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Abstract: Artificial intelligence (AI) technologies promise to transform how professionals conduct 
knowledge work by augmenting their capabilities for making professional judgments. We know little, 
however, about how human-AI augmentation takes place in practice. Yet gaining this understanding is 
particularly important when professionals use AI tools to form judgments on critical decisions. We 
conducted an in-depth field study in a major US hospital where AI tools were used in three departments 
by diagnostic radiologists making breast cancer, lung cancer, and bone age determinations. The study 
illustrates the hindering effects of opacity that professionals experienced when using AI tools and 
explores how these professionals grappled with it in practice. In all three departments, this opacity 
resulted in professionals experiencing increased uncertainty because AI tool results often diverged from 
their initial judgment without providing underlying reasoning. Only in one department (of the three), did 
professionals consistently incorporate AI results into their final judgments, achieving what we call 
engaged augmentation. These professionals invested in AI interrogation practices – practices enacted by 
human experts to relate their own knowledge claims to AI knowledge claims. Professionals in the other 
two departments did not enact such practices and did not incorporate AI inputs into their final decisions, 
which we call un-engaged “augmentation.” Our study unpacks the challenges involved in augmenting 
professional judgment with powerful, yet opaque, technologies and contributes to literature on AI 
adoption in knowledge work.  
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INTRODUCTION 

Artificial intelligence (AI) technologies are edging closer to human capabilities and are often positioned 

as a revolutionary resource promising continuous improvements in problem-solving, perception, and 

reasoning (Rai et al. 2019). These technologies are seen as enablers of a fundamental organizational 

transformation (Faraj et al. 2018, Kellogg et al. 2019, von Krogh 2018), especially when it comes to 

professional work (Barley et al. 2017, Erickson et al. 2018). Heated debates are emerging around whether, 

over time, AI technologies are more likely to “automate” professional work on certain tasks by fully 

replacing human input, or to “augment” it by keeping human experts in the loop (e.g., Brynjolfsson and 

Mitchell 2017, Kellogg et al. 2019, Seamans and Furman 2019). Private and public organizations 

increasingly opt for human-AI augmentation, assuming it will generate value through the synergistic 

integration of the diverse expertise that AI and experts each offer. In this paper, we study how human-AI 

augmentation for critical decisions unfolds in practice by closely investigating how professionals use AI 

tools to form three different medical diagnosis judgments.  

Human-AI augmentation is increasingly depicted as “human-AI collaboration” (e.g., Puranam 

2021, Raisch and Krakowski 2021, Wilson and Daugherty 2018), emphasizing the need to integrate 

potentially divergent viewpoints. Drawing on the organizational literature on collaboration, we know that 

such integration involves transforming knowledge -- a process that requires both understanding the 

meaning behind others’ inputs and being willing to change one’s initial position (Carlile 2004, Hardy et 

al. 2005, Levina 2005, Maguire et al. 2004). It is well-known that achieving effective collaboration in 

knowledge work is difficult as experts cannot always explain their reasoning due to the tacit nature of 

knowledge (Polanyi 1958, 1966), and their collaborators may not be willing to listen to unfamiliar 

viewpoints (Carlile 2004, Levina 2005, Maguire et al. 2004).  

The problems of establishing an understanding across diverse bases of expertise and being open 

to alternative viewpoints are exacerbated in situations when the reasoning behind them is inaccessible. 
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This is particularly likely to occur when humans face a divergent viewpoint expressed by an AI tool – the 

so-called “opaque AI” problem. Modern AI tools, such as deep-learning algorithms, often appear as 

“black boxes” to users since it may be very difficult or even impossible to examine how the algorithm 

arrived at a particular output (Christin 2020, Diakopoulos 2020, Pasquale 2015). While experiencing 

opacity and using “black box” technologies (e.g., cars or computers) is ubiquitous (Anthony 2021), 

problems arise when there is a need to integrate diverse knowledge claims into a single decision that a 

human expert can stand behind. This is the case for many scenarios of AI use for critical decisions such as 

in medicine, human resource management, and criminal justice, where opacity associated with AI use is 

particularly problematic (Christin 2020, Van Den Broek et al. 2021, Waardenburg et al. 2018).  

In professional collaboration, human experts integrate diverse knowledge by developing joint 

practices based on shared interests and common understandings (Bechky 2003a). This enables them to 

engage in dialogue, at least partially uncovering one another’s reasoning in order to arrive at a joint 

decision. But what would it take for human experts to be able to transform their knowledge based on 

inputs from black box machines? We set out to explore how experts using AI tools are dealing with 

opacity and considering whether to alter their initial knowledge claims based on the AI input. 

Following a rich tradition of organizational studies investigating technology in work practices 

(e.g., Barrett et al. 2012, Leonardi and Bailey 2008, Lifshitz-Assaf 2018, Mazmanian et al. 2013, 

Orlikowski 1992), we conducted an ethnographic field study within a major tertiary hospital in the United 

States that is using AI technologies for diagnostic radiology. Medical diagnosis in general and diagnostic 

radiology in particular represent one of the premier examples of professional work that is expected to 

undergo dramatic transformation as AI technologies continue advancing1. We investigate radiologists’ 

use of AI tools for diagnostic processes in three different departments, focusing on their work practices in 

diagnosing lung cancer, breast cancer, and bone age.  

 
1 See the Radiological Society of North America’s journal Radiology: Artificial Intelligence 
(https://pubs.rsna.org/journal/ai) overview of the state of the field when it comes to AI use and other resources 
curated by the American College of Radiology (www.acrdsi.org/). 
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We show how radiologists invested their efforts into reducing uncertainty when forming their 

diagnosis judgments and how the opacity they experienced when using AI tools initially increased this 

uncertainty in all three settings. Of the three departments we studied, only in one (when diagnosing lung 

cancer) were the professionals able to use AI results to enhance their own expertise – the stated goal of 

the human-AI augmentation. This was a case of what we call engaged augmentation, where professionals 

were regularly integrating the AI knowledge claims with their own. They were able to relate AI results to 

their initial judgment and reconcile divergent knowledge claims by enacting “AI interrogation practices,” 

which required a significant resource investment on behalf of the professionals who were already highly 

overextended in their daily work. In the other two departments (when diagnosing breast cancer and bone 

age), professionals enacted what we call un-engaged “augmentation” where they were either regularly 

ignoring AI’s input or accepting it without much reflection. Our study contributes to the nascent 

understanding of human-AI augmentation practices by unpacking how humans experience and deal with 

opacity when using AI tools.  

BACKGROUND LITERATURE 

Augmenting professional expertise with AI 

Two scenarios of AI use, either through automation or augmentation, are increasingly debated across 

academic, practitioner, and policy communities (e.g., Benbya et al. 2021, Brynjolfsson and Mitchell 2017, 

Cremer and Kasparov 2021, Raisch and Krakowski 2021). In this study, we concentrated on the 

augmentation scenario, which the literature largely equates with “human in the loop” AI use whereby 

human experts and AI technologies work together to accomplish a task. The word augmentation is 

defined as a process of enlargement or making something grander or more superior (Merriam Webster 

2021). Indeed, scholars describe human-AI augmentation as an expansion of expertise or knowledge 

where humans and machines “combine their complementary strengths” to “multiply their capabilities” 

(Raisch and Krakowski 2021, p. 6). Through this expansion of expertise, human-AI augmentation is 
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expected to positively impact organizations through superior performance or improved efficiency (e.g., 

Brynjolfsson and McAfee 2014; Daugherty and Wilson 2018; Davenport and Kirby 2016).  

Embracing the vision of multiplying diverse expertise, many scholars describe human-AI 

augmentation as humans and machines “collaborating” together (e.g., Boyaci et al. 2020, Gao et al. 2021, 

Khadpe et al. 2020, Puranam 2021, Wilson and Daugherty 2018). Prior organizational literature on 

effective collaboration among diverse human experts shows how experts learn ways of working together 

to leverage and combine the complementary capabilities (Hardy et al. 2005, Maguire et al. 2004). 

Effective collaboration in knowledge work involves transforming and integrating knowledge through a 

process of relating the knowledge of others to one’s own knowledge (Carlile 2004, Levina 2005; Levina 

& Vaast 2005). This requires collaborators to be willing and able to understand the meaning behind 

others’ input as well as to potentially change one’s knowledge claims (Carlile 2004, Levina 2005). A 

collaboration that effectively integrates divergent knowledge results in individuals not only “adding to” 

but also “challenging” one another’s input, which is distinguished from merely “ignoring” input without 

reflection (Levina 2005). Extending this literature to AI use, the expectation is that human experts 

“collaborating” with AI tools are transforming their knowledge by integrating AI results in a way that 

potentially challenges an expert’s initial judgment. Indeed, Raisch and Krakowski assert this expectation 

when describing augmentation as a tight coupling of human experts and machines influencing one 

another, wherein “machine outputs are used to challenge humans, and human inputs to challenge 

machines” (2021, p. 24).  

Transforming knowledge is challenging when collaborators are unable to interrogate the other’s 

knowledge claims. Human experts develop collaboration practices based on their shared interests and 

common understandings that allow them to deliberate each other’s knowledge claims (Carlile 2004, 

Levina 2005, Maguire et al. 2004) despite their inability to fully explicate their reasoning (Polanyi 1958, 

1966).  While we have been investigating how knowledge workers deal with tacit knowledge over the last 

three decades of organizational scholarship (e.g., Kogut and Zander 1992), we know relatively little about 

dealing with the opacity of modern technologies.  
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Opacity and AI technologies 

Issues of opacity, or the antithesis of transparency, associated with organizational adoption of modern 

technologies has increasingly been a topic of discussion and concern in many research and practitioner 

communities (e.g., Albu and Flyverbom 2019, Leonardi and Treem 2020, Turco 2016, Zuboff 2015). 

Opacity refers to the difficulty to understand the reasoning behind a given outcome when such reasoning 

is obscured or hidden from view (Stohl et al. 2016). While initially, researchers argued that the use of 

information technology will lead to increased transparency – as more information about activities and 

decision making was captured digitally and could potentially be accessed and examined by third parties – 

recent writings have pointed out the fallacy of this thinking (Hansen and Flyverbom 2015, Leonardi and 

Treem 2020, Stohl et al. 2016). Studying social media platforms as an example, Stohl et al. (2016, p. 125) 

identify a “transparency paradox,” arguing that, while increased use of information technology may 

increase how visible information may be, in certain cases, it may actually reduce transparency. This line 

of argument may be extended to the adoption and use of modern AI tools. Today, such tools are 

developed with the aim of transforming the glut of “big data” into a digestible piece of highly relevant 

information –the algorithmic output. Today, these outputs are often presented to users with minimal 

transparency into how the AI tool generated them. And yet, due to constraints of limited time and 

bounded rationality, even if all the data and logic underlying an algorithmic output became accessible, 

transparency may still not be likely (Leonardi and Treem 2020). 

The concept of opacity has gained prominence in the context of organizational adoption of AI 

tools (e.g., Burrell 2016, Christin 2020, Faraj et al. 2018), especially those tools that use deep learning 

methodologies. These methods often rely on numerous algorithms calculating weighted probabilities that 

are transferred and transformed through complex multi-layered networks before a given output is 

generated for users. AI tools using such methods are often referred to as “black boxes” because they may 

generate unexpected or surprising outputs that end-users and even AI developers are unable to explain or 

understand (Diakopoulos 2020, Dourish 2016, Pasquale 2015). In the current literature, opacity of AI 

tools typically describes the lack of explanations provided as to “why a specific decision was made that 



 7 

are understandable to users, even when they have little technical knowledge” (Glikson and Woolley 2020, 

p. 631). This focuses on enacted moments of AI use, whereby individuals lack the practical ability to 

know the reasoning behind a specific AI result presented to them, which is distinct from how individuals 

may lack the ability to evaluate a particular AI tool when examining its technical methodology, training 

and validation data, and performance measures (Lebovitz et al. 2021). 

While the goal of achieving transparency in AI tools seems more necessary than ever – as more 

and more critical judgments are involving AI tools – the ability to achieve this goal seems more elusive 

than ever. Scholars, including some computer scientists, are now discussing AI’s “fundamental opacity,” 

arguing that transparency may be technically infeasible (e.g., Ananny and Crawford 2016, Xu et al. 

2019). Supporters of this view argue that, given the growing complexity of methods and input datasets, 

“there may be something, in the end, impenetrable about algorithms” (Gillespie 2014, p. 192). Some 

scholars go so far as to say that achieving transparency in the use of AI is so difficult is that it may be 

necessary “to avoid using machine learning algorithms in certain critical domains of application” 

(Burrell 2016, p. 9, emphasis added). Not only computer scientists, but scholars from a wide range of 

fields including law, ethics, political science, information sciences, and management are arguing that 

using AI for judgments with serious individual or societal consequences may be problematic. This 

challenge has led to the creation of multi-disciplinary research communities focused on issues of 

transparency, ethics, and fairness in technology (e.g., Caplan et al. 2018, Crawford et al. 2019). The 

research in this community broadly covers three areas. 

The first area explores how the design of algorithmic models can be more transparent to help 

address issues of fairness and social justice (e.g., Barocas et al. 2020, Bird et al. 2020, Kaur et al. 2020). 

For instance, some scholars in this area are focused on developing models that can show how unjust 

outcomes produced by machine learning models are highly related to bias that exists in the training data. 

Despite this community’s progress using advanced computational methods to improve transparency 

towards fairness and equality (e.g., Fernández-Loría et al. 2020, Hooker et al. 2019, Samek et al. 2019), 

most AI tools (and the potential impact of their results on such issues) are still perceived as largely 
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opaque by their users. This is due in part to the growing computational complexity of deep learning 

models and the “curse of dimensionality” when attempting to assert what features from massive sets of 

input data are yielding specific predictions (Domingos 2015). 

The second area of research explores the relationship between algorithmic transparency and 

professional accountability (Diakopoulos 2020, Pasquale 2015). This work is based on the reasoning that 

a system can be better governed if its inner workings are more transparent and known (Ananny and 

Crawford 2016). This is critical since introducing AI tools into a professional work setting may transform 

existing distributions of responsibility and accountability without providing the ability to view or 

understand the underlying logic (e.g., Ananny and Crawford 2016, Caplan et al. 2018, Scott and 

Orlikowski 2012). Related questions are also being raised about the impact of opacity on new forms of 

algorithmic management and control, as workers are often unaware of how algorithms are directing and 

evaluating their work (Kellogg et al. 2019, Watkins 2020).  

The third area of research focuses on classifying and characterizing the types and sources of 

transparency and opacity associated with AI systems. Some work in this area has focused on 

distinguishing, for example, between the transparency of a system’s training datasets from transparency 

about the specific features and weights that led an algorithm to a given outcome (e.g., Diakopoulos 2020, 

von Krogh 2018). Another area within this topic has investigated the reasons behind opacity of AI tools, 

such as intentional organizational or managerial secrecy, technical complexity of the tools, and structural 

factors that pre-existed the AI system, among other reasons (Burrell 2016, Christin 2020). 

Today, despite the enduring challenges of opacity, AI tools are increasingly being implemented in 

contexts where professionals are expected to integrate their own knowledge with AI results when forming 

judgments in critical contexts (Nunn 2018, Razorthink Inc. 2019). Prior research has shown knowledge 

workers attempting to examine the underlying logic as they encounter new technologies, such as digital 

simulation technology in manufacturing (Bailey et al. 2012) and engineering (Dodgson et al. 2007). 

However, in modern contexts of human-AI augmentation, professionals are expected to “collaborate” and 

transform knowledge without the practical ability to examine or evaluate AI knowledge claims. Thus, our 



 9 

study focuses on the question: how do professionals experience and deal with opacity when using AI 

tools to form critical judgments?  

Investigating opacity of AI-in-use through sociomaterial practices of knowledge work 

To investigate this question, we focus theoretically on the sociomaterial practices of knowledge work that 

AI tools are involved in. We adopt a relational ontology that assumes the entangled nature of actors and 

materials and foregrounds the performativity of practices (Barad 2003, Suchman 2007). This perspective 

emphasizes the way in which technologies and actors are inseparable and continually (re)produce one 

another through practices situated within particular social and historical contexts (Leonardi 2011, 

Orlikowski 2007, Orlikowski and Scott 2008, Suchman 2007). This lens has been used to uncover 

important insights when studying organizational uses and impacts of other technologies such as enterprise 

integration platforms (Wagner et al. 2010, 2011), social media tools (Scott and Orlikowski 2014), online 

community platforms (Barrett et al. 2016), and robotic tools (Barrett et al. 2012, Beane and Orlikowski 

2015). We follow Suchman’s (2007, p. 1) argument to shift from “categorical debates”, in our case, 

around AI and opacity, to “empirical investigations of concrete practices” in which individuals and 

technologies act together.  

Adopting this view means focusing on the generative materiality of technical infrastructures and 

treating the technologies-in-use (AI and otherwise) as part of the sociomaterial configuration (Barrett et 

al. 2016, Mazmanian et al. 2014, Scott and Orlikowski 2014). In particular, focusing on situated 

configurations emphasizes that individuals’ understandings about a given technology vary across local 

meaning systems (Leonardi and Barley 2010, Mol 2003, Pinch and Bijker 1987). This means leaving 

opacity to be realized in practice “depending on the actor’s situatedness” (Haraway 1988). Therefore, 

instead of conceptualizing opacity as inherent or fixed features of AI tools, we view opacity as something 

produced and enacted through practices situated in specific organizational configurations (Leonardi 2011, 

Orlikowski 2000). Using this lens, we set out to examine how opacity of AI-in-use is experienced and 

dealt with when professionals use AI when forming judgments. 
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METHODS 

Research setting 

We conducted an in-depth field study within three different departments in a large diagnostic radiology 

organization at Urbanside, a teaching hospital in a major US city. Diagnostic radiology is a specialized 

medical field in which medical imaging is analyzed to diagnose and treat diseases, and it has been at the 

forefront of adopting cutting-edge technologies (AI and non-AI) for decades (e.g., Barley 1986). 

Recently, a great debate has been unfolding as to the impact of AI tools on professionals in this field and 

how AI may entirely replace the radiology profession (Grady 2019, Mukherjee 2017, Recht and Bryan 

2017). We designed our study, following the tradition of field studies of technologies, work, and 

organizations (Barley 1990, Bechky 2019, Lifshitz-Assaf 2018, Orlikowski 2000), to investigate three 

radiology departments within the same organization and enabled us to deepen our investigation of 

professionals’ work with AI tools.   

Data collection 

Starting in late 2018, we immersed ourselves in the field of diagnostic radiology, attending professional 

conferences, symposia, and vendor events, to understand the opportunities and challenges on the 

professional field’s horizon. Ethnographic field work began in January of 2019 and studied 40 

radiologists (licensed doctors or senior fellows offered positions upon completing their fellowship) across 

three departments actively using AI tools: breast imaging, chest imaging, and pediatric imaging. 

Observation. The primary source of data for this study is ten months (over 500 hours) of 

ethnographic observation (Van Maanen 1988). We documented over 1,000 cases of radiologists forming 

diagnoses in detailed written observational notes, which were transcribed and supplemented upon leaving 

Urbanside facilities each day. Because Urbanside radiologists trained medical students and residents, we 

often captured radiologists verbally articulating their diagnostic reasoning, drawing on past experiences 

and research, describing common errors and strategies to avoid them, and so forth. Radiologists often 

quizzed trainees about important diagnostic practices and philosophies (e.g., “What might hypo-inflation 

indicate in a newborn?” or “What might indicate stroke on MRI?”) and then offering their own thoughts. 
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During periods of observation, we paid close attention to the technologies-in-use, capturing the role of the 

tools in the diagnostic process, the results they produced, what meanings emerged around the tools, and 

so forth. Over the course of our field work, we observed diagnostic cases involving and not involving AI 

tools. Observing cases not involving AI tools strengthened our understanding of radiologists’ analytical 

practices. Even for diagnosis scenarios typically involving AI tools, we also observed cases of 

radiologists not using the tools, such as during technical outages or when working for satellite locations 

with different technical infrastructures.  

Interviews. Observational data was enriched through 33 semi-structured interviews (Spradley, 

1979). Twenty-one informal interviews took place as radiologists conducted their work or during short 

breaks, covering questions about unclear aspects of diagnoses for recent patient cases, interactions with 

their colleagues or patients, or specific moments of using or not using various technologies. Twelve 

formal interviews allowed us to deepen our understanding of what it means to be a radiologist, how they 

go about their diagnostic work, their perceptions of various technologies, and so forth. All formal 

interviews and some informal interviews were recorded (with informants’ consent) and transcribed.  

Documentation and artifacts. Finally, we collected documentation and artifact data which served 

multiple purposes in our study. First, we captured artifacts produced and used by radiologists in their 

daily work, including medical notes and photographs or drawings of medical images they were 

referencing. These materials supplemented observational notes and strengthened our analysis when 

reconstructing their diagnosis process. Next, we collected technical research papers, regulatory filings, 

and vendor documentation to study the three focal AI tools and the nature of their outputs. In the US, 

once regulators approve a clinical AI system, it can no longer change (or “actively learn”). Vendors can 

request additional approval for updated software versions, which can then be deployed in clinical settings. 

Thus, we observed the use of unchanging technologies throughout our study.  

Data analysis 

In keeping with the principles of grounded theory development, we engaged in iterative rounds of data 

analysis during and throughout our data collection (Charmaz 2014, Glaser and Strauss 1967). In the early 
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stages, we conducted open coding to capture a broad range of emerging themes. Within the first few 

months, the prominence of radiologists expressing doubt, asking questions, double-checking, and 

conducting deep analytical practices was striking in the data. We were also struck by the frequency of 

questions and confusion surrounding the AI results radiologists viewed. We, therefore, conducted targeted 

rounds of data collection and analysis to deepen our understanding of these themes.  

While all radiologists appeared to be “using” the AI tools (clicking to display its results after 

forming their initial judgment), we noticed different patterns in the degree that AI results were influencing 

radiologists’ final judgments (e.g., “pausing to consider AI results,” “updating original diagnosis,” 

“quickly disregarding AI results”). In all three departments, the AI results and the radiologists’ opinions 

often diverged, and confusion and frustration often followed. Deeper analysis led us to relate their 

frustration to the lack of understanding why a given AI result was produced (e.g., “questioning what the 

AI is looking at,” “guessing factors behind AI output”). When we investigated the three AI tools and the 

nature of their output, we found many similarities: each reported high performance metrics, used neural 

network classification methods, and offered no explanation of its results to users. And yet, despite 

similarities in the tools and radiologists’ consistent frustration, only radiologists diagnosing lung cancer 

were regularly incorporating AI results, while, the other radiologists mostly ignored the tools’ results. 

Next, we set out to understand what was behind these divergent patterns. We mapped step-by-

step how radiologists formed each different type of diagnosis and analyzed their process along multiple 

dimensions, such as what aspects of the diagnosis prompted doubt, how evidence was analyzed, 

perceptions of the AI tool and its results, and so forth. We studied radiologists’ similarities and 

differences among the diagnostic settings and their analytical practices and saw noteworthy differences in 

the materialities of the imaging technologies-in-use (CT scans, mammography, and X-ray) and the 

breadth and depth of analysis that was afforded. Iterating with the literature on professional adoption of 

technology led us to analyze how senior and junior radiologists used the tools similarly and how all 

radiologists held similar attitudes about AI adoption. Further analysis led us to focus on a key difference 

in how radiologists integrated the AI result (or not) using what call “AI interrogation practices”. We 
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continued to sharpen our analysis by consulting literatures on epistemic uncertainty and opacity, which 

further enhanced our formal theory development, which we describe in the following section.  

  FINDINGS 

Diagnosing patients is a critical process that requires the extensive expertise, training, and judgment of 

diagnostic radiology professionals. Radiologists develop deep expertise in diagnosis through at least six 

years of intense, immersive education after medical school. In their daily work, they strive to provide the 

best possible care to their patients and take their role in patients’ health outcomes very seriously. They 

work under resource constraints and time pressure, as healthcare facilities respond to intense pressures to 

increase patient volumes and reduce costs. In recent years, powerful diagnostic AI tools have captured the 

attention of radiologists and healthcare leadership. We present below how radiologists in three 

departments at Urbanside worked with AI tools to provide three critical types of medical diagnoses.  

I. Producing lung cancer diagnoses using AI tools 

Diagnosing lung cancer was a key focus of Urbanside radiologists specializing in chest imaging. Like 

others across the field, these radiologists were committed to producing the most accurate diagnoses 

possible and positively impacting patients’ treatment and health outcomes. As in other Urbanside 

departments, they faced high workload demands and felt strong pressure to work quickly. At the same 

time, they provided thorough analyses requiring intense concentration and careful deliberation. When 

diagnosing lung cancer, radiologists faced the challenging task of identifying difficult-to-detect lung 

“nodules” and characterizing their likelihood of malignancy. Radiologists were deeply aware of the 

significant consequences of their diagnoses, both the cost of falsely diagnosing a healthy patient and the 

cost of missing signs of cancer, and worked with high diligence. 

Forming critical judgments (without AI): Experiencing high uncertainty 

While forming a lung cancer diagnosis, radiologists experienced three main sources of uncertainty when 

reviewing their primary source of evidence, CT imaging: multiple series of high-resolution images (in 

5mm and 1mm “slices”) that digitally reconstructed 3D cross-sections of a patient’s upper body and 
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supported numerous settings and projections (e.g., from side or overhead views, varying degrees of 

contrast). 

First, they experienced great uncertainty while discerning “lung nodules” from the healthy lung 

tissue. This involved searching for small white-appearing circles within the varying shades of white to 

dark grey lung tissue on the CT images. However, hundreds of small white circular areas may be visible 

on a given CT that represented normal tissue or bone (see Appendix 1), and radiologists often wavered 

considerably while deciding whether a particular area was a nodule or not. One afternoon, a physician 

called Dr. E’s phone, requesting her opinion about a potential nodule on her patient’s CT. After several 

moments of searching and deliberating over the phone, Dr. E asked the physician, “Do you mind if I look 

more closely and figure it out and call you back?” Hanging up, she leaned closer to the monitors and 

continued her analysis before finally returning the call: “It’s very low density. It’s looking almost fat-like 

[which appears more grey than typical a nodule]. But it actually does look like a nodule. Sometimes I’m 

like, ‘Am I going crazy?’”  

The second source of uncertainty emerged from radiologists’ task of identifying each and every 

nodule in the patient’s lung tissue. Very frequently, they expressed concern about the possibility of 

missing a nodule, fearful of making consequential errors of omission: “I don’t see anything major 

jumping out. Hopefully I’m not missing anything” (Dr. Y). This struggle was related to the CT imaging 

not always clearly capturing every region of a patient’s lung tissue where nodules may be positioned, as 

in the following case of Dr. E deliberating aloud: “Am I hallucinating a nodule?…I think it’s there, but 

it’s hard to see. It’s in a bad location…It’s behind two ribs, so it’s impossible to get a good look there.” 

Dr. J explained how “there’s all this lung tucked in front and behind right there that you just don’t see [on 

CT imaging].” Radiologists’ difficulty examining these “impossible” areas of lung tissue using CT 

imaging raised their uncertainty. In fact, they often concluded that a seemingly-nodule free CT scan was 

not definitive: “If you don’t see the nodule on one image, that doesn’t mean it’s not there…A lot of 

missed cancers, like ten percent, were seen only from one view and not the other” (Dr. J). The CT, like 

other imaging technologies, may also be difficult to analyze when patients shift or fail to inhale deeply 
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during the scan, as in the case of Dr. S struggling to discern a particularly blurry CT image: “It’s hard to 

tell because it’s such a crappy study. He did not take a deep breath, did he?”  

Radiologists worked to address these first two sources of uncertainty by investing in various 

analytical practices during the “nodule search”. They methodically combed through the CT images 

numerous times, starting with the less granular set of 5mm images and then the more granular 1mm set, 

as Dr. J explained to medical students observing her work: “There is so much volume of data on the 

images to deal with…We scroll faster at first. It’s good to get a general overview first, then we go to the 

smaller ones for deeper investigation.” Then, their focus turned to further evaluating each potential nodule 

they identified, scrolling slowly through the neighboring slices to assess if it appeared to “flow” in a 

continuous path (indicating normal blood vessels) or disappear abruptly (indicating a nodule): “You have 

to follow the vessels. If it’s something you’re able to follow, then it’s probably just a vessel you’re 

catching, not a nodule.” They increased their confidence using a technique called “windowing”, or 

assessing the different properties of the tissue by adjusting the settings of the CT image or changing its 

grey-scale contrast: “Oh, I think it’s a vessel. Yeah, I don’t think it’s a nodule. Ah, yeah, I’m pretty sure. 

Windowing really helps” (Dr. E). As a final measure to address lingering concern or confusion, they may 

request additional imaging, as Dr. J explained to on-looking medical students: “This area looks ill-

defined. So, somebody could call it a nodule. We try to make a firm guess…but sometimes we call for 

follow-up imaging because we really can’t decide.” 

Finally, radiologists faced a third, and relatively less acute, source of uncertainty during the task 

of characterizing each nodule’s likelihood of malignancy. Radiologists applied fairly explicit criteria and 

standards to each nodule they had identified: “Almost everyone has nodules, but some of them can be 

cancer...You go through each nodule and make sure it’s solid. Then with the prior [CT images] that 

you’re comparing to, you actually look at each nodule and visually make sure they look the same” [Dr. 

Y]. They first gauged the patient’s overall risk level by reviewing their medical details (e.g., clinical 

symptoms, age, history of illness). Next, they scrolled through the CT images several times to explore the 

nodule. They used digital tools to precisely measure its dimensions and noted whether it was larger than 
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the 5mm standard associated with malignancy. They analyzed prior CT imaging (if available) looking for 

changes or stability in the nodule’s appearance or size over time. When Dr. J noted that a 3mm nodule 

was present on a CT scan from five years earlier where it also measured 3mm, she felt highly certain in 

characterizing the nodule as benign: “There it is [in the CT from 2014]! So it’s there [not new]. Oh, that’s 

stable [noting the consistent 3mm measurement]. There it is. Okay, now I’m good.”  

Experiencing opacity of AI-in-use (and increasing uncertainty) 

After completing their initial analysis, radiologists then viewed the results of an AI tool implemented to 

aid their lung cancer diagnosis. The Urbanside chest imaging department purchased an AI tool several 

years prior, which we refer to as the “CT AI tool”, as an add-on to the CT digital imaging technology, 

from a leading healthcare technology provider. Over the years, the tool was updated numerous times to 

improve its technical sophistication and performance. At the time of this study’s observation, the tool 

performed imaging processing, segmentation, and classification tasks utilizing artificial neural networks 

that were trained and validated using large datasets of long-term radiological outcomes. Published 

research showed these AI tools’ ability to identify and classify nodules was similar to radiologists’ cancer 

detection rates. Following regulatory guidelines, the CT AI tool was deployed as an “aid” to radiologists, 

designated to be used after the radiologist first formed his or her independent judgment.  

Clicking an icon on the digital workstation, instantaneously, the display jumped to the first AI 

result, a circle annotation placed on a precise location of the CT image. In the intermittent cases where the 

AI result and the radiologists’ judgment converged that we observed, they quickly moved on to complete 

the final report. Radiologists expressed delight and relief when the AI results confirmed their previously 

uncertain assessment that no nodules were present: “This time, [CT AI] found nothing. Any time that 

happens, it puts a big smile on my face” (Dr. F). They experienced a boost in confidence and certainty 

after viewing the AI results, as Dr. W expressed, “If I don't see any lung nodules, and [CT AI] doesn't see 

any lung nodules, then okay, we're good! I now feel very comfortable saying there's no lung nodules.”  

However, in the majority of cases we observed, the AI tool’s results presented a divergent view 

from the radiologist’s initial view. Regularly, the CT AI tool did not mark a nodule the radiologist had 
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identified. Even more frequently, the tool flagged additional areas that the radiologist had not identified. 

Radiologists began experiencing opacity, as they were unable to understand these divergent AI results. 

They questioned what features of underlying lung tissue were relevant to the tool’s decision: “How does 

[the AI tool] know that this is a nodule, but this isn’t?” (Dr. V). Radiologists were deeply committed to 

providing judgments with maximum certainty, but they expressed difficulty feeling certain given the 

opacity they experienced when considering divergent AI results: “I just don't know of any radiologist 

who's not looking closely at the case because they have AI. Because at the end of the day, you're still 

responsible. How can you trust the machine that much?” (Dr. E). 

Dealing with opacity of AI-in-use: Enacting AI interrogation practices and incorporating AI results 

On the surface, it may seem that using the AI tools (and experiencing opacity) increased the overall 

uncertainty these radiologists experienced; however, in fact, using the AI tool resulted in radiologists 

experiencing less uncertainty making their final judgments. They achieved this by using “AI interrogation 

practices”, or practices that human experts enact to relate their own knowledge claims to the AI 

knowledge claims. For these radiologists, enacting AI interrogation practices involved building an 

understanding of the AI result and then reconciling the divergent viewpoints. They examined the 

suspected area in question, zooming in on that region of the CT image and scrolling forward and 

backward to assess the tissue surrounding the AI-marked region. They changed the contrast settings on 

the CT to analyze the area’s size, shape, and density and reviewed prior CT images to understand how 

those features may have changed over time. They were examining and probing the AI results in order to 

understand them and ultimately integrate them with their own viewpoint.  

Enacting AI interrogation practices led radiologists to consistently integrate the AI results into 

their final judgments. Radiologists regularly updated their initial opinion after interrogating the AI results, 

either through synthesizing the divergent opinions into a new insight or through reflectively agreeing with 

the AI result, as in the following case. After completing his initial analysis, Dr. T was puzzled by three AI 

results suggesting nodules he had not initially flagged. He began interrogating each area marked by the AI 

tool, analyzing the CT imaging to try to understand the AI result and how it related to his own view. He 
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decided to overrule one AI result and expand his original opinion to include the two new additional ones. 

Even when radiologists decided to overrule the AI results, they experienced higher confidence reporting 

that final diagnosis. This was the case after Dr. F swiftly interrogated two unexpected AI-marked areas 

and related them to his own analysis: “This is what [CT AI] picked up: there and there. It’s just normal 

stuff, parts of the bones protruding from the chest which sometimes looks like it could be a nodule.”  

Enacting AI interrogation practices required radiologists to invest additional time and analysis. 

They were willing to make that investment time and time again, which reflected their positive views of 

the AI results’ value, as expressed by Dr F.: “I know my limitations and I know this [CT AI] is going to 

help them [nodules] stand out a little better. It’s worth the extra time in my mind.” They viewed the AI 

results as distinct and complementary to their own capabilities and expressed strong positive opinions 

about the tool’s value in their work. This was vividly expressed by Dr. W., a senior radiologist who 

moved from another hospital where they did not have a CT AI tool: “I actually think [CT AI] is mission-

critical. For me to read cases, I absolutely love having the [CT AI]. I used to not have it in my prior place 

[hospital]. I thought it was the worst thing ever. And then when I came here, I was amazed.”  

Indeed, the practice of interrogating and integrating the AI results had become a critical step in 

how these experts formed their final judgments. This was reflected in Dr. V’s response one afternoon 

when the AI results were unexpectedly unable to load for a CT she was assessing. She instant-messaged 

the CT technician, requesting the AI results for that study, and followed up with a phone call when the 

technician did not respond. She minimized that CT and began analyzing another case while she waited; a 

few minutes later, she learned of technical issues disrupting the AI services. Flustered, she returned to the 

minimized case, scrolled through the CT several more times, and reluctantly wrote the diagnosis report 

without AI input: “Once in a while, it definitely picks up things that you looked at yourself and you 

totally ignored, that you just couldn’t see. Knowing that every now and then it picks up something real 

makes you always want to go back to it.” 

II. Producing breast cancer diagnoses using AI tools 



 19 

As breast cancer is prevalent and highly dangerous, diagnosing it at the earliest and most treatable stage 

was a great priority for radiologists specializing in breast imaging. On a typical day, each Urbanside 

breast radiologist evaluated over 100 patients– a highly demanding workload – and was providing life-or-

death judgments in every case: “We have to give our full attention to make the right call, but we have so 

much volume we’re supposed to get through. It’s a conflicting thing” (Dr. Q). On average, they spent less 

than three minutes evaluating a case, an amount of time that did not allow extensive deliberations. The 

consequences of making these evaluations were extremely high, as patients were either informed they 

were not currently at risk or recommended to undergo additional testing, biopsy, or treatment, which 

resulted in patients bearing significant physical, emotional, and financial costs.  

Forming critical judgments (without AI): Experiencing high uncertainty 

While making critical judgments about breast cancer, radiologists experienced two main sources of 

uncertainty. First, like radiologists conducting the lung nodule search, breast radiologists wrestled with 

identifying abnormal areas within the complex breast tissue anatomy. The main source of evidence is 

mammography imaging: digital X-ray imaging that provided four two-dimensional images and four three-

dimensional images (side and overhead view of each breast). For certain patient scenarios, targeted 

ultrasound imaging was also used.  

Breast radiologists worked to detect every potential abnormality in the patient’s breast imaging 

and knew that overlooking a single abnormality carried extremely high consequences. On mammography, 

abnormalities typically appear as small bright white patches amidst normal tissue ranging from white to 

dark grey (see Appendix 2). Because of the subtle differences in tissue appearance, and the difficulty of 

interpreting mammogram imaging, radiologists frequently expressed concern about missing critical 

findings. Dr. C explained, “The [abnormalities] we worry about are really faint and tiny ones: those are 

signs of early cancer. They’re the ones you can barely see…A[n abnormality] is going to be really really 

masked....you just can’t see the cancer.…It’s like looking for a snowball in a snowstorm.” In some cases, 

radiologists requested additional imaging to be more sure, especially when the mammogram did not 
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capture areas of the patient’s body (often near the armpit): “If I could see clearly in this area [pointing just 

outside the border of the image], I wouldn’t be so concerned” (Dr. L).  

To increase their confidence that they identified all abnormalities, radiologists used careful 

analytical practices. They combed over mammogram images, zooming in closely on each region, and 

scrolling through each three-dimensional view multiple times. They were searching for unusual patterns 

in the tissue that may indicate “masses, calcifications, skin thickening, changes to the tissue, axillary 

lymph nodes, or distortion” (Dr. K). They examined asymmetries in the appearance of the left and right 

breast tissue, as Dr. P described, referring to images on her screen: “This is an area that caught my eye. 

This is the right side, and this is the left. The right looks obviously different than the left. This is one of 

the things that our eyes are trained to look for.” Using careful systematic analysis that provided diverse 

views and evidence helped ward off radiologists’ uncertainty, as Dr. G explained: “I zoom in even more, 

so I'm going to see even the tiniest finding. I zoom in, like, a lot….until I'm pretty sure I see all of them.”  

The second, and more intense, source of uncertainty was characterizing each abnormality’s 

likelihood of being malignant or benign. Making this distinction for breast cancer diagnosis was 

challenging. Radiologists described breast cancer as a complex disease that may develop in unexpected 

ways that often varied from patient to patient. Breast tissue anatomy is complex, and often, malignant 

breast tissue may closely resemble healthy tissue on mammography. Numerous pieces of evidence needed 

to be analyzed and synthesized: the size, shape, edges, and density of the abnormality on mammography, 

ultrasound, and MRI (if available), the degree of change across prior imaging, a patient’s genetic makeup, 

prior history of disease, and lifestyle choices, as well as clinical symptoms and physical examinations.  

Occasionally, the evidence would overwhelmingly support a benign judgment, as in this case, 

“Those calcifications are really big and chunky, so once I look at it closely, then I can immediately ignore 

it [because it is likely benign]” (Dr. C). More frequently, however, some factors would suggest benign 

while others did not, and radiologists struggled to reduce the acute uncertainty: “If I know something is 

fine or I know something is bad, then I know right away. But there are really a lot of cases I waffle on” 

(Dr. B). This is illustrated by the following case. During her analysis, Dr. C noted a small gray oval 
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abnormality on a patient’s mammogram. Through her analysis, she noted the oval’s small size and 

sharply defined edges, that the area appeared stable for several years, and that the medical history did not 

suggest increased risk (all suggesting benign). And yet, she felt uncertain and exhaled deeply in 

frustration before ultimately recommending the patient undergo additional testing: “It's probably normal 

tissue, but it looks so oval. I’ve gotta call her back [for additional testing]. I just can’t ignore that spot.” 

They expressed deeper anguish and deliberation when judging the malignancy of abnormalities 

than when searching for them, as Dr. Z explained: “Deciding what to do with an abnormal finding 

[deciding malignant versus benign] – as opposed to detecting a finding in the mammogram – that takes 

much more discerning.” Colleagues often disagreed about an area’s likelihood of malignancy, especially 

since the mammogram imaging and its various features were open to multiple interpretations. Even after 

completing their full analysis, radiologists often second-guessed their final judgment, as portrayed by Dr. 

G’s continued wavering: “Do I do a follow up or do I just return to routine screening? That's really the 

difference between being a cyst [benign] and something being a solid mass [malignant]. And we can't 

always tell the difference.”  

To build certainty in this judgment, radiologists used a variety of analytical practices. They 

zoomed in on the mammogram to examine the appearance of the abnormality and its density, size, shape, 

and edge clarity. They gauge whether the abnormality had changed or remained stable across prior years’ 

mammograms. They also studied the patient’s health records (e.g., physical symptoms, personal and 

family history, pathology and surgical records) to gauge the patient’s overall risk level and inform their 

emerging judgment. In one case, Dr. L decided to recommend a biopsy after considering a patient’s 

elevated risk factors, despite the area’s otherwise benign appearance: “It’s not overtly suspicious: it’s 

fairly circumscribed and it’s not very oval [both suggesting benign diagnosis]. But this patient is here 

because she just found out from a genetic risk screen that she is at increased risk for breast cancer.”  

Experiencing opacity of AI-in-use (and increasing uncertainty) 

After forming their initial judgment, radiologists then reviewed the results of an AI tool implemented to 

aid their diagnosis process. Several years ago, Urbanside purchased an AI tool, which we call the 
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“Mammo AI tool,” as an add-on product to the mammography software from the imaging technology 

vendor, one of the leading US healthcare technology providers. Since its implementation at Urbanside, 

the vendor provided numerous updates improving the tool. During this study’s observations, the Mammo 

AI tool performed imaging processing, segmentation, and classification tasks utilizing artificial neural 

networks trained and validated using largescale datasets with long-term radiological outcomes. Published 

research reported that the tool could identify malignancies at similar rates as trained radiologists and 

showed some indication of increasing radiologists’ overall cancer detection rates2. Following regulatory 

guidelines, the tools were deployed as an “aid” to radiologists, who were required to only view AI results 

after forming their independent evaluation. The tool was designed so that a single mouse click displayed 

the AI tool results: a series of shapes3 marking the specific location on the mammogram that was 

classified as malignant, with no further information (Appendix 3).  

Clicking the designated button, the AI results appeared on the mammogram image, which the 

radiologist compared to her initial judgment. In the infrequent cases we observed where the opinions 

converged, they swiftly proceeded to the final diagnostic report. However, in the large majority of cases 

we observed, the AI results and the radiologists’ judgment diverged. On occasion, the AI tool did not flag 

an area that was initially judged as abnormal, and far more frequently, the AI tool flagged additional areas 

that the radiologist had not.  

Radiologists experienced opacity as they encountered the AI tool’s unexplained results. They 

were unable to see what aspects of that tissue were causing the AI tool to produce a given result: “I don’t 

know why they marked these calcifications, what about all these other calcifications (that the tool did not 

mark)? They all look identical to me” (Dr. C). They expressed frustration in their inability to understand 

the divergent AI results: “What is it telling me to look at? At this tissue? It looks just like the tissue over 

 
2 This research prompted the US government in 2003 to mandate that insurance providers must reimburse the use of 
AI tools for breast cancer screening, leading to wide purchasing of such tools across US breast imaging centers.  
3 Three shapes were used to indicate the type of classification the tool generated: star indicated “mass,” triangle 
indicated “calcification,” and plus sign indicated cooccurrence of mass and calcification.   
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here, which is perfectly normal…I have no idea what it's thinking” (Dr. K). Radiologists had no practical 

means of knowing the underlying reasoning of a given AI result and experienced the opacity of AI-in-use, 

as Dr. H explained, “[The AI tool] just points an area out and leaves you to figure it out. It’s like it’s 

saying, ‘This is weird; what do you want to do with it?’” 

Dealing with AI opacity: Not enacting AI interrogation practices and not incorporating AI results 

Like chest radiologists’ use of the CT AI tool, in this department, breast radiologists using the Mammo AI 

tool experienced opacity and a surge in their level of uncertainty. However, in this department, 

radiologists did not enact AI interrogation practices and ultimately did not regularly incorporate AI results 

into their final judgments. Instead, when faced with divergent opinions, the radiologists tended to review 

the image underlying the AI result in a perfunctory way before ignoring it, or “blowing it off”, as Dr. G 

described, “I blow so many things [AI results] off. Like if there’s normal scarring or stable calcs [benign 

tissue], it’s [AI tool] going to pick up everything.” They quickly dismissed AI-marked areas that they 

previously deemed normal without deeper inspection, writing them off as “false positives”: “I already 

knew that stuff it marked didn’t matter. I saw the mass was there a couple of years ago [in prior imaging]” 

(Dr. Z). It was also common for them to ignore AI results when the AI tool did not flag an area they 

initially considered abnormal: “If there’s something that’s concerning to you, based on your initial 

interpretation, that the [AI tool] is saying, ‘Oh, this looks normal,’ you couldn’t use that information and 

say, ‘We’re not going to biopsy it’” (Dr. I).  

Radiologists already faced extreme uncertainty and intense time pressure, which suddenly 

multiplied when they had to reconcile the (frequently) divergent opinions of the Mammo AI tool: “So 

many different factors are standing out to you all at once and giving you conflicting information, and then 

there’s the result from the software [Mammo AI]” (Dr. L). They expressed strong opinions that the 

Mammo AI results did not add value to their process, based on years of repeatedly spending valuable time 

reviewing divergent and unexplained AI results: “It isn’t helping anybody. It's actually just another step 

for me to do” (Dr. K). Radiologists expressed negative views of having to tediously check, and ultimately 

“blow off”, AI results for every patient’s case, especially given the high time pressure they faced: “It’s 
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not worth my time to evaluate it” (Dr. L). Only under specific conditions (when analyzing highly dense 

breast tissue), did some radiologists comment on the potentially complementary nature of the tool’s 

results: “Calcifications4 can be really little and sometimes hard to see. It [Mammo AI tool] sees those 

calcifications better than I do. But it also sees all kinds of calcifications that are neither here nor there” 

(Dr. B). And yet, in the same breath, Dr. B conveyed her view (shared by most of her colleagues) that the 

AI results were often useless when making her final judgments (they were “neither here nor there”).  

In the end, due to the lack of full feedback on patients’ health over time, it is unclear whether 

radiologists’ decisions to not incorporate AI results led to more effective treatment or not. It is possible 

that for some cases, had an AI result been incorporated, additional patient testing may have been avoided. 

For instance, Dr. L was examining new images for a patient who had been recommended for additional 

imaging by Dr. L’s colleague the week before. Dr. L opened the patient’s original mammogram (from the 

prior week) and reviewed the AI output, which had not flagged the area that prompted her colleague’s 

concern: “[Mammo AI] didn’t mark anything on this one [the prior week’s image]. It didn’t even mark 

the lesion that caught the radiologist’s attention!” (Dr. L). Interestingly, after Dr. L reviewed the patient’s 

new images, she recorded her opinion that the area was benign. This pattern was not uncommon: 

radiologists often recorded benign judgments after reviewing additional imaging. In this case, the original 

AI result was consistent with the radiologist’s ultimate benign diagnosis, however, its accuracy is unclear 

without long-term patient health outcomes.  

III. Producing bone age diagnoses using AI tools 

“Bone age” evaluation involves radiologists specializing in pediatric imaging to assess the skeletal 

maturity of children experiencing delays in growth or puberty. This important diagnosis factors into 

considering whether to treat the child with daily growth hormone injections for a period of time. This 

 
4 Calcifications are tiny flecks of calcium that can sometimes indicate early signs of cancer. They are usually unable 
to be felt by a physical examination. Large calcifications are not usually associated with cancer. Clusters of small 
calcifications indicate extra breast cell activity, which can be related to early cancer development but may also be 
related to normal breast cell activity. 
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diagnosis involves comparing a child’s bone development to established pediatric standards to determine 

whether it falls within a “normal” or “abnormal” range for the patient’s age. A pediatric radiologist at 

Urbanside may perform seven or eight bone age evaluations on a given day, among the variety of 40-50 

other diagnoses they provide (e.g., evaluating lung disease on CT scans, gastrointestinal issues on 

Ultrasound, or scoliosis on X-Ray). Like in the previous departments, these radiologists faced acute 

pressure to work quickly and provide high-quality, time-sensitive assessments to physician teams caring 

for young patients and their concerned parents.  

Forming critical judgments (without AI): Experiencing lower uncertainty 

Unlike the previous two specialties, pediatric radiologists viewed this evaluation as a straightforward 

comparison task and did not experience particularly high uncertainty, or as Dr. O described, “I don’t think 

it’s a very sophisticated thing.” After first quickly noting the patient’s age and gender, they reviewed the 

sole source of evidence for this evaluation: a single digital X-ray representing the patient’s hand, fingers, 

and wrist (see Appendix 4). They studied the size, shape, and appearance of specific bones visible on the 

X-ray and drew on their knowledge of how certain parts of the hand develop differently over time: “I use 

the phalanges [fingers] as the gold standard, but there’s also carpal bones [wrist] and the radius ulna 

[forearm]. But they’re more variable, so I don’t look at that as much” (Dr. R). Dr. D explained how she 

considers and weighs multiple bone areas, to build a more certain judgment: “I give more credence to 

distal bones [closer to fingertips], although endocrinologists like the proximal [lower fingers or wrist], 

which is probably more representative of overall height growth…If there’s variation, or if there’s 

discordance between different bones, I mentally give more weight to some than others.” 

Then, they compared the patient’s bone development to the curated set of X-ray images in the 

textbook of standards used across pediatric radiology. A single X-ray image was used to depict a child’s 

expected bone development at each one-year increment. Radiologists compared the appearance of the 

patient’s hand X-ray to the standard imagines in the book, searching for the closest match: “I’m looking at 

the different shapes and seeing these are bigger than seven years” (Dr. D). In the following assessment, 

Dr. N went back and forth between the 18- and 19-year standards, noting slight differences in the bone 
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development: “You see here, the bones are all fissured [pointing to patient’s X-ray]. And here [in the 18-

year standard image], there’s still a tiny physis5.” A faint white line (the “tiny physis”) ran horizontally 

between the knuckle and fingertip in the standard 18-year-old image, but no horizontal line appeared on 

the patient’s X-ray (it was “all fissured”, or no gap between the bones). Dr. N interpreted this to mean the 

patient’s bone age was greater than 18 and thus reported his judgment of 19 years. 

Lastly, radiologists performed a calculation of the “normal” range of bone ages using a data table 

of standard deviations for each consecutive age printed in the textbook and reported whether their 

judgment of the patient’s bone age fell within or outside that range. 

Experiencing opacity of AI-in-use (and increasing uncertainty) 

After forming their initial judgment, the radiologist then viewed the result of the AI tool. In 2018, the 

Urbanside pediatric department implemented a cutting-edge tool, which we refer to as the “X-ray AI 

tool”, to aid in bone age diagnosis. Citing the fairly straightforward comparison or “pattern recognition” 

nature of this task, Urbanside pediatric radiologists expressed high enthusiasm for using the X-ray AI 

tool, as Dr. N explained: “I think [the AI tool] can be very useful…You have to look very finely and 

carefully at a bunch of different images. It’s visually overwhelming. But I think it’s something a computer 

is really good at...It’s just pattern recognition.” The tool was developed by a reputable research institution 

and used deep learning methods at the forefront of diagnostic AI development at the time, involving 

multiple stages of convolutional neural networks performing image processing, segmentation, and 

classification tasks. Published studies reported the tool’s results matched the “normal” vs “abnormal” 

judgments of pediatric radiologists in over 95% of test cases. Urbanside radiologists eagerly agreed to 

participate in a multi-institution effort to further study the tool in settings of clinical use.  

Once implemented, every bone age evaluation was automatically processed and analyzed by the 

X-ray AI tool before entering the radiology work queue. Upon opening a bone age case, the digital X-ray 

 
5 A physis is a growth plate located between bones. Over time, the physis becomes thinner until eventually 
disappearing as one nears full growth. 
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displayed on the center monitor and the diagnostic report software loaded on the side monitor. The X-ray 

AI tool automatically populated the diagnostic report with the AI result, a specific bone age measurement, 

and its corresponding “normal” or “abnormal” evaluation. Like in the previous two cases, radiologists 

first formed their initial opinion and then viewed the AI result and decided how to use it. 

Viewing the AI results, all of a sudden, radiologists experienced a new surge of uncertainty, 

rooted in their inability to understand or explain the AI result. In about a third of the cases, the AI tool’s 

bone age roughly converged with their initial judgment. However, in the majority of cases, the bone age 

opinions diverged, and radiologists faced uncertainty in how to respond: “It [X-ray AI] would give me 

bone ages that would make me re-think what I said…I find that I’m often disagreeing with the model. 

Maybe it’s just me and I don’t know how to read bone ages” (Dr. D). Radiologists were troubled by the 

discrepancies, which led them to question their own judgments as well as the AI tool’s, as in Dr. R 

remarking, “Sometimes I felt that the algorithm was a little inaccurate, either too old or too young…I 

couldn’t put my finger on what it was that was off. Or maybe I was off, maybe the algorithm was more 

accurate, and I wasn’t looking at it right.”  

Lacking the ability to understand or examine the tool’s result left radiologists frustrated: “I have 

no idea, I really don’t. I would be curious to know. I don’t really know how it’s working” (Dr. M). They 

were often questioning what the AI tool was considering and guessing at the image features the AI tool 

may be weighing: “I’d be curious to find out what parts of the image the algorithm actually uses… I felt it 

was probably looking at – I wasn’t sure – but I felt like it was probably looking at more of the hand than I 

was … I don’t know how much weight the AI gives to the different bones” (Dr. R). One afternoon, a 

spirited discussion broke out as Dr. D attempted to reason about the tool’s underlying logic: “Is there a 

way to tell what the algorithm used on an individual case to come to its determination?...If it’s looking at 

the wrist bones, we would maybe disagree with it.” Although Dr. A agreed, she questioned Dr. D’s 

assumption about how the tool was forming its judgment: “Yeah, but is it looking at the wrist bones?” 

Experiencing opacity of AI-in-use, Dr. D shrugged: “I don’t know. I don’t know how it works!” Dr. A 

sighed in frustration, agreeing: “It’s a mystery.”  
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In particular, they were baffled at how the AI tool was producing bone age measurements at a 

level of precision far greater than they were capable of producing. Pediatric radiologists report bone age 

results using the one-year increment standards, but the AI tool reported more granular results, using 

combinations of years and months (e.g., “6 years 4 months”), which Dr. R explained saying, “It [X-ray AI 

tool] doesn’t always give you an exact number [of years]. It gives you a kind of interpolation between 

standards. We don’t typically do that.” They struggled to understand or interpret how the AI tool was able 

to discern these precise results that did not correspond with their accepted language or approach: “How is 

it coming up with this granular of a bone age? How does this make sense? How does it know?” (Dr. A).  

Dealing with AI opacity: Not enacting AI interrogation practices and not incorporating AI results 

As in the previous cases, pediatric radiologists encountered a sudden surge of uncertainty as they 

experienced opacity of AI-in-use. They struggled in the process of relating the AI tools’ results to their 

own expert knowledge, as Dr. O remarked, “I don’t really know how to gauge the results from that 

software; I’m not sure how it’s working.” Ultimately, in the cases we observed, pediatric radiologists did 

not enact AI interrogation practices and thus rarely incorporated AI results into their final judgments.  

These radiologists faced a sudden increase in uncertainty when viewing the AI results despite the 

(previously) straightforward nature of the task. They were unable to integrate the tool’s unfamiliar way of 

communicating bone age opinions with their own knowledge about pediatric bone development: “It [X-

ray AI tool] gives me things like ‘11 years 8 months’. How does it get that?…If someone was going to 

ask me, ‘How do you know it was 11 years 8 months?’ I’d be like, ‘I don’t really know,’” (Dr. D). 

Moreover, they did not enact a rich range of analytical practices to help them interrogate the AI result and 

relate it to their own opinions. When they viewed a divergent AI bone age opinion, they resorted to re-

reviewing the same images from the X-ray and textbook and rarely transformed their initial opinion as a 

result. This is illustrated in the following case. Dr. D’s eyes flicked back and forth between the standard 

images and the patient’s X-ray as she formed her initial assessment: “I’m looking at how wide is this area 

here [the areas separating the bones of the fingers]. Looking at the different shapes. This is bigger. This is 

the same. I think he’s between 8 and 9. The machine says between 9 and 10. Closer to 10 actually!” 
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Reacting to the divergent AI opinion, Dr. D cocked her head to the side and exhaled in frustration: “Now 

I’m going to try to find why it said that.” She continued reviewing the same image on her screen and the 

textbook again, which yielded no new insights that would change her original view: “I feel he’s not that 

close to that [10 years]. I think the machine’s overestimating. To me, it’s 8 or 9.” 

DISCUSSION 
Summary of findings 

This study brings to light a process of how professional knowledge workers experienced and dealt with 

opacity of AI-in-use when forming critical judgments. In all three departments we studied, professionals’ 

key practice is producing knowledge claims with the highest level of certainty possible. Professionals in 

two departments faced intense uncertainty (during lung cancer and breast cancer diagnosis) and worked 

hard to reduce using varied analytical practices. In the third department (when evaluating bone age), they 

experienced lower uncertainty and drew on fewer analytical practices. In all three departments, 

professionals first formed initial knowledge claims, then considered the AI knowledge claim, which 

frequently conflicted with their initial claim. In all three departments, professionals experienced opacity 

of AI-in-use, since they had no insight into the underlying reasoning of a given AI result, which in turn, 

heightened their experience of uncertainty.  

Interestingly, the three departments had divergent patterns of the degree to which they 

transformed their own knowledge as a result of considering AI tool results. Only one department 

consistently integrated the AI results, despite the opacity of AI-in-use (when diagnosing lung cancer), 

whereas professionals in two other departments did not integrate the AI results (when diagnosing breast 

cancer and bone age). Upon closer analysis, we found it was critical that professionals were enacting “AI 

interrogation practices”, or practices humans enact to relate their own knowledge claims to AI’s 

knowledge claims. Enacting AI interrogation practices enabled professionals to reconcile the two 

knowledge claims (by overruling the AI claim, reflectively agreeing with it, or synthesizing the claims 

synergistically) and reduce their overall uncertainty. Professionals who did not enact such practices 

struggled to incorporate AI results due to the opacity and consequently formed their final judgments by 
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either blindly accepting or ignoring AI claims. We differentiate these paths of human-AI use as engaged 

augmentation and un-engaged “augmentation.” Figure 1 summarizes this process and the two paths. 

------------------------------------------ 
Insert Figure 1 about here 

------------------------------------------ 

Theoretical and Practical Implications  

Drawing on our conceptualization, we now outline the implications of our study for two key areas of 

focus for organizational scholars of AI: AI opacity and human-AI augmentation.  

Opacity of AI-in-use and the importance of AI interrogation practices  

Opacity associated with AI tools has become a fiercely debated topic in academic and societal 

conversations (Christin 2020, Diakopoulos 2020, von Krogh 2018, Pasquale 2015). Our study brings 

issues of opacity to the center stage in studying how professionals use AI tools to form critical judgments. 

Most of the existing literature on opacity conceptualizes opacity as a property of AI tools, especially of 

tools that use deep learning methods (Burrell 2016, Domingos 2015, Kellogg et al. 2019, Pearl and 

Mackenzie 2018). Our study shifts the analytical focus from what appears as an innate and fixed property 

of technology to the broader sociomaterial practice that produces opacity as a specific technology is used 

in a particular context. This enables us to focus on the process of how AI opacity emerges in practice and 

how, in some cases, professionals can deal with it.  

A growing community focusing on issues of AI opacity proposes two approaches for dealing with 

it. The first focuses on limiting the use of AI tools for critical decisions if transparency is unattainable 

(e.g., Burrell 2016, Domingos 2015, Gillespie 2014, Teodorescu et al. 2021). The second approach is 

designing “explainable” or “interpretable” AI tools that provide greater transparency towards explaining 

AI outputs. While this work is critical (as we discuss below), our work uncovers a third approach. We 

illuminate a path where professionals deal with opacity of AI-in-use by enacting AI interrogation 

practices. These practices provided professionals a way of validating AI results, despite experiencing 

opacity, and resulted in an engaged mode of human-AI augmentation.  
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While many researchers are focused on developing “explainable AI” or “interpretable AI” (e.g., 

Barredo Arrieta et al. 2020, Bauer et al. 2021, Fernández-Loría et al. 2020, Guidotti et al. 2018, Hooker et 

al. 2019, Rudin 2019, Samek et al. 2019, Teodorescu et al. 2021), some leading scholars (Cukier et al. 

2021, Simonite 2018) and AI designers believe there is no need for explanations. They argue that an AI 

tool’s evidence-based performance results should motivate experts to rely on the tool’s results with 

confidence. This assumption was expressed by a leader of AI research at Urbanside: “People talk about 

explainability in AI a lot. My personal opinion is I don’t think you need to do any explaining. As long as 

you show users that the tool performs well. When it performs well, I think people are really okay working 

under that uncertainty.”  Our study shows how that point of view is disconnected from the reality of how 

professionals are wrestling with opacity of using AI in practice. Based on our study’s findings, 

explainable or interpretable AI may enable but not guarantee that professionals are able to integrate AI 

knowledge (i.e., engaged augmentation). Our study showed that despite AI tools’ high performance 

documented in published literature, some professionals chose to invest their valuable time into AI 

interrogation practices rather than simply relying on unexplained AI claims at face value.  

If new generation AI tools provide explanations or become more interpretable, this should impact 

experts’ ability to engage with AI, but not necessarily their motivation or willingness to do so. Such 

willingness is influenced by many factors such as professional norms, organizational and financial 

incentives, and societal expectations. Making sense of AI explanations requires an investment of time and 

resources. Not only is this challenging given intense organizational constraints (e.g., time, knowledge), 

but such investment does not align with widely held expectations that AI will make work faster and more 

efficient. In medical practice, professionals solicit opinions from their colleagues, investing in 

collaboration only when they experience particularly high doubt or uncertainty (on a regular, but 

infrequent basis). In contrast, in our study (as in many leading US hospitals) the AI tool provides opinions 

on every case, regardless of the professional’s degree of uncertainty. Thus, professionals were spending 

additional time coping with the heightened uncertainty, even for simple and routine cases (where 

promises of AI efficiency are strongest). We hope future research will further unpack the relationship 
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between AI and time as the push for accelerating the pace of work is increasing (Lifshitz-Assaf et al. 

2021), yet implications on the nature and quality of work are underexplored.  

Our study also contributes to the debates and conversations on opacity by uncovering an 

important relationship between opacity of AI-in-use and epistemic uncertainty (Griffin and Grote 2020, 

Packard and Clark 2020, Rindova and Courtney 2020). In many knowledge fields, experts are keenly 

focused on producing high-quality judgments and they are willing to invest resources to obtain additional 

evidence and reduce their epistemic uncertainty – or ignorance of unknown but knowable information 

(Packard and Clark 2020). Contrary to prior literature, when professionals in our study obtained 

additional “evidence” from AI tools which often diverged from their prior judgment, their epistemic 

uncertainty increased due to their experience of opacity. In our study, professionals would regularly 

integrate conflicting knowledge provided by their colleagues by probing one another and building on their 

common ground and participation in a shared field (Carlile 2004, Levina 2005, Maguire et al. 2004). 

However, when professionals’ opinions diverged from AI tools’ opinions, no common ground or shared 

field exists or can be created (as tools are designed today). Enacting AI interrogation practices was the 

only way some professionals were able to overcome the opacity of AI-in-use and reduce the uncertainty 

needed to integrate the AI knowledge into their own.  

Future research is warranted to explain why some professionals enact AI interrogation practices 

while others do not. Our study suggests three main potential factors: the AI tool’s ability to reduce 

professionals’ uncertainty, the presence of time pressure (and other resource constraints) on professionals’ 

work, and the richness of professionals’ complementary technologies-in-use. Motivation to invest in AI 

interrogation practices may be lower if professionals view the AI expertise as similar to (or worse than) 

their own. In such cases, there is only increased pressure of investing additional time without the benefit 

of reducing uncertainty (as in the breast and pediatric departments in our study). Moreover, the time 

required to enact AI interrogation practices may further deter professionals from investing in them (as in 

the breast department, where time pressure was extremely high). It is also possible that professionals may 

still develop AI interrogation practices as they continue using the AI tool over a longer period of time (as 
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in the pediatric department); on the other hand, it may be difficult to develop such practices when the 

complementary technologies are limited and lack richness (e.g., when analyzing X-ray images). Future 

research should investigate other motivators or deterrents that were not apparent in our context, such as 

the impact of regulation or perceived legal and institutional risks. It could be, for example, that regulatory 

or authority bodies that require professionals to articulate why they overrule an AI result may motivate 

investment in AI interrogation practices.  

Importantly, we do not wish to suggest that AI interrogation practices are a substitute for 

explainability or interpretability. On the contrary, we urge continued dedicated attention and resources 

towards designing AI tools that enable professionals to more readily integrate AI knowledge claims in 

practice. For instance, when investigating the X-ray AI tool for determining bone age, we, as academic 

researchers learned from reading archival published materials that it is possible to produce salience maps 

showing what areas on the X-ray were most relevant for producing a given AI result. While this 

technology is available for the algorithm underlying the X-ray tool, it was not implemented at Urbanside. 

By highlighting the critical importance of AI interrogation practices, we hope that managers, 

practitioners, and researchers will focus on designing and adopting more transparent and interpretable AI 

tools. This should help professionals to more easily develop AI interrogation practices that build on these 

explanations. In this study, all AI tools had a similar degree of opacity of AI-in-use. Future studies can 

explore a variety of interrogation practices that may emerge in response to different degrees of opacity. 

Moreover, AI researchers can proactively design new features that ease engagement.  

We also wish to highlight our focus on professionals’ judgments for critical decisions, those with 

particularly high consequences or costs of errors (medical diagnoses in our study). Our findings are 

relevant to contexts where experts make critical decisions that require knowledge integration and 

transformation, such as judges rendering verdicts and sentencing, human resource managers evaluating 

employees, or military experts carrying out targeted attacks. Our study speaks to such contexts where 

engaged augmentation is necessary versus those where experts may defer to AI results even when opaque. 

We do not suggest our findings apply for decisions that do not require knowledge transformation or when 
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the cost of errors is substantially low, such as using AI for supply chain logistics, marketing and 

advertising, grammatical editing, or call center prioritization.  

Future research is needed to explore potential differences in how professionals in other contexts 

experience opacity and enact AI interrogation practices. This is a study of a specific profession 

(physicians) within a highly-resourced US organization (a teaching hospital), and we believe other experts 

in different legal and professional environments are important to investigate. The organization we studied 

has world-leading experts with high standards of quality and strong professional accountability. In the 

past few years, there has been a gold rush to purchasing AI tools, especially in hospitals with fewer 

resources and lower standards of care (Gkeredakis et al. 2021, Moran 2018, Roberts et al. 2021). Based 

on this study, we suggest that such a gold rush may give rise to un-engaged “augmentation” which is 

highly risky from a learning and knowledge perspective for experts, AI companies, and consumers. In 

addition, our study is based in the US legal system whereby hospitals must adhere to strict regulation and 

oversight, which is not the case in many countries currently adopting AI tools. Future research is 

warranted on the role of regulation on the adoption and engagement of AI tools for critical decisions. 

When such regulation is missing, and fewer checks and validations are in place, engaged augmentation 

may be even less likely, and yet even more important.   

Challenging the taken-for-granted concept of augmentation  

Professional work is currently being disrupted by AI technologies, as modern AI increasingly pertains to 

processes of producing and evaluating knowledge claims (Anthony 2018, Faraj et al. 2018, von Krogh 

2018, Pachidi et al. 2020). Debates are emerging around the degree of automation or augmentation that 

may result as AI tools are adopted into professional work settings (e.g., Autor 2015, Seamans and Furman 

2019, Zhang et al. 2021). Our study speaks to this important debate by problematizing the taken-for-

granted concept of augmentation and its implication for the future of work and human expertise.  

Within the current literature, augmentation generally refers to human in the loop scenarios where 

experts and AI tools “collaborate” so as to “multiply” and “combine their complementary strengths” 

(Raisch and Krakowski 2021, p. 6). The results of our study challenge the taken-for-granted equivalency 
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of augmentation with collaboration. Instead, we suggest differentiating engaged augmentation from un-

engaged “augmentation.” In engaged augmentation, experts integrated AI knowledge claims with their 

own, which requires both building an understanding of the AI claim and the ability and willingness to 

transform one’s own knowledge based on the AI claim (this took place in lung cancer diagnosis in our 

study). By enacting AI interrogation practices, professionals were able to understand the AI result, albeit 

the opacity they experienced, and demonstrated their willingness to change their initial judgment through 

reflectively agreeing with the AI claim, overruling it, or synthesizing the two claims. From a learning and 

knowledge perspective, engaged augmentation scenarios could be productive and beneficial, including 

cases of reflectively overruling the AI results. Future research is needed to investigate the learning that 

professionals (and AI tools) experience when involved in engaged augmentation over extended periods of 

time. For example, if engaged professionals routinely change their judgment by endorsing AI results, they 

may be reproducing AI’s shortcomings over time (e.g., AI errors or biases in judgment).  

In contrast, un-engaged “augmentation” involved professionals not relating the AI knowledge 

claims to their own claims (this took place during breast cancer and bone age diagnosis in our study). 

These professionals appeared to be using the AI tool as they were going through the act of opening the AI 

results. However, they were not integrating knowledge claims and mostly blindly accepting or blinding 

ignoring the AI results. This path does not offer strong opportunities or benefits from a learning and 

knowledge perspective. We argue that human in the loop scenarios of un-engaged “augmentation” are 

essentially cases of automation: without the ability to relate AI knowledge claims to experts’ (through AI 

interrogation practices or explainable or interpretable AI tools that enable interrogation), what looks like 

augmentation on paper is much closer to automation.  

Moreover,  there is an assumption that augmentation will help organizations achieve positive 

outcomes, usually through improving humans’ knowledge insights, efficiency, or both (Brynjolfsson and 

Mitchell 2017, Daugherty and Wilson 2018, Davenport and Kirby 2016, Raisch and Krakowski 2021). 

Researchers have already raised issues of AI accuracy claims and “superior to human” knowledge 

performance (Lebovitz et al. 2021).  Using AI tools may have reduced some human error but could have 
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introduced other errors into the human’s judgment (e.g., due to biases or poor training data). To truly 

understand the impact on accuracy, we must be able to compare AI outputs and experts’ judgments. 

However, in many professional contexts, such evaluations are limited since the knowledge is highly 

uncertain and many “ground truth” measures are based on knowledge claims that lack strong external 

validation (Lebovitz et al. 2021).  

Our study adds to these concerns by calling into question the assumption of increased efficiency.  

In all three cases we studied, experts using AI tools spent additional time even on “simple” cases as they 

experienced opacity and additional uncertainty. Within engaged augmentation, experts invested additional 

time to reconcile the AI knowledge claims by enacting AI interrogation practices. This additional time 

may be justified by improvements to care quality, but it is unclear whether healthcare systems are willing 

to commit that additional time. AI vendors tend to promote their tools using promises of efficiency. If 

managers implement these tools based on such claims, they may pressure experts to reduce time spent per 

judgment, which is likely to encourage un-engaged “augmentation” and potentially lead to a decline in 

quality (e.g., patient health outcomes).    

Another perspective on our study that warrants future research is the impact of AI on an overall 

professional field and its knowledge work over time. Leading medical professionals have been claiming 

that AI tools will eliminate the need for professional radiologists, explicitly citing the rise of diagnostic 

AI tools as a case for automation. On the other hand, leading radiologists are arguing that AI can enhance 

their professional roles and abilities. In our study, we did not find significant differences in attitudes 

towards AI across departments, which all took positive approaches towards adopting new technologies 

(including AI). Future research may explore the impact of AI on the broader professional field of 

radiology and other professions experiencing massive disruption due to AI tools (e.g., HR, criminal 

justice). It could be that engaged augmentation or un-engaged “augmentation” are reactive responses of 

professionals dealing with the potential disruption posed by AI and automation. It will be important to 

investigate how professionals respond to a new technological force that is challenging the professional 

jurisdiction and knowledge boundaries of an existing profession, for instance, how professionals enact 
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professional identity work (Lifshitz-Assaf 2018, Tripsas 2009) or knowledge boundary work (Barrett et 

al. 2012, Bechky 2003b, Levina and Vaast 2005) or the strategies and responses that impact the 

profession field (Bechky 2019, Howard-Grenville et al. 2017, Nelson and Irwin 2014). 

To conclude, we do not wish to convey that dealing with the opacity related to AI tools, even by 

using AI interrogation practices, should be viewed as the desired or optimal path forward. From 

knowledge and learning perspectives, the opacity of AI tools can be seen as inhibiting knowledge 

workers’ full feedback and reflective cycles (Gherardi 2000, Schön 1983). When professionals cannot 

analyze the reasoning behind AI decisions, they miss out on the learning process (Beer 2017), lacking 

opportunities to reflect on, deepen, or update their expertise (Beane 2019). Ultimately, AI technologies 

are designed to create new sorts of expertise to enable professionals, organizations, and even society to 

better address hard problems such as medical diagnosis. However, the opacity experienced when 

professionals are using AI tools is an increasingly critical problem in its own right. We urge further 

researchers and policy-makers to tackle this problem, across domains and disciplines, to ensure that the 

path of new technological development meets the needs of humanity and society.  
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Figure 1: Experts using AI tools for critical judgments 
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Appendix 1: Single image from a CT scan showing various lung structures 

 
 
Appendix 2: Typical display of digital mammogram image on radiologists’ workstation 
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Appendix 3: Mammo AI tool outputs  

 
 
Appendix 4: Typical display of digital hand X-ray used for bone age diagnosis 

 

 

 


