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Abstract
Mixed-integer optimal control problems governed by partial differential
equations (MIPDECOs) are powerful modeling tools but also challenging in
terms of theory and computation. We propose a highly efficient state elimina-
tion approach for MIPDECOs that are governed by partial differential equations
that have the structure of an abstract ordinary differential equation in function
space. This allows us to avoid repeated calculations of the states for all time steps,
and our approach is applied only once before starting the optimization. The
presentation of theoretical results is complemented by numerical experiments.
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1 INTRODUCTION

Mixed-integer partial differential equation constrained optimization (MIPDECO) is highly important because it has
a broad range of applications, such as topology optimization (see, e.g., Reference 1) and partial differential equations
(PDEs) on networks with discrete decisions, in particular traffic flow with traffic lights,2 the operation of transmission
lines,3 and gas networks.4 MIPDECO combines two key classes of optimization: mixed-integer nonlinear optimization
(MINLP) and PDE constrained optimization. In MINLP the feasible set and the objective function are quantified by
nonlinear functions. In addition to real-valued decision variables, it includes integer variables leading to combinatorial
difficulties; see, for example, Reference 5. On the other hand, many applications in optimization involve complex systems
modeled by DEs. PDE-constrained optimization poses different challenges since discretizations lead to a large number
of variables and numerical complexity (see References 6,7). Each of the problem classes presents big challenges by itself.
With MIPDECO combining the two classes, approaches are needed that overcome the issues of both integer variables
and the number of variables.

Techniques for time dependent MIPDECO are often derived from methods that have been proven efficient for
mixed-integer control of ordinary differential equations (ODEs). Pioneering work on partial outer convexification,
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presented in Reference 8, provides strong theoretical results. Extensions to problems governed by PDEs include Refer-
ence 9 for parabolic and Reference 10 for hyperbolic PDEs. The usually strong regularity assumptions are weakened in
Reference 11. Also, extensions of rounding approaches to spatial distributed controls have been investigated, for example,
in Reference 12.

Combinatorical constraints coupling over time can be handled by combinatorial integer approximation problems;
see, for example, Reference 13. Extensions to this approach include reductions of unrealistic frequent switching,14 by
constrained total variation of the control,15 and by minimum dwell time constraints. Implementations include the
open-source software package pycombina.16

Related work on (time independent) elliptic problems includes17 where an outer approximation scheme is proposed
and a decomposition approach is followed.

In applications, tailored branch-and-bound algorithms have been applied.18 Recently, in Reference 19 a penalty
method was proposed that relies on a combination of tailored basin hopping and interior-point method.

In this article, we reduce the complexity of the MIPDECO by exploiting the structure of the PDE using semigroup
theory. This approach allows us to split the state solution into parts that are then combined with a smart use of convolution.
In Reference 20 it was independently investigated however we provide a full mathematical proof of the method here.
The resulting explicit control-to-state-map is plugged into the objective and additional constraints and replaces the PDE,
which no longer appears in the problem formulation. Computationally this approach is performed before handing the
optimization problem, which then can be solved with much less computational effort. We illustrate this approach by
applying it to the time-dependent 2D heat equation.

1.1 Problem formulation

The MIPDECO problem studied here is formulated as a minimization of an objective functional J ∶ ad × ad ×ad →
R, where ad ⊂  is the state space, ad ⊂  is the space of admissible real valued controls, and ad ⊂ is the space of
admissible discrete controls for which we assume that they take values from a finite set Ŵ = {ŵ1, … , ŵ|Ŵ |}.

The problem is constrained by a special type of PDE that may be formulated as an operator DE where A ∶ (A) → 
is the infinitesimal generator of a strongly continuous semigroup {T(t)}t≥0 on  .

With that, we can write the MIPDECO problem as follows:

min
u,v,w

J(u, v,w) = 𝜙(u(tf )) +

tf

∫
0

𝜓(u(t), v(t),w(t)) dt

s.t. u̇(t) = Au(t) + F(t,u(t), v(t),w(t)), t ∈ [0, tf ]
u(0) = u0 ∈ (A)
u ∈ ad, v ∈ ad,w ∈ ad,

(1)

where tf > 0 is the final time and with the sufficiently regular functions𝜙 ∶  → R and𝜓 ∶  ×  × → R specifying
the objective and the source functional F ∶ T × ×  × →  . Furthermore, we assume that , , and are normed
linear spaces.

The theory of the existence of solutions of the dynamic problem and of the control problem depends on the operator
A and associated spaces. Because we are considering mild solutions, we require that  ,  , and  be Banach spaces and
that at least F ∈ L1(T × ×  × ; ).

1.2 Outline

We begin with some preliminaries in Section 2, where we cover basic concepts of semigroup theory for PDEs and define
convolution. In Section 3, we propose a reduction method that eliminates the PDE in the MIPDECO (1) for continuous
and discrete time. Then, in Section 4 we apply this theory to a MIPDECO problem governed by the heat equation. In
Section 5, we derive a discrete representation of the heat equation, which also illustrates the low computational effort of
the presented elimination scheme. In Section 6, we conclude with numerical experiments.
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2 PRELIMINARIES: SEMIGROUPS OF LINEAR OPERATORS AND
CONVOLUTION

We start by reviewing the required concepts from semigroup theory, which allow us to view the PDE as an abstract ODE
in function space. Thereafter, we provide definitions of convolution.

2.1 Uniformly continuous semigroups of bounded linear operators

We begin with the definition of a semigroup and its generators as in Reference 21(chapter 1).

Definition 1 (Semigroup of bounded linear operators). Let  be a Banach space. A one-parameter family T(t), 0 ≤ t <
∞, of bounded linear operators from  into  is a semigroup of bounded linear operators on  if

(i) T(0) = I, (I is the identity operator on  ).
(ii) T(t + s) = T(t)T(s) for every t, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators, T(t), is uniformly continuous if

lim
t→0

||T(t) − I|| = 0.

The linear operator A defined by

(A) =

{
u ∈  |||||limt→0

T(t)u − u
t

exists

}
,

and

Au = lim
t→0

T(t)u − u
t

= d+T(t)u
dt

|||||t=0
for u ∈ (A),

is the infinitesimal generator of the semigroup T(t), and (A) is the domain of A.
We are interested in PDEs that can be formulated as an abstract ODE in the form of the following initial-value problem:

u̇(t) = Au(t) + f (t), u(0) = u0. (2)

As in classical PDE theory, semigroup theory has multiple solution concepts. Here, we consider mild solutions only.

Definition 2 (Mild solution Reference 21(definition 2.3)). Assume that u0 ∈ (A) and f ∈ L1([0, tf ]; ). Then a solution
u(t) of (2) is given by

u(t) = T(t)u0 +

t

∫
0

T(t − s)f (s) ds, (3)

and u(t) is called a mild solution of (2).

Provided a continuous differentiable source term f , mild solutions to (2) exist for any initial value u0 ∈ (A); see
Reference 21(corollary 2.5).

We conclude this brief introduction by drawing the connection of mild solutions to solutions in the classical sense
Reference 21(theorem 3.2).

Theorem 1 (Mild solutions are classical solutions). Let A be a infinitesimal generator of a semigroup T(t). Let f ∈
L1([0, tf ]; ), and assume that for every 0 < t < Tf there is a 𝛿t > 0 and a continuous real-valued function Wt,R+ → R+,
such that

||f (t) − f (s)|| ≤ Wt(|t − s|),
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and

𝛿t

∫
0

Wt(𝜏)
𝜏

d𝜏 <∞.

Then for every u0 ∈  the mild solution of (2) is a classical solution.

Note that choosing Wt(𝜏) = c𝜏 with c > 0 yields the theorem for Lipschitz continuous f .

Remark 1. This theory of semigroups of bounded linear operators allows us to write solutions explicitly in terms of T(t).
However, since T(t) is not available explicitly in general, the theory does not provide explicit solutions. Still, we make use
of the structure of mild solutions (3) in Section 3.

2.2 Convolution

We define the term convolution.

Definition 3. Let h1, h2 ∶ R → R be integrable functions. Then their convolution is given by

(h1 ∗ h2)(t) = ∫
R

h1(s)h2(t − s) ds.

If the functions are defined on a subset of R, the functions are extended by zero.

Continuous convolution can be transferred to discrete domains. Therefore it is applicable for the discrete counterparts
emerging in the MINLP formulation of a MIPDECO problem.

Definition 4. Let h1, h2 ∶ Z → R be sequences. Then their convolution is defined by

(h1 ∗ h2)[n] =
∞∑

m=−∞
h1[m]h2[n − m].

If the sequences are defined on a subset of Z, the sequences are extended with zero.

3 ELIMINATION OF THE PDE

In this section we present the derivation of the technique that allows us to reduce significantly the computational effort
of the MIPDECO. Together with structural assumptions, the main result is stated and proved. Subsequently, this result is
transferred to the discretized-in-time problem.

3.1 Explicit representation of the solution operator

Now we return to the model in (1). We assume that A is a linear operator. Furthermore, we assume that the source term
F(t,u(t), v(t),w(t)) depends linearly on the controls v and w only; in other words, there is no explicit dependence on t or
on the state u:

F(t,u(t), v(t),w(t)) = F(v(t),w(t)).

Further, we assume that

Ŵ =

{
w(t) ∈ {0, 1}L

|||||
L∑

l=1
wl(t) = w

}
,
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and that the other control v takes values of the same dimension, namely, v ∶ [0, tf ] → RL. Therefore, the following
representation of the source term exists:

F(v(t),w(t)) =
L∑

l=1
wl(t)vl(t)f̃ l, (4)

where f̃ l ∈  is constant for l = 1, … ,L and we can write (1) as

min
u,v,𝛼

J(u, v,w) = 𝜙(u(tf )) +

tf

∫
0

𝜓(u(t), v(t),w(t)) dt

s.t. u̇(t) = Au(t) +
L∑

l=1
wl(t)vl(t)f̃ l t ∈ [0, tf ]

u(0) = u0 ∈ (A)
u ∈ ad, v ∈ ad,w ∈ ad,

(5)

where ad = {w ∈ L2([0, tf ];R)|w(t) ∈ Ŵ}.
Before exploiting the structure with the aid of semigroups in (5), we summarize the required assumptions.

Assumption 1. We consider controlled dynamics that have representations as abstract ODEs of the form

u̇(t) = Au(t) +
L∑

l=1
wl(t)vl(t)f̃ l, t ∈ [0, tf ], u(0) = u0, (6)

which fulfill the following properties:

• A ∶ (A) →  linear, infinitesimal generator of a strongly continuous semigroup T(t)
• f̃ l ∈  constant for l = 1, … ,L
• v,w ∈ L2([0, tf ];RL)
• u0 ∈ (A)

Note that the assumption of f̃ l being constant is in the sense of the space  ; that is, it is constant in time, but it may
vary if spatial coordinates are considered in  . An example is given in Section 4.

Lemma 1 (Control-to-state map). Let Assumption 1 hold. Then the solution of the dynamical system (6) is given in terms
of the controls (v(t),w(t)):

u(t) = T(t)u0 +
L∑

l=1
((Tf̃ l) ∗ (wlvl))(t). (7)

Proof. Since A is a linear operator, the solution u(t) to the dynamics can be split as follows:

u(t) = ūh(t) + ūinh(t),

with ūh(t) = T(t)u0 the homogeneous part and ūinh the inhomogeneous part of the solution. Therefore, the function ūh(t)
solves the initial value problem (IVP):

u̇(t) = Au(t), u(0) = u0. (8)

The inhomogeneous part of the solution is derived with the solution formula in (3):

ūinh(t) =

t

∫
0

T(t − s)f (s) ds,
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where the source term (4) is plugged in for f and we obtain by linearity

ūinh(t) =
L∑

l=1

t

∫
0

T(t − s)f̃ l wl(s)vl(s) ds.

Define ūl(t) = T(t)f̃ l, or in other words let ūl(t) solve the IVP:

u̇(t) = Au(t), u(0) = f̃ l, (9)

for l = 1, … ,L. Combining the ūl(t) solutions, we get

ūinh(t) =
L∑

l=1

t

∫
0

ūl(t − s) wl(s)vl(s) ds.

This may be written as convolution (Definition 3) as follows:

ūinh(t) =
L∑

l=1
(ūl ∗ (wlvl))(t).

Adding the homogeneous and the inhomogeneous parts of the solution completes the proof. ▪

This lemma provides an explicit solution of the PDE and permits us to formulate an optimal control problem from
which the dynamics have been eliminated.

Theorem 2 (PDE-free MIPDECO). The optimal control problem (5) is equivalent to

min
u,v,w

J(u, v,w) = 𝜙(u(tf )) +

tf

∫
0

𝜓(u(t), v(t),w(t)) dt

s.t. v ∈ ad,w ∈ ad,

(10)

where u(t) = u(t, v,w) = T(t)u0 +
L∑

l=1
((Tf̃l) ∗ (wlvl))(t).

This reduced problem can save significant computational effort since PDE optimization problems are typically dis-
cretized. The size of discrete representation grows with the size of the discretization mesh and therefore the number of
discretized state variables, that is, (n4) for three space dimensions and time and n grid points in every dimension.

Remark 2 (Cost of deriving (10)). With our approach, we eliminate the PDE once before starting the optimization
algorithm. Thus, the additional effort of computing the reduced problem is independent of the iteration number of the
optimization algorithm, which can grow exponentially with the discretization. Here, the effort depends only linearly on
L, since L + 1 IVPs are solved: once for (8) and L times for (9).

Also note that the existence of T(t) depends on the operator A; we refer readers to Reference 21 for details.

3.2 Solution operator in discrete time

Because of the presence of integer variables and the lack of suitable first-order optimality conditions, the
first-discretize-then-optimize approach is used mostly for MIPDECO. The discretization of the reduced problem needs
careful treatment, because the convolution cannot be discretized with standard quadrature rules; see, for example,
Reference 22.
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Therefore, we aim to extend the explicit representation of u(t) as in Theorem 2 for the discretized state. We discretize
time as follows. Let 0 = t0 < · · · < tTn = tf be a time discretiziation, and denote by vk,l = vl(tk) and wk,l = wl(tk) the discrete
values of the controls. Denote by

v =
⎡⎢⎢⎢⎣

v0,1 … v0,L

⋮ ⋱ ⋮

vTn,1 … vTn,L

⎤⎥⎥⎥⎦ ,w =
⎡⎢⎢⎢⎣

w0,1 … w0,L

⋮ ⋱ ⋮

wTn,1 … wTn,L

⎤⎥⎥⎥⎦ ,
the matrices of the discretized controls. We use vk,∶ or wk,∶ to refer to the kth column. The vector of the discretized state
is denoted by u, respectively.

Lemma 2 (Control-to-state map in discrete time). Let Assumption 1 hold. Then the discretized solution of the dynamical
system (6) is given in terms of the controls v,w, and we have

uk = ūh
k +

L∑
l=1

k∑
m=0

ūl
k−mwm,lvm,l, (11)

where uk = u(tk) and homogeneous and inhomogeneous parts of the solution are ūh
k = ūh(tk) and ūl

k = ūl(tk), respectively,
for k = 0, … ,Tn.

Proof. The solution in (7) is expressed as a (continuous) convolution that can directly be rewritten as a discrete convolu-
tion of the sequence of the discrete inhomogeneous solution part (ūl

k)k with the sequence of the product of the controls
(vk,lwk,l)k:

uk = ūh
k +

L∑
l=1

(ūl
⋅ ∗ (w⋅,lv⋅,l))[k].

With Definition 4 it follows immediately that

uk = ūh
k +

L∑
l=1

k∑
m=0

ūl
k−mwm,lvm,l.

▪

With this explicit representation of the discretized solution, according to Theorem 2 we state the time-discrete
MIPDECO without PDE below.

Theorem 3 (PDE-free MIPDECO in discrete time). The optimal control problem in (10) can be rewritten as

min
u,v,w

J(u, v,w)

= 𝜙(uTn) +
Tn∑

k=0
ak𝜓(uk, vk,∶,wk,∶)

s.t. v ∈ Vad,w ∈ Wad,

(12)

where uk = ūh
k +

L∑
l=1

k∑
m=0

ūl
k−mwm,lvm,l. In the discretized objective J, the integral is replaced by a suitable quadrature with

the weights ak for k = 0, … ,Tn. Further, let Vad ⊆ RTn+1×L and Wad ⊆ ZTn+1×L denote the discretization of the admissible
control sets ad and ad.

Note that the representation in (12) is semi-discrete; that is, the spatial dimension is somewhat hidden in the structure
of the state variable u.

However, this discretized representation allows us to quantify the computational effort needed to derive the problem
formulation (12), which is computed prior to the optimization.
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Remark 3 (Computational cost of deriving (12)). In particular, we need to compute the discrete representations of ūh and
ūl for l = 1, … ,L. Each of these objects is uniquely defined by a system of equations that are due to the chosen spatial
discretization. More precisely, in the case of linear systems, the coefficient matrices of these systems are identical, and
only the right-hand side of the equation varies. This makes it relatively cheap since a once-computed LU decomposition
can be used for all systems. Of course the effort to compute, for example, an LU decomposition depends on the chosen
discretization and the mesh size, but we want to highlight that it is needed only once before the optimization.

These advantageous properties are explained in more detail for an example problem in Section 5.

4 CONTROL OF HEAT EQUATION WITH OPTIMAL ACTUATOR
PLACEMENT

In this section a MIPDECO problem governed by the heat equation is introduced. The problem is adapted from Refer-
ence 23. The goal is to place and operate a small and fixed number of actuators (e.g., one or two) over time in a given
domain. The possible locations are given as a finite set of coordinates in space. An example of a possible actuator distri-
bution is given in Figure 1. First, we present a problem with binary and real-valued controls that also model placement
and intensity control.

4.1 Model

We consider a rectangle Ω = [0, 1] × [0, 2] and the time horizon [0, tf ]. The objective (13a) is quadratic: its first term is of
tracking type and captures the desired final state uf , the second term regularizes the state, and the third term regularizes
the real-valued control with the regularization parameters 𝛽, 𝛾 ∈ R+. The constraints are a source budget (13f), which
limits the quantity of placed actuators, and the two-dimensional heat Equation (13b) with some source term. Additionally,
we assume Dirichlet boundary (13c) and initial conditions (13d). These can be written as follows.

min
u,v,w

J(u, v) = ‖‖u(tf , x) − uf (x)‖‖2
2,Ω

+ 𝛽||u(t, x)||22,[0,tf ]×Ω
+ 𝛾

L∑
l=1

‖vl(t)‖2
2,[0,tf ], (13a)

s.t. 𝜕u
𝜕t

(t, x) − 𝜅Δu(t, x) =
L∑

l=1
vl(t)fl(x) in (0, tf ] × Ω, (13b)

u(t, x) = 0 in [0, tf ] × 𝜕Ω, (13c)

u(0, x) = u0(x) in Ω, (13d)

− Mwl(t) ≤ vl(t) ≤ Mwl(t)
for all l ∈ {1, … ,L} in [0, tf ], (13e)

L∑
l=1

wl(t) = w in [0, tf ], (13f)

wl(t) ∈ {0, 1} for all l ∈ {1, … ,L} in [0, tf ]. (13g)

F I G U R E 1 Domain Ω with actuator locations
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The variables are the state u ∶ [0, tf ] × Ω → R, the binary controls wl ∶ [0, tf ] → {0, 1}, and the real-valued controls
vl ∶ [0, tf ] → R for l = 1, … ,L. The nonnegative integer w denotes the quantity of actuators and L the quantity of their
possible locations. The thermal diffusivity 𝜅 can either be constant 𝜅 ∈ R+ or vary in space 𝜅 = 𝜅(x, y) ∈ R+ representing
a certain material or a distribution of various materials. We define the source term for all locations l ∈ {1, … ,L} and a
fixed parameter 𝜀 ∈ R+ as

fl(x) =
1√
2𝜋𝜀

exp

(
−‖‖xl − x‖‖2

2𝜀

)
, (14)

where xl is the coordinate of the mesh point of actuator location l.

Remark 4. Originally, the problem formulation in Reference 23 included a nonconvex right-hand side of the heat
equation:

𝜕u
𝜕t

(t, x) − 𝜅Δu(t, x) =
L∑

l=1
v(t)wl(t)fl(x).

We overcome this potential issue by substitution of v(t)wl(t) by vl(t) in (13b). Furthermore, we introduce a bound M ≫ 1
on the real-valued controls vl in (13e), and we limit the amount of actuators by the source budget constraint (13f). This
formulation is more general in the sense that we can allow more than one actuator in the model.

We note that we can easily generalize this problem, for example, by using L1 regularization or other regularizations.

4.2 Solution space and existence of solutions

For wl ∈ L2(0, [0, tf ]), vl ∈ L2(0, [0, tf ]), fl ∈ L2(0, [0, tf ]), u0 ∈ L2(Ω), and constant 𝜅, we would expect the solution u in
the weak sense ((13b)–(13d)) to be in W1,0

2 ([0, tf ] × Ω), the linear space of all u ∈ L2([0, tf ] × Ω) having a weak first-order
partial derivative with respect to (x, y) in L2([0, tf ] × Ω), which is discussed in more detail Reference 7(chapter 3). In
particular, with these assumptions the objective J is then well defined.

However, existence of optimal solutions is in general unclear because of the integrality constraints (13g). If this inte-
grality is relaxed, the constraints (13e) and (13f) become redundant and thus also the variables wl for l = 1, … ,L. The
remaining PDE optimization problem (13a–13d) has a strictly convex objective and linear constraints. Therefore it is a
unique optimal control for the relaxation.

4.3 Formulation as an abstract ODE

The heat equation in the actuator placement and operation problem in (13) is a parabolic PDE that can be formulated as
an abstract ODE as in (1). Thus, instead of (13), we can equivalently write the following:

min
u,v,w

J(u,w) = ‖‖u(tf ) − uf‖‖2
2

+ 𝛽||u(t)||22,[0,tf ]
+ 𝛾

L∑
l=1

‖vl(t)‖2
2,[0,tf ], (15a)

s.t. u̇(t) = Au(t) +
L∑

l=1
vl(t)fl in [0, tf ], (15b)

u(0) = u0, (15c)

u ∈ ad, (15d)

v ∈ ad = {v| − Mwl(t) ≤ vl(t) ≤ Mwl(t),
l = 1, … ,L}, (15e)

w ∈ ad = {w| L∑
l=1

wl(t) = w}. (15f)
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The linear infinitesimal generator of the strongly continuous semigroup is

(Au)(x) = 𝜅

2∑
n=1

𝜕2u
𝜕x2

n
,

where its domain is (A) = H2(Ω) ∩ H1
0(Ω) and the strongly continuous semigroup of contractions is {T(t)}t≥0

on  . We choose the admissible sets ad = C
(
[0, tf ];U

)
, ad =  = Cpw

(
[0, tf ];RL), and ad ⊂ = L∞(

[0, tf ]; {0, 1}L).
With the formulation of the problem (15) together with the choice of the appropriate spaces, the conditions in

Assumption 1 are satisfied, and Theorem 3 is applicable.
To derive the ingredients of the control-to-state-map as in reduced problem in Theorem 2, one must solve L + 1 initial

boundary value problems; see Remark 2. The homogeneous solution ūh represents thermal diffusion of the initial state
u0 without any control application; that is, all controls are fixed to zero.

𝜕u
𝜕t

(t, x) − 𝜅Δu(t, x) = 0 in [0, tf ] × Ω

u(t, x) = 0 in [0, tf ] × 𝜕Ω
u(t, x) = u0(x) in Ω.

The inhomogeneous parts of the solution ūl are the solutions of the heat equation with fl(x) as initial state, which can
be interpreted as the control vl applied in time t = 0. Thus, we have for l = 1, … ,L

𝜕u
𝜕t

(t, x) − 𝜅Δu(t, x) = 0 in [0, tf ] × Ω,

u(t, x) = 0 in [0, tf ] × 𝜕Ω,
u(0, x) = fl(x) in Ω.

Also the discrete version of the approach, Theorem 3, applies to a time discretization of (15). We explain how the
advantages of our approach become clear in the computation in the following section.

5 SPATIAL DISCRETIZATION VIA FINITE DIFFERENCES

Now we explain in detail how the results in Section 3 reduce significantly the optimization of MIPDECO. For this purpose
we apply the method to the discretized version of the model in Section 4. We conclude with the statement of the reduced
MINLP.

5.1 Discretization of the heat equation

Since we are studying the interaction of MINLP and PDE constrained optimization, we use simple discretization schemes
only. However, our results can be generalized to other methods and meshes.

We consider the uniform step size in space and time and define approximate values of the states and controls for
k = 0, … ,Tn, i = 0, … ,N, and j = 0, … ,M:

uk,i,j ≈ u(kht, (ihx1 , jhx1)), vk,l ≈ vl(kht),wk,l ≈ wl(kht).

We discretize the PDE in (13) using a central difference operator in space and backward difference operator in time,
yielding the linear system

GU = BV + d, (16)
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where G ∈ RTnNM×TnNM and B ∈ RTnNM×TnL contain coefficients, d ∈ RTnNM contains initial and boundary conditions, and
U ∈ RTnNM and V ∈ RTnL are the unknown states and controls, written as vectors:

U =
⎡⎢⎢⎢⎣

vec(u1,⋅,⋅)
⋮

vec(uTn,⋅,⋅)

⎤⎥⎥⎥⎦ , V =
⎡⎢⎢⎢⎣

vec(v1,⋅)
⋮

vec(vTn,⋅)

⎤⎥⎥⎥⎦ . (17)

The matrix G may be written as the sum of two Kronecker products:

G = C ⊗ INM + ITn ⊗ 𝜅K, (18)

where INM and ITn denote identity matrices of dimension NM and Tn, respectively. The matrix C ∈ RTn×Tn is an implicit
Euler matrix:

C = 1
ht

⎡⎢⎢⎢⎢⎢⎣

1
− 1 1

⋱ ⋱

− 1 1

⎤⎥⎥⎥⎥⎥⎦
,

where ht =
tf

Tn
is the time step size and K ∈ RNM×NM is the coefficient matrix of the five-point stencil discretization of the

Laplace operator:

K = 1
hx1 hx2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D −IN

− IN D −IN

⋱ ⋱ ⋱

− IN D −IN

− IN D

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where hx1 =
1
N

and hx2 =
2
M

denote the space step sizes discretizing in domain Ω = [0, 1] × [0, 2]. The matrix IN is the
identity of dimension N, and D ∈ RN×N is a tridiagonal matrix:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 −1
− 1 4 −1

⋱ ⋱ ⋱

− 1 4 −1
− 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The right-hand side of the linear system (16) consists of the right-hand side of the heat Equation (13b) written as

B = ITn ⊗ F, (19)

with ITn the identity matrix of dimension Tn, the source term (14) F = [vec(f1), … , vec(fL)] ∈ RNM×L, and the initial (13d)
and boundary conditions (13c): d = [vec(u0,⋅,⋅)T , 0, … , 0]T ∈ RNMTn .

5.2 Alternative derivation of the reduction approach

To solve the linear system (16), we use a key property of V that we can write as a linear combination of unit vectors of
RTnL and reformulate (16):

GU = B
LTn∑
i=1

Viei + d, (20)
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where {ei}
TnL
i=1 denotes the standard basis of RTnL and Vi ∈ R corresponds to a vk,l; see (17). Since G is regular, we use

linearity and get

U =
LTn∑
i=1

Vi G−1Bei
⏟⏟⏟

inhomogeneous part

+ G−1d
⏟⏟⏟

homogeneous part

. (21)

In this discrete formulation we need to solve for the initial values d and for every column of B, thus TnL + 1 linear
systems.

However, since B is the Kronecker product of an identity with the matrix F (see (19)), it is a block diagonal matrix
with identical blocks, namely, F. In addition, the matrix G is also special with regard to the structure, being the finite
difference discretization; see Equation (18).

Thanks to these structural properties, we need to solve only for i = 1, … ,L in Equation (21) corresponding to the L
columns of F and get the subsolutions (ūl

k)
Tn
k=0. In this manner we obtain the inhomogeneous part of the solution yielding

a total of L + 1 linear systems to solve, as stated in Remark 3.
Hence, instead of solving the linear system for every time step and every location, we need to solve for every location

only once to obtain the inhomogeneous part of the solution. Then, the partial solutions are shifted in time with the
corresponding control in the convolution formula (11).

Note also that the coefficient matrix G is the same for all L + 1 linear equation systems. Thus, if a direct solver is used,
the LU composition of G can be used for all systems which makes computations cheap.

5.3 MINLP formulation of the MIPDECO

Because the discretized PDE is a system of linear equations, we can eliminate the PDE by solving a linear system for
every pair of control variables (vk,l,wk,l). This idea leads to a mixed-integer quadratic program (MIQP) formulation of the
problem with reduced size that is solvable within less computational time than the original MIQP formulation requires.

The reduced objective J in (A1) of this problem, in combination with the bounds (22b) and source budget (22c), form
the reduced MIQP formulation of the problem:

min
v,w

J(v), (22a)

s.t. − Mwk,l ≤ vk,l ≤ Mwk,l, (22b)

L∑
l=1

wk,l = w, (22c)

wk,l ∈ {0, 1}

for l = 1, … ,L and k = 1, … ,Tn. (22d)

This problem consists of LTn binary and LTn continuous variables, while NMTn state variables are eliminated.

6 NUMERICAL RESULTS

In this section we present results of our numerical experiments for the actuator placement problem in (13).
The problem is discretized as in Section 5 and implemented in the modeling language AMPL.24 The resulting MIQP

is high dimensional in terms of variables and constraints. The number of real and binary variables is stated depending on
the size of the number of grid points in space and time N = 0.5M = Tn = Nc in context with the computational time in
Table 1. Note that Nc is the number of discretization points of the control that may coincide with Tn or be independent.
The CPU time of CPLEX 12.725 is compared with the CPU time of CPLEX with prior state elimination. A dash indicates
that no result could be obtained within the time limit. The presented state elimination approach reduces the number of
real variables of instances to the same as binary variables.
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T A B L E 1 Problem size and CPU time for the discretization of the actuator placement problem in (13)

Mesh size 8 16 32 64

Variables real binary 1449 9681 71,073 545,601

72 144 288 576

CPU (CPLEX) 7.3 5567.3 − −

State Elim.

CPU (Elim.) 0.004 0.228 3.604 −

CPU (CPLEX) 1.056 3.224 13.280 −

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Loc. 9

F I G U R E 2 Control: The control in the different actuator positions is plotted over time

In the implementation we used the following parameters. The domain is Ω = [0, 1] × [0, 2] with the actuator locations
as in Figure 1, namely, L = 9. The final time is tf = 1. The desired final state is chosen to be uf (x) = 0, and the initial
condition is u0(x) = 100 sin(𝜋x1) sin(𝜋x2) for all x ∈ Ω. The regularization parameters are 𝛽 = 2 and 𝛾 = 2 ⋅ 10−3. The
thermal diffusivity is constant 𝜅 = 0.01 in the domainΩ. and a single actuator is considered, namely, w = 1. The parameter
of the Gaussian source term is chosen as 𝜀 = 0.01.

As the implementation parameter we set the bound to M = 2500, choose the size of the mesh to be N = 0.5M = Tn =
32, and vary the control grid Nc ∈ {4, 8, 16, 32}.

The graphs in Figure 2 show the location and the intensity of the placed actuator for the optimal control v. The decrease
of the intensity until t ≈ 0.5 is due to the fact that the state is driven quickly close to the desired state uf ≡ 0 (see Figure 3)
and due to the regularization of the control in the objective.
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Initial Value (t=0), ||u(0)||=2.2e+03
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Optimal Solution (t=0.125), ||u(0.125)||=6.7e+02
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F I G U R E 3 State: The initial state is plotted on the top, the final state of the optimal solution below, and the final state of the heat
equation without control application on the bottom

In Figure 3 the optimal state u is shown for t ∈ {0, 0.125, 1} and compared with the state at t = 1 without any control
application. Because of the control application, the norm of the state can be brought to the same order of magnitude as
without control application in less than Δt = 0.125. The effect of the control makes the norm of the state at final time
tf = 1 significantly smaller and more homogeneous than without control in the bottom picture.

In Figure 4 we compare the state elimination method presented here in blue with a state elimination method that does
not apply the convolution in red. We also compare with sum-up rounding (see Reference 8) that requires solving to full
integer relaxations of the problem and provides high-quality approximations to the optimal control. This illustrates the
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F I G U R E 4 CPU time: Comparison of the CPU time of the state elimination, with an approach without the smart use of the
convolution, and with a rounding approach. The discretization of the states is N = Tn = 32, and the discretization of the control varies. Note
that the application of CPLEX without a state elimination does not terminate with results in a one-day time limit and is therefore not
presented in this figure

potential of the saved computational effort during the optimization because our method outperforms also this relatively
cheap rounding scheme. Note that the state elimination is also beneficial combined with rounding because it simplifies
the solution of the integer relaxations significantly; see the yellow curve in Figure 4. We also observe that all curves rise
relatively flat. The reason is that we have fixed the space and time discretization of the states to N = Tn = 32 and vary only
the number of grid points of the controls Nc. This also illustrates in particular that the bottleneck is the high-dimensional
state variable.

7 CONCLUSION

We introduced a class of mixed-integer PDE-constrained optimal control problems whose computational complexity can
be reduced by elimination of the state variables. This elimination method is derived by semigroup theory and clever
convolution of solutions parts for continuous and discrete time. The relevance of this class of problems is illustrated by
the actuator placement problem that is governed by the time-dependent 2D heat equation. For this example, we conclude
with numerical results. Because of the efficient reduction of the problem size, the proposed method outperforms simple
rounding schemes in terms of computational time.

Future research investigates models with other governing dynamics arising in different applications. Also
nonlinearities are of interest and it need to be explored if and how key aspects of this work maybe carried
over.
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APPENDIX A

The reduced objective is discretized by the trapezoidal rule:

J(v) =

hx1 hx2

N−1∑
i=1

M−1∑
j=1

(
ūh

Tn,i,j +
Tn∑
t=1

L∑
l=1

vt,l ūl
Tn−t,i,j − uf ,i,j

)2

+𝛽
(

1
2

hx1 hx2 ht

N−1∑
i=1

M−1∑
j=1

(
ūh

0,i,j

)2

+hx1 hx2 ht

Tn−1∑
k=1

N−1∑
i=1

M−1∑
j=1

(
ūh

k,i,j +
k∑

t=1

L∑
l=1

vt,l ūl
k−t,i,j

)2

+ 1
2

hx1 hx2 ht

N−1∑
i=1

M−1∑
j=1

(
ūh

Tn,i,j +
Tn∑
t=1

L∑
l=1

vt,l ūl
Tn−t,i,j

)2)
+𝛾ht

L∑
l=1

(
1
2

(
v0,l

)2 +
Tn−1∑
t=1

(
vt,l

)2 + 1
2

(
vTn,l

)2
)
,

(A1)

where uf ,i,j = uf ((ihx1 , jhx2)).
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