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Abstract

An automated vehicle needs to understand its driving environment to
operate safely and reliably. This function is performed within the vehicle’s
perception system, where data from on-board sensors is processed by multiple
perception algorithms, including 3D object detection, semantic segmentation
and object tracking. To take advantage of different sensor modalities, multiple
perception methods fusing the data from on-board cameras and lidars have
been devised. However, sensing exclusively from a single vehicle is inherently
prone to occlusions and a limited field-of-view that indiscriminately affects all
sensor modalities. Alternatively, cooperative perception incorporates sensor
observations from multiple view points distributed throughout the driving
environment.

This research investigates if and how cooperative perception is capable of
improving the detection of objects in driving environments using data from
multiple, spatially diverse sensors. Over the course of this thesis, four studies
are conducted considering different aspects of cooperative perception.

The first study considers the various impacts of occlusions and sensor noise
on the classification of objects in images and investigates how to fuse data
from multiple images. This study serves as a proof-of-concept to validate the
core idea of cooperative perception and presents quantitative results on how
well cooperative perception can mitigate such impairments.

The second study generalises the problem to 3D object detection using
infrastructure sensors capable of providing depth information and investigates
different sensor fusion approaches for such sensors. Three sensor fusion ap-
proaches are devised and evaluated in terms of object detection performance,
communication bandwidth and inference time. This study also investigates
the impact of the number of sensors in the performance of object detection.
The results show that the proposed cooperative 3D object detection method
achieves more than thrice the number of correct detections compared to single
sensor baselines, while also reducing the number of false positive detections.

Next, the problem of optimising the pose of fixed infrastructure sensors in
cluttered driving environments is considered. Two novel sensor pose optim-
isation methods are proposed, one using gradient-based optimisation and one
using integer programming techniques, to maximise the visibility of objects.
Both use a novel visibility model, based on a rendering engine, capable of
determining occlusions between objects. The results suggest that both methods
have the potential to guide the cost effective deployment of sensor networks in
cooperative perception applications.

Finally, the last study considers the problem of estimating the relative pose
between non-static sensors relying on sensor data alone. To that end, a novel
and computationally efficient point cloud registration method is proposed using
a bespoke feature encoder and attention network. Extensive results show that
the proposed method is capable of operating in real-time and is more robust
for point clouds with low field-of-view overlap compared to existing methods.
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Chapter 1

Introduction

Vehicles have enjoyed significant technical developments since their widespread

adoption in the twentieth century. Features such as power steering, cruise

control, seat belts, Anti-Lock Brakes (ABS) and airbags improved the safety and

quality of the driving experience. More recently, Advanced Driver-Assistance

Systems (ADAS) have extended vehicles’ capabilities by providing new safety

features such as traffic alerts, automatic breaking, and lane departure warnings.

Furthermore, ADAS are able to automate some driving tasks under specific

conditions by providing features such as automatic parking, lane keeping,

and adaptive cruise control. ADAS rapid development has promoted a race

towards full driving autonomy where the ultimate goal is creating an Automated

Vehicle (AV) capable of driving under all conditions without human supervision,

which the Society of Automotive Engineers (SAE) classifies as level 5 driving

automation [12].

Both ADAS and AVs require an understanding of the driving environment

in order to operate safely and reliably. For example, the vehicle must be able

to identify other road users, e.g. vehicles, cyclists and pedestrians, as well as

lane limits and road obstacles. This function is performed within the vehicle’s

perception system, where data from one or multiple on-board sensors must be

processed and converted into a representation of the driving environment. Such

representation can have various forms and often use the output of a number

of perception algorithms such as 3D object detection and semantic/instance

segmentation, as illustrated in Figures 1.1 and 1.2, respectively. For example,

objects in the driving environment can be represented by a set of 3D bounding

boxes, delimiting the position, size and orientation of objects in the environment,

as well as the objects’ class. The resulting list of detected objects can then

used as input to advanced algorithms in ADAS/AVs to provide safety features

and high-level functions such as trajectory planning and control.

The accuracy of the perception algorithms, e.g. the accuracy of the detected

bounding boxes, depends on a number of factors, including weather and lighting
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Figure 1.1: 3D Object Detection: lidar and camera sensors are used to detect
objects in 3D space. The detections are represented as green 3D boxes in the
3D point cloud (left) or projected back to the image (right). Image obtained
from [13].

Figure 1.2: Semantic Segmentation: each image pixel is labelled with a corres-
ponding class. This semantic output can be used to determine drivable areas.
Image obtained from [14].
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conditions, the choice of on-board sensors and the performance of perception

algorithms. Camera sensors provide rich texture information that can be used

to classify objects, however, they lack depth information to accurately localise

objects within the 3D space and are unreliable under poor illumination. On

the other hand, lidars provide 3D points with accurate depth and do not rely

on external illumination, but the density of points decreases substantially with

the distance from the sensor. To take advantage of different sensor modalities,

multiple perception methods have been devised to fuse the data from on-board

cameras and lidars.

1.1 Motivation

Despite the improvements in perception due to multi-modal sensor fusion,

sensing exclusively from a single vehicle is inherently prone to a major category

of sensing impairments that indiscriminately affects all sensor modalities.

Such impairments include occlusions, restricted perception horizon due to

limited field-of-view and low point/pixel density at distant regions. As a

result, these impairments may prevent the detection of road users and lead to

potentially hazardous situations, particularly in complex road segments. One

could hypothesise whether such impairments can be mitigated by incorporating

sensor observations from multiple view points distributed along the driving

environment. To this end, cooperative perception could enable agents to

share sensor data and improve the accuracy of 3D object detection, where the

effective field-of-view is enlarged and potentially occluded objects/hazards may

be correctly identified. Cooperative perception could increase the perception

horizon, which would allow vehicles to become aware of objects that are not

within direct line-of-sight, and thus, could not be identified solely by on-board

sensors. Consequently, the safety of road users can be increased compared to

human driving, where the environmental awareness is limited to the drivers’

line-of-sight. Furthermore, knowing the state of the driving environment beyond

the vehicle’s line-of-sight would allow for long-term planning and lead to more

efficient and comfortable driving capabilities.

Ultimately, the fundamental concept of cooperative perception can be

employed in a wide range of applications where multiple agents are able to

share sensor information to improve their collective understanding of the

environment. In the driving context, this concept can be realised considering

sensors on-board of vehicles, or fixed infrastructure-based sensors which are

strategically installed in challenging driving environments. Leveraging the data

from high-end infrastructure sensors would allow vehicles to use lower-end

on-board sensors, and thus, reduce the cost of the suite of sensors required in

automated vehicles.
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Despite the aforementioned benefits, fusing the data from multiple, spatially

diverse sensors is still an open problem. A significant part of the problem is

defining the fusion algorithm, which dictates how and at which stage of the

perception pipeline the data is fused. Furthermore, the data from multiple

sensors must be aligned both spatially and temporally before it can be fused.

The spatial alignment is achieved by transforming the data from each sensor

to a common coordinate system. This requires obtaining the relative pose

transformation between the sensors and a common coordinate system, which

is another critical part of the problem. The relative pose between fixed

infrastructure sensors can be obtained through calibration techniques, however,

sensors on-board of vehicles are constantly moving and, thus, cannot be

calibrated in the same way. Although global positioning and inertial systems

could be used to obtain the relative pose between vehicles, such methods

are prone to significant pose errors that could degrade the performance of

cooperative perception. The temporal alignment consists of ensuring that data

from multiple sources are synchronised in time, which can be challenging due

to communication delay and packet drops. When considering the deployment

of infrastructure sensors, another problem resides in determining the number,

position, and orientation of such sensors. The empirical placement of these

sensors to maximise the coverage of road segments is not capable of guaranteeing

that all objects of interest will be detected since objects are prone to occlusions.

1.2 Research Objective

The aim of this research is to enhance the detection performance of 3D object

detection used in the context of automated vehicles and vehicles with ADAS

capabilities. This leads to the main objective of this research:

Investigate if and how cooperative perception is capable of improving

the detection of objects in driving environments using the data from

multiple, spatially diverse sensors.

To achieve this objective, several studies considering different aspects of

cooperative perception are reported in this thesis. An overview of these studies,

including how they interconnect and address gaps in the literature, is presented

in Chapter 3. That chapter also presents the research questions investigated in

each study.

1.3 Contributions

The main contributions made in this thesis are summarised as follows:
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� A system architecture with three fusion schemes is proposed for Cooperat-

ive 3D Object Detection using Infrastructure sensors in Chapter 5; a new

dataset considering infrastructure-based sensors is created to evaluate

the proposed system; a thorough analysis is performed considering how

the number of sensors and fusion algorithms impacts detection perform-

ance and communication load, providing a guidance to the practical

deployment the system;

� A realistic visibility model capable of inferring occlusions between objects

is proposed; two novel optimisation methods, both using the aforemen-

tioned visibility model, are proposed to optimise the pose of infrastructure

sensors in Chapter 6;

� A novel registration method is proposed to obtain the relative pose

between a pair of partially overlapping point clouds in real-time in

Chapter 7; a new lidar dataset for cooperative perception is created,

including a diverse range of driving scenarios with multiple lidar sensors,

which is used to evaluate the registration performance and can also be

used for 3D object detection and tracking.

1.4 Outline

This section provides an outline of this thesis.

Chapter 2 reviews existing works in the context of perception for autonom-

ous driving applications. The topics include 3D object detection and classi-

fication, cooperative perception, sensor pose optimisation, and point cloud

registration. The comprehensive review of these works identifies research gaps

and opportunities related to cooperative perception for driving applications.

This review identifies that understanding how to fuse data from multiple sensors

spatially distributed in an environment, how to optimise the pose of infrastruc-

ture sensors and how to efficiently obtain accurate relative pose transformation

between sensors on-board of vehicles are all still open challenges.

Chapter 3 provides a concise overview of the research activities in this thesis

and how they interconnect. This chapter describes the research methodology,

contributions and describes how the research gaps identified in the previous

chapter are addressed.

In Chapter 4, an initial concept of cooperative perception for object classi-

fication is designed and implemented. The images contain a single object and

are artificially impaired with sensor noise and occluding objects. Despite these

strong assumptions, this study validates the concept of cooperative perception

and shows its potential in overcoming sensor noise and occlusions.
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Chapter 5 generalises the previous concept of cooperative perception to

3D object detection using lidar sensors. A cooperative perception system is

designed and implemented assuming fixed infrastructure sensors. Three sensor

fusion algorithms are proposed and evaluated in terms of communication load,

inference time and object detection performance. The system is capable of

significantly increasing the detection performance compared to non-cooperative

baselines and has shown resilience to sensor impairments.

In the previous chapter, the infrastructure sensors are empirically placed in

the environment according to heuristics including ground coverage and field-of-

view overlap maximisation. In Chapter 6, the problem of optimising the pose

of fixed infrastructure sensors for cooperative perception is addressed. Both

have the potential to guide the cost effective deployment of sensor networks in

cooperative perception applications.

Chapter 7 addresses the problem of estimating the relative pose between

sensors on-board of vehicles. A novel point cloud registration method is

proposed to efficiently recover the relative pose between two lidar sensors.

The evaluation on real and synthetic datasets demonstrates that the proposed

method is robust to partially overlapping point clouds and can be used in

real-time cooperative perception applications.

In Chapter 8, the results from the previous chapters are discussed in the light

of the research objectives. This chapter concludes this work by highlighting

the key learnings, strengths and the limitations of this research. In addition,

recommendations for future research directions are provided.
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Chapter 2

Literature Review

This chapter reviews existing works related to perception problems in driving

applications organised in six sections. First, Section 2.1 discusses existing sensor

technology and their usage in the context of perception problems. Section

2.2 reviews methods for object classification. Next, methods for 3D object

detection and cooperative 3D object detection are reviewed in Section 2.3 and

2.4, respectively. Then, sensor pose optimisation methods and point cloud

registration methods are reviewed in Section 2.5 and 2.6, respectively. Finally,

a summary of the identified research gaps and opportunities are presented in

Section 2.7.

2.1 Sensors

Although humans primarily use their visual and auditory systems while driving,

artificial perception methods rely on multiple sensor modalities to overcome

shortcomings of individual sensors. There are a wide range of sensors used

by autonomous vehicles: passive ones, such as monocular and stereo cameras,

and active ones, including lidar, radar and sonar. Although the usage of

radar sensors for perception applications have been recently proposed [15, 16],

the majority of research on perception for AVs focus on cameras and lidars

sensors, and thus these two categories are reviewed below. The advantages

and disadvantages of each sensor modality is summarised in Table 2.1.

Monocular cameras provide information in the form of pixel intensities,

which at a bigger scale reveal shape and texture details. The shape and

texture information can be used to detect lane geometry, traffic signs [17] and

objects [18]. One disadvantage of monocular cameras is the lack of depth

information, which is required for accurate object size and position estimation.

Alternatively, depth cameras can be used to recover the depth of each point

relative to the camera. In this category, a stereo camera setup, i.e. a pair of

monocular cameras separated by a small baseline, uses matching algorithms to
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Table 2.1: Sensors Comparison

Advantages Disadvantages

Monocular
Camera

Readily available and inex-
pensive. Multiple specifica-
tions available.

Prone to adverse light
and weather conditions.
No depth information
provided.

Stereo
Camera

Higher point density when
compared to lidar. Provides
dense depth map.

Depth estimation is compu-
tationally expensive. Poor
performance with texture-
less regions or during night-
time. Limited Field-of-
View (FoV). Depth error in-
creases quadratically with
distance.

Lidar 360 degrees coverage, pre-
cise distance measurements.
Not affected by light condi-
tions.

Raw point cloud does not
provide texture information.
Expensive and large equip-
ment.

Solid-
State
lidar

No moving mechanical
parts, compact size. Large
scale production should
reduce final cost.

Limited FoV when com-
pared to mechanical scan-
ning lidar. Still under de-
velopment.

find correspondences in both images and computes the depth of each point based

on the disparity between correspondences [19]. Time-of-Flight (ToF) cameras

are another modality of depth cameras where depth is inferred by measuring

the delay between emitting and receiving modulated infrared pulses [20]. This

active sensor technology has been applied for vehicle safety applications [21], but

despite the lower integration price and computational complexity it has lower

resolution when compared to stereo cameras. A known limitation of camera

sensors is their susceptibility to light and weather conditions, challenging

cases ranging from low luminosity at night-time to abrupt brightness changes

after entering or exiting tunnels. Another issue is the flickering behaviour

created by the recent usage of LEDs on traffic signs and vehicles brake lights

caused as the camera fails to consistently capture the emitted light due to the

LEDs’ switching behaviour. Additionally, weather conditions such as rain and

snow can degrade the image quality and deteriorate the performance of the

algorithms using the image data.

Lidar sensors emit laser beams and measure the time between emitting and

detecting the pulse back. The timing information determines the distance of

obstacles in any given direction. The sensor readings result in a set of 3D points,
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also called a point cloud, and corresponding reflectance values representing the

strength of the received pulses. One of the advantage of lidars when compared

to stereo-based depth cameras is that the error in the measured depth of each

point does not depend on the distance from the point to the sensor, while

for stereo cameras this error increases quadratically [22]. As active sensors,

external illumination is not required and thus more reliable detection can

be achieved considering extreme lighting conditions (e.g., night-time or sun

glare scenarios). Still, these sensors are also vulnerable to adverse weather

conditions, particularly heavy fog and snow [23]. Standard lidar models, such

as the HDL-64L [24], use an array of rotating laser beams to obtain 3D point

clouds in 360 degrees and up to 120m radius. This sensor can output 120

thousand points per frame, which amounts to 1,200 million points per second

on a 10 Hz frame rate. Velodyne recently announced the VLS-128 model

[25] featuring 128 laser beams, higher angular resolution and 300m radius

range. The announcement suggests that the increased point density might

enhance the recall of methods using this modality but challenges real time

processing performance. Although the cost of lidar sensors is still the main

cause preventing its widespread adoption, new technology including solid state

lidar technology [26] and large scale production are expected to reduce the

costs of individual sensors.

2.2 Object Classification

Object classification is a sub-problem within object detection. The problem

definition of object detection is “to determine where objects are located in a

given image (object localisation) and which category each object belongs to

(object classification)” [27]. In other words, while object classification is the

problem of classifying an object depicted in an image into one of a set of classes,

object detection is the problem of identifying if and where an object is present

in an image. In general, the classification of an object in an image is performed

within a detection pipeline consisting of two steps. First, obtaining a set of

object proposals in the form of a 2D bounding boxes determining the object

size on the image plane. Next, classifying each proposal into a set of predefined

classes, or, alternatively discarding the proposal as not containing any objects.

The set of predefined classes depend on the application, but in the driving

domain these typically include vehicles, pedestrians and cyclists. Early works

use the selective search [28] algorithm to create class agnostic 2D bounding

boxes over potential objects on images. The image patches determined by these

boxes can then be classified into the predefined classes using a convolutional

neural network-based classifier [29]. More recent methods perform detection

and classification simultaneously by considering class-specific object bounding
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box proposals [30].

A variation of this problem considers the classification of an object’s 3D

model encoded by meshes or 3D points (point cloud). In this context, object

classification methods can be categorized into two groups. The first one uses

3D shape features derived directly from the 3D model. In contrast, the second

group renders the 3D shape into one or multiple images from different view-

points and then extract features from these images to perform classification.

In the first group, the features can be “hand-engineered” [31–33] or learned

directly from the data using voxel [34, 35] or point cloud [36, 37] representations.

For example, 3D ShapeNet [34] uses a convolutional deep belief network to

learn the joint distribution of volumetric representation (voxels) of 3D objects

and their class labels. In contrast, PointNet [36] directly uses point cloud data,

i.e. 3D points on the surface of the object, to perform object classification and

segmentation. Despite improvements in this group, the dimensionality and low

resolution of voxelised 3D inputs undermines the classification performance of

these methods [38].

In the group considering rendered images of the 3D object, the feature

extraction can be either based on “hand-engineered” features, e.g. using Scale

Invariant Feature Transform (SIFT) [39] and Fisher vectors [40], or learned

using Convolutional Neural Network (CNN) models [29, 41]. In the learning

category, Su et al. [42] render each 3D object model in 12 different views and

then propose a CNN architecture to generate a global feature of the object based

on the rendered views. This descriptor is used both for object classification and

retrieval. Further work by Kanezaki et al. [43] leverages the similarities between

pose estimation and object classification problems to create a single network

that can perform both tasks simultaneously. Their proposed model takes

multi-view inputs and predicts both pose and class for each image, selecting

the object class that maximizes the overall class likelihood. Furthermore, the

object pose is treated as a latent variable, allowing unsupervised training on

the pose with an un-aligned dataset.

Considering occlusions, Meger et al. [44] train image classifiers on full

objects and sub-parts to detect occluded 3D objects in an indoor scenario. They

formulate the presence of an object under a Bayesian framework considering

size priors, depth and structure-from-motion posteriors. Yilmaz et al. [45]

explore recurrent connections on convolutional networks to overcome occlusion

on image classification tasks. Despite classification performance improvement,

a naive occlusion model is used, where black rectangles are drawn upon original

images. Chandler et al. [46] generate an occluded dataset using a range

occlusion models, but limited in the number of object classes and samples.

Their method uses an in-painting technique to overcome occlusion, but in turn

requires segmentation and annotation of the occlusion degree to be effective.
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2.3 3D Object Detection

The problem of 3D object detection consists of detecting objects by estimating

their 3D position, size, heading angle and class. This problem is a generalisation

of object classification, since the object position, size and orientation must

also be provided. In the driving domain, the class of objects is generally

limited to vehicles, pedestrians and cyclists [47]. 3D object detection models

receive input data from sensors, e.g. cameras and/or lidars, and output 3D

bounding boxes, which fully describe the 3D position, size and orientation

of objects. A traditional pipeline consists of segmentation (e.g., graph-based

segmentation [48] and voxel-based clustering methods [49]), hand-engineered

feature extraction (e.g., voxel’s probabilistic features [49]) and classification

stages (e.g., a mixture of bag-of-words classifiers [50]). Unlike traditional

pipelines, which optimise each stage individually, end-to-end pipelines optimise

the overall pipeline performance. An end-to-end detection method leverages

learning algorithms to propose regions of interest and extract features from the

data. The shift towards representation learning and end-to-end detection was

possible by using deep learning methods, such as deep convolutional networks,

which showed a significant performance gain in different applications [30, 51].

The review of 3D object detection methods is divided into three categories

according to the input data modality : monocular image, point cloud and

fusion based methods. Each category is reviewed in a sub-section below, and

an overview of methodology, advantages and limitations for these methods is

provided in Table 2.2.

2.3.1 Monocular Image-based Methods

The problem of 2D object detection has been widely explored in the literature

and has achieved remarkable results in several datasets [29, 52]. In the context

of autonomous driving, datasets such as KITTI [47], Cityscapes [53], nuScenes

[54] and Waymo Open [55] offers particular settings that pose challenges

to object detection. These settings, common to most driving environments,

include scenes with a high density of objects, many occluded or truncated, and

highly saturated areas or shadows. Furthermore, 2D detection on the image

plane is not enough for reliable driving systems: accurate 3D space localisation

and size estimation is required for driving applications where vehicles require a

3D understanding of the environment. This section focuses on methods that

are able to estimate 3D bounding boxes based only on monocular images. Since

no depth information is available, most approaches first detect 2D candidates

before predicting a 3D bounding box that contains the object using neural

networks [56], geometrical constraints [57] or 3D model matching [58, 59].

More recent approaches use deep neural networks to estimate a depth map
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Table 2.2: Comparison of 3D Object Detection Methods by Category

Category Methodology/Advantages Limitations/Drawbacks

Monocular Uses a single RGB image. Lift
2D detection on the image plane
to 3D through re-projection con-
straints. Newer methods use depth-
map regression to obtain pseudo-
point clouds.

The lack of explicit depth informa-
tion on the input format limits the
accuracy of object localization.

Point-cloud

Projection Projects point clouds into a 2D im-
age and use established architec-
tures for object detection on 2D
images with extensions to regress
3D bounding boxes.

Projecting the point cloud data in-
evitably causes information loss. It
also prevents the explicit encoding
of spatial information as in raw
point cloud data.

Volumetric Generates a 3 dimensional repres-
entation of the point cloud in a
voxel structure and uses Fully Con-
volutional Networks (FCNs) to pre-
dict object detections. Shape in-
formation is encoded explicitly.

Expensive 3D convolutions increase
model’s inference time. The volu-
metric representation is sparse and
computationally inefficient.

PointNets Uses feed-forward networks consum-
ing raw 3D point clouds to generate
predictions on class and estimated
bounding boxes.

Considering the whole point cloud
as input can increase run-time. Dif-
ficult establishing region proposals
considering raw point inputs.

Fusion Fuses both front view images and
point clouds to generate a robust
detections. Architectures usually
consider multiple branches, one per
modality, and rely on region propos-
als. Allows modalities to interact
and complement each other.

Requires calibration between
sensors, and depending on the ar-
chitecture can be computationally
expensive.
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from a single monocular image [60–63]. The predicted depth map is then

back-projected to 3D, creating a pseudo-lidar point cloud that can be processed

by state-of-the-art lidar-based object detectors.

Chen et al. propose Mono3D [56], which leverages a simple region proposal

algorithm using context, semantics, hand-engineered shape features and location

priors. For any given proposal, these features can be efficiently computed and

scored by an energy model. Proposals are generated by exhaustive search on

3D space and filtered with the Non-Maxima Suppression (NMS) algorithm.

The proposals are further scored by a Fast R-CNN [29] model that regresses

3D bounding boxes. The work builds upon the authors’ previous work 3DOP

[64], which considers depth images to generate proposals in a similar fashion.

Despite using only monocular images, the Mono3D model slightly improves

the performance obtained by [64], which uses depth images. Pham et al. [65]

extends the 3DOP proposal generation considering class-independent proposals,

then re-ranks the proposals using both monocular images and depth maps.

Their method outperforms both 3DOP and Mono3D methods, despite using

depth images to refine proposals.

An important characteristic of driving environments is severe occlusion

present in crowded scenes where objects may occlude other objects or parts of

themselves (self-occlusion). Xiang et al. introduce visibility patterns into the

model to mitigate occlusion effects through object reasoning. They propose the

3D Voxel Pattern (3DVP) [58] representation that models appearance through

RGB intensities and 3D shape as a set of voxels with corresponding occlusion

masks. This representation allows to recover which parts of the object are

visible, occluded or truncated (partially invisible). They obtain a dictionary

of 3DVPs by clustering the patterns observed on the data and training a

classifier for each specific pattern given a 2D image segment of the vehicle.

During the test phase, the pattern obtained through classification is used for

occlusion reasoning and 3D pose and localisation estimation. The 3D position is

recovered by minimizing the re-projection error between a fixed-sized, oriented

3D bounding box and the 2D detection on the image plane. Their proposed

pipeline is still dependent on the performance of Region Proposal Networks

(RPNs).

Although some RPNs were able to improve traditional proposal methods

[29] they still fail to handle occlusion, truncation and different object scales.

Extending the previous 3DVP framework, the same authors propose SubCNN

[66], a CNN that explores class information for object detection at the RPN

level. They use the concept of subcategory, which are classes of objects sharing

similar attributes such as 3D pose or shape. Candidates are extracted using

convolutional layers to predict heat maps for each subcategory at the RPN

level. After Region of Interest (ROI) proposal estimation, the network outputs
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category classification along with refined 2D bounding box estimates. Using

3DVPs [58] as subcategories for pedestrian, cyclist and vehicle classes, the

model recovers 3D shape, pose and occlusion patterns. An extrapolating layer

is used to improve small object detection by introducing multi-scale image

pyramids.

Although the previous 3DVP representations [58, 66] allow to model oc-

clusion and parts appearance, they are obtained as a classification among an

existing dictionary of visibility patterns common in the training set. Thus,

may fail to generalize to an arbitrary vehicle pose that differs from the existing

patterns. To overcome this, Deep MANTA [59] uses a many-task network to

estimate vehicle position, part localization and shape based from a monocular

image. The vehicle shape consists of a set of key points that characterize the

vehicle 3-dimensional boundaries, i.e. external vertices of the vehicle. They

first obtain 2D bounding regression and parts localization through a two-level

refinement region-proposal network. Next, based on the inferred shape 3D

model matching is performed to obtain the 3D pose.

Previous methods performed either exhaustive search on the 3D bounding

box space [56], estimated 3D localisation using a cluster of appearance patterns

[58] and 3D templates [59]. Mousavian et al. [57] first extend a standard 2D

object detector with 3D orientation (yaw) and bounding box sizes regression.

This is justified by the box dimensions having smaller variance and being invari-

ant with respect to the orientation. The 3D box dimensions and orientations

are determined by the network prediction. and the 3D object pose is recovered

solving for a translation vector that minimizes the re-projection error of the

3D bounding box w.r.t. the 2D detection box on the image plane.

More recently, a new branch of methods use CNNs to regress a depth map

from a single monocular image, which is then back-projected to 3D space,

creating pseudo-point clouds. These point clouds can then be processed using

state-of-the-art methods for lidar point-clouds. In this category, Weng and

Kitani [63] obtain 2D detections and instance segmentation from the image

and use a CNN on each instance patch to regress a depth map which is then

lifted to a point cloud format and finally processed by a point-cloud based

detection model. They propose two innovation to alleviate noise in the depth

estimation stage, namely a 2D-3D consistency constraint and using the instance

segmentation patch to regress depth instead of the whole 2D bounding box.

Further work by Rui et al. [61] creates a differentiable end-to-end model that

creates a depth representation aligned with the final goal of 3D object detection,

which results in a significant detection performance increase for monocular

methods. You et al. [62] improves upon the previous methods by improving

upon the depth prediction of far objects, which is the weakness of the previous

methods. They propose to use a stereo depth-regression network adapted to
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monocular images only and calibrate the depth map estimates using sparse

lidar points to further reduce depth errors. The limitation of this branch of

methods include the inaccuracies in the depth estimation, which can lead to

significant localisation errors [61, 62] and the poor generalisation to unseen

objects [67], which poses safety threats.

All the previous monocular methods detects objects using the front-facing

camera, ignoring objects on the sides and rear of the vehicle. In contrast, [68]

proposes the first 360 degrees panoramic image based method for 3D object

detection. They estimate dense depth maps of panoramic images and adapt

standard object detection methods for the equirectangular representation. Due

to the lack of panoramic labelled datasets for driving, they adapt the KITTI

dataset using style and projection transformations. They additionally provide

benchmark detection results on a synthetic dataset.

Monocular 3D object detection methods have been widely researched. Al-

though previous works considered hand-engineered features for region proposals

[56], most methods have shifted towards a learned paradigm for Region Pro-

posals and second stage of 3D model matching and re-projection to obtain 3D

bounding boxes. The main drawbacks of monocular based methods is the lack

of depth cues, which limits detection and localization accuracy specially for

far and occluded objects, and sensitivity to lighting and weather conditions,

limiting the usage of these methods for the day time. Newer pseudo-lidar

methods have shown better results than previous approaches, but rely on

depth regression methods which have limited accuracy and may introduce large

errors for objects far from the camera. The methodology/contributions and

limitations of monocular methods are summarised in Table 2.3.

2.3.2 Point Cloud-based Methods

3D object detection methods based on point-clouds can be divided into three

subcategories: projection-based, volumetric representations, raw point clouds

and multi-representation methods (using multiple input representations). A

summary of point cloud-based methods is presented in Table 2.4. Each category

is explained and reviewed below, followed by a summary discussion.

Projection Methods

Image classification and object detection in 2D images is a well-researched

topic in the computer vision community. The availability of datasets and

benchmarked architectures for 2D images make using these methods even

more attractive. For this reason, point cloud (PCL) projection methods first

transform the 3D points into a 2D image via plane [81], cylindrical [69], spherical

[82] or bird-eye view projections that can then be processed using standard
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Table 2.3: Summary of Monocular-based 3D Object Detection Methods

Method Methodology/Contributions Limitations

Mono3D
[56]

Improves detection performance over
3DOP that relied on the depth channel.

Poor localization accuracy given the
lack of depth cues.

3DVP [58] Novel 3DVP object representation in-
cludes appearance, 3D shape and occlu-
sion information. Classification among
an existing set of 3DVPs allows occlu-
sion reasoning and recovering 3D pose
and localization.

Fixed set of 3DVPs extracted during
training limits generalisation to arbit-
rary object poses.

SubCNN
[66]

Uses 3DVP representation to gener-
ate occlusion-aware region proposals.
The proposals are refined and classi-
fied within the object representations
(3DVP). Improves RPN model refine-
ment network using CNNs.

Since the 3DVP representation is em-
ployed, this method has the same limit-
ations as the previous one.

Deep3DBox
[57]

Simplified network architecture by inde-
pendently regressing bounding box size
and angle. Then using image reprojec-
tion error minimization to obtain 3D
localization.

The reprojection error is dependent on
the BB size and angle regressed by the
network. This dependence increases loc-
alization error.

360Panoramic
[68]

Estimates depth for 360 degrees panor-
amic monocular images. Then adapt a
CNN to predict 3D object detections
on the recovered panoramic image. The
only method capable of using images to
detect objects at any angle around the
vehicle.

Limited to vehicle detection and fails
when the vehicle is too close to the cam-
era. The resolution of the camera limits
the range of detection.

Monocular
Pseudo-
lidar [61–
63]

Estimates depth for monocular images,
lifting the depth maps into 3D point
clouds which are then processed by
lidar-based 3D object detectors.

Significant detection performance in-
crease compared to previous methods,
however still perform poorly for far-
away objects where the depth estimates
from a monocular image are poor.
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Table 2.4: Summary of Point Cloud-based 3D Object Detection Methods

SubCategory Method Methodology/Contributions Limitations

Projection

VeloFCN
[69]

Uses fully convolutional architec-
ture with lidar point cloud bird-eye
view projections. Output maps rep-
resent 3D bounding box regressions
and “objectness” score, the likeli-
hood of having an object at that
position.

Detects vehicles only. Limited per-
formance on small or occluded ob-
jects due to the loss of resolution
across feature maps.

C-YOLO
[70]

Uses a YOLO based single-shot de-
tector extended for 3D BB and ori-
entation regression. The proposed
architecture achieves 50 fps runtime,
more than any previous method.

There is a tradeoff between infer-
ence time and detection accuracy.
Single-shot networks underperform
networks that use a second stage for
refinement.

TowardsSafe
[71]

Uses variational dropout inference
to quantify uncertainty in class and
bounding box predictions. Aleat-
oric noise modelling allows the net-
work to generalise better by redu-
cing the impact of noisy samples in
the training process.

The uncertaity estimation requires
several forward passes of the net-
work. This limits the temporal per-
formance of this method, preventing
real-time results.

BirdNet
[72]

Normalizes point cloud representa-
tion to allow detection generalisa-
tion across different lidar models
and specifications.

Input image with only 3 channels en-
coding height, density and intensity
information looses detailed inform-
ation, which degrades performance.

Volumetric

3DFCN [73] Extension of the FCN architecture
to voxelised lidar points clouds.
Single shot detection method.

Requires 3D convolutions, limiting
temporal performance to 1 fps.

Vote3Deep
[74]

Proposes an efficient convolutional
algorithm to exploit the sparsity
of volumetric point cloud data.
Uses L1 regularisation and Recti-
fied Linear Unit (ReLU) to main-
tain sparsity.

Assumes fixed sizes for all detected
objects, limiting the detection per-
formance.

VoxelNet
[75]
SECOND
[76]

Uses raw 3D points to learn a volu-
metric representation through Voxel
Feature Encoding layers. The volu-
metric features are used for 3D re-
gion proposal.

Expensive 3D convolutions limits
time performance. Models are class
specific, thus multiple models must
be run in parallel at run time.

Raw Point Cloud

PointRCNN
[77]

Uses raw 3D points to learn point-
wise feature vectors through Point-
net++ backbone. Segment back-
ground/foreground masks and gen-
erate 3D bounding box proposals
based on point-wise features.

Models are class specific and
struggle with smaller objects such
as pedestrians.

3DSSD [78] Efficient point cloud sampling
through Farthest Point Sampling
(FPS) based on Euclidian and point
feature distance. The proposed
sampling scheme reduces the num-
ber of background points and in-
creases recall of objects while re-
ducing the processing cost of the
system.

Model architecture requires tun-
ing according to the complexity of
the data, e.g. different models for
KITTI and nuScenes.

Multi-Representation PV-
RCNN [79]
M3DETR
[80]

Exploits the strengths of multiple
input representations (projection,
volumetric and raw point cloud) to
improve the detection performance.

Increased computational cost due to
multiple input branches and multi-
scale features, which may limit prac-
tical usage in real-time applications.
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2D object detection models such as [83]. The 3D bounding box detections are

obtained using position and dimensions regression.

Li et al. [69] uses a cylindrical projection mapping and a Fully Convolutional

Network (FCN) to predict 3D bounding boxes around vehicles only. The input

image resulting from the projection has channels encoding the points’ height and

distance from the sensor. This input is fed to a 2D FCN which down-samples

the input for three consecutive layers and then uses transposed convolutional

layers to up-sample these maps into point-wise “objectness” score and bounding

box (BB) prediction outputs. The first output defines if a given point is part of

a vehicle or the background, effectively working as a weak classifier. The second

output encodes the vertices of the 3D bounding box delimiting the vehicle

conditioned by the first output. Since there will be many BB estimates for

each vehicle, an NMS strategy is employed to reduce overlapping predictions

based on score and distance. The authors train this detection model in an end-

to-end fashion on the KITTI dataset with loss balancing to avoid bias towards

negative samples or near cars, which appear more frequently. Meyer et al.

propose LaserNet [84], a network that maps cylindrical projection input point

clouds into a multi-modal distribution over 3D bounding boxes. The authors

show that estimating a distribution over 3D bounding boxes leads to increased

detection performance when compared to the standard deterministic single

bounding box estimate. Furthermore, the network uses a fully convolutional

architecture which provides faster inference times than competing methods

[75, 85]. More recently, Fan et al. [86] show that there is a performance gap

between cylindrical and bird-eye (top-down) view models, arising from two

challenges. First, scale variations between near and far objects; and second, the

inconsistency between the cylindrical input coordinate system and cartesian

coordinate system of the output. The authors propose new components in the

architecture to address these challenges and obtain comparable performance

to multi-view-based methods (discussed in Section 2.3.2 – Multi-representation

Methods).

While previous methods used cylindrical and spherical projections, [70, 72,

87] use the bird-eye view projection to generate 3D proposals. They differ

regarding the input representation: the first encodes the 2D input cells using

the minimum, median and maximum height values of the points lying inside the

cell as channels, while the last two use height, intensity and density channels.

The first approach uses a Faster R-CNN [30] architecture as a base with an

adjusted refinement network that outputs oriented 3D bounding boxes. Despite

their reasonable bird-eye view results, their method performs poor orientation

angle regression. Most lidar base methods use sensors with high point density,

which limits the application of the resulting models on low-end lidar sensors.

Beltran et al. [72] propose a novel encoding that normalizes the density channel
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based on the parameters of the lidar being used. This normalization creates a

uniform representation and allows to generalise the detection model to sensors

with different specifications and number of beams.

One fundamental requirement of safety-critical systems deployed on autonom-

ous vehicles, including object detection, is real-time operation capability. These

systems must be able to perform real-time inference to allow the vehicle to

respond to changes in the environment. Complex-YOLO [70] focus on efficiency

using a YOLO [88] based architecture, with extensions to predict the extra

dimension and yaw angle. While classical RPN approaches further process

each region for finer predictions, known as two-stage detectors, this archi-

tecture is categorized as a single-shot detector, obtaining detections with a

single forward step. This allows Complex-YOLO to achieve a runtime of 50

fps, up to five times more efficient than previous methods, despite inferior,

but comparable detection performance. The follow up work by the same au-

thors, Complexer-YOLO [89], extends the previous architecture to incorporate

multi-target tracking and visual features obtained from camera-based semantic

segmentation. Similarly, PIXOR [85] devises a Bird Eye View (top-down)

projection that encodes the binary occupancy of a voxel grid but uses 2D

convolutions and Pyramid-based upsampling [90] to aggregate the features

across different scales. They then output object predictions in a single stage,

without refinement or anchors, which improves the computational performance

while reducing the number of hyper-parameters such as anchor sizes. Luo et al.

[91] explore the same Bird Eye View projection as previous methods and in-

corporate temporal information by concatenating the voxel grids over multiple

frames. This allows them to both increase the object detection performance as

well as forecast objects’ future positions based on the historical input data.

Quantifying the confidence of predictions made by an AV’s object detection

system is fundamental for the safe operation of such vehicle. As with human

drivers, if the system has low confidence on its predictions, it should enter a

safe state to avoid risks. Although most detection models offer a score for each

prediction, they tend to use softmax normalization to obtain class distributions.

Since this normalization forces the sum of probabilities to unity, it does not

necessarily reflect the absolute confidence on the prediction. Feng et al. [71]

uses a Bayesian Neural Network to predict the class and 3D bounding box after

ROI pooling, which allows to quantify the network confidence for both outputs.

The authors quantify epistemic and aleatoric uncertainties. While the former

measures the model uncertainty to explain the observed object, the latter

relates to observation noises in scenarios of occlusion and low point density.

They observed an increase in detection performance when modelling aleatoric

uncertainty by adding a constraint that penalizes noisy training samples.
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Volumetric Convolutional Methods

Volumetric methods assume that the object or scene is represented in a 3D grid,

or a voxel representation, where each unit has attributes, which may include a

binary occupancy state, a continuous point density or a learned embedding.

One advantage of such methods is that they encode shape information explicitly.

However, as a consequence, they require a significant amount of memory to store

the environment, which results in reduced efficiency since most of the volume

is empty, due to the sparsity of lidar point clouds. Additionally, some methods

in this category use 3D convolutions over the volumetric voxel representation,

drastically increasing the computational cost of such models.

Seminal work [73, 74] address the problem of object detection on driving

scenarios using a one-stage FCN on the entire scene volumetric representation.

This one-stage detection differs from two-stage where region proposals are first

generated and then refined on a second processing stage. Instead, one-stage

detectors infer detection predictions in a single forward pass. Li et al. [73] uses

a binary volumetric input and detects vehicles only. The model’s output maps

represent the probability of a vehicle being present in a particular location and

the corresponding BB vertices predictions, similarly to the authors’ previous

work [69]. The model relies on expensive 3D convolutions which limits temporal

performance. Aiming at a more efficient implementation, [74] fixes BB sizes

for each class but detects cars, pedestrians and cyclists. This assumption

simplifies the architecture and together with a sparse convolution algorithm

greatly reduces the model’s complexity at the cost of detection performance.

In VoxelNet [75], Zhou et al. uses raw point subsets to generate voxel-wise

features, creating a uniform representation of the point cloud, as obtained in

volumetric methods. The first step randomly selects a fixed number of points

from each voxel, reducing evaluation time and enhancing generalization. Each

set of points is used by a voxel-feature-encoding (VFE) layer to generate a

voxel-wise feature vector that is aggregated into a 4D volumetric representation.

This representation is fed to 3D convolutional layers, followed by a 3D region

proposal network to predict the objects’ location, size and class. In further

work Zhou et al. [92] propose a dynamic voxelisation process which prevents

information loss due to the sampling process when creating the voxel grid

in VoxelNet. They also propose a multi-view representation: the standard

BEV is used as it preserves objects’ dimensions in real coordinates while

avoiding occlusions and the perspective view (spherical projection) is used

to provide a dense map in the immediate surroundings of the vehicle. The

two-stage network using the multi-view representation shows a significant

detection performance improvement when compared to the previous models.

The multi-view representation significantly increase the detection performance
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of the model compared to the VoxelNet baseline.

SECOND [76] leverages the VoxelNet architecture but proposes an efficient

sparse 3D convolutional implementation that takes advantage the sparsity of

the voxel representation to avoid computing the convolution over empty voxel

grids. They enjoy an increase of temporal performance of four-fold for training

and three-fold for inference when compared to VoxelNet.

PointPillars [93] provide another encoding strategy: they first voxelise the

point cloud over the x-y plane (ignoring the height dimension), then aggregate

mean statistics of the points in each voxel and compute a pillar feature using

a PointNet [36] model. They use the name pillar to denote a voxel without

constraint on the height dimension. Each pillar feature is concatenated in a

dense tensor encoding the position and features of each pillar. This dense tensor

has approximately 97% sparsity, so the encoding process is very efficient. The

final detection uses 2D convolutions over the pillar representation and computes

the objects’ bounding boxes using a single-shot detection network, which allows

for a significantly faster inference speed when compared to previous methods.

HotSpotNet [94] processes a voxelised point cloud into a set of hotspots,

each representing a non-empty voxel within the bounds of an object. The

network then leverages an anchor-free detection head based on the set of

detected hotspots and their spatial relationships. This approach is a bottom-

up approach - deriving objects from its parts (hotspots) - as opposed to the

traditional anchor-based approach where proposals are first estimated and then

refined in a top-down manner. The results show that this bottom-up method

has significant advantages in the detection performance for small objects, such

as cyclists and pedestrians, in the KITTI dataset, when compared to previous

methods [75, 76, 93].

Raw Point Cloud Methods

Point clouds consist of a variable number of 3D points sparsely distributed in

space. Therefore, incorporating their structure to traditional feed-forward deep

neural networks pipelines that assume fixed input data sizes is not a trivial

task. Previous methods attempted to either transform the point cloud raw

points into images using projections or into volumetric structures using voxel

representations. A third category of methods handle the irregularities by using

the raw points as input to a neural network in an attempt to reduce information

loss caused by either projection or quantization in 3D space. In this category

multiple ways have been proposed to incorporate the data from the variable

sized point clouds, for example, by employing Graph Neural Networks (GNNs)

[95]. First, the seminal work within the raw point cloud category is revised;

next its usage within driving applications is reviewed.
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The seminal work in the category is introduced by PointNet [36]. Point

clouds of single objects are used as input to perform object classification and

part-segmentation. The network performs point-wise transformations using

Fully-Connected (FC) layers and aggregates a global feature through a max-

pooling layer, ensuring independence on point order. Experimental results

show that this approach outperforms volumetric methods on the same tasks

[35, 96]. This model is further extended in PointNet++ [97], where each

layer progressively encode more complex features in a hierarchical structure,

similar to the connectivity of convolutional layers on image data. The model

generate overlapping sets of points and local attribute features are obtained

by feeding each set to a local PointNet. Follow up work by Wang et al. [95]

further generalize the PointNet architecture by considering points pair-wise

relationships.

The seminal methods assumed segmented point clouds that contain a single

object, but the gap between object classification and detection is still an open

question. In PointRCNN [77] the authors bridge this gap by using a PointNet

[36] backbone that creates point-wise feature vectors. These vectors are then

used to create background/foreground masks and generate 3D bounding box

proposals. The proposals are further refined using local point feature from the

previous step in a second stage network. STD [98] adopts a similar approach,

however uses a PointNet++ [97] backbone and introduces a voxelisation stage

for bounding box refinement. 3DSSD [78] introduces point cloud sampling

based on Euclidean and Feature distance as an efficient mechanism to generate

object centre proposals. Each proposed region is processed independently

from the global context in a single stage using a PointNet++ based backbone.

This formulation allows for an efficient parallel model that can explore prior

knowledge to generate proposals without global context. Their detection results

are on-par with two-stage methods such as PointRCNN [77] while having lower

computational cost due to the efficient point sampling strategy.

Multi-representation Methods

Previous point cloud-based methods exclusively used one form of input rep-

resentation: either projection, volumetric representations or raw point clouds.

This section reviews a recent category of methods that exploit the strengths

of using multiple input representations of a single point cloud to improve the

overall 3D object detection performance.

Shi et al. propose PointVoxel-RCNN [79] the seminal work introducing

the use of multiple input representations of a point cloud for the purpose of

3D object detection. The authors use a voxelised volumetric representation

to efficiently learn 3D object proposals. Next, a PointNet-based [36] network
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process proposal-specific features with multiple receptive fields. The authors

show that the proposed PointNet-based aggregation allows encoding richer

context information when compared to conventional pooling operations (fully

convolutional networks). Furthermore, these context-rich features allow for

more accurate estimates of objects’ position and confidences.

More recently, M3DETR [80] combines different point cloud input repres-

entations (volumetric voxels, bird-eye projection and raw point clouds using

PointNet-based [36] encoder) with different feature scales per representation

using multi-scale feature pyramids [90]. The different representation feature

branches are fused using a Transformer [99] architecture. The authors show in

extensive results that fusing different representations at multiple scale yields

significant detection performance gains, with the M3DETR outperforming

existing state-of-the-art methods such as PointVoxel-RCNN [79], RangeDet

[86] and PointPillars [93] on the Waymo Open [55] and KITTI [47] datasets.

Although the authors do not present quantitative inference time information,

M3DETR requires more GPU memory and computational power compared

to single input representation methods due to its multiple input branches and

associated Transformer architecture, which may limit its usage in real-time

applications.

2.3.3 Multi-modal Fusion-based Methods

As mentioned previously, point clouds do not provide texture information,

which is valuable for class discrimination in object detection and classification.

In contrast, monocular images cannot capture depth values, which are necessary

for accurate 3D localisation and size estimation. Additionally, the density of

point clouds tends to reduce quickly as the distance from the sensor increases,

while images can still provide a means of detecting far vehicles and objects.

In order to increase the overall performance, some methods try to use both

modalities with different fusion schemes. A summary of fusion methods is

presented in Table 2.5.

Generally, there are three types of fusion schemes [100]:

� Early fusion: Modalities are combined at the beginning of the detection

process, creating a new representation that is dependent on all modalities.

� Late fusion: Modalities are processed separately and independently up

to the last stage, where fusion occurs at the bounding box level. This

scheme does not require all modalities be available as it can rely on the

predictions of a single modality.

� Deep fusion: Proposed in [100], it mixes the modalities hierarchically

in neural network layers, allowing the features from different modalities
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Table 2.5: Summary of Fusion-based 3D Object Detection Methods

Method Methodology/Contributions Limitations

MV3D
[100]

Uses bird-eye and front view lidar
projections as well as monocular
camera frames to detect vehicles.
3D proposal network based on the
bird-eye-view. Introduces a deep
fusion architecture to allow interac-
tions between modalities.

Although far objects might be vis-
ible through the camera, the low
lidar point density prevents detec-
tion of these objects. Specifically,
the RPN based on the bird-eye view
only limits these detections. De-
tects vehicles only.

AVOD
[101]

Uses bird-eye lidar projection and
monocular camera only. New RPN
uses both modalities to generate
proposals. A Feature Pyramid Net-
work extension improves detection
of small objects by up sampling fea-
ture maps. New vector represent-
ation removes ambiguities in the
orientation regression. Can detect
vehicles, pedestrians and cyclists.

Detection method only sensitive to
objects in front of the vehicle due
to the forward-facing camera used.

F-
PointNet
[102]

Extracts 2D detection from image
plane, extrapolates detection to a
3D frustum, selecting lidar points.
Uses a PointNet instance to seg-
ment background points and gen-
erate 3D detections. Can detect
vehicles, pedestrians and cyclists.

Since proposals are obtained from
the front view image, failing to de-
tect objects in this view limits the
detection performance. This limits
the use of this method at night time,
for example.
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to interact over layers, resulting in a more general fusion scheme.

In [103], the authors evaluate the fusion at different stages of a 3D pedestrian

detection pipeline. Their model considered two inputs, a monocular image and

a up-sampled depth frame from a depth camera, which are fused in the channel

dimension. The authors conclude that late fusion yields the best performance,

although early fusion can be used with minor performance drop.

One fusion strategy consists of using the point cloud projection method,

presented in Section 2.3.2, with extra RGB channels of front facing cameras

along the projected point cloud maps to obtain higher detection performance.

Two of these methods MV3D [100] and AVOD [101] use 3D region proposal

networks (RPNs) to generate 3D Regions of Interest (ROI) which are then

projected to the specific views and used to predict classes and 3D bounding

boxes. A third method [104] fuses lidar and RGB learned representation at

multiple stages with a focus on complimentary multiple auxiliary tasks.

The first method, MV3D [100], uses bird-eye and front view projections

of lidar points along the RGB channels of a forward facing camera. The

network consists of three input branches, one for each view, with VGG [52]

based feature extractors. The 3D proposals, generated based solely on the

bird-eye view features, are projected to each view’s feature maps. A ROI

pooling layer extracts the features corresponding to each view’s branch. These

proposal-specific features are aggregated in a deep fusion scheme, where feature

maps can hierarchically interact with one another. The final layers output

the classification result and the refined vertices of the regressed 3D bounding

box. The authors investigate the performance of different fusion methods and

conclude that the deep fusion approach obtains the best performance since it

provides more flexible means of aggregating features from different modalities.

The second method, AVOD [101], is the first to introduce an early fusion

approach where the bird-eye view and RGB channels are merged for region

proposal. The input representations are similar to MV3D [100] except that

only the bird-eye view and image input branches are used. Both modalities’

feature maps are used by the RPN, achieving high proposal recall. The highest

scoring region proposals are sampled and projected into the corresponding

views’ feature maps. Each modality proposal specific features are merged and

a FC layer outputs class distribution and refined 3D boxes for each proposal.

Commonly, loss of details after convolutional stages prevents detection of small

objects. The authors circumvent this by upsampling the feature maps using

Feature Pyramid Networks [90]. Qualitative results show robustness to snowy

scenes and poor illumination conditions on private data.

More recently, Liang et al. [104] proposed to fuse RGB and lidar bird-eye-

view learned representations for 3D object detection using multiple auxiliary
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tasks such as depth completion and ground estimation. They show that learning

these auxiliary tasks in a 3D object detection pipeline improves the learned

features by combining the multi-modal features at various stages of the pipeline.

Their method outperforms all previous lidar-only methods and all multi-modal

fusion methods in terms of 3D Average Precision (AP).

A second strategy consists of using the monocular image to obtain 2D

candidates and extrapolate these detections to the 3D space where point cloud

data is employed. In this category Frustum Point-Net [102] generates region

proposals on the image plane with monocular images and use the point cloud to

perform classification and bounding box regression. The 2D boxes obtained over

the image plane are extrapolated to 3D using the camera intrinsic parameters,

resulting in frustums region proposals. The points enclosed by each frustum are

selected and segmented with a PointNet [36] model to remove the background

clutter and the resulting set feeds a second PointNet instance that performs

classification and 3D BB regression. Similarly, Du et al. [105] first select the

points that lie in the detection box when projected to the image plane, then use

these points to perform model fitting, resulting in a preliminary 3D proposal.

The proposal is processed by a two-stage refinement CNN that outputs the

final 3D box and confidence score. The detections in both these approaches

are constrained by the proposal on monocular images, which can be a limiting

factor due to the limitations of this modality, e.g. lighting conditions, etc. Also

in this category, RoarNet [106] uses the 2D detections to estimate feasible 3D

object poses based on geometrical constraints and reduce the volume of the 3D

frustum, improving the efficiency of the algorithm and alleviates synchronicity

requirements between the lidar and the camera.

Fusion methods obtain state-of-the-art detection results by exploring com-

plimentary information from multiple sensor modalities. While lidar point

clouds provide accurate depth information with sparse and low point density

at far locations, cameras can provide texture information which is valuable

for class discrimination. Fusion of information at feature levels allow to use

complimentary information to enhance performance.

2.3.4 Summary

Monocular 3D object detection methods have limited detection performance

when compared to lidar-based detectors due to the lack of depth information

in images [104]. In contrast, point cloud-based methods have accurate depth

information that can be used to detect objects accurately. Among point cloud-

based methods, the projection subcategory received initial attention due to the

proximity to standard image object detection. Volumetric methods have been

widely explored and research into improving the efficiency of 3D convolutions on
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sparse data has made such methods more competitive in terms of computational

performance. More recently, PointNet methods have emerged as efficient means

to learn 3D shape information directly from irregular data (3D points) and have

shown remarkable detection performance with reduced computational load

by leveraging efficient point cloud sampling strategies [78]. Still, lidar-based

methods have limited performance for far objects due to the sparsity of the

points as the distance from the sensor increases. Multiple multi-modal fusion

methods were proposed to leverage the strengths of each sensor modality,

generally resulting in improved detection performance when compared to single

modality detection methods. Despite such efforts, occlusions and limited field-

of-view still affect both sensor modalities, which causes challenges in detecting

objects that are occluded and/or distant from the sensors. To mitigate such

problems, cooperative 3D object detection methods leverage observations from

multiple sensors spatially distributed in the driving environment.

2.4 Cooperative 3D Object Detection

The methods reviewed in the last section used either a single sensor or multiple

sensors on board a vehicle, i.e. from a single point of view, which is the

mainstream approach for perception in autonomous driving vehicles. However,

these single-view methods are inherently vulnerable to a major category of

sensor impairments that can indiscriminately affect various modes of sensing.

These limitations include occlusion, restricted perception horizon due to limited

field-of-view and low-point density at distant regions. To this end, cooperation

among various agents emerges as a promising remedy for such problems. For this

purpose, information from single modality, spatially diverse sensors distributed

around the environment is fused as a remedy to spatial sensor impairments as

alluded above. The benefits are many-fold: for example, observations of the

environment from diverse poses increase the perception horizon, increase the

density of point clouds, and hence reduce the adverse impacts of sensing noise.

Table 2.6 summarises existing cooperative 3D object detection methods.

Preliminary cooperative perception studies for driving applications focus

on fusing off-board track data with the ego-vehicle detections to improve

tracking using differential GNSS measurements and Kalman filters [111]. Fol-

lowing studies leverage off-board sensor data to improve path planning [112],

intention-awareness [113] and decision making [114]. Still, the majority of these

preliminary works do not focus on the object detection problem, rather, fuse

the tracking information of detected objects [111], or consider the fusion of

raw sensor data to create occupancy maps that are exploited for planning and

control tasks [112, 113].

Focusing specifically on cooperative 3D object detection, Chen et al. [107]
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Table 2.6: Summary of Cooperative 3D Object Detection Methods

Method Methodology/Contributions Limitations

Cooper
[107]

Fuses raw point clouds of two
vehicles. Propose a network archi-
tecture for sparse point clouds. Con-
siders communication costs involved
in cooperative perception.

Evaluation limited to two vehicles
in a small environment or using
data from the same vehicle at dif-
ferent time instants. Lacks quant-
itative analysis of precision-recall
metrics.

F-
Cooper
[108]

Proposes feature-level fusion, as
opposed to raw point cloud fu-
sion. Analyse trade-offs in pro-
cessing time, bandwidth and de-
tection performance between fusion
schemes.

Evaluation restricted to two
vehicles in a specific driving scen-
ario (parking lot). Relative-pose
sensitivity analysis ignores angular
errors.

V2VNet
[109]

Novel GNN aggregates feature-
maps from different vehicles, allows
warping features to account for time
delays between vehicles. Compre-
hensive evaluation on a synthetic
dataset using multiple sensors.

Noise in relative pose transform-
ation degrades detection perform-
ance.

V2VNet
+ Pose
Refine-
ment
[110]

Improves V2VNet [109] using a
pose correction module that ensures
global pose consistency prior to fea-
ture aggregation. Shows robustness
to pose noises of up to 0.8m and
8deg.

Detection performance degrades sig-
nificantly when considering realistic
consumer-grade GNSS/INS pose
noise levels.
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proposes to fuse raw point clouds and introduces Cooper, a neural network

architecture for object detection in sparse point clouds. After the point clouds

are fused into a common coordinate system, the detection pipeline is the

same as a standard single-sensor detection model. Their study considers

communication costs and show that cooperative perception can enhance the

performance of object detection in terms of the number of detected objects

and detection confidence. However, their study lacks a quantitative analysis in

terms of precision-recall metrics, which is customary in the object detection

literature. In follow-up work, the same authors propose F-Cooper [108], a

feature-level fusion scheme and analyse the trade-off between processing time,

bandwidth usage and detection performance. The feature-level fusion is similar

to the deep-fusion approach reviewed in Section 2.3.3, where the raw data

is pre-processed by a network in each vehicle, resulting in a feature map,

which can then shared with other near-by vehicles. Once a feature map is

received from another vehicle, it must be transformed to the local coordinate

system of the ego-vehicle and merged with its local feature map. The merged

feature map is then processed with a detection head which outputs the detected

objects’ bounding boxes. Both works [107, 108] used the KITTI dataset [47],

merging two sequential frames to simulate a cooperative dataset, and their

own dataset obtained with two vehicles on a parking lot. Using sequential

frames from a single vehicle to simulate cooperative perception limits the

diversity of evaluation data as it requires all the environment to be static across

frames, otherwise the merged frames would be inconsistent. Furthermore, only

two sensors are used for evaluation, which prevents understanding how the

detection performance scales with the number of sensors.

Wang et al. proposes V2VNet [109] which uses the concept of feature-based

fusion from [108] to share preprocessed data among nearby vehicles. Once

the pre-processed features are received by a vehicle, they are transformed

to its local coordinate system and then aggregated using a Graph Neural

Network (GNN) to leverage information from all vehicles in the vicinity. A

key novelty in V2VNet is its capability to account for time delays between

sensor measurements. The GNN learns to interpolate the received feature

vectors considering the time delay between the local time and the time when

the received data was sent. The evaluation on their synthetic dataset shows

that this fusion mechanism outperforms raw data fusion and high-level output

fusion, while reducing the communication bandwidth between vehicles.

Before fusing the data from multiple sensors, either high level detections

or low-level raw point clouds, the relative pose between sensors must be

established in order to transform the data from all sensors into a common

coordinate system. The presence of noise in the relative pose transformation

between sensors significantly degrades the performance of object detection, since
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observations become spatially misaligned. The previous methods [107, 108]

considered GNSS/INS sensors to obtain the relative pose between sensors, and

studied the effect of GNSS drift in the detection performance. However, their

analysis considered GNSS drifts in the range of 10cm, while in practice this

can range to the order of meters [115]. Furthermore, they fail to consider the

rotation error that occurs due to noise in the INS measurements, which also

has a detrimental effect on the results of data fusion. Wang et al. [109] show

that their GNN aggregation module is less sensitive to sensor pose noise than

raw data fusion and high-level output fusion. Further work by Vadivelu et al.

[110] improves upon V2VNet by considering a pose correction model prior to

the aggregation mechanism. A learned model uses the shared features and

approximate relative pose for a pair of vehicles to output a corrected relative

pose between the vehicles. These pair-wise estimates are fed to a Markovian

Random Field (MRF) to ensure global consistency between the relative pose

among all nearby vehicles. The results show that using such pose correction

module prior to feature aggregation increases the robustness of the method

to higher levels of pose noise, up to 0.8m and 8deg translation and rotation

noise, respectively. Still, studies show that pose noise figures in practice are in

the order of 2m in terms of translation error and tens of degrees in terms of

rotation error [115, 116]. Such pose noises could render previous cooperative

perception methods unfeasible in scenarios with high pose noise, particularly

when using consumer-grade GNSS/INS systems. For this reason, more robust

methods to estimate relative pose must be investigated, such as point cloud

registration methods, which are reviewed in Section 2.6

Previous cooperative 3D object detection methods assume sensors on-board

of vehicles, but do not investigate the potential of using infrastructure-based

sensors. While some works propose the usage of infrastructure sensors to

promote intersection automation [117], increase pedestrian safety [118], and

perform object-tracking [119], these studies do not consider the problem of 3D

object detection. Understanding how the pose and number of infrastructure

sensors affect the performance of object detection remains a research gap. When

considering infrastructure-based sensors, one of the challenges is determining

the number and pose (position and orientation) of sensors. The next section

presents works related to optimising the pose of sensors.

2.5 Sensor Pose Optimisation

Previous works on cooperative 3D object detection considered vehicles as the

only agents sharing information, however road-side infrastructure sensors could

also be used for such purpose. The advantage of the latter approach is three-fold.

Firstly, the sensors are always available, independent of the traffic conditions;
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Secondly, the relative pose between the sensors can be accurately determined

offline through calibration processes, preventing any detection errors due to

pose noise; Thirdly, using shared infrastructure resources amortises the cost of

autonomous driving systems. The usage of such infrastructure-based sensing

would be most useful in complex road segments, such as T-junctions and

roundabouts, where occlusions and limited sensor range play key challenges

in detecting other vehicles across the driving environment. A fundamental

question that arises when considering such infrastructure sensors is regarding

their placement, i.e. what is the position and viewing angles that the set of

sensors should have in order to maximise the detection performance of the

system.

A number of works [120, 121] suggest using elevated lidars as part of road

infrastructure to improve scene understanding. Wang et al. [120] provide

analytical results for different deploying options of Road Side Units (RSU) at

driving intersections, showing that deploying evenly-spaced RSUs along the road

and at intersections is the most efficient deployment strategy for road coverage.

However, their assessment is based on a probabilistic road coverage model and

does not provide fine pose estimates, i.e. where within the junction should the

sensors be deployed. Furthermore, they do not explicitly consider the visibility

of individual objects, which prevents identifying occlusions in cluttered road

environments. The remaining of this section reviews the literature on sensor

pose optimisation for generic applications, as there are no works investigating

sensor pose optimisation specifically for 3D object detection.

The problem of optimal sensor placement has its historical origin in the

field of computational geometry with the art-gallery problem [122], where the

aim is to place a minimal number of sensors within a polygon environment in

such a way that all points within the polygon are visible. Although further

work extended the art-gallery problem to a 3D environment considering finite

field-of-view and image quality metrics [123], it still fell short of providing

realistic sensor and environmental models. Further efforts treated the pose

optimisation problem as an extension of the maximum coverage problem,

however use very simplistic sensor assumptions, such as radial sensor coverage

in a 2D environment [124].

One category of methods perform continuous sensor pose optimisation using

black-box methods including simulated annealing, Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [125], particle swarm optimisation [126] and evolutionary

algorithms [127]; as well as white-box, gradient-based optimisation [128]. The

focus of these works is on maximising the coverage (visible area) of large outdoor

terrain described by digital elevation maps. Nevertheless, these works do not

explicitly model the visibility of target objects and thus cannot guarantee that

objects placed on covered areas will indeed be visible since different occlusion
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patterns may occur, particularly when considering environments with high

density of objects such as traffic junctions.

Recent work by Saad et al. [127] uses a visibility model with a Line-of-Sight

(LoS) formulation and introduces constraints over locations where sensors can

be placed and detection requirements which are user-specified, then optimise

the sensor pose to achieve the detection requirements using a genetic algorithm.

Temel et al. [129] uses a LoS binary visibility model and a stochastic Cat Swarm

Optimisation to maximise the coverage of a set of sensors. The aforementioned

methods consider the coverage of terrain area described by digital elevation

maps and corresponding LoS visibility algorithms [125, 126] that only work for

an elevation map formulation.

The visibility model in previous works commonly adopt simplifying assump-

tions that hinders the usage of such methods in practical settings. Examples

include using a simplified 2D visibility model that does not take into account

pitch and yaw [130–132] or assuming horizontal cameras focusing on a single

target object without occlusions [133]. In cases where occlusion is considered

[134], the visibility model is based on a simplified geometrical model that only

captures information about the centroid of objects, and thus cannot capture

partial occlusion, which is very common in practice. Furthermore, works

using LoS visibility models based on the Bresenham’s algorithm [125, 127] and

derived methods [126] only work assuming an environment represented by an

elevation map which cannot be used to represent objects off the ground.

Given the difficulty of optimising the sensors’ pose as continuous variables,

a large category of methods consider a discrete approach, where a subset of

candidate sensors must be chosen to maximise the binary visibility of target

points [132, 135–137]. This formulation allows to solve the problem using

Integer Programming (IP) solvers [132], which can be computational infeasible

for large environments, or using a variety of approximated methods including

Simulated Annealing [135, 136] and Markov-Chain Monte Carlo sampling

strategies [135, 137]. Although some methods in this category allow to add

constraints such as the number of sensors that must observe a given target [135],

this category of methods can only model target visibility as a binary variable.

However, many tasks of interest such as object detection and tracking require

a minimum visibility over the target objects which cannot be guaranteed by

single binary variables, i.e. objects may have different degrees of visibility

depending on their position w.r.t. the sensors and other objects.

2.6 Point Cloud Registration

Aligning point clouds in the same coordinate system is a preliminary require-

ment before their fusion can happen. Alternatively to using GNSS/INS sensors,
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Source Target Fused

Figure 2.1: Example of Source and Target Point Clouds. Each correspondence
is represented by a green lines. Once both point clouds are in the same
coordinate system they can be fused into a single point cloud, as illustrated in
the right-most image.

the point clouds generated by a pair of lidars can be used to obtain the relative

pose transformation between their coordinate systems. The problem of point

cloud registration consists of finding the rigid relative pose transformation that

aligns the coordinate systems of two point clouds, commonly named as source

and target point clouds. This is a key problem in many downstream applications

including 3D scene reconstruction [138], localisation [139] and Simultaneous

Localisation And Mapping (SLAM) [140]. The rigid relative pose transforms the

points from the source point cloud to the coordinate system of the target point

cloud and is parametrised a rotation matrix R ∈ SO(3) and a translation vector

t ∈ R3. In this notation, SO(3) = {R ∈ R3×3 : RRT = RTR = I, detR = 1} is

a Lie group also known as the 3D rotation group [141]. This transformation

may also be represented as T =

[
R

0

∣∣∣∣∣ t1
]
∈ SE(3), where SE is the Special

Euclidean group [141]. This rigid transformation can be obtained by identifying

correspondences between the pair of point clouds. A correspondence is a pair

of points, one in each point cloud, that can be identified as the same point, as

illustrated by the red lines in Figure 2.1. Existing registration methods in the

literature can be divided into three categories: local methods, global methods

using hand-crafted features and global methods using learned features. Global

methods estimate the relative pose between point clouds without prior pose

information. This is generally achieved by identifying correspondences between

the point clouds through feature matching, where features may be hand-crafted

or learned, or relative pose regression (learned-based). On the other hand,

local methods require an initial estimate of the relative pose between the point

clouds and are used to refine this initial estimate. Each registration method

category is reviewed below.
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2.6.1 Local Methods

Local registration methods are used to refine an initial relative pose estimate

between a pair of point clouds. The Iterative Closest Point (ICP) [142]

iteratively refines the transformation parameters in two steps. First, it computes

correspondences between the point clouds by finding the closest point in the

target point cloud to each point in the source point cloud. Second, it computes

the relative pose transformation parameters that minimises the re-projection

error between the correspondences obtained in the first step. The source point

cloud is transformed using the parameters obtained in the previous step. This

process is repeated iteratively until a stop criteria is met. This method is

highly sensitive to the initial pose estimate, and converges to non-optimal

local-minima results when the initial pose estimate is poor [143]. To mitigate

this, other works estimate global optimum solutions for ICP considering branch-

and-bound search over the transformation space [143, 144]. However, such

global methods have significantly higher execution times, which prevents their

usage in real-time applications.

Another class of local methods considers probabilistic and correlation-based

methods to perform registration. Probabilistic methods such as 3D-NDT [145]

and Generalized-ICP [146] use probabilistic models to describe the point clouds

and find the optimal transformation using iterative numerical optimisation.

Correlation-based methods [147, 148] perform registration based on the Fourier

analysis of the point clouds in the spherical domain.

2.6.2 Global Methods Using Hand-crafted Features

Handcrafted features can be used to find correspondences between the point

clouds. Fast Point Feature Histogram (FPFH) [149] encodes the local geometry

of 3D points using multi-dimensional feature vectors. Once FPFH features are

computed for each point, the correspondences are obtained by selecting the

point in the target point cloud with closest FPFH feature distance for each point

in the source point cloud. The correspondences obtained by comparing FPFH

features are often contaminated by a large number of outliers, which prevents

accurate registration. For this reason, Random Sample Consensus (RANSAC)

[150] methods are used to filter out the outlier correspondences. More recently,

TEASER [151] reformulates the registration problem using a truncated least-

squares cost, which results in improved registration accuracy compared to

RANSAC when considering a high number of outlier correspondences.

Kloeker et al. [152] study the problem of determining the relative pose

for lidar sensors based on point cloud registration using FPFH features for

initial registration and incremental updates using Generalised ICP [146] with

pose-graph optimisation. Their study considers static lidar sensors whose pose
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change slightly with time due to environmental factors such as wind bursts. As

discussed earlier, the Generalised ICP algorithm requires a good initial estimate

of the relative pose transformation. The authors use the transformation from

the previous time frame as the initial estimate for a new frame, which is a

valid choice under the assumption that the sensors are mostly static. However,

this approach would not generalise if the sensors’ pose changed significantly,

e.g. if they were on-board of moving vehicles, since the previous pose would be

a poor estimate of the current sensor pose due to the vehicles’ movement. In

that case, FPFH feature-matching based registration would have to applied,

incurring in run-time costs between 6 and 11 seconds, as highlighted by the

authors, and rendering real-time registration unfeasible.

2.6.3 Global Methods Using Learned Features

One category of learning-based registration methods focus on learning accurate

correspondences between the point clouds. Generally, these methods learn

a mapping from the original Euclidean space to a latent feature space and

optimise the mapping such that corresponding points have a small distance

in the latent space. Deng et al. [153] uses a PointNet [36] model to learn

point-wise features and trains the model using an N -tuple loss. In contrast,

[154] uses sparse fully convolutional networks to obtain voxel-wise features and

trains the model using variations of triplet loss with hard negative mining. The

resulting correspondences are often contaminated with outliers and need to be

pruned using RANSAC [150] or further learning-based filtering [155] methods

before estimating the pose transformation parameters.

Another category of methods solve the problem end-to-end by learning

to directly regress the relative pose transformation parameters, i.e. rotation

matrix and translation vector. PCRNet [156] uses a PointNet [36] model

to encode a global feature vector for both source and target point clouds.

These vectors are fed to a series of fully connected layers that predict the

pose transformation parameters. Deep Closest Point (DCP) [157] uses a

Graph Neural Network to compute point-wise feature vectors for each point

cloud. The feature vectors are enhanced using a Transformer [99] attention

module and are used to obtain soft-correspondences between point clouds.

Finally, the correspondences are used to compute the rigid transformation

through the closed-form solution to the Procrustes problem [158]. Previous

methods [156, 157] assume point clouds of single objects, and its unclear to

what extent these methods generalise to large outdoor point clouds. Similarly,

VCR-Net [159] learns point-wise feature vectors which are used to compute

soft correspondences, and obtain the transformation parameters using the

closed-form Procrustes solution [158].
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2.6.4 Summary

Point cloud registration methods can be used to estimate the relative pose

transformation between a pair of lidar sensors. Traditional local registration

methods such as Iterative Closest Point (ICP) [142] solve the problem iteratively

assuming an initial relative pose. However, local methods such as ICP are not

suitable for the problem due to the requirement of a initial pose, which is not

necessarily available in driving applications. Feature-based correspondence

matching are often contaminated by a large number outliers and must be

filtered using RANSAC [150, 160] or learned models [155], which increases the

registration execution time. State-of-the-art learning-based models [154, 155]

require computationally demanding 3D convolutions and generate numerous

putative correspondences, introducing a bottleneck on the RANSAC loop and

rendering real-time execution unfeasible.

Existing registration methods assume a significant overlap between the

input point clouds. This is a valid assumption for applications such as SLAM

[140] and lidar odometry [161], where pairs of point clouds are obtained

sequentially in adjacent time steps by a single vehicle navigating in a driving

environment. However, cooperative perception and multi-agent SLAM [162]

require registering point clouds obtained simultaneously from a pair of sensors

on two different vehicles that are potentially far apart, and thus, may have

low field-of-view overlap. Understanding the performance of traditional and

learning-based methods under low overlapping point clouds is still an open

question.

2.7 Research Gaps

This chapter reviewed existing perception methods for autonomous vehicles

including the problems of object classification, single-vehicle and cooperative

3D object detection, sensor pose optimisation and point cloud registration. The

key learnings and research gaps identified in this review can be summarised as

follows.

� The predominant approach towards 3D object detection for autonomous

driving applications considers one or more sensors on board of the same

vehicle, which is prone to limited field-of-view, occlusions and sensor

noise.

� Cooperative approaches towards 3D object detection leverage a set of

observations from a number of vehicles to augment the perception horizon

and increase the perception system’s resilience towards occlusions and

sensor noise. However, existing cooperative perception methods did not

explore the potential of infrastructure-based sensors in the context of 3D
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object detection. Specifically, there has been no research investigating

how the detection performance scales with the number of sensors and

how to optimise the sensors’ pose for this application.

� Most application-agnostic sensor pose optimisation methods maximise

the coverage of ground area but do not explicitly model the visibility of

objects, which fails to consider occlusions and, thus, cannot guarantee that

objects will be visible in particularly cluttered environments. Methods

that do consider objects’ visibility have limited occlusion reasoning, e.g.

binary visibility variables, and have limited application in cluttered

driving environments where complex occlusion patterns occur.

� The majority of cooperative perception methods assume nearly-perfect

relative pose information between vehicles. [110] considers pose noise but

still requires pose accuracy in the order of 0.8m/8deg. Studies suggest

that this is unrealistic in urban scenarios where consumer-grade GNSS

systems are subject to translation errors in the order of two meters and

tens of degrees [115].

� Existing point cloud registration methods could be used to obtain accurate

relative pose between vehicles. However, the temporal performance of

global registration methods is not suitable for real-time applications such

as cooperative perception. Furthermore, most point cloud registration

methods are used in SLAM and odometry applications where point clouds

have a significant field-of-view overlap. In contrast, pairs of point clouds

obtained by different vehicles which may be far from one another will

have low field-of-view overlap. The accuracy of the registration of low

overlapping point clouds is yet to be investigated.
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Chapter 3

Methodology

This chapter presents a concise overview of the research activities presented

in this thesis and how they address the research gaps identified in Chapter 2.

The research outline identifying the key learnings and contributions from each

chapter is presented in Section 3.1 and illustrated in Figure 3.1. Section 3.2

discusses the implementation details of methods in this research.

3.1 Research Outline

3.1.1 Cooperative Object Classification

The literature review in Chapter 2 revealed limitations of single point sensing,

including the limited field-of-view and detection performance degradation due

to occlusions. To explore this further, a proof-of-concept study was designed

to quantitatively measure the impact of sensor noise and occlusions on the

performance of a perception algorithm, and whether these impairments can

be mitigated by cooperative perception. This preliminary study, presented in

Chapter 4, explores the core concept of cooperative perception upon which

following studies are built. To simplify the analysis, this chapter assumes that

an object has already been detected, and considers the problem of classifying the

object. Specifically, this chapter assumes camera sensors that provide images of

a single object which must be classified into relevant classes, e.g. vehicle, truck,

bike, etc. A fusion scheme for images from multiple sensors is proposed and

evaluated against single-view and other cooperative baselines. Four experiments

are carried out, the first two evaluate the performance of cooperative and single-

view object classification models amid fixed occlusion sizes and sensor noise

power. The last two evaluate the generalisation capabilities of cooperative

perception models to varying degrees of occlusion and sensor noise. The details

of these experiments are described in Chapter 4. The results show that using

spatially diverse images of a single object can mitigate the adverse effects of

both occlusion and sensor noise on images. Furthermore, the proposed fusion
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Literature Review
(Chapter 2)

Sensing from a single point of 
view is prone to limited field-
of-view and occlusions

The potential of 
infrastructure sensors for 
cooperative perception has 
not been explored

Existing sensor pose 
optimisation methods have 
limited application in 
scenarios prone to occlusions

Reliance on GNSS systems for 
relative pose estimation 
between sensors on-board of 
vehicles is prone to location 
drift

Cooperative Object 
Classification
(Chapter 4)

•A novel fusion scheme for 
images of objects the context 
of cooperative object 
classification

•A curated dataset of images 
for multi-view object 
classification rendered under 
multiple degrees of occlusions

Occlusion and sensor noise 
can drastically compromise 
object classification results

Using spatially diverse 
observations through 
cooperative perception can 
mitigate these limitations

Cooperative 3D Object 
Detection using Infrastructure 

Sensors
(Chapter 5)

•System architecture that 
supports cooperative 3D 
object detection on the edge

•Three fusion schemes are 
proposed and evaluated in 
terms of detection 
performance and 
communication bandwidth

•A new dataset for cooperative 
perception using depth-
capable infrastructure sensors

Exploiting spatially diverse 
observations allows reducing 
false negative detections and 
improves accuracy of 
estimated 3D bounding boxes

Infrastructure Sensor Pose 
Optimisation for Cooperative 

Perception 
(Chapter 6)

•A realistic visibility model 
capable of detecting 
occlusions between objects

•A novel gradient-based sensor 
pose optimisation method 
based on the aforementioned 
visibility model

•A novel Integer Programming 
sensor pose optimisation 
method that guarantees 
minimum object visibility 
based on the aforementioned 
visibility model

Explicit modelling of 
occlusions is key to maximise 
the visibility of objects in 
cluttered environments

Efficient Relative Pose 
Estimation for on-board 

Sensors
(Chapter 7)

•A novel registration method 
that is robust to partially-
overlapping point clouds and 
capable of operating in real-
time

•A new synthetic lidar dataset 
for cooperative perception 
containing low overlapping 
point clouds in a diverse set of 
driving scenarios

The proposed Graph-based 
attention mechanism can 
significantly improve 
correspondence matching, 
particularly for low-
overlapping point clouds

Legend:
 Key learning
• Contribution

Research question

Can cooperative perception mitigate
the limitations of single-view sensing?

How can the problem of object 
classification on images be generalized 
to 3D object detection on point clouds?

How does one define the pose of fixed infrastructure
sensors to guarantee objects’ visibility?

Considering the generalisation of cooperative perception
to on-board sensors, how does one obtain the relative pose
transformation between on-board lidar sensors?

Figure 3.1: Research Outline Identifying Key Learnings and Contributions From Each Chapter.
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scheme showed greater resilience to higher degrees of occlusions and sensor noise

when compared to other cooperative baselines. These results validate the core

concept of cooperative perception and motivate further research considering

the more general problem of object detection. In summary, this chapter has

the following objectives:

1. Quantify the impact of sensor noise and occlusions in the performance of

object classification for single-view baselines.

2. Investigate how to fuse images from multiple sensors in the context of

cooperative perception for object classification.

3. Verify the extent to which cooperative perception can mitigate the effects

of occlusions and sensor noise impairments.

3.1.2 Cooperative 3D Object Detection

In Chapter 5, the preliminary concept of cooperative perception presented in

the previous chapter is extended to the problem of 3D object detection, where

an object’s 3D position, size, orientation and class must be estimated. Colour

camera sensors do not provide depth information, which poses challenges

in the accurate estimation of the object’s 3D position and size. On the

other hand, point clouds obtained from depth sensors, e.g. depth cameras

or lidars, contain the explicit 3D structure of the environment, and thus,

can be fused more easily than colour images, where the depth dimension is

lost. For these reasons, this chapter considers sensors that can provide point

clouds. While cooperative perception methods in the literature have been

limited to on-board sensors, this chapter investigates the merits of cooperative

perception using infrastructure sensors. A novel system architecture that

supports cooperative object detection on the edge is proposed along with

three sensor fusion schemes, each exploring the fusion of data from multiple

sensors at a different stages of the detection pipeline. Extensive evaluations

on challenging driving scenarios are performed to assess the robustness of

the cooperative object detection model and different fusion schemes. The

first experiment considers the trade-off between object detection performance,

computational time and communication load for the three fusion schemes.

The second experiment evaluates how the number of sensors impacts the

performance of the cooperative object detection model. The third experiment

investigates factors that contribute to the performance of cooperative object

detection, particularly, the impact of sensors with overlapping field-of-views.

The fourth experiment extends the previous one by investigating how the

density of lidar points over an object relates to the quality of its detection. The

experiment results indicate that fusing data from multiple sensors overcomes
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occlusions and restricted field-of-view, and also increase the robustness of

detection by exploiting redundant observations from sensors with overlapping

fields-of-view. Furthermore, these results provide practical insight into the

deployment of such system by evaluating the impact of the number of sensors

in the performance of 3D object detection. In total, Chapter 5 has the following

objectives:

1. Investigate how to fuse the data from a set of spatially diverse sensors in

the context of 3D object detection.

2. Quantify the costs of fusion algorithms in terms of communication load

and computational time.

3. Measure the impact of the number and pose of sensors in the object

detection performance.

4. Verify if and how cooperative perception is capable of improving the

object detection performance.

3.1.3 Infrastructure Sensor Pose Optimisation

In the previous chapter, infrastructure sensors are empirically placed in the

driving environment according to heuristics derived from domain-knowledge.

These heuristics include the maximisation of the coverage of the traffic junction,

i.e. ensuring that all driving areas are visible from the set of sensors; and

ensuring that some sensors had a field-of-view overlap. Such heuristics are

commonly found in a large category of sensor pose optimisation methods

that focus on maximising the coverage of large outdoor areas. However, such

approaches do not guarantee the visibility of objects in the driving environment

because they fail to consider occlusions between objects. To this end, two

novel sensor pose optimisation methods are proposed in Chapter 6, one using

gradient-based optimisation and one using integer programming techniques,

which maximise the visibility of multiple objects considering occlusions in

cluttered environments. They are both based on a novel visibility model that

provides pixel-level visibility information about the objects. The proposed

methods are used to optimise the pose of sensors in a challenging driving

environment. Their performance is evaluated by assessing the visibility of

objects observed by the resulting sensor poses. The first experiment considers

the comparison between the proposed methods in terms of object visibility and

how it scales with the number of sensors. The second experiment compares

the impact of different visibility models, particularly, the impact of occlusions

between objects in the sensor pose optimisation problem. The results show that

explicit occlusion considerations are key to guarantee the visibility of objects
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in cluttered environments. Furthermore, the results suggest that both methods

have the potential to guide the cost effective deployment of sensor networks

in cooperative perception applications. In summary, Chapter 6 addresses the

following research objectives:

1. Investigate how the pose of infrastructure sensors can be optimised to

maximise the visibility of objects, and potentially increase the perform-

ance of cooperative perception.

2. Identify mechanisms to consider occlusions between objects in the process

of sensor pose optimisation.

3. Quantify the impact of the number of sensors in the visibility of objects

of interest.

3.1.4 Relative Pose Estimation

Generalising the concept of cooperative perception for infrastructure sensors,

proposed in Chapter 5, to sensors on-board of vehicles requires estimating

the relative pose between non-static sensors. The infrastructure sensors in

Chapter 5 are considered static, and thus, can be accurately calibrated to

obtain the relative pose between each sensor and a global coordinate system.

Unfortunately, sensors on-board of vehicles are constantly moving and, thus, the

same calibration procedure cannot be applied. Existing cooperative 3D object

detection methods in the literature assume that the relative pose between

sensors on-board of vehicles can be obtained accurately from GPS/GNSS

systems. However, these systems are prone to drifts and multi-path losses,

particularly at dense urban areas, that introduce localisation errors in the

order of meters. Alternatively, the relative pose between two depth-capable

sensors could be determined exclusively using the registration of their point

clouds. Although this is a widely explored problem in the field of robotics and

computer vision, most approaches do not comply with real-time performance,

which prevents their usage for driving applications. Furthermore, existing

methods exhibit limited performance for pairs of point clouds with low field-of-

view overlap, which is common in the context of cooperative perception. To

this end, an efficient point cloud registration method is proposed in Chapter

7. An experiment considering the performance of the proposed method and

existing baselines in the literature is performed for varying degrees of overlap

between point clouds. The extensive evaluation of this method on both real

and simulated datasets show its resilience to low overlapping point clouds

and real-time execution capabilities. Chapter 7 answers the following research

objectives:
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1. Investigate how to efficiently obtain the relative pose transformation

between a pair of moving sensors using only their point cloud data.

2. Verify if it is possible to obtain accurate relative pose transformations

when sensors have low field-of-view overlap.

3.2 Implementation Details

This section describes the data, simulation tools and software libraries used in

different parts of this thesis.

3.2.1 Data and Simulation Tools

The studies in this thesis investigate the merits of cooperative perception

using multiple, spatially diverse sensors that simultaneously observe a driving

environment. Existing datasets for perception applications in the driving

domain, including KITTI [47], nuScenes [54] and Waymo Open [55], only

provide the data of sensors on-board of a single vehicle. Although such datasets

could be used to simulate a cooperative perception dataset, for example, by

considering the sensor data from multiple time instants as data from different

vehicles, such an approach provides limited scope for research in cooperative

perception, as highlighted in Section 5.2. Curating a large-scale, real-world

cooperative perception dataset would incur a significant cost, due to the number

of sensors, vehicles and people involved in generating and labelling such data.

For this reason, most studies in this thesis create synthetic datasets to train

and evaluate the performance and design choices of cooperative perception

methods. This subsection provides an overview of the simulation tools used in

this thesis.

In Chapter 4, Blender [163], a widely available open-source 3D computer

graphics tool, is used to render 3D object models into images. Each object mesh

is rendered into multiple images, considering different view-points to simulate

multiple agents observing the same object. The choice for this particular

renderer tool is motivated by its free and open-source availability, as well as its

support for Python scripting to interface with the renderer application. Such

features were useful in automating the process of generating occlusions, where

the meshes of each object had to be imported, resized and an occlusion block

had to be placed in a random pose relative to the object.

In Chapters 5 and 7 more advanced tools are required to simulate realistic

environments containing roads and buildings, multiple types and makes of

vehicles, pedestrians, cyclists, automated driving behaviour and different sensor

modalities (e.g. lidar and depth images). Blensor [164], a fork of Blender

that allows simulating lidar sensors, was considered for this purpose. However,
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Blensor would still require to manually re-create the driving environment

including the road network, buildings, road-side objects, vehicles, etc., so this

option was discarded. To create a large scale perception dataset, a simulation

tool that allowed to automatically generate traffic under realistic assumptions,

e.g. obeying traffic rules and minimum distances, is desired. Although many

commercial simulation tools are available, e.g. dSpace Sensor Simulator, IPG

CarMaker, these seldom allow to seamlessly simulate sensors on-board of

different vehicles simultaneously, which is a primary requirement of the desired

datasets in this thesis. In contrast, the free and open-source CARLA [165]

simulation tool allows for the deployment of any number of sensors both in

fixed locations – for the purpose of infrastructure sensors – as well as on-board

sensors attached to moving vehicles. CARLA has a large community, is under

active development and features several maps which range from rural areas

to dense urban centres and motorways. It also supports simulating a variety

of sensor modalities, including ray casting-based lidar, radar, colour camera,

depth camera and semantic segmentation camera. Most importantly, CARLA

can be used to automatically generate traffic following traffic rules, which in

turn, allows creating a large collection of data with ground-truth annotation in

an automated manner. For the aforementioned reasons, the CARLA simulation

tool is adopted to synthesise cooperative driving datasets under two settings:

assuming infrastructure-based lidars in Chapter 5 and assuming on-board lidars

in Chapter 7. More information about these datasets is provided in Sections

5.2 and 7.3.1, respectively.

3.2.2 Software Libraries

PyTorch [166] is an open-source library that has been widely used by the

research community and industry alike, has a wide community and is actively

under development. For these reasons, all models proposed and evaluated in

this thesis are implemented using the PyTorch library.

One of the methods proposed in Chapter 6 uses gradient-based optimisation

to optimise the pose of fixed infrastructure sensors. In doing so, it requires

a differentiable renderer to allow computing derivatives of a visibility cost

function which depends on sensors parameters, namely, the sensors’ pose. The

PyTorch3D [167] is chosen as the differentiable renderer for being widely used

and for its seamless integration with PyTorch [166].

3.2.3 Reproducibility

All the datasets created for the studies in this thesis are available through

open-access repositories, see Appendix A. The code and trained models of

most studies are also publicly available, as detailed in Appendix A, and can
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be used to reproduce the results or expand upon the experiments proposed in

this thesis. The code used to generate the CODD dataset, described in Section

7.3.1, is also made available. This code can be used by other researchers to

generate their own custom dataset with alternative simulation parameters,

including number of vehicles, driving environments, sensor configuration and

sensor modalities.
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Chapter 4

Cooperative Object

Classification

This chapter provides a proof-of-concept study to quantitatively measure the

impact of sensor noise and occlusions in the performance of a perception

algorithm, and whether these can be mitigated by cooperative perception.

Specifically, this chapter considers the problem of object classification in

images and assumes that objects have already been detected and need only

be classified. In other words, it considers the classification of images, each

displaying a single object. Traditionally, a single view, i.e. single image, of

an object is used for classification. To evaluate the benefits of cooperative

perception, three multi-view object classification models leveraging the fusion

of multiple images of a single object from different view points are considered.

The multi-view models are inspired by model ensembles and existing multi-

modality sensor fusion methods in the literature. All models are trained and

evaluated on a curated dataset of images rendered from multiple view points

using 3D CAD models of objects relevant to driving applications. While

existing multi-view methods consider the problem of object classification [42]

and pose estimation [43] under ideal conditions, the impacts of occlusions

and sensor noise that occur in practice has not been considered. To this end,

a comprehensive evaluation is carried out to evaluate model generalisation

and resilience to varying degrees of image occlusions and noise. The first two

experiments consider how single-view and cooperative classification models

trained without impairments generalise to two impairment-prone scenarios,

namely, amid occlusion and amid both occlusion and sensor noise. The last

two experiments investigate to what extent cooperative classification methods

trained with impairments can generalise to scenarios with varying degrees of

occlusion and sensor noise. The contributions in this chapter can be summarised

as:

� A curated dataset of images for multi-view object classification containing
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object classes relevant to driving applications rendered with multiple

degrees of occlusions.

� Comprehensive evaluation of different cooperative perception methods

for object classification with respect to generalisation and resilience to

varying degrees of image noise and occlusions.

4.1 Problem Formulation

The problem of object classification is traditionally formulated as classifying

the image of an object into a set of pre-determined classes [27]. This problem

is extended to consider a set of images of the object instead of a single image.

This study considers a set a set of n = 3 RGB images observing an object from

different viewpoints, and the aim is to classify the object into one of m = 9

existing classes.

4.2 Object Classification Model

This section describes the proposed cooperative perception model using a novel

concatenation fusion scheme, as well as two baseline models inspired by existing

fusion methods in the literature. Next, the training procedure is presented.

4.2.1 Model

Deep learning models for object classification [42, 52] have outperformed

classical models based on hand-engineered feature descriptors [32, 39] due to

their capability of extracting prior information from large amounts of training

data. For this reason, this study considers deep learning-based models for

object classification. Such models map each image into a probability mass

function indicating the probability of the object belonging to any particular

class, and the object is classified as the class with the highest probability score.

The classification model architecture and training process are described below.

The VGG-11 architecture [52] is an established benchmark model for the

image classification task and shows generalisation capabilities to novel datasets

[168] and tasks [169]. For these reasons, this architecture is adopted as the

baseline object classification model. The architecture consists of 8 Convolutional

(CNN) and 3 Fully Connected layers (FC). The convolutional layers extract

features, generating an image-level feature map with dimensions 7 x 7 x 512,

where the last dimension represents the number of channels of the feature map.

The FC layers transform this feature map into a vector of class probabilities,

which is normalized using the soft-max activation function ensuring the class

probabilities form a probability mass function, i.e. are non-negative and sum
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to one. The network input consists of a single 224 x 224 RGB image, while the

output represents a discrete distribution over the object classes. This baseline

architecture is used to create n = 3 single-view models, one for each view, as

illustrated in Figure 4.1.

This single-view classifier is extended to a cooperative (multi-view) percep-

tion model using three different approaches, as illustrated in Figure 4.2. The

first approach, known as the “voting” method, produces a class distribution for

each image of the object using the single-view baseline model, then aggregate

these distributions by averaging them across views. This method borrows

output averaging from model ensembles, where multiple classifiers’ individual

output distributions are averaged to produce more accurate results [170], how-

ever considers a single classifier, averaging the model’s output for different

views instead. Specifically, the voting method independently classifies all the

views using the same network (i.e. shared weights), then averages the resulting

class distributions to obtain an aggregated object class distribution. Note the

assumption that all the views contain the same amount of information, thus

the output average has equal weight for each view. The voting fusion method

employs late fusion of multiple images, since the fusion happens at the class

distribution level, after classification.

In contrast, the second cooperative baseline uses view-pooling [42] to fuse

information from multiple views at the feature level. This model produces

image-level feature maps using the another CNN model with shared weights

across views, generating n feature maps, each with 7 x 7 x 512 dimensions.

These n feature maps are fused into a single global-view feature map, with 7 x

7 x 512 dimensions, using a sampling operation along the view dimension, thus

called view-pooling. Each element in this 3D global feature map is obtained by

choosing with highest value at the respective 3D spatial coordinate out of all n

feature maps. In other words, the sampling is achieved through the element-

wise max operation along the feature maps view’s axis, and inherently causes

loss of information. Despite the loss of information, one of the advantages

this approach is its invariance to the order at which the images are fed to the

model, since the max operation is order invariant.

Lastly, the concatenation model removes the view-pooling operation, de-

scribed in the previous method, and simply concatenates the feature maps

obtained from each view branch. The images from n different views are pro-

cessed independently by the same convolutional stage of the baseline model,

generating a set of n = 3 (one for each view) feature maps, each with 7 x 7 x

512 dimensions. These feature maps are then concatenated along the channel

dimensions to create a single, global-view feature map, which is then fed to a

fully connected network (FC). Concatenating the three feature volumes result

in a model with a significantly larger number of parameters when compared to
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Figure 4.1: Single-view Models for Object Classification. Each model uses
only one of the n = 3 views. Architecture components with the same colours
represent shared weights. Note that all CNN shared the same VGG-11 pre-
trained weights.

other baseline models. For a fairer evaluation, a “tiny” variant of the concat-

enation model is also considered. In this variant, each 7 x 7 x 512-dimensional

feature maps are further compressed into 4096-dimensional feature vectors

before being concatenated. As a result, the concatenation-tiny variant has

approximately the same number of parameters of other baseline models, as

highlighted in Table 4.3. Both concatenation model variants allow to exploit

the information available across views, which can be beneficial in cases where

objects are subject to occlusions and sensor noise. Similarly to the single-view

model, the last layer output represents the class distribution.

4.2.2 Training Details

All three cooperative models and n single-view models, where n is the number of

views, are trained independently on the same dataset, described in Section 4.3.

Each single-view model is trained on a specific view, which allows comparing

the classification performance among different views.

To avoid over-fitting to a relatively small dataset, the pre-trained model

weights of a VGG-11 model is leveraged as a starting point for training.

The pre-trained weights were trained on the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) 2012 dataset [171], which contains 1.3M
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Figure 4.2: Cooperative Models for Object Classification With Number of
Views n = 3. (a) Voting, (b) View-pooling and (c) Concatenation (proposed)
Models. Architecture components with the same colours represent shared
weights. Note that all CNN shared the same VGG-11 pre-trained weights.
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images for training distributed over 1000 classes. The last Fully Connected

(FC) layer cannot be used since the dataset proposed in this study has a

different number of classes. For that reason, the last FC layer is replaced

with a randomly initialized weight layer with an output unit for each class

in the dataset. During training only the fully connected (FC) layers are

optimised, under the assumption that the pre-trained CNN layers already

provide discriminative features. This assumption is validated by attempting to

optimise the parameters from the last convolutional layer without obtaining

performance gains.

The loss function used to train the model consists of the weighted cross-

entropy function [167], where the weight of each class is inversely proportional

to its number of training samples. This addresses the problem of class imbalance

and prevents the model to overfit to object classes that appear more frequently

in the dataset. Dropout regularization with dropout probability p = 0.5 is used

after each fully connected layer to further prevent over-fitting. For optimisation,

the Stochastic Gradient Descent (SGD) optimiser is employed with a learning

rate of 10−3, momentum of 0.9. The batch sizes for all methods is 64, except

for the concatenation method, which uses 32 samples per batch due to memory

constraints. All models are trained independently for a total of ten epochs.

4.3 Dataset

Although a few datasets of general objects present multiple views of objects

[34, 172], they use a particular camera configuration and limit the introduction

of occlusions, since the images are real-photographs or pre-rendered 3D models.

To be able to control the level of occlusions, i.e. size of the occluding object

w.r.t. the original object, a dataset of 3D CAD object models is leveraged to

render a novel multi-view object dataset with occlusions. Although there are a

few options of 3D model datasets [96, 173], the ShapeNet dataset [34] offers the

widest collection of 3D models. The original core dataset has 51,300 models

distributed over 55 classes, while the segmentation dataset has 12,000 models

over 270 classes, which are densely labelled, i.e. each mesh has a semantic

category. A subset of relevant classes for the driving context is selected from

the ShapeNet core and segmentation datasets for the collection of 3D models.

The resulting subset has 3268 object models distributed among nine classes,

presented in Figure 4.3. The resulting set of 3D models are divided into training

and test sets with ratio 0.7 and 0.3, respectively. The dataset is unbalanced,

i.e. some classes have a larger number of samples than others, as observed in

the histogram presented in Figure 4.3. Note that this histogram represents the

3D models and not image samples, which will be a multiple of the number of

model samples, where the multiplying factors is the number of views, denoted
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Figure 4.3: Class histogram for 3D models in the proposed dataset, divided in
training and test sets. The total number of 3D objects, including both training
and test sets, is 3268.

as n. The final dataset corresponds to the rendered images of the set of 3D

models. Although some annotation regarding the pose of object is available,

some of the 3D models were manually rotated to obtain a canonical upright

pose across all samples.

The image samples are generated through a rendering process using the

3D object models. Some 3D models did not have texture information available.

For consistency, all models are imported without texture information. As

a result, the models cannot use colour information to discriminate between

objects, which increases the classification task complexity. The objects sizes

are normalized to unit size along the longest dimension, as metric sizes are not

available for all models. This implies that objects such as animals may seem to

have the same size as cars, for example. Considering that this object classifier

would be used after a region proposal stage where the region would be cropped

and scaled, this is still a valid assumption. The dataset simulates a cooperative

perception setting, where a limited number of agents, e.g. vehicles, can share

their sensor information. To this end, n = 3 cameras are placed in a circle

centred around the target object. The cameras face the target object and are

perpendicular to each other, and have a pitch of ten degrees with respect to

the horizontal axis. Figure 4.4 illustrates the rendering settings with the three

corresponding rendered images on the bottom row.
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Figure 4.4: Render camera settings (Top): the three cameras are placed in
a circle and tilted by 10 degrees around the X-axis. Rendering results of the
cameras on a car sample (Bottom).

4.3.1 Impairment Models

Occlusions are a very common visual impairment in driving scenarios as objects

can occlude other objects and themselves. To verify the impact of occlusion in

the classification performance, an occlusion model is introduced. The proposed

occlusion model consists of introducing an occluding object to mask part of

the target object. The adopted occluding object is a cube, which is placed on

a circle of radius 0.6 (relative to the object’s maximum dimension of 1) around

the target object, in a random angle that changes for each object sample in the

dataset. This random angle is sampled from a uniform distribution between

-90 and 90 degrees to ensure that the target object is occluded in at least one

of the views. The cube size modulates the level of occlusion and is used as a

parameter to verify different occlusion degrees.

Additionally, a sensor noise model for image sensors is introduced. Noise

models for image sensors can be categorized in fixed-pattern, banding and

random noise [174]. The source of random sensor noise in digital cameras can

be photon emissions, photoelectric effects and thermal noise. This noise can

be modelled as Additive White Gaussian Noise (AWGN) to pixel intensities

[174]. Although most models use an AWGN with a signal dependent variance,

a simplified version of this model is considered using a fixed Gaussian variance,

which controls the intensity of the noise. Differently from the occlusion model,

the AWGN can be introduced after rendering the images, not requiring to

re-synthesize the dataset for each noise realisation.
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Figure 4.5 illustrates sample images of the proposed dataset for three

different occlusion levels and sensor noise powers.

4.4 Experiments and Results

This section presents the evaluation of the proposed object classification method

and baselines. First, the evaluation metrics relevant to object classification are

presented. Next, the results comparing cooperative vs single-view methods are

discussed. Finally, a comparative analysis of cooperative image classification

methods regarding resilience to impairments is presented.

4.4.1 Evaluation Metrics

The performance of an object detection model can be evaluated using confusion

matrices. The confusion matrix is a matrix of m×m elements, with m being

the number of classes, where each element Cij represents the number of samples

of a ground-truth class label i that were classified as class j. Considering the

unbalanced nature of the dataset, the confusion matrix can be normalised along

the rows, i.e. along the ground-truth label, to ease visualisation, creating the

normalised matrix Ĉ. An ideal classifier would not present any false positives or

false negatives, thus, in the ideal case, Ĉij =

0, i 6= j

1, i = j
. In practice, however,

there are false positives and false negatives which reduce the classification

performance. Namely, for a given class with index i, the number of True

Positives (TP), False Positives (FP) and False Negatives(FN) can be computed,

respectively, as:

TP(i) = Cii, (4.1)

FP(i) =
m∑

j=1,j 6=i
Cji, (4.2)

FN(i) =

m∑
j=1,j 6=i

Cij , (4.3)

where m is the number of classes, and C is the un-normalised version of the

confusion matrix.

The precision and recall metrics of each class can then be computed as:

P(i) =
TP(i)

TP(i) + FP(i)
, (4.4)

R(i) =
TP(i)

TP(i) + FN(i)
. (4.5)
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Figure 4.5: Cooperative Object Classification Dataset Sample: five classes are
sampled out of the nine classes in the dataset and one object is sampled from
each class. The rows show three rendered images per object (distinct colours
indicate different classes) and the columns are indexed by different occlusion
sizes and sensor noise powers. Occ indicates the occlusion level w.r.t. the
object size, and noise indicates the AWGN standard deviation.
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The precision metric provides the ratio of true positive samples over all samples

that were classified as positives. In contrast, the recall metric provides the ratio

of correctly classified samples over the total number of samples of that class.

Note that for a given class, the positive samples are the samples belonging

to that class and the negative samples are the samples from all other classes.

Both precision and recall metrics are important, as they relate to the number

of false positives and false negatives, respectively. However, using a single

metric can ease the comparison between models. The F-score metric is used

for this purpose, and is computed as the harmonic mean between precision

and recall:

F1(i) =
2

P(i)−1 + R(i)−1
. (4.6)

Note that all the above metrics are class-specific and are obtained for each

individual class. The overall F-score is obtained through the weighted mean

of the individual classes’ F-score. To avoid the dominance of more frequent

classes, the weight of each class is inversely proportional to its number of

samples.

4.4.2 Cooperative vs Single-view Comparison

Firstly, the aim is to compare cooperative vs non-cooperative (i.e. single-

view) methods by evaluating their generalisation performance under occlusions

and noise impairments. Specifically, the target is to understand to what

extent models trained without impairments can cope with different classes of

visual impairments and whether cooperative models can better mitigate such

impairments compared to single-view models. For that reason, all models are

trained on the impairment-free dataset, then evaluated in three experiments.

Experiment 0 provides the control condition, considering the ideal scenario

where no occlusions or sensor noise is present, identically to the training

condition. Experiment 1 introduces occlusion cubes with relative sizes of 0.3,

which corresponds to 30% of the objects’ largest dimension. Experiment 2

extends the this occlusion model by including AWGN to the pixel intensities

with standard deviation σ = 0.05 (relative to the maximum pixel intensity of

1). Table 4.1 summarises the settings used for training and evaluation in the

different experiments.

The results of the three experiments in the test set, in terms of the class-

weighted F1-score, are presented in Table 4.2. Single-view and cooperative

methods have comparable performance on the control experiment. The ranking

of single-view models, trained for each view and denoted as SV0, SV1 and SV2,

changes depending on the experiment conditions. The SV2 model has the best

performance when the data presents no impairments and when both occlusions

and AWGN are present. The SV1 model has the best performance when the
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Table 4.1: Experimental Settings for Cooperative Classification Models

Experiment Training Set Test Set Aim

0 Impairment-free Impairment-free Control experiment

1 Impairment-free Occlusions of relative
size 0.3

Evaluate generalisation
to occlusions

2 Impairment-free Occlusions of relative
size 0.3 and AWGN
with σ = 0.05

Evaluate generalisation
to occlusions and sensor
noise

3 Occlusions of 0.3 rel-
ative size and AWGN
with σ = 0.05

Occlusions of relative
size varying between 0
and 0.45

Evaluate models’ resili-
ence to various degrees
of occlusions

4 Occlusions of 0.3 rel-
ative size and AWGN
with σ = 0.05

AWGN considering σ
varying between 0 and
0.15

Evaluate models’ resili-
ence to various levels of
sensor noise

data presents occlusion-only impairments. Cooperative models showed better

generalisation capabilities to occlusions when compared to single-view schemes:

with the exception of the voting scheme, cooperative schemes outperform all

single-view models in terms of the F1-score metric. This suggests that late

fusion is less resilient to impairments. Considering occlusions and sensor noise,

the voting and view-pooling schemes underperform single-view methods. Both

concatenation model variants consistently outperforms single-view and other

cooperative methods alike under all experiment conditions. This is due to the

concatenation model being able to weigh the contributions from specific views

without information loss caused by sampling - as in the view-pooling model,

and output fusion - as in the voting model. Furthermore, the “tiny” variant

underperforms the default variant due to reduced model complexity. Still,

the concatenation-tiny model has comparable number of parameters than all

previous baselines, which is important for a fair-comparison between models.

The confusion matrices of all methods in experiments 1 and 2 are presented

in Figures 4.6 and 4.7, respectively. Noise significantly degraded classification

performance, more intensely for classes that have ambiguous appearance such

as “car” and “bus”, as evidenced by the confusion matrices of experiment 2 in

Figure 4.7. Particularly to the voting scheme, the “bus” class receives many

false positives. This is also observed for non-cooperative classifiers on views 1

and 2, where trucks and cars show many miss-classifications. This phenomena

happens due to the “car”, “bus” and “truck” classes having similar image

features and the fine distinctions between these classes being corrupted by

noise. Overall, the models presented good generalisation to small occlusions

(0.3 relative size), but classification performance degraded drastically with

sensor noise.
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Table 4.2: F1-score for Cooperative and Single-view Models in Experiments 0,
1 and 2.

Experiment 0 Experiment 1 Experiment 2
Model No Impairments Occlusion Occlusion + Sensor Noise

SV0 0.971 0.887 0.733
SV1 0.960 0.898 0.640
SV2 0.979 0.845 0.759

MV voting 0.971 0.891 0.641
MV view-pooling 0.978 0.899 0.591
MV concatenation-tiny 0.984 0.936 0.924
MV concatenation 0.987 0.979 0.959
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Figure 4.6: Confusion Matrices From Experiment 1: models trained on impair-
ment free dataset evaluated with occlusion cubes sized 0.3.
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Figure 4.7: Confusion Matrices From Experiment 2: models trained on impair-
ment free dataset evaluated with occlusion cubes sized 0.3 and AWGN σ = 0.05.
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4.4.3 Resilience to Impairments on Cooperative Methods

The results in the previous section indicate an advantage in using cooperative

methods for object classification regarding generalisation to unseen impairments.

This section investigates the resilience of cooperative methods considering vary-

ing degrees of sensor noise and occlusion. The models are trained on a dataset

containing fixed impairments levels, namely occlusion cubes with relative size

0.3 and AWGN with standard deviation σ = 0.05. The models are then evalu-

ated on two experiments. Experiment 3 verifies the classification performance

considering varying levels of occlusion, parametrised by the occlusion cube size

varying between 0 (no occlusion) to 0.5 (half of the object’s largest dimen-

sion) in steps of 0.05. Analogously, experiment 4 measures the performance

of classifiers on an occlusion free scenario with varying sensor noise power,

parametrized by the Gaussian standard deviation σ varying between 0 and

0.15 in steps of 0.01. The results are presented graphically on Figures 4.8 and

4.9, respectively.

Firstly, cooperative methods performed better when trained with occlusion

compared to training with perfect perfect data in the previous experiments,

as noted comparing results from Experiments 3 to 1 in Table 4.2. This is

expected as the network is forced to adapt to the missing information during

training time. View-pooling shows similar but superior performance to the

voting scheme. The concatenation scheme outperformed both of them for all

degrees of occlusion and sensor noise, most significantly when considering larger

occlusion sizes and AWGN power. This performance gain can be explained

due to the concatenation scheme preventing information loss, in contrast to

pooling which samples and discards information and voting which only fuses

high level class distributions. Although some performance drop is expected as

the occlusion level increases, the concatenation model showed invariance to all

the considered degrees of occlusion and sensor noise. This suggests that the

model has learnt to use cues from different views to overcome occluded parts,

demonstrating the capability of overcoming impairments up to occlusion boxes

of size 0.4.

Despite surpassing previous methods classification performance, the con-

catenation model poses an important limitation for practical usage. Due to

the fully connected layer after concatenating all the feature maps, the model

requires a fixed number of input views, the same used during training. Not

only the number of views has to be the same, but the views should have the

same order (pose of the object relative to each camera), since the weights

of the fully connected network will fit to each particular view. For example,

if the order of the input views of the concatenation model are shuffled, the

performance is expected to drop.
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Figure 4.8: Results From Experiment 3: models trained on impaired dataset
evaluated with varying occlusion levels. The highlighted vertical line indicates
the occlusion level used for training.
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Figure 4.9: Results From Experiment 4: models trained on impaired dataset
evaluated with varying sensor noise levels. The highlighted vertical line indicates
the noise standard deviation used for training.
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4.4.4 Time Performance

The number of parameters, indicating model complexity, and the inference

time per sample (n images) for all three cooperative methods are presented

in Table 4.3. The concatenation method has approximately three times more

parameters since the feature maps from all three views are concatenated in the

fully connected layers, which triplicates the number of parameters on the fully

connected layers. In contrast, the concatenation-tiny variant has approximately

the same number of parameters when compared to previous models due to the

reduction in dimensionality of features before fusion. The inference time for all

methods is approximately constant due to GPU processing. All results were

obtained on a Quadro M4000 GPU using PyTorch [166].

Method Number of paramet-
ers

Inference time

Voting 128.8 million 18.73 ms

View-pooling 128.8 million 18.73 ms

Concatenation-tiny 128.8 million 18.75 ms

Concatenation 334.3 million 19.57 ms

Table 4.3: Number of Parameters and Temporal Performance Evaluation of
MV Models.

4.5 Summary

This chapter investigated the performance of object classification methods

among occlusions and sensor noise impairments, which are common in driving

applications. Three cooperative object classification methods, where multiple

images of the same object seen from different view-points are exploited to

generate more accurate class predictions, were evaluated. The experimental

assessment took into account the model generalisation and resilience to varying

degrees of occlusion and sensor noise impairments. A novel occluded object

dataset is introduced with higher resemblance to real-world occlusions and with

varying degrees of occlusion. The results showed that cooperative perception

can improve classification performance, especially in the presence of occlusions

and sensor noise, when compared to single-view methods. These results

suggest that the fundamental principle of cooperative perception is promising

in mitigating occlusion impairments and motivate further research considering

more challenging problems, such as 3D object detection.

One limitation of the studied models is the underlying assumption that the

object has been previously detected (the study in this chapter assumed images

of a single object) and is aligned to a canonical pose. In a practical setting, the

pose of the objects are unknown and can differ significantly from the pre-aligned
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canonical poses assumed in this study. Moreover, the studied concatenation

method relies on a fixed number of views, which limits the application to

scenarios with a fixed number of agents (or cameras). Furthermore, this model

assumes a particular order of images (each representing a particular object

view), which means that the model performance is expected to drop if the

images are shuffled.

In the next chapter, the problem of classifying an object from a set of

images is generalised to the problem of 3D object detection, which means

estimating the objects’ 3D position, orientation, size and class given a set

of sensor observations which may contain multiple objects. In that problem

setting, part of the aforementioned limitations are naturally addressed as

part of of the problem of estimating the object’s position and orientation.

Furthermore, other fusion schemes that are scalable with respect to the number

of sensors and do not require ordered inputs are investigated.
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Chapter 5

Cooperative 3D Object

Detection using

Infrastructure Sensors

Chapter 4 showed the potential of cooperative perception in mitigating some

limitations of single-view sensing, namely occlusions and sensor noise, for the

problem of object classification in images. Building on those results, this

chapter investigates how cooperative perception can be used for the more

general problem of 3D object detection, which consists of estimating the

3D position, size, orientation and class of objects of interest in the driving

environment. Specifically, this chapter investigates different fusion methods for

infrastructure sensor data in the context of cooperative 3D object detection,

and studies how the number and pose of sensors impact the performance of

3D object detection, which remains a research gap in the literature.

As observed in the literature review in Section 2.3.1, monocular images

do not provide depth cues to allow accurate localisation of objects in the 3D

environment. As discussed in Chapter 4, fusing image data from multiple views

is challenging as it requires to align the images’ features in a canonical space,

e.g. bird-eye-view or canonical object poses. For these reasons, this chapter

assumes the usage of depth-capable sensors, e.g. lidars, which provide explicit

3D points that can be aligned in a common coordinate system. In doing so,

a novel dataset is created assuming lidar-based infrastructure sensors in two

challenging driving scenarios, a T-junction and a roundabout, which is used

for the training and evaluation of the methods proposed in this chapter.

This chapter applies the concept of cooperative 3D object detection with

two distinct fusion schemes, namely late and early fusion, and a hybrid of the

two, the so called hybrid fusion scheme. A perception system that produces a

highly accurate and reliable perception of complex road segments is proposed

using a network of road-side infrastructure sensors with fixed positions. The
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perception information then can be disseminated in the form of periodic

cooperative perception broadcast messages to the areas of interest in real time

to assist safe autonomous driving in such areas. Comprehensive evaluations

are carried out to determine the impact of the number and pose of the sensors

into the object detection performance. The main contributions of this chapter

can be summarised as follows:

� System architecture that supports cooperative perception on the edge

featuring three fusion schemes, each of them employing a distinct fu-

sion mechanism, a bespoke deep neural network based detection and

customized training procedure.

� A new dataset is synthesised for cooperative perception using up to eight

infrastructure sensors that can be used for multi-view simultaneous 3D

object detection.

� Comprehensive evaluations of both early and late fusion schemes, as

well as their hybrid combination, are carried out in terms of detection

performance and communication costs required for the operation of the

system.

� The impacts of sensors and system configurations are analysed in order

to provide insights into practical deployment of such systems.

5.1 System Model and Fusion Schemes

Firstly, the proposed system model for all fusion schemes is described in Section

5.1.1. Section 5.1.2 presents the data preprocessing stage, while the proposed

early, late and hybrid fusion schemes for cooperative 3D object detection are

described in Sections 5.1.3, 5.1.3 and 5.1.3, respectively. Finally, Section 5.1.4

introduces the 3D object detection model used in the proposed system.

5.1.1 System Model

As shown in Figure 5.1, the proposed system model considers n infrastructure

sensors, each capable of depth sensing, e.g. lidar or depth camera, and equipped

with a local processor. These infrastructure sensors are linked to a central

fusion subsystem through wired or wireless data links. The sensors are assumed

to be accurately calibrated, i.e. their absolute pose, including position and

orientation, is known to the central system. The central fusion subsystem

is equipped with a fairly powerful processor to fuse data from sensors and a

wireless broadcast system to periodically disseminate cooperative perception

messages to the vehicles in the proximity. To benefit from the cooperative
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by sensors is fused at the central fusion system resulting in a list of objects
which is then shared with all nearby vehicles.
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perception messages, each vehicle will need to be equipped with a wireless

reception system. Autonomous vehicles also are assumed to have their own

onboard processing system to handle the local processing of either Advanced

Driver Assistance Systems (ADAS) or autonomous driving functions, including

perception and control (e.g. path/trajectory planning). It shall be noted that

the central fusion subsystem is not responsible for the control of the vehicles.

Each autonomous vehicle will therefore use on and off-board (broadcast by

the central fusion subsystem) information to make their own control decisions.

Hence, in the system model, the role of the central fusion system is only to

assist the vehicles in making safer control decisions. Note that the network

delay and communication losses are not considered in this study.

5.1.2 Data Preprocessing

The detection model considered in this chapter requires point cloud data, such

as that provided by lidars or depth cameras. While lidars can produce point

clouds as a standard output, the depth images produced by depth cameras

can be processed (details in Section 5.2) to generate point clouds. Each

sensor in a physical configuration provides points relative to its own coordinate

system, thus they need to be transformed to a global coordinate system before

being processed. This transformation consists of a rotation and a translation

operation that maps points from the sensor coordinate system to a global

coordinate system and is specified by the inverse of the extrinsic matrix of each

sensor. Given the coordinates (x, y, z) of a point in the coordinate system of

sensor i, the global reference point (xg, yg, zg) can be obtained using:
xg

yg

zg

1

 = M−1i


x

y

z

1

 =

[
Ri

0

∣∣∣∣∣ ti1
]

x

y

z

1

 , (5.1)

where Mi is the extrinsic matrix of sensor i, which can be decomposed into a

rotation matrix Ri ∈ SO(3) and translation vector ti ∈ R3.

The extrinsic matrix M of a sensor, and hence R and t, must be obtained

through a calibration process. This can be challenging in practice for the reason

that M depends on the position and orientation of sensors; hence, the result

can only be as accurate as the measurements of these variables. Realistically, if

these sensors are mounted on mobile nodes (e.g. onboard of a vehicle) any error

in the localisation of the mobile node will result in alignment errors in the fused

point cloud which could result in false positives and missed detections. In the

system model the sensors are fixed at the road side; therefore, the calibration

process can be carried out very accurately in practice [175, 176].
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Once the point cloud from each sensor is transformed into the global

coordinate system, all the points outside the specified detection area (defined

in Section 5.2) and above 4m height are removed since such points do not carry

relevant information.

5.1.3 Fusion Schemes

Cooperative perception for 3D object detection can be realised using different

fusion schemes. The multi-modality sensor fusion schemes discussed in Section

2.3.3 can be applied with minor adjustments to the single-modality sensor

fusion setting studied in this chapter. This study considers three fusion schemes:

early fusion, late fusion and a hybrid of the two. The distinction between early

and late fusion is based on whether the fusion happens before or after the object

detection stage. Early fusion is defined as the aggregation of raw sensor data

into a single point cloud before the detection stage. In contrast, in late fusion,

each sensor observation is processed independently, generating per-sensor 3D

detections, which are then fused as an end product. The hybrid fusion leverages

the benefits of both early and late fusion, aiming at a lower communication

cost. This hybrid solution is defined as performing early and late fusion

simultaneously, however limiting early fusion to points in the medium-far range,

which reduces the amount of shared sensor data.

All fusion schemes can extend the perception horizon and field-of-view of

the sensing system, however the early fusion scheme can most effectively exploit

complimentary information obtained from raw sensor observations. A simple

illustrative example is when a vehicle is partially occluded when observed

from two different sensing poses. In such case, each sensor observes a different

occlusion pattern, resulting in a potentially unsuccessful detection from both

observations. In contrast, when fused, these occluded observations can provide

sufficient information to successfully detect the subject vehicle. For this reason

the late fusion scheme is an example of high level fusion (object level), while

early fusion is an example of low level fusion (signal level) [177].

Early Fusion Scheme

This scheme, as illustrated in Figure 5.2a, is based on the fusion of point clouds

generated by n sensors, as depicted in Figure 5.1. This allows aggregation of

complementary information from distinct parts of the objects in the detection

area through spatially diverse observations, which increases the likelihood of

a successful detection, particularly for objects that are occluded or have low

visibility. The processing pipeline for this scheme incorporates the preprocessing

stage carried out onboard of each sensor, which results in n point clouds in the

global coordinate system. Each respective point cloud is transmitted to the
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central fusion system where they are concatenated into a single point cloud

and then fed to the 3D object detection model. The results of the object

detection model in the central fusion system consists of a list of objects, i.e.

3D bounding boxes, which is then disseminated to the vehicles in the vicinity,

as depicted in Figure 5.1.

Late Fusion Scheme

This scheme, as illustrated in Figure 5.2b, fuses the output of the 3D object

detection model (a list of 3D bounding boxes) obtained locally at each sensor

node. Thus, if an object is not detected in at least one of the observed point

clouds, e.g. due to occlusion or low point density, it cannot be detected by the

overall system. First, each point cloud is preprocessed and fed into the detection

model onboard each sensor, which generates a list of objects represented by

their 3D bounding boxes. The list of detected objects from the n sensors are

then transmitted to the central fusion system, where they are fused into a single

list. Considering that some objects may be in the field-of-view of multiple

sensors, the aggregated list may have multiple detections for a single object.

In order to mitigate this effect, a post-processing algorithm known as Non-

Maximum Suppression (NMS) [178] is employed. This algorithm identifies the

overlap of the detected boxes, measured by the Intersection Over Union (IOU)

metric (described in Section 5.4). If the overlap between any two detected

boxes exceeds a specified threshold, the box with lowest confidence score is

removed. The confidence score of a detected box indicates the confidence of

the presence of an object within the box, and is obtained by the 3D object

detection model (detailed in Section 5.1.4). Figure 5.2b illustrates an example

case where S2 and Sn observations resulted in two detections of a single object,

thus, during the fusion stage the box detected by Sn is omitted. A number

of detected boxes that overlap could be potentially combined to create a new

detection box with higher confidence, however this would require a new model

specifying the box fusion process. The conducted experiments showed that

NMS was successful in eliminating the overlapping detected boxes and, thus,

this algorithm is used for simplicity. Once the fusion and post-processing are

completed, the resulting object list is broadcast to all vehicles in the vicinity,

similar to the previous scheme.

Hybrid Fusion Scheme

The early fusion scheme can increase the likelihood of detecting objects com-

pared to late fusion due to the aggregated information prior to the detection

stage but requires raw sensor data sharing, which increases the communication

cost of the system. As an intermediate solution, the hybrid fusion scheme uses
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Figure 5.3: Voxelnet 3D Object Detection Model Architecture, obtained from
[75].

both of the previous schemes to increase the likelihood of a detection without

a drastic increase in the communication cost. The key concept is to share

high level information (late fusion) where the sensor has high visibility and

share low level information (early fusion) where the visibility is poor. Objects

close to a sensor will have a high density of points and thus are more likely

to be detected using a single sensor’s observation. Thus points in the close

vicinity of a sensor need not be transmitted to the central fusion system, which

allows to reduce the communication bandwidth. First, the late fusion scheme

is employed in each sensor node and the detected boxes are shared to the

central fusion system. Next, each sensor node selects all points from its point

cloud whose projection in the horizontal plane are outside a circle of radius

R and share them with the central fusion system. The radius R modulates

the trade-off between early and late fusion – as R decreases more raw data is

shared with the central fusion system. The central fusion system then uses

early fusion on the received point clouds and fuses the detected bounding boxes

with the late fusion results from each sensor node. The bounding box fusion

follows the same NMS procedure defined in Section 5.1.3.

5.1.4 3D Object Detection Model

The object detection model adopted in this chapter for both fusion schemes is

based on Voxelnet [75], shown in Figure 5.3.. This model consists of three main

functional blocks: a feature learning network, multiple convolutional middle

layers and a Region Proposal Network (RPN). Each block is described below.

The feature learning network converts the 3D point cloud data into a

fixed sized representation that can be processed by the convolutional layers.
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Originally, the Voxelnet architecture uses the laser reflection intensity channel

as well as the 3D spatial coordinates (x, y, z). Their original architecture is

adapted to support using the spatial coordinates alone, which enables the

model to generalise to point clouds obtained from depth cameras. The input

point cloud is grouped into voxels of equal size (vx,vy,vz), representing the

width, length and height, respectively. For each voxel, a set of t points within

its boundaries is selected to create a voxel-wise feature vector. If t is greater

than T (threshold on the maximum number of points per voxel), a random

sample of T points is selected, which reduces the computational load and the

imbalance of the number of points between different voxels. These points’

coordinates are fed into a chain of Voxel Feature Encoding (VFE) layers. Each

VFE layer in the chain consists of fully connected layers, local aggregations and

max-pooling operations that allow concentration of information from all voxel

points into a single voxel-wi se feature vector. The output of this network is a

4D tensor, indexed by the voxel feature dimension, height, length and width.

The convolutional middle layers in the processing pipeline apply three

stages of 3D convolutions to the 4D voxel tensor obtained previously. These

stages incorporate information from neighbouring voxels, adding spatial context

to the feature map.

The resulting tensor from the convolutional middle layers is then fed into

the Region Proposal Network. This network is composed of three stages of

convolutional layers, followed by three stages of transposed convolutional layers

which create a high resolution feature map. This feature map is then used to

generate two output branches: a confidence score indicating the probability of

presence of an object and a regression map indicating the relative size, position,

and orientation of a bounding box with respect to an anchor. Each element

of the output branch is mapped to an anchor in a uniformly arranged grid,

whose density is controlled by the anchor stride hyper-parameter. Anchors are

used since the regression of detection boxes relative to an anchor gives more

accurate results than regression without any prior information [30].

5.2 Dataset

At the time of writing this study, no public dataset was available to be readily

used for cooperative 3D object detection in the literature. Note that authors in

[107] and [108] simulate an environment where two vehicles share their sensors’

information by using point clouds from the KITTI dataset [47] generated by

the same vehicle at two different time instants. However, their approach is

limited to a small number of scenes where all objects remain static, except

for the ego vehicle, which also restricts the number and pose of sensors that

can be used. Hence, it falls short of providing a comprehensive dataset to

70



investigate dynamic and complex driving scenarios where multiple objects are

moving and/or are occluded. To this end, a novel cooperative dataset for

driving scenarios using multiple infrastructure sensors is generated as described

in the following.

The proposed dataset was created using the CARLA simulation tool [165],

which allowed simulation of complex driving scenarios as well as obtaining

accurate ground-truth data for training and evaluation. This dataset is used in

this chapter to establish the underlying concepts of the proposed cooperative

3D object detection schemes and gauge their potential benefits. The choice

for the simulation scenarios is motivated by the urban driving use cases of

the Cloud-Assisted Real-time Methods for Autonomy (CARMA) project [179],

whose funds supported this research. Within that category of use cases, the

choice was guided by the scenarios offering challenging perception conditions,

including occluding objects as well as having large spatial dimensions, which

challenges total coverage using a single sensor. As a result, two scenarios were

chosen: a T-junction and a roundabout scenario. The dataset is generated in

each scenario using fixed road-side cameras, which provide RGB and depth

images with resolution of 400 x 300 pixels and horizontal field-of-view of

90 degrees. The resolution and field-of-view are conservative estimates of

new generation solid state lidars [180]. The T-junction scenario uses six

infrastructure cameras mounted on 5.2m high posts. Three of these cameras

point towards the incoming roads and the remaining three to the opposite

direction of the junction. In contrast, the roundabout scenario uses eight

cameras at 8m mounting posts placed at the intersections, four of them facing

the oncoming lanes to the roundabout and the other four facing outwards the

roundabout. The sensors’ height was chosen according to the typical light poles

height already available in the simulation scenarios and to conform to local UK

standards [181]. Both sensor configurations were empirically positioned to fully

cover the roundabout and junction, while providing some overlapping between

sensors’ field-of-view, as illustrated in Figure 5.4. Note that both scenarios

have occluding objects, such as buildings (both scenarios) and a central statue

in the middle of the roundabout.

The proposed dataset consists of four independent collections: two for the

T-junction, containing 4000 training and 1000 test frames respectively, and two

for the roundabout, with an equal number of training and test frames. A frame

is defined as the set of depth and RGB images from all cameras corresponding

to a single instant in time. Each frame also contains an object list describing

the ground-truth position, orientation, size and class of all objects in the scene.

The dataset contains three classes of objects: vehicles, cyclists/motorcyclists

or pedestrians. During the generation of the dataset, the maximum number

of objects at any given time was set to 30, which was observed as a threshold
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above which severe traffic congestion happens. The probabilities of spawning

cars, cyclists and pedestrians is equal to 0.6, 0.2 and 0.2, respectively, which

guarantees a higher number of cars but still allows a representative sample of

cyclists and pedestrians. During the simulation, each object has a life span of

four frames, which forces new objects to be spawned periodically and increase

the diversity of objects and poses. The motion of the objects in the simulation

is governed by traffic rules and internal collision avoidance mechanisms of

the simulator. All object models available in CARLA are used during the

simulation – twenty for cars (sport, vans and SUVs), six for cyclists and

fourteen for pedestrians.

The detection areas are defined as a rectangle of 80 x 40m for the T-junction

scenario and a square of 96m centred at the roundabout, illustrated by the

blue rectangles in Figure 5.4a, 5.4c. These areas of interest are chosen to

cover all the junction/roundabout area and some extent of the roads leading

to it in order to increase the perception horizon of the system, while taking in

account the constraints in the processing system memory. The T-junction and

roundabout scenarios detection areas cover 3200 m2 and 9216 m2, respectively.

The proposed approach uses depth images, also known as depth maps,

exclusively. These images represent the distance from the camera to the surface

of objects in the camera field-of-view. More accurately, each pixel in a depth

image specifies the distance of the projection (into the camera’s Z axis) of

the vector from the camera to a surface point. Each depth image is used to

reconstruct a point cloud, where each pixel is transformed into a 3D point in

the camera coordinate system using the pinhole camera model [182], described

by: xy
z

 =

(u− Cu) df
(v − Cv) df

d

 , (5.2)

where (x, y, z) are the coordinates of the 3D point corresponding to pixel

coordinates (u, v) in the depth image, Cu, Cv, f are the camera focal centre and

length (given by the intrinsic camera matrix), and d is the respective depth

value of pixel with coordinates (u, v). The point cloud produced by combining

the 3D points from all cameras should have a similar size as one produced by a

standard lidar, around 200 thousand points, for processing time constraints. To

this end, the depth image resolution is downsampled in half to 200 x 150 pixels,

which yields 30000 3D points per camera, and approximately 200 thousand

points when combining points from six or eight cameras.

A surface agnostic Additive White Gaussian Noise (AWGN) model is

introduced with mean µ = 0m and standard deviation σ = 0.015m to the

depth image, following the specification and mathematical model of a lidar
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(a) (b)

(c) (d)

Figure 5.4: Bird Eye View of the T-Junction and Roundabout Scenarios. a
and c show the sensors configuration, where each sensor is indicated by its
ID number and green lines representing the field-of-view; the blue rectangles
indicate the detection areas of each scenario. b and d show the fused point
clouds, where each colour represents a sensor and the 3D bounding boxes
represent the labelled data, with colour indication of the class (red for cars,
green for cyclists and blue for pedestrians). Note that this sensor configuration
fully covers the detection areas and provide overlapping field-of-views (indicated
by areas with multiple colours).
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sensor in [183]. It must be noted that, in contrast to lidar sensors, the depth

estimation error of stereo-matching-based cameras increases exponentially with

the distance between the camera and the object [184]. However, since the data

is assumed to be obtained by lidar arrays, the noise is considered independent

of the distance between the sensor and the object.

5.3 Training Process

The model described in Section 5.1.4 is trained using the procedure presented

below. One instance of the 3D object detection model is trained for each

scenario using the fused point clouds from multiple sensors. The models are

trained with Stochastic Gradient Descent (SGD) optimisation for 30 epochs

with learning rate of 10−3 and momentum of 0.9, as proposed in [75], using

PyTorch [166]. The loss function is adopted from [75], and penalises the

regression of position, size and yaw angle relative to a fixed anchor. The

same hyper-parameters suggested in [75] are employed: a single anchor of size

(3.9, 1.6, 1.56)m with two orientations (0 and 90 degrees) and maximum number

of points per voxel T = 35.

The voxel size (vx, vy, vz) and the anchor stride along the X and Y dimen-

sions for the T-junction model is set to (0.2, 0.2, 0.4)m and 0.4m, respectively,

identical to those in [75]. Using these same hyper-parameters in the roundabout

model is unfeasible since the roundabout scenario has approximately thrice

the area of the T-junction scenario, which would result in feature maps that

do not fit in the GPU memory. Hence, the spatial resolution of the X and Y

axis is reduced in half by adopting a voxel size of (0.4, 0.4, 0.4)m and anchor

stride 0.8m for the roundabout model.

The object detection models are trained to detect vehicles only. The samples

of pedestrians and cyclists are present in the dataset to avoid over-fitting as

they force the model to learn distinct features for vehicles.

During the training stage, each ground-truth bounding box is rotated by

a random angle with a uniform distribution in the range of [−18, 18] degrees,

similar to previous studies in [75, 76], to increase the generalisation of angle

estimation. Rotating the whole point cloud to avoid model over-fitting to the

buildings and fixed objects surrounding the junction was considered, however

this operation did not result in a significant performance gain.

5.4 Performance Evaluation

The performance of the proposed cooperative perception system for 3D object

detection is evaluated through a series of experiments in two scenarios, a

T-junction and a roundabout. The performance evaluation is carried out on
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an independent test dataset for each scenario using the metrics described

in Section 5.4.1. First, the fusion schemes are compared in terms of their

detection performance, computation time and communication costs for data

sharing in Section 5.4.2. Secondly, the impact of the number of infrastructure

sensors and their pose on the detection performance is evaluated in Section

5.4.3. Then, the benefits of fusing information from multiple sensors with

overlapping field-of-view in early fusion scheme are evaluated in Section 5.4.4.

Additionally, it is evaluated how the number of infrastructure sensors relates

to the quality of the information acquired from the objects (in terms of the

density of points in the point cloud data), and, in turn, how this number relates

with the accuracy of the detected boxes in Section 5.4.5. Finally, the proposed

system performance is compared to existing benchmarks in Section 5.4.6.

5.4.1 Evaluation Metrics

Four evaluation metrics related to object detection are used in this chapter,

namely, Intersection Over Union (IOU), precision, recall and average precision,

which is derived from the previous two. Additionally, the communication cost

metric is defined as the average data volume exchanged between a sensor and

the central fusion system in kilobits (kbit) per frame, where a frame is defined

as a single operation of the whole processing chain in this chapter.

The IOU measures the spatial similarity of a pair of bounding boxes, one

normally chosen from the set of estimated bounding boxes and the other from

the ground-truth set, given by

IOU(Bgt, Be) =
volume(Bgt ∩Be)
volume(Bgt ∪Be)

, (5.3)

where Bgt and Be represent the ground-truth and the estimated bounding

boxes, respectively. The set of estimated bounding boxes includes all positive

boxes, i.e., those identified by the 3D object detection model in Section 5.1.4

with confidence scores greater than a threshold, denoted by τ . The IOU

simultaneously takes into account the location, size, and orientation (yaw

angle) of both bounding boxes. Its value ranges from 0 (when the bounding

boxes do not intersect) to 1 (when the location, size, and orientation of both

bounding boxes are equal). Normally, when the IOU metric for a pair (Bgt, Be)

is above a certain threshold, denoted by κ, Be can be regarded as the matching

estimation of Bgt. The IOU threshold κ is typically set to 0.5 or 0.7 [47], in

this chapter it is assumed to be 0.7 unless stated otherwise.

The precision metric is defined as the ratio of the number of matched

estimated boxes, according to the above definition, to the total number of

bounding boxes in the estimated set. Similarly, the recall metric is defined as
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the ratio of the number of matched estimated boxes to the total number of

bounding boxes in the ground-truth set. It shall be noted that the precision

and recall metrics are functions of κ and τ . And, there is an inherent trade

off between the precision and recall metrics, described in the literature by the

Precision-Recall (PR) curve [185].

The Average Precision (AP), denoted as AP3D, is a single scalar value,

computer by taking the average of the precision for M recall levels [185, 186]:

AP =
M−1∑
n=0

(rn+1 − rn)pinterp(rn+1), (5.4)

where

pinterp(r) = max
r̃:r̃≥r

p(r̃). (5.5)

Here M is the number of estimated bounding boxes, p(r) is the precision as

the function of recall r, and pinterp(r) is a smoothed version of the precision

curve p(r) [185]. The recall value ri ∈ {r1, . . . , rM} in Equation 5.4 is obtained

considering the confidence threshold τ equal to the confidence score of the

i-th bounding box within the set of estimated bounding boxes when sorted by

the confidence score in descending order. Throughout this chapter the AP3D

metric is used for different values of the IOU threshold κ, denoting it as AP3D

@ IOU κ.

5.4.2 Comparative Evaluation of Fusion Schemes

The purpose of this experiment is to compare the performance of early, late and

hybrid fusion schemes in terms of their detection performance, communication

cost and computation time. The detection performance of each scheme is

quantified by the AP3D metric for κ ∈ {0.7, 0.8, 0.9}. The communication cost

is computed as the number of kilobits shared between sensors and the central

fusion system, averaged across sensors and frames. The computational time

is measured as the average time required for the system to output detection

results for a frame. This time does not consider any communication delays and

assumes that all sensors process data in parallel. The performance evaluation

was carried out in both T-junction and roundabout scenarios in this experiment.

For the late fusion scheme, the NMS algorithm uses an IOU threshold of 0.1,

which was experimentally determined to remove multiple detections of a single

object. For the hybrid fusion scheme, the radius R of the circle limiting the

area for low level data sharing was experimentally determined for best trade-off

between communication cost and detection performance to be 20m and 12m

for the T-junction and roundabout scenarios, respectively.

Table 5.1 summarises the results of this experiment in terms of the AP3D,
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Table 5.1: Comparative Evaluation of Early Fusion (EF), Hybrid Fusion (HF)
and Late Fusion (LF) Schemes

AP3D Comm. Cost (kbit) Comp. Time (ms)

κ = 0.7 κ = 0.8 κ = 0.9 per sensor per frame

Tjunction
LF 0.8181 0.6259 0.07072 0.51 298
HF 0.8903 0.7056 0.07277 64 380
EF 0.9870 0.9447 0.3861 516 380

Roundabout
LF 0.8143 0.5986 0.01762 0.26 214
HF 0.8398 0.6289 0.02013 372 299
EF 0.9670 0.8816 0.04638 674 299

communication cost metrics and computation time for both scenarios. These

results show that the early fusion scheme outperforms hybrid fusion, which

in turn outperforms late fusion. More specifically, the early fusion scheme

outperforms late fusion scheme up to 20% in terms of detection performance in

the T-junction scenario and 18% in the roundabout scenario measured by the

AP3D metric with IOU threshold of 0.7. The early fusion scheme demonstrates

a significantly better detection performance compared to the other schemes

when considering higher values of κ, such as 0.8 and 0.9. It can also be seen that

for a given value of κ, the detection performance in the T-junction scenario is

consistently superior to the detection performance in the roundabout scenario.

This arises from the larger voxel sizes that had to be adopted in the latter

scenario, for the reasons described in Section 5.3, which reduces the spatial

resolution of the system and results in less accurate bounding box regression.

The results in Table 5.1 show that the superiority of the detection perform-

ance of the early fusion scheme comes at a higher communication cost. This is

due to the larger data volume required to transmit raw point clouds in early

fusion compared to the transmission of the estimated objects in late fusion

from the sensors to the central system. For example, in early fusion, a frame is

transmitted using a depth map of 200 x 150 32-bit values, equivalent to 960

kbits, which become roughly 500-600 kbits after filtering points outside the

detection area (defined in Sec 5.2); while late fusion encodes and transmits

a detected object with as little as 8 32-bit values determining the position,

size, orientation and confidence of the object. Furthermore, the hybrid fusion

outperforms late fusion with a significantly lower communication cost than

that of early fusion, due to filtering out points in the short range which are

likely to be detected by the late fusion component. However, the hybrid fusion

underperforms early fusion due to the loss in the omitted points. It should be

noted that the actual required link capacity from a sensor node to the central

fusion system will depend on the processing frame rates. For example, using

early fusion in the proposed T-junction scenario with a processing frame rate

of 10 frames per second, common for lidars, will require a communication link
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with the capacity of 5.16 Mbps (516 kb per frame times 10 frames per second)

from each infrastructure sensor to the central fusion system. Such rates can

be easily supported by the commercial wired as well as wireless Local Area

Network (LAN) technologies that may be needed to implement the proposed

system model in Figure 5.1. Adopting point cloud compression mechanisms

could also provide effective means of reducing the communication bandwidth,

although such methods are out of the scope of this study. Although network

delay is not considered in this study, the insight is that it could constitute a

significant problem to the fusion system by preventing successful detections due

to missing frames or by generating false positives due temporal misalignment

of incoming frames. The likelihood of such miss detections depends on the

communication channel properties and should be rigorously investigated in

future studies.

The computation time required to compute each frame increases in early

fusion when compared to late fusion because the fused point cloud has more

points than the individual point clouds, which increases the detection model

inference times. However, these measurements were conducted assuming that

sensor nodes (processing late fusion) have the same computational capabilities

of the central fusion system. In practice this is not a valid assumption, since

sensor nodes are low-end devices, while the central fusion system is expected

to have high-performing GPUs. As a result, in practice, it is expected that late

fusion running on sensor nodes is significantly slower than early fusion running

on the central fusion system. Note that the computation times are hardware

dependent and in this case were obtained using a Nvidia Quadro M4000 GPU

for all experiments and fusion schemes.

5.4.3 Impact of Sensors Pose and Number on Detection Per-

formance

This experiment focuses on the evaluation of the impact of the pose (position

and orientation) and number of sensors on the object detection performance.

The performance is evaluated for early and late fusion schemes on both scenarios

considering all objects within the detection area, defined in Section 5.2. The

evaluation is carried out for all possible sensor sets, where the number of

sensors in a set ranges from one to six in the T-junction and one to eight in

the roundabout scenario. The NMS algorithm and threshold are the same as

the previous experiment for consistency of the results.

Table 5.2 reports the top-3 performing sensor sets for each number of

sensors in both scenarios in terms of AP3D metric (κ = 0.7). The results show

that the detection performance increases as the number of engaged sensors is

increased. In particular, there is a steep performance increase of more than
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Table 5.2: Detection Performance of Early Fusion (EF) and Late Fusion (LF)
for Various Sensor Combinations

T-junction Roundabout

No. Sensors Sensor Set EF AP3D LF AP3D Sensor Set EF AP3D LF AP3D

8 - - - 0,1,2,3,4,5,6,7 0.9670 0.8143

7
- - - 0,1,2,3,5,6,7 0.9385 0.7904
- - - 1,2,3,4,5,6,7 0.9340 0.7868
- - - 0,1,3,4,5,6,7 0.9307 0.7834

6
0,1,2,3,4,5 0.9870 0.8181 1,2,3,5,6,7 0.9050 0.7627
- - - 1,2,3,4,5,7 0.9017 0.7627
- - - 0,1,2,3,5,7 0.8973 0.7664

5
0,1,3,4,5 0.9441 0.7611 1,2,3,5,7 0.8678 0.7385
0,1,2,3,5 0.9348 0.6672 1,3,5,6,7 0.8610 0.7314
1,2,3,4,5 0.9327 0.7914 1,3,4,5,7 0.8576 0.7313

4
1,3,4,5 0.8653 0.7336 1,3,5,7 0.8231 0.7069
0,1,2,5 0.8596 0.4765 1,2,3,7 0.7356 0.6557
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2,5 0.4453 0.3309 5,7 0.4664 0.4638
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2 0.2013 0.2013 1 0.2151 0.2151
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Figure 5.5: Precision-Recall curves of early fusion with different number of
sensors for a T-junction and b roundabout scenarios. The curves are produced
for the sensor sets highlighted in bold in Table 5.2. AP3D values are calculated
for κ = 0.7.
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50% when using two sensors instead of one in both scenarios. However, the

performance gain saturates as the number of sensors increases. Also, it can be

seen that as the detection area increases, more sensors are needed to maintain

the detection performance. For example, in the roundabout scenario, eight

sensors need to be engaged to achieve a performance level equal to that of six

engaged sensors in the T-junction scenario, which has smaller detection area.

Furthermore, the early fusion scheme consistently outperforms late fusion with

respect to the detection performance. Their disparity becomes more significant

as the number of sensors grow since the early fusion scheme can exploit more

information at detection time compared to late fusion.

Figure 5.5 presents the PR curves of the best sensor sets (rows with a bold

font in Table 5.2) for both scenarios using the early fusion scheme. The curves

show that the maximum recall of detected objects increases significantly for

both scenarios when the number of engaged sensors increase. Specifically, a

single sensor can detect only 30% of all the vehicles in the T-junction scenario

and slightly more than 30% of all the vehicles in the roundabout scenario.

However, when all sensors (six for the T-junction and eight for the roundabout)

are engaged, both scenarios show similar performance and detect more than

95% of the ground-truth objects with precision above 95%.

As one could anticipate, the results show that the number and pose of

sensors have direct impact on the performance of the system. The results also

demonstrate the impact of spatial diversity in terms of the improved quality of

the input information to the object detection model. For example, the sensor

set (0,2,5) achieve the best performance for three sensors in the T-junction

scenario. Adding sensor 1 to the aforementioned set does not increase the field-

of-view of the system, as observed in Figure 5.4a, however the results in Table

5.2 show that this addition has a notable impact on detection performance (20%

increase in AP3D). The impact of spatial diversity on detection performance

is further explored in the next experiment.

5.4.4 Spatial Diversity Gain of Cooperative Perception

The enhanced detection performance in cooperative perception seen in the

previous experiments can be associated with two factors: 1) the increased

field-of-view; 2) the spatial diversity gain, which manifests itself in point clouds

with higher point density in areas that are covered by multiple sensors. This

experiment intends to shed light into the latter factor.

This experiment focus on objects within a defined Region of Interest (ROI),

where all objects are within the field-of-view of two specific sensors. For

example, the ROI for the sensor set (2,4) in the T-junction scenario is limited

to road to the left of the junction (filled with green and brown points in Figure
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Table 5.3: Impact of Spatial Diversity on Detection Performance

T-junction Roundabout

ROI Sensors Set AP3D ROI Sensors Set AP3D

1,5
1 0.4717

1,7
1 0.1474

5 0.3222 7 0.8874
1,5 0.8722 1,7 0.8925

2,4
2 0.5621

3,5
3 0.3944

4 0.7942 5 0.8819
2,4 0.9560 3,5 0.8996

5.4b), and the ROI for the sensor set (3,5) for the roundabout is limited to the

upper right quadrant of the roundabout (filled with yellow and light purple

points in Figure 5.4d). For each of the these ROIs, the detection performance

of the early fusion scheme using the specified sensor sets is compared to that of

a single sensor covering the same ROI. The detection performance is quantified

by the AP3D metric restricted to objects within the specified ROI. For each

scenario, the two sensors sets with highest field-of-view overlap are considered:

(1,5) and (2,4) for the T-junction scenario and (1,7),(3,5) for the roundabout

scenario.

The impact of spatial diversity on the detection performance of early fusion

scheme is visualised in Figure 5.6. As it can be seen in the snapshots in Fig

5.6c, when a single sensor is engaged most objects fail to be detected or are

detected with poor accuracy (i.e. incorrect size or yaw angle). However, upon

increasing the point density by combining multiple point clouds with early

fusion, it is possible reduce the number of false negatives and increase the

quality of estimated bounding boxes, as illustrated in Figure 5.6d.

The results of this experiment, summarised in Table 5.3, show that the early

fusion scheme using only two sensors outperforms the best single sensor by

20% and 85% in the T-junction scenario. However, the detection performance

gain when using two sensors in the roundabout is marginal. This is due to the

fact that the fields-of-view of the specific sensor set used has minimal overlap

in this particular roundabout scenario. The results presented indicate that

early fusion can: a) reduce the number of false negatives caused by occlusion

and low point density; b) improve the quality of estimated boxes when the

sensors have significant overlapping coverage.

5.4.5 Impact of Point Density on Estimated Bounding Boxes

Accuracy

One can intuitively stipulate that a denser point cloud will provide additional

information about the objects in the scene, as has been the case for Airborne
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(a) From Sensor 0 (b) From Sensor 1 (c) From Sensor 5 (d) Early Fusion
from sensor set
(0,1,5)

Figure 5.6: Illustration of the impact of spatial diversity on the performance of
the early fusion scheme for various sensor configurations (green boxes represent
the ground-truth objects and red boxes represent estimated objects). Points’
colour indicate the sensor of origin.

lidar scanners and object classification in the context of remote sensing [187].

This experiment analyses how the number of sensors affects the density of

points in the point cloud and, in turn, the accuracy of the boxes estimated by

the object detection model in a driving context. The point density of an object

is defined as the number of points within the boundaries of its ground-truth

bounding box. This point density density is a discrete random variable that

is a random function of the number and pose of the sensors that observe the

object.

Figure 5.7a shows the Cumulative Distribution Function (CDF) of objects’

point density for the best sensor sets in the T-junction scenario from Table 5.2

(highlighted in bold font). Given a point (d, F (d)) where F represents one of

the CDF curves, the vertical coordinate F (d) represents the ratio of objects

whose point density is smaller or equal to the horizontal coordinate d. The

intersections with the vertical axis shows that using Sensors 4 and the sensor

set (3,4) alone results in more than 60% and 30% of the objects having zero

point density, respectively. Similarly, one can compute the ratio of objects

whose point density is within an interval [d1, d2] by computing F (d2)− F (d1).

Thus, using the sensor set (0,2,5) guarantees that all ground-truth objects

have non-zero point density but results in 90% of the objects having point

density below 300 points. When the number of engaged sensors is increased,

the number of objects with point density in the range of [250, 1000] points

increases significantly, but saturates for point densities above 1750 points.

Next, the relationship between an object’s point density and the accuracy of

the estimated bounding box, measured by the IOU metric, is investigated. For

this purpose,the objects are split into 200 uniform-sized bins according to their

point density. The IOU value for a bin is computed by averaging the individual

IOU values among all objects in the bin. Figure 5.7b shows the scatter plot

of the IOU value per point density bin and a log curve interpolation. The

accuracy of objects with point density below 70 points is poor, but increases
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Figure 5.7: Analysis of the point density and the IOU metric over estimated
boxes in the T-junction test set.

significantly when the point density surpasses 100 points. The outliers observed

in the range of [1800, 3400] are caused by objects that are close to a sensor,

thus have a high number of points concentrated on a small surface but few

points elsewhere, resulting in a poorly estimated bounding box. In conclusion,

the point density of an object can provide a useful prediction of the accuracy

of the estimated bounding box. Thus, given the accuracy requirement for the

estimated bounding boxes, it is possible to find the minimum required point

density and the number of sensors required for a specific scenario.

5.4.6 Comparison with Existing Benchmarks

The direct comparison of the proposed fusion schemes with other approaches

[75, 108] may not be meaningful due to its unique sensing strategy. However,

for a fairer-comparison, two approaches are considered: (a) the AP3D results

obtained using a single sensor in this chapter are compared to the reported

results produced by Voxelnet [75]; (b) the AP3D results using two sensors in

the T-junction scenario from Section 5.4.4 is compared to the reported results

produced by Cooper [107] and F-Cooper [108] in a road intersection scenario.

Both comparisons are reported in Table 5.4.

The first comparison considers the results produced by Voxelnet [75] using

the KITTI dataset [47]. Their results are reported for AP3D in three com-

plexity categories, easy, moderate and hard, are 81.97%, 65.46% and 62.85%,

respectively. The results from Section 5.4.3 shows that the proposed method

using a single sensor achieve much lower AP3D, around 28% for both scen-

arios. This significant performance gap emerges due to the evaluation in this
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Table 5.4: Comparison with Existing Benchmarks

AP3D

Single sensor Two sensors

Cooper [107] 0.1960 0.7237
F-Cooper [108] 0.1960 0.7237
Proposed (early fusion) 0.4717 0.8722

study considering all the ground-truth objects within the detection area, while

Voxelnet and other studies using the KITTI benchmark consider only the

objects within the sensor’s field-of-view. The performance gap highlights the

complexity of detecting objects in both scenarios using a single sensor, since its

field-of-view cannot cover all the detection area and is susceptible to occlusion

caused by buildings and other objects. As discussed in Section 5.4.3, increasing

the number of sensors used is highly beneficial to the detection performance in

the proposed system.

Secondly, the proposed early fusion scheme results are compared with the

results produced by F-Cooper [108]. For a fair comparison, the proposed

system in this study uses only two engaged sensors in the T-junction scenario,

which is similar to the “road intersections” scenario reported in [108]. In

[108], the authors report results in two categories, “near and far”, according

to the distance from the object to the sensor. The “near” category shows

marginal improvement, hence the comparison focus on the “far” category. The

AP3D results in [108] for a single sensor and fusion of two sensors are 19.60%

and 72.37%, respectively. The results of the proposed method in this chapter

under a similar scenario for a single sensor and early fusion of two sensors are

47.17% and 87.22%, respectively, as noted in Section 5.4.4. Although the direct

comparison of these values is not meaningful given the dataset differences and

sensing strategy, it is possible to see that both approaches show a comparable

performance gain when considering more than a single sensor.

5.5 Summary

This chapter proposed a cooperative perception system for 3D object detection

using three fusion schemes: early, late, and hybrid fusion. The proposed system

model contains n infrastructure sensors that share data with a central fusion

system, where information is fused and the resulting detections (3D bounding

boxes) are disseminated to all the vehicles in the vicinity. A novel cooperative

dataset containing depth maps from multiple infrastructure sensors in a T-

junction and a roundabout scenario was used for the evaluation of the proposed

system. The evaluation indicated that increasing the number of sensors in the
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proposed system is highly beneficial in complex scenarios, which allowed to

overcome occlusions and restricted field-of-view. The results showed that the

early fusion scheme outperformed other fusion methods at the cost of higher

communication bandwidth, while the hybrid fusion compromised detection

performance and communication costs. Furthermore, the proposed system was

able to increase the perception horizon and the density of the fused point cloud

by exploiting spatially diverse observations with overlapping fields-of-view,

which reduced false negative detections and allowed more accurate estimates

of the 3D bounding boxes. Finally, the results suggested that the system can

be realised with current communications technologies and can reduce the costs

of individual vehicles through shared infrastructure resources.
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Chapter 6

Infrastructure Sensor Pose

Optimisation for Robust

Cooperative Perception

Chapter 5 motivated the usage of infrastructure sensors for cooperative 3D

object detection. The experiments in that chapter showed that fusing the data

from multiple sensors allowed to improve the detection recall and precision

metrics. Furthermore, the experiments showed a correlation between the

number of points observed on the surface of an object and the accuracy of its

detected bounding-box. The pose of the sensors in both the T-junction and

roundabout scenarios was empirically determined through domain-knowledge

heuristics. Specifically, these heuristics included ensuring that the sensors cover

the ground-area of all the areas of interest (blue rectangles in Figures 5.4a

and 5.4c) and that some of the sensors had overlapping fields-of-view, which

has been shown to improve detection performance in Section 5.4.4. Manually

determining the pose of the sensors can be challenging in practice, particularly

in cluttered scenarios where objects occlude one another. In such scenarios,

maximising the visibility of ground area may not guarantee the visibility of

objects placed over those areas due to the aforementioned occlusions. This

chapter investigates how to automatically optimise the pose of infrastructure

sensors such that the visibility of objects is maximised considering the effects

of occlusions.

A major category of the existing studies formulate this problem as a discrete

optimisation problem where a finite set of possible sensor poses is considered

and the target objects’ visibility is described by a set of binary variables

[130–132, 134]. The problem is then solved by using various forms of Integer

Programming (IP) solvers to either maximise the number of visible target

objects (coverage) with a fixed number of sensors; or to minimise the number of

sensors required to achieve a given coverage constraint. However, the majority
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of the applications that may use such sensor networks, e.g. object detection

and tracking, require a minimum level of visibility over the target objects which

cannot be encoded by single binary variables. For example, an object may have

different degrees of visibility due to occlusions and due to its position w.r.t.

the sensors, which causes ambiguity in the assignment of a binary visibility

variable. Another category of the existing studies consider the optimisation of

continuous sensor pose variables using various forms of continuous optimisation

algorithms [125–128]. Most of the studies in this category focus on maximising

the coverage (visible ground area) of extensive 3D environments described

by digital elevation maps. However, such formulation does not consider the

distribution of objects in the environment, and instead, assume an object would

be visible if it is within a region covered by the sensors. As a result, these

studies fail to detect and prevent occlusions between objects since they do not

explicitly model the visibility of the target objects. This becomes a limiting

factor when considering cluttered environments such as traffic junctions with a

significant number of vehicles and pedestrians.

In this chapter, an occlusion-aware visibility model is proposed based on a

differentiable rendering framework and two novel approaches for object-centric

sensor pose optimisation based on gradient-ascent and Integer Programming are

proposed. Different from the existing approaches in the literature that aim to

cover ground areas on elevation maps, this chapter considers explicitly modelling

the visibility of the target objects by considering a set of object configurations,

defined as frames. In this definition, each frame contains a number of target

objects with specific sizes, positions and orientations within the environment.

The objective of the proposed method is to maximise the visibility of all target

objects across the frames. The distribution of frames is considered to be

application specific and can be obtained by empirical evaluations or simulation.

The proposed methods are comprehensively evaluated in a challenging traffic

junction environment and compared with previous methods in the literature.

The results of this evaluation indicate that explicitly modelling the visibility of

objects is critical to mitigate occlusions in cluttered scenarios. Furthermore, the

results show that both of the proposed methods outperform existing methods in

the literature by a significant margin in terms of object visibility. In summary,

the contributions of this chapter are:

� A realistic visibility model, created using a rendering process, that pro-

duces pixel-level visibility information and is capable of detecting occlu-

sions between objects;

� A novel gradient-based sensor pose optimisation method based on the

aforementioned visibility model;

� A novel IP sensor pose optimisation method that guarantees minimum
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object visibility based on aforementioned rendering process;

� The performance comparison between both methods and existing works

in the literature in a simulated traffic junction environment.

6.1 Problem Formulation

This section firstly presents the formulation of the sensor pose optimisation

problem upon which the gradient-based and Integer Programming (IP) methods

in Sections 6.2 and 6.3, respectively, are based. Next, a novel sensor pose

parametrisation is introduced to constrain the sensor poses to feasible regions

which are pre-defined according to the environment where the sensors are

deployed.

Sensor Set
S = {𝑠1, 𝑠2,…, 𝑠𝑁}
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Figure 6.1: Illustration of the problem formulation for an exemplar driving
environment with N = 3 sensors and M = 5 target objects. (a) Physical
representation of target objects and sensor poses. (b) Objects and environment
representation under the sensor pose problem formulation. (c) re-projected
point cloud P (S) and objects’ visibility metric. Note that the visibility metric
of a target object is obtained by counting the number of points of P (S) on the
surface the respective object, as defined in Equation 6.1.

The sensor network, depicted in Figure 6.1a, consists of a set of fixed

infrastructure sensors S that collectively observe a set of target objects, denoted

by O, in a driving environment. Each target object is represented using a

three-dimensional cuboid encoded by o = (x, y, z, w, h, l, θ) ∈ O, where x, y, z

correspond to the 3D centroid of the box, while w, h, l represent the box size

and θ corresponds to the pitch angle (rotation around the vertical axis), as

depicted in Figure 6.1b. The visibility of object o by the sensor set S, denoted

by vis(o, S), is defined as the number of pixels, or points, that the set of

sensors S project onto the object’s surfaces. Visibility in this sense intuitively

quantifies the information that sensors capture about each object and has

shown to be correlated with the performance of perception tasks such as 3D

object detection, as shown in Section 5.4.5, and tracking [188]. This visibility

metric is computed in two steps. First, the frame containing objects O is

rendered. Then, the depth-buffer from each sensor in S is re-projected into 3D

space, creating an aggregated point cloud P (S), as described in Section 6.2.2

and illustrated in Figure 6.1c. Finally, the visibility of each object o ∈ O is
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obtained by counting the number of points of P (S) that lie on the surface of

each respective object:

vis(o, S) =
∑

p∈P (S)

1, if p on o’s surface

0, otherwise.
(6.1)

This visibility metric provides pixel-level resolution which successfully captures

the effects of total or partial occlusions caused by other target objects and by

the environment. The environment model, denoted by E, can also be modified

according to the application requirements. For example, it is possible to include

static scene objects, such as buildings, lamp posts and trees, that may affect

the visibility of target objects.

The formulation proposed so far considered a single, static configuration of

target objects, denoted by O. However, driving environments are dynamic and

typically contain moving vehicles and pedestrians. Dynamic environments are

accounted for by considering a set of L static frames. Each frame contains a

number of target objects with specific sizes, positions and orientations within

the environment. The number of frames, denoted by L, must be chosen such

that the distribution of objects over the collection of frames approximates the

distribution of target objects’ in the application environment. For example,

one can obtain a set of frames for driving environments using microscopic

scale traffic simulation tools, such as SUMO [189] or through the empirical

observation of the driving environment.

The underlying optimisation problem is to find the optimum poses for N

sensors, denoted by S = {s1, . . . , sN} that maximise the visibility of target

objects across the L frames. Formally, the optimal set of sensor poses is defined

as

Ŝ , arg max
S

min
o∈O

vis(o, S), (6.2)

where O is the set of objects across L frames. In practice, each frame is

rendered independently so that objects from different frames do not occlude

one another, but the optimisation is still performed across all frames.

It should be noted that one can alternatively maximise the mean visibility

of the target objects, which can be formulated as arg maxS
1
M

∑
o∈O vis(o, S).

However, this may result in some of the objects having very low or zero visibility

in the favour of others having un-necessarily large visibility. But maximising

the minimum visibility biases the optimisation algorithm towards sensor poses

that guarantee the visibility of all target objects.
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6.1.1 Sensor Pose Parametrisation

Generally speaking, the pose of a sensor in a 3D environment can be described

by the canonical six degrees-of-freedom parametrisation s = (x, y, z, ϕ, θ, φ),

where the (x, y, z) represent the sensor position and (ϕ, θ, φ) its viewing angles.

However, unconstrained optimisation under such parametrisation is seldom

useful in practice as most environments have restrictions regarding sensors’

location, e.g. sensors must be mounted close to a wall, on lamp posts, and

clear from a road, etc. To this end, a continuous sensor pose parametrisation

called virtual rail is proposed. This parametrisation imposes constraints over

the sensors’ location without adding any penalty term to the optimisation

objective function or requiring any changes to the optimisation process, such

as gradient projection.

A virtual rail is defined by a line segment between two points in 3D space.

The sensors can be placed at any point within this line segment, as illustrated

in Figure 6.5. The viewing angles are described by the rotations along the X

and Y axis, as no rotation is assumed along the camera principal axis (Z). The

pose of a sensor on a virtual rail between points p1, p2 ∈ R3 has its pose fully

determined by the parameters s = (t, α, β) through the parametrisation

(x, y, z) = p1 + σ(t)(p2 − p1),

ϕ = 2πσ(α),

θ = πσ(β),

φ = 0,

(6.3)

where

σ(z) =
1

1 + e−z
, (6.4)

is the sigmoid function. This function enforces the bounds of position within

the rail, i.e. (x, y, z) on the line segment between p1, p2, and viewing angles

ϕ ∈ [0, 2π], θ ∈ [0, π] for unbounded variables t, α, β ∈ R.

This parametrisation allows the use of unbounded gradient optimisation

with guaranteed constraints over the sensors’ poses. Note that the choice of

the number and position of virtual rails are hyper-parameters defined to fit the

needs of the application according to the complexity of the environment/task.

6.2 Gradient-based Sensor Pose Optimisation

This section describes the proposed gradient-based sensor pose optimisation

for multi-object visibility maximisation.

The objective function proposed in Equation 6.2 is not differentiable w.r.t.

the sensor pose parameters due to the non-continuity introduced by the
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threshold operation in vis(· ). Thus, gradient-based solutions cannot be applied

to solve this optimisation problem. Therefore, a processing pipeline featuring

a differentiable objective function that approximates the objective function

in Equation 6.2 is proposed. A crucial element of this approximation is the

visibility score, a continuous variable in the interval [0, 1] that measures the

visibility of a given 3D point w.r.t. a sensor. The processing pipeline considers

the continuous visibility score of multiple points over each target object, which

ensures the objects’ visibility and implicitly approximates the original problem

in Section 6.1. It shall be noted that the visibility score is different from the

visibility metric (Equation 6.1) in two ways: 1) the former is differentiable

while the latter is not; 2) the former indicates the degree of visibility of a single

point on a target object while the latter is the number of points on the surface

of a target object. The proposed processing pipeline for the computation and

optimisation of the objective function is depicted in Figure 6.2.

The processing pipeline consists of five stages.

1. a set of target points, denoted by T ∈ RMF×3, is created by sampling

F points from each of the M target objects. The points are randomly

distributed along the objects’ surfaces proportionally to each surface

area.

2. the points T are projected onto the image plane of each sensor and

a visibility score is computed for each target point according to their

position w.r.t. the visible frustum of the respective sensor, as described

in Section 6.2.1.

3. an occlusion-aware visibility model, described in Section 6.2.2, is used to

update the visibility score created in the previous stage. This is required

since some projected points will be in the visible frustum of a given sensor

but occluding objects prevent direct line-of-sight between the point and

the sensor.

4. the objective function is computed as the mean visibility score of all

points T on target objects, as described in Section 6.2.3.

5. gradient-ascent is used to maximise the objective computed in the previ-

ous step, as described in Section 6.2.4.

The proposed processing pipeline can work for any continuous sensor pose

parametrisation. However, this chapter considers the parametrisation proposed

in Section 6.1.1, which constrains the sensor position to a line segment and

allows for unconstrained gradient-based optimisation.
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Figure 6.2: Processing pipeline of the proposed Gradient-based sensor pose optimisation method. (a) an exemplar frame with two objects and
a set S of N sensors, including an environmental model with an occluding block (in green). (b) the optimisation pipeline.
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6.2.1 Visibility Model

In this section, a realistic visibility model is proposed based on the perspective

camera model provided by PyTorch3D [167]. Built on top of PyTorch [166],

this camera model provides differentiable transformations from the global

coordinate system to the camera image plane which is fundamental for a fully

differentiable pipeline. The cameras’ extrinsic matrix is determined by the

pose of the sensors, specified by the set of parameters S, being optimised. It

shall be noted that all cameras intrinsic properties are identical: 90-degree

horizontal field-of-view, Dnear = 1m, Dfar = 100m near and far clipping planes,

respectively, and resolution of W = 200 x H = 200 pixels. The resolution is

kept relatively small in order to reduce the computational complexity of the

rendering process, described in Section 6.2.2. Increasing the image resolution

directly increases the visibility of the target objects as there will be a higher

number of pixels/points per object. In practice, the sensor poses resulting from

the optimisation process can be used for cameras with higher resolution, as

long as they have the same aspect ratio and field-of-view.

The projection of a point p = [x y z]T ∈ R3 in the global coordinate system

into the image plane of sensor s is given byusdsvsds

ds

 = MiMe(s)

xy
z

 , (6.5)

where [ud vd d]T are homogeneous coordinates that can be divided by d to

obtain the canonical form [u v 1]T . Here, u, v are the image plane coordinates

in pixels, d is the depth of the point in the view frustum and Mi,Me are the

intrinsic and extrinsic camera matrices of sensor s, respectively. The point

p is within the visible frustum if and only if W ≥ u ≥ 0, H ≥ v ≥ 0 and

Dfar ≥ d ≥ Dnear where W and H are the image width and height in pixels.

Dnear, Dfar are the camera near and far clipping planes in meters, respectively.

The visibility of a given point from the perspective of a sensor s is determined

by verifying that the image plane projection of this point, given by Equation

6.5, satisfies the bounds described in the previous paragraph. If the bounds are

satisfied, the point is considered visible, otherwise it is not. Since the threshold

operations used to identify the visibility of a point are not differentiable, the

sigmoid function (Equation 6.4) is chosen as a differentiable approximation of

the binary visibility. This continuous visibility score can be interpreted as a

probabilistic visibility measure [125] of a point, ranging from 0 (completely

invisible) to 1 (completely visible). This is formulated by a window function

as follows:

w(z, γ, z0, z1) = σ(γ(z − z0))− σ(γ(z − z1)), (6.6)
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where γ ∈ R controls the rate of transition on the limits of the interval [z0, z1],

as illustrated in Figure 6.3. As γ increases the window function tends to a

binary threshold operation. However, this reduces the intervals with non-zero

gradients, and consequently inhibits parameters updates through gradient

optimisation. Empirical tests revealed that γ = 1 was the best out of the three

tested values (0.1, 1, 10) for this hyper-parameter.

The visibility score of a point p with image plane projection [usds vsds ds]
T

is given by

Ψ(p, s) = w(us, γ, 0,W ) · w(vs, γ, 0, H) · w(ds, γ,Dnear, Dfar). (6.7)
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Figure 6.3: Window function w(z, γ, z0, z1) plotted for z0 = 0, z1 = 200 and
varying values of γ.

This visibility model does not take into account occlusions caused by other

objects or the environment since a point being within the visible frustum of a

sensor is a required but not sufficient condition to guarantee direct line-of-sight

visibility from the sensor to the point. To account for occlusions, an occlusion

aware visibility model, based on the visibility model presented in this section,

is presented in Section 6.2.2.
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6.2.2 Occlusion Awareness

Determining the visibility/occlusion of objects is a common problem in com-

puter graphics, and appears in different applications, e.g. when casting shadows

[190] in a scene. The process of casting shadows in a scene is equivalent to

determine the occlusions from the light source perspective [190], and rendering

those points as unlit in the camera perspective view. The same approach

can used to identify if a given sensor has line-of-sight visibility of a point in

3D space in the proposed occlusion-aware visibility model. However, instead

of considering the light source perspective as in [190], the proposed model

considers the sensors’ perspective. The line-of-sight visibility is verified using

the depth buffer generated by the PyTorch3D’s [167] rasteriser. This rasteriser

transforms the meshes representing the environment and the target objects

into a raster image with a corresponding depth buffer. When an object is

projected to the image plane, the orthogonal distance between the object and

the sensor is stored in the corresponding pixel position of the depth buffer.

If another object is projected to the same pixel, the depth buffer keeps the

smallest depth distance among the two. By comparing the value of the depth

buffer at the projection of a given 3D point with its distance to the camera, it

is possible to determine if the point is visible (i.e. the depth values match), or

if the point is occluded (the depth buffer has a smaller depth value, indicating

there is another object closer to the camera in that direction).

Given a target point p ∈ T and a sensor s, the point is considered to be

occluded from the point of view of sensor s if

|ds − Zs(us, vs)| > κ, (6.8)

where [usds vsds ds]
T is the projection of p on the image plane of s according

to Equation 6.5. Here, Zs(us, vs) is the depth buffer of sensor s at the pixel

position (us, vs) and κ is a threshold for the maximum disparity between the

projection depth value and the depth buffer. The experiments of this chapter

consider κ = 0.5m, which allows to accurately detect occlusions. Figure 6.4

illustrates this occlusion-aware visibility model for a visible and an occluded

point. In this figure, the depth of a point projected on the image plane matches

the depth buffer measurement at the corresponding pixel if the point is visible;

if the point is occluded the depth buffer value will be smaller since there is

another object closer to the sensor.

This occlusion-aware visibility model leads to an enhanced version of the
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visibility score of a point p observed by sensor s, given by:

Ψ(p, s) =



w(us, γ, 0,W )·

w(vs, γ, 0, H)·

w(ds, γ,Dnear, Dfar) , if |ds − Zs(us, vs)| ≤ κ

0 , otherwise.

(6.9)

In the case where p is out of the visible frustum of sensor s, the visibility score

is given by Equation 6.7. Note that if the point is occluded, there is no gradient

signal to change the pose of the sensor in which the point is occluded. Yet, the

occluded point can be targeted by other sensors in the network.

The depth buffer from each sensor is re-projected into 3D space, using

the inverse of Equation 6.5, to create a 3D point cloud representing all points

observed by the respective sensor. Effectively, the depth buffers from each

sensor s ∈ S are re-projected and aggregated into a fused point cloud P (S),

shown in Figure 6.7b. This fused point cloud is used to compute the visibility

metric vis(o, S), used by the IP method and during the system performance

evaluation.

Image Plane Re-projection

Depth Buffer (Z-buf) Re-projection

𝑠

Figure 6.4: Illustration of the occlusion-aware visibility model: a point is
considered to be visible by sensor s if it lies within the visible frustum of s and
the Z component of the projection in the image plane closely matches the Z
component obtained from the depth buffer (red point on o1). If the disparity
between these distances is above a threshold (κ = 0.5m) the point is considered
occluded (blue point on o2).
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6.2.3 Objective Function

A target point p may be observed by multiple sensors, thus, the overall visibility

of a point by a set of sensors S is computed as

Ψ(p, S) = 1−
∏
s∈S

(1−Ψ(p, s)). (6.10)

According to Equation 6.10, a point’s overall visibility score is forced to be 1 if

at least one sensor has a visibility score of one. Conversely, sensors that cannot

observe a point (zero visibility score) do not affect the overall visibility score.

Furthermore, when multiple sensors observe the same point, the combined

visibility score improves.

The proposed sensor pose optimisation model in this chapter aims to

maximise the mean visibility score across all objects O for a given set of sensors

S. Hence, the following objective function is maximised in the proposed

gradient-based formulation:

L =
1

|T |
∑
p∈T

Ψ(p, S), (6.11)

where T is a set of randomly sampled target points from target objects’ surfaces,

and Ψ(p, S) is the overall visibility score of point p across all sensors S according

to Equation 6.10 considering the enhanced occlusion-aware visibility model,

described by Equation 6.9.

6.2.4 Optimisation

The Adam optimiser [191] is used to allow per-parameter learning rate and

adaptive gradient-scaling, which has been shown to stabilise and shorten the

optimisation process. The optimiser uses a global learning rate of 0.1, and is

executed for 20 iterations over the whole collection of frames. These optim-

isation hyper-parameters were determined empirically through experiments.

Algorithm 1 describes the optimisation process for a set of frames and Table

6.1 specifies the input variables used in the algorithm.

The objective function in Equation 6.11 is maximised w.r.t. the continuous

sensor pose parameters (t, α, β) described in Section 6.1.1. These parameters

specify the pose of a sensor within a virtual rail. In an environment containing

multiple virtual-rails, there must be an assignment between each sensor and

the virtual-rail it belongs to. This assignment is represented by a discrete

variable that maps each sensor to one of the virtual-rails and is also subject to

optimisation. However, since it is a discrete variable, it cannot be part of the

gradient-based optimisation process. To overcome this problem, multiple runs

of the optimisation process are performed, each with a random virtual-rail
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Table 6.1: Description of Variables in Algorithm 1

Variable Description Value

N Number of sensors 1-6
O1, . . . , OL Sets of objects for each of the L frames
L Number of frames in the dataset 1000
F Number of target points sampled per object 400
E Environmental model
virtualRails The set of virtual rails described by two end-points in R3

epochs Number of optimisation iterations 20

assignment. The results are reported using the best sensor poses across all

runs in terms of the objective function.

The sensor poses are initialised using a uniform distribution on the interval

[−2, 2] over the parameter t, which controls the sensor position (x, y, z) along

the virtual-rail according to Equation 6.3. The limits of the uniform distribution

are chosen such that the sensors initial position within the rail can be anywhere

from 10% to 90% of the length of the rail. The viewing angles can be randomly

initialised in the same fashion. However, there may be some prior information

of the environment that can guide this decision. For example, in a traffic

junction objects are likely to traverse the central area of the junction, thus,

sensors could benefit by focusing towards the junction centre. Although this

step is not strictly required, it introduces prior information into the problem

which reduces the amount of time required to achieve satisfactory results in

the optimisation process.

6.3 Integer Programming-based Sensor Pose Optim-

isation

Integer Programming (IP) is an effective approach for solving optimisation

problems where some or all of the variables are integers and may be subject to

other constraints [192]. Applied to sensor pose optimisation, this formulation

assumes that the optimal set of sensors are chosen from a finite set of sensor

poses, called candidate poses. The problem is a combinatorial search to find

the optimal subset of candidate poses that maximise an objective function.

This objective function typically models the visibility of an area or objects.

Additional constraints, such as the maximum number of sensors in the optimal

set can be added to the problem formulation. This section describes how IP

can be applied to solve the sensor pose optimisation problem formulated in

Section 6.1. The objective is to find the subset of candidate sensor poses that

maximises the minimum visibility metric of target objects. First, a method

for the discretisation of the sensor pose parameter space into a finite set of
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Algorithm 1 Gradient-Ascent Sensor Pose Optimisation

Input: N,O1, O2, O3, . . . , OL, F, E, virtualRails, epochs
Output: Ŝ, minVisibility

Initialisation :
1: S ← ∅
2: for i← 1 to N do
3: p1, p2 ← random virtual rail from virtualRails
4: Draw sample t from Uniform(−2, 2)
5: Set α, β such that sensor focus on the centre of the junction {Alternatively,

sample them from the uniform distribution.}
6: Set s = f(p1, p2, t, α, β) {f is the sensor pose parametrisation given by

Equation 6.3}
7: S ← S ∪ s
8: end for

Optimisation loop
9: for e← 1 to epochs do

10: L ← 0
11: for O ∈ {O1, . . . , OL} do
12: T ← sample F points from each target objects o ∈ O surfaces
13: T ′ ← image plane projection of p ∈ T for each sensor s ∈ S according

to Equation 6.5
14: Z,P ← depth-buffer and reconstructed point-cloud from rasteriser as

a function of O,S,E
15: Ψ← visibility score for each p ∈ T ′ according to Equation 6.9
16: ΨS ← overall visibility score over all sensors according to Equation

6.10
17: L ← L+ mean(ΨS)
18: end for
19: minVisibilityMetric ← mino vis(o, S)∀o ∈ O1 ∪ · · · ∪OL {Computes the

visibility metric using the reconstructed point-cloud P}
20: if minVisibilityMetric improved since last epoch then
21: Ŝ ← S
22: end if
23: Compute ∂L

∂S using automatic differentiation
24: Update S based on gradient-ascent update rule
25: end for
26: return Ŝ, minVisibility
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candidate poses is introduced. Next, the base optimisation problem in Eq. 6.2

is cast into an IP optimisation problem and three approaches are devised to

solve it: a heuristic off-the-shelf solver and two approximate methods based on

sampling strategies.

6.3.1 Discretising Pose Parameters

To apply Integer Programming to the sensor placement problem, one needs

to discretise the sensor pose parameter space into a finite set of candidate

sensor poses. The choice of discretisation steps is kept to a minimum to

minimise the computational cost of computing the visibility of all objects

across all frames for each considered candidate pose. To this end, the concept

of virtual rails, described in Section 6.1.1, is used to create a set of candid-

ate sensor poses by dividing each virtual rail into 10 equally spaced sensor

positions. The horizontal viewing angles (yaw) at each position is also di-

vided into 10 feasible angles, between 0 and 360 degrees, covering all ho-

rizontal directions. The vertical viewing angles (pitch) at each position is

divided into three feasible angles, defining low, medium and high inclination

towards the ground. The rotation around the camera axis (roll) is not relev-

ant in this application and is fixed at zero degrees, as discussed in Section

6.1.1. As a result, the set of candidate sensor poses for a given virtual rail is

S′ = {(t, ϕ, θ) : σ(t) ∈ {0.1, 0.2, . . . , 1}, ϕ ∈ {36, 72, . . . , 360}, θ ∈ {18, 36, 54}},
containing 300 candidate poses. For simplicity, in the rest of this chapter

assume that S′ represents the union of candidate poses from all virtual rails

and the number of candidate poses is given by |S′| = N ′. Figure 6.5 illustrates

the set of candidate poses S′ for a T-junction scenario, where a single horizontal

and vertical viewing angles are shown per sensor position for visualisation

purposes.

6.3.2 IP Objective

The general sensor pose optimisation problem can be formulated as the following

IP problem

max
b1,...,bN′

f(b1, . . . , bN ′ , o1, . . . , oM )

s.t.

N ′∑
i=1

bi ≤ N,
(6.12)

where bi is a binary variable indicating if the i-th sensor in the candidate set,

denoted by si ∈ S′, is part of the optimal set. In other words, the sensor si

is part of the optimal set if bi is 1 and the optimal set of sensors is given by

Ŝ = {si ∈ S′ : bi = 1 ∀i ∈ {1, . . . , N ′}}. The constraint guarantees that the

maximum number of chosen sensors do not exceed N . The objective function
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Figure 6.5: Candidate set S′ over 5 virtual rails (red line segments) in a
T-junction environment. Each yellow wireframe represent a sensor’s viewing
pose. To ease visualisation, only 10 candidates sensors are represented for each
virtual rail, but the entire set consider 10 rotations along the Y axis and 3
rotations along the X axis, resulting in a total of 300 candidates per rail, or
1500 candidates overall.

f(·) represents the targets’ visibility, which depends on the choice of sensors

b1, . . . , bN ′ and the targets o1, . . . , oM . Previous works [132, 135] define f(·) as

the sum of binary visibilities of environment points. This is a poor estimate

of target objects’ visibility since there are varying degrees of visibility which

cannot be encoded as a binary variable. To address this problem, a novel IP

formulation that takes into account the visibility metric of a target object o

observed by a sensor s, vis(o, {s}), defined in Equation 6.1, is proposed. The

motivation is to find the sensor set that maximise the minimum visibility metric

among target objects. Hence, the equivalent IP problem is described by

max
z,b1,...,bN′

z

s.t.
N ′∑
i=1

bi vis(o, {si}) ≥ z ∀o ∈ O,

N ′∑
i=1

bi ≤ N,

(6.13)

where z ∈ Z≥0 is the minimum visibility metric among target objects. The first

constraint guarantees that z is the minimum visibility metric among all objects.

Note that the effect of multiple sensors observing a given object is cumulative

w.r.t. the visibility metric, i.e. vis(o, {s1, s2}) = vis(o, {s1}) + vis(o, {s2}).
The formulation proposed so far considers a single frame, denoted by O,

containing the target objects. This is extended to L frames by rendering each

frame individually, including the objects and the environmental model, for
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all candidate sensors. The visibility of an object o, as observed by sensor si,

denoted by vis(o, {si}), is obtained by counting the number of points in the

re-projected point cloud generated by sensor si that are on the surface of the

object o, as described in Section 6.1 and illustrated in Figure 6.6. In practice,

the visibility of all objects are computed frame by frame, for each candidate

sensor, prior to the optimisation and stored in a visibility matrix V . This

allows to solve the IP problem in Eq. 6.13 for any number of sensors without

recomputing the objects’ visibilities.
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Figure 6.6: Illustration of the process of computing the visibility metric of
object oi ∈ O by each candidate sensor si ∈ S′. The rendered point cloud
naturally handles any occlusion caused by the environment model E and other
target objects in the frame. The visibility of a given object is obtained by
counting all points (represented by the blue dots) from the respective sensor
that are on the surface of the respective object. The output is a visibility matrix
V that depicts how many points each candidate sensor cast on each object in
the frame, i.e. the object’s visibility. This process is repeated for all frames
and the matrices computed for each frame are concatenated horizontally.

6.3.3 Heuristic Solution

IP problems are NP-complete [192], thus, finding the solution using exhaustive

search is computationally expensive or even unfeasible when the search space

is large. Particularly, the size of the search space of the IP problem in Eq. 6.13

is
(
N ′

N

)
. For example, for a candidate set with N ′ = 1500 poses and a given

number of sensors N , e.g. 6, the size of the search space is
(
1500
6

)
≈ 317. For

this reason, there are multiple algorithms that attempt to solve the problem

using heuristic methods such as cutting plane and branch-and-cut methods

[192].

In this chapter, the Coin-or Branch and Cut (CBC) open-source IP solver

[193] and the python-mip wrapper [194] are used to solve the problem. This

solver uses Linear Programming (LP) relaxation for continuous variables and

applies branching and cutting plane methods where the integrality constraint

does not hold. The solver cannot always guarantee the optimality of the

solution, specially when exhaustive search is infeasible. Thus, the problem

in Equation 6.13 is solved using the default optimisation settings until the

optimal solution is found or the time since an improvement in the objective
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function exceeds a limit.

6.3.4 Approximate Solutions

Approximate solutions to the IP problem are often used for the camera place-

ment problem when exact solutions cannot be obtained in feasible time [135].

As described in the previous section, exhaustive search is unfeasible for the IP

problem in Eq. 6.13 due to the size of the search space. For this reason, two

approximate methods are implemented: Näıve sampling and Markov Chain

Monte Carlo (MCMC) sampling.

The Näıve sampling method assumes that all sensors in the candidate

set S′ are equally likely to be part of the optimal set. This method explores

the search space by uniformly sampling N sensors from the candidate set S′

without replacement. The algorithm, described in Algorithm 2, runs until time

since the last improvement in the objective function exceeds a limit.

The MCMC method uses the Metropolis-Hastings sampling algorithm [135]

to select sensors that are likely to maximise the objective function. Algorithm 3

describes the full and detailed execution steps of the proposed sampling scheme.

The process starts with an initial sample of N random sensors from S′, denoted

by S0. At each subsequent iteration, a new sample set is computed as follows.

At iteration i, a random and uniformly selected element of Si−1 is exchanged

with a random and uniformly selected element of S′, generating an intermediate

set S∗i . The ratio r =
f(S∗i )
f(Si−1)

, is computed, where f(S) = mino∈O vis(o, S).

The solution set at iteration i is then set according to

Si =

Si−1, if u ≤ r

S∗i , otherwise,
(6.14)

where u is a sample from the uniform distribution U [0, 1]. The algorithm is

executed until the time since the last improvement in the objective function

exceeds a limit.

6.4 Performance Evaluation

This section describes the evaluation of the proposed sensor pose optimisation

methods. First, the evaluation metrics are defined in Section 6.4.1. Next, the

experiment setup is described, including details of the simulation scenario in

Section 6.4.2. Then, a comparative evaluation between the methods proposed

in this chapter is presented in Section 6.4.3. Finally, a comparison of the

proposed methods with existing works in the literature and a comparison of

different visibility models are reported in Section 6.4.4 and 6.4.5, respectively.
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Algorithm 2 Näıve Sampling Approximate IP Solution

Input: S′, N,O,maxTime
Output: Ŝ

Initialisation :
1: z best = 0
2: Ŝ = ∅

Sampling loop
3: while timeSinceLastImprovement ≤ maxTime do
4: S = N samples from S′ without replacement;
5: z = mino∈O vis(o, S)
6: if (z ≥ z best) then
7: z best = z
8: Ŝ = S
9: reset timeSinceLastImprovement

10: end if
11: end while
12: return Ŝ

Algorithm 3 MCMC Metropolis-Hastings Sampling Approximate IP Solution

Input: S′, N,O,maxTime
Output: Ŝ

Initialisation :
1: z best = 0
2: Ŝ = ∅
3: S = N samples from S′

MCMC loop
4: while timeSinceLastImprovement ≤ maxTime do
5: S∗ = S
6: replace one random element of S∗ with a random element from S′ \ S∗
7: z = mino∈O vis(o, S)
8: z∗ = mino∈O vis(o, S∗)
9: r = z∗

z+ε {ε is a small value to avoid division by zero}
10: u← sample from Uniform(0, 1)
11: if (u ≤ r) then
12: S = S∗

13: z = z∗

14: if (z ≥ z best) then
15: z best = z
16: Ŝ = S
17: reset timeSinceLastImprovement
18: end if
19: end if
20: end while
21: return Ŝ
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6.4.1 Evaluation Metrics

Existing studies in the literature assess sensor pose optimisation methods

using the number of visible targets [135] or the mean ground area coverage

[125, 127, 128], where coverage is defined as the probability that an area is

visible to a sensor. However, such metrics are unsuitable for object-centric

visibility for two reasons. First, adopting a binary visibility for an object

is a coarse measure, since an object can be visible to different degrees due

to its distance from the sensors, due to occlusions and limited sensor field-

of-view. Secondly, the coverage of a ground area does not guarantee that

an object placed within this area will be visible, as occlusions may limit the

object’s visibility. For the aforementioned reasons, a set of sensor poses S are

evaluated based on the minimum visibility metric across all objects, denoted by

mino∈O vis(o, S) in this study. Recalling from Equation 6.1, the visibility metric

is defined as number of pixels that the set of sensors S observe on the surface

of a given target object. In addition to the minimum visibility metric, the

Empirical Cumulative Distribution Function (ECDF) of the visibility metric is

computed for all objects across frames, which provides broader insight into the

visibility patterns across objects.

6.4.2 Evaluation Setup

The performance evaluation of the proposed sensor pose optimisation methods

is carried out by simulating traffic on a T-junction environment. This is

motivated by the challenging conditions faced in such environments. For safety

reasons, it is critical to guarantee that all vehicles, i.e. target objects, are

visible to the sensors. Yet, vehicles are subject to occlusions from other vehicles

and buildings.

The driving environment is simulated using the CARLA open-source simu-

lator [165] under the same settings that produced the dataset in Section 5.2.

A typical urban T-junction is chosen from one of the existing maps in the

simulation tool. It has an area of 80 x 40 meters with several tall buildings

and road-side objects, such as trees, bus shelters and lamp-posts. Within this

environment, a dataset consisting of 1000 frames is generated. Each frame is a

snapshot of the environment at a particular time, containing the number of

vehicles and their representation. The objects’ representation, as described in

Section 6.1, defines their position, size and orientation in the environment.

The environment model, available through CARLA open-source assets,

contains a high number of complex meshes that slow down the rendering

process. For this reason, a simplified version of the environment is created,

which allows for fast rendering and optimisation. To this end, cuboid meshes are

created for the buildings near the junction, and represent vehicles as cuboids
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using the same dimensions of the original objects’ bounding boxes. This

approximation significantly speed up the rendering process without detrimental

impact to the measurement of objects’ visibility metric. Figures 6.7a and 6.7b

illustrate the original and simplified environment models, respectively.

Sensors placed in such driving environments must be placed by the road-

side and clear from the road. This constraint is addressed by creating five

virtual rails alongside the junction, each aligned with the curb over a segment

of the junction, as illustrated in Figure 6.5. The parametrisation of the rails

is application dependent and may need adjustment. In this application, the

virtual rail configuration allows sensors to be positioned on existing road-side

infrastructure, such as traffic lights. The virtual rails are positioned on a height

of 5.2m above the ground, following the standards of public light infrastructure

in the United Kingdom [181]. However, the height of each sensor could also be

included in the optimisation process.

(a) (b)

Figure 6.7: T-junction environment models described by re-projected point
clouds created using a the original environment model representation from
CARLA and b the simplified environment model proposed in this chapter.

6.4.3 Comparative Evaluation of the Proposed Methods

Table 6.2 shows the results comparing the gradient-based, IP optimisation

methods in terms of the minimum object visibility metric and the duration

of the optimisation process for a varying number of sensors, denoted by N .

Additionally, the results for the empirical sensor poses adopted in Chapter 5 are

reported for comparison. Specifically, for each number of sensors N , the sensor

set is chosen based on the best results from Table 5.2. The runtime performance

of the IP methods does not include the time required to compute the visibility

matrix, i.e. rendering 1000 frames for each of the 1500 candidate sensors poses,

which took 28 hours. However, this process is only done once and the resulting

visibility matrix is used by all IP methods for any number of sensors. None of

the methods could find a pose for a single sensor that can observe all objects,

thus, the results are reported for N > 1. The gradient-based method results

are reported for the best out of 10 runs for each number of sensors. Each run
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has a random sensor-rail assignment and random sensor position initialisation,

as described in Section 6.2.4. The best minimum visibility metric observed in

each run is reported in Figure 6.8.

The evaluation shows that the IP method consistently outperform the

gradient-based method, which can be explained by two factors. First, the

loss function being maximised in the gradient method is non-convex and

presents local-maxima, which may result in sub-optimal results. Secondly,

the gradient-based method does not optimise the sensor-rail assignment. The

latter factor is circumvented by performing multiple optimisation runs for the

gradient-based method, each with a random sample of sensor-rail assignment.

However, the variance of the visibility metric obtained across runs, observed

in Figure 6.8, suggests that ten samples may not be enough to explore the

sensor-rail assignment space. Including more samples of sensor-rail assignments

requires more optimisation runs, which becomes time costly. On the other hand,

the IP method handles the sensor-rail assignment naturally as the candidate

sensor pose set includes sensor poses in all virtual rails. Furthermore, both

proposed optimisation methods outperform the empirical set of sensor poses

from Chapter 5, except for N = 6 where the gradient-based method has similar

but smaller minimum visibility.

Figure 6.9 shows the resulting sensor poses found by each method for

different numbers of sensors and the associated ECDF of the visibility metric of

the target objects for each set of sensor poses. The visibility metric distributions

obtained with IP solutions show similar visibility patterns, except for N = 6

where the heuristic IP approach has a significant advantage over its counterparts.

The distribution of visibilities for gradient-based solutions is significantly skewed

towards smaller visibilities if compared to IP solutions. Particularly, for N = 5,

approximately 80% of the objects have less than 1000 points when observed

by the gradient-based solution, while only 40% of objects have less than 1000

points for the IP solutions.

6.4.4 Comparison With Existing Works

The performance of the proposed sensor pose optimisation methods is compared

with two existing works. Akbarzadeh et al. [128] maximise the coverage of a

ground area using gradient-ascent and Zhao et al. [135] uses Integer Program-

ming to maximise the number of target points visible in an environment. These

methods are reproduced in the simulated T-junction environment considering

the coverage of uniformly distributed points over the T-junction ground area.

Note that these methods do not explicitly model the visibility of the target

objects, instead they maximise the coverage of the ground area. The evaluation

considers the ground surface coverage, i.e. the ratio of ground points that
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Table 6.2: Comparison of Optimisation Results for Different Number of Sensors
Across Proposed Methods

Method N Min Visibility Runtime till Best (min) Overall Runtime (min)

Gradient-based*

2 17 25 27
3 55 32 32
4 102 39 39
5 123 30 46
6 178 16 53

IP CBC

2 26 325 565
3 67 416 656
4 213 286 526
5 447 175 415
6 590 354 594

IP Näıve

2 26 0.2 240
3 114 163 406
4 201 44 284
5 354 179 419
6 405 97 337

IP MCMC

2 26 0.2 240
3 107 190 430
4 220 423 663
5 321 87 327
6 411 20 260

Empirical**

2 0 - -
3 33 - -
4 77 - -
5 81 - -
6 186 - -

*Best results out of 10 runs with random initialisation. Overall Runtime reported for the
single best run.
*Based on the empirical sensor poses from Chapter 5.
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Figure 6.8: Best Minimum visibility for each out of the ten runs of the Gradient-
ascent optimisation method for varying number of sensors N .

are visible to the sensors, and the minimum visibility of objects placed over

this area. The results are reported in Table 6.3. These results show that the

previous methods are successful in maximising the coverage of the T-junction’s

ground area. However, this does not guarantee the visibility of target objects

since occlusions between objects are a key factor in determining the visibility of

objects in cluttered environments. This underpins the importance of explicitly

considering the visibility of target objects in contrast to the coverage of ground

areas.

Table 6.3: Performance Comparison With Existing Works in Terms of Ground
Area Coverage and Minimum Object Visibility for Different Number of Sensors

Method N Ground Area Coverage (%) Min Visibility Overall Runtime (min)

Akbarzadeh et al. [128]

2 51 0 2
3 69 0 2
4 73 0 2
5 78 1 2
6 91 41 2

Zhao et al. [135]

2 79 0 3
3 88 0 3
4 91 0 3
5 92 0 3
6 92 0 3
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(g) Ŝ for N = 5
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(i) Ŝ for N = 6
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Figure 6.9: Resulting Sensor Poses and Visibility Distributions. The left
column represents the perspective view of the junction showing the pose of the
resulting set Ŝ. The right column shows the ECDF of object’s visibility for the
optimal set of sensors found by different methods. The colour of the sensors in
the perspective view follows the legend of the ECDF plot. Each row describes
the results for a given number of sensors, denoted by N .
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Table 6.4: Comparison Between Visibility Models Used in the Gradient-Based
Method

Visibility Model Min Visibility

Proposed (without Occlusion-Aware model, Eq. 6.7) 82
Proposed (with Occlusion-Aware model, Eq. 6.9) 178
Akbarzadeh et al. [128] 115

6.4.5 Comparison Between Visibility Models

A study comparing the performance of the gradient-based method is performed

considering three different visibility models: the proposed visibility model

with and without occlusion awareness (Eq. 6.7 and 6.9, respectively) and the

visibility model from Akbarzadeh et al. [128]. This study considers N = 6

sensors and explicitly model the visibility of the target objects using the three

aforementioned visibility models. Table 6.4 reports the results of this study.

The proposed occlusion-aware visibility model achieves the best performance

as it can realistically determine which points are visible and accordingly change

the sensors’ pose to account for potential occlusions. This is highlighted in

Figure 6.10, depicting the point clouds of target points, where the colour of

each point encodes its visibility score, ranging from blue (invisible) to red

(visible). Note that the proposed occlusion-aware visibility model correctly

identify non-visible parts of the objects due to occlusion (blue) or only partially

visible (yellow). In contrast, the two other visibility models fail to identify

areas of occlusion, mistakenly determining that all points are visible (red). As

a result, the optimisation process cannot improve the visibility of such areas.

(a) (b) (c)

Figure 6.10: Point clouds showing the target points over all objects in all
the frames for three visibility models. a proposed visibility model including
occlusion awareness, b proposed visibility model without occlusion awareness
and c Akbarzadeh et al. [128]. The point colours indicate the visibility score
Ψ, ranging from blue (Ψ = 0, invisible) to red (Ψ = 1, visible). The white
vertical pointer marks the position of the object with least visibility. Sensors
poses are indicated by XYZ axis within coloured spheres.
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6.5 Summary

This chapter investigated sensor pose optimisation strategies targetting the

visibility of multiple objects in crowded environments. The systematic study,

in addition to the proposition of novel approaches for sensor pose optimisation,

reveals a number of key insights that can be useful for researchers and system

designers. Firstly, explicit modelling of the visibility of the target objects

is critical when optimising the poses of sensors, particularly in cluttered

environments where sensors are prone to severe occlusions. Secondly, rendering-

based visibility models can realistically determine the visibility of target objects

at the pixel level and, thus, improve the pose optimisation process. Thirdly,

the IP optimisation method seems to outperform the gradient-ascent method

in terms of minimum object visibility, at the cost of increased computational

time. The sensor pose optimisation methods proposed in this chapter can

guide the deployment of sensor networks in traffic infrastructure to maximise

the visibility of objects of interest. Such sensor network infrastructures can

be used to increase the safety and efficiency of traffic monitoring systems and

aid the automation of driving in complex road segments, particularly, in areas

where accidents are more likely to happen.
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Chapter 7

Efficient Relative Pose

Estimation for On-board

Sensors

The previous chapters assumed fixed infrastructure sensors whose poses were

known by design, i.e. Chapter 6, or could be obtained accurately through

calibration [175, 176]. Generalising the cooperative perception concept from

fixed infrastructure to on-board sensors, i.e. sensors within vehicles, requires

estimating the relative pose between pairs of sensors such that the data can

be aligned in the same coordinate system. While the majority of previous

cooperative perception methods have considered GPS/GNSS systems to obtain

such relative transformation, this approach is prone to errors in the orders of

meters in translation and tens of degrees in rotation estimation [115]. This

chapter investigates how to obtain the relative pose transformation between a

pair of sensors by exploiting their sensor data alone, namely using point cloud

registration methods.

Existing registration methods are often designed and evaluated assuming a

significant overlap between the input point clouds. This assumption is valid for

applications such as SLAM [140, 195] and lidar odometry [161], where pairs of

point clouds are obtained sequentially in adjacent time steps by a single vehicle

navigating in a driving environment. On the other hand, applications such as

cooperative perception and multi-agent SLAM [162, 196] require registering

point clouds obtained simultaneously from a pair of sensors on two different

vehicles that are potentially far apart, and thus, may have low field-of-view

overlap, e.g. Figure 7.8. As the relative translation between the sensors

increases, the number of identifiable correspondences decreases, which poses

challenges in registering the point clouds accurately.

The majority of existing point cloud registration methods cannot guarantee

real-time execution. Traditional local registration methods such as Iterative
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Closest Point (ICP) [142] solve the problem iteratively assuming an initial

relative pose. However, the iterative nature of such methods renders them

unfeasible for real-time applications, particularly considering large scale point

clouds. These methods are also prone to non-optimal solutions when the initial

pose estimate is poor, which may be addressed with global-optimisation variants

[143, 144] at the cost of higher computational complexity. Another category

of methods identify correspondences between point clouds using a distance

metric between hand-engineered features [149] or learned point-wise features

[154]. These correspondences are often contaminated by a large number outliers

and must be filtered using Random Sample Consensus (RANSAC) [150, 160]

or learned models [155], which further increases the registration execution

time. Furthermore, state-of-the-art learning-based models [154, 155] require

computationally demanding 3D convolutions and generate numerous putative

correspondences, introducing a bottleneck on the RANSAC loop and rendering

real-time execution unfeasible.

To mitigate the aforementioned limitations, a novel point cloud registration

method capable of operating in real-time and robust to low-overlapping point

clouds is proposed. The proposed method identifies correspondences between

the source and target point clouds by learning point-wise features. A novel

encoder hierarchically subsamples the point clouds to reduce the number of

key points and improve the run-time performance. The resulting features

are refined using self- and cross-attention based on a graph neural network.

The attention network leverages geometrical relationships between key points

and their features to improve the correspondence accuracy, particularly in

regions of low overlap. The relative pose parameters are obtained by fitting

the learned correspondences using RANSAC to robustly reject outliers. During

inference, the RANSAC fitting is done efficiently considering a small number

of correspondences, which allows end-to-end inference times below 410ms. The

model is trained and evaluated separately on the KITTI odometry dataset

and a novel Cooperative Driving Dataset (CODD). The relative translation

between sensors in CODD ranges up to 30m, introducing challenging pairs of

point clouds with low overlap. This chapters’ contributions are summarised as:

� A computationally efficient point-wise feature encoder that allows identi-

fying correspondences between point clouds;

� A graph neural network that provides self- and cross-attention between

point clouds and improves the quality of correspondences;

� A novel registration method for point clouds that is robust to partially-

overlapping point clouds and capable of operating in real-time;

� A new synthetic lidar dataset containing low overlapping point clouds in
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a wide range of driving scenarios;

7.1 Problem Formulation

Given two input point clouds PX ⊂ R3 and PY ⊂ R3, the registration problem

is to estimate the rigid relative pose transformation that aligns PX into the

coordinate system of PY . This transformation is parametrised by a rotation

matrix R ∈ SO(3) and a translation vector t ∈ R3. The problem can be solved

by identifying pairs of correspondences between PX and PY . Given a set of

correspondences, X = {x1, . . . , xN} ⊂ PX , Y = {y1, . . . , yN} ⊂ PY , where

(xi, yi), i = 1, . . . , N are correspondence pairs, the transformation parameters

are obtained by the minimisation of the least-squares error:

E(R, t) =
1

N

N∑
i=1

‖Rxi + t− yi‖2 . (7.1)

This error is a form of the Orthogonal Procrustes problem [158] and admits

the closed-form solution described below. First, the centroids are computed as

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi, (7.2)

and the covariance matrix, denoted by H, is obtained using

H =
N∑
i=1

(xi − x̄)(yi − ȳ)T. (7.3)

Finally, the rotation matrix and translation vector R, t that minimise Eq. 7.1

are computed in closed-form as

R = V

[
1
1
det(V TU)

]
UT, (7.4)

t = −Rx̄+ ȳ,

considering the Singular Value Decomposition (SVD) H = USV T . The next

section proposes a novel method to efficiently obtain correspondences between

pairs of point clouds.

7.2 Proposed Method

This section presents a novel method for robust point cloud registration using

learned correspondences targetting efficient, real-time inference. Figure 7.1

describes the components and data flow of the proposed method. The proposed
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method can be summarised as follows:

(A) Both point clouds are fed to an encoder to obtain a subset of key points

and associated point-wise features.

(B) A graph neural network refines the point-wise features considering self-

and cross-attention.

(C) The resulting features are used to identify correspondences between the

source and target key points.

(D) The relative transformation parameters R, t are robustly estimated using

a RANSAC formulation of the problem defined in Section 7.1.

The aforementioned components and the training process are described in the

following subsections.

7.2.1 Point-wise Feature Encoder

The encoder is a core component of the pipeline, as it computes point-wise

features that will be used to identify correspondences. A novel and computa-

tionally efficient encoder network is proposed based on Set Abstraction (SA)

and Feature Propagation (FP) layers [97]. While previous works [197] have

used PointNet++ feature encoders, the proposed encoder is distinguished by

adopting a customised architecture that hierarchically subsamples points at

each layer, resulting in improved computational performance. The proposed

encoder architecture, including the hyper-parameters of each layer, is depicted

in Figure 7.2. The encoder outputs subset of sampled coordinates (key points)

from the source and target point clouds, denoted by X and Y , and their

respective feature vectors, fX and fY . The input to the encoder consists of 3D

point coordinates and corresponding features, e.g. lidar return intensity. Note

that the input features are optional, but in this work they consist of a single

scalar per point representing the lidar intensity. The source and target point

clouds are fed to the encoder independently.

The first four encoder layers are SA layers. A SA layer consists of four

operations:

1. n coordinates are sampled from the previous layer using Farthest Point

Sampling (FPS) [198].

2. A local neighbourhood of each sampled coordinate is established by

selecting all points within radius r of the respective coordinate.

3. The features of the points in each neighbourhood are fed to a shared

Multi Layer Perceptron (MLP), denoted as a list L containing the number

of intermediate nodes per layer.
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Figure 7.1: Pipeline and data flow of the proposed point cloud registration method.
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4. The resulting feature vectors of the n sampled coordinates is computed

using an aggregation function (max-pooling) over the MLP output of the

points in the respective neighbourhoods.

Each SA layer hierarchically subsamples and aggregates information from

the previous layer with progressively larger receptive volumes, which is a

fundamental step in reducing the computational cost of the proposed pipeline.

At the same time, it is also important not to discard valuable information,

i.e. prioritising that points from one layer are within the neighbourhood of

sampled points in the next layer. This trade-off is achieved by tuning the layers’

hyper-parameters, namely n, r, L, such that the sampled points’ neighbourhood

include most points from the previous layer.

The last encoder layer is an FP layer. It propagates high level information

from SA4 to the points in the previous layer (SA3) as illustrated in Figure

7.2. This is achieved by interpolating the feature vectors in SA3 layer using

the features from the three nearest-neighbour coordinates in SA4. The final

features are obtained fusing the original SA3 features with the interpolated

SA4 features using a shared MLP, represented by a list L of intermediate nodes.

More details about the interpolation can be found in [97].

The encoder hyper-parameters are optimised for large outdoor driving

environments considering trade-offs between computational performance and

registration accuracy, as discussed below. Having a small number of sampled

points (reducing n) increases the computational efficiency since less points are

processed in the subsequent layer, however, makes the point cloud sparser and,

thus, more challenging to find correspondences. The hyper-parameter r controls

the receptive volume by adjusting the maximum radius of the neighbourhood

aggregation operation. While decreasing r reduces the computational cost (less

points to aggregate), it also limits the amount of information a given point has

about its neighbourhood, which results in points with less distinctive features.

Finally, L controls the number of nodes at each MLP layer, which defines the

model complexity when transforming features from one layer to the next.

Several variants of the proposed encoder architecture were evaluated,

namely, changing the number of encoder layers and varying the layers hyper-

parameters n, r, L, with the best iteration being the one reported in this chapter.

The registration results are most sensitive to the number of points sampled

per layer, n, since this has the most impact in the sparsity of the key points.

During the hyper-parameter experiments, it was observed that adjusting the

radius r in relation to the number of sampled points n and the density of the

point cloud can improve the registration performance. Specifically, ensuring

the radius r at each layer is large enough to aggregate neighbouring points,

otherwise, a point only has information about itself and fails to propagate
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Figure 7.2: Point-wise feature encoder model architecture. The model consists
of four Set-Abstraction (SA) layers and one Feature Propagation (FP) layer.
Point coordinates and features are represented in yellow and green, respectively.
The brackets indicate the dimensionality of each matrix. The number of input
points, denoted by M , is arbitrary, and the model consistently outputs N = 512
point coordinates and their respective feature vectors with D = 128 dimensions.

neighbourhood information.

7.2.2 Graph-based Attention

The feature vectors obtained with the encoder network represent local point

cloud information. However, these features are agnostic to the global context

of the point cloud. For example, if a point cloud contains multiple objects, e.g.

trees, it would be difficult to distinguish between individual trees. Another

problem, most critical for low overlapping point clouds, is that regions of

overlap generally have different point densities in each point cloud, challenging

the correct identification of correspondences since a point’s features change

with the density of points in its neighbourhood. To mitigate both problems, a

graph-based attention module is proposed to transforms points’ feature vectors

considering the wider point cloud context (self-attention) and the context of

both source and target point-clouds (cross-attention). Self-attention increases

the distinctiveness of key points by attending to their surrounding context. The

cross-attention layer learns to refine point-wise features by attending to the

most similar features across point clouds. Differently from the feature-based

attention mechanism in [159], the proposed graph attention layers leverage both

spatial and feature dimensions of local neighbourhoods to refine point-wise

features. Both layers, illustrated in Figure 7.3, increase the likelihood of finding

accurate correspondences, even in cases of low overlap.

The self-attention layer introduces attention between points within the same

119



point cloud. A graph connecting the points (nodes) is created for each point

cloud using the k-Nearest-Neighbours of the points’ spatial coordinates. Let fi

be a feature vector from either fX or fY . The self-attention layer computes a

residual term for fi using the Crystal Graph Convolution Operation [199]:

f̂i = fi + max
j∈N (i)

σ(zi,jWf )� Softplus(zi,jWs), (7.5)

where N (i) indicates the k neighbour nodes of i, zi,j = [fi, fj ] is the aggregated

features of nodes i, j. The function σ(·) indicates the sigmoid function, and

the Softplus function is defined as Softplus(z) = log(1 + ez). The attention

matrices Wf ,Ws are parameters to be learned and the operation � represents

element-wise multiplication. The number of nearest neighbours is set as k = 32,

which provides a good trade-off between accuracy and computational efficiency.

This process is performed independently with shared parameters for both

source and target point clouds.

Following the self-attention layer, the cross-attention layer allows interaction

between the source and target point cloud features. This layer creates a bi-

partite graph between source and target points. Each source point is connected

to the k-Nearest-Neighbours nodes in the target point cloud, where the distance

metric is the dot product between the feature vectors of the respective points.

This layer uses the same residual update rule from Eq. 7.5, considering the

different underlying graph and independent attention matrices W ′f ,W
′
s. The

graph-attention network output is given by the updated feature vectors from

source and target point clouds, denoted by f̂X and f̂Y , respectively.

7.2.3 Identifying Correspondences

The correspondences between the point clouds can be obtained by comparing the

point-wise features of the source and target key points, denoted respectively as

f̂X , f̂Y ∈ RN×D. These feature vectors are normalised to unity D-dimensional

vectors using the Euclidean norm. A matching probability map indicating the

probability of correspondences between X and Y is computed as

φ = Softmax

(
f̂X · f̂TY
T

)
∈ RN×N , (7.6)

where T is a temperature hyper-parameter and the Softmax function is applied

row-wise. Each element φij represents the probability that the i-th key point

in X matches the j-th key point in Y . The Softmax function scales the

coefficients of each row φi, ensuring a probability distribution over the points

in Y . The temperature parameter, denoted by T , controls the entropy of

distribution across points in Y . In the limit, when T → 0+, the coefficients
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Self-Attention Cross-attentionSource Points

Target Points Self-Attention

Figure 7.3: Graph-based Attention Representation. Points are represented as
graph nodes. The nodes are defined by their position, i.e. 3D coordinates, and
their feature vector (not represented in the image). The graphs connecting
the points are created based on the k-NN (k = 32) between the points. In
the self-attention layer, the k-NN distance is the Euclidean distance between
points’ spatial coordinates. In the cross-Attention graph, the k-NN distance is
the dot product between points’ feature vectors.

become the one-hot encoding of the point in Y with the highest similarity (i.e.

dot product). Finally, each key point xi ∈ X is matched to the key point in Y

with highest correspondence probability, resulting in the set of correspondence

pairs {(xi, yargmaxj φij ), i = 1, . . . , N}. The ordered set of correspondences in

Y is denoted as Ŷ = {yargmaxj φ1j , . . . , yargmaxj φNj
}.

7.2.4 Estimating Transformation Parameters

The previous step computes a correspondence for every point in X. In practice,

only a fraction of points in X will have correspondences in Y , particularly in

the case of partially overlapping point clouds. Sensor noise and varying point

densities can also lead to encoding errors and erroneous correspondences. To

mitigate the effect of correspondence outliers, a common practice is to use

sample consensus algorithms such as RANSAC [149, 150]. A general version

of this algorithm applied to this problem consists of three steps:

1. Create a hypothesis: Sample a minimal set of three correspondences from

the set of correspondences and compute the transformation parameters

using Eq. 7.4.

2. Score the hypothesis based on consensus: Compute the number of inlier

correspondences, where a correspondence (xi, ŷi), xi ∈ X, ŷi ∈ Ŷ is an

inlier if ‖Rxi + t− ŷi‖ ≤ κ, where κ is the inlier threshold, R, t are the
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hypothesis parameters computed in the first step.

3. Repeat the previous steps for L times and select the hypothesis with the

highest number of inliers.

The number of tested hypotheses, denoted by H, offers a trade-off between

computational performance and robustness to outliers. H can also be derived

to achieve a desired confidence of the selected hypothesis [150], i.e. sampling

an outlier-free set of correspondences. While previous works used RANSAC

with a large set of putative correspondences [149], this may be unfeasible for

real-time systems. In this work, negligible RANSAC computational cost is

achieved by learning a small set of correspondences (N = 512), which allows

to reduce the number of hypotheses being tested.

7.2.5 Training Process

The training process consists of optimising the encoder and attention networks

to find accurate correspondences where they exist. To that end, the matching

probabilities of ground-truth correspondences must be maximised and the

matching probability of non-corresponding points must be minimised. This is

achieved by directly minimising the following loss function:

L =
1

Nc

N∑
i=1

δi

−φiĵ +
λ

N − 1

N∑
j=1,j 6=ĵ

φij

 , (7.7)

where the binary variable δi indicates whether the source point xi has a

correspondence in Y and ĵ represents the index of the corresponding point in

Y . Additionally, Nc =
∑N

i=1 δi is the number of ground-truth correspondences

and λ is a hyper-parameter scaling the contributions of incorrect matches into

the loss function. A point in X is considered to have a correspondence in Y

if, under the ground-truth transformation, it is within a distance smaller or

equal to 1.6 meters from a point in Y . This inlier distance is arbitrary and was

chosen based on the smallest encoder radius. Data augmentation is employed

by applying random rotation transformations to both input point clouds and

adjusting the ground-truth rotation matrix accordingly. The optimisation

details are described in Section 7.3.3.

7.3 Performance Evaluation

In this section, the datasets and the evaluation metrics are described, followed

by the implementation details. Next, the performance of the proposed method

is compared against traditional baselines, including ICP [142], FPFH RANSAC

[149] and TEASER [151]; and two state-of-the-art learning-based methods:
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FCGF [154] and DGR [155]. Finally, an ablation study identifying the impact of

the proposed attention network into the registration performance is presented.

7.3.1 Dataset

The KITTI Odometry dataset [47] is traditionally used to evaluate point cloud

registration methods in outdoor environments. The evaluation in this chapter

follows the evaluation protocol of recent methods [154, 155, 200, 201], which

adopt sequences 0 to 5 for training, 6 to 8 for validation and 9 to 10 for testing.

In each sequence, the samples are created by selecting pairs of points clouds

obtained sequentially by a single vehicle such that the translation between the

poses is less than 10m. The ground-truth pose is provided by GPS and refined

using ICP to reduce misalignment.

The distribution of poses in the KITTI dataset is limited to the trajectory

of a single vehicle as it navigates the environment. In practice, registration

methods must be resilient to point clouds with arbitrary relative pose, where

the overlap between point clouds may vary significantly across samples. To this

end, the Cooperative Driving Dataset (CODD) [202], an open-source synthetic

dataset containing lidar point clouds collected simultaneously from multiple

vehicles, is introduced. This dataset is created using CARLA [165] and features

a diverse range of driving environments, including rural areas, suburbs, and

dense urban centres. The dataset consists of 108 sequences, which are split

into three independent subsets for training, validation and testing, as detailed

in Table 7.1. The samples are created by selecting all pair-wise combinations

of point clouds obtained from vehicles driving simultaneously within a vicinity

considering a maximum distance of 30m. Figure 7.4 presents the cumulative

density plots of the relative distance (translation vector norm), rotation angle

and overlap ratio of the pairs of point clouds in each dataset. The overlap

ratio measures the overlap between point clouds as the percentage of points

in the source point cloud that, when aligned, are within a distance smaller

than γ to any point in the target point cloud [203]. The CODD dataset has

a significantly broader distribution of relative distance, rotation angles and

overlap ratio between the point cloud pairs, which provides representative

scenarios for cooperative perception and multi-agent SLAM.
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Table 7.1: Dataset Details

KITTI Odometry Train Validation Test

# sequences 5 2 2
# samples (pairs of point clouds) 1358 180 555

CODD Train Validation Test

# exclusive maps 6 1 1
# sequences 78 14 16
# samples (pairs of point clouds) 6129 1339 1315
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Figure 7.4: Cumulative density of the relative distance and rotation angle
between coordinate systems of the pairs of point clouds in each subset.

7.3.2 Evaluation Metrics

Following previous studies [154, 155], the registration performance is evaluated

in terms of the translation and rotation errors given by

TE =
∥∥t̂− tg∥∥

2
, (7.8)

RE = arccos
Tr(R̂TRg)− 1

2
, (7.9)

where Rg, tg denotes the ground-truth rotation matrix and translation vector,

respectively. These metrics are reported considering their mean value over

all dataset samples, denoted as Mean Translation Error (MTE) and Mean

Rotation Error (MRE), respectively. The recall rate, measured as the ratio of

successful registrations to the total number of samples, is also considered. The

success criteria is TE < 0.6m and RE < 5deg following [155]. The runtime

performance is evaluated as the average inference time for the registration of a

pair of point clouds disregarding the data loading time.

7.3.3 Implementation Details

The proposed method is implemented using PyTorch [166], PyTorch Geometric

[204], the CUDA implementation of SA and FP layers from [97] and the

Open3D [205] Procrustes RANSAC implementation. The model is trained

independently for each dataset using the Adam [191] optimiser with a learning
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Table 7.2: Evaluation Results on KITTI Test Set

Model MTE [cm] MRE [deg] Recall Time/sample [s]

FPFH TEASER [151] 18.8 0.76 0.984 2.26
FCGF RANSAC [154] 23.7 0.034 0.975 26.29
DGR [155] 15.6 1.43 0.982 7.60

Proposed 26.1 0.74 0.949 0.41
Proposed + ICP 8.2 0.23 0.985 3.68

rate of 0.1, ε = 10−4, β1 = 0.9, β2 = 0.999 and a batch size of 6 (pairs of

point clouds). The model is trained for twenty epochs and the learning rate

is reduced in half after every five epochs. For evaluation, the model with the

lowest validation loss is selected. The temperature hyper-parameter, described

in Section 7.2.3, is set to T = 10−2, and the loss scaling hyper-parameter is set

to λ = 10. During inference, the RANSAC inlier threshold, denoted as κ, is

set to 0.5m, and the maximum number of RANSAC iterations, denoted by H,

is computed to achieve 0.999 confidence in the selected hypothesis within a

limit of 105 iterations. The point clouds from both datasets are downsampled

using voxel sizes of 0.3m following previous methods [154, 155]. The overlap

ratio distance threshold, γ, is set to 0.3m, following the down-sampling voxel

size. The experiments are carried out on a Xeon ES-1630 CPU and Quadro

M4000 GPU with 8 GB of memory. For fair comparison, all baselines are also

evaluated on the same hardware. The official implementation and pre-trained

models (30cm voxel) are used for the evaluation of [154, 155] in the KITTI

dataset; likewise, the official TEASER [151] implementation is adopted; and

the Open3D [205] implementation of FPFH, RANSAC and ICP is used for the

evaluation of the respective methods.

7.3.4 Performance on the KITTI Dataset

The evaluation results, presented in Table 7.2, show that the proposed method

achieves competitive registration errors compared to other methods at a signific-

antly lower inference time – more than five times faster than the fastest baseline.

While the proposed method has a marginal increase in mean translation error

compared to baseline methods, it achieves on-par recall rate relative to baseline

methods. The mean translation and rotation errors of the proposed method

can be further reduced using ICP for refinement (Proposed + ICP), at the

cost of increased inference time. Figure 7.5 shows the cumulative distribution

of rotation and translation errors, and inference times for different methods.

Figure 7.5 shows qualitative results of the proposed method on the KITTI

dataset.
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Figure 7.5: ECDF of the Translation Error, Rotation Error and Sample
Execution Time for Different Methods on the KITTI Test Set.
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Figure 7.6: Qualitative of Results of the Proposed Method on the KITTI Test
Set. Each row represents a different sample and the vertical label shows the
ground-truth relative transformation between point clouds quantified by the
norm of the relative translation vector in meters and relative rotation angle in
degrees (axis-angle convention).
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7.3.5 Performance on the CODD Dataset

The performance of the proposed method and baselines is evaluated on challen-

ging low-overlapping pairs of point clouds. For a fair comparison, learning-based

methods [154, 155] are also trained on the CODD dataset. Table 7.3 presents

the results on the CODD test set, aggregated by the overlap ratio between

point clouds in four progressively larger intervals – the last interval contains

all samples. Traditional methods are not resilient to low overlapping points

clouds, as the registration error increases significantly when considering lower

overlap ratios, as shown in the first three rows of Table 7.3. In contrast, the

learning-based baselines are reasonably robust to low overlapping point clouds

and achieve high recall rates on all intervals. However, the latter methods

demand substantial running times due to their complex encoders and the

filtering of a high number of putative correspondences. In contrast, the pro-

posed method achieves similar or better recall rates to the learning-based

baselines with more than 35 times faster inference times. This is achieved by

the efficient encoder design which outputs a small number of correspondences,

which in turn reduces the RANSAC inference time. This efficient encoder

strategy comes at the cost of a slight increase of the MTE and MRE metrics,

as compared to DGR [155]. To mitigate this, ICP refinement is applied to the

proposed model’s output (Proposed + ICP), which allows achieving similar

MTE and MRE for highly overlapping point clouds and outperforming all

baselines on low-overlapping point clouds. Although the ICP refinement comes

with an additional computational cost, this approach still achieve a nine-fold

speed-up compared to competing learning-based baselines. Qualitative results

are presented in Figure 7.8.

Figure 7.7 shows the Empirical Cumulative Density Function (ECDF) of

the translation error, rotation errors, and inference time for different methods.

The distributions indicate that the proposed method with ICP refinement

has the best translation error across samples, closely matched by DGR [155],

however with one order of magnitude smaller inference time. The inference time

distributions show that the proposed method is the fastest among baselines,

with an inference time of 320ms on average, with negligible standard deviation

(17ms). Although the proposed method cannot perform inference at the frame

rate of common lidar sensors, e.g. 10Hz, it must be noted that applications

such as multi-agent SLAM and cooperative perception are not expected to

receive sensor data at 10Hz for two reasons. First, bandwidth constraints limit

the transmission rate of raw point cloud data and second, the redundancy in

sequential scans is large when considering such frame rates, so the information

gain is small. For example, [107] assumes a lidar frame transmission rate of 1 Hz

for cooperative 3D object detection and [196] assumes a maximum transmitted
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Table 7.3: Evaluation Results on CODD Test Set

Overlap Ratio > 0.6 Overlap Ratio > 0.5 Overlap Ratio > 0.4 Overlap Ratio > 0 Time/sample [s]

Method MTE [m] MRE [deg] Recall MTE [m] MRE [deg] Recall MTE [m] MRE [deg] Recall MTE [m] MRE [deg] Recall Mean Std

ICP [142] 1.69 36.11 0.67 4.81 68.67 0.38 9.11 66.42 0.17 16.14 74.84 0.07 0.38 0.048
RANSAC FPFH [149] 1.59 1.42 0.47 1.25 1.58 0.28 2.64 2.42 0.18 9.55 9.49 0.09 71.69 15.37
TEASER FPFH [151] 0.04 0.10 1.00 1.61 23.33 0.86 4.29 36.42 0.69 12.87 69.74 0.39 1.13 0.24

RANSAC FCGF [154] 0.09 0.01 1.00 0.10 0.01 1.00 0.12 0.01 1.00 1.70 0.11 0.91 16.5 22.4
DGR [155] 0.02 0.07 1.00 0.02 0.06 1.00 0.02 0.05 1.00 0.39 1.52 0.94 11.89 3.92

Proposed 0.14 0.21 1.00 0.19 0.25 0.99 0.22 0.29 0.98 0.28 0.41 0.94 0.32 0.017
Proposed + ICP 0.03 0.09 1.00 0.03 0.09 0.99 0.04 0.09 0.99 0.09 0.13 0.97 1.28 0.031
Proposed - Att 0.29 0.48 0.87 0.39 0.56 0.86 0.59 0.86 0.76 2.22 5.69 0.57 0.30 0.003
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Figure 7.7: ECDF of the Translation Error, Rotation Error and Sample
Execution Time for Different Methods on the CODD Test Set.

frame rate of 2Hz for cooperative SLAM. The proposed registration method

can operate in real-time considering data input frequencies up to 3Hz.

7.3.6 Ablation Study

The impact of the proposed attention network into the registration performance

is measured in terms of translation and rotation errors. This is achieved by

removing the graph attention module, retraining the model and evaluating

its performance on the CODD test set. The results, indicated in Table 7.3

“Proposed - Att”, show that the graph-attention network plays a key role in

improving the accuracy of the correspondences, resulting in lower translation

and rotation errors. The benefits of the graph attention network is most

significant for low-overlapping point clouds, as indicated by the last range

group in Table 7.3, where the removal of the attention results in a 40% reduction

of the registration recall and a significant increase in the mean translation and

rotation errors.

7.4 Summary

This chapter investigated how to obtain the relative pose between on-board

lidar sensors using the sensors’ data alone. In doing so, a novel point cloud

registration method focusing on fast inference of partially overlapping lidar point

clouds was proposed. The performance evaluation considered the traditional

KITTI benchmark dataset and the CODD dataset, a novel synthetic dataset
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featuring low overlapping point clouds with displacements of up to 30m. The

proposed model can operate with latencies lower than 410ms and 320ms,

depending on the dataset, a speed up of 5 and 35 times compared to competing

methods in the KITTI and CODD dataset, respectively. The results show

that the proposed model outperform baseline methods in terms of rotation

and translation errors for pairs of point clouds with low overlap, achieving

mean translation error below 30cm and angular errors below 0.41 degrees.

Furthermore, ablation studies show that the graph attention module plays a

key role in improving the quality of the correspondences in low overlapping

point clouds, which results in higher registration performance.
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Chapter 8

Conclusion

Following the research methodology proposed in Chapter 3, this thesis in-

vestigated different aspects of cooperative perception for driving applications

through Chapters 4, 5, 6 and 7. This chapter discusses the key findings from

those studies, how they address the research objectives from Chapter 3 and

fill the research gaps identified in Section 2.7. Finally, the limitations of this

research are presented along with suggestions for future work.

8.1 Discussion

8.1.1 Cooperative Object Classification

Chapter 4 analysed the impact of impairments in object classification perform-

ance for single-view methods and if cooperative object classification methods

can mitigate these impairments. While previous multi-view object classification

methods had already been devised, this study contributes to the literature by

considering the effects of occlusions and sensor noise impairments and propos-

ing a novel fusion method with greater resilience to these impairments. The

experiments in this chapter show that single-view object classification methods

are not resilient to occlusions and sensor noise. Specifically, the experiments

indicate that introducing occlusions results in drops of up to 13% in terms of

F1-score, and introducing sensor noise results in further performance drops of

up to 28% for single-view methods. The novel cooperative classification method

proposed in that chapter fuses images from multiple-views by concatenating

the feature maps from each view and feeding this global representation to a

fully connected classification layer. This cooperative method shows resilience

to both occlusions and sensor noise, where the classification performance drops

due to occlusion and sensor noise is less than 1% and 2%, respectively, in terms

of the F1-score metric. When trained with occlusions, the proposed cooperative

classification method shows greater generalisation to the size of occlusions and

to the power of sensor noise compared to other cooperative baselines based in
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voting (late-fusion) and feature-map pooling. Despite the limited application

of this method in practical settings for the reasons discussed in Section 4.5,

the results from this study showed the potential of cooperative perception and

motivated the following studies in this thesis.

8.1.2 Cooperative 3D Object Detection

Chapter 5 investigated fusion schemes and the scalability of sensors for co-

operative 3D object detection. This study expands on previous literature by

proposing the use of infrastructure-based sensors and investigating how the

number and pose of sensors affects the performance of cooperative object de-

tection, which was a gap in the literature. Three fusion schemes were proposed,

one based on early fusion (fusion of raw point clouds before the detection stage),

late fusion (fusion of detected bounding boxes, after the detection stage) and a

hybrid of the previous two. The experiments show that all three fusion schemes

can mitigate the limitations from single-view sensing, namely occlusions and

limited field-of-view, by incorporating information from multiple, spatially

distributed sensors. In the context of the studied T-junction and roundabout

scenarios, cooperative perception can increase the 3D object detection recall

(ratio of detected objects to the total number of objects) compared to single-

view sensing from 30% to more than 95%. Similarly, the precision (ratio of

correct detections to the number of detections) can be enhanced from 80%

to more than 95%, reducing the number of false positive detections, when

considering multiple sensors.

Early fusion provides the best object detection performance (in terms

of AP and recall rate), followed by hybrid fusion and late fusion schemes.

While early fusion achieves more than 20% performance gain compared to late

fusion, this comes at the cost of two orders of magnitude larger communication

bandwidth. The hybrid fusion approach exploits another trade-off between

object detection performance and communication bandwidth. In the studied

scenarios, this fusion scheme can increase detection performance by more than

8% compared to late fusion with an increase of a single order of magnitude

in communication bandwidth. The choice of fusion scheme depends on the

application requirements in terms of bandwidth and detection performance

(e.g. minimum object recall or precision rates). In terms of computational cost,

the proposed model can operate with 298ms latency for late fusion and 380ms

latency for hybrid/early fusion. The cooperative perception system proposed is

agnostic to the object detection model, and thus, could be made more efficient

by adopting newer and computationally efficient 3D object detection models

[78].

The experiments in Section 5.4.4 suggest that the improvement in detection
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performance gained by cooperative perception is associated with two factors.

First, an increased field-of-view allows sensors to observe previously unseen

areas. Second, an increased density of points on regions where sensors’ field-

of-view overlap. The latter can mitigate the effects of occlusions, reduce

the number of false positives and increase the accuracy of the bounding box

regression. Specifically, fusing the data from two sensors that observe the same

region can increase the detection performance by up to 85% compared to using

the observations from only one of the sensors in the studied scenarios. Still,

the experiments in Section 5.4.3 show that the gain in detection performance

with each additional sensor saturates as the number of sensors increases.

Furthermore, the experiments show that the accuracy of an object’s estimated

3D bounding box can be approximated using a logarithmic factor of the number

of the points on the surface of the respective object. Although cooperative

perception increases performance dependant upon the number of sensors and

coverage of the environment, the results in the studied scenarios suggest these

figures could generalise across environments provided sufficient number of

sensors. The results in Chapter 5 illustrate how the detection performance

varies depending on the number of sensors.

Since the publication of Chapter 5 results in [3], new studies exploring

cooperative perception on infrastructure sensors for object detection and

tracking have emerged. Particularly, Kloeker et al. [206] consider the low-

level fusion of data from lidar-based infrastructure sensors to perform object

detection and tracking. Their results show that using observations from eight

lidar sensors can improve 3D object detection performance, measured in terms

of Average Precision (AP), up to 120% compared to single sensor baselines.

The rate of improvement observed in their study was larger than what was

observed in Chapter 5 due to different environment and sensor configuration.

Still, the general observation that cooperative perception significantly increases

3D object detection performance is consistent among both studies.

8.1.3 Infrastructure Sensor Pose Optimisation

Chapter 6 investigated how to optimise the pose of infrastructure sensors to

maximise the visibility of target objects. A major category of sensor pose

optimisation methods in the literature focus on maximising the coverage (visible

ground area) of extensive 3D environments described by digital elevation maps.

However, such a formulation does not consider the distribution of objects in

the environment, and instead, assumes that an object would be visible if it is

within a region covered by the sensors. As a result, these methods fail to detect

and prevent occlusions between objects since they do not explicitly model the

visibility of the target objects. Another category of methods considers the target
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objects’ visibility as a set of binary variables, which cannot describe degrees of

visibility due to occlusions and due to its position w.r.t. the sensors. This study

contributes to the literature by proposing an occlusion-aware visibility model

based on a rendering engine that explicitly models the visibility of objects by

counting the number of visible pixels per object.

The experiments in Chapter 6 show that the proposed sensor pose optim-

isation methods are capable of leveraging occlusion-aware visibility information

to find sensor poses that allow for the visibility of all target objects in the

considered T-junction scenario. While baselines that optimise sensors’ pose

based on ground coverage achieve a minimum visibility of 41 points using

six sensors, the proposed methods based on gradient and IP optimisation

achieve a minimum visibility of 178 and 590, respectively, for the same number

of sensors. Although both of the proposed methods were able to guarantee

the visibility of all objects, the Integer Programming-based method obtained

the best performance in terms of minimum object visibility. This method

obtained minimum object visibility up to 3.3 times higher than the gradient-

based method and up to 7 times higher than gradient-based method without

occlusion-awareness for the same number of sensors in the same scenario. These

results shows that explicitly modelling occlusions can improve the minimum

object visibility by more than 50% when compared to an occlusion-less model.

The poor performance of the gradient-based method relative to the IP method

can be explained by former method being prone to local-maxima which pre-

vents finding the global optimum, and that this method is not able to directly

optimise the sensor-rail assignment. The experiments revealed that explicitly

modelling the visibility of target objects is critical when optimising the poses

of sensors, particularly in cluttered environments where sensors are prone to

severe occlusions. The proposed sensor pose optimisation methods can guide

the deployment of sensor networks in traffic infrastructure to maximise the

visibility of objects of interest.

8.1.4 Relative Pose Estimation

Chapter 7 investigated how to obtain the relative pose transformation between

a pair of moving sensors using their data alone. This study expands the existing

literature in cooperative perception by proposing a method that can obtain

relative poses between sensors using a point cloud registration method. While

some existing point cloud registration methods were deemed unsuitable for

driving applications due to latency requirements, the proposed registration

method allows for real-time inference considering frame rates of up to 3Hz. It

also expands on the point cloud registration literature by evaluating traditional

and state-of-the-art learning-based point cloud registration methods on low-
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overlapping point clouds, which are representative of cooperative perception

scenarios. The proposed method achieves computationally efficiency through a

novel encoder that hierarchically subsamples the point clouds to reduce the

number of key points at each layer. To improve the registration accuracy

on point clouds with low overlap, a graph-based attention method refines

point-wise features based on geometrical relationships between key points, and

their features.

The evaluation results show that traditional registration methods are not

resilient to low overlapping points clouds. In contrast, state-of-the-art learning-

based methods are reasonably robust to low overlapping point clouds and

achieve high recall rates on all overlap intervals. However, the latter methods

demand substantial running times due to their complex encoders and the

filtering of a high number of putative correspondences and are, thus, unsuitable

for real-time applications. The proposed method achieves inference times

between 410ms and 320ms, which are 5 and 35 times faster than competing

point cloud registration baselines in the KITTI and CODD dataset, respectively.

Furthermore, the proposed registration method can achieve mean translation

errors below 30cm and rotation errors below 0.41 degrees for point clouds with

translations of up to 30m, a decrease of 10cm and 1 degree when compared to

state-of-the-art methods. While GPS/GNSS systems can exhibit translation

errors in the order of meters in dense urban scenarios [115], this study suggests

that point cloud registration can be used to obtain more accurate relative pose

estimates in real-time.

8.2 Limitations

Although some of the limitations of the studies in this thesis have been discussed

in their respective chapters, this section summarises the limitations of this

research.

8.2.1 Generalisation

The preliminary concept of cooperative perception in Chapter 4 assumes that

the pose of the object in each image is known and follow a canonical order, e.g.

the first image shows the left view of the object, the second image shows the

front view of the object, etc. In practice, this is an unrealistic assumption since

the pose of the object is unknown a priori, which prevents the generalisation

of this model in practical settings. Furthermore, the cooperative classification

model assumes a fixed number of sensors, which provides limited usability in

practice, where the number of sensors that observe a given object may change

depending on the number of vehicles/sensors in the area.
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The aforementioned limitations are addressed in the cooperative 3D object

detection model in Chapter 5, which can fuse data from an arbitrary number

of sensors and is agnostic to the order of sensors during data fusion. The

evaluation of this model in a T-junction and a roundabout scenario shows

that cooperative perception can increase the detection performance in terms of

both recall and precision of the detected objects. The results show that the

considered roundabout scenario requires two additional sensors to achieve the

same level of performance achieved in the T-junction scenario due to factors such

as a larger detection area. Although these suggest that cooperative perception

can improve the detection performance in other driving environments, it is not

possible to draw conclusions on whether the same level of performance gains

will generalise to different types or sizes of junctions.

Another generalisation limitation of the object detection model in Chapter 5

regards the class of objects being detected. That detection model was designed

to only detect a single class of objects: vehicles. However, the simulated

dataset also includes other classes of objects, e.g. pedestrians and cyclists.

These different object classes were included to increase the dataset diversity

and prevent the model to overfit to the background environment. If these

other objects were not included, the model could simply learn the environment

background and estimate that any set of points different from that background

are vehicles. In contrast, including all classes forces the model to distinguish

between vehicles and non-vehicles. The results show that the model has high

precision rates, which indicate a low number of false positives, and thus, that

the model has learnt to correctly distinguish between vehicles and non-vehicle

objects (pedestrians, cyclists and other background objects such as road, walls,

trees, etc.). However, the results in that chapter can not be used to draw

conclusions regarding the individual detection performance of pedestrians and

cyclists. Considering the detection of bicycle and pedestrian classes individually

would allow studying how cooperative perception can improve the detection

of these smaller objects, which are notoriously more difficult to detect when

compared to larger objects, such as vehicles.

The final generalisation limitation regards the usage of simulated data.

Most of the studies in this thesis used simulated data, with the exception of

Chapter 7 where the KITTI odometry dataset was used. Simulated datasets

provide insights into the deployment of cooperative perception methods that

are useful before deploying such methods in the real world. For example, using

simulated data allows for the evaluation of cooperative 3D object detection with

various number and pose of sensors, which in practice would have prohibitive

due to the time required to capture and label the data for each new sensor

configuration being tested. However, there may be a performance gap in the

performance of object detection methods between simulated and real-world
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datasets due to several factors, e.g. the presence of more realistic noise in

the sensor measurements, temporal misalignment, calibration errors, etc. The

lidar noise model used in Chapter 5 attempts to recreate the first factor but

more studies using real world data need to be carried out to evaluate the gap

between simulated and real-world datasets. The usage of simulated data was

chosen because no real world cooperative perception datasets were available at

the time the studies in this thesis were being conducted. Due to the nature of

cooperative perception, many sensors and vehicles are required to curate a real

world dataset, which prevented the usage of a real dataset in this thesis.

8.2.2 Network Delay and Temporal Misalignment

The data from a set of sensors must be aligned in space (i.e. in the same

coordinate system) and time (synchronised) before it can be fused. The studies

in this thesis considered the spatial alignment of lidar frames in Chapter 5

through an assumed registration of static sensors and in Chapter 7 using an

efficient point cloud registration method to obtain the relative pose between

sensors. However, the aforementioned studies considered that all lidar frames

were perfectly synchronised, i.e. were captured at the same moment in time.

The temporal misalignment between lidar frames can happen for multiple

reasons, including network delays and simply out-of-sync clocks between sensors.

While the effect of temporal misalignment may be negligible for infrastructure

sensors, e.g. in Chapter 5, due to the local connectivity between sensors and

the central system, this is not the case for on-board sensors as studied in

Chapter 7. Future studies should be conducted to evaluate the impact of

temporal misalignment between lidar frames, particularly considering the usage

of cooperative perception for on-board sensors.

8.2.3 Visibility Assumptions

Chapter 6 considered the visibility metric as the number of points cast on the

surface of objects of interest. While this metric has shown correlation with the

accuracy of the detected bounding box (in terms of IOU) in Section 5.4.5, it

does not fully explain the object detection accuracy. This is due to the fact

that this metric is agnostic to the distribution of the points on the objects’

surfaces. For example, an object may have a large number of points in a small

portion of their surface, i.e. most of its visible surface is on the side or back

of the object, which provides little information about the object’s dimensions.

While this behaviour is seldom observed in the conducted experiments, future

studies should consider analysing how the points are distributed across an

objects’ surface, rather than the number of visible points alone to determine

the object’s visibility. For example, the optimisation problem defined in Section
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6.1 could be extended to guarantee that at least two distinct surfaces of each

object are visible.

8.3 Future Work

This section suggests venues of future work building upon the limitations

identified in the previous section as well as new research directions motivated

by the findings of this thesis.

8.3.1 Creating a Large-Scale, Real-World Cooperative Percep-

tion Dataset

Curating a real-world dataset for cooperative perception would address most

of the limitations regarding generalisation. First, collecting data at different

types of driving environments, e.g. roundabouts, four-way junctions, but also

multiple instances of each type of environment, e.g. small roundabouts, large

roundabouts, pass-through roundabouts, etc., would probe how cooperative

perception performance gains scale with different environments. Second, an-

notating the data for multiple classes of objects, including vehicles, pedestrians

and cyclists, would allow investigating if cooperative perception can improve

the detection performance of smaller objects, which are notably more challen-

ging to be detected. Third, comparing the results of real-world scenarios with

simulated scenarios with similar characteristics would uncover the performance

gap between simulated and real-world datasets. Finally, such a dataset could

also be used to investigate the resilience of cooperative perception methods

under challenging weather conditions, such as rain, snow and fog, which are

difficult to be accurately simulated [23]. Such a dataset could drive further

developments in the cooperative perception research area, much like how the

KITTI [47] and nuScenes [54] motivated researchers to tackle different problems

in the driving domain. Although creating such a large-scale dataset would

require a joint effort, a small scale cooperative perception dataset including a

single junction has been recently released [207]. Such a dataset could be used

for preliminary investigations of cooperative perception using real-world data.

8.3.2 Improving Processing Efficiency

A practical cooperative perception pipeline must be able to perform inference,

i.e. transform sensor data into detections, in real-time to be effective. The study

in Chapter 5 showed that the latency of the detection model was in the order

of 300ms, assuming fixed infrastructure sensor and negligible communication

delay. This latency can be further reduced by using the latest generation

of Graphics Processing Units (GPUs) and newer, more efficient 3D object
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detection models, such as [78] which can perform inference within 38ms per

frame using high-performing GPUs. When considering the fusion of on-board

sensors, the relative pose estimation step needs to be added to the pipeline

before the data fusion can happen. This introduces another source of latency

into the system, which should be minimised. A new and computationally

efficient registration method for point clouds with low-overlap was introduced

in Chapter 7 and has shown to be 5 and 35 times faster than competing

methods. Still, this registration method achieves inference times between 320

and 410ms, which would add a significant latency to the overall cooperative

perception pipeline. Although the inference time is expected to decrease when

evaluating the method on newer GPUs, future studies should consider how to

further reduce the overall latency time of the cooperative perception pipeline.

One venue of investigation is to reduce redundancy in the pipeline. For example,

both the 3D object detection model and the point cloud registration model

require performing feature extraction on the input point clouds, however, this

is done separately for each model. Using a shared feature extraction model for

both tasks would reduce the computational complexity of the overall pipeline.

Further studies are required to determine how to adapt the respective feature

extraction modules as to avoid task-specific performance drop in either tasks.

8.3.3 Investigating Communication Delay and Reducing Com-

munication Load

The study in Chapter 7 assumed negligible communication delay between

sensors, which is a valid assumption for fixed infrastructure sensors in a

dedicated network. In future studies, the communication delay introduced

by the wireless communication system for on-board, mobile sensors should

also be investigated. One research direction could tackle how to minimise

the communication load between sensors and the central processing unit.

Sharing the raw point cloud points between agents and the central system

introduces large communication costs as noted in Table 5.1. However, point

cloud compression methods can be investigated to reduce the communication

costs, while maintaining the 3D object detection performance. In this direction,

learning-based methods [208–210] seem to be a promising venue of investigation.

Another direction is to investigate methods leveraging the position of each

sensor to partition the spatial domain of the driving environment. For example,

the driving environment can be divided into non-overlapping segments using

Voronoi diagrams such that each vehicle only shares a subset of its data [211].
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8.3.4 Improving Key-Point Sampling in Point Cloud Registra-

tion

The latency and registration performance of the point cloud registration model

in Chapter 7 could be improved by considering a more efficient key-point

sampling strategy. That model uses Farthest Point Sampling [198], which

considers the spatial arrangement of the observed points to sample points with

uniform density, to subsample the point clouds and reduce the computational

complexity of the model. However, this strategy is agnostic to the semantic

information of each point, ignoring its point-wise features. On the other

hand, a sampling mechanism that considers the point features could prevent

sampling non-informative points such as ground points, points on moving

objects or points in regions with low point density, which are unlikely to have

correspondences in the other point cloud. A potential venue of investigation

includes measuring a “saliency” map of the points’ features [212]. This would

identify points with higher likelihood of being unique across point clouds, and

thus, increase the likelihood of identifying correct correspondences. In doing so,

the number of sampled points can be reduced and the temporal performance

of the RANSAC loop can be improved. Alternatively, a model could directly

learn a probability function that estimates the likelihood of a point being a

“good” correspondence, in the sense of being uniquely identifiable across point

clouds. The final key-points can then be obtained by sampling the original

points sampled based on this learned probability function.

8.3.5 Leveraging Other Sensor Modalities

The majority of studies in this thesis considered the usage of depth-capable

sensors, namely lidar sensors, for cooperative 3D object detection. These

sensors are still considerably more expensive than colour cameras, although

their cost is expected to drop with advances in solid-state lidar technology

[180]. The price factor and the fact that there is an existing infrastructure of

CCTV cameras installed in many driving environments motivates the usage

of colour cameras for cooperative 3D object detection. As noted in Section

2.3.1, such sensors do not provide depth cues which are key to determine

accurate 3D position of the objects in the driving environment. One research

direction is to investigate the potential of colour cameras for cooperative 3D

object detection by leveraging depth estimation networks [60]. Such networks

estimate a depth map for a given colour image, which can be back-projected

into a point cloud and be used by lidar-based 3D object detection methods. The

drawback of such methods is their limited depth accuracy and generalisation

capabilities. However, leveraging multiple wide-baseline cameras into the depth

estimation method could be investigated as means to improve the accuracy of
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such methods. Another potential research direction is to investigate how to

directly fuse perspective views from wide-baseline cameras. For example, by

considering the projection of features from the perspective view (image plane)

to a common bird-eye view, and then fusing the bird-eye-view features from

multiple cameras [213].

8.3.6 Considering Cyber-Security Aspects

Cooperative perception systems deployed in real-world infrastructure must

be able to identify and prevent malicious attacks. Future research should

identify potential threats and how to mitigate them. One research direction

includes investigating how to model trust in the data that each “agent” or

sensor provides. For example, the trust of a certain agent can be modelled by

verifying how much of the data it provides is in consensus with the data from

other agents or sensors [214]. In this fashion, a vehicle broadcasting erroneous

or malicious data can be identified and its data ignored, preventing malicious

usage of the network.
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Appendix A

Result Reproduction

In an effort to promote transparent and reproducible research, the source code,

trained models and datasets of most studies in this thesis are made publicly

available through open access platforms. The source code of each study is

hosted in a respective Github repository, which also contains instructions on

how to set up the software environment/dependencies, and the usage of the

code. The datasets and pre-trained models are made available through open

access research repositories: Warwick Research Archive Portal (WRAP) and

Zenodo. The hyper-links to each resource are presented below.

Chapter 4:

�
Source code: https://github.com/eduardohenriquearnold/

coopObjectClassification.

� Dataset: https://wrap.warwick.ac.uk/160228/.

Chapter 5:

� Source code:

https://github.com/eduardohenriquearnold/coop-3dod-infra.

� Dataset and pre-trained models: https://wrap.warwick.ac.uk/159053/.

Chapter 7:

� Source code and pre-trained models:

https://github.com/eduardohenriquearnold/fastreg.

� Source code of the CODD dataset generation: https://github.com/

eduardohenriquearnold/codd.

� Dataset [202]: https://zenodo.org/record/5720317#.YZ4JudDP1EY.

Note that the source code used to create the Cooperative Driving Dataset

(CODD), described in Section 7.3.1, can be used to create a custom version of

the dataset with different sensor modalities or number of vehicles/pedestrians.
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