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Abstract
It is well known that store-level brand sales may not only depend on contemporane-
ous influencing factors like current own and competitive prices or other marketing 
activities, but also on past prices representing customer response to price dynamics. 
On the other hand, non- or semiparametric regression models have been proposed in 
order to accommodate potential nonlinearities in price response, and related empiri-
cal findings for frequently purchased consumer goods indicate that price effects may 
show complex nonlinearities, which are difficult to capture with parametric models. 
In this contribution, we combine nonparametric price response modeling and behav-
ioral pricing theory. In particular, we propose a semiparametric approach to flexibly 
estimating price-change or reference price effects based on store-level sales data. 
We compare different representations for capturing symmetric vs. asymmetric and 
proportional vs.  disproportionate price-change effects following adaptation-level 
and prospect theory, and further compare our flexible autoregressive model speci-
fications to parametric benchmark models. Functional flexibility is accommodated 
via P-splines, and all models are estimated within a fully Bayesian framework. In an 
empirical study, we demonstrate that our semiparametric dynamic models provide 
more accurate sales forecasts for most brands considered compared to competing 
benchmark models that either ignore price dynamics or just include them in a para-
metric way.
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1  Introduction

Sales response functions describe the relationship between the sales of a prod-
uct (or an entire product category) as dependent variable and predictors that are 
believed to influence sales as independent variables. In brand sales models based 
on store-level data, these predictors typically represent prices of (substitute) 
brands and other marketing variables related to promotional activities (like dis-
plays and feature advertising) as well as trend or seasonal indicators. In this con-
text, retailers and academic researchers face several challenges, for example how 
to process the usually large amount of information (predictors) to arrive at a par-
simonious model, how to specify the functional relationships between metric pre-
dictors (like prices) and sales, and/or how to accommodate dynamic effects in the 
model. More specifically, several streams of research for modeling (store) sales 
response to price variations have developed over the last 40 years. Among them, 
researchers have focused on choosing the right functional form to adequately 
capture the relationship between (own or competitive) prices and sales. Non- or 
semiparametric regression models have been proposed here in recent years in 
order to capture strong and/or complex nonlinearities in price response that could 
actually be proven for frequently purchased consumer goods in many empirical 
studies and are difficult to handle with parametric models. A second stream has 
addressed price dynamics in (store) sales response models by adding variables for 
lagged (or even lead) price effects, by including price terms for reference price or 
price-change effects, or by considering time-varying price parameters. Reference 
price effects are more commonly studied with disaggregate consumer data (i.e., 
household-level data), and have been less frequently incorporated into response 
models based on aggregate sales data. Obviously, reference price effects are much 
more difficult to model with aggregate data compared to disaggregate data. In the 
latter case, purchase incidence, brand choice, and purchase quantity decisions of 
consumers can be more easily separated at the individual consumer or household 
level, and reference price effects can in principle influence all three decisions 
(although they are most popular in models that have its focus on brand choice 
only). Beyond reference price effects, other forms of dynamics like stockpiling, 
state dependence (brand loyalty) or customer holdover, or consumer learning 
have been shown to be also very relevant at the individual consumer or house-
hold level, see for example Neslin and van  Heerde (2009) and van  Heerde and 
Neslin (2017) for an overview. Sales response models lack this micro-foundation: 
both the three different consumer decisions and the possibly individually different 
dynamics are confounded in aggregate data, making it challenging to disentan-
gle them (see, e.g., Neslin and Shoemaker 1989; van Heerde et al. 2000, 2004). 
Using aggregate data, reference price effects can therefore only be interpreted for 
an aggregate of households in the sense that they refer to prices paid or observed 
in previous periods (e.g., weeks) rather than to prices paid or observed at previ-
ous individual purchase occasions. This may be less of a problem if goods like 
in the food sector are purchased on a regular (weekly) basis and are frequently 
advertised. On the other hand, if consumer goods have longer interpurchase times 
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household data can also suffer from some problems like for example a different 
composition of consumers across periods when modeling dynamic effects over 
time (e.g., weeks). And, modeling reference price effects with aggregate data has 
also its pros due to the greater managerial relevance of aggregate data compared 
to household-level data. Although household-level data are richer for explaining 
customers’ purchasing behavior (as indicated above), they have been often criti-
cized by managers for their potential lack of representativeness, which may cause 
share estimates to differ from those based on store-level data (cf. van  Heerde 
1999,  p.  21). While household-level data cover only a subset of all customers 
purchasing at a retail store, store-level data cover all these customers, which is 
a weighty argument from the perspective of a store manager in favor of using 
aggregate data. For a comprehensive discussion on the pros and cons of the dif-
ferent data types, see van Heerde (1999,  pp. 20–21). As a result of the discus-
sion above, it is however important to separate reference price effects from other 
dynamic effects like stockpiling or customer holdover when relying on aggregate 
data.1

In this paper, we combine nonparametric sales response modeling with the esti-
mation of price dynamics where the latter are captured by reference price effects. 
The fact that no other study has tackled this frontier up to now can probably be 
explained by the much higher popularity of studying reference price effects with 
household-level data and the greater difficulties to disentangle different sources of 
dynamics with aggregate data, as discussed above. We try to fill this research gap 
and propose a semiparametric model to flexibly estimating price-change or refer-
ence price effects based on store-level sales data. We compare different representa-
tions for accommodating symmetric versus asymmetric and proportional versus dis-
proportionate price-change effects following adaptation-level and prospect theory, 
and further compare our flexible autoregressive model specifications to parametric 
benchmark models. Since management decisions should be based on the model with 
the highest predictive performance (van Heerde et al. 2002), our primary focus is on 
the predictive model performance rather than on solving the problem how to tease 
out different dynamic effects with aggregate data. Actually, focusing on prediction 
as our main goal relaxes the problem that it is more difficult to disentangle different 
dynamic effects with aggregate sales data compared to disaggregate consumer data. 
Nevertheless, we address this problem and separate reference price effects from 
other dynamic effects like stockpiling and customer holdover by including lagged 
sales as autoregressive model component.

In an empirical study, we demonstrate that our semiparametric dynamic models 
can provide more accurate sales forecasts compared to competing benchmark mod-
els that either ignore price dynamics or just include them in a parametric way. The 
main benefit of the proposed model is therefore to help managers to predict sales 
better. It has been shown before for other models that semiparametric modeling 
can provide (much) better predictions than parametric modeling (see the literature 
review in Sect. 2 below); as such, one main academic contribution of the paper is to 

1  We thank two anonymous reviewers for stimulating the discussion on the pros and cons of the different 
data types to model reference price effects.
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show that this also holds for reference price models. In addition, we discuss likely 
implications of our model for related optimal pricing decisions in our outlook onto 
future research perspectives at the end of the article.

The rest of the paper is organized as follows. Section 2 provides a compact review 
of the relevant literature on price response modeling based on aggregate data, 
reflecting the road from parametric to more flexible model specifications as well as 
the different options of addressing price dynamics, including reference price effects 
in particular. In Sect.  3, we introduce our Bayesian model estimation framework. 
Using scanner data for refrigerated orange juice brands sold by a large supermar-
ket chain we compare different model specifications (nonparametric vs. parametric, 
dynamic vs. static, alternative options of specifying reference price effects) for pre-
dictive performance and discuss implications regarding estimated price elasticities 
in Sect. 4. We conclude in Sect. 5 with a summary of the most important findings, 
managerial implications, and an outlook on future research opportunities.

2 � Literature review

This section provides an overview of relevant literature for our proposed approach, 
referring to the functional form of price response models, the incorporation of 
price dynamics in such models, and the few approaches that have so far combined 
functional flexibility and the estimation of dynamic price effects in sales response 
models.

Early approaches used strictly parametric modeling to estimate sales/price 
response functions, as a rule using the sales variable in logarithmic form (e.g., 
Hruschka 1997; Montgomery 1997; Foekens et  al. 1999; Kopalle et  al. 1999; 
van Heerde et al. 2000, 2002; Hruschka 2006a, b; Andrews et al. 2008). Using log 
sales instead of sales enables to capture nonlinearities in sales response, however the 
observed data are still projected “into a Procrustean bed of a fixed parameterization” 
(Härdle 1990; as cited in van Heerde 1999, p. 28).

In other words, parametric models only provide consistent estimates if the a pri-
ori assumed functional form is correct (e.g., Leeflang et al. 2000). The use of more 
flexible semi- or nonparametric models can help to overcome this problem, as these 
allow to ‘extract’ the shape of functional relationships directly from data without 
prior knowledge about the functional form (e.g., van Heerde 2017). van Heerde et al. 
(2001) have shown for several food categories that the use of a kernel regression 
approach can improve the predictive performance of brand sales models based on 
store-level data compared to parametric modeling. Hruschka (2006a) and Hruschka 
(2007) used neural nets (multilayer perceptrons) to capture nonlinearities in sales 
response and reported much better log marginal densities as well as high posterior 
model probabilities or superior cross-validated predictive densities compared to 
strictly parametric modeling for all brands considered. Other researchers proposed 
spline approaches to model sales response and could reveal strong nonlinearities 
in price effects which in addition were shaped very differently at the individual 
brand level. Kalyanam and Shively (1998) used stochastic cubic splines, Haupt and 
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Kagerer (2012) and Haupt et al. (2014) applied B-splines, Hruschka (2000) consid-
ered both B-splines and cubic smoothing splines, and Steiner et al. (2007), Weber 
and Steiner (2012), Lang et  al. (2015), and Weber et  al. (2017) employed Bayes-
ian P-splines. Except for Kalyanam and Shively (1998) and Hruschka (2000), who 
focused on model fit (the first also used marginal posterior model probabilities, the 
latter applied AIC), the mentioned spline applications provided further evidence of 
(much) more accurate sales predictions when using nonparametric instead of para-
metric response models. These findings are of great importance since (store) manag-
ers should prefer the model specification with the best possible predictive perfor-
mance (van Heerde et al. 2002). More flexible specifications have the potential to 
work better and to provide superior forecasts than parametric ones if the sales data at 
hand include complex nonlinear relationships in price response which are difficult to 
‘read out’ with parametric models (e.g., Lang et al. 2015).

Beyond the choice of the right functional form, one can think about the incor-
poration of time-dependent (price) effects leading to dynamic instead of static sales 
or price response models. In the context of price promotions there is empirical evi-
dence that lags or leads of prices can have an impact on current brand or current 
category sales volumes. van Heerde et al. (2000) and van Heerde et al. (2004) used 
leads and lags of price indices reflecting promotional price cuts with different types 
of promotional support, and reported significant and in parts also very substantial 
dynamic effects. Nijs et al. (2001) and Horváth and Fok (2013) accounted for price 
dynamics by fitting VARX models. Nijs et  al. (2001) examined category-demand 
effects and found that the strong positive short-term effects of price promotions 
almost completely dissipate over time. Horváth and Fok (2013) analyzed cross-price 
effects and found evidence of preemptive switching in a way that a brand’s price 
promotion in one period can decrease a substitute brand’s sales in subsequent peri-
ods. Foekens et  al. (1999) and Kopalle et  al. (1999) proposed varying parameter 
models to account for dynamic (pricing) effects in store-level sales response mod-
els, both using the widespread multiplicative functional form for modeling price 
response. Foekens et al. (1999) reparameterized a brand’s own-price elasticity as to 
depend on cumulated previous price discounts (amount and time) for both the brand 
considered and competing brands, and reported that the magnitude and timing of 
preceding price cuts can have a significant impact on own-price elasticities at the 
current period. Kopalle et al. (1999) reparameterized own- and cross-price param-
eters as functions of geometrically-weighted averages of past discounts and in addi-
tion developed a normative model for related pricing decisions.

Talking about lagged prices and dynamic price response modeling is further 
closely connected to the topic of reference prices. Adaptation-level theory, as pro-
posed by Helson (1964), states that the perception of a new stimulus is performed 
relative to an ‘adaptation level’. Applied to a pricing context, the adaptation level for 
judging a newly observed price information is called reference price. In other words, 
the reference price constitutes an internal price standard of the consumer and works 
as the adaptation level the consumer compares the current price of a brand observed 
or paid to. Prospect theory also suggests that consumers evaluate alternatives based 
on a comparison to a standard or reference point, but further distinguishes how con-
sumers value potential gains versus losses from making a decision (Kahnemann and 
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Tversky 1979). The value of a new price information therefore not only depends 
on the (absolute) difference to a reference point but also on whether the price dif-
ference represents a gain or a loss for the consumer. Consequently, prospect theory 
offers an option to evaluate price-change effects much more differentiated compared 
to adaptation-level theory (see Sect. 3.1 for a more detailed description of the value 
function underlying prospect theory).

In the pricing literature, adaptation-level and prospect theory are most fre-
quently applied in the context of (brand) choice modeling, i.e., in models that are 
based on disaggregate consumer data (for an introduction to this topic see Neslin 
and van Heerde 2009, for a detailed literature review see Mazumdar et al. 2005 and 
Neumann and Böckenholt 2014, and for a recent application see Boztuğ et al. 2014 
and Baumgartner et al. 2018). Exceptions are for example Kucher (1987) and Nat-
ter and Hruschka (1997), who incorporated reference price effects into market share 
models (i.e., using aggregate data). At this point, it is important to note that the ref-
erence price as a construct to model dynamic effects of past prices can be either 
operationalized as the price of the previous purchase occasion (referred to as price-
change effect) or determined via more complex reference price formation mecha-
nisms based on several past prices (referred to as price-deviation effect), compare 
Kucher (1987).

Gedenk (2002,  p. 249) has provided an overview of studies for either stream, 
and Briesch et al. (1997) discussed different reference price formation mechanisms. 
Accordingly, because reference prices of consumers cannot be directly measured 
or be determined in aggregate sales data, some authors used either the price of the 
last period or the average of several previous prices as proxy for reference prices in 
aggregate response models (also see Gedenk 2002, pp. 247–249).

Referring to adaptation-level theory, Simon (1982, pp. 208–213) still a little ear-
lier argued that it seems realistic to assume not only an absolute price effect but also 
a price-change effect on brand sales, i.e., that the price of the last period should 
have an impact on the response to the current period’s price. In a first step, he pro-
posed two versions of linear price-change response models, one where a brand’s 
sales depend on the difference between its current price and its previous price, and 
another where the relative price change instead of the absolute price change was 
used as independent variable. Both linear price-change response models assume 
a symmetric and proportional sales response to price increases and decreases. In 
addition, he also proposed a hyperbolic sine sales response function to accommo-
date non-proportional (but still symmetric) price-change effects, with the relative 
price change as its argument. He motivated the use of this functional form using the 
same behavioral rationale as is inherent to the well-known Gutenberg price response 
model: small price changes may have only marginal (below average) effects on sales, 
while large price changes should yield disproportionately large sales effects (e.g., 
Hruschka 2000). Note that the three models did not include a contemporaneous 
(static) price effect, however Simon (1982, p. 211) mentioned that the model could 
be extended accordingly in case of a sufficiently large data base (as it is given today 
with store-level scanner data). Later, Simon (1992, pp. 253–254) also considered the 
possibility of an asymmetric price-change response by expanding his linear price-
change response model (with the absolute price difference as argument) to capture 
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sales effects from price increases (losses) and price decreases (gains) separately. He 
motivated the model extension with an own empirical study where he observed a 
significant price-change effect for price decreases (but not for price increases) on 
the one hand, as well as by referring to prospect theory, which vice versa suggests 
a higher price elasticity for price increases compared to price decreases due to loss 
aversion of consumers on the other hand.

In the context of price assessment, Diller (2008,  pp.  140–143) linked pros-
pect theory to reference prices and proposes (among others) a reverse s-shaped 
decreasing function to capture asymmetric price-change or price-deviation effects. 
The shape of the function looks similar to the logistic price response function but 
shows a steeper progression for losses than for gains, following prospect theory. 
As an alternative, he suggested an s-shaped decreasing response function in order 
to accommodate the existence of possible lower and upper price thresholds. Con-
sequently, the latter function is not in line with prospect theory but resembles the 
shape of the Gutenberg function with a flatter middle part on the one hand and much 
more elastic parts for larger deviations from the reference point on the other hand. 
Both functions allow to capture a disproportionate price response pattern. Impor-
tantly, Diller (2008, pp. 360–361) pointed out that the choice of the right functional 
form depends on the empirical data at hand which makes it necessary to compare 
different parametric approaches in empirical applications. As mentioned above, 
using nonparametric estimation techniques can remedy this dilemma by letting the 
data determine the shape of price-deviation or price-change effects without a priori 
assumptions about functional forms.

There are certainly pros as well as cons to decide upon whether to use only the 
price of the last period or a more complex reference price formation mechanism 
based on prices of several previous periods in an aggregate sales response model. 
Rinne (1981, pp. 29–30) already used the previous price as reference price (in terms 
of the last seen price) in his sales response model, as well as Kucher (1987, p. 179) 
did due to the “exceptional position” of the previous price among all past prices. 
In addition, there is empirical evidence that individual consumers would not access 
price information that lies much beyond the immediate past purchase occasion, sim-
ply due to difficulties in accurately remembering prices further back (see Krishna-
murthi et al. 1992, and the literature cited therein). If consumers buy products on 
their shopping trips on a weekly basis, this restricted memory capacity argument 
with its focus on the immediately last price as reference price is also applicable to 
aggregate data. Also, established reference price formation models for disaggre-
gate data use periodical (weekly) updates for a brand’s reference price at the indi-
vidual consumer level even if a consumer did not buy that brand in the last period 
(cf. Erdem et al. 2010). Accordingly, “updating reference prices only when house-
holds make purchases would underestimate the reference price” (Erdem et  al. 
2010, p. 310). This assumes that consumers are monitoring brand prices over peri-
ods and therefore are aware of a brand’s price in the previous period, which is real-
istic for frequently purchased consumer goods (at least for segments of consumers). 
Based on these arguments, we focus on price-change response models using aggre-
gate store-level sales data and the price of the last period as proxy for the reference 
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price of an aggregate of consumers shopping at a retailer, hence we use the more 
parsimonious option to operationalize reference prices.

Beyond the approaches discussed above, only very few authors have explicitly 
considered prospect theory for modeling price effects in store-level sales response 
models. Based on the reference price model of Greenleaf (1995), Kopalle et  al. 
(1996) assumed that demand for a brand is a linear function of price(s) and a price-
deviation effect, the latter which is operationalized with two additively separable 
terms representing gains and losses. The authors developed optimal dynamic pricing 
strategies and showed that when (a sufficiently large number of) consumers weigh 
losses stronger than gains, as suggested by prospect theory, every day low pricing 
(i.e., setting constant prices) is optimal for a retailer. Conversely, if (enough) con-
sumers weigh gains stronger than losses, a hi-lo strategy (cyclical pricing) would be 
the optimal retailer strategy (for a similar result see Fibich et al. 2007). Assuming 
asymmetric reference price effects with loss-averse consumers, Fibich et al. (2003) 
demonstrated that for an infinite planning horizon the optimal pricing strategy ‘con-
verges’ at a steady-state price, which turns out slightly lower than without consider-
ing reference price effects. Pauwels et al. (2007) proposed smooth transition regres-
sion models to explore threshold-based price elasticities and found evidence for 
larger threshold sizes for gains than for losses.

Van Heerde et al. (2004) addressed both functional flexibility and price dynam-
ics in brand sales models (with store-level data). Based on van Heerde et al. (2000), 
who used leads and lags of price discount variables to capture price dynamics, and 
based on van Heerde et  al. (2001), who applied kernel regression to flexibly esti-
mate price discount effects, the authors combined both features (leads and lags, local 
polynomial regression) in order to decompose the sales effect of promotions into the 
three different sources cross-brand effects, cross-period effects, and category expan-
sion effects. Finally, Natter and Hruschka (1997) have been previously the only ones 
who estimated reference price effects within a flexible approach (via a neural net-
work) and based on aggregate data, however their approach was directed on market 
share modeling rather than sales response modeling. To the best of our knowledge, 
no study so far has employed nonparametric regression to flexibly estimate asym-
metric reference price (price-change) effects in store-level sales response models, 
and we attempt to fill this research gap in the literature with our study.

Table  1 summarizes the literature on (store-level) sales response models 
with focus on estimating price effects discussed above, distinguishing between 
approaches that have addressed either functional flexibility, or price dynamics (in 
the form of using lead or lagged prices, reference prices, or time-varying param-
eters), or both features. In the Appendix A, we provide an overview of advantages 
of using nonparametric regression techniques in general and especially for captur-
ing gain and loss effects and summarize further convenient properties of applying 
Bayesian P-splines as we do in this article.

In the following, we present a semiparametric brand sales model which 
accounts for price dynamics via (asymmetric) price-change effects. Our model 
therefore combines reference price effects with functional flexibility. Our model 
specification is based on Weber et  al. (2017), who assumed a brand’s sales to 
depend on the brand’s own price and prices of substitute brands, further 
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marketing covariates representing the use of displays and odd prices, as well as 
on store-specific and holiday effects. We additionally consider price dynamics via 
price-change effects in different ways, that way accommodating adaptation-level 
and prospect theory. Our focus is on the predictive performance of the proposed 
approach in comparison to several benchmark models, including linear, exponen-
tial, and multiplicative models with or without price dynamics. From a modeling 
perspective, we want to demonstrate the capability of nonparametric regression to 
estimate any kind of price-change response from data (symmetric vs. asymmetric 
response, proportionate vs.  disproportionate response). From a managerial per-
spective, our primary goal is to provide an econometric model that can improve 
sales predictions from incorporating reference price effects into a flexible sales 
response model compared to simpler model specifications that either ignore price 

Table 1   Overview of studies accommodating price dynamics (e.g., reference price effects) and/or func-
tional flexibility in aggregate sales response models

Study Price dynamics Functional flexibility

Rinne (1981) Reference prices (gains and losses) –
Kucher (1987) Reference prices (price difference) –
Kopalle et al. (1996) Reference prices (gains and losses) –
Kalyanam and Shively (1998) – Stochastic splines
Foekens et al. (1999) Time-varying parameters –
Kopalle et al. (1999) Time-varying parameters –
Hruschka (2000) – B-splines, cubic smoothing splines
van Heerde et al. (2000) Leads and lags –
Nijs et al. (2001) Lags –
van Heerde et al. (2001) – Kernel regression
Fibich et al. (2003) Reference prices (gains and losses) –
van Heerde et al. (2004) Leads and lags Local linear regression
Hruschka (2006a) – Neural nets
Fibich et al. (2007) Reference prices (gains and losses) –
Hruschka (2007) – Neural nets
Pauwels et al. (2007) Reference prices (gains and losses) –
Steiner et al. (2007) – Bayesian P-splines
Brezger and Steiner (2008) – Bayesian P-splines
Haupt and Kagerer (2012) – B-splines, quantile regression
Weber and Steiner (2012) – Bayesian P-splines
Horváth and Fok (2013) Lags –
Haupt et al. (2014) – B-splines, quantile regression
Lang et al. (2015) – Bayesian P-splines
Weber et al. (2017) – Bayesian P-splines

This study Reference prices (price difference, 
gains and losses)

Bayesian P-splines
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dynamics, functional flexibility, or both. Likely implications of our proposed 
model for related optimal pricing decisions will be discussed in Sect. 5.

3 � Model specification

In this section, we review the concept of prospect theory and its application to ref-
erence prices, propose different options to include a lagged price term in a sales 
response model to measure price-change effects, and introduce our semiparamet-
ric model in different variants to address both functional flexibility and price (and 
other) dynamics.

3.1 � Reference prices and prospect theory

As mentioned in the literature review, prospect theory as proposed by Kahnemann 
and Tversky (1979) builds upon adaptation-level theory, which states that a con-
sumer’s response to a stimulus (e.g., the current price observed or paid) does not 
only depend on the stimulus itself but on the ‘distance’ to the consumer’s standard 
or ‘adaptation’ level (e.g., her/his reference price). In prospect theory, the compari-
son to that reference point is expressed by the value function v(x) , with argument x 
representing the deviation of the observed stimulus from the reference point (see 
Fig. 1). In particular, x > 0 refers to a gain and x < 0 to a loss and, accordingly, the 
value v(x) is positive for a gain and negative for a loss. The value function is further 
concave for gains and convex for losses, and asymmetric with |v(−x)| > v(x), x > 0 . 
This implies that consumers are loss-averse and weigh losses of an amount x 
stronger than gains of the same amount. Therefore, the value function is steeper for 
losses than for gains.

In the present context, x represents the price change between the current price 
( pt ) of a brand and its price of the last period ( pt−1 ), where the latter corresponds to 
the reference price. Following adaptation-level theory and prospect theory, different 
ways to incorporate lagged prices into a sales/price response model are possible.

Fig. 1   Example figure for prospect theory (source: own illustration based on Kahnemann and Tversky 
1979)
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3.1.1 � Absolute versus relative price differences

The most simple way to account for a price-change effect is to use absolute or rela-
tive price changes, as for example proposed by Simon (1982, p. 209):

For both variants, negative values correspond to losses and positive values to gains 
(which is in line with the representation given in Fig. 1). However, using a linear or 
parametric nonlinear sales response function, this specification results in only one 
single effect estimate for both gains and losses, since only one parameter is deter-
mined for the price-change effect. A great advantage of flexible (e.g., spline) func-
tions therefore is their ability to capture possibly different shapes for the gain and 
loss parts of the value function, even if gain and loss effects are not separated from 
each other as in (1) and (2).

3.1.2 � Separate price terms for gains and losses

An approach to account for individual price-change effects of gains and losses in 
parametric models is to simply split the (relative) difference between the current and 
lagged price, according to (1) and (2), into two separate variables:

Now, the loss and gain parts of the value function shown in Fig. 1 are captured by 
two separate terms. Consequently, asymmetric and disproportionate (except for the 
linear model) price-change effects are allowed for gains and losses. One disadvan-
tage of this specification for parametric models may be that whenever one of the two 
variables takes a positive value the second one is truncated to zero, thus generat-
ing ‘many zeros’ in the vector of observations for these two covariates (which may 
lead to an estimation bias). Using nonparametric techniques like splines, estimation 
results are much less (if at all) affected by this truncation due to their local fitting 
property. We elaborate on this local fitting property in more detail in Sect. 4.2.

3.2 � Reference prices and other dynamic effects

As specified above, we treat a brand’s price of the previous period ( pt−1 ) as ref-
erence price and include its deviation from the price of the current period ( pt ) to 
capture reference price effects, i.e., price dynamics. At this point, it is important to 
note that empirical findings in the field of price promotions indicate that price cuts 

(1)Δpt = pt−1 − pt,

(2)Δrelpt = Δpt∕pt−1.

(3)losses: (Δpt)
− = max

{
0,−Δpt

}
, (Δrelpt)

− = max
{
0,−Δrelpt

}
,

(4)gains: (Δpt)
+ = max

{
0,Δpt

}
, (Δrelpt)

+ = max
{
0,Δrelpt

}
.
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(corresponding to gains in our context) can lead to strong sales spikes during a pro-
motion. The reasons for the incremental sales volume of a brand during promotional 
periods are manifold: price discounts are typically substantial, they are advertised 
via in-store displays and/or out-of-store flyers, and consumers might stockpile as a 
result of accelerating their purchases by buying earlier and/or a larger amount of the 
promoted item. Many studies based on household-level panel data have revealed that 
purchase acceleration effects can be considerable, an about equally large number 
of studies based on aggregate store sales data could however not find the expected 
postpromotion dip after the deal period (i.e., the corresponding sales decrease just 
as a result of stockpiling; for an overview of related studies and findings see, e.g., 
van Heerde et al. 2001). As a consequence, managers who rely on store sales data 
may overestimate the gain effect from a price decrease during the promotion and 
underestimate the loss effect when the price has increased again in the post-promo-
tion period, which would be contradictory to what prospect theory suggests. Stock-
piling is hard to detect in store-level sales data (see Neslin and Shoemaker 1989), 
and Neslin and Schneider Stone (1996) provided a number of arguments for explain-
ing this mystery (also see Neslin and van Heerde 2009). Accordingly, the possible 
lack of postpromotion dips in aggregate data can be the result of an aggregation bias, 
caused by potentially very different purchasing patterns of individual households. 
For example, some households can be deal-to-deal buyers, some pursue excessive 
stockpiling while others consume faster, or some others may build up brand loyalty 
and repeat purchase the promoted brand even after the promotion at a higher price 
(also referred to as customer holdover or purchase reinforcement). Consequently, 
other dynamic effects like stockpiling or customer holdover must be accommo-
dated in aggregate sales response models to ensure that the dynamics in the data are 
indeed driven by pricing effects (in our model by reference price effects) and not or 
at least only partially by different other types of dynamics. Based on simulated data, 
Slonim and Garbarino (2009) could show that the level of stockpiling can indeed 
provide an explanation for the mixed findings on asymmetric reference price effects 
in the literature that either are in line with prospect theory (greater sensitivity to 
losses) or not (greater sensitivity to gains). In particular, they found that the condi-
tions that affect the level of stockability of a product (e.g., holding costs of consum-
ers, perishability of products, required storage space, frequency and depth of price 
deals) drive the direction and magnitude of the asymmetry of reference price effects. 
In order to account for stockpiling and customer holdover effects, we follow Pauwels 
et al. (2007) and include lagged sales (a brand’s sales of the previous period) as an 
additional predictor leading to an autoregressive sales response model. Therefore, a 
negative effect of lagged sales on current sales would indicate more stockpiling of 
consumers on average, while a positive effect would point to a customer holdover 
effect. Of course, in aggregate data both effects may be simultaneously at work and 
positive repeat purchase effects (customer holdover) may overcompensate purchase 
acceleration effects (stockpiling), depending on the composition of different types 
of households in the sample and the extent to which they stockpile. For example, 
Macé and Neslin (2004) found that households with less income, a larger number of 
household members, working women, and cars are more prone to stockpiling, and 
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Chan et al. (2008) reported that brand loyals and heavy users stockpile (more) for 
future consumption compared to brand switchers and light users.2

3.3 � Semiparametric modeling approach

We use the following additive semiparametric dynamic sales response model with 
unknown smooth (nonparametric) functions for price and price-change effects as 
described in (5). Accordingly, the (log) unit sales of a brand in a specific store and 
week is assumed to depend on the brand’s own price, a reference price term includ-
ing the brand’s price of the previous week as reference price of the (aggregate of) 
consumers, own promotional activities for the brand (odd pricing, use of a display), 
prices of substitute brands captured at the price-quality tier level, cross-promotional 
activities of substitute brands in the same tier (use of a display), a potential holiday 
effect, and unobserved store-specific effects. In addition, we include the (log) unit 
sales of the brand in the previous week as autoregressive model component to sepa-
rate other dynamic effects from the reference price effect, as discussed above. Since 
we estimate the sales response for each brand separately, we omit the use of brand 
indices for simplification in the following:

where

•	 �s is a store-specific random intercept for store s;
•	 f1 is a decreasing function of the brand’s own price ( pst);
•	 f2 is an increasing function for the reference price effect ( pref

st
 ), see below for 

more details;
•	 fci are increasing functions for cross-price effects ( pcist);
•	 � captures parametric effects for promotional activities and seasonality ( v′

st
);

•	 � captures the autoregressive effect of the one-period lagged unit sales ( log(qs;t−1));
•	 �st is a Gaussian error term with mean zero and variance �2.

A more detailed description of all variables and estimated effects is provided in 
Table 4 in Sect. 4.1, where we will introduce the data set used in our empirical study.

The unknown smooth nonlinear functions f  are modeled via Bayesian P-splines, 
which were introduced by Lang and Brezger (2004). Later, Brezger and Steiner 
(2008) proposed an extended Gibbs sampling procedure to additionally accommodate 
monotonicity constraints, as is economically reasonable and now well-established for 
modeling price response. Reference price effects or price-change effects are captured 
via the four options as discussed in Sect. 3.1: we use either a single price-difference 

(5)

log(qst) = �st + �st

= �s + f1(pst) + f2(p
ref
st
) +

∑
i
fci (p

ci
st) + v

�
st
�

+ � log(qs;t−1) + �st,

2  We thank two anonymous reviewers for pointing out the importance to separate reference price effects 
from other dynamic effects in response models based on aggregate data.
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variable that measures the difference between the current and previous price in abso-
lute terms (abs-diff) or relative terms (rel-diff), or we split up the price-change effect 
into a gain and loss effect measuring the price change again in monetary units (abs-
gl) or as a percentage change (rel-gl). We further estimate two nested variants of the 
semiparametric model in order to assess the impact of considering (price) dynamics 
on the predictive model performance: a static variant without the reference price term 
and without the autoregressive part (static), and a simpler dynamic variant without 
the reference price term but including one-period lagged sales as autoregressive part 
(dyn-ar). For the sake of clarity, we omit both the nonparametric cross-price terms 
and all parametric terms except the autoregressive part (which are common to all 
model versions) to especially focus on the differences between the various model 
specifications in the following equations (see (5) for details):

•	 static (static): 

•	 dynamic, with autoregressive part, without price dynamics (dyn-ar): 

•	 dynamic, with autoregressive part, price difference in absolute terms (abs-diff): 

•	 dynamic, with autoregressive part, price difference in relative terms (rel-diff): 

•	 dynamic, with autoregressive part, gains and losses in absolute terms (abs-gl): 

•	 dynamic, with autoregressive part, gains and losses in relative terms (rel-gl): 

In our empirical study, we additionally compare the semiparametric approach to sev-
eral parametric sales response models that are described next.

3.4 � Benchmark models

As benchmark models, we consider two widely used parametric nonlinear mod-
els (the exponential or log-linear model, and the multiplicative or log-log model) 
as well as the simple linear sales response model. Including the three parametric 
models allows us to further evaluate the potential of flexible regression models for 
capturing reference price effects and especially to assess possible interactions of 
accounting for price dynamics and/or functional flexibility with regard to improve-
ments in the accuracy of sales predictions. We did not expect that the linear model 

(6)log(qst) = f1(pst) +⋯

(7)log(qst) = f1(pst) + � log(qs;t−1) +⋯

(8)log(qst) = f1(pst) + f2(Δpst) + � log(qs;t−1) +⋯

(9)log(qst) = f1(pst) + f2(Δ
relpst) + � log(qs;t−1) +⋯

(10)log(qst) = f1(pst) + f2G((Δpst)
+) + f2L((Δpst)

−) + � log(qs;t−1) +⋯

(11)log(qst) = f1(pst) + f2G((Δ
relpst)

+) + f2L((Δ
relpst)

−) + � log(qs;t−1) +⋯
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would perform very well, since it is nowadays well-established that price response 
is usually nonlinear for frequently purchased consumer goods, as considered here 
(see the literature review in Sect.  2). Nevertheless, the linear model represents a 
natural benchmark model, especially as it constituted the starting approach in the 
German-language pricing literature for modeling price-change effects (also compare 
Sect. 2). We eventually moved the empirical results related to the linear model to the 
Appendix for the interested reader, because it actually performed much worse than 
the other models in our application, as expected.

In the strictly parametric models, the unknown smooth price functions fj in (5) 
(and in (6)–(11), respectively) are replaced by parametric linear effects. The linear 
and exponential models differ only in the specification of the dependent variable 
(and consequently in the related autoregressive part), which is unit sales ( q ) in the 
former case and log unit sales ( log(q) ) in the latter case. The multiplicative model 
uses log unit sales as dependent variable and furthermore log-transformations for all 
price covariates. Accordingly, the three benchmark models can be expressed as fol-
lows (omitting the terms for store intercepts, promotional activities, and seasonality, 
which are identical across the models for simplification, to highlight the differences 
between the three parametric models):

•	 linear: 

•	 exponential: 

•	 multiplicative: 

For the linear and exponential models, pref represents one of the four different speci-
fications for capturing the price-change or reference price effect (simple price-dif-
ference term vs. separate gain and loss variables, measured in absolute vs. relative 
terms) as in (8)–(11), and pci denotes the cross-price terms, as introduced in (5). For 
the multiplicative model, we use the ratio between the previous price and the cur-
rent price, Δpt = pt−1∕pt , instead of the price difference as equivalent specification 
for the price-change effect (corresponding to the difference in log prices). Like for 
the price-difference term, as in (1), negative values of the log price-ratio term cor-
respond to losses and positive values to gains. Note that an operationalization of the 
reference price term as in (2) is not reasonable for the multiplicative model, result-
ing in only two specifications for the price-change effect (simple log price ratio, 
separate log price ratios for gains and losses). Further note that like for the semipa-
rametric model we again estimated each two nested variants of the three paramet-
ric benchmark models, once as static model without the reference price term and 
without the autoregressive part (static), and once as simpler dynamic model without 

(12)qst = �1pst + �2p
ref
st

+ �qs;t−1 +
∑

i
�cip

ci
st +⋯

(13)log(qst) = �1pst + �2p
ref
st

+ � log(qs;t−1) +
∑

i
�cip

ci
st +⋯

(14)log(qst) = �1 log(pst) + �2 log(p
ref
st
) + � log(qs;t−1) +

∑
i
�ci log(p

ci
st) +⋯
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the reference price term but including the autoregressive part (dyn-ar), compare 
Sect. 3.3. Overall, we estimate and validate 22 different models (each 6 variants of 
the linear, exponential, and semiparametric models, as well as 4 variants of the mul-
tiplicative model), and all models are estimated within a fully Bayesian framework 
using the public domain software package BayesX (Brezger et al. 2005).

Table 2 summarizes the capabilities of the four types of models to estimate asym-
metric or disproportionate price-change effects, depending on the specification of 
the reference price term(s). In case a simple price-difference (or price-ratio) term 
is used, the linear model only allows a symmetric and proportional price-change 
effect, the exponential and multiplicative models a symmetric and disproportionate 
effect, and the semiparametric model an asymmetric and disproportional effect. If 
separate gain and loss terms are used, the linear model enables an asymmetric but 
only proportional price-change effect, the exponential and multiplicative models an 
asymmetric and disproportionate effect, and the semiparametric model once again 
an asymmetric and disproportionate effect. The linear model is not in line with pros-
pect theory, that suggests asymmetric and disproportionate price-change effects. The 
exponential model is able to reproduce disproportionately increasing values of gains 
and losses (if modeled separately) as suggested, e.g., by the Gutenberg function. The 
multiplicative model is still a bit more flexible than the exponential model and is 
not only able to capture disproportionately increasing gains and losses but also to 
mimic disproportionately decreasing returns to scale (again if gains and losses are 
modeled as separate terms), as suggested, e.g., by the logistic function. The sem-
iparametric model can approximate any curvature from data including concave and 
convex shapes as well as (asymmetrically) s-shaped and reverse s-shaped patterns as 
provided, e.g., by logistic or Gutenberg functions.

Table 2   Capabilities of the linear, exponential, multiplicative, and semiparametric models to capture 
asymmetries and nonlinearities (disproportionalities) of the price-change effect (operationalized via a 
single price-difference or price-ratio term, or via two separate terms for gains and losses)

Model type Capability to estimate ...

... asymmetric effects via ... ... disproportionate effects via ...

... price difference 
(price ratio)

... gains and losses ... price difference 
(price ratio)

... gains and losses

Linear No Yes No No
Exponential No Yes Yes Yes
Multiplicative No Yes Yes Yes
Semiparametric Yes Yes Yes Yes
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4 � Empirical study

This section describes the data we use in our empirical study, provides technical 
details on model estimation and model validation, and presents and discusses the 
corresponding results.

4.1 � Data

For our empirical analysis, we use scanner data for refrigerated orange juice 
sold by a large supermarket in the Chicago metropolitan area (Dominick’s Finer 
Foods). The data were provided by the James M. Kilts Center of the University of 
Chicago and contain weekly unit sales of 64 oz. packages for m ∈ {1,… ,M = 8} 
brands that can be divided into three price-quality tiers: the premium brand tier 
with two brands, the national brand tier with five brands, and the private label 
brand tier represented by the supermarket’s own store brand. The data were col-
lected in s ∈ {1,… , S = 81} stores of the supermarket chain and cover a time 
span of t ∈ {1,… , Ts} weeks each, where Ts ∈ [75, 88] . Descriptive statistics for 
weekly brand prices, market shares, unit sales, and the share of weeks with a dif-
ferent store-specific price compared to the previous week (referred to as “price 
changes”) are displayed in Table 3.

For a more parsimonious model specification, we capture cross-price effects 
at the tier level by using the sales-weighted mean price across the compet-
ing brands belonging to a considered price-quality tier per store and week (see, 
e.g., Kopalle et al. 1999). The three cross-price variables are denoted as p(prem) , 
p(nat) , and p(priv) in the following, referring to the premium, national, and store 

Table 3   Descriptive statistics for weekly brand prices, market shares, and unit sales

*The share of price changes is calculated as the share of weeks with a different store-specific price com-
pared to the previous week ( pt ≠ pt−1)

Brand Retail price ($) / Share of price changes (%)* Market share (%) Unit sales

Range Mean SD pt ≠ pt−1 Mean SD Mean SD

Premium brands
Florida Natural [1.54, 3.35] 2.85 0.33 39.3 4.7 6.5 27.1 46.0
Tropicana Pure [1.29, 3.87] 2.96 0.57 47.3 12.3 13.5 74.8 97.8
National brands
Citrus Hill [0.99, 3.07] 2.31 0.35 42.8 8.0 12.7 53.5 157.3
Florida Gold [0.99, 3.08] 2.19 0.40 43.9 5.2 7.9 33.3 63.4
Minute Maid [1.27, 3.17] 2.23 0.43 55.7 10.1 13.7 51.6 76.4
Tree Fresh [0.99, 2.69] 2.16 0.31 43.0 7.6 8.4 48.7 92.0
Tropicana [1.41, 2.99] 2.21 0.38 56.7 18.2 21.0 112.0 157.7
Private brand
Dominick’s [0.99, 2.69] 1.76 0.42 47.9 34.5 25.7 314.3 540.5



608	 P. Aschersleben, W. J. Steiner 

1 3

brand tiers, and they are captured in (5) by the cross-price terms with index 
ci ∈ {(prem), (nat), (priv)} . Since there is only one store brand (the retailer’s own 
brand), sales response models for this brand include only the two competitive 
price variables p(prem) and p(nat) . Note that using this more parsimonious specifica-
tion of cross-price effects still allows the estimation of cross-effects across tiers, 
even if the information about prices of competing brands within a tier per store 
and week is concentrated as a sales-weighted average of the corresponding indi-
vidual prices. This is important as previous research has shown that cross-price 
effects across tiers can be substantial; especially if higher-tier brands are tempo-
rarily reduced in price during a promotion, it can be expected that they can steal 
sales from lower-tier brands. For the dynamic models, we additionally need the 
lagged price (i.e., the price of the previous period, pt−1 ) to model price-change 
effects. For this reason, we eventually dropped the first week in the data for the 
estimation of all models (including the static model versions) to preserve compa-
rability across the estimation results. Note that the share of weeks with a differ-
ent store-specific price compared to the previous week ranges between 39.3% for 
Florida Natural and 56.7% for Tropicana.

The data further provide information on the use of displays and odd prices by the 
retailer that we include in our models as control variables together with an indicator 
variable for a holiday in the current week to capture seasonality.3 Table 4 provides 
a summary of all variables included in our models as well as an overview of the 
related effects estimated in the (most complex) semiparametric models as example.

4.2 � Model estimation and validation

Eilers and Marx (1996), who originally introduced the P-spline approach into the 
statistical literature, recommended to use between 20 and 40 equidistant knots within 
the range of observed levels of an independent variable of interest. That way, suffi-
cient flexibility for the spline should be guaranteed (i.e., not less than 20 knots) and 
at the same time overfitting can be avoided (i.e., not more than 40 knots). For our 
empirical study, we use 20 knots which is also in line with Lang and Brezger (2004) 
and represents the default setting in the BayesX software. Strictly speaking, we gen-
erally use 20 knots for estimating all contemporaneous own- and cross-price effects. 
However, in order to provide a fair model comparison, we use only 10 knots each for 
estimating gain and loss effects in the models with two separate price-change terms 
(cf.  (10) and (11)) whereas 20 knots for estimating the price-change effect in the 
models that use only one single price-difference (price-ratio) term (cf. (8) and (9)). 
This is reasonable since the gain and loss terms capture only one branch of the value 
function and therefore cover only about half of the data range of the price-difference 
term each.

3  Without loss of generality, seasonal effects could be addressed differently or in addition to the holi-
day covariate, for example by including quarter dummies. If available, one should also consider other 
promotional activities like feature advertising as well as prices at competing retailers as further control 
variables.
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All models, the static and dynamic ones as well as the semiparametric and para-
metric ones, are estimated with BayesX using a Gibbs sampler to draw from the 
posterior distribution. We use a total of 12,000 iterations, with a burn-in period of 
2000 iterations and a thinning value of 10 to minimize the autocorrelation of the 
samples, i.e., we finally saved D = 1000 draws from the Markov chain. To account 
for parameter uncertainty, model performance (see (16)–(19) below and Sect. 4.3.3) 
is assessed using the individual parameter (Gibbs) draws instead of using the poste-
rior means of estimated parameters (e.g., Montgomery 1997; Hruschka 2006b; Lang 
et al. 2015). That is, predictions 𝜂̂st for (log) unit sales ( log(qst) and qst , respectively) 
are calculated as the mean across 1000 draw-based predictions 𝜂̂st,d:

Since we are interested in predictions for a brand’s unit sales (instead of log unit 
sales) and especially to be able to compare the performance of models estimated in 
the log sales space (exponential, multiplicative, and semiparametric model) versus 
models estimated in the sales space (linear model), conditional mean predictions for 
unit sales are computed for the exponential, multiplicative, and semiparametric sales 
response models via q̂st = exp(𝜂̂st + 𝜎̂2∕2) (see, e.g., Greene 2008, p. 100). For the 
linear models, q̂st = 𝜂̂st.

We compare the different models with regard to their prediction accuracy by 
using two error measures: the Root Mean Squared Sales Prediction Error ( RMSE , 
see, e.g., van  Heerde et  al. 2001) and the Root Median Squared Sales Prediction 
Error (RMedSE, see, e.g., Franses and Ghijsels 1999):

In particular, we compute the Average Root Mean or Median Squared Sales Predic-
tion Error ( ARMSE/ARMedSE ) in holdout samples based on a C-fold cross-valida-
tion with C = 10 folds. That is, we randomly split the total sample of observations 
for a brand into 10  folds, use each time C − 1 = 9 parts of the sample for model 
estimation, calculate the RMSE or RMedSE for the remaining part (holdout), and 
finally average over the 10 individual RMSE/RMedSE values:

(15)𝜂̂st =
1

D

D∑
d=1

𝜂̂st,d.

(16)RMSE =

√√√√1

S

S∑
s=1

1

Ts

Ts∑
t=1

1

D

D∑
d=1

(
q̂st,d − qst

)2
,

(17)RMedSE =

√√√√√ med
s=1,…,S
t=1,…,Ts

1

D

D∑
d=1

(
q̂st,d − qst

)2
.

(18)ARMSE =
1

C

C∑
c=1

√√√√√1

S

S∑
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1

T
(c)
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T
(c)
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1
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d=1

(
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− q

(c)
st

)2

,
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Note that all (lagged) prices are assumed to be always known both during model 
estimation and model validation, i.e., even though observations of a certain previous 
period may not be explicitly part of a respective estimation or holdout sample.

We use the (A)RMedSE measure in addition to the more widespread (A)RMSE 
measure in order to correct for the possibility of huge misses due to outliers in 
holdout samples (Franses and Ghijsels 1999): suppose that, due to the random 
split of the sample, the range of values for one of the price variables in one of 
the holdout exercises would be larger than the corresponding range of levels 
across the other folds used for model estimation. In this case, sales forecasting 
for holdout observations at price levels in domains not covered by the estima-
tion sample becomes an extrapolation. Unlike parametric functions, whose shape 
is globally affected or determined by one or only few parameters, (P-)splines fit 
the data locally which gives them their high flexibility to capture more complex 
shapes. This local fitting, however, makes splines or any other nonparametric 
regression technique at the same time more sensitive at the boundaries of the data 
range, since predictions outside the data range would be guided only by the near-
est domain of the spline. As a consequence, it can happen that extrapolated sales 
predictions for ‘new’ price levels turn out exorbitantly high or low if the spline 
is very steep at the boundaries of the data range. Using the RMedSE as meas-
ure for the cross-validation procedure guides against this ‘extrapolation problem’ 
(as opposed to RMSE ). Note that extrapolation is generally not recommendable 
per se, but could theoretically appear here due to the random sample split. Since 
the ‘extrapolation problem’ did occur in very few instances when computing the 
RMSE measure, we removed the corresponding observations (21 observations 
representing as a rule isolated exceptionally low prices or high gains) from the 
data to preserve the comparability both between the different model specifica-
tions and the two performance measures, leaving a total of 54,841 observations 
for model estimation.4

4.3 � Estimation results

4.3.1 � Estimated effects

In the following, we at first illustrate our estimation results for the semiparamet-
ric model using the brand “Citrus Hill” as an example. Figure 2 shows plots of the 
abs-diff model given in (8), i.e., using absolute differences for estimating the price-
change effect. Depicted are the estimated mean effects for the price variables and the 

(19)ARMedSE =
1

C

C∑
c=1

√√√√√ med
s=1,…,S

t=1,…,T
(c)
s

1

D

D∑
d=1

(
q̂
(c)

st,d
− q

(c)
st

)2

.

4  The following observations were removed: pst < 1.50 for “Florida Natural” (4 observations) as well as 
the corresponding observations for “Tropicana Pure” where p(prem)

st < 1.50 ; (Δrelpst)
+
> 0.40 for “Florida 

Gold” (2 obs.); pst < 1.40 (3 obs.), (Δpst)+ > 1.40 (1 obs.), and p(nat)st > 2.80 (1 obs.) for “Tropicana”; 
pst < 1.20 (6 obs.) for “Minute Maid” (for a similar procedure, see also Lang et al. 2015).
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lagged sales variable including 95% pointwise credible intervals as well as partial 
residuals (e.g., Fahrmeir et al. 2013, p. 77), and the estimated effects for own-display 
use, tier-specific cross-displays, 9- and 99-ending prices, and the holiday covariate. 
Note that estimated median effects (blue lines, almost always hidden) coincide with 
the mean effects (red lines) for all price variables and the lagged sales variable.

First, the estimated effects and effect sizes show face validity. The own-price 
effect turns out much stronger than any of the cross-price effects. Since “Citrus 
Hill” is a national brand it could further be expected that its unit sales are more 
strongly affected by brands of both the premium and national brand tier than by 
the store brand (as becomes evident from the nearly flat cross-tier price effect with 
respect to the store brand, see middle-right panel). Moreover, the own-price effect 
shows a threshold effect near the price of 2.00$ , and all price effects have very tight 

Fig. 2   Estimation results for the semiparametric abs-diff model using the brand “Citrus Hill” as example: 
estimated effects and partial residuals for price and lagged sales variables including 95% pointwise cred-
ible intervals (red lines, gray-shaded credible intervals), as well as estimated effects for display, price 
ending, and holiday covariates including error bars
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confidence bands. 99-ending prices have a much larger effect size than other prices 
ending in 9, and a holiday in a week leads to a significant decrease in the brand’s 
unit sales in this week. Both the own-display effect and the cross-display effect of 
the competing national brands are not significant, as the credible intervals include 
the zero point, respectively.

The more interesting part is the estimated dynamic price effect, displayed in the 
top-middle panel of Fig. 2. Note that positive values of Δpt correspond to gains and 
negative values to losses (compare (1)). We observe that the loss part of the spline 
is rather flat (except for very large losses), while the gain part is steeply increasing 
over the whole price difference range to the right of the zero-point. That is, a higher 
current price compared to the price of the previous week shows only a small effect, 
while price cuts strongly stimulate sales. Consequently, customers seem to value 
gains more than losses for “Citrus Hill”, which contradicts the assumption of loss 
aversion as suggested by prospect theory (see Sect. 3.1).

Finally, the autoregressive model part displayed in the top-right panel shows 
a significant positive effect of one-period lagged sales on the sales of the current 
period ( 𝛿 = 0.11, p < 0.05 ) and suggests a (moderate) customer holdover effect 
rather than stockpiling across the aggregate of consumers for “Citrus Hill”. Note 
that this lagged sales effect turns out small in comparison to the own-price and refer-
ence price effects. Remember that one would expect a significant negative parameter 
estimate for lagged sales in case of distinct stockpiling across (parts of) consumers.5

Fig. 3   Estimated price-change effects from the exponential (left panels), multiplicative (top-middle 
panel), and semiparametric models (right panels) for the brand “Citrus Hill”, capturing the price differ-
ence in absolute terms (abs-diff, top panels) or relative terms (rel-diff, bottom panels). See Fig. 6 in the 
Appendix for a variant relating to the ’sales space’

5  The bivariate correlation between log sales and lagged log sales is 0.22 for “Citrus Hill”.
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In Fig. 3, we focus on the dynamic model part and compare the estimated price-
change effects for (1) the exponential (left panels), multiplicative (top-middle panel), 
and semiparametric response models (right panels) and (2)  for the two options to 
capture the price difference Δpst either in absolute monetary units (top panels, abs-
diff) or by a percentage change (bottom panels, rel-diff). Remember that we did not 
estimate a rel-diff version of the multiplicative model (see Sect. 3.4). Independent of 
the specification of the price difference in absolute or relative terms, the advantage 
of using a flexible regression approach becomes obvious: the spline clearly fits the 
data much better than the two parametric models.

Without loss of generality, the effect plots refer to the space where the models 
were estimated, i.e., the log sales space for all these models. Note that this implies 
that estimated price effects for the exponential (or log-linear) and multiplicative (or 
log-log) models turn out linear in the log-space but exponential in the sales space. 
To illustrate this, we additionally plotted the estimated price-change effects for 
all three types of models in the sales space, see Fig. 6 in the Appendix. Here, we 
observe that the exponential and multiplicative models tend to a convex shape for 
absolute differences (with a slightly better fit of the multiplicative model for high 
gain values), but that both parametric models are far too inflexible to capture the 
strong kink for the gain effect inherent to the data near the upper bound of the price-
difference range. The price-change effect is determined by only one parameter esti-
mate in both the exponential and the multiplicative model, which makes them rather 
inflexible compared to the spline model, at least for this kind of price variable (the 

Fig. 4   Estimated price-change effects from the exponential (left panels), multiplicative (middle panels), 
and semiparametric models (right panels) for the brand “Citrus Hill”, capturing gain and loss effects in 
absolute monetary units (abs-gl) with two separate terms. See Fig. 7 for a variant relating to the ’sales 
space’ and Fig. 8 for a variant with gains and losses defined in percentage terms (please find both figures 
in the Appendix)
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price-difference term comprises negative and positive values for losses and gains, 
respectively). Differences in estimated effects between the abs-diff and rel-diff mod-
els are small except for the spline model where the strong kink for gains is still more 
distinct if the price difference is captured in relative terms (compare the right bottom 
panels in Figs. 3 and  6).

So far, using the flexible spline approach, we could detect a large difference 
between the impact of gains and losses on the unit sales of “Citrus Hill”, although 
gain and loss effects were not modeled separately. Figure 4 now displays the esti-
mated price-change effects for the exponential (left panels), multiplicative (middle 
panels) and semiparametric6 response models (right panels) when separate gain and 
loss terms are used and price differences are measured in absolute monetary units 
(abs-gl models, cf. (10)). Alternatively, plots of the gain and loss effects are again 
provided for the sales space for all three types of models, see Fig. 7 in the Appendix. 
As expected, the two parametric models are now able to better separate the exist-
ing differences between gain and loss effects: the loss effects now turn out very flat, 
as was obvious from the semiparametric abs-diff and rel-diff models before (cf. the 
right panels in Figs. 3 and 6). In contrast, due to the greater flexibility of the spline 
model, differences from modeling the price-change effect via one single price-dif-
ference term versus separate gain and loss effects are small. Although the convex 
gain effect is now much better represented by the exponential model, the model is 
still too inflexible to capture the strong kink for large perceived savings (compare 
the top-middle and top-right panels in Fig. 7). The multiplicative model does a much 
better job at the upper bound of the observed range for gains and fits high perceived 
savings well, but is not flexible enough to adequately capture the more mid-sized 
gains observed in the range around 0.6 very well (compare the top-middle panels 
in Figs. 4 and 7) . We will show in Sect. 4.3.3, where the models are compared for 
all brands for their predictive performance, that once price effects are modeled flex-
ibly using the spline approach, improvements in predictive accuracy from treating 
gain and loss effects with two separate nonparametric terms are only very small, 
marginal, or not at all achievable (compared to using a single price-difference term). 
We here abstain from discussing the estimation results for “Citrus Hill” obtained 
from the rel-gl models, i.e., when gains and losses are defined in percentage terms, 
cf.  (11), since the plots differ only marginally from those for the abs-gl models in 
Figs. 4 and 7. See Fig. 8 in the Appendix for a variant of Fig. 4 with gains and losses 
defined in percentage terms.

Figure  5 shows plots for the estimated price-change effect obtained from the 
flexible rel-diff models (see (9)) for all eight orange juice brands: the two premium 
brands “Florida Natural” and “Tropicana Pure” (top row), the five national brands 
“Citrus Hill”, “Florida Gold”, “Minute Maid”, “Tree Fresh”, and “Tropicana” (mid-
dle rows), and “Dominick’s” own store brand (bottom row). Interestingly, although 
the effect sizes for the gain effect (in parts largely) differ between brands, we get a 
uniform picture for all brands similar to that for the brand “Citrus Hill”: gain and 

6  Note that, as opposed to the parametric models, P-spline estimates are zero-centered for identifiability 
reasons, i.e., the sum of the spline function over all observations is scaled to zero. For this reason, esti-
mated P-spline curves do not start from the origin for gains and losses.
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loss effects are asymmetric, gain effects turn out (much) larger than loss effects, 
and loss effects are rather flat. Virtually no loss effects exist for the premium brand 
“Tropicana Pure” and for the national brand “Tree Fresh”, while loss effects only 
very moderately increase for the other brands in case of larger perceived losses. Also 

Fig. 5   Estimated price-change effects from the flexible rel-diff model for all eight brands in the refriger-
ated orange juice category, i.e., capturing the price differences as relative percentage changes ( Δrelpst ) 
using a single price-difference term
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note that the data are highly sparse at the lower bound of Δrelpst for “Florida Natu-
ral” and “Minute Maid”, as indicated by the wider confidence bands. Interpretation 
of the increasing loss effect in the domain of very large perceived losses should be 
treated with caution here, respectively. Gain effects for the brands “Florida Natural”, 
“Citrus Hill”, and “Tropicana” are highly nonlinear (disproportionate) and increase 
steeply, and only the gain effects of “Florida Gold” and “Minute Maid” show 
decreasing returns to scale, as suggested by prospect theory. Further, gain effects 
are very differently shaped across brands such that they can hardly be captured ade-
quately with a (single) parametric function.

Overall, consumers generally seem to weigh losses much less than gains (or 
not at all) in the refrigerated orange juice category. In other words, if prices are 
increased only the contemporaneous price effect decreases sales, while if prices are 
decreased an additional gain effect exists. In addition, the positive lagged sales effect 
observed for all eight orange juice brands independent of the specification used for 
capturing the reference price effect (abs-diff, rel-diff, abs-gl, rel-gl) speaks in favor 
of a customer holdover effect rather than distinct stockpiling of (at least some) con-
sumers in promotional weeks. In particular, the lagged sales effect obtained from 
the semiparametric models is consistently significant positive for all brands except 
“Minute Maid”, with an estimate for the autoregressive component ( � ) in the range 
between 0.03 and 0.20 (and positive between 0.007 and 0.03 for “Minute Maid” but 
not significant in most cases). Noticeably, the estimated lagged sales effect differs 
only marginally between the four different dynamic model variants at the individual 
brand level. Note that the lagged sales effect turns out rather flat for most brands 
compared to both the estimated own and reference price effects,7 that is why we 
stayed to model the autoregressive part parametrically.

Our two findings of (1) gain-seeking behavior rather than loss aversion of con-
sumers (in contrast to what prospect theory postulates) and (2) a moderate customer 
holdover effect rather than a stockpiling effect are not necessarily as expected. One 
possible explanation could be that (parts of) consumers may not only buy more 
orange juice in weeks with perceived price savings but also may consume a larger 
amount of orange juice in these weeks and some of them continue to repurchase the 
last brand bought in the next period. This explanation seems supported by the plau-
sible fact that the customer holdover effect is larger for the two premium brands than 
for most national brands (except for “Tree Fresh”, where � is similar high around 
0.20), and low for “Dominick’s”, the retailer’s own store brand (around 0.05). In 
addition, refrigerated orange juice is a perishable product and therefore less stock-
able. We further checked our autoregressive models for possible collinearity prob-
lems, which might have occurred if the previous own price ( ps;t−1 ) and previous 
sales ( qs;t−1 ) of the considered brand had been highly correlated, and which might 
have led to wrong signs for estimated effects in case of high collinearity. Note at 
first, however, that using reference price terms (which include the previous price) in 
general reduces correlations compared to including the previous own price per se as 
variable. Absolute pairwise correlations between one-period lagged log unit sales on 

7  The bivariate correlations between log sales and lagged log sales range between 0.11 for Minute Maid 
and 0.53 for Tree Fresh.
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the one hand and the simple price difference, gains, or losses (measured in absolute 
terms, respectively) on the other hand for example range between 0.2 and 0.4, 0.1 
and 0.2, or 0.2 and 0.5 across brands, and are therefore not critical. Furthermore, 
variance inflation factors for lagged log unit sales and the simple price difference 
(measured in absolute terms) are always lower than 2 and 3.5, respectively, across 
brands and hence lie far below the critical value of 10; the latter would indicate 
serious multicollinearity problems (also compare Fig. 2, which refers to exactly this 
specification of variables in the semiparametric abs-diff model).

4.3.2 � Price elasticities

From a managerial perspective, price elasticities are of interest as well. Table  5 
shows estimated own-price elasticities as examples for the static and the two 
dynamic abs-diff and abs-gl variants of the exponential, multiplicative, and sem-
iparametric models for all eight brands. Computation of own-price elasticities is 
straightforward for the static model versions (including the semiparametric model), 
but more difficult for the dynamic model specifications. For the latter, price elastici-
ties depend on both the own-price term and the parameter(s) of the reference price 
term(s), details are provided in the Appendix B.

We determined (weighted) mean price elasticities for the exponential and sem-
iparametric models by evaluating �(pst) at every observation pst to explicitly account 
for the whole price distribution in the data, instead of computing price elasticities 
only at the average price level of a brand. In addition to showing mean price elastici-
ties for the full span of price levels only, we further divided the price range of the 
brands into three subranges and report mean price elasticities for low, medium, and 
high price levels (local elasticities) to get still deeper insights into the price elastic-
ity structures and to uncover aggregation biases. Note that price elasticities for the 
multiplicative dynamic model versions do also not depend on the price level and 
therefore continue to be constant when considering the entire price range, but may 
still differ across the three subranges due to different numbers of price changes (abs-
diff model) or gains and losses (abs-gl models) within each of the three subranges.

As can be seen from Table 5, mean own-price elasticities (see columns full range) 
decrease from the static through the abs-diff to the abs-gl model for almost every 
brand and model type. This does not always hold at the more disaggregate level 
within the medium and high price subranges (except for “Florida Natural”), and for 
lower prices we even predominantly observe the reverse pattern. This underlines 
that it might be not enough to only pay attention to global elasticities. Further, as 
a rule, the discrepancies in estimated price elasticities from the abs-diff and abs-gl 
models are much larger for the two parametric models, while only moderate or even 
negligible for the semiparametric model (both for the full price range and within 
the three subranges). The latter could be expected due to the capability of the sem-
iparametric model to identify asymmetric and disproportionate price-change effects 
even if a single price-difference term is used (as in the abs-diff model version). For 
some brands, the semiparametric model suggests either much higher (e.g., “Florida 
Natural”, “Florida Gold”) or noticeably lower price elasticities (e.g., “Tree Fresh”) 
on the fully aggregated level (see columns full range) and independent of the model 
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specification (static, abs-diff, abs-gl). For some other brands, elasticities from the 
parametric models closely approach these of the semiparametric model provided 
that gains and losses were modeled separately in the parametric models (e.g., “Trop-
icana Pure”, “Citrus Hill”). But even in the latter case, there are noticeable differ-
ences in the local elasticities between the parametric and semiparametric models. 
Differences in estimated own-price elasticities between the two parametric models 
and the semiparametric one are particularly large for low prices of the brands “Flor-
ida Gold” and “Tree Fresh” and high prices of “Dominick’s”. For “Florida Gold” 
(“Tree Fresh”), the semiparametric model suggests a much lower (higher) price sen-
sitivity in the low price range, and for “Dominick’s” a much higher price sensitivity 
in the high price range compared to each of the two parametric models, respectively. 
Altogether, the semiparametric model leads to different managerial insights with 
respect to own-price elasticities in many cases.

4.3.3 � Predictive performance

As described in Sect. 4.2, the predictive performance of the 22 models is evaluated 
in terms of the Average Root Median Squared Sales Prediction Error ( ARMedSE ) 
and the Average Root Mean Squared Sales Prediction Error ( ARMSE ) in holdout 
samples (based on a 10-fold cross-validation procedure). Table  6 summarizes the 
ARMedSE values for the exponential, multiplicative, and semiparametric models 
and for all brands. Further provided are the relative improvements in ARMedSE 
values of each of the dynamic models over the static model by model type. The 
corresponding predictive validity results when using the ARMSE measure instead 
of ARMedSE as well as the corresponding results for the much worse performing 
linear models can be found in the Appendix (Tables 8, 9 and 10).

From Table 6, we can at first observe that extending the static models by includ-
ing only the lagged sales variable (dyn-ar) hardly improves or even decreases the 
predictive performance for all brands except “Tree Fresh”, independent of the type 
of model. For “Tree Fresh”, improvements in ARMedSE over the static model are 
still only very moderate ranging between −1.9 % for the semiparametric model and 
−3.6 % for the exponential model. This resembles our findings on the autoregres-
sive effects for the semiparametric models, where the lagged sales effect turned out 
rather flat compared to the estimated own and reference price effects across brands 
(see the discussion at the end of Sect. 4.3.1).

Concerning the exponential sales response model, using a single price-difference 
term to capture the reference price effect (abs-diff, rel-diff) is clearly and consist-
ently inferior to separating gain and loss effects with two individual price terms 
(abs-gl, rel-gl). The largest improvements in ARMedSE over the static model when 
using a single price-difference term are still being made for the brands “Citrus Hill” 
( −11 %, abs-diff), “Florida Natural” ( −9 %, abs-diff), and “Tree Fresh” ( −8 %, abs-
diff), whereas the predictive performance even worsens for the brand “Dominick’s” 
( +0.6 %, rel-diff). In contrast, predictive accuracy for all brands greatly benefits from 
considering price dynamics via separate gain and loss terms, with improvements in 
ARMedSE between −9 % for “Florida Gold” as well as “Minute Maid” (abs-gl) up 
to −24 % for “Tropicana Pure” and “Citrus Hill” (rel-gl). Here, except for “Florida 
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Natural”, the specification of gains and losses in relative terms (rel-gl) turns out to 
be at least as good or even superior to measuring the price difference in monetary 
units (abs-gl) for improving the predictive model performance. Taking a look at the 
results for the linear sales response model in Table  9, we find that the static ver-
sion of the exponential model (i.e., not addressing price or other dynamics at all) 
already outperforms the best dynamic linear specification. This suggests, that the 
linear sales response model is highly misspecified since it is not able to accommo-
date the expected nonlinearities in price response for frequently purchased consumer 
goods, like orange juice.

For the multiplicative models, we see a parallel development in predictive model 
performance as for the exponential response models: modeling the reference price 
effect with a single price-difference term (abs-diff) is much less helpful or again 
even decreases predictive validity for some brands over the static multiplicative 
model compared to the use of separate gain and loss variables (abs-gl). Improve-
ments in predictive validity from the latter dynamic model (abs-gl) range between 
−7 % for Florida Gold and −21 % for Tropicana Pure. Note that although the static 
multiplicative models clearly outperform their exponential counterparts, differences 
in ARMedSE values between the best dynamic exponential and multiplicative mod-
els are very small or even marginal, which is reflected by the fact that the multiplica-
tive (exponential) model predicts better for five (three) brands. None of the two par-
ametric model types is therefore superior when price dynamics are accommodated, 
both perform similarly well.

The following findings are obtained for the semiparametric sales response model 
with flexibly estimated price effects. First, the static semiparametric model (i.e., 
ignoring price and other dynamics) always provides more accurate sales predictions 
than the best dynamic exponential or multiplicative model versions capturing the 
price-change effect via a single reference price term (abs-diff and rel-diff). Improve-
ments in ARMedSE from accommodating functional flexibility range up to −11 % 
for the brand “Tree Fresh” here (percentages not displayed in the table). For “Tree 
Fresh”, the static flexible model even outperforms each of the dynamic exponen-
tial and multiplicative model versions (i.e., including the abs-gl and rel-gl models). 
Second, adding price dynamics further improves the predictive performance of the 
flexible approach, but contrary to the class of exponential or multiplicative models 
all four dynamic specifications (abs-diff, rel-diff, abs-gl, rel-gl) perform pretty close. 
Again, once price effects are accommodated flexibly it does not seem to make a 
great difference whether the price-change effect is captured by one single price-dif-
ference term or two separate variables for gains and losses (as was already evident 
from our discussions of the estimated effects in Sect. 4.3.1 and price elasticities in 
Sect. 4.3.2).

In particular, we find that accommodating reference price effects in the sem-
iparametric sales response model leads to noticeable improvements in predictive 
accuracy over the static flexible model of a minimum of −5 % for all brands and 
dynamic specifications, and more than −10% up to −21 % for four out of the eight 
brands (“Dominick’s”: −10 %, abs-gl, −11 %, rel-gl; “Citrus Hill”: −11 %, rel-diff, 
rel-gl; “Tropicana Pure”: −13 %, abs-diff, abs-gl, −14 %, rel-diff, rel-gl; “Tropi-
cana”: −18 %, abs-diff, −19 %, rel-diff, −20 %, abs-gl, −21 %, rel-gl).
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Finally, the last rows in Table 6 contrast the best flexible model with the best 
exponential and multiplicative models. Accordingly, improvements in predictive 
accuracy from semiparametric instead of nonlinear parametric modeling of price 
effects (own-price, cross-price, and price-change effects) lie between −3 % and 
−11 % (exponential model) or −3 % and −12 % (multiplicative model) for seven out 
of eight brands, with “Tree Fresh” and “Tropicana” benefiting most from accom-
modating functional flexibility, respectively. For “Tropicana Pure”, the exponen-
tial and multiplicative models with separate variables for gains and losses already 
do a good job and semiparametric modeling does not pay off here. The latter is 
important to note, since nonparametric techniques are only more powerful if non-
linearities (here nonlinear effects in price response) are too complex to be cap-
tured by parametric nonlinear models.

The results for the second predictive performance measure, the Average Root 
Mean Squared Sales Prediction Error ( ARMSE ), closely resemble those for the 
ARMedSE measure in many aspects, which is why we have put the correspond-
ing results in the Appendix (see Table 8). First, including the lagged sales vari-
able but no price dynamics (dyn-ar) only marginally improves or even worsens 
the predictive performance compared to the static model for all brands except 
“Dominick’s”, independent of the type of model. For “Dominick’s”, improve-
ments are moderate ranging between −3 % and −4 % across model types. Second, 
the best (dynamic) exponential and multiplicative models again perform simi-
larly well, and no recommendation can be made in favor of one or the other. The 
multiplicative (exponential) model performs somewhat better for five (three) out 
of the eight brands. Third, relative improvements in ARMSE for the best sem-
iparametric models over the best exponential (multiplicative) models are similar 
than for ARMedSE and lie between −3 % and −15 % ( −3 % and −14 %) for seven 
out of eight brands, with “Tree Fresh” and “Tropicana” as before benefiting most 
from addressing functional flexibility. And fourth, once price effects are modeled 
flexibly the four different dynamic model specifications (abs-diff, rel-diff, abs-gl, 
rel-gl) come pretty close in their prediction accuracy. On the other hand, there 
are some differences in the patterns of the ARMSE versus the ARMedSE results 
which are noteworthy. For the two parametric models, using a single price-dif-
ference term to capture the reference price effect (abs-diff, rel-diff) is no more 
consistently inferior to separating gain and loss effects with two individual price 
terms (abs-gl, rel-gl), as can be seen for the two brands “Tropicana” and “Domin-
ick’s”. For “Minute Maid”, accommodating price dynamics does not pay off at 
all when measured by ARMSE (as opposed to ARMedSE ), independent from the 
type of model (exponential, multiplicative, semiparametric) and specification 
of the reference price term (abs-diff, rel-diff, abs-gl, rel-gl). For “Tree Fresh”, 
the improvements from the semiparametric model over the two parametric mod-
els are large ( −14 % compared to the exponential model, −10 % compared to the 
multiplicative model), but once price effects are modeled flexibly adding price 
dynamics does not provide further benefits. And finally, semiparametric modeling 
does not pay off at all for the premium brand “Florida Natural” here.

In total, for parametric models (including the linear model) the picture is more 
clear when using ARMedSE as measure of predictive accuracy. Here, the predictive 
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performance always strongly benefited from capturing gains and losses with two 
separate covariates compared to a simple price-difference term. This clear implica-
tion in favor of separating gains and losses did not hold for all brands if ARMSE was 
employed to assess the predictive performance. Moreover, once price effects were 
modeled flexibly, adding a reference price term always further improves ARMedSE , 
while this did not apply to all brands when using ARMSE instead. Nevertheless, our 
findings clearly suggest the use of the semiparametric approach as method of choice 
to assess the predictive performance. First, the semiparametric model enabled better 
predictions for seven out of eight brands regardless of which measure was used, with 
sometimes very large improvements in predictive accuracy compared to all paramet-
ric models (see the brands “Tropicana” and “Tree Fresh” in Tables 6 and 8). For the 
remaining brand, semiparametric modeling was not inferior to parametric modeling, 
respectively. Second, because of the latter aspect (if one cannot do worse with the 
flexible approach), one need not care to find the best parametric model at the indi-
vidual brand level. And third, once price effects are modeled flexibly, it does not 
longer seem to make a great difference which dynamic specification is employed 
to adequately capture reference price effects. This is due to the high flexibility of 
P-splines (local fitting property) to uncover large differences (different curvatures) 
between gain and loss effects, even if these were not modeled separately but only via 
a single price-difference term.

4.3.4 � A note on loss aversion

The previous discussions have shown that the semiparametric approach is charac-
terized by an at least as good or (considerably) better predictive performance than 
the parametric models considered, and that once (reference) price effects are mod-
eled flexibly the decision whether price-change effects should be accounted for by a 
single price-difference term or two separate terms for gains and losses is obviously 
of minor importance. Since prospect theory is a prominent behavioral concept stat-
ing that consumers should weigh losses of a certain amount stronger than gains of 
the same amount (also compare Sects. 2 and 3), and because we did not find loss-
aversion but instead gain-seeking behavior of consumers for all considered brands 
in the refrigerated orange juice brand category without exception, a closer look on 
loss-gain ratios seems worthwhile. Loss-gain ratio statistics are more widespread in 
a brand choice modeling context (e.g., Neumann and Böckenholt 2014), and have 
not been applied yet to sales response models to the best of our knowledge.

For our parametric models with separate gain and loss terms (gl models), the 
gain-loss ratio can easily be determined by dividing the estimated parameter for 
losses ( �2L ) by the corresponding one for gains ( �2G):

(20)� =
�2L

�2G
,



626	 P. Aschersleben, W. J. Steiner 

1 3

see (13) and (14) in connection with the abs-gl model in (10) for the derivation of 
the parameters.8 For the semiparametric models, the loss-gain ratio extends to a 
flexible nonlinear ratio based on the derivative of the estimated effect curve. The 
calculation is nonetheless rather similar to the simple loss-gain ratio for parametric 
models: we divide the derivative of the loss part by the one of the gain part and 
aggregate them to a weighted mean, with the number of observations supporting the 
particular points as weights:

where X  contains all price-difference observations in the data set (full range) or 
those contained in a particular predefined subrange, respectively.

Table 7 displays as examples the loss-gain ratios for the exponential, multiplica-
tive, and semiparametric abs-diff and abs-gl models, referring to either the full range 
of price differences observed for the brands or to small, mid-sized, and large price 
differences at a more disaggregate subrange level (measured each time in monetary 
units). Note that for the parametric models with a single price-difference term (abs-
diff) the loss-gain ratio implicitly amounts to � = 1 (therefore not included in the 
table), while this does not apply for the semiparametric model.

Considered aggregated over the entire price difference ranges (see columns full 
rg.), the loss-gain ratios for the parametric and the semiparametric models turn out 
consistently (much) smaller than 1, which suggests that consumers buying refrig-
erated orange juice brands at Dominick’s Finer Foods stores are not loss-averse 
as a rule (as was already visible from the estimated price effect curves for losses 
and gains), contrary to what prospect theory postulates. Taking a look at the more 
disaggregated results within the separate price-difference intervals |Δpt| ≤ 0.50 , 
|Δpt| ∈ (0.50$, 1.00$] , and |Δpt| > 1.00 confirms this finding in principle. Here, we 
find loss-aversion only very sporadically and only for some brands, and in no single 
case for (absolute) price differences below 0.50 . Additionally, the loss-gain ratios 
are lowest across the three subranges here for most brands implying that consumers 
weigh low gains much stronger than low losses compared to price differences larger 
than 0.50 (an exception is “Tree Fresh”, where consumers are least loss-averse for 
large price differences greater than 1.00 ). Clear loss aversion of consumers (i.e., with 
a loss-gain ratio greater than 2) is evident in only two cases: for large price changes 
of “Florida Gold”, and for mid-sized price changes of “Tree Fresh”. Note that the 
loss-gain ratios hardly differ between the two semiparametric model versions (abs-
diff vs. abs-gl), which could be expected based on our previous findings. Finally, the 
loss-gain ratios obtained from the exponential and the multiplicative abs-gl mod-
els are well below  1 for all brands (never larger than  0.5 and mostly not exceed-
ing 0.25), which speaks again in favor of estimating gain and loss effects with two 
separate terms when using the parametric models.

(21)𝜆(x) =
f �
2L
(x)

f �
2G
(x)

⇒ 𝜆̄ =
1

|X|
∑
x∈X

𝜆(x),

8  We use the abs-gl model version in the following, because the rel-gl version is not reasonable for the 
multiplicative model, compare Sect. 3.4.
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Neumann and Böckenholt (2014) reported an average loss-gain ratio of 1.49 
(indicating moderate loss aversion) based on a meta analysis of 33 studies conducted 
in a parametric brand choice modeling context (i.e., using random utility models of 
brand choice), which contradicts the findings of our study at first glance. However, 
the authors also showed that loss aversion can vary substantially depending on, e.g., 
product characteristics and the used model specification. For example, loss-aversion 
turned out significantly stronger for durable product categories which commonly 
bare a higher financial risk than nondurables (like, e.g., orange juice). Further, loss-
gain ratios were found to be significantly lower for so-called sticker shock models 
that (like in our approach) use a price main effect in addition to gain and loss terms 
(as opposed to the use of gain and loss terms only). The meta study of Neumann 
and Böckenholt (2014) was motivated by the fact that previous findings on loss 
aversion regarding price effects were very inconsistent, i.e., some studies indicated 
strong evidence for loss aversion while others not at all (for details, see the literature 
cited therein).9 Mazumdar et al. (2005) emphasized much earlier that the empirical 
evidence on asymmetric reference price effects is mixed, referring to a number of 
empirical studies on brand choice not supporting loss aversion.

Interestingly, Natter and Hruschka (1997) also could not find loss aversion of 
consumers in an empirical study for laundry detergent brands based on their esti-
mated market share models (i.e., based on aggregate data), and reported larger coef-
ficients for gains than for losses (in terms of absolute magnitudes). They provided 
a number of possible explanations for their findings that could favor gain-seeking 
behavior over loss aversion: price cuts are frequently supported by POS advertising 
like displays and have therefore a stronger effect; costs of brand switching motivate 
consumers to utilize price cuts on their more preferred brands; and/or there exists a 
high share of brand switchers who are attracted by lower prices. Still, it is important 

Table 7   Loss-gain ratios for abs-diff models and abs-gl models

Note that the loss-gain ratio implicitly equals 1 for the parametric abs-diff models, since in this case only 
one parameter is estimated for the price-difference term. Roman values indicate gain-seeking behavior, 
values in italics indicate loss aversion

Brand abs-diff model abs-gl model

Semiparametric Exp. Mult. Semiparametric

Full rg. ≤ 0.50 ⋯ > 1.00 Full rg. Full rg. Full rg. ≤ 0.50 ⋯ > 1.00

Flor. Natrl. 0.53 0.35 1.20 0.46 0.16 0.18 0.20 0.17 1.08 0.31
Trop. Pure 0.07 0.13 0.03 0.08 0.12 0.25 0.08 0.08 0.04 0.10
Citrus Hill 0.15 0.11 0.26 0.74 0.25 0.31 0.08 0.07 0.30 0.34
Flor. Gold 0.55 0.12 1.37 2.80 0.42 0.46 0.15 0.07 1.28 2.26
Min. Maid 0.22 0.09 0.28 0.49 0.09 0.00 0.09 0.04 0.39 0.32
Tree Fresh 0.77 0.54 2.59 0.18 0.23 0.25 0.63 0.60 2.14 0.17
Tropicana 0.30 0.10 0.57 1.03 0.06 0.10 0.13 0.06 0.76 0.80
Dominick’s 0.28 0.12 0.32 1.29 0.01 0.03 0.14 0.10 0.32 1.09

9  We thank an anonymous reviewer for pointing us to the study of Neumann and Böckenholt (2014).
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to mention that our results of course depend on the specification of the dynamic 
parts in our models and our decision to separate reference price effects from other 
dynamic effects by including a one-period lagged sales term. As discussed before 
in the introduction and in Sect. 3.2, it is generally difficult to disentangle different 
dynamic (price) effects with aggregate sales data, and the small or negligible loss 
effects for price increases observed in our data might have been underestimated due 
to an unidentified stockpiling effect if one existed. In other words, since post-promo-
tion dips caused by stockpiling are hard to detect in aggregate sales response mod-
els, for example as a result of very different (re)purchasing patterns of individual 
households, the negative effect of losses might be undervalued and actually larger. 
But even then, this should not be a problem for sales prediction, which is the main 
objective of our proposed model.

5 � Conclusions

In this article, we proposed a semiparametric approach to flexibly estimating refer-
ence price effects in brand sales models. In particular, we focused on the so-called 
price-change response of consumers (prominently introduced by Simon 1982), using 
aggregate store-level sales data and the price of the last period as proxy for the refer-
ence price of (an aggregate of) consumers. We compared different options to capture 
this dynamic price-change effect, following adaptation-level and prospect theory. 
While adaptation-level theory states that consumers evaluate a new price informa-
tion for a brand relative to an adaptation level (which is the brand’s price of the 
last period in our context), prospect theory goes one step further and claims that 
consumers should value losses of a certain amount stronger than gains of the same 
amount (corresponding to price increases and price decreases of the same amount in 
our context), and that the value function is convex for losses and concave for gains. 
Accommodating functional flexibility for price effects via nonparametric regression 
helps to simultaneously analyze a potential asymmetry and/or disproportionality of 
the price-change response without the need to assume a certain functional form for it 
a priori. In other words, by letting the data determine the shape of the price-change 
effect we can easily verify if the implications of these behavioral theories hold for 
the data at hand. We further compared the semiparametric approach to parametric 
benchmark models in order to assess the added value of using nonparametric regres-
sion for estimating price (change) effects.

To compare the predictive performance of our models, we conducted an empirical 
study using store-level scanner data of the Dominick’s Finer Foods (DFF) data base 
for refrigerated orange juice. For model specification, we assumed a brand’s sales 
to depend on the brand’s own price, the brand’s sales of the previous period, prices 
of substitute brands, promotional activities, store-specific and holiday effects, as 
well as on the brand’s previous price to capture the price-change or reference price 
effect in the following ways: via a single price-difference term versus two separate 
price terms for perceived gains and losses, where the price change with respect to 
the previous price is measured in absolute monetary units or as a percentage change, 
respectively. We further estimated two nested variants of our semiparametric model 
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in order to evaluate the impact of accounting for (price) dynamics on the predictive 
model performance: a static variant without the reference price term and without the 
lagged sales effect, and a simpler dynamic variant without the reference price term 
but including one-period lagged sales as autoregressive part. To assess the added 
value of employing nonparametric regression for estimating the price-change effect 
flexibly (as well as own- and cross-price effects), we also compared our semipara-
metric approach to the exponential (log-linear) and the multiplicative (log-log) sales 
response function (as well as to the simple linear model) as parametric benchmark 
models.

5.1 � Results and managerial implications

The main results of our empirical study can be summarized as follows: first, account-
ing for price-change or reference price effects can substantially improve the predic-
tive performance of brand sales models (as measured by the cross-validated average 
root median or mean squared errors, ARMedSE or ARMSE ). For the parametric 
models (linear, exponential, and multiplicative), accommodating gain and loss 
effects with two separate price-terms (abs-gl, rel-gl) largely improves ARMedSE 
values (i.e., reduces prediction errors) in holdout samples, whereas using a single 
price-difference term (abs-diff, rel-diff) provides only small (marginal) improve-
ments or even decreases the predictive accuracy measured by ARMedSE compared 
to the static model. A look at the estimated effects and the corresponding partial 
residuals of the competing dynamic model specifications reveals the reason for the 
clearly worse performance of the abs-diff and rel-diff models: obviously, the price-
change effect is asymmetric for nearly all orange juice brands analyzed, however 
using a single price-difference term for both gains and losses does not allow the 
detection of asymmetrical effects of price changes. The use of separate variables for 
perceived gains versus perceived losses helps to overcome this limitation. In con-
trast, the semiparametric models do not have this shortcoming: due to their much 
greater flexibility they are able to capture such asymmetries and therefore possibly 
different shapes for gain and loss effects, even if gain and loss effects are not sepa-
rated from each other with two different price terms. This explains why the four 
different dynamic specifications for the reference price effect perform similarly well 
here. In other words, once price (change) effects are accommodated flexibly the form 
of the specification of the reference price term gets secondary. The predictive valid-
ity results based on the ARMSE measure closely resemble those for the ARMedSE 
measure with one noticeable exception. For the parametric models, modeling gain 
and loss effects via two separate reference price terms did no consistently improve 
the predictive performance for all brands compared to using a single price-difference 
term only. In these cases, however, taking price dynamics into account did improve 
the predictive accuracy either only marginally or not at all, independent of the form 
of including the reference price term.

Second, as the spline functions are furthermore able to account for dispropor-
tionate effects of any shape, each of the semiparametric model variants provided 
more accurate sales predictions than its linear, exponential, or multiplicative 
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counterparts for all brands considered but one (for each of the two predictive 
validity measures). For the one brand, the semiparametric model predicted simi-
larly well or marginally better nevertheless. Interestingly, even the static semipa-
rametric model leads to lower ARMedSE values than each of the two dynamic 
exponential or multiplicative models when capturing the price-change effect 
with only a single price-difference term. This also held for all but one brand (two 
brands) for the exponential (multiplicative) model when the predictive accuracy 
was evaluated by the ARMSE measure. This underlines the power of nonparamet-
ric estimation techniques in the present context. Overall, improvements in predic-
tive accuracy from accommodating price effects flexibly over the best dynamic 
exponential or multiplicative models ranged up to −11 % ( −12 %) in terms of 
ARMedSE and up to −15 % ( −14 %) in terms of ARMSE at the individual brand 
level.

Third, referring to the shapes of the flexibly estimated price-change effects, we 
observed rather steep, disproportionate gain effects while rather flat loss effects 
for nearly all brands. Accordingly, consumers seem to weigh gains much stronger 
than losses in the refrigerated orange juice category, which contradicts prospect 
theory. Loss-gain ratios smaller than 1 as a rule underlined this finding. For the 
gain effect, decreasing returns to scale (as suggested by prospect theory) were 
found only for two of the national brands. For most of the other brands, the esti-
mated gain effect curves turn out neither strictly concave nor strictly convex, 
showing more or less complex nonlinearities, which in addition differed across 
brands. This is exactly the strength of nonparametric modeling: there is no need 
to search for the right functional specification(s) in advance, the shape of effects 
is estimated directly from the data. Also note that we controlled in our models 
for other dynamic effects like stockpiling or customer holdover by including one-
period lagged sales. Still, it could be that larger stockpiling effects may have gone 
undetected because post-promotion dips are generally hard to detect in aggre-
gate response models. In this case, the negative effect of losses might have been 
undervalued. On the other hand, refrigerated orange is a less stockable product 
which suggests that the estimation bias in the estimated loss effects should not be 
that large, if one existed.

From a managerial point of view, using our more complex semiparametric 
approach seems worth the effort as it provides several advantages. First, as already 
discussed above, predictions turned out never worse, often better and sometimes 
considerably superior to those from any of the parametric models compared to. Sec-
ond, semiparametric modeling especially pays off if price effects involve complex 
nonlinearities which are difficult or not at all to capture via parametric models. Even 
if complex nonlinearities (e.g., strong kinks or several thresholds) are not at work 
and improvements from using the more complex model would be not that big or 
only small, one need not care about the problem which parametric model to use for 
which brand to arrive at the best possible brand sales predictions. Our study has 
shown that nonlinearities for gain effects may be complex and may further turn out 
very differently at the individual brand level which favors the use of a flexible esti-
mation techniques. Third, free software (BayesX) is available to easily estimate the 
semiparametric model (as well as the parametric models).
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5.2 � Limitations and outlook

Our study of course has some limitations. First, our empirical findings relate to only 
one product category (refrigerated orange juices) which does not yet allow a gener-
alization of the results. More studies for different product categories and based on 
aggregate data are necessary to confirm or to complement our findings and to augment 
existing findings on loss aversion (or gain-seeking behavior), which so far have almost 
exclusively related to a brand choice modeling context, i.e., to disaggregate data.

Second, our article has its focus on functional flexibility and reference price effects 
(i.e., exploring asymmetries and disproportionalities of the price-change effect), and 
contributes to the stream of nonparametric models in marketing. Except for the ran-
dom store intercept, which captures heterogeneity in baseline sales across stores (e.g., 
due to differently sized store sales areas) in all of our models, we did not address 
potential heterogeneity of marketing effects across stores. Weber and Steiner (2012) 
have shown that accounting for heterogeneity may be not helpful per se to improve the 
predictive performance of a store-level sales response model, whereas accommodating 
functional flexibility can substantially reduce prediction errors. Only few approaches 
exist that have accounted simultaneously for both functional flexibility and heteroge-
neity in store-level sales response models (e.g., Hruschka 2006a; Lang et  al. 2015; 
Weber et al. 2017). The latter two studies have shown that extending an already flex-
ible model to additionally accommodate store heterogeneity in marketing effects may 
further improve the predictive model performance. Transferred to our context, it could 
be interesting to analyze if and how strong the price-change effect differs across stores. 
On the other hand, existing (flexibly estimated) nonlinear effects might also just be a 
form of heterogeneity, as existing differences in price effects across stores can ‘add up’ 
to a nonlinear (homogeneous) effect.10 In the latter case, explicitly considering het-
erogeneity in addition to functional flexibility might not necessarily further improve 
predictive accuracy. Finally, accommodating time-varying parameters as an alterna-
tive or in addition to considering heterogeneity and/or functional flexibility could also 
accomplish improvements in predictions.

Third, we did not address the issue of price endogeneity, a point of increasing 
controversy in the relevant literature. A number of different approaches have been 
proposed to treat endogeneity in prices (for an overview of endogeneity in aggre-
gate market response models, see Hruschka 2017), however Rossi (2014, p. 671) has 
pointed out that using an invalid instrument to accommodate price endogeneity can 
“cause the estimates to differ even when there is no endogeneity bias”. Typical can-
didates for appropriate instrument variables in aggregate response models are lagged 
prices and costs (or wholesale prices). The former, however, are not exogenous in 
case of our dynamic models with reference price terms, and hence cannot be used 
as instruments here (also cf. Hruschka 2017). In addition, standard techniques (e.g., 
2SLS) to account for endogeneity do not necessarily work in (flexible) nonlinear 
models, as we have with our flexibly estimated nonlinear price and reference price 
effects. Generalized Methods of Moments estimation (if a valid instrument is avail-
able) or the copula-based method as instrument-free alternative could be promising 

10  We thank an anonymous reviewer for pointing this out.
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ways out to accommodate endogeneity within in our semiparametric approach (e.g., 
Hruschka 2017).

Fourth, we followed the stream of researchers who proposed using the price of 
the last period as reference price (cf.  Sect.  2). Alternatively, the reference price 
could be built based on prices of several previous weeks, following as example the 
concepts of adaptive or extrapolative expectations (e.g., Natter and Hruschka 1997; 
Briesch et al. 1997; Baumgartner et al. 2018).

Finally, a further challenge would be to develop optimal dynamic pricing strate-
gies for the different models. Here, one could at first lean on the research of Kopalle 
et al. (1996) or Fibich et al. (2003) (cf. Sect. 2) and compare pricing implications 
obtained from models that ignore asymmetries of the price-change effect versus 
models that do capture asymmetries in gain and loss effects. This could be espe-
cially interesting for the semiparametric approach where using either a single price 
difference term or separate terms for gain and loss effects performed similarly 
well in our empirical study regarding predictive validity. Based on the findings of 
Kopalle et  al. (1996) or Fibich et  al. (2003), we would expect a hi-lo or pulsing 
strategy (cyclical pricing) as optimal pricing strategy for most refrigerated orange 
juice brands, since gain effects turned out to be (much) larger than loss effects as a 
rule. For the two brands “Tree Fresh” and “Florida Gold”, we did find loss aversion 
for moderate and/or larger price differences, making predictions about the expected 
dynamic pricing strategies for these two brands more difficult. Furthermore, Lang 
et  al. (2015) reported higher expected total chain profits for their semiparametric 
(static) sales response models compared to the multiplicative sales response func-
tion. The expected loss in profit for the multiplicative model was accompanied by a 
larger number of lower optimal price levels across weeks than suggested by the sem-
iparametric model. In other words, semiparametric modeling led to a larger number 
of higher price levels compared to parametric modeling in their study. Weber et al. 
(2017) analyzed expected category profits and basically confirmed the findings of 
Lang et al. (2015) that flexible (static) price response modeling offers a huge poten-
tial for increasing a retailer’s profits compared to parametric modeling. Moreover, 
we obtained (as a rule) lower price elasticities for our dynamic models (abs-diff, 
abs-gl, compare Sect. 4.3.2) compared to using a static model (except for very low 
price levels), independent from the type of model (parametric or semiparametric). 
This suggests that static sales response models might overestimate price sensitivities 
of consumers and therefore can lead to suboptimal pricing strategies. We leave the 
issue of optimal dynamic pricing for future research.

Appendix

Appendix A: Benefits of nonparametric regression techniques (ingeneral) 
and Bayesian P‑splines (in particular)

Using nonparametric regression techniques can offer the following advantages: (1) It 
is not necessary to assume a specific functional form a priori, since nonparametric 
estimators let the data determine the shape of price (change) effects (e.g., Steiner 
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et al. 2007). (2) It is generally difficult to identify exceptional price effects (like dis-
tinct threshold or saturation effects for gains and losses) with parametric functions, 
at least not without prior knowledge about their supposed location within the price 
range. (3)  In linear or parametric nonlinear sales response models gain and loss 
effects are captured via two separate truncated functions. This is not necessary when 
applying nonparametric regression, and may help to avoid estimation biases due to 
truncation.

Using Bayesian P-splines as we do in the article at hand has further convenient 
properties: (1)  Too much flexibility leading to undesirable overfitting effects that 
may be harmful for predictions can be easily controlled (i.e., penalized). (2) Mono-
tonicity constraints can be easily imposed (e.g., Brezger and Steiner 2008). This is 
particularly reasonable for estimating price response, since we expect brand sales to 
monotonically decrease (increase) in own price (prices of substitute brands) from an 
economic rationale. Note that the common parametric price response functions used 
for brand sales modeling are inherently monotonic. (3) Using a Bayesian estimation 
framework allows to estimate the amount of smoothness of price or other marketing 
effects simultaneously with all other model parameters, instead of applying addi-
tional smoothing parameter selection procedures that become necessary in frequen-
tist settings (Steiner et al. 2007).

Appendix B: Computation of price elasticities

Computation of own-price elasticities is straightforward for the static model ver-
sions: �st = � = � for the multiplicative model, �st = �(pst) = �pst for the exponen-
tial model, and �st = �(pst) = f �

1
(pst)pst for the semiparametric model (with f ′

1
 as first 

derivative of the corresponding spline function). Whereas the elasticity of the multi-
plicative model is constant here, it varies with the price level of a brand for the two 
other model types.

Price elasticities for the dynamic model specifications with either a single price-
difference term, �diff  , or two separate terms for gains and losses, �gl , do not only 
depend on the own-price term but also on the parameter(s) of the reference price 
terms, as shown for the abs-diff and abs-gl model versions in the following:

•	 exponential: 

(22)�diff(pst) =

{
�1pst, Δpst = 0

(�1 − �2)pst, Δpst ≠ 0
,

(23)𝜀gl(pst) =

⎧
⎪⎨⎪⎩

(𝛼1 − 𝛼2G)pst, Δpst > 0

𝛼1pst, Δpst = 0

(𝛼1 + 𝛼2L)pst, Δpst < 0

,



634	 P. Aschersleben, W. J. Steiner 

1 3

•	 multiplicative: 

•	 semiparametric: 

Appendix C: Additional figures and tables

See Figs. 6, 7, 8 and Tables 8, 9, 10.     

(24)�diff(pst) =

{
�, Δpst = 0

�1 − �2, Δpst ≠ 0
,

(25)𝜀gl(pst) =

⎧
⎪⎨⎪⎩

𝛼1 − 𝛼2G, Δpst > 0

𝛼, Δpst = 0

𝛼1 + 𝛼2L, Δpst < 0

,

(26)�diff(pst) =

{
f �
1
(pst)pst, Δpst = 0(
f �
1
(pst) − f �

2
(Δpst)

)
pst, Δpst ≠ 0

,

(27)𝜀gl(pst) =

⎧
⎪⎨⎪⎩

�
f �
1
(pst) − f �

2G
(Δpst)

�
pst, Δpst > 0

f �
1
(pst)pst, Δpst = 0�
f �
1
(pst) + f �

2L
(−Δpst)

�
pst, Δpst < 0

.
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Fig. 6   Estimated price-change effects from the exponential (left panels), multiplicative (top-middle 
panel), and semiparametric models (right panels) for the brand "Citrus Hill", capturing the price differ-
ence in absolute terms (abs-diff, top panels) or relative terms (rel-diff, bottom panels), and relating to the 
’sales space’. See Fig. 3 for the variant relating to the ’log sales space’

Fig. 7   Estimated price-change effects from the exponential (left panels), multiplicative (middle panels), 
and semiparametric models (right panels) for the brand “Citrus Hill”, capturing gain and loss effects in 
absolute monetary units (abs-gl) with two separate terms, and relating to the ’sales space’. See Fig. 4 for 
the variant relating to the ’log sales space’
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1 3

Fig. 8   Estimated price-change effects from the exponential (left panels) and semiparametric models 
(right panels) for the brand “Citrus Hill”, capturing gain and loss effects as relative percentage changes 
(rel-gl) with two separate terms (note that there is no rel-gl model version for the multiplicative models). 
See Fig. 4 for a variant with gains and losses defined in absolute monetary units (abs-gl)
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