i.e., the higher the tortuosity the lower the value of the dispersion coefficient

in this diffusive regime (see Eqn. 3.13).

High Péclet numbers Pe > 1 (i.e., high bulk-flow velocities) Here the axial disper-

sion is dominated by the spatial deviations of the velocity field. Two main dispersion

phenomena can be distinguished that are caused by these spatial deviations. The first is
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due to velocity gradients between the different stream paths along the porous medium

(e.g. trans-column, trans-channel, inter-channel, and Taylor dispersion62). The second

effect is induced by the splitting of the flow paths and is known as mechanical dispersion.

These phenomena have an enhancing effect on the dispersion coefficients.
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Figure 3.2: Axial dispersion coefficients as a function of the Péclet number in the in-line
cylinder arrangements considered.
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Figure 3.3: Radial dispersion coefficients as a function of the Péclet number in the in-line
cylinder arrangements considered (see legend in Figure 3.2).

Since the velocity field is the determining parameter in this hydrodynamic regime, we

will try to establish a connection between the dispersion coefficient and the hydraulic

tortuosity in the next section.

Diffusive vs. hydraulic tortuosity

The diffusive and hydraulic tortuosity values are shown in Table 3.1. It is observed that an

increase in porosity leads to a higher diffusive tortuosity, which inversely correlates with
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the dispersion coefficient in the diffusive regime (Pe < 1) as explained above. Regarding

the hydrodynamic regime, at Pe > 1, an increase of the hydraulic tortuosity is likewise

observed as the porosity increases. Here, the axial dispersion coefficient increases with

increasing hydraulic tortuosity and increasing porosity. This correlation is so strong that

the order of the axial dispersion coefficients by porosity reverses at about Pe = 1. How-

ever, the sensitivity of the hydraulic tortuosity is very small as can be seen from the fact

that the hydraulic tortuosity decreases only slightly by the increase of porosity.

The radial dispersion coefficient shows a more complex behavior, as the radial velocities

of the bulk flow are significantly lower than the axial velocities. Consequently, at high

Péclet numbers both the spatial deviation of the velocity as well as the diffusion determine

the dispersive transport.

Table 3.1: Selected descriptors of the porous structure of the in-line cylinders. The diffu-
sive tortuosity values presented were computed with the MVA approach.

ε [−] τ−1
xx [−] τxx [−] τhx [−]

0.37 0.545 1.83 1.0196

0.50 0.649 1.54 1.0192

0.80 0.833 1.20 1.0189

0.95 0.952 1.05 1.0143

MVA vs. BD

As shown in Fig. 3.2 and 3.3, the results delivered by both methods are in good agreement

with each other. Only in the case of the radial dispersion at ε = 0.37 (see Fig. 3.3) a slight

discrepancy was observed. This might be explained by the fact that the geometry used in

the BD approach shows a higher diffusive tortuosity of 1.88 (as can bee seen in Fig. 3.2

as the Pe number approaches zero), as opposed to the tortuosity value of 1.54 obtained in

the MVA approach. Another explanation may be the slight differences in the geometry of

the system due to the different discretization methods used/related in/to each approach.

Both approaches are able to deal with homogeneous porous media. In terms of computa-

tional performance MVA is significantly faster, since only one set of differential equations

is solved for each calculation of the dispersion coefficient at a given Péclet number. Just

as expected from a deterministic differential equation, MVA always delivers the same

numerical results which are subject to classical numerical errors, e.g. involving the num-

ber of nodes of the mesh. In contrast, when using BD we have to solve the equation of

motion for each particle of the ensemble considered in the calculations. We compute the

trajectories of 106 tracers so that the fluctuations in the solution do not alter the first three
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significant digits of the dispersion coefficient and diffusive tortuosity values. Further-

more, the BD approach can handle mass transport in heterogeneous porous media, since

no representative periodic unit cell is needed. This method is ideal for small systems

where boundary effects cannot be neglected. In addition, when the BD method is used

in combination with the LBM, we get a mesh-free simulation approach, which can be of

great advantage for complex geometries.

3.5.2 Mass transport in heterogeneous porous media: Confinement effects

(a) (c) (b) 

Figure 3.4: At the top the sphere packings of finite H/d-ratios are shown. Below, char-
acteristic pathlines close to the wall (z ≈ 0) and in the middle of the packing (z = H/2)
are plotted for each packing, respectively.

This section outlines the dispersion in heterogeneous porous structures consisting of con-

fined random sphere packings. Confinement effects on mass transport are particularly

important in column chromatography and can be split into two effects. The first one is

directly related to the highly ordered structure present in the immediate vicinity of the

wall, as opposed to the highly disordered configuration present in the bulk of the packing,

known as random close packing (RCP).75 This effect alters the tortuosity of the pathlines

75R. ANDREW SHALLIKER et al. J. Chromatogr. A, 888: 1–12, 2000.
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affecting the mechanical dispersion. The second wall effect emerges from the steep ve-

locity gradient induced by the presence of the wall, which in turn has an enhancing effect

on the hydrodynamic dispersion. This contribution to dispersion is also known as trans-

column dispersion in literature.76

The investigated packings were generated numerically with different ratios of packing

height to sphere diameter H/d (see Fig. 3.4, which takes part of the images published in

the Master thesis by Rusinque 77). The dispersion coefficients at different Péclet numbers

were computed using the BD approach. The packings were generated using the open-

source software RCP provided by Desmond et al.78 In contrast to the previous case, here

the effective porosities were set approximately constant at 0.375± 0.005. Each diameter

was spatially resolved with 35 lattice cells. The results of the dispersion coefficients are

shown in Fig. 3.5 and 3.6.

Confinement effect

The confinement effect on the arrangement of the spheres can be seen in Fig. 3.4. Here,

as mentioned above, the walls constrain the spheres to a highly ordered arrangement. The

influence of the walls on the structure of the medium is in the range of 4 to 5 sphere diam-

eters.79 Outside this region, the characteristic structural disorder of a RCP configuration

prevails. This effect can be seen in the porosity profile along the axis perpendicular to the

walls (here referred to as the z-axis) of the generated packings: the porosity profiles are

supported by the projections of the sphere centers right below each profile in Fig. 3.8.

76STEFAN BRUNS et al. J. Chromatogr. A, 1318: 189–197, 2013.
77HECTOR RUSINQUE et al. Skalenauflösende Berechnung der Diffusion und hydrodynamischen Disper-

sion in inhomogenen porösen Medien. Technische Universität Clausthal, 2016.
78KENNETH W. DESMOND & ERIC R. WEEKS. Phys. Rev. E, 80: 051305, 2009.
79ROBERT S. MAIER et al. Phys. Fluids, 15: 3795–3815, 2003.
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Figure 3.5: Axial dispersion coefficients as a function of the Péclet number in the sphere
packings considered.
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Figure 3.6: Radial dispersion coefficients as a function of the Péclet number in the sphere
packings considered.

The narrowest packing examined in this study has a height of 6 sphere diameters which

is why the entire packing is characterized by an ordered structure. The case of an un-

confined sphere packing, i.e. H/d −→ ∞, is modeled by introducing periodic boundary

conditions. The porosity profile of the narrowest packing shows pronounced fluctuations

that are regularly spaced along its entire extent in the z-axis (see Fig. 3.8a), whereas the

porosity fluctuations of the periodic packing are smaller and homogeneously distributed,

see Fig. 3.8d.

To illustrate how the difference in structural disorder between these two extreme cases

affects the convective motion of the tracers, we plotted pathlines near the wall at z ≈ 0
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and those in the middle of the packing at z = H/2 (see Fig. 3.4 and 3.7). The pathlines

of the periodic packing (H/d −→ ∞) were also graphically depicted in Fig. 3.7e.

The packings with H/d ratios of 8 and 10 have different volume proportions of ordered

and disordered pore regions. The presence of two pore regions with different structures in

the same packing leads to the development of two significantly different flow conditions

in each region, which results in strongly heterogeneous velocity profiles; heterogeneous

not only in terms of magnitude but in the tortuosity of the stream paths along the pore

network. This in turn leads to a strong dispersion of the diffusing tracers, i.e., to large dis-

persion coefficients. Both, the infinitely extended packing and the narrowest packing have

mainly only one characteristic pore region, i.e., a lesser degree of heterogeneity, which

explains their lower dispersion coefficients (see Fig. 3.5 and 3.6). Similar results were

obtained in the experimental work of Bruns et al., 2013, for column chromatography with

varying ratio of the column diameter to the mean particle diameter.76

Diffusive vs. hydraulic tortuosity

Regarding the selected descriptors, the diffusive tortuosity remains approximately con-

stant around 1.4 for all the packings considered, see Table 3.2. This is a direct conse-

quence of the fact that the effective porosity was set as constant. These results show

the strong correlation of the diffusive tortuosity with the effective porosity of the sphere

packings.

Table 3.2: Selected descriptors of the porous structure of the sphere packings. The tortu-
osity values have a standard deviation of 0.03.

H/d [−] τ−1
xx [−] τxx [−] τhx [−]

6 0.694 1.44 1.2328
8 0.694 1.44 1.2455
10 0.694 1.44 1.2486
∞ 0.685 1.46 1.2723

In contrast, the hydraulic tortuosity increases slightly with increasing packing height.

However, as the descriptors are average (effective) values, neither of them is suitable to

capture the contribution of the heterogeneity in the structure to the dispersive mass trans-

port. As opposed to the homogeneous case, where the hydraulic tortuosity directly cor-

relates with the dispersion coefficient, here an indirect correlation between these two pa-

rameters is observed, meaning that the porous structure with the largest value of hydraulic

tortuosity showed the smallest dispersion coefficient, namely the unconfined sphere pack-

ing with H/d −→ ∞.
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From the results it can be deduced that in cases where heterogeneity is strongly pro-

nounced in the structure of a porous medium, effective descriptors are not well suited to

describe the dispersive mass transport in the medium. Instead, a spatial distribution or

a probability distribution of the local hydraulic tortuosity could be used, whose standard

deviation captures the degree of heterogeneity of a porous medium. A spatial distribution

can be achieved by applying Eq. 3.17 to each plane along a selected axis, from which

a tortuosity profile could be represented (analogous to the porosity profiles in Fig. 3.8).

A probability distribution could be attained by calculating the tortuosity and occurrence

of individual pathlines. These pathlines can be obtained e.g. using a particle tracking

method.

According to the results, the degree of heterogeneity of a porous medium governs disper-

sion against the (effective) diffusive and hydraulic tortuosity in confined sphere packings

at high Péclet numbers.

In a qualitative analysis, we can take the values of the narrowest confined packing H/d =

6 and the unconfined packing H/d −→ ∞ as characteristic tortuosity values of the wall

and bulk regions of a packing, respectively. Here, the wall region is to be understood as

the region where the ordered configuration induced by the wall is present, whereas the

bulk region is the region in which the RCP configuration is found. So we can express the

hydraulic tortuosity of the larger confined packings as the volume-weighted average of

the characteristic tortuosity values. In this way, the degree of heterogeneity is related to

the volume fractions of each characteristic region, where a volume fraction of one or zero

indicates a homogeneous medium.

3.6 Conclusions

With the presented approaches we were able to determine and discuss the transport prop-

erties of the homogeneous and heterogeneous porous media considered. In the structured

geometry of the homogeneous case, a clear correlation of the dispersive transport proper-

ties of the media with their tortuosity and effective porosity values can be seen, as opposed

to the heterogeneous case, where there is no direct correlation between the considered pa-

rameters. The reason is attributed to the fact that the used descriptors are effective values

not capable of capturing the dispersive effect induced by the degree of heterogeneity in the

microscopic porous structure. Instead of effective parameters, the use of a local hydraulic

tortuosity is proposed, the implementation of which will be left to future work.

In addition, the MVA and BD approaches were compared in the section of homogeneous

porous media. Here, the method of volume average outperformed Brownian dynamics in
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terms of both precision and computational performance.
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Figure 3.7: (a)–(d) show selected views of the pathlines in the sphere packing with H/d =
6: close to the wall at z ≈ 0 in (b) and (d), and in the middle of the packing at z = H/2
in (a) and (c). Additionally in (e), a portion of the periodic sphere packing and its related
pathlines are presented.



46 3 Confinement effects on mass transport and packing arrangement

Figure 3.8: Porosity profiles along the z-axis and projections of the sphere centers on a
plane perpendicular to the walls, also along the z-axis from left to right.



4 Hindering effect of pore size on mass transport in
porous media

This chapter was published in the form of a full paper in the scientific journal of Microp-

orous and Mesoporous Materials

Hector Rusinque and Gunther Brenner (2019).
Mass transport in porous media at the micro- and nanoscale: A novel method to model hindered diffusion
DOI: 10.1016/J.MICROMESO.2019.01.037 .

4.1 Zusammenfassung

Im vorliegenden Kapitel wird eine Methode zur Beschreibung des Massentransports in

porösen Medien vorgestellt. Ingenieurwissenschaftliche Ansätze zur Beschreibung des

Massentransports basieren auf MittelwertgröSSen wie dem effektiven Diffusionskoef-

fizienten.80 Dieser unterscheidet sich vom (Bulk-)Diffusionskoeffizienten, da er externe

Faktoren berücksichtigt, welche die Bewegung der diffundierenden Moleküle beeinflussen,

z. B. die sterische Hinderung, die Tortuosität und die durch Konvektion bedingte Disper-

sionsverstärkung.

Der hier vorgestellte Ansatz basiert auf einer porenskaligen Simulation der Transport-

prozesse, die im Hohlraum eines nanoporösen Materials ablaufen. Dies erfordert eine

räumliche Auflösung auf der Nanoskala, wo herkömmliche kontinuumsmechanische CFD-

Modelle versagen können.Stattdessen wird die Lattice-Boltzmann-Methode (LBM) ver-

wendet, um Mikro- und Nanoströme zu berechnen.29,56 LBM ist ein partikelbasierter pro-

babilistischer Ansatz, der eine diskretisierte Form der Boltzmann-Gleichung löst, d. h.

eine Transportgleichung für seine primär zu untersuchende Variable: die Ein-Partikel-

Wahrscheinlichkeitsverteilungsfunktion (PPDF, vom englischen "one-particle probabi-

lity distribution function"). Nach Integration der Transportgleichung über den Phasen-

raum wird ein Kollektiv von wechselwirkenden Teilchen rekonstruiert. Dessen zentraler

Term ist der Kollisionsterm, der die vom Modell angewandten Wechselwirkungsregeln

vorgibt, z. B. nur binäre Kollisionen und die Annahme von molekularem Chaos (siehe

Kapitel 4.1). In einem nachfolgenden Simulationsschritt wird das aus dem LBM-Solver
80ALEXANDER BUFE et al. Chem. Ing. Tech., 89: 1385–1390, 2017.
29D. ARUMUGA PERUMAL & ANOOP K. DASS. Alex. Eng. J., 54: 955 –971, 2015.
56XIAOWEN SHAN. IMA J. Appl. Math., 76: 650–660, 2011.
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gewonnene Geschwindigkeitsfeld (die ortabhängigen Geschwindigkeiten des Lösemit-

tels) als Eingabe für die Bewegungsgleichung der gelösten Moleküle verwendet. In

früheren Studien wurden ähnliche Methoden zur Berechnung des Obstruktionsfaktors81

und der effektiven Diffusivität in porösen Medien46–48 verwendet, wobei die gelösten

Moleküle auf punktweise skalare Tracer reduziert werden. In diesen Methoden wird

die Wechselwirkung zwischen den diffundierenden Partikeln und der Porenwand durch

spiegelnde oder diffuse Reflexion des Tracers an der Porenwand erfasst. Im Gegen-

satz dazu wird hier nicht nur die Reflexion an der Wand, sondern auch die hinderliche

Wirkung des durch die nahe gelegenen Wandatome induzierten Kraftfeldes auf die Dif-

fusivität der gelösten Moleküle berücksichtigt. Dies wird durch ein neuartiges Wandhin-

derungsmodell auf Basis des Lennard-Jones-Potentials für den Fall von van-der-Waals-

Wechselwirkungen zwischen gelösten Molekülen und Wandatomen modelliert, bei denen

keine physikalische Adsorption an den Porenwänden stattfindet. AnschlieSSend wird die

Validierung des Modells mit Hilfe von experimentellen und numerischen Daten aus der

Literatur erfolgreich durchgeführt.

Darüber hinaus wird eine Anpassungsfunktion vorgestellt, die zur Abschätzung des Dif-

fusionshinderungsfaktors einer komplexen Geometrie verwendet werden kann, wenn die

PorengröSSenverteilung des porösen Netzwerks bekannt ist. SchlieSSlich wird ein Mul-

tiskalenansatz vorgestellt und mit einem Anwendungsbeispiel illustriert, wobei die Hin-

dernisfaktoren der Mikro- und Nanoskala in den Simulationen des Stofftransports auf der

gröSSeren Skala verwendet werden.

4.2 Abstract

Mass transport in liquid-filled pores at the micro- and nanoscale can play an important role

in applications such as membrane separations, chromatography, and catalytic processes.

In this work, we use Brownian dynamics in order to describe the motion of spherical

solute molecules at a pore-scale. The method can be used to calculate effective param-

eters intrinsically related to the porous medium such as the effective diffusivity and the

hindrance factor for diffusion. The latter is calculated using a novel probabilistic model

derived in the present study, which uses the Lennard-Jones potential to reproduce the

hindering effect of the interaction between solute molecules and the wall atoms on the

diffusivity. In addition, we introduce a fitting function that can be used to estimate the

diffusive hindrance factor of a complex geometry when the pore size distribution of the

porous network is known. Finally, a multiscale approach is presented and illustrated with

81SIARHEI KHIREVICH et al. J. Chromatogr. A, 1218: 6489–6497, 2011.
46TOBIAS HEIDIG et al. Chem. Ing. Tech., 86: 554–560, 2014.
47SIARHEI KHIREVICH et al. J. Chromatogr. A, 1217: 4713–4722, 2010.
48HARUN KOKU et al. J. Chromatogr. A, 1237: 55–63, 2012.
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an application example, whereby the hindrance factors of the micro- and nanoscale are

used in the simulations of the mass transport at the larger scale.

4.3 Introduction

In this study, a method for the quantification of mass transport in porous media is pre-

sented. Engineering approaches to describe mass transport are based on average quan-

tities such as the effective diffusivity.80 This differs from the (bulk) diffusion coefficient,

as it captures external factors influencing the motion of the diffusing molecules, e.g. the

steric hindrance, the tortuosity and dispersion enhancement due to convection.

The present approach is based on a pore-scale simulation of the transport processes oc-

curring within the void space of a nanoporous material. This requires a spatial resolution

at the nanoscale, where conventional continuum mechanics models can fail. Instead, the

Lattice Boltzmann Method (LBM) is used to compute micro- and nanoflows.29,56 In a sub-

sequent simulation step, the velocity field obtained from the LBM solver is given as input

to the equation of motion of the particles (the solute molecules).

In previous studies, similar methods were used to calculate the obstruction factor81 and

the effective diffusivity in porous media ,46–48 whereby the solute molecules are reduced to

pointwise scalar tracers. In these methods, the interaction between the diffusing particles

and the pore wall is captured by specular or diffuse reflection of the tracer from the pore

wall. In contrast, we consider not only the reflection on the wall but also the hindering

effect of the force field induced by the nearby wall atoms on the diffusivity of the solute

molecules. This is simulated by means of a novel wall hindrance model based on the

Lennard-Jones potential.

The diffusivity of a species is related to its molecule size via the Stokes-Einstein equation

D∞ = kBT/γs. There are several correction factors found in the literature regarding

aspects such as the shape of the solute molecule, degrees of freedom, binding interactions

with the solvent itself, and the effect of the solute concentration, among others.72–74 In

this study, only the deviation from unbounded diffusion D∞ due to the influence of the

wall atoms is considered. This influence also accounts for the steric effects that a soft

spherical molecule experiences when passing through a narrow pore. The hindrance to

diffusion due to particle-wall interactions has been studied mainly for well-defined pore

72ROBERT EVANS et al. Anal. Chem., 90: 3987–3994, 2018.
73JIE XIAO & XIAO DONG CHEN. AIChE Journal, 60: 2416–2427, 2014.
74PETR DVOŘÁK et al. Mol. Phys., 8976: , 2018.
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geometries,71,82–84 as well as for intricate pore networks such as those found in the void

space of packed beds85 or biological tissues.86 While normally, the hindrance factor for

diffusion is given as a function of the reduced molecule diameter 2rm/x (the ratio of

the molecule diameter 2rm to the pore size x), in this work we introduce an additional

parameter, namely the average bond length among the atoms of the solid phase Lww which

affects the strength of the particle-wall interactions (see Figure 4.1).

The presented method will be derived and verified by means of experimental data from

literature. Based on this, mass transport within straight cylindrical pores and packed beds

with different pore scales is considered and effective parameters for the description of this

transport phenomenon are discussed.

4.4 Modeling and Numerical Approach

4.4.1 Equation of Motion of a Particle Ensemble: Mass Transport in Pores

There are models that can be used to simulate the mass transport of pointwise passive

scalars in complex geometries, such as the Convection-Diffusion equation87 and the Ran-

dom Walk Particle Tracking Method.47 However, the behavior of passive scalars can devi-

ate strongly from that of solute molecules. Our objective here is to derive an equation of

motion that can reproduce the steric effects and hindrance to diffusion that an ensemble

of solute molecules experiences in bounded spaces.

A system is considered, which consists of three molecular entities, namely spherical so-

lute molecules and wall atoms, as well as solvent molecules. The wall atoms constitute

a porous medium whose pores are filled with a liquid consisting of the mixture of solute

and solvent molecules. The motion of the solute molecules is induced by their interac-

tions with the other molecular entities and with each other. Here, we assume that the

mean strength of the interactions occurring in the solution is the same between all the

molecules of the mixture, resulting in the long-range solute-solute interactions approxi-

mately canceling each other out (concept of an ideal solution). Furthermore, it is assumed

that the solvent molecules are significantly smaller than the solute molecules, so that the

the interactions between a solute molecule and the solvent can be modeled according to

the fluctuation-dissipation theorem that quantifies the relation between the fluctuations in

71PANADDA DECHADILOK & WILLIAM M. DEEN. Ind. Eng. Chem. Res., 45: 6953–6959, 2006.
82ROBERT E BECK & JEROME S SCHULTZ. Biochim. Biophys. Acta, 255: 273–3, 1972.
83EUGENE M RENKIN. J. Gen. Physiol., 38: 225–243, 1954.
84M. P. BOHRER et al. Hindered Diffusion of Dextran and Ficoll in Microporous Membranes. volume 17

1984. 1170–1173
85CHARLES N. SATTERFIELD et al. AIChE Journal, 19: 628–635, 1973.
86JADER ALEAN et al. J. Food Eng., 233: 28–39, 2018.
87C.E. BAUKAL et al. Computational Fluid Dynamics in Industrial Combustion. Industrial Combustion

Taylor & Francis, 2000.
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a system at thermal equilibrium and its response to applied perturbations. When a solute

molecule moves through the solvent, it experiences drag, dissipating kinetic energy. The

solvent molecules respond to this perturbation by turning the dissipated energy into ther-

mal motion (the corresponding fluctuation). This phenomenon can be used to describe

diffusion as given by the Einstein relation (the ratio of the thermal driving force to its

counteracting force, the drag)13

D =
kBT

γ
. (4.1)

The force induced by thermal motion on the particle can be interpreted as a body force

equals to the negative gradient of the chemical potential, − ∂µ
∂xi

≈ − ∂
∂xi

(kBT lnC),13

where C stands for the particle concentration. Further, the drag force is proportional

to the relative velocity of the solute molecule with respect to the bulk flow velocity with

a proportionality factor γ, the drag coefficient. For the special case of an unbounded so-

lution, this coefficient can be modeled by the Stoke’s law γs = 6πηrs, where η stands

for the viscosity of the unbounded solvent and rs for the hydrodynamic radius of a solute

molecule.

With the assumption of an isothermal fluid and considering a particle ensemble consisting

of N solute molecules in an unbounded fluid, this yields for the k-th particle

m
∂vi
∂t

= −kBT
∂ lnC

∂xi

− γs (vi − Ui) , (4.2)

where Ui stands for the bulk flow velocity.

After considering the solute-solute and solute-solvent interactions, the only interaction

left affecting the motion of a given solute molecule is the interaction with the wall atoms

of the porous medium. Here, we assume van der Waals interactions, which can be ap-

proximated using the negative gradient of the Lennard-Jones potential ϕw
88

ϕw(rw) = 4�sw

��
σsw

rw

�12

−
�
σsw

rw

�6
�
, (4.3)

where r is the distance between two interacting particles, � is the depth of the potential

well (usually referred to as ’dispersion energy’), and σ is the distance at which the particle-

particle potential energy ϕ is zero (often referred to as ’size of the particle’). Let us now

take a look at how the introduction of the wall field affects the other interactions. The

presence of the wall potential changes the chemical environment of the solvent and solute

molecular entities. This change has an effect on the chemical potential gradient as well as

13A. EINSTEIN. Ann. d. Phys., 322: 549–560, 1905.
88J. E. JONES. P. Roy. Soc. A. Math. Phy. A, 106: 463–477, 1924.
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on the drag exerted by the solvent, both in the radial direction (perpendicular to the wall).

Consequently, γs must be replaced by a general location-dependent γ. For a finite number

of solute-wall interactions (Mk), this leads to the following equation

m
∂vi
∂t

= −kBT
∂ lnC

∂xi

− γ (vi − Ui)−
Mk�

j=1

∂ϕw(r
j
w)

∂xi

. (4.4)

Now, let us define a local diffusion coefficient Dlocal(rw) dependent on the distance to the

wall rw, as follows

Dlocal(rw) = κd(rw)D∞ =
kBT

γ(rw)
, (4.5)

where γ(rw) consists of the wall potential-independent drag γs and a wall potential-

dependent term κd(rw),

γ(rw) = γs/κd(rw). (4.6)

In the following, we will call the wall potential-dependent term κd, the local correction

factor for diffusion. From Eq. 4.6, Equation 4.4 can be rearranged to

m
∂vi
∂t

= −kBT
∂ lnC

∂xi

− γs/κd (vi − Ui)−
Mk�

j=1

∂ϕw(r
j
w)

∂xi

, (4.7)

In the present method it is assumed that the solute moelcules do not generate microflows

due to their interactions with the solvent. This can be taken into account by introducing a

further correction factor to the drift term (affecting the bulk flow velocity Ui). This factor

is called the lag coefficient κc and is assumed to be dependent only on the hydrodynamic

radius rs and the wall-distance rw (wall potential-dependent).67,71 κc is defined as the ratio

of the perturbed flow velocity to the unperturbed flow velocity evaluated at the particle

center. From Eq. 4.1 and adding the drift correction κc, Equation 4.7 rearranges to

mκdD∞
kBT

∂vi
∂t

= −κd
D∞
C

∂C

∂xi

− vi + κcUi −
κdD∞
kBT

Mk�

j=1

∂ϕw(r
j
w)

∂xi

. (4.8)

We now group the individual wall potentials into an integral wall potential Φw affecting

the k-th particle as follows

Φw =

Mk�

j=1

ϕw(r
j
w). (4.9)

Averaging Procedure By averaging over the particle ensemble, it yields

67W. M. DEEN. AIChE Journal, 33: 1409–1425, 1987.
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mD∞
kBT

�κd
∂vi
∂t

� = −D∞
�C��κd

∂C

∂xi

� − �vi�+ �κcUi� −
D∞
kBT

�κd
∂Φw

∂xi

�. (4.10)

An instantaneous quantity of a given molecule (e.g. its velocity) can be averaged over a

particle ensemble at a given instant, or equivalently, over a long time observing the same

particle.66,67 Building on this, we can consider an averaging of instantaneous quantities, ψ

and ξ, whereby these are decomposed into time-averaged and fluctuating components (a

concept first introduced by Reynolds, 198589 in the continuum mechanics).

ψ(t, xi) = �ψ�+ ψ�, (4.11)

�ξ(t, xi)ψ(t, xi)� = �ξ��ψ�+ �ξ�ψ��. (4.12)

As the location and chemical nature of the wall atoms do not change in time, the force

fields induced by their potentials are time-independent, meaning that the fluctuation com-

ponents of κd and κc fall to zero. Taking into account these considerations, with average

hindrance factors Kd = �κd� and Kc = �κc�, Equation 4.10 can be written as

KdD∞m

kBT

∂�vi�
∂t

= −Kd
D∞
�C�

∂�C�
∂xi

− �vi�+Kc�Ui�+ �Δe�, (4.13)

with average correction term

�Δe� = −KdD∞
kBT

∂�Φw�
∂xi

. (4.14)

We introduce this correction term as an error source of the method, since in the simula-

tions we are not directly computing the wall-solute interactions. Instead, their enhancing

effect on the drag coefficient (i.e. their hindering effect on the diffusivity) is modeled

using a probabilistic approach, which is presented in Section 4.4.1. There, we will focus

on deriving a function for the diffusive hindrance factor Kd.

It is worth noting that the correction term �Δe� is proportional to the sum of all vectors of

the force field induced by the wall potential �Φw�, implying that for symmetric systems

this term falls to zero under the assumption of an isotropic solid phase. This is the case,

for example, when diffusion takes place within a cylindrical pore or around a spherical

obstacle. Furthermore, it should be noticed that by omitting the direct computation of the

wall potential, the information about the distribution of the solute particles with respect

to the wall is now average.

66L. BOLTZMANN. Vorlesungen über Gastheorie (translated into English as "Lectures on Gas Theory". )
Vorlesungen über Gastheorie J. A. Barth, 1898.

89O. REYNOLDS. Phil. Trans. A Math. Phys. Eng. Sci., 186: 123–164, 1895.
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Stochastic Equation of Motion: Brownian Dynamics

This section briefly explains how the deterministic equation of motion derived above is

transformed into a stochastic approach as shown by Langevin, 1908.90

When a particle ensemble subject to Brownian motion spreads within an unbounded

medium, there is no preferred direction for the random movements of the particles (isotropic

motion). Consequently, the particles will end up homogeneously distributed over the

space after a certain period of time, compensating for all concentration gradients initially

present. The macroscopic manifestation of this microscopic phenomenon can be used to

reproduce diffusion.90 Diffusive mass transport was modeled in the previous section using

the negative gradient of the chemical potential. In the following, we will replace this de-

terministic term with a stochastic one
√
2κdD∞ Wi(t) containing Gaussian white noise

Wi(t). The integral of white noise is used to describe Brownian motion. Numerically,

this is realized by generating a normally distributed random number for each Cartesian

coordinate with zero mean µ = 0 and variance s2 = 1.24,25 Thus, from Eq. 4.8, it follows

mκdD∞
kBT

∂vi
∂t

=
�
2κdD∞ Wi(t)− vi + κcUi −

κdD∞
kBT

Mk�

j=1

∂ϕw(r
j
w)

∂xi

. (4.15)

Effective Mass Transport of a Particle Ensemble As the force field induced by

the wall is not directly solved, the local gradients of concentration and the local values of

the drag coefficient in the radial direction of a pore are spatially not resolved. Therefore,

only the average forms of κd and κc, the diffusive and convective hindrance factors Kd

and Kc, respectively, are physically meaningful for the equation of motion describing the

effective mass transport of a particle ensemble trough a porous medium. Furthermore,

inertial effects are neglected assuming that the average behavior of a solute molecule over

time and the average over the particle ensemble are equivalent, in accordance with the

ergodic hypothesis.66,67 This inertia-free behavior can also be explained by the time scales

considered, which are assumed to be longer than the characteristic relaxation time of a

Brownian particle.23,65 Thus, from Eq. 4.15, the following simplified equation of motion

for the k-th diffusing particle is obtained

0 =
�
2KdD∞ Wi(t)− vi +KcUi. (4.16)

90DON S. LEMONS & ANTHONY GYTHIEL. Am. J. Phys., 65: 1079–1081, 1997.
24H G SCHUSTER & WOLFAM JUST. Deterministic Chaos. Wiley, 1994.
25GIORGIO VOLPE & GIOVANNI VOLPE. Am. J. Phys., 81: 224–230, 2013.
23HECTOR RUSINQUE et al. J. Aerosol Sci., 129: 28–39, 2018.
65XIN BIAN et al. Soft Matter, 12: 6331–6346, 2016.
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This Lagrangian approach allows us, for example, to obtain the effective diffusivity of the

medium by computing the mean square displacement �Δx2
i (t)� of the particle ensemble

and its time derivative

�Δx2
i (t)� =

1

N

N�

i=1

(xi(t)− �xi(t)�)2, (4.17)

Deff,i =
1

2

d

dt
�Δx2

i (t)�. (4.18)

Wall Hindrance Model: A Probabilistic Approach

When modeling mass transport in a porous medium without spatially resolving the pores,

the solid fraction (1 − ε) can be thought of as a hindrance (the probability that diffusion

does not occur), while the void fraction ε is the probability of diffusion taking place

and can be introduced as a correction factor.80 Another example is the obstruction factor

Kτ , or its reciprocal, the tortuosity. Here, the sum of the obstruction factor, considered

as probability, with its complementary probability (1 − Kτ ) corresponds to all possible

roads or paths that a random walker can take to travel from point A to point B in free

space. By placing obstacles between the two points, a fraction of these paths is blocked.

Consequently, diffusion cannot take place along these paths. The obstruction factor Kτ

indicates the fraction of free paths left. Thus, diffusion will only take place when at a

given location the events of finding void space ε and a free path Kτ occur simultaneously.

In other words, the probability of diffusion taking place is given by the product of the

probabilities ε and Kτ , so that the total correction factor to diffusion is equal to Ktotal =

εKτ ,80 if no further hindrance to diffusion is to be considered.

In general, a given hindrance to diffusion PA,1 and its associated correction factor PA,2

can be viewed as complementary probabilities or events, so that PA,1 + PA,2 = 1. If

a further hindrance to diffusion PB,1 occurs simultaneously to PA,1, the probability of

diffusion taking place is given by the product of the probabilities (1 − PA,1)(1 − PB,1).

Building on this consideration, the fundamental idea behind the wall hindrance model is

that there may be a hindrance probability to diffusion fj induced by a wall atom (j) at

a location xi (location-dependent), so that its complementary probability, the correction

factor, is equal to

κj = 1− fj. (4.19)

Furthermore, the probability of diffusion taking place at the same location xi when being

hindered by the wall atoms A,B and C, simultaneously, is equal to the product of the

probabilities given by
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Figure 4.1: Discretization of the pore walls at the atomic level to calculate the interactions
between wall atoms and solute molecules, where rco is the cutoff radius above which the
interactions are neglected and Lww represents the average bond length between a pair of
wall atoms. The chaotic lines within the cylindrical pore represent computed trajectories
(random walks) of selected particles.

κd = (1− fA)(1− fB)(1− fC). (4.20)

This results in the following equation for the diffusive hindrance factor of the particle

ensemble

Kd =
1

N

N�

k=1

κk
d =

1

N

N�

k=1

Mk�

j=1

(1− fk
j ) =

1

N

N�

k=1

Mk�

j=1

κk
j . (4.21)

Numerically, this means that the random walkers have to gather all the information about

their surroundings (all the fj - see Figure 4.1), in order to compute the integral hindrance

factor for diffusion, before they can move.

Now, we want to find a function for the hindrance probability fj(xi). Let us assume that

fj(xi) at a given location xi correlates directly with the magnitude of the force induced

by the j-th wall atom at the same location, �Fj(xi)�. It is further assumed that the wall

atoms are significantly smaller than the solute molecules, so that the radius of the solute

molecules rm coincides with the collision diameter σsw, (i.e. σsw ≈ σss/2). This means

that the force �Fj(xi)� is actually the reaction to the force exerted by the solute molecule

on the wall atom, explained by Newton’s third law of motion. Further, we add the con-

straint that the maximal value that fj(xi) can take is one fj(xi) ≤ 1 given by the axiom

of the probability space. We could also add the constraint of the probability fj(xi) being

always equal or bigger than zero given by the same axiom. However, this is a fact, that
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has been questioned by different authors such as Paul Dirac, 194291 and Burgin, 2009.92

A function that satisfies these requirements may be the normalization of the force acting

on the solute molecule as follows

f(xi) =
�Fj(xi)�

max {�Fj(xi)�}
for rw(xi) ≥ 2(1/6)σsw. (4.22)

Where 2(1/6)σsw is the distance at which the Lennard-Jones potential shows its minimum

(i.e. where the force becomes zero). Beneath this value the repulsion force increases

dramatically, as the collision between the particles is imminent. Here, the collision is

modeled by implementing a bounce-back boundary condition (BC), in this case, diffuse

reflection of the incoming particles from the pore wall.

f(xi) = 0; BC: Diffuse reflextion for rw(xi) < 2(1/6)σsw. (4.23)

As already mentioned, under the assumption of van der Waals interactions between wall

atoms and solute molecules, the force F (rw(xi)) can be modeled using the Lennard-Jones

potential (Eq. 4.3), with wall distance

rw(xi) = �xi − xw,i� =
�
(x1 − xw,1)2 + (x2 − xw,2)2 + (x3 − xw,3)2,

where xw,i is the location of a given wall atom (a constant). So, ϕw(rw) is derived

Fi(rw) = −∂ϕw(rw)

∂xi

= 4�sw

�
12

σsw
12

rw13
− 6

σsw
6

rw7

�
ei. (4.24)

The hindrance probability, a dimensionless normalized force f is obtained by dividing the

force by its maximum as plotted in Figure 4.2

f(rw) =

2

�
σsw

rw

�13

−
�
σsw

rw

�7

2
�

7
26

�13/6 −
�

7
26

�7/6 for rw(xi) ≥ 2(1/6)σsw. (4.25)

91P. A. M. DIRAC. P. Roy. Soc. A. Math. Phy. A, 180: 1–40, 1942.
92MARK BURGIN. Extended probabilities: mathematical foundations. arXiv, 2009.
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Figure 4.2: Local hindrance probability fj and its complementary probability kj as a
function of the dimensionless distance between diffusing particle and wall atom.

Validation To validate the wall hindrance model a set of simulations was carried out

considering the motion of a particle ensemble N = 106 in straight cylindrical pores, for

different pore and molecule sizes, 7 ≤ x/Lww ≤ 403 and 1.5 ≤ σsw/Lww ≤ 6, respec-

tively (see definition of Lww in Fig. 4.1) as well as correction factor for convection equals

one, Kc = 1. Notice, as already mentioned, that due to the inherent symmetry of the sys-

tem (the cylindrical pores), the correction term �Δe� (see Eq. 4.14) drops to zero. As can

be seen in Figure 4.3, the validation results show good agreement with the experimental

data from the literature.

In order to solve the function for Kd derived above, the equation of motion (Eq. 4.16) is

numerically integrated by applying the leapfrog method .68

The leapfrog integration is a second-order method. Though, it requires the same number

of function evaluations per step as the first order Euler scheme. Furthermore, the leapfrog

method is more stable for oscillatory motion in contrast to Euler integration.68.

In molecular dynamics, the Lennard-Jones potential is usually truncated at cutoff radii rco
between [2.2 − 3]σsw, mostly at rco = 2.5σsw .93–96 Here a cutoff radius of rco = 3σsw

was used for the simulations. The effect of using a shorter cutoff radius was examined.

As shown by the simulation results plotted in Fig. 4.4b, truncating the Lennard-Jones

potential at a too short cutoff radius can have significant effects on the results obtained.

68GUIHUA ZHANG & TAMAR SCHLICK. Mol. Phys., 84: 1077–1098, 1995.
93ETHAN A. MASTNY et al. J. Chem. Phys., 127: 094106, 2007.
94STEFAN BECKER et al. Langmuir, 30: 13606–13614, 2014.
95MICHAELA HEIER et al. Mol. Phys., 116: 2083–2094, 2018.
96JADRAN VRABEC et al. Mol. Phys., 104: 1509–1527, 2006.
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Figure 4.3: Diffusive hindrance factor Kd in straight cylindrical pores versus the reduced
molecular diameter λ. The molecular diameter 2rmis given by 2rm = 2σsw.

The error bars in Figures 4.3 and 4.4 arise from the stochastic nature of the diffusion

modeling and represent the standard deviation of various simulation runs (at least 3 runs

for each point with 106 tracer molecules). Due to the short-range interactions, our sim-

ulation results as well as the experimental results from literature are more scattered than

the numerical results for hard spheres from other authors. The dotted lines represent each

molecule size σsw considered, whereby, due to their weaker and shorter interactions, the

smallest molecules exhibit the weakest hindrance to diffusion and are therefore closest to

the curves for hard spheres given by the equations of Dechadilok & Deen and Lane &

Rankin.

Kd Approximation from the PSD for a Complex Geometry

A complex porous structure can be thought of as a network of cylindrical pores, if the

shape of the individual pores is approximately cylindrical.97,98 Let the pore size distri-

bution (referred to the pore volume) of such a porous configuration be q3(x) with units

[m3/m4], fulfilling

� xmax

xmin

q3(x)dx = 1. (4.26)

For this case, we can estimate the diffusive hindrance factor of the porous structure as the

sum of the hindrances caused by each cylinder forming the network of pores, when the

average bond length between wall atoms Lww and the molecule radius rm are known

Kd =

� xmax

xmin

Kd,cyl(x)q3(x)dx, (4.27)

97A.B. ABELL et al. J. Colloid Interf. Sci., 211: 39–44, 1999.
98W. C. CONNER et al. Langmuir, 2: 151–154, 1986.
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(a) Kd for cylindrical pores
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Figure 4.4: a) Diffusive hindrance factor Kd,cyl as a function of the ratios of the distance
σsw and the pore size x to the mean bond length Lww, in straight cylindrical pores (circles)
with curves fitting the results (solid lines). b) Kd,cyl for cutoff radii rco/σsw = 2.2 and
rco/σsw = 3.0.

with the diffusive hindrance factor Kd,cyl for straight cylindrical pores.

A function fitting the results obtained for the straight cylindrical pores is presented

Kd,cyl = exp

�
−(σsw/Lww)

3/2

0.162351(x/Lww)− 0.266835

�
(4.28)

with

0 ≤ Kd,cyl ≤ 1,

derived within the following intervals of σsw and Lww

7 ≤ x/Lww ≤ 403,

1.5 ≤ σsw/Lww ≤ 6.

In order to evaluate the performance of the fitting function (Eq. 4.28) within the range

considered, Figure 4.4a is presented, where good concordance between fitting curves and

simulation results can be seen.

The pore size distribution of a porous material q3(x) can be experimentally obtained, e.g.

via mercury or nitrogen porosimetry, using a model for cylindrical pores,97,98 so that the

hindrance to diffusion of a given molecule diffusing within a real porous medium can

be estimated from experimental data. For these purpose, the molecular radius rm and

the average bond length of the solid phase Lww must be known as well as the pore size

distribution, which has to be properly normalized in order to fulfill Eq. 4.26.



61

Figure 4.5: Staggered cylinder arrangement confined in a narrow slit. The bulk flow oc-
curs as a consequence of a force or pressure gradient acting in the positive x-axis direction.
The velocity field is graphically represented in the lower left corner.

Passive Scalar Case: Random Walk Particle Tracking

If we consider passive scalars with negligible inertial effects and radii zero, which results

in negligible wall potential, the diffusive and convective hindrance factors Kd and Kc,

respectively, take the value 1. This leads to the equation of motion used in the Random

Walk Particle Tracking method (RWPT).99 From Equation 4.16, it follows

vi =
�
2D∞ Wi(t) + Ui. (4.29)

This model can be used to indirectly solve the Convection-Diffusion equation or to com-

pute the diffusivity needed in this Eulerian continuum approach.80

In order to verify the implementation of the RWPT method, the dispersion of a particle

ensemble N = 106 within a staggered cylinder arrangement confined in a narrow slit is

simulated (see Fig. 4.5). The obtained results plotted in Fig. 4.6a are compared with the

numerical results of Khirevich100 and the experimental data from Eghbali et al.101 These

show a good agreement with the results of Khirevich, as expected since the RWPT method

was also applied in his simulations. The longitudinal diffusivity for the case of Taylor dis-

persion is also simulated and the results are compared with the analytical solution for the

Taylor-Aris dispersion, which can be derived from the Convection-Diffusion equation.62

for the case of shear flow in an open channel or in a pipe (see Fig. 4.6b).

The discrepancy with the experimental values of Eghbali et al. may be explained by the

shape of the solute molecule studied, namely Coumarin 480 (C16H17NO2). This molecule

99SIARHEI KHIREVICH et al. Commun. Comput. Phys., 13: 801–822, 2013.
100SIARHEI KHIREVICH. PhD Thesis, 159, 2011.
101HAMED EGHBALI et al. Anal. Chem., 81: 705–715, 2009.
62R. ARIS. P. Roy. Soc. A. Math. Phy. A, 235: 67–77, 1956.
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Figure 4.6: a) Longitudinal diffusivity in a staggered cylinder arrangement as a function
of the Péclet number. The effect of the resolution of the lattice used for the discretization
of the geometry is also graphically represented. The resolution used in the simulations of
Khirevich was 200 grid nodes per cylinder diameter, d = 200. b) Taylor dispersion as a
function of the Péclet number compared with its analytical solution.

contains four interconnected rings making its structure very flat and rigid, which differs

strongly from the assumption of a pointwise passive molecule. Here, the necessity of a

correction factor for convection Kc > 1 71 regarding the shape of the molecule becomes

evident, since the discrepancy increases with the Péclet number (the ratio of convection

to diffusion Pe = Ūd/D∞).

4.4.2 Multiscale Numerical Approach

In this section, mass transport in packed beds is considered. These are arranged in a hi-

erarchical pore system consisting of three pore-scales with diameters around x ≈ 100 µm

for the largest scale, x ≈ 300 nm for the medium scale and x ≈ 10 nm for the smallest

scale, as shown in Figure 4.7. Hierarchical pore structures can be used in catalytic appli-

cations, where mass transport controls the macrokinetics of the heterogeneous catalytic

process, in order to enhance mass transport.9–11

Macroscopic Approach

Under the continuum assumption, the transport in the microstructure of the porous medium

can be calculated, using a numerical method able to spatially resolve the geometric struc-

ture of the medium. Due to the different length scales, this is de facto not possible, which

is why a modeling of the mass transport at the macroscopic level has to be carried out on

9ROBERT GÜTTEL & THOMAS TUREK. Energy Technol., 4: 44–54, 2016.
10LI CHEN et al. Chem. Eng. J., 349: 428–437, 2018.
11JIAN YIN et al. J. Mater. Chem. A, 6: 8441–8448, 2018.
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Mesopores

(x~100 µm)

(x~300 nm) (x~10 nm)
Macropores

Large pores

Figure 4.7: Hierarchic-nanoporous structure used as a medium in the application exam-
ple. Porescales according to the IUPAC definition for nanoporous materials.

the basis of average quantities and effective transport coefficients. Thus, only the large

pores are spatially resolved in such simulation step. Using local volume averaging, the

convection-diffusion equation is obtained102,103

∂C̄

∂t
+ Ūi

∂C̄

∂xi

= Deff,MP
∂2C̄

∂x2
i

+ R̄, (4.30)

where C̄ is the average particle concentration, Deff,MP the effective diffusivity of the

macroporous and mesoporous structure, which can assume the general form of a second-

order tensor for anisotropic pore structures, Ūi the average velocity field, which describes

convection, and R̄ a source term modeling e.g. chemical reactions.

In this paper, the focus is on the modeling of micro- and nanoscales (the microscopic

approach). Within the scope of the research project to which this study is related, the

modeling of the macroscale has already been pursued by Bufe et al.80

Microscopic Approach

Nanoscale Simulation Step The calculation of the diffusivity of the mesoporous

structure Deff,mP is the first simulation step. This effective diffusivity is given by the

following expression

Deff,mP = KdKτD∞, (4.31)

and is required as input for the next simulation step at the microscale.

Here, the nanoscale is directly simulated using the wall hindrance model presented in Sec-
102M. SAHIMI. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to

Modern Approaches. Wiley, 2011.
103DONALD L. KOCH & JOHN F. BRADY. J. Fluid Mech., 154: 399–427, 1985.



64 4 Hindering effect of pore size on mass transport in porous media

tion 4.4.1. The equation of motion Eq. 4.16 with the equation for the diffusive hindrance

factor (Eq. 4.21) have to be solved. Furthermore, the effective diffusivity of the meso-

porous structure is computed with the time derivative of the mean square displacement,

Eq. 4.17 and 4.18.

Microscale Simulation Step The (nano-scaled) mesopores are not spatially resolved

in the microscale modelling. Instead, the porous structures at the nanoscale are treated as

an effective medium (see Figure 4.8).

D∞D∞

Deff,mPmP

Macropore Macroporea) b)

Figure 4.8: a) Macropores (MP) and mesopores (mP) of the microscale. b) Effective
representation of the mesoporous medium.
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Figure 4.9: Time evolution of the diffusivity of a simple cubic arrangement of spheres for
the cases of spatially resolved and non-resolved mesopores (see Fig. 8). The parameters
considered are Kd = 1, Kτ = Deff,mP/D∞ = 0.729, εmP = 0.454, and εMP = 1.

The RWPT method presented in Section 4.4.1 is used to describe the mass transport at

the microscale. The bridge between the macro- and mesoporous media is established

by a probabilistic penetration model. Here, the probability of a scalar tracer entering

the mesopores from the outer void space Pin and the probability of a tracer leaving the

mesopores Pout can be obtained using the following relations under the assumption of an
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isotropic mesoporous medium104,105

Pin =
εmP

εMP

�
DmP

DMP

=
�

Kd
εmP

εMP

and Pout = 1. (4.32)

Where DmP = KdD∞ and DMP = D∞ are the integral diffusion coefficients within a

representative meso- and macropore, respectively.

Once a tracer particle enters the mesopores, it changes its diffusive motion according to

the effective diffusivity of the mesoporous structure Deff,mP given by Eq. 4.31. The ef-

fective diffusivity of the combined system of macro- and mesopores Deff,MP is computed

from the time derivative of the mean square displacement (see Eq. 4.17 and 4.18).

In order to verify the implementation of the probabilistic penetration model, the diffu-

sivity of a simple cubic arrangement of spheres for the cases of spatially resolved and

non-resolved mesopores is numerically simulated (see Figure 4.8) as a function of a di-

mensionless time tmol until the asymptotic behavior is reached. As can be seen from the

results, shown in Figure 4.9, the implementation was successfully verified.

Application Example

In this section, the mass transport of a particle ensemble N = 106 in a hierarchical

pore system like the one shown in Figure 4.7 using the microscopic approach proposed

above.

Nanoscale Simulation Step At the nanoscale, two polydisperse nanosphere pack-

ings were computer generated using the software tool provided by Baranau and Tallarek

(2014).36 In practice, the spheres of the packings are nanoparticles, which stick to each

other due to attractive interactions and friction to form a mesoporous structure.106 Two

sphere packings are generated from two particle collectives showing the same size dis-

tribution. These structures are called Building-Blocks and are represented graphically in

Figure 4.8a. The particle size distribution follows a normal distribution, xp = N (x̄p, s
2)

with x̄p = 23.82 nm and s = 4.275 nm. Due to the random initial positions of the spheres

in the generation algorithm, and the random (normal-distributed) particle sizes, the gener-

ated packings slightly differ in their resulting void fractions and obstruction factors with

εBB1 = 0.45, εBB2 = 0.47 and Kτ,BB1
= 0.735, Kτ,BB2

= 0.749. Via a sphere inser-

tion method (i.e. the void space of the generated sphere packing is randomly filled with

spheres in order to characterize the void space itself), a pore size distribution (PSD) for

104ANTON DANEYKO et al. J. Chromatogr. A, 1407: 139–156, 2015.
105JORGE M. RAMIREZ et al. Water Resour. Res., 44: , 2008.
36VASILI BARANAU & ULRICH TALLAREK. Soft Matter, 10: 3826–3841, 2014.

106AURINA MARTÍNEZ ARIAS & ALFRED P. WEBER. J. Aerosol Sci., 131: 1–12, 2019.



66 4 Hindering effect of pore size on mass transport in porous media

0 2 4 6
0

0.25

0.5

0.75

1

σsw/Lww [−]

K
d

[−
]

N++

N+

N
N−

Direct simulation BB1

xcyl = 12.6 nm

2.6 12.6 22.6 32.6
0

0.05

0.1

x [nm]

q 3
(x
)

[1
/n

m
]

N++

N+

N (x̄, s2)

N−

Figure 4.10: On the left, diffusive hindrance factor Kd in a computer-generated Building-
Block BB1. Direct simulation and PSD approximations of Kd based on normal distribu-
tions N centered at x̄ = xcyl with different standard deviations. On the right, PSDs q3(x)
considered. The distributions are slightly skewed to the left N− and to the right N+, to a
greater extent for N++, without changing x̄.

the generated Building-Blocks (BB1 and BB2) can be estimated from the particle size of

the filling spheres. The software provided by Baranau et al.107 could also be used to this

purpose.

Note, that the resulting pore size distributions are shape-dependent, meaning that they

depend, for example, on the shape of the filling material or on the pore shape assumed by

the evaluation model. Several evaluation models can be found in literature that are able

to determine the PSD from an adsorption isotherm (experimentally obtained) for slits as

well as for cylindrical and spherical pores.108,109

In this study, we are rather interested in estimating the pore size distribution of BB1 and

BB2 for the case of cylindrical pores. The aim of the latter is to apply the Kd approxi-

mation from the PSD q3(x), as suggested in Section 4.4.1; since the pore size distribution

of the generated Building-Blocks cannot be calculated using, for example, an isotherm

as mentioned above, we will make some assumptions and evaluate their hypothetical out-

come based on how well this matches the calculated diffusive hindrances. We assume

that the pore size distribution is also normal-distributed, q3(x) ≈ N (x̄, s2) centered at

the cylindrical pore size xcyl to which the results of the direct simulation fit best, x̄ = xcyl.

Further, we consider the impact of the standard deviation and of certain level of skewness

in the normal distribution. Here we consider two cases for the variation of the standard

deviation (s1 and s2), and three cases for the variation of the skewness of the distribution:

the first with a distribution slightly skewed to the left, further noted as N−, and a second

107VASILI BARANAU et al. Soft Matter, 9: 3361, 2013.
108LINDA S. CHENG & YANG RALPH T. Chem. Eng. Sci., 49: 2599–2609, 1994.
109SALIL U. REGE & RALPH T. YANG. AIChE Journal, 46: 734–750, 2000.



67

0 2 4 6
0

0.25

0.5

0.75

1

σsw/Lww [−]

K
d

[−
]

N+

N (x̄, s21)

N (x̄, s22)

Direct simulation BB2

xcyl = 11.0 nm

1 11 21 31
0

0.05

0.1

x [nm]

q 3
(x
)

[1
/n

m
]

N+

N (x̄, s21)

N (x̄, s22)

Figure 4.11: On the left, diffusive hindrance factor Kd in a computer-generated Building-
Block BB2. Direct simulation and PSD approximations of Kd based on normal distribu-
tions N centered at x̄ = xcyl with different standard deviations. On the right, PSDs q3(x)
considered. The distribution N+ is slightly skewed to the right without changing x̄.

distribution slightly skewed to the right, N+, as well as a third one also skewed to the

right but in a larger extent, N++. The average pore size x̄ is kept constant in all the cases

considered.

Bulk flow (convection) is not considered in this example. The results for the nanoscale

simulation step are shown in Figures 4.10 and 4.11.

Microscale Simulation Step A computer generated, hierarchical-porous structure

containing micro- and mesopores (a structure made of Building-Blocks) is considered, as

shown in Figure 4.7. It is assumed that the macropores contribute 53 % and the mesopores

47 % to the total void space of this structure. From these values of the void space fractions

a total porosity of 64 % can be determined for the generated layer of Building-Blocks.

As already mentioned, in the microscale simulation step only the contours or outer sur-

faces of the Building-Blocks and not their mesopores are spatially resolved. From the

values of the effective diffusivity obtained in the previous simulation step, the simulations

for the microscale are carried out and their results are shown in Figure 4.12.

Discussion With regard to the results obtained for the Building-Blocks BB1 and BB2

(Figures 4.10 and 4.11, respectively), it was found that the diffusive hindrance factor of

BB1 comes closest to the calculated hindrance for a straight cylindrical pore of 12.6 nm

diameter, whereas in the case of BB2 the nearest hindrance corresponds to that shown by

a cylindrical pore size of 11.0 nm. The assumed pore size distributions N (x̄, s2) centered

at these pore sizes show excellent agreement with the results of the direct simulations.

As far as the simulations of mass transport within the layers (made of Building-Blocks
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Figure 4.12: Total hindrance to diffusion, i.e. the obstrucion factor Kτ and diffusive
hindrance factor Kd related to the layers made of the Building-Blocks BB1 and BB2.

BB1 and BB2) are concerned, it was found that there is a molecule size above which the

hindrance for the layer consisting of BB2 is stronger, since the Kd curves intersect at some

point between 2 < σsw/Lww < 3 (see black curves in Figure 4.12). This can be explained

by the fact that the dominant pore size of the Building-Blocks BB2 (x̄ = 11.0nm) is

smaller than that of the BB1 (x̄ = 12.6nm) (the smaller the pore size, the stronger the

hindrance), while the smaller obstruction factor of the layer made of BB1 constitutes a

stronger hindrance to diffusion. This means, that for small molecule sizes the smaller

obstruction factor of the BB1 layer controls the total hindrance to diffusion, while at large

molecule sizes the stronger hindrance factor for diffusion of the BB2 layer controls it.

4.5 Conclusions

The hindrances to diffusion that an ensemble of solute molecules (spherical, large and

"soft") experiences when passing through a narrow pore were modeled using an equation

of motion from Brownian dynamics. The fundamental term of this equation is a local cor-

rection factor for diffusion, which accounts for the effect of the solute-wall interactions

on the drag and diffusion coefficients. Here a mathematical model for the local correction

factor is proposed using a probabilistic approach based on the Lennard-Jones potential

for the case of van der Waals interactions between solute molecules and wall atoms where

no physical adsorption takes place on the pore walls. Subsequently, the validation of the

model is successfully carried out by means of experimental and numerical data from the

literature. In addition, an approximation of the diffusive hindrance factor for complex

geometries out of their pore size distribution is suggested. For that purpose, a function

fitting the simulation results for the hindrance factor for diffusion in straight cylindrical

pores is presented.

Finally, a multiscale approach using the models described above is proposed and illus-
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trated with the help of an application example. For this matter, a hierarchic-nanoporous

system is considered containing micro- and mesopores. Future work will focus on the

introduction of additional interactions, e.g. associated to thermally activated processes

such as chemical reactions or adsorption, and on further hindrances to diffusion.
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4.6 Notation

C 1/m3 particle concentration
D∞ m2/s diffusivity in dilute bulk solution
Deff,MP m2/s effective diffusivity in the macro-

& mesoporous structure
Deff,mP m2/s effective diffusivity in the mesoporous structure
Dlocal m2/s local diffusivity in a mesopore
f, fj − probability of diffusion being hindered when

influenced by the j-th wall atom
i vectorial index: Ψi = {Ψ1,Ψ2,Ψ3} = {Ψx,Ψy,Ψz}
j − j-th wall atom acting on the k-th diffusing particle
k − k-th diffusing particle of the ensemble
kB JK−1 Boltzmann constant
Kd − integral hindrance (correction) factor for diffusion
Kc − integral convective factor for convection
Lww m average bond length between a pair of wall atoms
Mk − number of wall atoms acting on

the k-th diffusing particle
N − number of diffusing particles
N (x̄, s2) normal distribution centered in x̄ with variance s2

q3(x) m3/m4 pore size distribution (PSD)
rco m cutoff radius
rm m molecular radius
rs m hydrodynamic Stokes’ radius
s2, s variance & standard deviation, respectively
Ui ms−1 flow velocity at the particle center
vi ms−1 particle velocity
Wi(t) − Gaussian white noise with s2 = 1
x, xp m pore size & particle size, respectively
ε − porosity (void space)
κd − local hindrance (correction) factor for diffusion
κc − lag coefficient
κ,κj − probability of diffusion taking place when

influenced by the j-th wall atom
ϕw J potential of a wall atom
Φw J integral wall potential
γ kg s−1 drag coefficient
γs kg s−1 Stokes’ drag coefficient
η kgm−1 s−1 viscosity
σss m Lennard-Jones’ collision diameter between

solute and solute molecules
σsw m Lennard-Jones’ collision diameter between

solute and wall molecular entities



5 Effect of electric forces on the formation of
nanoparticulate clusters

This chapter was built with the structure of a full paper to be submitted to a scientific

journal

Hector Rusinque, Aurina Martinez-Arias, Juliana Rivas-Botero
Alfred Weber, Gunther Brenner (2019).
Formation of nanoparticulate spray-dried clusters: A numerical and experimental study.

5.1 Zussamenfassung

Die Verwendung von kolloidalen Siliziumdioxid-Nanopartikeln (NPs) ist vielfältig, z. B.

in der Katalyse, Pharmazie und in Beschichtungen. Aufgrund der Neigung von Kolloiden

zur Selbstassemblierung werden kolloidale Dispersionen normalerweise gegen Aggre-

gation stabilisiert. Wenn der Selbstorganisationsprozess jedoch auf kontrollierte Weise

durchgeführt werden kann, lässt sich die Aggregation ausnutzen, um nanopartikuläre

Cluster mit einstellbaren Eigenschaften zu erhalten. Die katalytischen, optischen und

elektronischen Eigenschaften eines Nanomaterials können durch seine GröSSe, Form und

Struktur in einem MaSSe beeinflusst werden, das nicht leicht vorhersagbar ist. Die Bewäl-

tigung dieser Herausforderungen wird durch Strategien zur Synthese von mesoporösen

Aggregaten mit einstellbarer PorengröSSe ermöglicht.110

Im vorliegenden Kapitel wird eine Sprühtrocknungstechnik verwendet, um mesoporöse

nanopartikuläre Cluster zu synthetisieren.106 Dies ist eine gut etablierte Synthesestrategie,

bei der eine kolloidale Dispersion von Siliziumdioxid-NPs in Tröpfchen von wenigen

Mikrometern zerstäubt wird, die anschlieSSend einen Trocknungsprozess durchlaufen.

Während das Tröpfchen schrumpft, lagern sich die NPs zu einem kugelförmigen Cluster

mit mesoporöser Struktur zusammen, der auch als Building Block (BB) bezeichnet wird.

Durch Zugabe eines Metalls zur Dispersion, z. B. in Form eines Metallnitrats, können

Silica-Cluster synthetisiert werden, die metallische NPs tragen. In einem anschlieSSen-

den Schritt können die hergestellten BBs aufgesprüht und verdichtet werden, um eine

110POUL L HANSEN et al. Science, 295: 2053–2055, 2002.
106AURINA MARTÍNEZ ARIAS & ALFRED P. WEBER. J. Aerosol Sci., 131: 1–12, 2019.
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hierarchische poröse Schicht zu erhalten, die als Katalysator, z. B. im Fischer-Tropsch-

Prozess, eingesetzt werden kann.

Der Bildungsmechanismus von durch Sprühtrocknung hergestellten nanopartikulären Clus-

tern, werden sowohl für den Fall von hartkugelartigen als auch von elektrisch geladenen

NPs diskutiert. Grundlage für die Diskussion sind experimentell und numerisch ermittelte

Feststoffvolumenanteile und PorengröSSenverteilungen aus realen (im Labor hergestell-

ten) bzw. computergenerierten BBs. Für den Fall von Clustern aus geladenen NPs

wird ein Bildungsmechanismus vorgeschlagen, bei dem der kolloidalen Silica-Dispersion

ein hydratisiertes Metallsalz und HCl zugesetzt wird. Die Menge des zugegebenen hy-

dratisierten Salzes erwies sich einerseits als von entscheidender Bedeutung, da bei Tem-

peraturen oberhalb 100 ◦C der Dehydrierungsprozess der Salze ein zweites und hochreines

Wasserreservoir bereitstellt, das eine zweite Verdampfungsstufe im Trocknungsprozess

hervorruft. Andererseits fängt das hinzugefügte Metallsalz das während der ersten Trock-

nungsstufe verdampfende HCl auf, bevor es aus der Siliziumdioxidstruktur entweicht,

was sich negativ auf die elektrostatischen Wechselwirkungen zwischen den NPs durch

nachfolgende Absenkung des pH-Wertes auswirkt. Es wird gezeigt, dass die PorengröSSe

und der Feststoffvolumenanteil der Cluster durch die Einstellung der HCl-Retention in

der Siliziumdioxid-Struktur kontrolliert werden können, was wiederum auf eine Modi-

fikation der elektrischen Kräfte zurückzuführen ist. Letzteres kann nämlich ausgenutzt

werden, um die PorengröSSe durch die abstoSSende Wirkung der elektrischen Kräfte zu

erweitern.

5.2 Abstract

A strategy to control the pore size of mesoporous nanoparticulate clusters produced by

spray-drying is presented. Further, we propose a mechanism of formation induced by

the electrostatic interactions between the colloidal nanoparticles. Experimental results

showing the effect of these interactions on the solid volume fraction and pore size of the

clusters are provided and supported with our simulation results. Due to the complexity

of the system and limited computational resources, simulations usually consider a limited

number of particles focusing on the phenomena occurring at the interface of the evapo-

rating droplet. As surface-induced effects propagate into the assembly ony within a few

particle shells, the bulk structure of large clusters remains unresolved by these particle-

based approaches. Here, we use an alternative approach to reproduce the bulk structure of

large clusters, for which the contribution of surface-induced effects can be neglected.
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5.3 Introduction

Colloidal silica nanoparticles (NPs) are used in many applications such as catalysis, phar-

maceuticals and coatings. Due to the tendency of colloids to self-assemble, colloidal

dispersions are usually stabilized against aggregation. However, if the self-assembly pro-

cess is carried out in a controlled way, aggregation can be exploited to obtain nanopar-

ticulate clusters with tunable properties. The catalytic, optical, and electronic properties

of a nanomaterial can be affected by its size, shape and structure to a degree that is not

easily predictable.110,111 Strategies for the synthesis of mesoporous aggregates with ad-

justable pore size offer possibilities to meet these challenges.110 In the present study, we

use a spray-drying technique to synthesize mesoporous nanoparticulate clusters.106 This is

a well-established synthesis strategy where a colloidal dispersion of silica NPs is atom-

ized into droplets of a few microns, that subsequently undergo a drying process. As the

droplet shrinks, NPs assemble to form a spherical cluster with mesoporous structure, also

known as building block (BB).106 By adding a metal to the dispersion, e.g. in the form of a

metal nitrate, silica clusters supporting metallic NPs can be synthesized. In a subsequent

step, the produced BBs can be sprayed and compacted to obtain a hierarchical porous

layer which is suitable to be used as catalyst, e.g. in the Fischer-Tropsch process.

Geometric confinement of colloidal NPs induced by evaporation of aerosols 14–20 or emul-

sions,111,112 has been studied by several authors. However, the interactions considered in

the numerical models in this work differ in that, for instance, long-range interactions such

as electrostatic forces and hydrodynamic interactions (HIs), i.e., forces resulting from mo-

mentum transport between NPs through the solvent, are often not considered in numerical

models since they imply a dramatic increase in computational complexity. Nevertheless,

it is worth noting that HIs should not be neglected if the kinetics play an important role

in the formation of the cluster structure, as in the case of surface-induced crystallization.15

In contrast, when the equilibrium structures are preponderant, it has been found that HIs

do not affect the resulting structures.33,111,113

Electrostatic interactions depend on many physical parameters such as temperature, elec-

tric permittivity of the solvent, pH value and ion concentration. These parameters vary

111JUNWEI WANG et al. Nat. Comm., 9: , 2018.
14M. MEZHERICHER et al. Chem. Eng. Sci., 66: 884–896, 2011.
15MICHAEL P. HOWARD et al. J. Chem. Phys., 149: 094901, 2018.
16KATARZYNA JABŁCZYŃSKA et al. Adv. Powder Technol., 29: 3542–3551, 2018.
17SABRINA ZELLMER et al. ACS Nano, 9: 10749–10757, 2015.
18THOMAS BREINLINGER et al. J. Am. Ceram. Soc., 98: 1778–1786, 2015.
19THOMAS BREINLINGER et al. Powder Technol., 283: 1–8, 2015.
20WENDONG LIU et al. ACS Nano, 13: 4972–4979, 2019.

112BART DE NIJS et al. Nat. Mater., 14: 56–60, 2015.
33JOHN F. BRADY. J. Fluid Mech., 272: 109–133, 1994.

113ADOLFO J. BANCHIO et al. J. Chem. Phys., 148: 134902, 2018.
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during the drying process, making a direct quantitative comparison between simulations

and experiments difficult. This might be the reason why there is a lack of research

on charge-stabilized colloidal dispersions,31,113–116 while colloidal suspensions of hard

spheres have been investigated by several researchers.15,30,32–34,117–122 In this work, we

consider both the effect of long-range electrostatic interactions and the hydrodynamic

interactions between the NPs. Clusters containing a large number of NPs are studied. The

NPs in turn have a high diffusivity due to their size, which is relatively small, i.e. in the

order of a few nanometers, compared to the NPs usually used in other studies,16,17,111,123 in

the order of hundreds of nanometers. The clusters were produced by spray-drying, which

implies relatively short evaporation times. As a result of the above conditions, we ob-

tain clusters whose structure shows mainly a bulk-like configuration. The latter has been

documented in the relationship between the viscosity and self-diffusivity of colloidal dis-

persions with its volume fraction.33–35,124,125 We exploit the fact that the physics underlying

the bulk structure formation of clusters resemble the mechanics behind the bulk structure

of colloidal suspensions and model their inner configuration based on the self-diffusivity

of the NPs in bulk suspension.

We discuss an experimental procedure to synthesize catalytic active clusters with con-

trolled pore size (catalytic metal oxides supported on amorphous mesoporous silica) and

propose a mechanism of formation. This strategy can be used to optimize the balance

between the surface area available to reaction and the limiting mass transport within the

narrow pores of reactants and products involved in catalytic processes such as the Fischer-

Tropsch synthesis. Here, as the pore size of the clusters reaches the order of magnitude

of the diffusing molecules, mass transport suffers a dramatic decrease.

31P. R. SCHUNK et al. J. Rheol., 56: 353–384, 2012.
114BRIAN GIERA et al. Langmuir, 33: 652–661, 2016.
115A. IMHOF et al. J. Chem. Phys., 100: 2170–2181, 1994.
116AMIT KUMAR & JONATHAN J.L. HIGDON. Phys. Rev. E, 82: 051401, 2010.
30PIETER J. IN’T VELD et al. Phys. Rev. E, 79: 10–13, 2009.
32DAN S BOLINTINEANU et al. Comput. Part. Mech., 1: 321–356, 2014.
34CLARA WEIS et al. Sci. Rep., 6: 1–15, 2016.

117JEFFREY F. MORRIS & JOHN F. BRADY. J. Fluid Mech., 312: 223–252, 1996.
118THANH N. PHUNG et al. J. Fluid Mech., 313: 181–207, 1996.
119DAVID R. FOSS & JOHN F. BRADY. J. Fluid Mech., 401: 243–274, 1999.
120N KOUMAKIS et al. Phys. Rev. Lett., 108: , 2012.
121SHENGFENG CHENG & GARY S GREST. J. Chem. Phys., 138: 64701, 2013.
122N. KOUMAKIS et al. J. Rheol., 60: 603–623, 2016.
123CARSTEN SCHILDE & ARNO KWADE. , 27: 672–684, 2012.
35HEATHER M. SHEWAN & JASON R. STOKES. J Non-Newton Fluid, 222: 72–81, 2014.

124J. BRADY & GOERGES. BOSSIS. Annu. Rev. Fluid Mech., 20: 111–157, 1988.
125MORTON M. DENN et al. Soft Matter, 14: 170–184, 2018.
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Table 5.1: Type of cluster configurations and range of their solid volume fractions ob-
tained in this work and by other authors. All the clusters were produced by drying
of droplets dispersed as aerosols or emulsions using approximately monodisperse NPs.
The prevalent cluster structures are random close packing (rcp), polycrystalline (PC), and
monocrystalline (MC) configurations, which appear as fcc or icosahedral (ico) arrange-
ments.

Reference Dispersion/NPs Φ / − Structures

This work Aerosol/SiO2 0.578 to 0.723 rcp, PC
This work Aerosol/SiO2 + Co3O4 0.458 to 0.559 rcp, PC

Schilde et al. [123] Aerosol/SiO2 0.604 to 0.758 rcp, PC
Wang et al. [111] Emulsion/PS 0.689 to 0.740 MC: ico

De Nijs et al. [112] Emulsion/Co-Fe oxide 0.688 to 0.689 MC: ico, fcc

5.4 Results and Discussion

We use the solid volume fraction and pore size of the produced clusters as descriptors

of their mesoporous structure. Depending on the magnitude of the volume fraction, the

dominant arrangement of the NPs can be identified. For instance, crystalline structures

usually show compacter arrangements with a higher solid volume fraction than that of

disordered arrangements. Based on this, we could determine that the clusters produced in

this work show a predominant disordered structure. Such a structure is known as random

close packing (rcp) and is related with solid volume fractions of around 0.63 in contrast

to the fraction of a face-centered cubic structure (fcc) of 0.74. We compare our results

with solid volume fractions obtained in other works in Table 5.1.

The principal factors determining the final structure of a cluster are the evaporation time

and the time scale of diffusion, as well as the number of NPs per cluster and their poly-

dispersity. The ratio of both time scales (i.e. evaporation time to self-diffusivity time

scale) will ultimately determine the influence of the evaporation kinetics on the struc-

ture. In general, three characteristic structures can be formed depending on this ratio,

also known as the Péclet number: A polycristalline structure in the outer shells, a disor-

dered (rcp) structure, and monocrystalline configuration in the inner layers of the cluster.

Surface-induced nucleation/crystallization are kinetic effects, which induce the predomi-

nant polycrystalline structure present in the shells near to the droplet interface. In contrast,

disordered or monocrystalline bulk structures are thermodynamically induced33 and be-

gin to dominate the structure a few layers from the outer cluster shell.15,21,76,79 Hence, the

21HECTOR RUSINQUE et al. Comm. Compu. Inf. Sci., 1199: 104–121, 2020.
76STEFAN BRUNS et al. J. Chromatogr. A, 1318: 189–197, 2013.
79ROBERT S. MAIER et al. Phys. Fluids, 15: 3795–3815, 2003.



76 5 Effect of electric forces on the formation of nanoparticulate clusters

number of NPs per cluster affects the final structure, since more NPs result in more inner

layers and thus more bulk structure, unaffected by kinetic effects. Further, if the evap-

oration process occurs slowly enough, i.e. in a time scale significantly larger than that

of diffusion, thermodynamically favored bulk crystallization will prevail over disordered

rcp structures and surface-induced crystallization due to the flexible droplet interface that

allows the rearrangement and healing of defects.111,112

In the following, we present the experimental results for the first and second system shown

in Table 5.1, as well as the model used to reproduce the solid volume fraction of the

clusters. Although in both cases the colloidal NPs are stabilized by electrostatic forces,

we explain in the next section why the NPs by the end of the evaporation process behave

effectively as hard spheres.

5.4.1 Clusters of hard-sphere-like silica NPs

Amorphous silica NPs form stable colloidal dispersions. Preferential dissolution of sur-

face species confers silica particles their characteristic surface charge. These charged sites

consist of deprotonated silanols and are a function of the pH value and the ionic strength

of the solution.126 Hence, a dispersion of silica NPs is charged-stabilized, usually at basic

pH values beyond the isoelectric point, i.e. pH > 2. However, even when approaching

this point of zero charge, silica NPs can still show a high stability due to their weak at-

tractive interactions. The latter has been related to their inherent surface roughness or

"hairiness".127,128 In order to enhance the stability of the dispersion, a basic pH is set e.g.

by adding sodium or ammonium cations as counterions of the anionic silica NPs. How-

ever, this also increases the ionic strength of the solution, which will increase further with

the evaporation of the solvent. Consequently, the screening effect on the electrostatic

forces intensifies, up to a point where they effectively disappear and thus the colloidal

NPs behave as hard spheres, i.e. short-range forces dominate the interactions between the

NPs.

126H.E. BERGNA & W.O. ROBERTS. Colloidal Silica: Fundamentals and Applications. Surfactant Science
CRC Press, 2005.

127S JENKINS et al. J. Chem. Phys., 224711: 174704, 2007.
128VALENTINA VALMACCO et al. Nanoscale Horiz., 1: 325–330, 2016.
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Figure 5.1: Pore size distribution of the produced clusters with different nanoparticle
sizes.

Experimental part: Hard-sphere-like NPs

In order to assess the influence of the particle size and number of particles on the clus-

ter structures, a series of experiments was conducted, where clusters were produced by

spray-drying of silica suspensions with the same initial solid volume fraction of the sus-

pension and different NP sizes. Notice that the number of NPs indirectly increases with

decreasing particle size, since two crucial variables are kept constant, namely the initial

volume fraction and the average droplet size in the atomization process. The experimental

results are shown in Fig. 5.1, at which we can observe that the pore size increases with

increasing particle size. Likewise, an increase in solid volume fraction with increasing

particle size was observed with Φ = 0.578, 0.655 and 0.699 for x50,primary = 13, 25 and

64 nm, respectively. Although it might seem counter-intuitive, the solid volume fraction

(or its counter-part: the void fraction, also known as porosity) and the pore size do not

directly correlate for the case of hard spheres. The solid volume fraction is primarily a

function of the kind of configuration (e.g. fcc or rcp) and in a lesser degree of the NPs

polydispersity as well as of the nature of the process (e.g. a mechanical or a thermal

process).36 The pore size depends strongly on the particle size, and only couples weakly

with the solid volume fraction as it also depends on the polydispersity. Based on the

values of the solid volume fraction obtained, the produced aggregates comprising larger

and fewer NPs showed a structure dominated by surface-induced polycrystalline config-

urations, while the structure of clusters consisting of smaller and more NPs exhibited a

larger and more porous bulk fraction. The latter is characterized by a disordered (rcp)

36VASILI BARANAU & ULRICH TALLAREK. Soft Matter, 10: 3826–3841, 2014.
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arrangement and arises from the high diffusivity of NPs, whose strong thermal fluctu-

ations, i.e. Brownian motion, distort the ordered equilibrium configuration so that the

NPs get stuck in a jammed rcp arrangement before reaching the jammed fcc structure.33

This predominant bulk structure is the focus of our numerical work, which consists in

a particle-based model based on Newtonian dynamics. Here, the equation of motion of

each particle in the ensemble is solved to obtain their trajectories, from which the mean

square displacements of the particle ensemble can be calculated. The latter are needed to

determine the self-diffusivity of the colloidal NPs in suspension. The description of the

numerical model can be found in the Method section later in this paper.

Numerical part: Hard-sphere-like NPs

By computing the long-time self-diffusivity in colloidal dispersions at different concentra-

tions, we are able to estimate the final solid volume fraction (i.e. the complementary value

of the porosity), at which all the NPs lose their liquid-like mobility and form a jammed

solid-like structure. This approach does not take into account the effect of the confin-

ing walls (i.e. the confining water/air interface) and consequently, the surface-induced

polycrystalline region is neglected. The numerical results for the case of hard spheres

are shown in Fig. 5.2, where the ratio of the self-diffusivity of infinitely dilute colloidal

dispersions D0 to the long-time self-diffusivity in concentrated colloidal suspensions DL

is plotted over the solid volume fraction Φ.
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Figure 5.2: Relative diffusivity vs. solid volume fraction for a colloidal dispersion of
hard-sphere-like particles.

According to earlier studies,34,115 the steady-shear viscosity and long-time self-diffusivity

of dispersions of hard spherical particles are still well coupled by the Stokes-Einstein re-
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lation. Based on this, we compared our numerical results for hard-sphere-like particles

with the viscosity of the colloidal dispersion. Here, we vary the solid volume fraction of

the suspensions and measured their viscosity. In Fig. 5.2, the final solid volume fraction,

ΦCl, of the clusters produced with silica 25 nm NPs is represented with the dotted vertical

line. The results show how the behavior of the colloidal silica NPs (red squares) deviates

from the hard-sphere behavior (black circles). At low solid volume fractions this devia-

tion is small, since the average distance between the NPs is larger than the range of the

electrostatic interactions. As the solid volume fraction increases both curves separates.

From about Φ = 0.1 to Φ = 0.2 the deviation increases sharply, signaling the interval

in which the electrostatic interaction has the greatest influence on viscosity. After this,

the increase in deviation gradually stops, which is an indication of the electrostatic forces

being screened by the more concentrated amount of ions dissolved in the water (i.e. in the

dispersion medium). Although we could not measure viscosity values for solid volume

fractions larger than Φ = 0.35, we did measure the solid volume fraction of the produced

clusters via porosimetry and found that the value of the solid fraction coincides with the

solid fraction reached in random closed packings (of hard spheres). This indicates that

the deviation between the curves in Figure 5.2 must eventually decrease until both curves

converge, which is explained by the stronger screening effect that ends up fully suppress-

ing the electrostatic forces. In the numerical part of the following section, we consider

the case, where electrostatic forces are kept constant with increasing solid volume frac-

tion and show how the deviation between the hard-sphere case and the charged particles

evolves.
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5.4.2 Clusters produced in two evaporation stages: Effect of the electric
forces

(a) (b) (c) (d)

Figure 5.3: (a) Initial state of a droplet of the atomized dispersion prior to the first evap-
oration stage. The larger (blue) circle represents a droplet and the inner (gray) circles
represent the dispersed nanoparticles. (b) Final state of the first stage and initial state of
the second evaporation stage. The change in color of the dispersion medium indicates
the transformation from water (in blue) to crystals of hydrated metallic salts (in red). (c)
Secondary water reservoir as ultra-pure dispersion medium. The increase in temperature
leads to the dehydration of the metallic salts and consequently to the second evaporation
stage, where the metallic components agglomerate to form metallic NPs (black circles).
(d) Dried nanoparticulate cluster.

In this section, we consider the effect of the electrostatic interactions on the structure of

the nanoparticulate clusters produced. By adding a hydrated metal salt (cobalt nitrate hex-

ahydrate) to the suspension, a second evaporation stage beyond 100 ◦C is promoted during

the drying process, where ultrapure water is released from the crystallized hexahydrates

(see Fig. 5.3).129 In this ion-free background, repulsive electrostatic forces dominate over

both attractive forces, the capillarity and dispersion forces, resulting in expansion/dilation

of the narrow pores. Already at a nitrate loading of 3.8% an increment of the pore size

can be observed for the clusters comprising silica NPs with a mean particle size of 13 nm.

The range or width of the pore size distribution does not change with the amount of cobalt

nitrate added, i.e. with the amount of water of the secondary evaporation stage. However,

the number of pores is affected by this amount of cobalt nitrate, as cobalt NPs are formed

during the drying process, occupying the pores of the silica structure and eventually clog-

ging them.

In order to vary the strength of the "reactivated" electrostatic forces during the second

evaporation stage, the ion concentration and the pH value of the suspension were modi-

fied by adding hydrogen chloride (HCl) in a step prior to the spray drying process. How-

ever, the added HCl partially evaporates together with the water during the first evapora-

tion stage, whereby a fraction of the added amount leaves the forming cluster structure.
129FIONA A WIGZELL & S. DAVID JACKSON. Appl. Petrochem. Res., 7: 9–21, 2017.
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Therefore, only the HCl remaining in the porous structure can ultimately be absorbed by

the secondary water reservoir. The amount of HCl retained within the forming cluster

depends on both a steric and a chemical factor. The former concerns the size of the pores,

which can be so narrow that they sterically hinder the escape of the hydrogen chloride

molecules from the porous structure. The second factor mentioned is based on a chemical

process in which the hydrogen chloride molecules are adsorbed within the cavities of the

cluster. This adsorption process is enabled by the presence of the metal nitrate hydrates,

which might react chemically with the HCl to form a salt, as suggested by Sharma et al.,

2020.12 Hence, the concentration of cobalt nitrate hexahydrate (Co(NO3)2 ·6H2O) has a

direct impact on the retention of the HCl molecules, and consequently on the electrostatic

forces. Dissolved HCl has a suppressing effect on both the range and magnitude of the

electric forces: On the one hand, its ions reinforce the screening effect (i.e. they shorten

the range of the electric force). On the other hand, its acidic nature lowers the pH, which

reduces the surface charge of the silica NPs (i.e. it lowers the magnitude of the electric

force). Thus, an increase in HCl retention leads to a reduction of the pore size and poros-

ity due to the weaker electric (repulsive) forces. Building on this, there must be an initial

concentration of HCl and hydrated Co(NO3)2 above which the quantity of adsorbed HCl

will suffice to effectively deactivate the electrostatic interactions, resulting in clusters with

similar porous structure to that of the clusters produced in only one evaporation stage.

Experimental part: Charged NPs

In the following, we asses the effect of the pore size on the retention of HCl by varying

the primary particle size of the produced clusters. For this purpose, we used silica NPs

with mean diameters of 13 and 25 nm, whose related pore sizes can be seen in Fig. 5.1.

Furthermore, two cobalt nitrate loadings were considered, 3.8% and 20% (loading un-

derstood as the percentage of mass of cobalt per mass of silica), in order to evaluate their

impact on the retention of HCl. The addition of cobalt nitrate reduces the original pH of

the suspension from above 9 to approx. 7. The subsequent addition of HCl lowers further

the pH value. The results presented in Figures 5.4 and 5.5 include the original suspension

without any addition of cobalt nitrate or HCl (i.e. pH above 9), the suspension with added

cobalt nitrate and without HCl (pH around 7) as well as at least one suspension with the

addition of both cobalt nitrate and HCl.

12RAVI SHARMA et al. Chem. Eng. J., 381: 122512, 2020.
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(a) Silica 13 nm (b) Silica 25 nm

Figure 5.4: Effect of the pore size (or particle size) and cobalt nitrate concentration on
the retention of HCl for a cobalt nitrate loading of 3.8%.

(a) Silica 13 nm (b) Silica 25 nm

Figure 5.5: Effect of the pore size and cobalt nitrate concentration on the retention of HCl
for a cobalt nitrate loading of 20.0%.

In general, the results show that the addition of cobalt nitrate (with or without HCl) in-

creases the pore size of the clusters. This can be explained by the fact that cobalt NPs

are formed during the drying process due to supersaturation of the evaporating water.

These crystals accommodate within the cavities of the cluster, acting as a template (i.e.

a steric obstacle impeding the interactions between the larger silica NPs). The results in

Fig. 5.4a for silica 13 nm show a gradual decrease in pore size as the concentration of

HCl increases, which in turn leads to weaker repulsive interactions between NPs. This

indicates that within the narrow pore structure of the forming clusters, the concentration

of added cobalt nitrate was sufficiently high to capture a sensible amount of HCl. In con-

trast, the same amount of cobalt nitrate for the case of silica 25 nm, i.e. for larger pores,

did not retain sufficient HCl to affect the electrostatic interactions, which can be seen in

Fig. 5.4b, where the pore size remains unchanged with the increase in HCl concentration
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(i.e. the reduction of the pH value below 7). In Figures 5.4a and 5.5a for silica 13 nm, an

abrupt change in pore size can be seen after adding HCl (pH 5.5). Here, the pore narrows

abruptly to the apparently minimal size reachable in the presence of the forming cobalt

NPs. This can be explained by the larger amount of cobalt nitrate added, which leads to an

enhanced retention of HCl, which suffices to effectively deactivate the electrostatic inter-

actions between the silica NPs. A similar behavior was observed for silica 25 nm with a

cobalt loading of 20% (see Fig. 5.5b). A bimodality in the pore size distribution was also

observed. This can be attributed to the selective formation of cobalt NPs in pores larger

than 6 nm, since these NPs reach sizes from 6 nm to 15 nm. Thus, the smaller pores not

only remain intact but also increase in number as the partially filled, larger pores become

smaller.

In contrast to the hard-sphere case, the solid volume fraction strongly correlates with the

pore size, as the void space between the NPs is being expanded by the action of the elec-

trostatic interactions. Therefore, the solid volume fraction decreased with increasing HCl

content, i.e. with the vanishing of the electrostatics interactions (see values in Fig. 5.4a).

Note that the solid volume fraction of the clusters produced without any addition of nitrate

or HCl Φ = 0.58, is very similar to that of the clusters produced with the highest content

of HCl, i.e. the lowest pH of 3, Φ = 0.56. This supports the idea that the silica NPs

conform the structural skeleton of the clusters, while the cobalt NPs formed during the

drying process just fill the cavities of the silica structure without substantially changing

it.

Numerical part: Charged NPs

In order to quantify the effect of the electrostatic interactions on the cluster porous struc-

ture, their magnitude was varied by means of numerical simulations. We used a particle-

based mesoscopic model, which reproduces the behavior of a well-stabilized colloidal

dispersion. The model uses an approximation of a repulsive hard-sphere potential plus

a screened Coulomb potential, as the effective colloidal pair potential.30–32,113 As already

stated, we focus on the bulk structure, predominant in clusters produced with smaller NPs

by spray-drying. For this purpose, we compute the self-diffusivity of the NPs moving in

a bulk region, i.e. without the influence of the droplet-air interface (see Fig. 5.6), as the

solid volume fraction, Φ, of the cluster increases (i.e. as the water content decreases).

By tracking the long-time self-diffusivity of the NPs, we are able to estimate the solid

fraction at which the NPs configuration reaches a jammed state (i.e. the point during the

drying process at which the particles completely lose their mobility and get stuck in a

mechanically stable configuration).
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As a measure of the magnitude of the electrostatic interactions, we used the electric sur-

face potential. Its ordering effect on the cluster configuration can be seen qualitatively in

Fig. 5.6, where for the same solid volume fraction, Φ = 0.45, the electric surface poten-

tial was increased. Here, the crystallized fraction represented in green increases with the

electric surface potential. These crystals were identified using the common neighbor anal-

ysis tool of the open-source software Ovito.130 A diagonal cutting plane was introduced to

show the inner part of packing computation domain, i.e. the cluster.

(a) (b) (c)

Figure 5.6: Structural order vs. surface potential with ψ0,2 = 115mV, ψ0,1 = 50mV,
ψ0,0 = 0mV (i.e. hard spheres) and an ionic strength of 0.01mol L−1.

The results for the self-diffusivity for three different electric surface potentials, ψ0,a =

10mV, ψ0,b = 48mV, ψ0,c = 72mV and an ionic strength of 0.03mol L−1, are shown

in Fig. 5.7. We considered NPs with a diameter of 13 nm dispersed in a medium with a

relative electric permittivity �r = 34 at 200 ◦C.131 These are similar conditions to those

that can be expected during the final evaporation stage. However, the exact conditions of

ionic strength and surface electric potential are not accessible by measurements.

As analytically deducted by Brady 1994,33 for the case of hard spheres, the long-time self-

diffusivity vanishes quadratically as it approaches the maximum solid volume fraction,

Φm ≈ 0.63

DL/D0∝1/1.26 · 0.85(1− Φ/Φm)� �� �
Hydrodynamics

1/1.2(1− Φ/Φm)� �� �
Contact

= 0.562(1− Φ/Φm)
2. (5.1)

This deduction is in line with the viscosity model of Maron and Pierce,132 which is com-

monly used to describe the relative viscosity of hard-sphere dispersions beyond the di-

lution regime.35 As explained in the previous section, η0/η = DL/D0 for hard spheres,

via the Stokes-Einstein relation, so that the Maron and Pierce equation can be written as

130ALEXANDER STUKOWSKI. Model. Simul. Mat. Sci. Eng., 20: 045021, 2012.
131SITI MACHMUDAH et al. Hydrolysis of Biopolymers in Near-Critical and Subcritical Water. Elsevier

Inc., 2017. 69–107
132SAMUEL H. MARON & PERCY E. PIERCE. J. Colloid Sci., 11: 80–95, 1956.
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follows

DL/D0=(1− Φ/Φm)
2, (5.2)

or reorganized into the following linear form
�
DL/D0=1− Φ/Φm . (5.3)

The first term in Eqn. 5.1 corresponds to the vanishing of the hydrodynamic interactions

between particles as the mobility of the NPs drastically decreases, while the second term

represents the particle-particle contact interactions.33,35 Eqn. 5.3 explains the linear de-

crease of the square-root of the diffusivity ratio,
�

DL/D0, shown in Fig. 5.2. However,

we did not observe the same behavior in the case of the charged particles. This can be

explained by the fact, that electrostatic interactions exponentially grow with decreasing

distance between the interacting particles, preventing them from touching each other. At

short distance, the mobility of the NPs will be dramatically hindered by the long-range

repulsive electric forces, so that solid-like structures begin to form, i.e. colloidal crystals,

see green spheres in Fig. 5.6. Since direct contact between the particles is highly unlikely

for the case of charged particles, the second term in Eqn. 5.1 can be neglected. Hence, we

fitted the diffusivity values of the charged particles to the following linear equation

DL/D0= Kel(1− Φ/Φm), (5.4)

which is applied only for large values of the solid volume fraction. Here, Kel is a coef-

ficient that depends on the electric surface potential. Further, Φm can be read from the

intersection of the fitting function with the horizontal axis (see Fig. 5.7).
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Figure 5.7: Relative diffusivity vs. solid volume fraction for different electric surface
potentials with the same ionic strength.

Note that in Fig. 5.7, the diffusivity ratio (instead of its root-square) is plotted against the

solid volume fraction. Therefore, the hard-sphere case (HS) shows a quadratic decay in
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accordance to the Maron-Pierce equation (Eqn. 5.2). For the case of charge-stabilized

NPs, the suggested function, Eqn. 5.4, shows an excellent agreement with the numeri-

cal results for large values of solid volume fraction as it approaches the maximum solid

fraction, Φm. We have successfully verified this behavior and the implementation of the

numerical model with the experimental results of Holmqvist and Nägele 133.

We used Eqn. 5.4 to quantitatively estimate the maximum value reached by the solid

fraction for each electric surface potential considered. These values are Φa = 0.461,

Φb = 0.410, Φc = 0.357. It is clear from the results that relatively small variations in

electric surface potential can have a sensible impact on the final solid fraction of nanopar-

ticulate clusters. Though the exact conditions of pH and ion concentration remain uncer-

tain, we considered realistic surface potential values.134 Note that the dielectric constant

(also known as relative permittivity) of water is cut approx. in half at the evaluated tem-

perature of 200 ◦C in comparison to its value at 25 ◦C.131 This should lead to proportionally

higher electric surface potentials.135 Building on this, the highest electric surface potential

evaluated, ψ0,c = 72mV, should still be within a reasonable and realistic range for col-

loidal silica dispersions. The obtained values of solid volume fractions in the numerical

calculations led to smaller values than those obtained in the experiments ranging from

0.46 to 0.58. This may indicate that the NPs rearrange themselves in a more compact

configuration either towards the end of the secondary evaporation stage or afterwards in a

dried state during the consolidation of the structure.

5.5 Conclusions

The formation mechanism of nanoparticulate clusters produced via spray-drying was dis-

cussed for both the case of hard-sphere-like and charged NPs. The base for the discussion

were the solid volume fractions and pore size distributions obtained by experimental and

numerical means. A formation mechanism for the case of clusters consisting of charged

NPs was suggested, at which a hydrated metallic salt and HCl have to be added to the

colloidal silica dispersion. The amount of added hydrated salt showed to be of vital im-

portance, on the one hand, as it provides a second and highly pure water reservoir at

temperatures over 100 ◦C, inducing a second evaporation stage in the drying process. On

the other hand, the added metallic salt captures the evaporating HCl before it escapes the

silica structure, which negatively affects the electrostatic interactions between the NPs. It

was shown that the pore size and solid volume fraction of the clusters can be controlled

by adjusting the retention of HCl in the silica structure, which in turn adjusts the strength

133PETER HOLMQVIST & GERHARD NÄGELE. Phys. Rev. Lett., 104: , 2010.
134CIGDEM O METIN et al. J Nanopart Res, 13: 839–850, 2011.
135STACEY HARPER et al. Environ. Sci. Nano, 3: 953–965, 2016.
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of the electric forces. The latter causes the electrical forces to proportionally dilate the

pore size due to their repulsive character.

5.6 Numerical and experimental methods

5.7 Methods

5.7.1 Materials

For the synthesis of the clusters, ammonium stabilised aqueous colloidal silica suspension

with 3 different silica primary particle size were used as a support for the Co3O4 nanopar-

ticles. The silica suspensions were obtained from CWK Chemiewerk Bad Köstritz GmbH.

In this work 3 different silica sizes were investigated: 13 nm, (Köstrosol 0830AS, 30 wt

%), 25 nm, (Köstrosol 2040AS, 40 wt %), and 64 nm, (Köstrosol 4550, 50 wt %). For the

synthesis of cobalt oxide nanoparticles cobalt (II) nitrate hexahydrate, Co(NO3)2 ·6H2O,

from Sigma-Aldrich was used as the precursor. Small amounts of hydrochloric acid (HCl)

were used to decrease the pH value of the prepared suspensions before the spray drying

process. Deionized water was used as a solvent in all the suspensions. All materials in

this work were used as received without further treatment.

5.7.2 Characterization

The structure and morphology of the clusters were examined with Scanning Electron Mi-

croscopy (SEM). The analyses were carried out with a Zeiss DSM Gemini 982 operated

at 5 kV. The zeta potential and electrophoretic mobility of the suspensions before spray

drying were light scattering with a Zetasizer Nano ZS (Malvern Panalytical). The thermal

decomposition of the cobalt nitrate to cobalt oxide was analysed with a Thermogravimet-

ric analysis (TGA). The experiments were carried out in the temperature range of 20 to

1000 ◦C under air conditions with a heating rate of 10 K/min using a NETZSCH TG 209

F1 thermogravimetric analyser. Nitrogen adsorption-desorption isotherms were recorded

with an ASAP 2020 from Micromeritics GmbH. The pore size distributions and total pore

volume of the BBs were calculated according to the Barrett-Joyner-Halenda (BJH) model.

Generally, a sample mass between 100-150 mg was degassed for 2 h at a temperature of

250 ◦C before analysis. During the measurements, several data points for adsorption and

desorption isotherms were collected.
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5.7.3 Particle simulation

To model the motion of the colloidal nanoparticles (NPs), we use Fast Lubrication dy-

namics (FLD),116,136,137 which is an approximation to Stokesian dynamics (SD).118,119,124

As in other methods based on N-body Newtonian dynamics such as the mentioned SD,

as well as Langevin and Brownian dynamics, the external forces applied to the particles

are divided into conservative forces FP, and the interactions with the solvent. The lat-

ter are described by the fluctuation-dissipation theorem, namely the fluctuating Brownian

force FB and its counterpart, the dissipative hydrodynamic force FH. This results in the

following equation of motion for the NPs

m
dU

dt
= FH + FB + FP , (5.5)

where U is the particle translational/rotational velocity vector of dimension 6N . FP is a

conservative force due to interparticle or external potentials.

When the particle Reynolds number is small, the hydrodynamic force exerted on the par-

ticles in a suspension in the absence of bulk shear flow is

FH = −RU , (5.6)

where the hydrodynamic interactions are directly proportional to the particle transla-

tional/rotational velocities U. R stands for the hydrodynamic resistance tensor as the

proportionality factor.

The stochastic Brownian force FB is the mesoscopic manifestation of the thermal motion

of fluid particles and is given by

�
FB

�
= 0 , (5.7)

�
FB(0)FB(t)

�
= 2kBTRδ(t) . (5.8)

The angle brackets indicate an ensemble average, kB and T are the Boltzmann constant

and the absolute temperature, respectively, and δ(t) is the Dirac delta function.

In this work, as conservative forces we consider the DLVO (Derjaguin-Landau-Verwey-

Overbeek) interactions, i.e. those forces that arise from the Van der Waals (VdW) and

screened Coulomb pair potentials. The VdW forces in turn are composed of an attraction

136MICHAEL DEAN BYBEE. Hydrodynamic Simulations of Colloidal Gels: Microstructure, Dynamics, and
Rheology. Ph.D. dissertation. University of Illinois at Urbana-Champaign, 2003.

137AMIT KUMAR. Microscale dynamics in suspensions of non-spherical particles. Ph.D. dissertation.
University of Illinois at Urbana-Champaign, 2010.
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and a repulsion part, and are proportional to the Hamaker constant Ac. Their mathematical

expressions are well documented in [32, 138].

Computation of the electrostatic interactions

Charged colloidal systems can be described by means of the DLVO pair potential. The

electrostatic part of the DLVO potential takes the form of a screened Coulomb pairwise

interaction, which in the case of two spherical particles of radius a, each carrying an ef-

fective charge Qeff in a fluid of dielectric constant �r with a concentration n of monovalent

ions is given as a function of the center-to-center distance r by

Uel(r) =
Q2

eff

4π�0�r

e−r/λD

r
with Qeff =

ea/λD

1 + a/λD

Q , (5.9)

where Q is the actual charge of the particles, �0 is the vacuum permittivity, and λD is the

screening Debye length.

The electric DLVO pair potential Uel can be linked to the electrostatic potential ϕ. The

latter is derived from the analytical solution of the linearized Poisson-Boltzmann (PB)

equation, known as the Debye-Hückel potential139

Uel(r) = Qeff ϕ(r) with ϕ(r) =
Qeff

4π�0�r

e−r/λD

r
. (5.10)

In general, the PB equation is used to model the electrical double layer surrounding

a charged surface in an electrolytic solution for the case of low salt concentrations �
0.003mol L−1 .140 Strictly speaking, both the Debye-Hückel potential as well as the elec-

tric part of the DLVO pair potential hold only for low electric potentials (i.e. e |ϕ| � kBT ,

or as established standard ϕ ≤ 25mV). However, their use can be extended for a wider

range of potentials, from 50− 80mV, as a good approximation.141

�0�r∇2ϕ(r) = −
N�

j=1

qjn
0
j exp

�
−qj ϕ(r)

kBT

�
− ρf , (5.11)

with boundary conditions

−�0�r n·∇ϕ = σ on r = a , (5.12)

ϕ = 0 on r −→ ∞ , (5.13)

139K. DILL & S. BROMBERG. Molecular Driving Forces: Statistical Thermodynamics in Biology, Chem-
istry, Physics, and Nanoscience. CRC Press, 2012.

140JIN SI ZHANG et al. Sci. Rep., 7: , 2017.
141H.J. BUTT et al. Physics and Chemistry of Interfaces. Physics textbook Wiley, 2003.
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where the j-th species (e.g. dissolved ions) carries a charge qj and has a concentration n0
j .

The surface charge density σ is imposed as a boundary condition on the particle surface.

In the determination of the screening length λD, there is no general consensus as to

whether the counterions released by the colloidal particles contribute to their own screen-

ing or not .142 The role of the volume fraction of the colloidal particles in the screening of

the electric force is still under discussion.113 We used the most established equation in lit-

erature and took into account the counterions of the deprotonated oxygen atoms, present

in the hydroxyl groups of the silica surface, namely the following equation

λD =

��N
j=1 n

0
j q

2
j

�0�r kBT

�−1/2

. (5.14)

5.8 Supporting information

5.8.1 Simulation details

In all calculations carried out, the colloidal particles are treated as finite-sized parti-

cles with translational as well as rotational degrees of freedom, LAMMPS atomic style

"sphere". The parameters for the hard-sphere colloids are analogous to previous works [31,

32], where the particle radius is set to a = 5σ. Colloidal interactions are accounted for

with the integrated Lennard-Jones potential, pair style "colloid" in LAMMPS, with a cut-

off distance of Rc = 2a + 30 − 1/6σ and a Hamaker constant of Acc = 4π2 � 39.478ε.

Notice that this interaction is not strictly hard, but is slightly softened to avoid particle

overlap. The inner and outer cutoff distances for the FLD lubrication terms are set to

2.0002a and 3a, respectively.

Verification: Charge-stabilized colloids

Here we present the verification of the model used in the simulation, for which the repul-

sive part of the DLVO potential has been implemented in LAMMPS, a widely-used open

source software for molecular dynamics simulations.

A model system was considered equivalent to the silica system used in the numerical and

experimental studies by Banchio et al. and Holmqvist et al., respectively.

142K S SCHMITZ et al. J. Phys. Chem. B, 107: 10040–10047, 2003.
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Figure 5.8: Relative diffusivity vs. volume fraction.

5.8.2 Materials characterization

The size of the primary nanoparticles used in the production of the clusters (Building

blocks) were measured via dynamic light scattering (Zetasizer Nano ZS, Malvern) and

their number-weighted particle size distributions are presented in Fig. 5.9

Figure 5.9: Number-weighted particle size distribution of the primary NPs used to pro-
duce the clusters.

5.8.3 Electric potential

Here, additional results are provided supporting the fact that the electrostatic potentials

can be used for a wider range of potentials beyond the low region (i.e. <25mV), by

introducing the concept of effective number of charges, Zeff ,113 which takes values, in

general, lower than the real number of charges, as shown in Fig. 5.10 and Fig. 5.11. Since
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we use relatively high electric potentials in our calculations, their accuracy is checked by

comparing the numerical solution of the PB equation with the Debye-Hückel potential.

The PB equation is solved in spherical coordinates (i.e. 1D) for each particle size, surface

potential (ϕ(a) = ψ0) and salt concentration considered. For this purpose, we used the

open-source finite-element package FEniCS.57,58

The surface charge density imposed as boundary condition at the NP surface is calculated

with 135

σ = �0�r ψ0 (1 + a/λ)/a

.
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Figure 5.10: Comparison of the numerical solution obtained from the PB solver with the
Debye-Hückel potential of a NP of radius a = 130.0 nm, surface potential ψ0 = 15mV
in a solution 0.003mol L−1 of a monovalent salt. The resulting screening Debye length
for water at 20 ◦C is λD = 173.1 nm.

57MARTIN S. ALNÆS et al. ACM T. Math. Software, 40: , 2014.
58MARTIN S. ALNÆS et al. Arch. Num. Software, 3: , 2015.
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Figure 5.11: Comparison of the numerical solution obtained from the PB solver with the
Debye-Hückel potential of a NP of radius a = 130.0 nm, surface potential ψ0 = 150mV
in a solution 0.003mol L−1 of a monovalent salt. The resulting screening Debye length
for water at 20 ◦C is λD = 173.1 nm. The surface charge density imposed as boundary
condition at the NP surface is calculated with σ = �0�r ψ0 (1 + a/λ)/a [135].
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6 Effect of an electric field on the formation of
nanoparticulate clusters

This chapter was published in the form of a full paper in the Journal of Aerosol Science

Hector Rusinque, Elena Fedianina, Alfred P. Weber, & Gunther Brenner. (2018).
Numerical study of the controlled electrodeposition of charged nanoparticles
in an electric field
Journal of Aerosol Science, 129, 28-39.
DOI: 10.1016/J.JAEROSCI.2018.11.005 .

6.1 Zusammenfassung

Die Selbstassemblierung von Nanopartikeln zu gröSSeren Strukturen kann eine leistungs-

fähige Technik zur Einstellung der elektrischen und optischen Eigenschaften der erzeugten

Strukturen sein, die verschiedene Anwendungen in Bereichen wie der Mikroelektronik

findet. Diese spontane Organisation erfolgt durch direkte spezifische Wechselwirkungen,

z. B. van der Waals-Kräfte, oder indirekt durch ein äuSSeres Feld. Die besonderen Eigen-

schaften der resultierenden Struktur lassen sich durch die Wechselwirkungen zwischen

den selbstorganisierten Teilchen erklären, die durch ihre elektronischen, magnetischen

und optischen Eigenschaften beeinflusst werden.143,144 Diese intermolekularen Kräfte hal-

ten die Selbstassemblierung zu einer stabilen Struktur zusammen. Darüber hinaus können

durch das Sintern der Partikel-Cluster neue Schichten von Nanopartikeln auf der gesin-

terten Struktur abgeschieden werden, um komplexe 3D-Strukturen wie bei der additiven

Fertigung zu bilden.145

Im vorliegenden Kapitel werden die Bewegung und die Elektroabscheidung von Nanopar-

tikeln unter dem Einfluss eines elektrischen Feldes numerisch untersucht. Nach der In-

jektion der Partikel in die Abscheidungskammer (ein Elektrodenaufbau) bewegen sich

diese spontan von einem Bereich mit hohem elektrischem Potenzial, der von Brownscher

(Zufalls-)Bewegung dominiert wird, in einen Bereich mit niedrigem Potenzial, in dem

ihre Trajektorien durch die elektrische Kraft bestimmt/kontrolliert werden, bis sie sich auf

143ZHIHONG NIE et al. Nat. Nanotechnol., 5: 15–25, 2010.
144C. STEPHENSON & A. HUBLER. Sci. Rep., 5: 15044, 2015.
145KIWOONG LEE et al. Nanotechnology, 28: 475302, 2017.
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der Oberfläche des Substrats (der Elektrode mit dem niedrigsten Potenzial) zusammenset-

zen. Die Simulationsergebnisse sind in guter Übereinstimmung mit den numerischen und

experimentellen Messdaten von Choi et al. 2015.

Aus den erhaltenen Ergebnissen wurde festgestellt, dass die von den abgeschiedenen

Nanopartikeln hinterlassene Musterbreite indirekt mit der elektrischen Kraft unter isother-

men Bedingungen (konstante thermische Bewegung) korreliert. Eine Verringerung der

Musterbreite wird daher hauptsächlich durch eine Erhöhung der GröSSe der elektrischen

Kraft erreicht, was entweder durch eine Erhöhung der Anzahl der Ladungen pro einfall-

endem Partikel oder durch eine Erhöhung der Potenzialdifferenz oder schlieSSlich durch

eine Verringerung des Elektrodenspalts erfolgen kann. Weitere Modifikationen an der

Geometrie des Elektrodenaufbaus zeigen einen geringen Einfluss auf die Musterbreite, da

diese nur die Form des elektrischen Feldes beeinflussen und nicht dessen Stärke, die di-

rekt mit der GröSSe der elektrischen Kraft zusammenhängt. Hier wird eine Verringerung

der Musterbreite beobachtet (d.h. eine Verstärkung des Fokussierungseffekts der Elek-

troabscheidung), wenn die Modifikationen der Geometrie zu einer engeren Konvergenz

der Stromlinien des Feldes auf dem Substrat führten. Dies ist z. B. der Fall, wenn die

Dicke der Maske erhöht oder der Abstand zwischen den Öffnungen der Maske verringert

wird.

6.2 Abstract

A numerical investigation of the effect of sensitive parameters on the controlled electrode-

position of charged nanoparticles driven by an electric field is conducted. By applying a

potential difference between an arrangement of electrodes, an electric field is generated,

in which charged nanoparticles are transported through a mask and finally deposited on

a substrate, a technique first described and applied by Choi et al. Using this technique,

sharply delimited structures of deposited particles can be printed. A series of simulations

are carried out taking into account the variation of different parameters such as the ge-

ometry of the electrode arrangement as well as the size and charge of the particles. The

numerical results are verified with experimental and numerical data from Choi et al. It is

determined how the considered parameters affect the deposition of the nanoparticles with

respect to the sharpness of the obtained deposits. Here, the investigated spherical particles

showed an inertia-free behavior within the considered diameters from 5 to 30 nm. The

correlation of the thermal fluctuations with the electric force is quantitatively analyzed, as

well as its impact on the width of the pattern of deposited nanoparticles.
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6.3 Introduction

The general driving force of isothermal-isobaric processes is the minimizing of Gibbs free

energy.146 Under these conditions of constant temperature and pressure, an ensemble of

nanoparticles, seeking energy minima, organizes spontaneously into ordered, larger struc-

tures in a lower-energy, more stable state. As a consequence of being thermodynamically

more stable, self-assembled structures can exhibit properties that differ from those shown

by their individual components.

The self-assembling of nanoparticles to form larger structures can be a powerful tech-

nique for adjusting the electrical and optical characteristics of the produced structures,

finding various applications in areas such as microelectronics.147,148 This spontaneous or-

ganization occurs as a result of direct specific interactions, e.g. van der Waals forces,

or indirectly through an external field. The particular properties of the resulting struc-

ture can be explained by the interactions between self-assembled particles affected by

their electronic, magnetic and optical properties143,144 These intermolecular forces hold

the self-assembly into a stable structure together. Furthermore, by sintering the particle

cluster, new layers of nanoparticles can be deposited on the sintered structure to form

complex 3D structures as in additive manufacturing.145

Different self-assembly techniques have been developed based on the above-mentioned

principles. For instance, using a self-assembly process driven by capillary interactions,

2D-arrays consisting of an orderly arrangement of monodisperse polymethylmethacrylate

microspheres were formed.149 In another study, nanoparticles gather spontaneously with

the neighboring particles in a liquid medium by binding them using ligands attached to

their surfaces.150 Surface-grafted DNA molecules were used as ligands that drive the self-

assembly process.151

The self-assembly process of a nanoparticle system can also be induced by directed self-

assembly techniques (DSA). The most common directors are external fields such as elec-

tric and magnetic fields, whose effect on charged particles consists in driving their move-

ment and aligning them by the induced interactions. However, this is only the case, if the

external force is strong enough to overcome Brownian motion.152 By applying a potential

difference between two electrodes an electric field can be generated and used to precipitate

charged nanoparticles on one of the electrodes, the substrate. The geometry of the second

146MAREK GRZELCZAK et al. ACS Nano, 4: 3591–3605, 2010.
147DAVID LYON & ALFRED HUBLER. IEEE T. Dielect. El. In., 20: 1467–1471, 2013.
148ALFRED W. HÜBLER & ONYEAMA OSUAGWU. Complexity, 15: , 2010.
149N D DENKOV et al. Langmuir, 8: 3183–3190, 1992.
150ALEXANDER BÖKER et al. Soft Matter, 3: 1231, 2007.
151W. BENJAMIN ROGERS et al. Nat. Rev. Mater., 1: 16008, 2016.
152SLAVKO KRALJ & DARKO MAKOVEC. ACS Nano, 9: 9700–9707, 2015.
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electrode can be adjusted to force the field lines to focus on a specific surface area of the

substrate. This lens effect can be achieved by using a mask with micrometer scale opening

sizes as an electrode, conferring on such a electrode setup the ability to print micropat-

terns of nanoparticles onto the substrate through controlled electrodeposition.153,154 This

technique, presented by Choi et al. 2015, enables the fabrication of hierarchical func-

tional materials with complex structures opening up application opportunities in fields

ranging from catalysis, optics, photonics, sensor technology and separation processes to

electrochemical devices.154–156 As an example, the controlled design of the pore structure

of porous materials allows the optimization of diffusive transport through these media,

enhancing catalytic and separation processes.9–11,155

In this paper, after verifying the implementation of the model with experimental and nu-

merical data from Choi et al.154, selected parameters affecting the controlled deposition

of charged nanoparticles in an electric field are numerically studied, specifically by cal-

culating the pattern width Wc. The parameters taken into account for the study are the

electric field, which is changed in magnitude and shape by modifying the geometry of the

electrode setup and the potential difference, as well as the size (5-30 nm) and charge of

the metallic nanoparticles. Different metals are as well considered. However, the motion

of the particles showed to be material-independent. Based on the simulation results, a di-

mensionless analysis is performed, in order to explain the inertia-free behavior shown by

the particles. Finally, building on the gained understanding of the nanoparticle motion, a

dimensionless number and a fitting function are proposed, which can be used to correlate

the width of the printed pattern with the electric force applied.

6.4 Modeling and numerical approach

An electrode arrangement inducing a lens effect in the electric field lines is considered.

Such a setup was first presented by Choi et al. in different previous studies.154,157–159 A rep-

resentative scheme of the electrode setup with given dimensions is shown in Figure 6.1.

The motion of nanoparticles in an electric field can be described by the Langevin equa-

tion. This equation is derived from Newton’s second law of motion, whereby a stochastic

153HOSEOP CHOI & MANSOO CHOI. US Patent, US9321633B2, 2014.
154HOSEOP CHOI et al. J. Aerosol Sci., 88: 90–97, 2015.
155CEDRIC BOISSIERE et al. J. Adv. Mater., 23: 599–623, 2011.
156NATHAN E MOTL et al. J. Mater. Chem. A, 1: 5193–5202, 2013.

9ROBERT GÜTTEL & THOMAS TUREK. Energy Technol., 4: 44–54, 2016.
10LI CHEN et al. Chem. Eng. J., 349: 428–437, 2018.
11JIAN YIN et al. J. Mater. Chem. A, 6: 8441–8448, 2018.

157SUKBEOM YOU & MANSOO CHOI. J. Aerosol Sci., 38: 1140–1149, 2007.
158SUKBEOM YOU et al. Small, 6: 2146–2152, 2010.
159HYOUNGCHUL KIM et al. Nat. Nanotechnol., 1: 117–121, 2006.
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term, known as white noise, models the Brownian motion of the nanoparticles after math-

ematical integration.

The interactions between the air molecules of the medium and the nanoparticles are rep-

resented in the equation by two terms describing thermal motion and drag. The bal-

ance between these two forces is known as the Einstein relation and is described by the

fluctuation-dissipation theorem. Here, a particle moving through a medium experiences

drag leading to dissipation of kinetic energy. The surrounding molecules respond to this

perturbation by turning the dissipated energy into thermal motion (the corresponding fluc-

tuation).

Figure 6.1: Electrode arrangement with potential difference and dimensions. Here, dop
stands for the opening diameter of the mask, Sop for the spacing between openings, BM for
the mask thickness, HD for the distance between the upper electrode (the "ceiling") and
the mask electrode in the middle, and Hel for the distance between the mask and substrate
electrodes (in the following referred as electrode gap). The same potential difference
between the mask and the substrate (Δφ) is applied between the ceiling and the substrate,
so that there is no difference in potential between the ceiling and the mask.

The equation of motion with the considered forces is shown below

mv̇ = Fγ + Fth + Fel + FvdW (6.1)

The following equations describe the forces acting on a particle

• Drag force Fγ = −γsv(t),

where γs is the Stokes drag coefficient given by γs = 12π η dp . Here, dp stands for

the particle size, η for the dynamic viscosity, −v(t) for the flow velocity relative to

the moving sphere assuming stationary air.

• Electric force Fel = qE(x),

where q is the charge of a nanoparticle and E(x) is the position-dependent electric
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field that can be described by E(x) = −∇φ(x).

• Van der Waals force

FvdW =
Apsd

3
p

12 (Dps − dp/2)
2 (Dps + dp/2)

2n

+
Appd

6
p

6 (Dpp − dp)
2 D3

pp (Dpp + dp)
2 r (6.2)

where A is the Hamaker constant, Dps is the distance between incoming particles

and the substrate surface, Dpp is the distance between incoming particles and de-

posited particles, and n as well as r their respective normal vectors.

• Thermal driving force Fth =
�
2γs kBT/CcW(t).

where kB is the Boltzmann constant, T is the temperature and W(t) is Gaussian

white noise Wi(t). The integral of white noise describes Brownian motion (also

known as Wiener process). Numerically, this is realized by generating a normally

distributed random number for each coordinate with zero mean µ = 0 and variance

σ2 = 1.24,25

The equation of motion is numerically integrated by the leapfrog method.68 The leapfrog

integration is a second-order method. Though, it requires the same number of function

evaluations per step as the first order Euler scheme. The leapfrog method is more sta-

ble for oscillatory motion in contrast to Euler integration. As no motion occurs in the

solid phase, nanoparticles are not allowed to cross solid boundaries. Therefore, a no-flux

boundary condition is implemented for the solid elements of the system. A simple bound-

ary condition such as diffusive reflection serves this purpose. In contrast to the diffusive

boundary condition for the solid phase, at the lateral boundaries of the computational

domain, periodic boundary conditions are used. It is assumed that the solid surface of

the substrate is the only surface from which the particles are not reflected. Instead, they

stick to the substrate surface on a given location that is stored as the final position of the

particle. This stick condition implies the assumption that the momentum associated with

all collisions between the incoming particles and the substrate surface is not high enough

to lead to reflection of the particles from the surface. Out of the final positions of the

centers of all deposited nanoparticles, the resulting spatial distribution on the substrate

surface and its related width are computed. The computation of the electric field is based

on the electrostatic Maxwell equations using the commercial software COMSOL Mul-

tiphysics. A file with the computed electric field over the discretized space is given as

input to the Langevin solver, where the electric field can be evaluated in any point of the

computational domain through multilinear interpolation. For instance, the electric field of

24H G SCHUSTER & WOLFAM JUST. Deterministic Chaos. Wiley, 1994.
25GIORGIO VOLPE & GIOVANNI VOLPE. Am. J. Phys., 81: 224–230, 2013.
68GUIHUA ZHANG & TAMAR SCHLICK. Mol. Phys., 84: 1077–1098, 1995.
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Figure 6.2: a) The electric field lines (in black) emerging from the ceiling of the deposi-
tion chamber run from high to low potential. The equipotential lines (perpendicular to the
field lines) are red for high potential and turn yellow, green and blue as the potential goes
down.
b) Alternatively, the equipotential lines can be seen as a potential surface on which the
nanoparticles spontaneously move downhill transforming potential energy into kinetic
energy. This example is taken from the results presented in the verification case using a
slit-shaped mask opening (see Sec. 6.5.1).

the verification case presented in Section 6.5.1, and the electric potential levels of a given

xy-plane are shown in Figure 6.2.

6.5 Results and discussion

In the following, computational results of the nanoparticle deposition driven by an elec-

tric field are presented. Sensitive parameters affecting the particle motion are varied to

evaluate their effect on the electrodeposition regarding the pattern width. In the scope of

this work, the deposit width Wc is given as a fraction of the mask opening size dop. The

length fraction obtained Wc/dop can be interpreted as a focusing strength associated with

the lens effect of the electrode arrangement. The Full Width at Half Maximum (FWHM)

of the fitted Gaussian distributions was chosen as a characteristic length to represent the

pattern width (see Figure 6.3). All the length values related to the geometry of the depo-

sition chamber are given in terms of opening diameters (dop). The deposition occurs at a

temperature of 298.15K.
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Figure 6.3: a) The trajectories of eleven nanoparticles are shown as well as the electric
field lines between the electrodes for the geometry used in the verification case (see Sec-
tion 6.5.1) at a potential difference of 0.5 and 3V, respectively, for an opening diameter
of dop = 4 µm.
b) The final positions of the deposited nanoparticles are shown above. The Gaussian-
shaped curves represent the spatial distributions of the deposited nanoparticles in the form
of a probability density function (PDF). The green lines are the Gaussian functions fitted
to the simulation results represented by the blue points.

6.5.1 Verification

An in-house solver is used to solve the Langevin equation. As verification of the model

implementation, the results are compared with the experimental data of Choi et al. 2015.

The simulations are carried out using a stencil mask with a slit-shaped opening. The

size of the slit (dop) is 4 µm as shown in Figures 6.3 and 6.4. An electrical potential of

−600V is applied to the substrate electrode, while a potential is applied to the ceiling

and mask electrodes at a higher energy level, so that the desired difference is obtained. In

contrast to the simulations of Choi et al. 2015, where the trajectories of 150 nanoparticles

were calculated, in this study the motion of 100 000 nanoparticles is computed. The

impact of the number of particles can be observed from the smoothness of the resulting

Gaussian distribution of all particle centers on the printed pattern, as shown in Figure

6.3. In addition, Gaussian-shaped deposits are reproduced on the surface of the substrate

in order to evaluate the influence of the 3D structures on the electric field. The structure

under consideration is viewed as a continuum. The formation of metal oxides, altering the

conductivity of the material, is neglected, which in practice can be achieved by using an

inert medium such as molecular nitrogen instead of air. Finally, the height of the deposit

Hc shown in Figure 6.4 is varied.

The simulation results (Figures 6.5a and 6.5b) are in good agreement with the results of

Choi et al. The electric field lines converge towards the Gaussian-shaped structure, which
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the substrate and opening size dop.
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Figure 6.5: a & b) Effect of the variation of the potential difference on the focusing
effect for a given electrode gap Hel. b) Effect of the deposited nanoparticles forming
3D structures with two different heights Hc/dop = 0.0250 and 0.0375 . The results are
compared with the experimental and simulation results of Choi et al.154

leads to an enhanced focusing effect. This is a consequence of two connected conductors

(Gaussian-shaped 3D structure and substrate), which have the same electric potential in

equilibrium. However, the electric charge density on the surface of the 3D structures

is higher, as they have a smaller surface to distribute the charge. Here the equilibrium

assumption is made, which means that the scale of the deposition time is sufficiently

large compared to the time the charges take to move within the metallic medium until

equilibrium is reached. The enhanced focusing effect due to the shape of the field lines is

consistent with the theory of electric fields160 and with the study by Lee et al. 2017, where

an enhanced convergence of the field lines on the printed clusters can be observed.145

In the next sections, all the simulations will be referred to the electrode arrangement

shown in Figure 6.1 using the values given in Table 6.1. The dimensions of the com-

160I.S. GRANT & W.R. PHILLIPS. Electromagnetism. Manchester Physics Series Wiley, 2013.
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Table 6.1: Dimensions for the electrode arrangement considered in the following simula-
tions. All lengths are given in multiples of dop.

Distance Length/dop [−]

HD 3.75
BM 0.25
Hel 1.00
Sop 3.00

putational domain for the base case are (Hx/dop)X (Wy/dop)X (Dz/dop) = 5X 3X 3

(height, width and depth, respectively). A diameter was discretized by 40 cells.

6.5.2 Effect of size and charge of the nanoparticles

The effect of the size and charge of the nanoparticles is studied by varying their electric

charge from 1 to 4 elementary charges and their diameter from dp = 5, 10, 20, to 30 nm.

The results in Figure 6.6 imply that the electric charge is the parameter that most influ-

ences the deposition of nanoparticles as it directly affects the magnitude of the electric

force driving the deposition. Due to the similar correlation of the charge and the potential

difference with the electrical force, this influence is explained in more detail below when

the effect of the potential difference is discussed.

Within the investigated size range of the particles, no influence on the deposition is ob-

served from the results. This can be explained by the fact that the weaker Brownian

motion associated to the larger particles is compensated with the longer deposition time.

In other words, the larger particles subject to smaller fluctuations in their movement have

also more time to diffuse or spread leading to an increase in pattern width, while the depo-

sition time of the smaller particles is shorter but their fluctuations are stronger also leading

to an increase in deposit width. An extended discussion about this size-independent be-

havior is conducted in Section 6.5.5.

Material-Dependency The material of the nanoparticles was also varied. Nanopar-

ticles made out of copper, silver, and iron with Hamaker constants ranging from 20 to

50× 10−20 J were considered and evaluated in the simulations. Here, the motion of the

particles showed to be material-independent. This can be explained by the fact, that the

only material-dependent forces acting on the nanoparticles, the Van der Waals forces, are

short-range forces in comparison to the size of the particles and only influence the mo-

tion of the nearest particles.161 As a result, the pattern width is not affected by the choice

161M.S. SETHI & M. SATAKE. Chemical Bonding. Discovery Publishing House, 2010.
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Figure 6.6: Effect of the variation of charge and size of the nanoparticles on the pattern
width. The potential difference per electrode gap was varied between 0.25 and 1V µm−1.

of material of the metallic nanoparticles. Thus, the influence of the material cannot be

observed from the results in Figure 6.6, since these simply overlay each other.

6.5.3 Effect of the electric field: Variation of the potential difference

As shown in figure 6.6, the focusing effect increases with increasing potential difference

Δφ for a given electrode gap Hel. In accordance with the mathematical model used to

describe the electric forces, an increase in potential difference (with constant Hel) of the

same magnitude as an increase in electric charge will cause the same enhancing effect on

the electrostatic forces and thus on the focusing effect. Though, there is an upper limit

to the increase of potential difference given by the electrical breakdown of air, which

is normally an excellent insulator but when stressed by a sufficiently high electric field

strength of about 3V/µm 162 can begin to break down, becoming partially conductive.

6.5.4 Effect of the electric field: Changes due to geometry modifications

Geometric parameters are considered, whose variation leads to a change in shape and

magnitude of the electric field lines. The modified dimensions are the electrode gap Hel,

the spacing between mask openings Sop, the mask thickness BM, and the shape of the

mask opening including its cross section.

Electrode gap (Hel) Here, two cases are considered. For the first case, the electrode

gap Hel is increased leaving the potential difference Δφ unchanged, which leads to a

decrease in the field strength. This impacts negatively the focusing effect of the system,

162J.S. RIGDEN. Macmillan Encyclopedia of Physics: A-D. Simon & Schuster Macmillan, 1996.
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on the pattern width. A potential difference per electrode gap of Δφ/Hel = 0.75V µm−1

was applied for these two simulation cases. b) Effect of the electrode gap on the pattern
width.

resulting in an increase of the pattern width (see Figure 6.7a). The field strength is set at
Δφ
dop

= 0.75V µm−1.

In the second case, the strength of the electric field is kept constant by maintaining the

ratio of the potential difference to the distance between electrodes unchanged at Δφ
Hel

=

0.75V µm−1, so that only the effect of the geometry change is recorded in the simulations.

In the latter case, the results show an optimal electrode gap at which the pattern width is

minimized around Hel = dop.

Mask thickness (BM) Increasing the mask thickness shows a slightly positive effect

on the pattern width up to around BM/dop = 3. From this value the increase in thick-

ness does not alter the focusing effect. The slight changes in pattern width produced by

changing the geometry of the mask can be explained by the fact that the field lines show

a slightly different convergence on the substrate for a given mask geometry.

Spacing between openings (Sop) The spacing between openings was varied, leav-

ing the diameter of the circular opening constant. The simulation results are shown in

Figure 6.7b. From this, it can be concluded that increasing the spacing between openings

has a slightly negative impact on the focusing effect due to the changes in the convergence

of the field lines.
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Table 6.2: Considered shapes of the mask openings, trough which the nanoparticles move
from the upper to the lower section of the deposition chamber at Δφ/Hel = 0.75V µm−1.
a,b and c show the cross sections of the openings evaluated in the simulations (see Fig.
6.8).

Shape of the Mask Opening Pattern Width [dop]

Square dop 0.248

Rounded square
R

dop 0.245

Circle (a) dop 0.233

Funnel (b) dop 0.240

Inverted funnel (c) dop 0.243

Opening geometry A circular and a squared opening as well as a rounded square

are considered. The latter was generated by rounding the angles of a 4 µm square to arcs

with a radius (R) of 1 µm. Furthermore, simulations are carried out with different cross

sections of the circular opening at Δφ/Hel = 0.75V µm−1. The simulation results can be

seen in Table 6.2.

The results show that the corners of the squared opening and the cross section geometry

do not considerably affect the focusing effect. The impact of these geometry variations on

the field lines is plotted in Figure 6.8. From this Figure, it can be concluded that the field

lines emerging from the ceiling of the deposition chamber and, to a significantly lesser

degree, those coming from the upper side of the mask make a dominant contribution to

the particle motion in the lower section of the deposition chamber, while the field lines

emerging from the faces of the mask opening do not significantly alter the motion of the

nanoparticles.

6.5.5 Dimensional analysis

The size-independent behavior shown by the particle dynamics implies that the motion

is also mass-independent, meaning that the inertia of the metallic nanoparticles is negli-
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Figure 6.8: Convergence of the field lines onto the substrate. Field lines emerging from
the upper face of the mask are in red, whereas the black field lines originate from the
ceiling of the deposition chamber. The pattern in the figure represents the points, where
selected electric field lines touch the substrate. Here, the red and black contact points
correspond to the red and black field lines, respectively. The brighter points outside the
red circle correspond to field lines originating from the faces of the mask opening. The
pattern width per opening diameter (Wc/dop) is shown for each case.

gible in the time scales and within the particle sizes investigated. This can be explained

by the deposition times, which are much longer than the characteristic relaxation time

of a Brownian particle (in this work ranging from 0.6 to 28 ns), given by the following

equation65

τB =
m

γ
≈ m

12πηdp
. (6.3)

The inertia-free behavior of the nanoparticles can be analyzed by calculating the Péclet

number as a function of the x-direction Pe(x) for two particles sizes (dp = 5 and 30 nm) at

two potential differences per electrode gap (Δφ/Hel = 0.125 and 0.75V µm−1), applying

the following definition for the Péclet number

Pe =
dop vDrift

D∞
≡ Convection

Diffusion
, (6.4)

where the drift velocity is given by the average velocity of the particle ensemble in the

x-direction �vx�. Here, the x-direction is chosen since it is the main direction of the drift

exerted by the electric field. For larger time scales of the electrodeposition in compari-

65XIN BIAN et al. Soft Matter, 12: 6331–6346, 2016.
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Figure 6.9: Péclet number (Pe) of the nanoparticles (left axis) and average velocity �vx�
(right axis) at two particle sizes and potential differences. The velocities are computed
for an opening diameter dop = 4 µm and an electrode gap Hel = 4 µm. The particles were
introduced into the deposition chamber at x = 0 and move randomly until they come
close to the mask openings located at x/dop = 3.75 where the electrical potential drops
sharply. As a result, the potential energy of the particles is abruptly converted to kinetic
energy, leading to an abrupt increase of Pe.

son with the relaxation time, the diffusion coefficient can be calculated according to the

Einstein relation13,65

D∞ =
kBT

γ
. (6.5)

As expected from the intertia-free motion of the nanoparticles, the change of size does

not affect the Péclet number, which takes the same values for both particle sizes. Further,

the calculated magnitude of the velocities (displayed in the right axis of Fig. 6.9) is in

accordance with the explanation given in the previous discussion regarding the variation

of particle size, which states that the weaker fluctuations of the larger particles do not lead

to sharper deposits, since the slower deposition velocities will ultimately compensate for

the resulting width by giving the particles more time to spread.

The Pe(x)-curves for the lower potential difference (blue curves in Fig 6.9) show a dis-

continuity at x/dop = 3.75 when the nanoparticles come too close to the edge of the

opening at the upper face of the mask (e.g. at x = 15 µm in Figures 6.2 and 6.3). At

this x-location, the electric field shows an abrupt change in magnitude (see Figure 6.10)

which causes the abrupt change in velocity and Péclet number. Although the electric field

shows the same behavior for the potential difference of 0.75V µm−1, the nanoparticles do

not get that close to the edge, since they are earlier drawn into the mask hole as can be

13A. EINSTEIN. Ann. d. Phys., 322: 549–560, 1905.
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Figure 6.10: Normalized field strength Ex for a given xy-plane at z = Sop/2. As a result
of the normalization, the normalized field strength is generally valid for any potential
difference applied.

seen in Figure 6.3.

Based on the forces acting on the nanoparticles, three dimensionless numbers characteriz-

ing the particle motion are proposed and discussed in the following. The thermal driving

force Fth is selected as a common numerator for the proposed numbers, since its associ-

ated fluctuations inversely correlate with the sharpness or width of the resulting deposits.

Now, counteracting forces dampening the thermal fluctuations are set as denominator for

each dimensionless number, namely the drag Fγ , the electric force Fel, and the inertia Fm,

which can be thought of as a fictitious force.

Fth

Fm

≡ Ωm =
kBT

mv2Drift

(6.6)

Fth

Fγ

≡ Ωγ =
kBT

γ vDrift dop
(6.7)

Fth

Fel

≡ Ωel =
kBT/HD

q (−Δφ/Hel)
(6.8)

Under the given isothermal conditions, the magnitude of the thermal driving force does

not change. This implies that the particle motion is influenced only by changes in the

counteracting forces. An increase in these forces (in the denominator of the Ω numbers)

induces a dampening effect of the fluctuations the particles undergo. The dampening of

the fluctuations is reflected in a decrease in both the pattern width and the magnitude of the

dimensionless numbers considered. This means that the width of the deposits correlates

directly with the Ω numbers.

Let’s take a look at each dimensionless number. Ωm is the number that captures the most

complete picture of particle motion as it contains the effects of thermal motion and the

inertia represented by the term mv2Drift, which in turn contains the effects of the drag and
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Figure 6.11: Pattern width as a function of the inversed dimensionless number Ω−1
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under isothermal conditions can be viewed as a dimensionless electric force (Wc/dop vs
Fel). The solid lines represent the fitting function obtained for each case using the function
proposed in Eq. 6.10.

the electric force associated with the drift velocity. Ωγ is actually the reciprocal of the

Péclet number, which can be obtained by rearranging its definition using Eq. 6.5 to

Ωγ =
D∞

vDrift dop
= Pe−1. (6.9)

As the inertia of the particles can be neglected, this number offers a general description of

the particle motion capturing the dominant effects of the drag and electric force. Finally,

Ωel gives the most simple but still complete picture of the particle motion in the region of

lower electric potential, where the dynamic of the particles is dominated by the electric

force. Under the given isothermal conditions (constant thermal driving force), the recip-

rocal of this number Ω−1
el can be thought of as a dimensionless electric force. From this,

an indirect correlation of the width of the deposits with Ω−1
el can be inferred, meaning that

the pattern width will decrease by increasing the dimensionless electric force, as shown

in Fig. 6.11, where the pattern width is plotted as a function of Ω−1
el for the considered

cases of different shapes of the mask opening. These cases have already been presented

in Table 6.2 and in the verification case.

Now, a function fitting the results is proposed and plotted in Fig. 6.11. As the pattern

width directly correlates with Ωel, a power function is chosen in the form

Wc

dop
= C1 Ω

C2
el . (6.10)
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Table 6.3: Coefficients of the power function for the cases studied.

Case C1[−] C2[−]

Square 1.63 0.40
Rounded 1.60 0.40
Circle 1.54 0.40
Slit, flat target 1.79 0.50
Slit, Hc/dop = 0.0250 1.87 0.54
Slit, Hc/dop = 0.0375 2.03 0.57

It should be noted that the factors C1 and C2 are also dimensionless and account for

the geometry-dependency of the electric field. The latter explains the small changes in

the factors of the fitting function from one geometric arrangement to another, as can be

seen in Table 6.3. For instance, the factor C1 takes different values for each opening

geometry considered (squared, rounded and circular). The slope of the fitting lines (C2),

on the other hand, is not altered by these modifications of the opening geometry. In

contrast, the C2 factor showed to be sensitive to the changes in the geometry of the target,

where a Gaussian-shaped 3D structure with various heights Hc was reproduced on the

substrate surface. The influence of these 3D structures on the streamlines of the electric

field led to an enhanced focusing effect, which results in greater logarithmic slopes C2

with increasing structure height.

6.6 Conclusions

In the present study, the motion and electrodeposition of nanoparticles under the influ-

ence of an electric field were numerically examined. After injecting the particles into the

deposition chamber (an electrode setup), these move spontaneously from a high potential

region dominated by random motion to a low potential region where their trajectories are

determined by the electric force until they assemble on the surface of the substrate (the

electrode with the lowest potential). The simulation results are in good agreement with

the numerical and experimental data of Choi et al. 2015.

From the obtained results it was found that the pattern width left behind by the deposited

nanoparticles indirectly correlates with the electric force under isothermal conditions

(constant thermal motion). Therefore, a reduction of the pattern width is achieved mainly

by increasing the magnitude of the electric force, which can be done either by increasing

the number of charges per incoming particle or by increasing the potential difference or

finally by reducing the electrode gap. Further modifications to the geometry of the elec-

trode setup showed a slight impact on the pattern width, as these only affect the shape
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of the electric field and not its strength, which is directly related to the magnitude of the

electric force. Here, a reduction of the pattern width was observed when the modifica-

tions of the geometry led to a narrower convergence of the streamlines of the field on the

substrate. This is the case, for example, when the thickness of the mask is increased or

the distance between the openings of the mask is reduced.

Furthermore, it was concluded that the choice of material and particle size does not affect

the deposition within the examined range. A different material will only locally influence

the short-range interactions between the incoming particles and the deposited ones, which

does not alter the obtained pattern width. With regard to the size, the weaker Brownian

motion of the larger particles is compensated by the longer deposition time, resulting in

equal trajectories and pattern widths.

In the final section, an expression for the pattern width as function of a dimensionless

number was presented, which relates the pattern width to the ratio between electric and

randomly fluctuating forces.

After having established a correlation between the dominant parameters examined and the

pattern width, further numerical and experimental research will be done on determining

their effect on the height of the structure.

6.7 Notation

dop µm opening diameter
dp nm particle diameter
Hel µm gap between mask and substrate
HD µm gap between ceiling and mask
Hc µm height of the 3D-structure
BM µm mask thickness
Sop µm spacing between opening centers
Wc µm pattern width
Δφ V potential difference
Hx µm height of the computational domain
Wy µm width of the computational domain
Dz µm depth of the computational domain
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7 Final discussion and conclusions

This chapter discusses the formation of nanoparticulate clusters and how it can be affected

by confinement (Chapter 3), mass transport (Chapter 4), pairwise interactions (Chapter 5)

as well as external forces (Chapter 6). As the topics and findings addressed in Chapters 3

and 4 are needed to support the suggested formation mechanism and assumptions made

in Chapter 5, a special focus is hereby set on the topic of formation of nanoparticulate

clusters via evaporation.

As shown in Chapter 5, the formation of nanoparticulate clusters is a complex process

that can involve different packing mechanisms leading to structured or unstructured ar-

rangements. It was also shown, that the HCl retention in the porous structure of the

forming cluster can be exploited to control the final pore size. This retention is caused

by both, mass transport affected by hindered diffusion and the chemical capture of the

HCl molecules due to the formation/crystallization of a metallic salt within the pores of

the cluster.12 The former was addressed in Chapter 4, where the pore-size induced, hin-

dered diffusion of molecules was studied. In addition, it was discussed how the structural

arrangement of clusters is affected by confinement. Cofinement effects are induced e.g.

by the presence of external walls or an interface between two phases. This can play an

important role in the formation of nanoparticulate clusters via evaporation of aerosols

or emulsions, as it induces polycrystalline structures. Confining forces acting on the

nanoparticles (NPs), such as wall normal forces, overcome the thermal forces that drive

the Brownian motion of the NPs, resulting in the proliferation of multiple crystalliza-

tion spots near the interface region. In Chapter 6, a similar effect was observed. Here,

external electric forces acting on charged NPs were induced by the potential difference

imposed between the electrodes of the deposition chamber. While the strength of the

electric forces can be set by the magnitude of the potential difference, the thermal forces

are set by controlling temperature. By setting an electric force stronger than the thermal

forces, Brownian motion can be inhibited, resulting in sharper deposited clusters.

Regarding the forces involved during the drying of droplets containing NPs, two stages

can be identified: A shrinking stage, followed by a consolidation stage. During the first

one, colloidal repulsive forces are predominant, as they are responsible for stabilizing

the dispersion. The effect of the capillary forces acting at the droplet surface is minimal

and can be associated with the interface mechanical flexibility. In the second stage, as

12RAVI SHARMA et al. Chem. Eng. J., 381: 122512, 2020.
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the droplet volume approaches the final cluster configuration, the droplet interface loses

its spherical shape and water bridges begin to form between the NPs. This induces an

attractive force due to capillary effects, which together with the dispersion (attractive)

forces contribute to the consolidation of the cluster structure. The latter, however, is not

expected to affect the final arrangement, as the sphere packing of NPs is imminently

reaching the jammed state.111

For high Péclet numbers, i.e. high evaporation rate and relatively slow NPs diffusivity,

kinetic effects play a major role, meaning that the final structures differ from the energet-

ically preferred equilibrium structures, e.g. face-centered cubic (fcc).

The receding droplet surface has a strong effect on the outer shell of the clusters, where

the NPs are packed densely.15 Depending on the mechanical properties of the outer shell, a

jammed crust can be formed that determines the final size and shape of the cluster, which

can be fully or partially hollow.14 In some systems the crust collapses, resulting in a buck-

led geometry.111 Note that a jammed state, in which the diffusivity of the NPs is severely

hindered, can be reached earlier, i.e. at lower volume (packing) fractions Φ, depending

on the surface roughness of the NPs or attractive interactions between them.37

At intermediate Péclet numbers, due to the higher mobility of the NPs, the outer crust does

not prematurely reach a jammed state, but can further recede with the shrinking droplet.

If the number of shells or NPs is large enough, the inner region of the cluster will remain

unaffected by the compacting and ordering effect of the confining and show a bulk-like,

disordered structure.15

At low Péclet numbers, i.e. low evaporation rate and relatively high NPs diffusivity, the

cluster structure approaches the thermodynamically favored arrangement. Several paral-

lels arise here between the mechanical process of packing hard spheres by compression

and thermal colloidal systems. High down to low compression and evaporation rates lead

to a disorderd equilibrium configuration known as random close packing (rcp), while

significantly low rates allow to overcome the metastable rcp state and reach a highly

ordered crystalline structure, which in the case of large clusters corresponds to the fcc

configuration.33,37,163,164 Both the compression and the evaporation-driven processes show

surface-induced ordering when pressed by confining walls and similar final equilibrium

configurations in bulk structures. Notice that evaporation-driven packings form rcp struc-

tures with slightly lower packing densities Φ since they are not constrained to reach a

111JUNWEI WANG et al. Nat. Comm., 9: , 2018.
15MICHAEL P. HOWARD et al. J. Chem. Phys., 149: 094901, 2018.
14M. MEZHERICHER et al. Chem. Eng. Sci., 66: 884–896, 2011.
37VASILI BARANAU et al. Soft Matter, 12: 3991–4006, 2016.
33JOHN F. BRADY. J. Fluid Mech., 272: 109–133, 1994.

163VINOTHAN N. MANOHARAN. Science, 349: 1253751–1253751, 2015.
164M. CHAUDHURI et al. Phys. Rev. Lett., 119: , 2017.
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minimum number of contacts with their neighbors, as in the case of compression-driven

packings.37 This is due to the fact that the evaporation process is purely entropy-driven,

i.e. constrained solely to gained vibrational degrees of freedom of the individual parti-

cles.34,37,111,112,163

The compacting and ordering effect of confining walls is known as a promoter of nucle-

ation/crystallization. Polycrystalline patches evolve early in the outer shell at the droplet

interface and propagate rapidly into the nearest inner layers.111 However, this effect dimin-

ishes gradually with each subsequent layer until it completely vanishes at about the 4th to

5th layer in compression-driven packings as shown in Chapter 3.21,76,79 The latter can be

attributed to the propagation of defects from the outer layers.114 In the case of a flexible

confining surface, such as a the droplet interface, confinement effects can be suppressed

under given circumstances: when the evaporation time is sufficiently long, e.g. from

weeks to over a month as shown by Wang et al. for evaporating droplets in an emulsion.111

Here, thermodynamically favored bulk crystallization prevails over surface-induced nu-

cleation, as the flexible interface allows the rearrangement and healing of defects, leading

to a monocrystalline structure.111,112

Another strategy to suppress confinement-induced crystallization is to increase the mobil-

ity of the colloidal NPs, for example by reducing their size. In this case, the final structure

will be dominated by a bulk-like arrangement, which, as already addressed, involves a rcp

configuration for the achievable evaporation times in aerosol drying or a monocrystalline

configuration for very long evaporation times, realizable in the drying of emulsions.111

The number of NPs comprising a cluster also affects its structure. So, the higher the

number of NPs, the more inner layers are formed and the lesser the confinement effect

will be, until a point where the inner bulk region dominates over the outer polycrystalline

shells. In addition, for small numbers (i.e. < 105), the most stable bulk structure will

adopt crystalline arrangements that differ from the fcc configuration. The exact arrange-

ment geometry depends on the exact amount of NPs, the so-called magic numbers [111,

112].

34CLARA WEIS et al. Sci. Rep., 6: 1–15, 2016.
112BART DE NIJS et al. Nat. Mater., 14: 56–60, 2015.
21HECTOR RUSINQUE et al. Comm. Compu. Inf. Sci., 1199: 104–121, 2020.
76STEFAN BRUNS et al. J. Chromatogr. A, 1318: 189–197, 2013.
79ROBERT S. MAIER et al. Phys. Fluids, 15: 3795–3815, 2003.

114BRIAN GIERA et al. Langmuir, 33: 652–661, 2016.





8 Outlook

In the following, possible research topics as extensions of this work are suggested. Re-

garding the mass transport of tracers in heterogeneous porous media, it was shown that

the performance of continuum approaches, specifically the method of volume averaging

(MVA), is superior to particle-based approaches. However, traditional continuous models

cannot deal with heterogeneous systems, as they use average properties that are not ca-

pable of capturing local particularities of the material structure. As shown in Chapter 3,

two dominant regions conforming the heterogeneous material were identified. When con-

sidered individually, these regions exhibit homogeneous characteristics. It is therefore

proposed to study the feasibility of treating a heterogeneous medium as the combination

of smaller homogeneous regions capable of exchanging mass with each other.

The particle-based methods used in this work calculate the displacement of the individual

particles in each discretized time step based on external fields and pairwise particle inter-

actions. As shown in Chapter 4, a further option is to estimate the probability of a certain

step taking place by a random number, which is generated based on criteria satisfying

the corresponding probability. Another example of this was shown by Stylianopoulos et

al. with a case of electric repulsive forces [165]. In the first case mentioned, the crite-

rion used was the porosity of an effective medium, which determines the permeability

of the medium surface and consequently the probability of a tracer entering the effective

medium. Building on this, the probability of a reaction taking place can also be used

to model the reaction kinetics, for instance, in heterogeneous catalysis. Here, the well-

known Arrhenius equation comes into play, as it can be interpreted as the product of two

probabilities: The probability that a given collision involves sufficient energy to overcome

the activation energy, which is given by the exponential part of the equation (similar to

[165]). And the pre-exponential factor, which gives the probability that colliding particles

with enough energy to overcome the activation energy end up effectively reacting.

There is a need for further investigation of packing processes and the consolidation of

these structures, for instance, in order to escalate the number of nanoparticles consid-

ered so that the effect of both, the confinement and the bulk suspension can be resolve

simultaneously in a numerical approach.





List of Figures

1.1 Graphical abstract of publication 1. (a) Porosity profile of a heteroge-

neous random sphere-packing along the vertical axis. (b) Projection of

the particle-center coordinates on the plane perpendicular to the flow. (c)

Streamlines through the sphere packing near the top and bottom confin-

ing walls as well as in the center of the packing. (d) Green-highlighted

hexagonal configurations induced by the confining walls. . . . . . . . . . 7

1.2 Graphical abstract of publication 2. (a) Nanoparticulate cluster. (b),(c),(d)

Molecules with different sizes diffusing in individual pores and random

walks of these molecules. (e) Schematic representation of the pairwise

interactions between a diffusing molecule and the wall atoms hindering

diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Graphical abstract of publication 3. Bulk structure of nanoparticulate

clusters at two different solid volume fractions, Φ = 0.30 and Φ = 0.45

and three different electric surface potentials ψ0,2 = 115mV, ψ0,1 =

50mV and ψ0,0 = 0mV. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Graphical abstract of publication 4. (a) Nanoparticulate cluster (b) Schematic

representation of the charged particles, the deposit and the electrodes of

the deposition chamber. (c) Random walks of the charged particles. (d)

Deposit pattern on the lower electrode (substrate). . . . . . . . . . . . . . 10

2.1 Velocity directions of a fluid cell in the D3Q19 model . . . . . . . . . . . 20

2.2 Relative diffusivity vs. solid fraction. Hard-sphere case, the most studied

case in literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Periodic unit cell of the in-line cylinder arrangements with a graphic rep-

resentation of the velocity field for three porosity values. The distance in

the x and y axes, and velocities were normalized by the maximal magni-

tude of the distance and velocity field, respectively, and are hence dimen-

sionless. ε stands for the porosity of the cells . . . . . . . . . . . . . . . 36

3.2 Axial dispersion coefficients as a function of the Péclet number in the

in-line cylinder arrangements considered. . . . . . . . . . . . . . . . . . 37

3.3 Radial dispersion coefficients as a function of the Péclet number in the

in-line cylinder arrangements considered (see legend in Figure 3.2). . . . 37



122 List of Figures

3.4 At the top the sphere packings of finite H/d-ratios are shown. Below,

characteristic pathlines close to the wall (z ≈ 0) and in the middle of the

packing (z = H/2) are plotted for each packing, respectively. . . . . . . . 39

3.5 Axial dispersion coefficients as a function of the Péclet number in the

sphere packings considered. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Radial dispersion coefficients as a function of the Péclet number in the

sphere packings considered. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 (a)–(d) show selected views of the pathlines in the sphere packing with

H/d = 6: close to the wall at z ≈ 0 in (b) and (d), and in the middle of

the packing at z = H/2 in (a) and (c). Additionally in (e), a portion of

the periodic sphere packing and its related pathlines are presented. . . . . 45

3.8 Porosity profiles along the z-axis and projections of the sphere centers on

a plane perpendicular to the walls, also along the z-axis from left to right. 46

4.1 Discretization of the pore walls at the atomic level to calculate the in-

teractions between wall atoms and solute molecules, where rco is the

cutoff radius above which the interactions are neglected and Lww repre-

sents the average bond length between a pair of wall atoms. The chaotic

lines within the cylindrical pore represent computed trajectories (random

walks) of selected particles. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Local hindrance probability fj and its complementary probability kj as

a function of the dimensionless distance between diffusing particle and

wall atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Diffusive hindrance factor Kd in straight cylindrical pores versus the re-

duced molecular diameter λ. The molecular diameter 2rmis given by

2rm = 2σsw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 a) Diffusive hindrance factor Kd,cyl as a function of the ratios of the dis-

tance σsw and the pore size x to the mean bond length Lww, in straight

cylindrical pores (circles) with curves fitting the results (solid lines). b)

Kd,cyl for cutoff radii rco/σsw = 2.2 and rco/σsw = 3.0. . . . . . . . . . 60

4.5 Staggered cylinder arrangement confined in a narrow slit. The bulk flow

occurs as a consequence of a force or pressure gradient acting in the pos-

itive x-axis direction. The velocity field is graphically represented in the

lower left corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



List of Figures 123

4.6 a) Longitudinal diffusivity in a staggered cylinder arrangement as a func-

tion of the Péclet number. The effect of the resolution of the lattice used

for the discretization of the geometry is also graphically represented. The

resolution used in the simulations of Khirevich was 200 grid nodes per

cylinder diameter, d = 200. b) Taylor dispersion as a function of the

Péclet number compared with its analytical solution. . . . . . . . . . . . 62

4.7 Hierarchic-nanoporous structure used as a medium in the application ex-

ample. Porescales according to the IUPAC definition for nanoporous ma-

terials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 a) Macropores (MP) and mesopores (mP) of the microscale. b) Effective

representation of the mesoporous medium. . . . . . . . . . . . . . . . . . 64

4.9 Time evolution of the diffusivity of a simple cubic arrangement of spheres

for the cases of spatially resolved and non-resolved mesopores (see Fig.

8). The parameters considered are Kd = 1, Kτ = Deff,mP/D∞ = 0.729,

εmP = 0.454, and εMP = 1. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10 On the left, diffusive hindrance factor Kd in a computer-generated Building-

Block BB1. Direct simulation and PSD approximations of Kd based on

normal distributions N centered at x̄ = xcyl with different standard devia-

tions. On the right, PSDs q3(x) considered. The distributions are slightly

skewed to the left N− and to the right N+, to a greater extent for N++,

without changing x̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 On the left, diffusive hindrance factor Kd in a computer-generated Building-

Block BB2. Direct simulation and PSD approximations of Kd based on

normal distributions N centered at x̄ = xcyl with different standard de-

viations. On the right, PSDs q3(x) considered. The distribution N+ is

slightly skewed to the right without changing x̄. . . . . . . . . . . . . . . 67

4.12 Total hindrance to diffusion, i.e. the obstrucion factor Kτ and diffusive

hindrance factor Kd related to the layers made of the Building-Blocks

BB1 and BB2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Pore size distribution of the produced clusters with different nanoparticle

sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Relative diffusivity vs. solid volume fraction for a colloidal dispersion of

hard-sphere-like particles. . . . . . . . . . . . . . . . . . . . . . . . . . 78



124 List of Figures

5.3 (a) Initial state of a droplet of the atomized dispersion prior to the first

evaporation stage. The larger (blue) circle represents a droplet and the in-

ner (gray) circles represent the dispersed nanoparticles. (b) Final state of

the first stage and initial state of the second evaporation stage. The change

in color of the dispersion medium indicates the transformation from wa-

ter (in blue) to crystals of hydrated metallic salts (in red). (c) Secondary

water reservoir as ultra-pure dispersion medium. The increase in temper-

ature leads to the dehydration of the metallic salts and consequently to the

second evaporation stage, where the metallic components agglomerate to

form metallic NPs (black circles). (d) Dried nanoparticulate cluster. . . . 80

5.4 Effect of the pore size (or particle size) and cobalt nitrate concentration

on the retention of HCl for a cobalt nitrate loading of 3.8%. . . . . . . . 82

5.5 Effect of the pore size and cobalt nitrate concentration on the retention of

HCl for a cobalt nitrate loading of 20.0%. . . . . . . . . . . . . . . . . . 82

5.6 Structural order vs. surface potential with ψ0,2 = 115mV, ψ0,1 = 50mV,

ψ0,0 = 0mV (i.e. hard spheres) and an ionic strength of 0.01mol L−1. . . 84

5.7 Relative diffusivity vs. solid volume fraction for different electric surface

potentials with the same ionic strength. . . . . . . . . . . . . . . . . . . 85

5.8 Relative diffusivity vs. volume fraction. . . . . . . . . . . . . . . . . . . 91

5.9 Number-weighted particle size distribution of the primary NPs used to

produce the clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.10 Comparison of the numerical solution obtained from the PB solver with

the Debye-Hückel potential of a NP of radius a = 130.0 nm, surface

potential ψ0 = 15mV in a solution 0.003mol L−1 of a monovalent salt.

The resulting screening Debye length for water at 20 ◦C is λD = 173.1 nm. 92

5.11 Comparison of the numerical solution obtained from the PB solver with

the Debye-Hückel potential of a NP of radius a = 130.0 nm, surface

potential ψ0 = 150mV in a solution 0.003mol L−1 of a monovalent

salt. The resulting screening Debye length for water at 20 ◦C is λD =

173.1 nm. The surface charge density imposed as boundary condition at

the NP surface is calculated with σ = �0�r ψ0 (1 + a/λ)/a [135]. . . . . . 93



List of Figures 125

6.1 Electrode arrangement with potential difference and dimensions. Here,

dop stands for the opening diameter of the mask, Sop for the spacing be-

tween openings, BM for the mask thickness, HD for the distance between

the upper electrode (the "ceiling") and the mask electrode in the middle,

and Hel for the distance between the mask and substrate electrodes (in

the following referred as electrode gap). The same potential difference

between the mask and the substrate (Δφ) is applied between the ceiling

and the substrate, so that there is no difference in potential between the

ceiling and the mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 a) The electric field lines (in black) emerging from the ceiling of the de-

position chamber run from high to low potential. The equipotential lines

(perpendicular to the field lines) are red for high potential and turn yellow,

green and blue as the potential goes down. b) Alternatively, the equipo-

tential lines can be seen as a potential surface on which the nanoparticles

spontaneously move downhill transforming potential energy into kinetic

energy. This example is taken from the results presented in the verifica-

tion case using a slit-shaped mask opening (see Sec. 6.5.1). . . . . . . . . 101

6.3 a) The trajectories of eleven nanoparticles are shown as well as the electric

field lines between the electrodes for the geometry used in the verification

case (see Section 6.5.1) at a potential difference of 0.5 and 3V, respec-

tively, for an opening diameter of dop = 4 µm. b) The final positions

of the deposited nanoparticles are shown above. The Gaussian-shaped

curves represent the spatial distributions of the deposited nanoparticles in

the form of a probability density function (PDF). The green lines are the

Gaussian functions fitted to the simulation results represented by the blue

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Height of the Gaussian-shaped structure Hc reconstructed on the surface

of the substrate and opening size dop. . . . . . . . . . . . . . . . . . . . . 103

6.5 a & b) Effect of the variation of the potential difference on the focusing ef-

fect for a given electrode gap Hel. b) Effect of the deposited nanoparticles

forming 3D structures with two different heights Hc/dop = 0.0250 and

0.0375 . The results are compared with the experimental and simulation

results of Choi et al.154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Effect of the variation of charge and size of the nanoparticles on the pat-

tern width. The potential difference per electrode gap was varied between

0.25 and 1V µm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

154HOSEOP CHOI et al. J. Aerosol Sci., 88: 90–97, 2015.



126 List of Figures

6.7 a) Effect of varying the spacing between openings and the mask thick-

ness on the pattern width. A potential difference per electrode gap of

Δφ/Hel = 0.75V µm−1 was applied for these two simulation cases. b)

Effect of the electrode gap on the pattern width. . . . . . . . . . . . . . . 106

6.8 Convergence of the field lines onto the substrate. Field lines emerging

from the upper face of the mask are in red, whereas the black field lines

originate from the ceiling of the deposition chamber. The pattern in the

figure represents the points, where selected electric field lines touch the

substrate. Here, the red and black contact points correspond to the red and

black field lines, respectively. The brighter points outside the red circle

correspond to field lines originating from the faces of the mask opening.

The pattern width per opening diameter (Wc/dop) is shown for each case. 108

6.9 Péclet number (Pe) of the nanoparticles (left axis) and average velocity

�vx� (right axis) at two particle sizes and potential differences. The veloc-

ities are computed for an opening diameter dop = 4 µm and an electrode

gap Hel = 4 µm. The particles were introduced into the deposition cham-

ber at x = 0 and move randomly until they come close to the mask open-

ings located at x/dop = 3.75 where the electrical potential drops sharply.

As a result, the potential energy of the particles is abruptly converted to

kinetic energy, leading to an abrupt increase of Pe. . . . . . . . . . . . . 109

6.10 Normalized field strength Ex for a given xy-plane at z = Sop/2. As

a result of the normalization, the normalized field strength is generally

valid for any potential difference applied. . . . . . . . . . . . . . . . . . 110

6.11 Pattern width as a function of the inversed dimensionless number Ω−1
el ,

which under isothermal conditions can be viewed as a dimensionless elec-

tric force (Wc/dop vs Fel). The solid lines represent the fitting function

obtained for each case using the function proposed in Eq. 6.10. . . . . . . 111



List of Tables

3.1 Selected descriptors of the porous structure of the in-line cylinders. The

diffusive tortuosity values presented were computed with the MVA ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Selected descriptors of the porous structure of the sphere packings. The

tortuosity values have a standard deviation of 0.03. . . . . . . . . . . . . 42

5.1 Type of cluster configurations and range of their solid volume fractions

obtained in this work and by other authors. All the clusters were produced

by drying of droplets dispersed as aerosols or emulsions using approxi-

mately monodisperse NPs. The prevalent cluster structures are random

close packing (rcp), polycrystalline (PC), and monocrystalline (MC) con-

figurations, which appear as fcc or icosahedral (ico) arrangements. . . . . 75

6.1 Dimensions for the electrode arrangement considered in the following

simulations. All lengths are given in multiples of dop. . . . . . . . . . . . 104

6.2 Considered shapes of the mask openings, trough which the nanoparticles

move from the upper to the lower section of the deposition chamber at

Δφ/Hel = 0.75V µm−1. a,b and c show the cross sections of the openings

evaluated in the simulations (see Fig. 6.8). . . . . . . . . . . . . . . . . . 107

6.3 Coefficients of the power function for the cases studied. . . . . . . . . . . 112





[1] J.M.P.Q. DELGADO (AUTH.) FRANK A. COUTELIERIS. Transport Processes in
Porous Media. 1st ed. Advanced Structured Materials 20 Springer-Verlag Berlin
Heidelberg, 2012. (see p. 5)

[2] SIARHEI KHIREVICH, ANTON DANEYKO, ALEXANDRA HÖLTZEL, ANDREAS
SEIDEL-MORGENSTERN, & ULRICH TALLAREK. Statistical analysis of packed
beds, the origin of short-range disorder, and its impact on eddy dispersion. Journal
of Chromatography A, 1217: 4713–4722, 2010. (see p. 5)

[3] H. LIASNEUSKI, D. HLUSHKOU, S. KHIREVICH, A. HÖLTZEL, U. TALLAREK,
& S. TORQUATO. Impact of microstructure on the effective diffusivity in random
packings of hard spheres. Journal of Applied Physics, 116: 034904, 2014. (see
p. 5)

[4] A. A. MOHAMAD. Lattice Boltzmann Method: Fundamentals and Engineering
Applications with Computer Codes. Springer–Verlag London, 2011. (see pp. 5,
17, 19–21)

[5] DIETER HÄNEL. Molekulare Gasdynamik: Einführung in die kinetische Theorie
der Gase und Lattice-Boltzmann-Methoden. Springer–Verlag Berlin Heidelberg,
2004. (see pp. 5, 17–19, 21)

[6] H. W. HAYNES JR. & L. F. BROWN. Effect of pressure on predicted and ob-
served diffusion rates in constricted poresa theoretical study. AIChE Journal, 17:
491–494, 1971. (see p. 2)

[7] MARVIN F.L. JOHNSON & WARREN E. STEWART. Pore structure and gaseous
diffusion in solid catalysts. Journal of Catalysis, 4: 248–252, 1965. (see p. 2)

[8] RICHARD N. FOSTER & JOHN B. BUTT. A computational model for the struc-
ture of porous materials employed in catalysis. AIChE Journal, 12: 180–185,
1966. (see p. 2)

[9] ROBERT GÜTTEL & THOMAS TUREK. Improvement of Fischer-Tropsch Synthe-
sis through Structuring on Different Scales. Energy Technology, 4: 44–54, 2016.
(see pp. 3, 62, 98)

[10] LI CHEN, RUIYUAN ZHANG, TING MIN, QINJUN KANG, & WENQUAN TAO.
Pore-scale study of effects of macroscopic pores and their distributions on reactive
transport in hierarchical porous media. Chemical Engineering Journal, 349: 428–
437, 2018. (see pp. 3, 62, 98)

[11] JIAN YIN, TIANQI ZHANG, EMILY SCHULMAN, DONGXIA LIU, & JIANQIANG
MENG. Hierarchical porous metallized poly-melamine-formaldehyde (PMF) as a
low-cost and high-efficiency catalyst for cyclic carbonate synthesis from CO2 and
epoxides. Journal of Materials Chemistry A, 6: 8441–8448, 2018. (see pp. 3, 62,
98)

[12] RAVI SHARMA, TIRIANA SEGATO, MARIE PAULE DELPLANCKE, HERMAN
TERRYN, GINO V. BARON, JOERI F.M. DENAYER, & JULIEN COUSIN-SAINT-
REMI. Hydrogen chloride removal from hydrogen gas by adsorption on hydrated
ion-exchanged zeolites. Chemical Engineering Journal, 381: 122512, 2020. (see
pp. 3, 81, 115)

[13] A. EINSTEIN. Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (translated into
English under the title: Investigations on the Theory of the Brownian Movement).
Annalen der Physik, 322: 549–560, 1905. (see pp. 4, 13, 51, 109)



130

[14] M. MEZHERICHER, A. LEVY, & I. BORDE. Modelling the morphological evolu-
tion of nanosuspension droplet in constant-rate drying stage. Chemical Engineer-
ing Science, 66: 884–896, 2011. (see pp. 4, 73, 116)

[15] MICHAEL P. HOWARD, WESLEY F. REINHART, TANMOY SANYAL, M. SCOTT
SHELL, ARASH NIKOUBASHMAN, & ATHANASSIOS Z. PANAGIOTOPOULOS.
Evaporation-induced assembly of colloidal crystals. Journal of Chemical Physics,
149: 094901, 2018. (see pp. 4, 24, 73–75, 116)
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