
Citation: Hensel, S.; B. Marinov, M.;

Obert, M. 3D LiDAR Based SLAM

System Evaluation with Low-Cost

Real-Time Kinematics GPS Solution.

Computation 2022, 10, 154.

https://doi.org/10.3390/

computation10090154

Academic Editor: Xiaoqiang Hua

Received: 22 July 2022

Accepted: 30 August 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

3D LiDAR Based SLAM System Evaluation with Low-Cost
Real-Time Kinematics GPS Solution
Stefan Hensel 1, Marin B. Marinov 2,* and Markus Obert 1

1 Department for Electrical Engineering, University of Applied Sciences Offenburg, 77652 Offenburg, Germany
2 Department of Electronics, Technical University of Sofia, 1756 Sofia, Bulgaria
* Correspondence: mbm@tu-sofia.bg

Abstract: Positioning mobile systems with high accuracy is a prerequisite for intelligent autonomous
behavior, both in industrial environments and in field robotics. This paper describes the setup of a
robotic platform and its use for the evaluation of simultaneous localization and mapping (SLAM)
algorithms. A configuration using a mobile robot Husky A200, and a LiDAR (light detection and
ranging) sensor was used to implement the setup. For verification of the proposed setup, different
scan matching methods for odometry determination in indoor and outdoor environments are tested.
An assessment of the accuracy of the baseline 3D-SLAM system and the selected evaluation system is
presented by comparing different scenarios and test situations. It was shown that the hdl_graph_slam
in combination with the LiDAR OS1 and the scan matching algorithms FAST_GICP and FAST_VGICP
achieves good mapping results with accuracies up to 2 cm.

Keywords: LiDAR; LOAM (LiDAR odometry and mapping); mapping; machine learning; mobile robotics;
navigation; ROS; RTK; SLAM; stochastic approach

1. Introduction

The range of areas in which autonomous mobile systems are used is growing continu-
ously. The use of autonomous transport vehicles in industry or robots in private households
has now become standard. The development of autonomous motor vehicles is also pro-
gressing steadily. Machine learning offers the field of robotics a set of tools for designing
difficult and complex behaviors. Furthermore, the challenges of robotics-related problems
also provide a positive impact on developments in robot learning.

In all use cases, the basic challenge is the same. Autonomous mobile systems must
simultaneously estimate their position in an unknown environment and simultaneously
create a map of the environment. This challenge is also referred to as the SLAM problem.
While filter-based approaches such as [1] were the most common solution for this problem
before 2010; graph SLAM and its derivatives are now the most popular and efficient
approach [2,3]. In this approach, a robot’s landmarks and poses are represented by a graph,
which allows the SLAM problem to be solved via nonlinear optimization techniques [4,5].

The SLAM problem refers to the difficulty of locating and mapping a mobile robot in
an unknown environment with its simultaneous positioning relative to this map [1]. When
no other navigation capabilities, such as the Global Navigation Satellite System (GNSS),
are available, the SLAM problem becomes more important [6,7]. While already solving
the problem in simple applications, SLAM algorithms can be pushed to their limits by
challenging dynamic robot motions or highly dynamic environments [4,8]. To obtain a
map, sensors must be used to detect the structure of the environment. A variety of possible
sensor types are available for this purpose.

Finally, by determining the position of the environmental features, it is possible to obtain
a representation of the robot’s environment and thus a map that can be used in numerous
ways, such as localization. The basic problem within SLAM is to estimate the trajectory of the

Computation 2022, 10, 154. https://doi.org/10.3390/computation10090154 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10090154
https://doi.org/10.3390/computation10090154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0001-6784-1056
https://doi.org/10.3390/computation10090154
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10090154?type=check_update&version=1

Computation 2022, 10, 154 2 of 19

robot as well as the position of all environmental features without knowing the true position
of the features or the robot itself [1,9]. Since their advent and rapid improvement in cost and
efficiency in recent years, LiDAR sensors play a key role in sensing the environment of mobile
systems [10,11]. The incorporation of dense 3D point clouds in existing localization systems
posed significant problems concerning the achievable precision of the point cloud matching
and the update rate of other employed systems such as inertial measurement units (IMU),
global navigation satellite systems (GNSS), and optical systems. Modern SLAM systems such
as HDL-Graph-SLAM [12] employ a graph-based and efficient approach for sensor fusion by
solving the SLAM problem.

Alas, it remains a difficult task to assess the hyperparameters of these algorithms, such
as choosing the right scan matching algorithm and the overall accuracy [13]. The common
lack of precise external systems is overcome in this article by using a low-cost real-time
kinematics GNSS system (RTK-GPS), which allows for precise localization of the mobile
system up to a precision of 2 cm. As the system shall be applicable to many institutions
and smaller companies, we provide an evaluation of the accuracy of both, the underlying
3D-SLAM system and the chosen evaluation system, by comparing different scenarios
and testing situations. This makes it possible to identify the correct settings, sensors, and
application cases for the systems in soft- and hardware.

This article is organized as follows. Section 2 describes the materials and methods used.
Section 3 contains a discussion of the experimental results. Section 4 concludes the paper.

2. Materials and Methods

Since the DARPA’s Urban challenge in 2008, 3D laser scanners are typically used for
autonomous driving. They are built up of several lenses and beams, which are usually
arranged in groups of 16, 64, or 128 in a vertical fan pattern. This allows the capturing of
multiple planes and distances to be scanned simultaneously [14,15].

GNSS systems play a crucial role in localization and navigation for mobile systems. The
advent of RTK-GNSS (Real Time Kinematic positioning) systems allows for the localization
up to a precision of centimeter level. Still, the systems suffer from broken line-of-sight
toward the base station as well as the shadowing from buildings, signal loss within closed
buildings or tunnels, and problems under dense vegetation.

To assess the capability of our mobile robot in combination with the proposed sensor
suite of LiDAR, IMU, and odometry, the RTK-GNSS solution is intended to work as a
ground truth system to give a measure of quality for the overall setup.

2.1. Main Hardware Components
2.1.1. LiDAR System

The OS1 LiDAR from Ouster was used in this work.
It is suitable for distances between 0.3 and 100 m and has a vertical field of view of 45◦

(±22.5◦). It has a vertical resolution of 128 lines and a configurable horizontal resolution
of 512, 1024, or 2048 lines. Depending on the resolution, the LiDAR sensor can scan its
environment at 10 or 20 Hz. Thus, at a resolution of 128 × 2048 and the frequency of 10 Hz,
up to 2,621,440 points can be captured by the sensor within one second, corresponding to a
data rate of up to 254 Mb/s [16].

For later outdoor applications, the raster size is also of interest. The determination of
raster size with which the environment is scanned, as a function of the distance, can be
determined using trigonometric relationships. This relationship is shown in Figure 1.

The maximum distance of 100 m is considered, which is particularly interesting for
outdoor applications. Furthermore, a distance of 10 m is considered for the indoor area.
The raster values, depending on the resolution and the distance, are listed in Table 1.

Computation 2022, 10, 154 3 of 19Computation 2022, 10, x FOR PEER REVIEW 3 of 20

Figure 1. Up: Horizontal distance between two laser beams as a function of distance. Down: Vertical
field of view as a function of distance (100 m).

The maximum distance of 100 m is considered, which is particularly interesting for
outdoor applications. Furthermore, a distance of 10 m is considered for the indoor area.
The raster values, depending on the resolution and the distance, are listed in Table 1.

Table 1. The distance of the measuring points depends on the distance [17].

Alignment Resolution,
Points

Field of
view, °

Angle between
Two Beams, °

Distance,
m

Raster
Size, cm

Vertical 128 45 0.35
100 61.36
10 6.14

Horizontal

512 360 0.70
100 122.72
10 12.27

1028 360 0.35
100 61.12
10 6.11

2048 360 0.18
100 30.68
10 3.07

2.1.2. Real Time Kinematics GNSS
RTK systems are based on the working principle of differential GPSd by a so-called

rover to precisely estimate its position [18]. In contrast to common DGPS, the positioning
is based on the carrier measurement, not the pseudo-code signals. RTK systems for sur-
veying or precise civil engineering measurement are well established but are also expen-
sive [19].

GNSS signals provide useful position information in the range of meters, which can
easily be incorporated and used to enhance the position estimate in a broad range of sen-
sor fusion architectures [1,6].

To verify the accuracy of the SLAM localization and trajectory estimation, we used
the C94-M8P, a low-cost RTK-GPS system from ublox. Besides the experimental evalua-
tion and assessment of the LiDAR-SLAM accuracy, the low-cost nature allows for a pos-
sible integration within the system as an additional sensor to enhance localization accu-
racy in unobstructed environments and to fasten up initial localization within a map.

Figure 1. Up: Horizontal distance between two laser beams as a function of distance. Down: Vertical
field of view as a function of distance (100 m).

Table 1. The distance of the measuring points depends on the distance [17].

Alignment Resolution,
Points Field of View, ◦ Angle between

Two Beams, ◦ Distance, m Raster Size, cm

Vertical 128 45 0.35
100 61.36

10 6.14

Horizontal

512 360 0.70
100 122.72

10 12.27

1028 360 0.35
100 61.12

10 6.11

2048 360 0.18
100 30.68

10 3.07

2.1.2. Real Time Kinematics GNSS

RTK systems are based on the working principle of differential GPSd by a so-called
rover to precisely estimate its position [18]. In contrast to common DGPS, the positioning is
based on the carrier measurement, not the pseudo-code signals. RTK systems for surveying
or precise civil engineering measurement are well established but are also expensive [19].

GNSS signals provide useful position information in the range of meters, which can
easily be incorporated and used to enhance the position estimate in a broad range of sensor
fusion architectures [1,6].

To verify the accuracy of the SLAM localization and trajectory estimation, we used the
C94-M8P, a low-cost RTK-GPS system from ublox. Besides the experimental evaluation
and assessment of the LiDAR-SLAM accuracy, the low-cost nature allows for a possible
integration within the system as an additional sensor to enhance localization accuracy in
unobstructed environments and to fasten up initial localization within a map.

2.1.3. Husky A200

The unmanned ground vehicle (UGV) “Husky A200” from Clearpath Robotics is used
for this work. The robot platform, which is equipped with an all-wheel drive, can be
remotely controlled with the aid of a controller.

A structural diagram of the hardware setup is shown in Figure 2. Inside the Husky
is the main computer, which contains the basic system for the Husky. When the rover is
switched on, the main computer and thus all necessary processes are started automati-
cally [20].

Computation 2022, 10, 154 4 of 19

Computation 2022, 10, x FOR PEER REVIEW 4 of 20

2.1.3. Husky A200
The unmanned ground vehicle (UGV) “Husky A200” from Clearpath Robotics is

used for this work. The robot platform, which is equipped with an all-wheel drive, can be
remotely controlled with the aid of a controller.

A structural diagram of the hardware setup is shown in Figure 2. Inside the Husky
is the main computer, which contains the basic system for the Husky. When the rover is
switched on, the main computer and thus all necessary processes are started automatically
[20].

Powerbank
24V

TP-Link
(Router)

External
Laptop

Powerbank
12V

Powerbank
12V

Pokini

u-blox
RTK-GPS Xsens IMU

Husky Akku

Ouster LIDARGPS-Modul
Arduino

Husky A200
Chassis

RS232

USB

WLAN

LAN

USBLAN

LAN

USB

Husky PC

Figure 2. The hardware structure of the robot platform (based on [20]).

ROS structure Husky
When the Husky is started, a ROS core, which represents the master, is automatically

started on the Husky computer. All necessary ROS packages that are required for the op-
eration of the Husky are executed. The hardware setup, as described in Figure 2 allows
for subscribing or publishing the desired topics from any computer, enabling easy cross-
network data exchange.

2.2. Main Software Components
2.2.1. Robot Operating System

ROS (Robot Operating System) is an open-source platform for programming robot
systems. It is a meta-operating system that provides various tools for simulation and vis-
ualization as well as libraries. The libraries mainly include hardware abstractions as well
as device drivers for sensors and actuators [21].

ROS is a peer-to-peer network, which means that all participants have equal rights
and that services can be offered and used. The individual participants can be distributed
over several computers, whereby they are loosely coupled by the ROS communication
infrastructure. To organize communication, there is exactly one master in each ROS net-
work that manages communication and with which each node must be registered [22,23].

2.2.2. Scan Matching Algorithms
With each scan of a LiDAR sensor, a point cloud with measurement points is ob-

tained, as shown in the previous section. To use these point clouds for mapping or locali-
zation in a map, the challenge is to match the current scan with an already known scan of
the surrounding area. The process of matching two scans is also called registration. Two
main algorithms emerged as viable options for 3D-point-cloud registration, the classical
iterative closest point (ICP) algorithm [24] and a more refined version, the generalized
ICP. In addition, the normal distributions transform (NDT) of [25] is considered, as it takes
a different approach based on data statistics.

Figure 2. The hardware structure of the robot platform (based on [20]).

ROS Structure Husky

When the Husky is started, a ROS core, which represents the master, is automatically
started on the Husky computer. All necessary ROS packages that are required for the
operation of the Husky are executed. The hardware setup, as described in Figure 2 allows
for subscribing or publishing the desired topics from any computer, enabling easy cross-
network data exchange.

2.2. Main Software Components
2.2.1. Robot Operating System

ROS (Robot Operating System) is an open-source platform for programming robot
systems. It is a meta-operating system that provides various tools for simulation and
visualization as well as libraries. The libraries mainly include hardware abstractions as
well as device drivers for sensors and actuators [21].

ROS is a peer-to-peer network, which means that all participants have equal rights
and that services can be offered and used. The individual participants can be distributed
over several computers, whereby they are loosely coupled by the ROS communication
infrastructure. To organize communication, there is exactly one master in each ROS network
that manages communication and with which each node must be registered [22,23].

2.2.2. Scan Matching Algorithms

With each scan of a LiDAR sensor, a point cloud with measurement points is obtained,
as shown in the previous section. To use these point clouds for mapping or localization
in a map, the challenge is to match the current scan with an already known scan of the
surrounding area. The process of matching two scans is also called registration. Two
main algorithms emerged as viable options for 3D-point-cloud registration, the classical
iterative closest point (ICP) algorithm [24] and a more refined version, the generalized ICP.
In addition, the normal distributions transform (NDT) of [25] is considered, as it takes a
different approach based on data statistics.

Iterative Closest Point (ICP)

Iterative closest point (ICP) is an algorithm used in many applications to achieve a
minimum difference between two-point clouds. The flowchart of the ICP algorithm is
illustrated in Figure 3a, and its basic idea is illustrated in Figure 3b.

To be able to calculate the rotation and translation, the point correspondences must first
be determined, i.e., which point of the blue point data set to be transformed corresponds to
which orange point of the base point data set. As the simplest measure for the determination
of the point correspondences, the Euclidean distance is used. Thus, the correspondences
match the points with the smallest distance. Once the point correspondences have been
determined, the calculation and execution of the transformation are performed for each
point. Then, the current error between the transformed points (blue) and the base point data
set (red) is determined. If the error is above a previously defined threshold, a new iteration

Computation 2022, 10, 154 5 of 19

is started, and the point correspondences are determined again. If the error is below the
specified threshold or the maximum number of iterations is reached, the registration of the
two scans is completed [26].

Computation 2022, 10, x FOR PEER REVIEW 5 of 20

Iterative Closest Point (ICP)
Iterative closest point (ICP) is an algorithm used in many applications to achieve a

minimum difference between two-point clouds. The flowchart of the ICP algorithm is il-
lustrated in Figure 3a, and its basic idea is illustrated in Figure 3b.

Initialization

Determination of correspondences

Transformation calculation

Performing the transformation

Current error calculation

Error > Threshold value

Registration completed

No

Yes

(a)

(b)

Figure 3. ICP algorithm: (a) flowchart; (b) basic idea.

To be able to calculate the rotation and translation, the point correspondences must
first be determined, i.e., which point of the blue point data set to be transformed corre-
sponds to which orange point of the base point data set. As the simplest measure for the
determination of the point correspondences, the Euclidean distance is used. Thus, the cor-
respondences match the points with the smallest distance. Once the point correspond-
ences have been determined, the calculation and execution of the transformation are per-
formed for each point. Then, the current error between the transformed points (blue) and
the base point data set (red) is determined. If the error is above a previously defined
threshold, a new iteration is started, and the point correspondences are determined again.
If the error is below the specified threshold or the maximum number of iterations is
reached, the registration of the two scans is completed [26].

Figure 3. ICP algorithm: (a) flowchart; (b) basic idea.

Normal Distribution Transform (NDT)

The classical ICP approach is not making use of all given information, e.g., second-order
moments of the data distribution. An alternative approach to classical ICP registration is the
normal distributions transform (NDT) algorithm. In this approach, unlike the ICP method, no
explicit determination of the point correspondences is required. Instead, the NDT method
subdivides the scanned area into a grid and calculates the normal distribution of the points
contained in each cell [25]. The algorithm can be summarized in the following steps:

1. Division of the environment into cells (2D or 3D) of constant size;
2. Acquisition of all points xi=1...n within a cell;
3. Calculation of the mean value for the points within a cell: q = 1

n ∑i xi;
4. Calculation of the covariance matrix: ∑ = 1

n ∑i(xi − q)(xi − q)T .

Computation 2022, 10, 154 6 of 19

Using the calculated mean and covariance matrix, the normal distribution N (q, ∑) of
the samples within a is estimated. Thus, the probability p(x) that a sample is at location x
within a cell can be modeled by

p(x) ∼ exp

(
− (xi − q)TΣ−1(xi − q)

2

)
. (1)

The main advantage of the NDT algorithm is that no explicit correspondences between
points are needed. This makes the algorithm performant [25]. However, the algorithm is
sensitive to the configuration of its hyperparameters, such as grid size (2D) or voxel size
(3D). The optimal voxel size is highly dependent on the environment and sensor properties
such as the number of points. If an incorrect voxel size is chosen, this will lead to errors
during registration. In addition, enough points must lie within a voxel; otherwise, the
determination of the covariance matrix is error prone [14].

Voxelized Generalized Iterative Closest Point Algorithm (VGICP)

To overcome the problems of ICP and NDT, the examined HDL Graph SLAM algo-
rithm uses another registration method, the VGICP algorithm. This approach can be seen as
a combination of the ideas of the aforementioned methods, as it extends the generalized ICP
approach by determining the distribution of points in voxels, similar to the NDT method,
which is achieved by aggregating the individual point distributions within the voxels. In
the GICP method, all points are modeled by distribution, and the point correspondence is
determined by the smallest distance between two distributions. The procedure is precise
but also computationally intensive. In the NDT method, registration is accelerated by
using a point-to-voxel distribution correspondence model. However, to compute a 3D
covariance matrix, at least ten points within a voxel are needed in practice. If the number
of points within the covariance matrix is too small, the covariance matrix will be distorted.
In the VGICP method, the covariance matrix is determined from the individual point
distributions. This results in a correct covariance matrix even if there is only one point
within the voxel. Correspondence determination in VGICP is then performed using a
“single-to-multiple-distribution” model according to [14].

SLAM

The SLAM problem (simultaneous localization and mapping) deals with the problem
of simultaneously estimating the position of a robot or sensor in an unknown environment
while gradually creating a map of the environment. Sensors used here are usually wheel
encoders, IMU, LiDARs, or cameras. There are three main paradigms used to solve the
SLAM problem, from which further approaches are derived.

Classical systems use the Extended Kalman Filter for data fusion and landmark-based
localization (see [1]). Multiple locations and the need to deal with lost and kidnapped robots
lead to particle filter-based SLAM methods, with FastSLAM as the most prominent [27].

More recent approaches are either based on a rearrangement of the probabilistic graph
of the underlying Bayes Filter (see [28,29] for further details) to solve the probability integral
more efficiently or they embrace the Graph-SLAM paradigm, in which the SLAM problem
is solved in the least squares sense via non-linear iterative optimization techniques [5,6].
These methods find widespread applications in camera-based systems, commonly called
visual SLAM [30,31] or scan matching based applications for 2D laser scan systems.

Due to the wide availability and further development of nonlinear optimization,
Graph-SLAM has been the most popular and efficient approach for autonomous mobile
systems since 2010 [32,33].

LiDAR sensors provide 3D scans of the environment at a frequency of typically 10 Hz,
resulting in a large volume of data. The changes between individual scans are often minimal
with only a small change in translation and rotation of the robot. To reduce the complexity
and the amount of data, only selected scans, so-called keyframes, are often used to create

Computation 2022, 10, 154 7 of 19

a pose graph, which is used to locally anchor new scans. Thus, a new node is added to
the graph only when the pose of the robot has significantly changed translationally and
rotationally. Most important for the improvement of scan systems and algorithms has been
the advent of inexpensive 3D LiDAR scanners such as the one used in this contribution.

HDL Graph SLAM

HDL Graph SLAM is a real-time SLAM algorithm for 3D laser scanners. It is based on
a 3D graph SLAM with an NDT-like scan matching procedure to determine the trajectory.
HDL Graph SLAM is suitable for six degrees of freedom. In addition to scan matching,
other sensor inputs such as IMU or GPS can be used as boundary conditions (edges) for
trajectory determination. Figure 4 shows an overview of the four nodes that make up the
hdl_graph_slam [34]. After preprocessing the input point clouds, the filtered point clouds
are processed by the scan_machting_odometry node for trajectory estimation and in a
second step for ground surface detection. Using the outputs of both nodes, the trajectory
is afterward optimized in the hdl_graph_slam node, resulting in the desired output map,
which consists of registered 3D points.

Computation 2022, 10, x FOR PEER REVIEW 7 of 20

More recent approaches are either based on a rearrangement of the probabilistic
graph of the underlying Bayes Filter (see [28,29] for further details) to solve the probability
integral more efficiently or they embrace the Graph-SLAM paradigm, in which the SLAM
problem is solved in the least squares sense via non-linear iterative optimization tech-
niques [5,6]. These methods find widespread applications in camera-based systems, com-
monly called visual SLAM [30,31] or scan matching based applications for 2D laser scan
systems.

Due to the wide availability and further development of nonlinear optimization,
Graph-SLAM has been the most popular and efficient approach for autonomous mobile
systems since 2010 [32,33].

LiDAR sensors provide 3D scans of the environment at a frequency of typically
10 Hz, resulting in a large volume of data. The changes between individual scans are often
minimal with only a small change in translation and rotation of the robot. To reduce the
complexity and the amount of data, only selected scans, so-called keyframes, are often
used to create a pose graph, which is used to locally anchor new scans. Thus, a new node
is added to the graph only when the pose of the robot has significantly changed transla-
tionally and rotationally. Most important for the improvement of scan systems and algo-
rithms has been the advent of inexpensive 3D LiDAR scanners such as the one used in this
contribution.

HDL Graph SLAM
HDL Graph SLAM is a real-time SLAM algorithm for 3D laser scanners. It is based

on a 3D graph SLAM with an NDT-like scan matching procedure to determine the trajec-
tory. HDL Graph SLAM is suitable for six degrees of freedom. In addition to scan match-
ing, other sensor inputs such as IMU or GPS can be used as boundary conditions (edges)
for trajectory determination. Figure 4 shows an overview of the four nodes that make up
the hdl_graph_slam [34]. After preprocessing the input point clouds, the filtered point
clouds are processed by the scan_machting_odometry node for trajectory estimation and
in a second step for ground surface detection. Using the outputs of both nodes, the trajec-
tory is afterward optimized in the hdl_graph_slam node, resulting in the desired output
map, which consists of registered 3D points.

Prefiltering Scan matching
 odometry hdl graph slam

Floor detection

/odom

/floor coeffs

/filter ed points/velodyne points /map points

Figure 4. Overview of the nodes of the hdl_graph_slam [34].

prefiltering Node
In the prefiltering node, the laser scan data are preprocessed. The measurement

points that are too close or too far away are removed. This can be defined via the threshold
values distance_near_thresh and distance_far_thresh.

Furthermore, the outliers can be removed from the point clouds in the prefiltering
step. For this purpose, a radius method or a statistical method can be applied. The radius
method considers the number of neighbors of a point that lie within the given radius (ra-
dius_radius). If the value is below the minimum number of neighbors (radius_min_neigh-
bours), the point is removed. In the statistical method, outliers can be determined and re-
moved via the standard deviation (statistical_stddev).

scan_matching_odometry Node
Scan matching is performed using the filtered points. The sensor pose is estimated

by applying a scan matching method from successive frames, from which the trajectory

Figure 4. Overview of the nodes of the hdl_graph_slam [34].

Prefiltering Node

In the prefiltering node, the laser scan data are preprocessed. The measurement points
that are too close or too far away are removed. This can be defined via the threshold values
distance_near_thresh and distance_far_thresh.

Furthermore, the outliers can be removed from the point clouds in the prefiltering step.
For this purpose, a radius method or a statistical method can be applied. The radius method
considers the number of neighbors of a point that lie within the given radius (radius_radius).
If the value is below the minimum number of neighbors (radius_min_neighbours), the point
is removed. In the statistical method, outliers can be determined and removed via the
standard deviation (statistical_stddev).

Scan_matching_odometry Node

Scan matching is performed using the filtered points. The sensor pose is estimated
by applying a scan matching method from successive frames, from which the trajectory
of the robot is determined (odometry estimation). For scan matching, the methods ICP,
GICP, NDT, and VGICP described in Section 2.2.2 can be selected, and the corresponding
parameters for the algorithms can be configured.

Floor_detection Node

In buildings with larger indoor areas, such as schools or hospitals, the surrounding
area often has only one flat floor surface. To optimize the pose graph, an additional
boundary condition was therefore introduced that takes into account the detected floor
area. For this purpose, it is assumed that all floor surfaces detected in the respective scan
lie on the same plane. For configuration, the estimated sensor height (sensor_height) must
be specified. To estimate the ground plane, all points that are within a given range above or
below the ground height (hight_clip_range) are used. The estimation of a plane is performed
using RANSAC (random sample consensus). RANSAC is a robust algorithm for estimating
a model, e.g., a plane, within a point cloud containing outliers. For an estimated plane to
be accepted, there must be a minimum number of points (floor_points_thresh) within the

Computation 2022, 10, 154 8 of 19

hight_clip_range, the estimated plane. If there are fewer points or if the plane is tilted by
more than a 10◦ angle (floor_normal_thresh), the plane is not accepted. [20] In Figure 5, the
points detected by the floor_detection node are shown in blue.

Computation 2022, 10, x FOR PEER REVIEW 8 of 20

of the robot is determined (odometry estimation). For scan matching, the methods ICP,
GICP, NDT, and VGICP described in Section 2.2.2 can be selected, and the corresponding
parameters for the algorithms can be configured.

floor_detection Node
In buildings with larger indoor areas, such as schools or hospitals, the surrounding

area often has only one flat floor surface. To optimize the pose graph, an additional bound-
ary condition was therefore introduced that takes into account the detected floor area. For
this purpose, it is assumed that all floor surfaces detected in the respective scan lie on the
same plane. For configuration, the estimated sensor height (sensor_height) must be speci-
fied. To estimate the ground plane, all points that are within a given range above or below
the ground height (hight_clip_range) are used. The estimation of a plane is performed using
RANSAC (random sample consensus). RANSAC is a robust algorithm for estimating a
model, e.g., a plane, within a point cloud containing outliers. For an estimated plane to be
accepted, there must be a minimum number of points (floor_points_thresh) within the
hight_clip_range, the estimated plane. If there are fewer points or if the plane is tilted by
more than a 10° angle (floor_normal_thresh), the plane is not accepted. [20] In Figure 5, the
points detected by the floor_detection node are shown in blue.

Figure 5. Laser scan in the corridor of the B-building of the Offenburg University of Applied Sci-
ences. (Blue: floor area detected by the floor_detection node, red: remaining laser scan points).

hdl_graph_slam Node
The estimated odometry (odom) and the estimated floor areas (floor_coeff) are for-

warded to the hdl_graph_slam node. In addition, further boundary conditions such as
IMU data and GPS can be considered here. These can be activated via corresponding pa-
rameters (enable_gps, enable_imu_acc,enable_imu_ori).

2.3. Overall System
The described combination of hard- and software allows for the best possible combi-

nation to create precise and high-definition point cloud maps. The employed high-density
point cloud LiDAR is fused with information of the RTK-GNSS system to cope with long-
term drift that occurs despite the use of state-of-the-art scan matching algorithms.

The mobile platform and its open source-based software suite is easily augmented
with algorithms or sensors and perfectly reflect the intended applications of smart logis-
tics, augmented wheelchairs, field robotics surveillance, or household assistance systems.

Figure 5. Laser scan in the corridor of the B-building of the Offenburg University of Applied Sciences.
(Blue: floor area detected by the floor_detection node, red: remaining laser scan points).

Hdl_graph_slam Node

The estimated odometry (odom) and the estimated floor areas (floor_coeff) are forwarded
to the hdl_graph_slam node. In addition, further boundary conditions such as IMU data
and GPS can be considered here. These can be activated via corresponding parameters
(enable_gps, enable_imu_acc,enable_imu_ori).

2.3. Overall System

The described combination of hard- and software allows for the best possible combi-
nation to create precise and high-definition point cloud maps. The employed high-density
point cloud LiDAR is fused with information of the RTK-GNSS system to cope with long-
term drift that occurs despite the use of state-of-the-art scan matching algorithms.

The mobile platform and its open source-based software suite is easily augmented
with algorithms or sensors and perfectly reflect the intended applications of smart logistics,
augmented wheelchairs, field robotics surveillance, or household assistance systems.

The overview examination and evaluation of several SLAM methods showed the superi-
ority of the chosen approach in terms of computational and storage load as well as the easy
incorporation and use of additional sensors. Theoretical optimality, which can be claimed for
competing approaches, is also well proven for graph-based least squares SLAM.

3. Experimental Results

For the evaluation of HDL Graph SLAM with our system, different test scenarios are
considered. The test scenarios include the behavior indoors, with a flat floor surface and
partially narrow aisles, the behavior outdoors, and the detection of height differences.

The scenarios were chosen to accommodate common situations for the above-mentioned
applications, with shadowing of GNSS and repetitiveness of the environment being the main
challenges concerning the sensors. The uneven ground plane in the field and the addition of
3D scenarios are part of the second topic addressed to evaluate the overall system.

This chapter first describes the parameter configuration for the tests carried out. This
is followed by a presentation of the individual test scenarios and the corresponding results.

Computation 2022, 10, 154 9 of 19

3.1. Parameter Configuration

For the evaluation of the SLAM system, all implemented scan matching algorithms
are tested. It is shown that FAST_GICP and FAST_VGICP are the most suitable scan
matching algorithms for combining HDL Graph SLAM with the Ouster OS1. FAST_GICP
and FAST_VGICP do not necessarily require further parameter tuning; thus, they work
reliably. Since the literature for NDT registration indicates good results for multi-beam
laser scanners, this method is also considered for the results.

3.2. Test Indoor: Hallway of the B-Building

The corridor of the B-building of the Offenburg University of Applied Sciences has
dimensions of approximately 40 × 35 m. It is assumed that the floor is flat, and the walls
are at right angles to each other. The corridor has many window fronts so that parts of
the inner courtyard are also covered by the laser scanner. Laser distance measurements
through window glass can result in non-reproducible measurements or reduced accuracy.
This is because glass can either cause reflection, or the laser beam is refracted in such a
way that it changes its angle or direction [35]. Furthermore, due to the sharp curves in
the corners of the corridor, there are strong rotations between the individual laser scans.
Finally, a loop closure occurs, which has to be detected by the algorithm. The floor plan of
the corridor in the B-building with the trajectory is shown in Figure 6.

Computation 2022, 10, x FOR PEER REVIEW 10 of 20

(a) (b)

Figure 6. (a) Trajectory and floor plan of the corridor in the B-building of the University of Applied
Sciences Offenburg, Germany. (b) Map created with hdl_graph_slam.

For the evaluation of the hdl_graph_slam first, the effect of the floor_detection node
is examined. For this purpose, the trajectory of the robot with and without the floor_de-
tection node is determined. The algorithms FAST_GICP, FAST_VGICP (reg_resolution =
2.0) and NDT_OMP (reg_resosolution = 2.0) are used as scan matching methods. The de-
termined elevation trajectory is illustrated in Figure 7. When the floor constraint is disa-
bled, the height varies between 0.3 and −0.7 m for the FAST_GICP and FAST_ VGICP
algorithms. With NDT_OMP, the height gradient drifts to over −10 m.

Figure 7. Height profile as a function of the distance covered in the corridor of the B-building of
Offenburg University with and without floor constraint.

If the ground surface detection is activated, the values of all scans matching algo-
rithms vary only in the range of a few centimeters, as can be seen in Figure 8. If the
floor_detection is not activated, the estimated height course is faulty as well as the trajec-
tory, such that only with the FAST_GICP algorithm a loop closure is detected. Thus, the

Figure 6. (a) Trajectory and floor plan of the corridor in the B-building of the University of Applied
Sciences Offenburg, Germany. (b) Map created with hdl_graph_slam.

For the evaluation of the hdl_graph_slam first, the effect of the floor_detection node is
examined. For this purpose, the trajectory of the robot with and without the floor_detection
node is determined. The algorithms FAST_GICP, FAST_VGICP (reg_resolution = 2.0) and
NDT_OMP (reg_resosolution = 2.0) are used as scan matching methods. The determined
elevation trajectory is illustrated in Figure 7. When the floor constraint is disabled, the
height varies between 0.3 and −0.7 m for the FAST_GICP and FAST_ VGICP algorithms.
With NDT_OMP, the height gradient drifts to over −10 m.

Computation 2022, 10, 154 10 of 19

Computation 2022, 10, x FOR PEER REVIEW 10 of 20

(a) (b)

Figure 6. (a) Trajectory and floor plan of the corridor in the B-building of the University of Applied
Sciences Offenburg, Germany. (b) Map created with hdl_graph_slam.

For the evaluation of the hdl_graph_slam first, the effect of the floor_detection node
is examined. For this purpose, the trajectory of the robot with and without the floor_de-
tection node is determined. The algorithms FAST_GICP, FAST_VGICP (reg_resolution =
2.0) and NDT_OMP (reg_resosolution = 2.0) are used as scan matching methods. The de-
termined elevation trajectory is illustrated in Figure 7. When the floor constraint is disa-
bled, the height varies between 0.3 and −0.7 m for the FAST_GICP and FAST_ VGICP
algorithms. With NDT_OMP, the height gradient drifts to over −10 m.

Figure 7. Height profile as a function of the distance covered in the corridor of the B-building of
Offenburg University with and without floor constraint.

If the ground surface detection is activated, the values of all scans matching algo-
rithms vary only in the range of a few centimeters, as can be seen in Figure 8. If the
floor_detection is not activated, the estimated height course is faulty as well as the trajec-
tory, such that only with the FAST_GICP algorithm a loop closure is detected. Thus, the

Figure 7. Height profile as a function of the distance covered in the corridor of the B-building of
Offenburg University with and without floor constraint.

If the ground surface detection is activated, the values of all scans matching algorithms
vary only in the range of a few centimeters, as can be seen in Figure 8. If the floor_detection
is not activated, the estimated height course is faulty as well as the trajectory, such that only
with the FAST_GICP algorithm a loop closure is detected. Thus, the floor_detection node is
essential to be able to determine the optimal trajectory or its optimal height course in the
interior of buildings with the hdl_graph_slam.

Computation 2022, 10, x FOR PEER REVIEW 11 of 20

floor_detection node is essential to be able to determine the optimal trajectory or its opti-
mal height course in the interior of buildings with the hdl_graph_slam.

Figure 8. Height profile as a function of the distance covered in the corridor of the B-building of the
Offenburg University of Applied Sciences with floor detection.

The trajectories determined with the hdl_graph_slam with floor constraint are shown
in Figure 9. The loop closure is detected with all three scan matching algorithms. The tra-
jectory determined with NDT_OMP deviates strongly from the real trajectory in the x-
direction despite parameter tuning. The other two algorithms provide almost identical
results. Only in the range (−10, 0 m) are there slight differences between the two trajec-
tories.

Figure 9. Trajectories of the hdl_graph_slam in the corridor of the B-building of the Offenburg Uni-
versity of Applied Sciences.

Figure 10 shows the map generated by the hdl_graph_slam (FAST_GICP). To check
the accuracy of the generated map, it is examined for its perpendicularity. For this pur-
pose, the detected walls are matched with the rectangle shown in black in the figure. If
one assumes that the building is rectangular, it can be seen that the right wall of the cre-
ated map is not parallel to the drawn rectangle. The black rectangle shows the idealized
walls, the red ellipse indicates deviations of the map from the rectangularity. Thus, the

Figure 8. Height profile as a function of the distance covered in the corridor of the B-building of the
Offenburg University of Applied Sciences with floor detection.

The trajectories determined with the hdl_graph_slam with floor constraint are shown
in Figure 9. The loop closure is detected with all three scan matching algorithms. The
trajectory determined with NDT_OMP deviates strongly from the real trajectory in the
x-direction despite parameter tuning. The other two algorithms provide almost identical
results. Only in the range (−10,0 m) are there slight differences between the two trajectories.

Computation 2022, 10, 154 11 of 19

Computation 2022, 10, x FOR PEER REVIEW 11 of 20

floor_detection node is essential to be able to determine the optimal trajectory or its opti-
mal height course in the interior of buildings with the hdl_graph_slam.

Figure 8. Height profile as a function of the distance covered in the corridor of the B-building of the
Offenburg University of Applied Sciences with floor detection.

The trajectories determined with the hdl_graph_slam with floor constraint are shown
in Figure 9. The loop closure is detected with all three scan matching algorithms. The tra-
jectory determined with NDT_OMP deviates strongly from the real trajectory in the x-
direction despite parameter tuning. The other two algorithms provide almost identical
results. Only in the range (−10, 0 m) are there slight differences between the two trajec-
tories.

Figure 9. Trajectories of the hdl_graph_slam in the corridor of the B-building of the Offenburg Uni-
versity of Applied Sciences.

Figure 10 shows the map generated by the hdl_graph_slam (FAST_GICP). To check
the accuracy of the generated map, it is examined for its perpendicularity. For this pur-
pose, the detected walls are matched with the rectangle shown in black in the figure. If
one assumes that the building is rectangular, it can be seen that the right wall of the cre-
ated map is not parallel to the drawn rectangle. The black rectangle shows the idealized
walls, the red ellipse indicates deviations of the map from the rectangularity. Thus, the

Figure 9. Trajectories of the hdl_graph_slam in the corridor of the B-building of the Offenburg
University of Applied Sciences.

Figure 10 shows the map generated by the hdl_graph_slam (FAST_GICP). To check
the accuracy of the generated map, it is examined for its perpendicularity. For this purpose,
the detected walls are matched with the rectangle shown in black in the figure. If one
assumes that the building is rectangular, it can be seen that the right wall of the created map
is not parallel to the drawn rectangle. The black rectangle shows the idealized walls, the
red ellipse indicates deviations of the map from the rectangularity. Thus, the map created
with hdl_graph_slam is slightly distorted. The use of IMU data as additional boundary
conditions did not lead to significant improvements.

Computation 2022, 10, x FOR PEER REVIEW 12 of 20

map created with hdl_graph_slam is slightly distorted. The use of IMU data as additional
boundary conditions did not lead to significant improvements.

Figure 10. Map of the corridor in the B-building of the University of Applied Sciences Offenburg
created with hdl_graph_slam (FAST_GICP).

3.3. Test Outdoor: Accuracy, Inclination, and Height
For outdoor evaluation, the hdl_graph_slam is tested in the spacious parking lot and

on the campus of the university. These two test scenarios are described below.

The Parking Lot of the Offenburg University of Applied Sciences
The first outdoor test was recorded in the parking lot of the Offenburg University of

Applied Sciences. On the day of the test, the parking lot was sparsely filled with cars, as
can be seen in Figure 11. The parking lot is almost flat and spacious so that only ground
surfaces are detected in the immediate vicinity of the Husky robot, and trees and buildings
can be detected by the LiDAR sensor from a distance of approximately 40 m. The LiDAR
sensor is also able to measure the distance from the parking lot. As a ground truth (refer-
ence), the trajectory was also determined using an RTK GPS. For this purpose, the base
station was calibrated at the position of the car at the starting point. The RTK GPS can
achieve an accuracy of 2 cm when measuring the base station. The total distance of the
trajectory is 180 m with a duration of 223 s.

Figure 10. Map of the corridor in the B-building of the University of Applied Sciences Offenburg
created with hdl_graph_slam (FAST_GICP).

Computation 2022, 10, 154 12 of 19

3.3. Test Outdoor: Accuracy, Inclination, and Height

For outdoor evaluation, the hdl_graph_slam is tested in the spacious parking lot and
on the campus of the university. These two test scenarios are described below.

The Parking Lot of the Offenburg University of Applied Sciences

The first outdoor test was recorded in the parking lot of the Offenburg University of
Applied Sciences. On the day of the test, the parking lot was sparsely filled with cars, as can
be seen in Figure 11. The parking lot is almost flat and spacious so that only ground surfaces
are detected in the immediate vicinity of the Husky robot, and trees and buildings can be
detected by the LiDAR sensor from a distance of approximately 40 m. The LiDAR sensor
is also able to measure the distance from the parking lot. As a ground truth (reference),
the trajectory was also determined using an RTK GPS. For this purpose, the base station
was calibrated at the position of the car at the starting point. The RTK GPS can achieve an
accuracy of 2 cm when measuring the base station. The total distance of the trajectory is
180 m with a duration of 223 s.

Computation 2022, 10, x FOR PEER REVIEW 13 of 20

Figure 11. Trajectories of the different scan matching methods (FAST_GICP, FAST_VGICP, and
RTK GPS as ground truth) on the parking lot of the Offenburg University of Applied Sciences.

For verification, different scan matching methods for odometry determination are
tested again. As in the indoor area, FAST_GICP and FAST_VGICP were shown to be the
most suitable for this application. While the hdl_graph_slam with NDT_OMP deviates
significantly from the ground truth up to the first loop closure; the deviation of the
hdl_graph_slam with the other two algorithms is at a maximum of 20 cm. After the first
loop closure, the deviation with all scan matching algorithms is reduced to 2 cm. In the
second loop, the deviation with NDT_OMP is up to 3 푚 but reduces again to a maximum
of 1 m at the second loop closure. With FAST_GICP and FAST_VGICP, the deviation is
at most 50 cm and reduces again at the loop closure at the end to at most 20 cm. The loop
closures found by hdl_graph_slam can be seen on the right side in Figure 12.

Figure 12. Left: Trajectories of the different scan matching methods (FAST_GICP, FAST_VGICP,
NDT_OMP, and RTK GPS as ground truth) on the parking lot of the University of Applied Sciences
Offenburg. Right: Trajectory with four loop closures found.

In addition to the trajectory, the elevation profile is also checked. Here, the RTK GPS
cannot be used as a reference because its elevation values fluctuate by several meters (Fig-
ure 13a), and this is a flat parking lot. The values of the hdl_graph_slam only vary by

Figure 11. Trajectories of the different scan matching methods (FAST_GICP, FAST_VGICP, and RTK
GPS as ground truth) on the parking lot of the Offenburg University of Applied Sciences.

For verification, different scan matching methods for odometry determination are
tested again. As in the indoor area, FAST_GICP and FAST_VGICP were shown to be
the most suitable for this application. While the hdl_graph_slam with NDT_OMP devi-
ates significantly from the ground truth up to the first loop closure; the deviation of the
hdl_graph_slam with the other two algorithms is at a maximum of 20 cm. After the first
loop closure, the deviation with all scan matching algorithms is reduced to 2 cm. In the
second loop, the deviation with NDT_OMP is up to 3 m but reduces again to a maximum
of 1 m at the second loop closure. With FAST_GICP and FAST_VGICP, the deviation is at
most 50 cm and reduces again at the loop closure at the end to at most 20 cm. The loop
closures found by hdl_graph_slam can be seen on the right side in Figure 12.

In addition to the trajectory, the elevation profile is also checked. Here, the RTK GPS
cannot be used as a reference because its elevation values fluctuate by several meters
(Figure 13a), and this is a flat parking lot. The values of the hdl_graph_slam only vary by
±5 cm. To drain the rainwater, the parking lot is sloped toward a kind of gutter, which
represents the low point of the parking lot. In Figure 12, this is indicated by the red circles.
Looking at the elevation of the trajectories, the low point is reached after 34.95 m, which
corresponds to the center of the left red circle. The same applies to the right red circle. Due
to this, the determined height course is quite plausible but cannot be checked further.

Computation 2022, 10, 154 13 of 19

Computation 2022, 10, x FOR PEER REVIEW 13 of 20

Figure 11. Trajectories of the different scan matching methods (FAST_GICP, FAST_VGICP, and
RTK GPS as ground truth) on the parking lot of the Offenburg University of Applied Sciences.

For verification, different scan matching methods for odometry determination are
tested again. As in the indoor area, FAST_GICP and FAST_VGICP were shown to be the
most suitable for this application. While the hdl_graph_slam with NDT_OMP deviates
significantly from the ground truth up to the first loop closure; the deviation of the
hdl_graph_slam with the other two algorithms is at a maximum of 20 cm. After the first
loop closure, the deviation with all scan matching algorithms is reduced to 2 cm. In the
second loop, the deviation with NDT_OMP is up to 3 푚 but reduces again to a maximum
of 1 m at the second loop closure. With FAST_GICP and FAST_VGICP, the deviation is
at most 50 cm and reduces again at the loop closure at the end to at most 20 cm. The loop
closures found by hdl_graph_slam can be seen on the right side in Figure 12.

Figure 12. Left: Trajectories of the different scan matching methods (FAST_GICP, FAST_VGICP,
NDT_OMP, and RTK GPS as ground truth) on the parking lot of the University of Applied Sciences
Offenburg. Right: Trajectory with four loop closures found.

In addition to the trajectory, the elevation profile is also checked. Here, the RTK GPS
cannot be used as a reference because its elevation values fluctuate by several meters (Fig-
ure 13a), and this is a flat parking lot. The values of the hdl_graph_slam only vary by

Figure 12. Left: Trajectories of the different scan matching methods (FAST_GICP, FAST_VGICP,
NDT_OMP, and RTK GPS as ground truth) on the parking lot of the University of Applied Sciences
Offenburg. Right: Trajectory with four loop closures found.

Computation 2022, 10, x FOR PEER REVIEW 14 of 20

±5 cm. To drain the rainwater, the parking lot is sloped toward a kind of gutter, which
represents the low point of the parking lot. In Figure 12, this is indicated by the red circles.
Looking at the elevation of the trajectories, the low point is reached after 34.95 m, which
corresponds to the center of the left red circle. The same applies to the right red circle. Due
to this, the determined height course is quite plausible but cannot be checked further.

(a)

(b)

Figure 13. (a) Height course of the trajectory of the different scan matching methods (FAST_GICP,
FAST_VGICP, and NDT_OMP) on the parking lot of the University of Applied Sciences Offenburg.
(b) Elevation trajectory of the RTK GPS (red).

Campus Offenburg University of Applied Sciences
As a second test scenario, a trajectory was recorded with the Husky on the campus

of Offenburg University of Applied Sciences, as shown in Figure 14. There are several
buildings on the route at different distances, some of which have large glass fronts. Fur-
thermore, there are many trees on the campus. The ground is also flat in this scenario. Due
to the shadowing of the buildings, the trajectory determined by the RTK GPS (see the red
trajectory, Figure 14) was distorted. Therefore, the RTK GPS cannot be used as ground
truth.

Figure 13. (a) Height course of the trajectory of the different scan matching methods (FAST_GICP,
FAST_VGICP, and NDT_OMP) on the parking lot of the University of Applied Sciences Offenburg.
(b) Elevation trajectory of the RTK GPS (red).

Computation 2022, 10, 154 14 of 19

Campus Offenburg University of Applied Sciences

As a second test scenario, a trajectory was recorded with the Husky on the campus of
Offenburg University of Applied Sciences, as shown in Figure 14. There are several buildings
on the route at different distances, some of which have large glass fronts. Furthermore, there
are many trees on the campus. The ground is also flat in this scenario. Due to the shadowing
of the buildings, the trajectory determined by the RTK GPS (see the red trajectory, Figure 14)
was distorted. Therefore, the RTK GPS cannot be used as ground truth.

Computation 2022, 10, x FOR PEER REVIEW 15 of 20

Figure 14. The trajectory on the campus of the Offenburg University of Applied Sciences.

Instead, in this test scenario the created map is compared with the map from the Ge-
oportal BW by superimposing it over the map created with hdl_graph_slam (see Figure
15). This shows that the contours of the buildings almost match the map available online.
The orientation of the buildings to each other, as well as the dimensions of the generated
map, match the reference map.

(a) (b)

Figure 15. (a) Comparison of the map created using hdl_graph_slam (FAST_GICP) with the map of
the Geoportal BW. (b) Map of the Offenburg campus created with hdl_graph_slam (FAST_GICP).

Incline
The last test scenario checks how well hdl_graph_slam detects gradients. For this

purpose, two test scenarios are considered, in which the scan matching algorithms
FAST_GICP and FAST_VGICP are used. In addition, the tests are performed once with
and once without a floor_detection node.

Figure 14. The trajectory on the campus of the Offenburg University of Applied Sciences.

Instead, in this test scenario the created map is compared with the map from the Geo-
portal BW by superimposing it over the map created with hdl_graph_slam (see Figure 15).
This shows that the contours of the buildings almost match the map available online. The
orientation of the buildings to each other, as well as the dimensions of the generated map,
match the reference map.

Computation 2022, 10, x FOR PEER REVIEW 15 of 20

Figure 14. The trajectory on the campus of the Offenburg University of Applied Sciences.

Instead, in this test scenario the created map is compared with the map from the Ge-
oportal BW by superimposing it over the map created with hdl_graph_slam (see Figure
15). This shows that the contours of the buildings almost match the map available online.
The orientation of the buildings to each other, as well as the dimensions of the generated
map, match the reference map.

(a) (b)

Figure 15. (a) Comparison of the map created using hdl_graph_slam (FAST_GICP) with the map of
the Geoportal BW. (b) Map of the Offenburg campus created with hdl_graph_slam (FAST_GICP).

Incline
The last test scenario checks how well hdl_graph_slam detects gradients. For this

purpose, two test scenarios are considered, in which the scan matching algorithms
FAST_GICP and FAST_VGICP are used. In addition, the tests are performed once with
and once without a floor_detection node.

Figure 15. (a) Comparison of the map created using hdl_graph_slam (FAST_GICP) with the map of
the Geoportal BW. (b) Map of the Offenburg campus created with hdl_graph_slam (FAST_GICP).

Computation 2022, 10, 154 15 of 19

Incline

The last test scenario checks how well hdl_graph_slam detects gradients. For this pur-
pose, two test scenarios are considered, in which the scan matching algorithms FAST_GICP
and FAST_VGICP are used. In addition, the tests are performed once with and once without
a floor_detection node.

The Entrance Area in Front of the B-Building of the Offenburg University of Applied Sciences

The first test track is shown in Figure 16. The trajectory driven can be seen on the right
side of the figure. This test scenario involves a slowly sloping terrain. The robot started on
the right side above the stairs. The robot was then steered in a large loop around the steps,
returning to the starting point after one loop. The height difference covered by the stairs is
51 cm.

Computation 2022, 10, x FOR PEER REVIEW 16 of 20

The Entrance Area in Front of the B-Building of the Offenburg University of Applied
Sciences

The first test track is shown in Figure 16. The trajectory driven can be seen on the right
side of the figure. This test scenario involves a slowly sloping terrain. The robot started
on the right side above the stairs. The robot was then steered in a large loop around the
steps, returning to the starting point after one loop. The height difference covered by the
stairs is 51 cm.

(a) (b)

Figure 16. (a) Test track. (b) Map of the entrance area of the B-building created using
hdl_graph_slam.

If the floor_detection node is activated, the height curve shown in Figure 17 results.

Figure 17. Height course of the trajectory determined by hdl_graph_slam with the activated
floor_detection node.

Instead of a decreasing height curve, the height increases by 20 cm while the robot
moves downward. The trajectory determined in this way looks correct, but the recorded
height profile is incorrect. The same can be seen when activating the floor_detection node
on the second test track. This should therefore only be activated for flat surfaces (and oth-
erwise deactivated).

Figure 16. (a) Test track. (b) Map of the entrance area of the B-building created using hdl_graph_slam.

If the floor_detection node is activated, the height curve shown in Figure 17 results.

Computation 2022, 10, x FOR PEER REVIEW 16 of 20

The Entrance Area in Front of the B-Building of the Offenburg University of Applied
Sciences

The first test track is shown in Figure 16. The trajectory driven can be seen on the right
side of the figure. This test scenario involves a slowly sloping terrain. The robot started
on the right side above the stairs. The robot was then steered in a large loop around the
steps, returning to the starting point after one loop. The height difference covered by the
stairs is 51 cm.

(a) (b)

Figure 16. (a) Test track. (b) Map of the entrance area of the B-building created using
hdl_graph_slam.

If the floor_detection node is activated, the height curve shown in Figure 17 results.

Figure 17. Height course of the trajectory determined by hdl_graph_slam with the activated
floor_detection node.

Instead of a decreasing height curve, the height increases by 20 cm while the robot
moves downward. The trajectory determined in this way looks correct, but the recorded
height profile is incorrect. The same can be seen when activating the floor_detection node
on the second test track. This should therefore only be activated for flat surfaces (and oth-
erwise deactivated).

Figure 17. Height course of the trajectory determined by hdl_graph_slam with the activated
floor_detection node.

Instead of a decreasing height curve, the height increases by 20 cm while the robot
moves downward. The trajectory determined in this way looks correct, but the recorded
height profile is incorrect. The same can be seen when activating the floor_detection node

Computation 2022, 10, 154 16 of 19

on the second test track. This should therefore only be activated for flat surfaces (and
otherwise deactivated).

If the floor_detection node is deactivated, the following height trajectory is obtained
(Figure 18). At the height measurement point, the height of the trajectory is −57 cm, while
the actual measured height is −51 cm, resulting in a deviation of 6 cm. Once the robot
has returned to its starting position, the height values are again 0 cm. In addition, the
determined gradient decreases continuously. Thus, the hdl_graph_slam delivers good
results with FAST_GICP as well as with FAST_VGICP.

Computation 2022, 10, x FOR PEER REVIEW 17 of 20

If the floor_detection node is deactivated, the following height trajectory is obtained
(Figure 18). At the height measurement point, the height of the trajectory is −57 cm, while
the actual measured height is −51 cm, resulting in a deviation of 6 cm. Once the robot
has returned to its starting position, the height values are again 0 cm. In addition, the
determined gradient decreases continuously. Thus, the hdl_graph_slam delivers good re-
sults with FAST_GICP as well as with FAST_VGICP.

Figure 18. Height course of the trajectory determined by hdl_graph_slam with deactivated floor_de-
tection node.

Wheelchair Ramp in Front of the D-building
The wheelchair ramp in front of the D-building of the Offenburg University of Ap-

plied Sciences is used as the second test track. This overcomes a height of 88 cm and is
shown in the following figure (Figure 19).

(a) (b)

Figure 19. (a) Test track. (b) Map created using hdl_graph_slam from the wheelchair ramp of the D-
building.

The highest point of the trajectory determined by hdl_graph_slam is at 90 cm
(FAST_VGICP) or 88 cm (FAST_GICP), which corresponds to the measured altitude.
However, the height values of the loop, which was run on the actual flat altitude, vary
between 70 and 90 cm (Figure 20). In addition, the wheelchair run is a continuous slope.

Figure 18. Height course of the trajectory determined by hdl_graph_slam with deactivated
floor_detection node.

Wheelchair Ramp in Front of the D-building

The wheelchair ramp in front of the D-building of the Offenburg University of Applied
Sciences is used as the second test track. This overcomes a height of 88 cm and is shown in
the following figure (Figure 19).

Computation 2022, 10, x FOR PEER REVIEW 17 of 20

If the floor_detection node is deactivated, the following height trajectory is obtained
(Figure 18). At the height measurement point, the height of the trajectory is −57 cm, while
the actual measured height is −51 cm, resulting in a deviation of 6 cm. Once the robot
has returned to its starting position, the height values are again 0 cm. In addition, the
determined gradient decreases continuously. Thus, the hdl_graph_slam delivers good re-
sults with FAST_GICP as well as with FAST_VGICP.

Figure 18. Height course of the trajectory determined by hdl_graph_slam with deactivated floor_de-
tection node.

Wheelchair Ramp in Front of the D-building
The wheelchair ramp in front of the D-building of the Offenburg University of Ap-

plied Sciences is used as the second test track. This overcomes a height of 88 cm and is
shown in the following figure (Figure 19).

(a) (b)

Figure 19. (a) Test track. (b) Map created using hdl_graph_slam from the wheelchair ramp of the D-
building.

The highest point of the trajectory determined by hdl_graph_slam is at 90 cm
(FAST_VGICP) or 88 cm (FAST_GICP), which corresponds to the measured altitude.
However, the height values of the loop, which was run on the actual flat altitude, vary
between 70 and 90 cm (Figure 20). In addition, the wheelchair run is a continuous slope.

Figure 19. (a) Test track. (b) Map created using hdl_graph_slam from the wheelchair ramp of the
D-building.

The highest point of the trajectory determined by hdl_graph_slam is at 90 cm (FAST_VGICP)
or 88 cm (FAST_GICP), which corresponds to the measured altitude. However, the height values
of the loop, which was run on the actual flat altitude, vary between 70 and 90 cm (Figure 20). In
addition, the wheelchair run is a continuous slope.

Computation 2022, 10, 154 17 of 19
Computation 2022, 10, x FOR PEER REVIEW 18 of 20

Figure 20. Height course of the trajectory determined by hdl_graph_slam with deactivated floor_de-
tection node.

Looking at the trajectory estimated by hdl_graph_slam, it has different slopes before
and after the curve. Nevertheless, the trajectory reaches the initial level again at the return.

3.4. Experimental Results—Core Findings
The conducted experiments with our system clearly indicate the usefulness and ca-

pability of the autonomous robot for the considered applications. Although, some key
findings need to be exclusively addressed: The system shows great performance and reli-
ability for indoor scenarios on the condition that the floor plane is estimated. Otherwise,
the densely collected points rather deviate from the resulting map.

The floor plane estimation is also crucial for outdoor applications that fit into this
scenario, such as surveillance of parking lots or driving in an urban environment and con-
crete pave ways. Nonetheless, it must be remarked that the floor plane must be deac-
tivated, for example, in a kind of mission planning scenario, when several levels of height,
ramps, or uneven terrain are traveled.

Under the condition of making use of the environment for loop closures, the overall
accuracy is excellent, showing deviations under 10 cm for long ways traveled and height
accuracy down to 2 cm. This is especially important for scenarios where shadowing of the
GNSS occurs or when height has to be taken explicitly into account. Here, our system
clearly outperforms the RTK-GPS taken as a reference.

As a drawback, accuracy deteriorates when loop closures are not possible. In these
scenarios, simpler local odometry and mapping algorithms perform better, giving a
smaller error, especially for driving lengths above 200 m.

4. Conclusions
In the last chapter, it has been shown that the hdl_graph_slam in combination with

the LiDAR OS1 from Ouster and the scan matching algorithms FAST_GICP and
FAST_VGICP achieve good mapping results.

In the indoor domain, the floor_detection node should be used to improve the accu-
racy of the estimated trajectory, especially in terms of elevation. The dimensions of the
generated map in the indoor area were correct except for one wall that was not detected
perpendicularly.

In the outdoor area, the results were also good; thus, the trajectory determined with
hdl_graph_slam almost matched the ground truth trajectory of the RTK GPS. The

Figure 20. Height course of the trajectory determined by hdl_graph_slam with deactivated
floor_detection node.

Looking at the trajectory estimated by hdl_graph_slam, it has different slopes before
and after the curve. Nevertheless, the trajectory reaches the initial level again at the return.

3.4. Experimental Results—Core Findings

The conducted experiments with our system clearly indicate the usefulness and
capability of the autonomous robot for the considered applications. Although, some
key findings need to be exclusively addressed: The system shows great performance and
reliability for indoor scenarios on the condition that the floor plane is estimated. Otherwise,
the densely collected points rather deviate from the resulting map.

The floor plane estimation is also crucial for outdoor applications that fit into this
scenario, such as surveillance of parking lots or driving in an urban environment and
concrete pave ways. Nonetheless, it must be remarked that the floor plane must be
deactivated, for example, in a kind of mission planning scenario, when several levels of
height, ramps, or uneven terrain are traveled.

Under the condition of making use of the environment for loop closures, the overall
accuracy is excellent, showing deviations under 10 cm for long ways traveled and height
accuracy down to 2 cm. This is especially important for scenarios where shadowing of
the GNSS occurs or when height has to be taken explicitly into account. Here, our system
clearly outperforms the RTK-GPS taken as a reference.

As a drawback, accuracy deteriorates when loop closures are not possible. In these
scenarios, simpler local odometry and mapping algorithms perform better, giving a smaller
error, especially for driving lengths above 200 m.

4. Conclusions

In the last chapter, it has been shown that the hdl_graph_slam in combination with the
LiDAR OS1 from Ouster and the scan matching algorithms FAST_GICP and FAST_VGICP
achieve good mapping results.

In the indoor domain, the floor_detection node should be used to improve the accuracy
of the estimated trajectory, especially in terms of elevation. The dimensions of the generated
map in the indoor area were correct except for one wall that was not detected perpendicularly.

Computation 2022, 10, 154 18 of 19

In the outdoor area, the results were also good; thus, the trajectory determined with
hdl_graph_slam almost matched the ground truth trajectory of the RTK GPS. The generated
map of the university campus was also satisfactory, as hardly any distortions could be detected.

The slope tests showed that even to detect only minor elevation changes, the floor_detection
node should be deactivated. The absolute height difference could be determined precisely
with hdl_graph_slam. Thus, the determined height for the wheelchair walks exactly
matched the reference, deviating by only 6 cm in the former test scenario. However, the
intervening slope of the wheelchair ramp only slightly matched the actual one.

In summary, the hdl_graph_slam is well suited for mapping an environment using
Ouster’s 3D LiDAR and thus can be used in many autonomous mobile systems. The
evaluated results related to positioning performance using LiDAR can be useful baseline
work to further improve positioning performance using LiDAR-based SLAM systems.

Author Contributions: Conceptualization, S.H. and M.B.M.; methodology, S.H. and M.O.; software,
M.O.; validation, S.H; investigation, S.H., M.B.M. and M.O.; resources, S.H.; writing—original draft
preparation, S.H. and M.O.; writing—review and editing, S.H. and M.B.M.; visualization, S.H. and
M.O.; funding acquisition, M.B.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is supported by the Bulgarian National Science Fund in the scope of the
project “Exploration the application of statistics and machine learning in electronics” under contract
number KΠ-06-H42/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the Research and Development Sector of the
Technical University of Sofia for its financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Durrant-Whyte, H.; Bailey, T. Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms. Robot. Autom.

Mag. 2006, 2, 1–9.
2. Ivanova, M.; Petkova, P.; Petkov, P. Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice. Electronics

2021, 10, 2878. [CrossRef]
3. Hensel, S.; Marinov, M.B.; Kehret, C.; Stefanova-Pavlova, M. Experimental Set-up for Evaluation of Algorithms for Simultaneous

Localization and Mapping. In Systems, Software and Services Process Improvement; EuroSPI 2020, Communications in Computer
and Information Science; Springer Nature Switzerland AG: Cham, Switzerland, 2020; Volume 1251, pp. 433–444.

4. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J. Past, Present, and Future of
Simultaneous Localization and Mapping: Towards the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

5. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-Time Loop Closure in 2D LIDAR SLAM. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016.

6. Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2,
31–43. [CrossRef]

7. Stateczny, A.; Specht, C.; Specht, M.; Brčić, D.; Jugović, A.; Widźgowski, S.; Wiśniewska, M.; Lewicka, O. Study on the Positioning
Accuracy of GNSS/INS Systems Supported by DGPS and RTK Receivers for Hydrographic Surveys. Energies 2021, 14, 7413.
[CrossRef]

8. Specht, M.; Stateczny, A.; Specht, C.; Widźgowski, S.; Lewicka, O.; Wiśniewska, M. Concept of an Innovative Autonomous
Unmanned System for Bathymetric Monitoring of Shallow Waterbodies (INNOBAT System). Energies 2021, 14, 5370. [CrossRef]

9. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems,
Berkeley, CA, USA; 2014.

10. Weber, H. Funktionsweise und Varianten von LiDAR-Sensoren. Available online: https://cdn.sick.com/media/docs/5/25/425
/whitepaper_lidar_de_im0079425.pdf (accessed on 20 October 2021).

11. Maksymova, I.; Steger, C.; Druml, N. Review of LiDAR Sensor Data Acquisition and Compression for Automotive Applications.
Proceedings 2018, 2, 852.

12. Koide, K.; Miura, J.E.M. A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior
measurement. Int. J. Adv. Robot. Syst. 2019, 16, 1–16. [CrossRef]

http://doi.org/10.3390/electronics10222878
http://doi.org/10.1109/TRO.2016.2624754
http://doi.org/10.1109/MITS.2010.939925
http://doi.org/10.3390/en14217413
http://doi.org/10.3390/en14175370
https://cdn.sick.com/media/docs/5/25/425/whitepaper_lidar_de_im0079425.pdf
https://cdn.sick.com/media/docs/5/25/425/whitepaper_lidar_de_im0079425.pdf
http://doi.org/10.1177/1729881419841532

Computation 2022, 10, 154 19 of 19

13. Burdziakowski, P. Increasing the Geometrical and Interpretation Quality of Unmanned Aerial Vehicle Photogrammetry Products
using Super-resolution Algorithms. Remote Sens. 2020, 12, 810. [CrossRef]

14. Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration. In Proceedings
of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021.

15. Hensel, S.; Marinov, M.; Obert, M.; Trendafilov, D. Design and Implementation of a LIDAR Based Range Sensor System. Complex
Control. Syst. 2022, 4, 16–21.

16. Ouster. Ouster OS1: Mid-Range High-Resolution Imaging Lidar. Available online: https://ouster.com/products/os1-lidar-
sensor/. (accessed on 20 October 2021).

17. Obert, M. Inbetriebnahme und Evaluierung des hdl_graph_slam mit einem 128 Zeilen Ouster LiDAR-Sensor auf der Husky Roboterplattform
von Clearpath; Hochschule Offenburg: Offenburg, Germany, 2021.

18. Bakuła, M.; Przestrzelski, P.; Kaźmierczak, R. Reliable technology of centimeter GPS/GLONASS surveying in forest environments.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 1029–1038. [CrossRef]

19. Specht, C.; Specht, M.; Dabrowski, P. Comparative Analysis of Active Geodetic Networks in Poland. In Proceedings of the 17th
International Multidisciplinary Scientific GeoConference (SGEM 2017), Albena, Bulgaria, 29 June–5 July 2017.

20. Kupitz, C. Inbetriebnahme und Verifizierung eines Kalman Filter zur Lagebestimmung des Clearpath Robotics Husky A200; Technical
report; Department for Electrical Engineering, University of Applied Sciences Offenburg: Offenburg, Germany, 2021.

21. Jelavic, E. ETH Zürich: Programming for Robotics, Introduction to ROS. Available online: https://rsl.ethz.ch/education-students/
lectures/ros.html (accessed on 21 July 2022).

22. Blasdel. About ROS.Version: 2020. Available online: https://www.ros.org/about-ros/ (accessed on 21 July 2022).
23. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In ICRA Workshop on Open Source Software. ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009.
24. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256.

[CrossRef]
25. Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003.
26. Konolige, K.; Nüchter, A. Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2016.
27. Montemerlo, M.; Thrun, S. Simultaneous localization and mapping with unknown data association using FastSLAM. In Pro-

ceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19
September 2003.

28. Carlone, L.; Calafiore, G.C.; Tommolillo, C.; Dellaert, F. Planar Pose Graph Optimization: Duality, Optimal Solutions, and
Verification. IEEE Trans. Robot. 2016, 32, 545–565. [CrossRef]

29. Dellaert, F. Factor Graphs: Exploiting Structure in Robotics. Annu. Rev. Control. Robot. Auton. Syst. 2021, 4, 141–166. [CrossRef]
30. Droeschel, D.; Nieuwenhuisen, M.; Beul, M.; Stueckler, J.; Holz, D.; Behnke, S. Multi-Layered Mapping and Navigation for

Autonomous Micro Aerial Vehicles. J. Field Robot. 2016, 33, 451–475. [CrossRef]
31. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. Lect. Notes Comput. Sci. 2014, 8690, 834–849.
32. Zhang, J.; Singh, S. Laser–visual–inertial odometry and mapping with high robustness and low drift. J. Field Robot. 2018, 35,

1242–1264. [CrossRef]
33. Wan, G.; Yang, X.; Cai, R.; Li, H. Robust and Precise Vehicle Localization Based on Multi-Sensor Fusion in Diverse City Scenes. In

Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018.
34. Available online: https://github.com/koide3,koide3/hdl_graph_slam,2021 (accessed on 22 April 2022).
35. Ali, H.; Ahmed, B.; Paar, G. Robust Window Detection from 3D Laser Scanner Data. In Proceedings of the 2008 Congress on

Image and Signal Processing, Sanya, China, 27–30 May 2008.

http://doi.org/10.3390/rs12050810
https://ouster.com/products/os1-lidar-sensor/.
https://ouster.com/products/os1-lidar-sensor/.
http://doi.org/10.1109/TGRS.2014.2332372
https://rsl.ethz.ch/education-students/lectures/ros.html
https://rsl.ethz.ch/education-students/lectures/ros.html
https://www.ros.org/about-ros/
http://doi.org/10.1109/34.121791
http://doi.org/10.1109/TRO.2016.2544304
http://doi.org/10.1146/annurev-control-061520-010504
http://doi.org/10.1002/rob.21603
http://doi.org/10.1002/rob.21809
https://github.com/koide3,koide3/hdl_graph_slam,2021

	Introduction
	Materials and Methods
	Main Hardware Components
	LiDAR System
	Real Time Kinematics GNSS
	Husky A200

	Main Software Components
	Robot Operating System
	Scan Matching Algorithms

	Overall System

	Experimental Results
	Parameter Configuration
	Test Indoor: Hallway of the B-Building
	Test Outdoor: Accuracy, Inclination, and Height
	Experimental Results—Core Findings

	Conclusions
	References

