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Abstract

Background Computational pathology has seen rapid growth in recent years, driven by

advanced deep-learning algorithms. Due to the sheer size and complexity of multi-gigapixel

whole-slide images, to the best of our knowledge, there is no open-source software library

providing a generic end-to-end API for pathology image analysis using best practices. Most

researchers have designed custom pipelines from the bottom up, restricting the development

of advanced algorithms to specialist users. To help overcome this bottleneck, we present

TIAToolbox, a Python toolbox designed to make computational pathology accessible to

computational, biomedical, and clinical researchers.

Methods By creating modular and configurable components, we enable the implementation

of computational pathology algorithms in a way that is easy to use, flexible and extensible.

We consider common sub-tasks including reading whole slide image data, patch extraction,

stain normalization and augmentation, model inference, and visualization. For each of these

steps, we provide a user-friendly application programming interface for commonly used

methods and models.

Results We demonstrate the use of the interface to construct a full computational pathology

deep-learning pipeline. We show, with the help of examples, how state-of-the-art deep-

learning algorithms can be reimplemented in a streamlined manner using our library with

minimal effort.

Conclusions We provide a usable and adaptable library with efficient, cutting-edge, and unit-

tested tools for data loading, pre-processing, model inference, post-processing, and visuali-

zation. This enables a range of users to easily build upon recent deep-learning developments

in the computational pathology literature.
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Plain language summary
Computational software is being

introduced to pathology, the study of

the causes and effects of disease.

Recently various computational

pathology algorithms have been

developed to analyze digital histology

images. However, the software code

written for these algorithms often

combines functionality from several

software packages which have spe-

cific setup requirements and code

styles. This makes it difficult to re-use

this code in other projects. We

developed a computational software

named TIAToolbox to alleviate this

problem and hope this will help

accelerate the use of computational

software in pathology.
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D igitization of classical cellular pathology workflows
through the deployment of digital whole slide image
(WSI) scanners has resulted in significant progress in the

development of computational pathology (CPath) image analysis
techniques. Such advances have benefited greatly by adapting deep
learning techniques from computer vision producing novel solutions
to a variety of CPath problems, including nucleus instance
segmentation1, pathology image quality analysis2 and WSI-level
prediction3,4. Although many algorithms have been developed for
the analysis of WSIs which all share the same basic components
(such as WSI reading, patch extraction and feeding to deep neural
networks), there is no single open-source generic library that unifies
all the steps using best practice to process these images. Several
published algorithms have their own packaged codebases which run
in a task-specific environment, with tightly coupled interfaces,
dependencies, and image format requirements. It is also common for
there to be little to no code quality checks or unit testing. This may
prevent code from a published peer-reviewed method from being
able to run out of the box, decrease the reproducibility of experi-
ments, handicap the ability to extend or adapt existing methods and
increase the time required to understand the codebase. TIAToolbox
is a suite of unit-tested image analysis and machine learning (ML)
tools developed for the CPath community, making it possible for a
variety of users to construct and reproduce CPath analytical pipe-
lines with cutting-edge methods.

Our main objective is to provide an open-source library to the
CPath community, which is simplified, streamlined, reproducible,
easy to use, unit-tested and allows researchers to build their
analytical pipelines on state-of-the-art methods. To achieve this,
we provide a simple to use Application Programming Interface
(API) which abstracts unnecessary complexity from the user
where possible. This means that the API users can write code with
a focus on the task at hand instead of being distracted by
unnecessary details or peripheral tasks, such as managing mul-
tiple processes or needing to know the details of different WSI
formats. The WSI reading capability of the toolbox is a good
example of such abstraction that simplifies WSI reading. It hides
unnecessary details of various file formats while keeping intact
important format-related metadata required for ML tasks. For
reproducibility of algorithms, we provide pretrained published
benchmark algorithms which can be run using only a few lines of
code. This can help researchers to build on state-of-the-art
methods and greatly simplifies the reproduction of previous
results. Weights for these pretrained models can be automatically
downloaded at runtime or can be provided by the user, making it
easier to test alternate models using the same pipeline. We posit
that TIAToolbox will help establish objective and measurable
standards of progress in the development of CPath algorithms.

One of our main guiding principles is to make CPath accessible
to researchers without expertise in Deep Learning for CPath-
specific tasks. We provide example notebooks (https://github.
com/TissueImageAnalytics/tiatoolbox/tree/publication/examples)
for this purpose. These notebooks can be run in a web browser on
local machines or free-to-use platforms such as Google CoLab
and Kaggle. The online platforms require no local installation and
are well suited to non-technical users. The notebooks additionally
serve as a manual by example for the use of the TIAToolbox. Our
toolbox is supported by extensive online documentation (https://
tia-toolbox.readthedocs.io/en/publication), including examples,
for each module in TIAToolbox. In addition, we provide a
command-line interface that enables experienced programmers to
use the components of the package in Bash scripts and to batch-
process their images or WSIs on CPU/GPU clusters.

In this section, we provide a brief review of existing tools for
reading whole slide images (WSIs), image annotations, and image
analysis. Image reading libraries, such as OpenSlide5 and

BioFormats6, allow reading of WSI image formats. However,
OpenSlide does not support several image formats. For example,
it is unable to read JPEG-2000 JP2 images (although it can read
JPEG-2000 J2K TIFF tiles) generated by legacy GE Omnyx
scanners and images in OME-TIFF format (https://docs.
openmicroscopy.org/ome-model/5.6.3/ome-tiff/), a commonly
used open and well-documented file format. BioFormats supports
reading of many WSI image formats. However, it is a Java library
making it potentially difficult to integrate with Python-based
workflows. The Java Python interface of BioFormats allows one to
bridge this gap. However, it can be slow, complicated to set up
and requires a variable set of parameters for different WSI for-
mats—not ideal for a newcomer. Additionally, when reading JP2
images BioFormats relies on an outdated and unmaintained
implementation from the Java Advanced Imaging (JAI) library
for which support and documentation from Oracle has been
discontinued. QuPath7 provides a graphical user interface and the
ability to read a variety of formats. However, because of its
dependence on Java, its integration with a custom Python ML
pipeline may require additional steps.

Although it is possible to use separate libraries for various
formats, different interfaces and resulting data types can make
writing code to handle multiple formats complex and error-prone;
especially when trying to replicate existing algorithms. This causes
a significant loss of researchers’ time in handling technical issues
instead of evaluating and developing new pipelines. There are
other considerations, such as handling metadata from various
formats, re-sampling of images, integration with image processing
tools and optimizing data loading from machine learning libraries.

QuPath includes some classical image processing algorithms and
also integrates with some DL models as plugins. For example, it
includes a semantic pixel segmentation method which utilizes a
user configurable set of simple image features (e.g., color channel
intensity, gradient magnitude, Laplacian of Gaussian, etc.) which
are fed to specified classifiers such as a random forest, k nearest
neighbors (KNN), or artificial neural network (ANN). Pre-trained
DL models, for example StarDist8, are not included directly with
QuPath but may be downloaded by a user and enabled as a plugin.

DL models typically produce results of higher quality than
classical image processing methods, due to their ability to auto-
matically extract representative image features. Therefore, we
focus on including pre-trained cutting-edge pre-trained models in
TIAToolbox which have been trained on images sampled across
many slides using large public data sets, making them easily
usable without any further user configuration or labelling.

Other Python software packages, such as PathML9, offer some
trained deep learning models. However, the selection is often
limited, currently only one model (HoVer-Net) in the case of
Dana-Farber-AIOS PathML, with a U-Net10 implementation in
progress. There is also no clearly documented way to integrate
additional models or custom user models with PathML.

It is common for histology image analysis packages (such as
HEAL11, HistoCartography12, and CLAM13) to focus on a parti-
cular method, model, or approach. In contrast, TIAToolbox can
integrate with standard PyTorch modules (including many third-
party PyTorch-based modules) and does not require the use of
custom TIAToolbox layers or modules within the model archi-
tecture definition. It allows batch processing of several hundreds or
thousands ofWSIs and employs a modular structure, allowing for a
wide variety of techniques to be integrated with the toolbox and for
its modules to be used as components in new analytical pipelines.

TIAToolbox addresses the aforementioned issues and provides a
broad feature set, shown in comparison with other histology focused
software packages. The main contributions of TIAToolbox are as
follows: development of histopathology image analysis pipelines,
support for a wide range of WSI formats, a unified framework,
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efficient image reads, tile generation (Zoomify), modularity, high
unit-test coverage (>99%), reproducibility of state-of-the-art meth-
ods, cross-platform compatibility (Windows, Linux and macOS),
ease of use, a command line interface (CLI) and a pure Python/
cPython source.

Our toolbox provides the most extensive integrated solution to a
variety of important histopathology image analysis tasks ranging
from multi-format image reading, patch and tile extraction, stain
normalization, instance segmentation, patch classification and
extraction of deep features for the development of WSI-level weakly
supervised prediction models through weakly-supervised and graph
neural network techniques as well as visualization of their results.

It has functionality to read common WSI image formats
including OpenSlide compatible WSI formats (including Aperio
SVS, Leica SCN), OME-TIFF (OMERO) and JP2 (Omnyx) in
addition to visual fields (JPEG, PNG) using a single Python API
in a unified framework. Furthermore, it also allows the addition
of other existing and newly emerging formats.

Random-access reading and re-scaling of these WSIs based on
resolution metadata (e.g., microns per pixel) is done efficiently,
making use of multiple stored resolutions. This allows efficient
implementation of multiple instance learning (MIL) algorithms
such as IDaRS3 that require random sampling of tiles. Designing
the toolbox to be composed of modular re-usable components
encourages the development of new analytical pipelines. We inte-
grate and verify published models using these modules in addition
to providing pretrained weights to enable reproduction of results.

We use abstraction where possible to reduce complexity for
new users and to enable users with little programming experience
to perform common tasks (such as shown in Supplementary
Note 1) without having to worry about awkward edge cases.
When implementing tools or integrating existing tools, we test for
compatibility across Windows, Linux and macOS. In addition, we
also provide many web-based example notebooks to run the code.

Lastly, there is no need to bridge between languages, such as
between Java and Python. Only Python code or cPython compa-
tible C/C++ extensions are used. Language bridges can be pro-
blematic to set up and often have performance issues. Therefore, we
have avoided requiring one for the toolbox to function.

In summary, we present an open-source unit-tested, unified
cross-platform software library with comprehensive tools for
WSI reading, patch extraction, pre-processing, model inference,
post-processing and visualization. We provide a platform for
reproducible computational pathology using classical machine
learning and advanced deep learning for end-to-end tissue
image analysis.

Methods
Reading WSI data. TIAToolbox provides a common interface for
random-access reads of image regions from disk using an API
defined in an abstract base class. Readers providing support for
specific formats are implemented by sub-classing the base reader.
We currently support reading a variety of tagged image file format
(TIFF) based WSI images (including SVS, SCN, NDPI, MRXS and
generic tiled TIFFs) using an OpenSlide5 backend, OME-TIFF files
using a tifffile (https://www.lfd.uci.edu/~gohlke/) backend and
reading from JPEG 2000 based slide formats (such as JP2 files
generated by GE Omnyx scanners) using the Glymur (https://
github.com/quintusdias/glymur) and OpenJPEG (https://www.
openjpeg.org) as a backend. We also provide preliminary sup-
port for the rapidly evolving Zarr format (https://zarr.readthedocs.
io/en/stable). Lastly, we include support for reading WSI DICOM
images (via wsidicom) with JPEG and JPEG2000 compressed tiles.
Furthermore, we include experimental support for a developing
next generation file format (NGFF version 0.4) based on Zarr14.

The reader class implements read functions based on physical
resolution units, such as microns-per-pixel (MPP) or apparent
magnification. This is useful to reproduce results of published
algorithms which might have been trained at a specific
magnification or MPP. For example, a read can be performed
with the resulting image scaled to 0.5 MPP or an apparent
magnification of 20×. For efficient image reads, we use pre-
computed lower resolution copies when reading to avoid costly
and unnecessary re-sampling of large image regions when re-
scaling to the user requested resolution and units. This is done
using metadata specifying the physical resolution of the WSI and
down-sampled copies of the image embedded in the WSI file. The
standard image pyramid is illustrated in Fig. 1, which depicts
multiple copies of an image stacked on top of each other in
decreasing resolution.

When reading a region from the WSI, we define two modes of
operation: the read_bounds mode that allows reading with a fixed
field of view as resolution varies and the read_rect mode with a
fixed output size as resolution varies. The read_rect method
accepts a location and output size as arguments. This method is
useful for situations where the output must remain the same size,
for example while extracting patches. As illustrated in Fig. 1, this
results in a changing field of view as resolution varies. Conversely,
read_bounds ensures a fixed field of view at all resolutions but
may result in a different output image size. This is useful if there
is some tissue feature which must be isolated in the view. To the
best of our knowledge, no other tool provides equal flexibility in
manipulating WSI pixel data.

Our advanced WSI reading tool easily fits within various CPath
pipelines due to the wide range of image formats that it supports.
This is demonstrated in the patch aggregator and graph
aggregator pipelines as presented earlier, where the same reading
functionality is incorporated. To help researchers easily use our
toolbox for WSI reading, we provide a specific notebook (see
Example Notebook 01) with multiple examples.

Virtual whole slide image pyramid. A virtual WSI reader class
enables reading image data from single resolution visual fields, such
as JPEG or PNG files, using the same interface as defined for
reading WSIs. This facilitates the creation of a virtual image pyr-
amid similar to the WSI pyramid in Fig. 1. An effective use case for
this is when reading from an image derived from a WSI, such as a
tissue mask or patch classification output map. These images are
typically at a much lower resolution than the full-size WSI. A
virtual image pyramid can have pyramid levels specified for which
there is no stored re-sampled image, or which have larger dimen-
sions than the image data itself. However, when read using the
WSIReader interface, the virtual WSI will behave as if those reso-
lution levels do exist simply by interpolating the available image
data. As a result of this behavior, the original tissue WSI and a
derived image can then be read synchronously, using the same
coordinates and resolution arguments as shown in Supplementary
Note 2, simply by copying the metadata about available resolutions
and the physical scale (MPP) of the baseline resolution. This
relieves the user of having to perform cumbersome and error-prone
conversions between different coordinate systems.

Metadata. Metadata format varies greatly between file formats.
We cater for this when initializing the reader object by creating a
metadata object and thus providing a unified object when
accessing image file related metadata. Since this is implemented as
a Python class, static analysis tools common in many integrated
development environments can parse it and offer helpful auto-
completion suggestions, making it easier for researchers to write
and implement their pipelines. The original underlying metadata
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is stored so that it remains accessible if required. Additionally,
important metadata such as MPP may be specified if it is not
found within the file. This is commonly useful when reading large
visual fields or creating virtual WSIs which have a known mag-
nification or MPP but are missing embedded metadata.

Tissue masking. Most WSIs contain a large amount of back-
ground area (e.g., glass, slide vendor name etc.) which is of no
biological significance and can be ignored to speed up down-
stream processing and analysis. To identify these areas a tissue
mask is commonly generated. In fact, tissue mask generation is
common practice and is used in most CPath applications,
including those presented in the Results section. We include some
basic methods for creating such tissue masks based on Otsu
thresholding15, which separates pixels into foreground and
background by minimizing the intra-class intensity variance. We
show how one can combine Otsu’s method with some basic
morphological operations to remove small holes and regions.
These masking classes can easily be extended to more advanced
methods by creating a subclass of the abstract base class. A
convenient function is provided to quickly generate a virtual WSI
of a mask from a tissue WSI at a desired resolution. A notebook
on tissue mask generation can be found within the TIAToolbox
repository (see Example Notebook 03). We also provide a DL-
based method for tissue masking, which is described in more
detail later in the Semantic Segmentation section.

Patch extraction. It is common to apply DL models using small
images1,16 due to GPU memory constraints and required model
complexity. As such, it is also common to divide a large WSI into
small patches for training and inference with a model. This could
be done simply by iterating over the WSI dimensions with a stride
equal to the desired output patch size required by the model.
However, there are several additional things to consider. Firstly,
since pathology images are calibrated and have a known scale,
patches may be extracted at a specific resolution (for example 0.5
microns-per-pixel). Our patch extractor rescales to the desired
output resolution. Additionally, it can handle edge cases, such as
whether to include patches which would partially extend beyond
the edge of the WSI. Our patch extraction module can flexibly

handle such edge cases by either discarding these patches or
padding to maintain a homogeneous output size. Also, an overlap
can be specified so that each extracted patch partially overlaps its
neighbors. The patch extractor, implemented as an iterator, can
extract patches as needed which avoids filling available memory
with patches until they are needed resulting in increased memory
efficiency. In addition to grid-based patch extraction, patches may
be extracted around each point in a set of coordinates. This is
particularly useful for extracting patches centered on known cell
nucleus locations or randomly distributed patches across the
WSI. The PatchExtractor also supports functionality to filter out
non-tissue regions while generating patches. To highlight the
effectiveness of our efficient patch extraction tool, we provide an
easy-to-follow interactive notebook with multiple examples (see
Example Notebook 04).

Stain normalization and augmentation. It is well known that
digital pathology images vary in their color appearance due to
factors such as differences in scanner manufacture and variation
in tissue preparation. For example, thicker specimens tend to
stain the tissue darker. Differences in temperature, stain con-
centration, duration of staining and scanner type and settings can
also lead to stain variation. This may harm the performance of
automated methods, unless dealt with appropriately.

It is possible to perform simple color normalization using first-
order statistical measurements but doing so may not correctly
model the variation in stain appearance. A commonly used
pathology specific pre-processing step is to perform separation of
histological stains into separate optical density (OD) channels
from the original red, green, blue (RGB) sensor data and
optionally apply normalization across the OD channels. TIATool-
box includes several commonly used methods for normalization,
including Reinhard17, Macenko18 and a modified Vahadane19.
The toolbox implementation is adapted from the StainTools20

Python package created by Byfield. Our implementation of
Vahadane’s method exchanges the SPArse Modelling Software
(SPAMS)21 dictionary learning step with an equivalent imple-
mentation in scikit-learn22 and SPAMS LARS-LASSO regression
with ordinary least squares (OLS) regression. We do this to
maintain cross-platform compatibility and for speed of execution.

Fig. 1 Illustration of two modes of random-access read from a multi-resolution (pyramidal) WSI. Different resolutions, stored in the WSI, are shown as
blue planes stacked on top of each other. A lower resolution is a stored down-sampled copy of the highest resolution (baseline). Here both read modes,
read_rect and read_bounds, illustrate reading a region of interest containing some tissue (magenta shape) at a desired resolution. Reading of a region
which is not at a pre-computed and stored resolution within the WSI (transparent white plane with a dashed outline) results in a read via a down-sample
interpolation from a level with higher resolution.
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Other implementations of LARS-LASSO, for example in scikit-
learn, performed orders of magnitude more slowly. We
demonstrate how a user can use stain normalization in their
pipelines by providing a descriptive Example Notebook (02).

Instead of normalizing image data, another method used in
computational pathology is stain augmentation. This is particu-
larly useful when training DL models to increase a model’s
robustness to stain variation. In TIAToolbox, we leverage stain
extraction methods described above to randomly perturb the
Hematoxylin and Eosin stain contents of each image used for
training purposes. We also ensure integration of our stain
augmentation functionality into commonly used augmentation
packages, such as albumentations23.

Models. Each CPath pipeline usually contains numerous steps and
requires special consideration so that large-scale WSIs can be
effectively dealt with. In fact, recent state-of-the-art models in
computer vision for tasks such as segmentation16 and
classification24,25 cannot be directly used when working with multi-
gigapixel inputs due to memory limitations. This is due to the lack of
available tools that can handle WSIs effectively in machine learning
pipelines because of their high dimensionality. As the WSIs com-
monly get divided into smaller independent image patches, each
processed by a machine learning model before merging the patch-
level results, it is common practice to build custom tools from the
bottom-up (i.e., starting from patches) to tackle such challenges.

Despite an increase in the number of models provided within
CPath, model weights are not always available. Even when weights are
provided, downloading and management can become challenging
when working with multiple code repositories. Current DL
libraries26,27 enable seamless downloading of models, along with
their parameters, yet these models have not been trained on problems
within CPath. Even if these models were trained on task-specific data,
additional work would still be required for use with WSIs.

To help overcome the above shortcomings, we provide an easy-to-
use API where researchers can use, adapt and create models for
CPath. TIAToolbox enables researchers with different levels of
experience to easily integrate advanced CPath algorithms into their
research projects. Once again, this avoids having to reinvent the wheel.
We aim to achieve these goals by: Introducing a common API to
assemble predictions for common CPath tasks, such as: instance
segmentation, semantic segmentation and classification; integrating
several well-established models (pretrained weights and model code)
for the above tasks; utilizing a common data loader to seamlessly load
WSIs within each model irrespective of the task at hand.

API for models. To enable integration of multiple models within
the toolbox, we implement a common API, comprised of three
components: a Dataset Loader, Network Architecture and Engine.
The Dataset Loader defines how the data is sampled and con-
verted into batches. The Network Architecture contains the model
architecture, defines how to process an input batch and specifies
how to post-process the results. An Engine defines how the
Network Architecture and Dataset Loader interact, runs inference
and assembles the output into a WSI-level prediction.

In the above three components, the Dataset Loader and Engine
are designed in such a way that they should not need to be
modified unless performing a task not supported by TIAToolbox.
In our initial release, supported tasks include patch classification
(PatchPredictor), semantic segmentation (SemanticSegmentor)
and nucleus instance segmentation and classification (NucleusIn-
stanceSegmentor). As described above, the Network Architecture
defines the interaction of various network layers and determines
how to transform the output into the final prediction via post-
processing. We typically include the post-processing within the

network definition because this can often be model-specific. For
example, nuclear instance segmentation models may produce
different outputs and therefore need to be processed according to
the type of output generated. We demonstrate how the Dataset
Loader, Network Architecture and Engine interact in Fig. 2. Here,
we observe that the Dataset Loader and Network Architecture are
provided to the model Engine, where the data is then processed in
the backend by the inference and aggregation flows.

In our toolbox, we support a handful of different models, such
as ResNet24 and DenseNet25 for patch classification, U-Net10 for
semantic segmentation and HoVer-Net1 for nuclear instance
segmentation and classification. We also provide an extension of
HoVer-Net that performs segmentation of additional regions
using a single network28. We have designed the API in such a way
that using a custom model in place of our supported models is
straightforward. Therefore, researchers can focus solely on model
development because the handling of WSI data is done behind-
the-scenes by the Dataset Loader and Engine. With just a few
lines of code, supported models can be used without modifica-
tion. As part of our toolbox, we provide detailed examples that
describe how to easily use both pre-defined and custom-built
models for a given application.

Below we provide more information on the three main tasks
initially supported in the toolbox: patch classification, semantic
segmentation and nuclear instance segmentation and classifica-
tion. The three tasks are similar in that they make a prediction for
small image patches before aggregating the results. However, they
differ in the type of output that is produced. For all these tasks, we
provide detailed interactive example notebooks that clearly
describe how to implement each of the models described in this
paper. Sample outputs obtained using TIAToolbox for both
semantic segmentation and nuclear instance segmentation &
classification can be seen in Fig. 3.

Patch classification. Due to the sheer size of WSIs, DL methods
in CPath often involve making a prediction based on smaller
image patches. To assist with this, we provide a framework for
patch-based classification, which can process image patches, lar-
ger image tiles or WSIs as input. Working with these different
input types is streamlined in our toolbox and simply requires a
user to define the input type as an argument in the code, as shown
in Supplementary Note 3 and Supplementary Note 4. When the
input is an image tile or WSI, the model will process each patch

Engine

Inference Flow
• Pre-processing
• Inference
• Post-processing

Aggrega�on Flow
• Merge predic�ons
• Reformat output
• Ensemble predic�ons

Dataset Loader

Patch Dataset

WSI Patch Dataset

PatchPredictor NucleusInstanceSegmentor Seman�cSegmentor

Network Architectures

HoVer-Net

ResNet

. . .

U-Net

DenseNet

Fig. 2 Diagram of the model(s) framework in the toolbox. The framework
comprises three main components: dataset loader, network architectures
and engine.
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within the model consecutively and then aggregate the results to
give a result for each patch within the input. The default post-
processing scheme makes a patch-level prediction by selecting the
class with the highest probability. The final output returns the
path to a file that specifies the model predictions and the corre-
sponding patch coordinates within each WSI image. When pas-
sing WSIs as input to our patch predictor, the toolbox internally
uses the PatchExtractor class to obtain patches for the prediction
model. Arguments for this extraction are passed through from the
predictor initialization to the extractor.

We supply several pretrained models with TIAToolbox to allow
users to process their data without the need to train their own
models. We initially include models trained to predict different
tissue types within colorectal cancer image patches, as introduced
by Kather et al.29, and models to classify breast tissue image
patches as either normal or tumor30,31. When training models
such as these we use publicly available train/test splits. However, it
should be noted that for the Kather dataset we instead used a
randomized 80/20 split on the non-stain-normalized data variant
due to the availability of only stain-normalized test data. Non-
normalized data was chosen to improve generality of the model.

When using models trained to predict the tissue type in colon
tissue, the model will predict an input image patch to be one of
the following nine classes: background, normal mucosa, tumor,
inflammatory, debris, muscle, mucous, stroma or complex
stroma. A full list of the available DL models for patch
classification is given in Supplementary Table 1. For the breast
tumor classification dataset, we used the PCAM training and
validation splits. However, for the colorectal cancer dataset, we
created our own data split to speed up the inference time. We
show the validation results obtained after training each model on

the two patch classification datasets in Supplementary Table 2.
We also highlight the ease of use of our patch predictor by
integrating it within our example pipeline on the prediction of
key mutations and molecular pathways.

Semantic segmentation. It is often desirable to localize regions
within an image, rather than assigning a value to an entire input
patch. This enables a more precise delineation of region bound-
aries and allows morphological features to be extracted from the
tissue. Semantic segmentation localizes regions, without separat-
ing touching objects belonging to the same class. This may be
sufficient when analyzing different tissue regions, such as tumor
and stroma and the aim is not to extract subsequent features from
individual objects, such as glands and nuclei. As in the case of the
patch classification model, our semantic segmentation framework
processes input patches separately, before merging the results.
The difference here is that a prediction is made per pixel, rather
than for the entire image patch. Despite this, the API remains
similar between the patch prediction and semantic segmentation
tools, as can be seen in Supplementary Note 5. The output of the
model is a 2-dimensional map of the segmentation prediction, at
a resolution specified by the user.

In the toolbox, we provide a U-Net based model with a ResNet50
backbone, trained on a multi-class breast cancer semantic
segmentation (BCSS) dataset32. Here, the model will predict pixels
to be one of: tumor, stroma, inflammatory, necrosis or other. In
Supplementary Table 3, we report the Dice score for each class
obtained by our model after training. We compare these scores to
those obtained in the original paper and observe that overall, we
achieve a better performance in terms of average dice score over all

Fig. 3 Illustration of simultaneous tissue Segmentation, nucleus classification. a H&E stained input visual field. b Semantic segmentation output.
c Nucleus instance segmentation and classification output.
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classes. Note that despite the models not being identical, they both
use a U-Net architecture with a ResNet50 backbone. In addition, we
train the same model architecture for the task of tissue masking,
which can enable a more precise result than conventional threshold-
based methods (see Example Notebook 06).

Nuclear instance segmentation and classification. Identification
and localization of different nuclei is a particularly important task in
the field of CPath because it enables subsequent extraction of cell-
based features that can be used in various downstream tasks, such as
cancer grading33 and biomarker discovery34,35. Identification and
localization of different nuclei is a particularly important task in the
field of CPath because it enables subsequent extraction of cell-based
features that can be used in various downstream tasks, such as
cancer grading33 and biomarker discovery34,35. Here, it is necessary
to separate clustered nuclei at the output of the model to ensure that
features inferred from the model output correspond to individual
nuclei. Classifying the types of nuclei can help profile the tumor
microenvironment because it enables the quantification of different
types of cells in various areas of the tissue. For this task, like other
tasks defined in TIAToolbox, individual patches are processed before
merging the results. However, a more complex post-processing step
is needed to ensure individual nuclei are effectively separated and
classified into distinct categories.

For this task, we provide a top-performing approach for nuclear
instance segmentation and classification within TIAToolbox,
developed by members of our research group. The model, named
HoVer-Net, has been increasingly used in recent research
projects4,12 in CPath, due to its state-of-the-art performance across
a range of different datasets. In the toolbox, we include nuclear
instance segmentation models trained on the PanNuke36,37,
CoNSeP1 and MoNuSAC38 datasets—three widely used datasets
for instance segmentation and classification of nuclei. For this, we
use the original model weights and therefore, we encourage readers
to refer to the original papers for details on performance. Further
information on the predicted classes when using models trained on
the aforementioned datasets is provided in Supplementary Tables 1-
8. We demonstrate how easily our nuclear instance segmentation
tool can be integrated into CPath pipelines by demonstrating how
it can be seamlessly used during our graph aggregator example.
Again, our nuclear instance segmentation and classification tool is
simple to use and uses an API in line with other models in the
toolbox. This can be seen in Supplementary Note 6.

In addition, we provide HoVer-Net+28, which extends the
original HoVer-Net model by adding a fourth decoder to perform
the task of region-level semantic segmentation. In particular, the
model that we provide in the toolbox has been trained on a
private cohort of oral epithelial dysplasia WSIs to segment
various nuclei (e.g., epithelial, inflammatory) and the different
intra-epithelial layers. For further information on performance,
we ask readers to refer to the original publication28.

Customizing models. In the toolbox, we supply model archi-
tectures along with associated pretrained weights to enable
models to be used out-of-the-box. However, it may be desirable to
use one of our defined model architectures, but with different
weights. For example, users may train a model on a different
dataset, or a different training strategy may be used to obtain the
weights. If a user would like to do this, the default pretrained
weights may be overridden by simply adding the path to new
weights as a class initialization argument. We show an example of
how this can be done in Supplementary Note 7. Furthermore,
TIAToolbox is flexible and is designed to allow users to add their
own PyTorch compatible models for any of the tasks included
within the toolbox. We provide sufficient examples in the form of

interactive notebooks (See Example Notebook 07) to detail the
steps required for model customization.

Deep feature extraction. In many CPath pipelines, it is of interest
to extract deep features from input images, which can be used for
downstream tasks, such as clustering39, patch classification13 and
graph-based learning12,40. Visualizing deep features can also help
us to better understand which areas within an image the model
may be focusing on, which can help further guide researchers
with model development. Deep features are obtained by passing
an image through a trained CNN and extracting the features
immediately before the classification layers. A popular strategy is
to utilize networks trained on the ImageNet dataset because they
are optimized on millions of example images and thus are likely
capable of extracting strong features. Therefore, we ensure that
ImageNet-trained models can be integrated with TIAToolbox,
enabling extraction of strong deep features for downstream tasks.
In future, we plan to support extracting deep features using
additional datasets and different optimization techniques such as
self-supervised learning.

Visualization. We provide several convenient functions for
visualizing the results of model predictions. These include mer-
ging of prediction outputs and overlaying predictions on the
predictor input image (Example Notebook 05) and plotting a
generated graph (see Supplementary Note 8). Our toolbox also
implements generating multi-resolution tiles in a format com-
monly used by interactive web-based (slippery map) viewers such
as OpenLayers (https://openlayers.org) where a tile server streams
image regions on-demand to a web client, for display of very large
images and geospatial data which can be panned and zoomed by
a user. We additionally include a simple web application that can
be viewed in a web browser. An example of this is shown in
Supplementary Note 9. This can also be used in combination with
the functionality of a virtual WSI to allow for ease of visualization,
such as overlaying patch predictions on top of a WSI.

Annotation storage. It is common for CPath algorithms to output
geometric annotations such as cell or gland boundaries along with
some associated properties such as a class label or certainty metric.
In this paper and in our toolbox, we refer to this combination of a
geometric entity and its associated properties as an annotation. A
geometric entity may be a point, polygon, sequence of line segments
(line string) or a closed line string loop with no area (linear ring).
Properties are defined to be a hierarchical JSON-like structure which
may contain strings, integers, floats, dictionaries and lists.

Storage and retrieval of annotations are non-trivial due to the
potentially enormous number of detected geometric entities,
which may be several million in the case of nuclear boundaries, for
just a single WSI. It is often infeasible to keep many annotations in
the memory of a desktop workstation. Furthermore, searching for
relevant annotations when performing downstream analysis may
be slow if a naïve methodical scanning method is used. To address
these issues and complement the output of nuclear segmentation
models, we implement an annotation storage class that can
efficiently handle a large number of geometric entities and their
associated properties. We implement a base class which defines an
interface extending the standard Python MutableMapping. This
enables users to interact with our storage classes using regular
Python syntax and idioms, much like working with a standard
dictionary (hash table) object, thus avoiding the burden on a user
to learn a new set of functions and interaction mechanics.

We provide two concrete implementations of this storage class.
One that is backed by a simple in-memory dictionary (hash table)
and is well suited for small annotation sets. The other uses an

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00186-5 ARTICLE

COMMUNICATIONS MEDICINE |           (2022) 2:120 | https://doi.org/10.1038/s43856-022-00186-5 | www.nature.com/commsmed 7

https://openlayers.org
www.nature.com/commsmed
www.nature.com/commsmed


SQLite database to store geometric entities as well-known binary
(WKB) and properties as JSON. Example usage of the SQLite
annotation store class is shown in Supplementary Note 10. The
SQLite store implements several optimizations to make it suitable
for large annotation sets. Primarily an R-Tree index is used which
enables fast spatial queries using bounding boxes, providing a
significant improvement over naively testing every annotation in
the store for intersection on each query. We extend this simple
bounding box query to full binary shape predicate testing via a
registered custom function call-back to Python which acts as a
secondary filtering stage after the initial bounding box query. This
allows querying for only annotations which intersect with any
arbitrary polygon. Furthermore, we utilize a restricted subset of
the Python language to provide a simple domain-specific
language (DSL) and thus enabling predicate statements to be
supplied to queries and evaluated in an efficient manner for a
specific backend where possible. For example, when querying
annotation properties from an SQLite store, it is possible to check
entries in the properties of an annotation as part of the SQL query
itself. This can evaluate the query in the highly optimized SQLite
query environment. It can also avoid the potentially costly
decoding of the full properties on top of a roundtrip to the
Python interpreter for evaluation. We also provide a fallback to a
simple post-query filtering in Python should there be no
optimization available. Lastly, this store enables compression
(via the zlib library) of WKB geometry, considerably reducing the
space required to store geometries but at the cost of additional
encoding and decoding time. Point annotations are an exception
to this as no WKB is stored for them. The required R-Tree index
row for a point annotation contains all necessary information to
recreate a point and therefore no additional storage is used.

Some convenience functions are provided for converting to
and from various formats. A store may be created from or
exported to several formats including a Pandas DataFrame,
GeoJSON feature collection, Line-delimited JSON (ndjson), or
Python dictionary. We expect our annotation store to contribute
to the standardization of AI-generated annotations.

To demonstrate the performance benefits provided by our
SQlite backed storage class, we provide a benchmarking note-
book. This notebook performs several common tasks on a dataset
of over 5 million generated cell boundary polygons.

Ethical approvals for datasets. We built our software on datasets
which are previously published or publicly available. Therefore,
no additional ethical approval was required for this paper.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
In this section, we demonstrate the utility of TIAToolbox for two
WSI-level prediction tasks, using recently proposed DL models,
while demonstrating several of the other functionalities of the
toolbox. First, we predict the status of molecular pathways and key
mutations in colorectal cancer from Hematoxylin and Eosin-
stained (H&E) histology images using a two-stage patch-level
classification model. Next, we predict the HER2 and ER status from
H&E histology images using SlideGraph+ , a graph neural
network-based model. We show that the implementation of both
the pipelines has been simplified using a common interface pro-
vided by TIAToolbox as shown in Fig. 4. This reduces the effort
needed by a new researcher seeking to extend these approaches.

Patch aggregator: predicting the status of molecular pathways
and mutations using patch-level predictions. Assessment of the
status of molecular pathways and key genetic mutations helps
better understand the patient prognosis and can provide impor-
tant cues for treatment planning. Typically, this assessment is
done via genetic (e.g., polymerase chain reaction or PCR) or
immunohistochemistry (IHC) testing. However, these tests may
lead to time delays and additional costs because they are used as
an extra step after initial analysis on routine H&E-stained slides.
Recently, it has been shown that deep learning has the potential to
predict the status of pathways and mutations directly from the
H&E slides, potentially bypassing the need for additional tests3,41.

Despite the obvious advantages of H&E based prediction using
deep learning, some researchers may struggle to reproduce the
mutation prediction pipeline, where slight changes in the code
may lead to much different results. Furthermore, new researchers
may be discouraged from implementing the method, due to the
challenge of working with high dimensional histology data. Here,
we show that TIAToolbox can be used to complete all necessary
steps to predict the status of molecular pathways and key
mutations in colorectal cancer and help simplify the overall
analytical workflow. To achieve this, we follow the same approach
used in the original paper by Bilal et al.3 and use a two-stage
pipeline. We first localize the tumor regions to identify the
potentially diagnostic areas and then use the IDaRS model of Bilal
et al.3 to make a prediction for the entire whole-slide image.
Using the toolbox, these two steps can be completed with
reproducible results without the need for advanced programming
experience. We display our entire simplified IDaRS integration
into TIAToolbox in Supplementary Note 11. It is worth noting
that both stages use the toolbox’s PatchPredictor, as shown in
Supplementary Note 4 and differ only in terms of the pretrained
model, which is defined during class initialization.

Identifying the tumor regions as an initial step is important for
various tasks, for instance enabling the downstream analysis to be
focused on diagnostically relevant areas. This initial step may also
be useful in other tasks, such as cancer staging42 and cancer
subtyping43. To help overcome challenges resulting from limited
computer memory, it is common to divide multi-gigapixel WSIs
into smaller image patches, which are processed independently
before merging the results. Using this approach, we obtain a
tumor detection map by determining whether each input patch
within the tissue contains any tumor. We utilize a pretrained
ResNet24 within TIAToolbox’s PatchPredictor model to efficiently
deal with patch-level processing and aggregation.

After obtaining the tumor detection map, we follow a similar
divide, process and merge approach to obtain the task-specific
prediction map. Using TIAToolbox’s patch prediction function-
ality, each tumor patch is seamlessly processed with a pretrained
ResNet and the results are merged. This prediction map can help
improve the interpretability of results made by IDaRS and
identify areas contributing to the overall prediction. To obtain the
final WSI prediction, patch results are aggregated to give a single
score. IDaRS is a weakly-supervised approach, trained using
multi-instance learning technique and therefore the slide-level
score is obtained using a common pooling strategy, such as
selecting the maximum or average probability over all tumor
patches. In the toolbox, we provide models trained on the first
fold used in the original paper by Bilal et al.3 to predict the
following: microsatellite instability, hypermutation density, chro-
mosomal instability, CpG island methylator phenotype (CIMP)-
high prediction, BRAF mutation and TP53 mutation.

As a result of TIAToolbox taking care of complex WSI
handling behind the scenes, this pipeline has been reproduced
in Example Notebook (IDaRS), utilizing the same code
fragment as in Supplementary Note 4 with the toolbox as the
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backend uses significantly fewer lines of code than the original
implementation. This highlights how functionalities in the
proposed toolbox can be efficiently leveraged for WSI predic-
tion tasks in CPath. These patch prediction models can use
individual patches, larger image tiles or WSIs as input. For this
example and to follow the approach used by Bilal et al.3, we
choose to focus on WSI-level inputs. To help reduce the
inference time, the models that we include within the toolbox
have been retrained without stain normalization, as opposed to
the original IDaRS implementation. A full breakdown of
performance obtained after retraining is provided in Supple-
mentary Table 4. We observe that despite a slight reduction in
performance which may be due to not using stain normal-
ization, models provided with the toolbox can successfully
predict molecular pathways and mutations.

Graph aggregator: predicting HER2 status using SlideGraph+.
HER2 and ER status are key prognostic indicators for establishing an
appropriate breast cancer treatment plan. As with other biomarkers,
they are typically assessed with IHC staining. Instead, determining
status via routine H&E slides can potentially reduce costs and time-
to-treatment. We show the integration of SlideGraph+40 pipeline
using TIAToolbox for the prediction of HER2 status and ER status
from H&E-stained histopathology images. SlideGraph+40 is a
message-passing graph neural network-based pipeline for WSI-level
prediction that works by modelling each WSI as a graph with nodes
corresponding to tissue regions and each node having a set of local
features. Edges between nodes represent spatial organization within
the tissue (see Fig. 4).

The SlideGraph+ pipeline consists of patch extraction from
WSI(s), stain normalization, node-level feature extraction, graph

Fig. 4 Example usage of TIAToolbox modules in AI pipelines. The diagram shows the main steps of the SlideGraph and IDaRS pipelines and how modules
in TIAToolbox have been used to replicate these pipelines. a Simplified block diagram of the main steps involved in each of the example pipelines. Several
of the steps at the start of these pipelines are common between the two methods and are provided by TIAToolbox. Additionally, many of the steps where
the pipelines diverge are also included in the toolbox. Custom code is only required for one or two steps in each pipeline in addition to gluing together each
of the pipeline stages, or for some custom visualization. The same pretrained models can be used for inference in both IDaRS and SlideGraph+ pipelines.
b The main steps of the IDaRS pipeline for an example WSI. For each input patch a mutation prediction (positive or negative) is made and the results
merged. Each component of the output vector is represented as a plane in a stack. c An example WSI and the resulting graph from the SlideGraph+
pipeline. Nodes are colored in RGB space via a uniform manifold approximation and projection (UMAP) of the feature vectors assigned to the nodes.

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00186-5 ARTICLE

COMMUNICATIONS MEDICINE |           (2022) 2:120 | https://doi.org/10.1038/s43856-022-00186-5 | www.nature.com/commsmed 9

www.nature.com/commsmed
www.nature.com/commsmed


construction and prediction of the WSI label via a graph
convolutional network (GCN). It is perhaps worth noting that
this graph-based method is generic and can be applied to a wide
range of WSI classification problems, as it is agnostic to both the
problem at hand and the features utilized for prediction.

As shown in Figs. 4 and 5, the IDaRS and the SlideGraph+
pipelines have numerous modules in common. Many of the same
modules used in the IDaRS pipeline can be reused without
reimplementation of the whole pipeline. Using PatchExtractor and
StainNormalizer, it is easy to extract patches from tissue regions of
the WSI and apply stain normalization across patches in the same
way that is done in the original SlideGraph+ implementation. For
each of these patches, a set of features must then be extracted.
Different types of features can be extracted here, such as deep
features from a CNN pretrained on the ImageNet dataset, cellular
morphological features (class, major axis diameter, eccentricity,
etc.) derived from the HoVer-Net segmentation and classification
output, or the output of a network trained to regress from an H&E
patch to the corresponding DAB intensity between registered H&E
and IHC slides, as demonstrated by Lu et al. In our example
implementation, we use TIAToolbox’s DeepFeatureExtractor to
obtain features from an ImageNet-pretrained ResNet and cellular
morphology features from HoVer-Net. Here, the state-of-the-art
HoVer-Net model is provided as part of the toolbox’s NucleusIn-
stanceSegmentor engine, which can be used to subsequently obtain
either deep or cellular composition features. The modularity of the
toolbox and the flexibility of the SlideGraph+ method allows for
fast and easy experimentation, without having to write a lot of code
to reimplement many common steps like patch extraction, stain
normalization and feature extraction.

TIAToolbox provides a hybrid clustering graph construction
method, as used by Lu et al.40, which requires only the location of

each patch within the WSI and a corresponding node-level
feature vector. This method clusters patches based on a weighted
combination of location and extracted features such that regions
with similar features or locations in a WSI are grouped into the
same cluster.

The extraction of features and construction of WSI graph
representations by TIAToolbox can be easily integrated with code
for training a GCN. The modular nature of TIAToolbox allows
for easy integration into a Jupyter notebook as part of the toolbox
examples to successfully reproduce the SlideGraph+ results
obtained in the original Lu et al. paper40 using ImageNet deep
features and HoVer-Net derived cellular morphology features.
TIAToolbox also enabled the ER status prediction using the
SlideGraph+ methodology. For a full breakdown of these results
and comparison with the original results, refer to Supplementary
Table 5. Here the results that we report are obtained using five-
fold cross validation.

Discussion
TIAToolbox aims to ease the handling of WSI data for analysis
and visualization by providing an easy-to-use API that enables
seamless reading, pre-processing and analysis of digital pathology
slides. Therefore, we hope this will enable the users of TIA
toolbox to access a wide and comprehensive set of tools, enabling
them to focus more on model development.

Despite the rapid advancement of CPath, there has been no
unified software library tailored towards the large-scale batch
processing and analysis of pathology slides using state-of-the-art
DL models. Previous packages have focused on a smaller subset of
features, such as stain normalization or WSI reading. As can be
seen in Table 1, TIAToolbox is an extensive library in terms of the

Fig. 5 An illustration of the broad range of capabilities of TIAToolbox. Capabilities of the toolbox are shown segmented into categories of data loading,
pre-processing, local-level analysis, WSI-level analysis and visualization.
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number of features that it supports and therefore, we hope that
CPath users will choose to use it for various applications in
CPath.

We demonstrate the utility of TIAToolbox by using its core
constituents to reproduce the results of two state-of-the-art AI
pipelines in CPath. First, we predict the status of molecular
pathways and key mutations in colorectal cancer and then we
predict with SlideGraph+ the HER2 status from H&E-stained
histology images. These pipelines have been implemented in the
form of interactive notebooks, which can be opened and eval-
uated on cloud platforms such as Google Colab and Kaggle.
This highlights how the toolbox can be used to substantially
simplify previously complex approaches in CPath. We hope that
the examples provided will motivate others to integrate the tools
provided by TIAToolbox into their pipelines and help accelerate
the development of new methods in CPath. The design of the
toolbox ensures that the API remains consistent and easy-to-use
when introducing additional models and tools. The two pre-
sented pipelines are algorithmically different, but due to the
modular nature of the toolbox, code segments could easily be
shared between each method, as highlighted in Fig. 4 where we
observe that the first few steps are common due to re-use of
TIAToolbox modules. Both pipelines can also share the same
model inference code as highlighted in the figure. For example,
all pipelines that use WSIs as input will use our advanced image
reading functionality that supports a wide range of WSI for-
mats, including JP2 and those supported by OpenSlide. Also,
batch processing and patch aggregation are handled behind the
scenes in both pipelines, without exposing unnecessary detail to
the user.

We stress that TIAToolbox is not limited to the above two
tasks and despite it being desirable to use our toolbox within all
steps of a CPath pipeline, this is not a requirement. Due to its
modular and extendable design, individual steps and various
utility functions can be used in isolation for a broad range of
applications in CPath. This helps in training new customizable
algorithms on top of existing work. For example, dividing WSIs
into patches before aggregating results is a widely used approach
in CPath and this procedure is fully handled within the toolbox.
Therefore, any pipeline that involves patch-level processing will
benefit from the functionality that we provide. In fact, any patch
prediction or segmentation model, based on PyTorch, can be
integrated because our API is consistent irrespective of the model
choice. The toolbox is not limited to the pretrained models that
we provide. Any model trained outside our toolbox can be
seamlessly integrated. We have demonstrated this flexibility with
the help of a notebook (see Example Notebook 07) that uses
natural images from the ImageNet data set. This enables one to
utilize our toolbox for a large array of tasks in CPath, such as:
cancer staging42, cancer subtyping44, survival analysis and the
prediction of additional molecular pathways44. Additional tools
can also be leveraged, such as efficient patch extraction, tissue
mask generation, visualization and stain normalization, which
can all be important steps in the automated analysis of WSIs.

TIAToolbox is available as a PyPi package (via ‘pip install
tiatoolbox’), conda-forge (via ‘conda -c conda-forge install tia-
toolbox’) package, and as a Docker container via the GitHub
container registry (‘docker pull ghcr.io/tissueimageanalytics/
tiatoolbox:latest’).

TIAToolbox is an open-source project, to which additional
pretrained models and features will continue to be added. In
future, we will extend the currently available models by training
on new datasets, increasing the number of applications of our
toolbox. A logical extension would be to train and provide patch
prediction models for colon cancer grading45 and tumor detec-
tion in additional tissue types. We also aim to provide instance

segmentation, detection and classification models for tissue
structures such as glands, blood vessels and nerves, enabling the
extraction of further interpretable morphological features for
downstream analysis such as linking these features to survival or
investigating spatial profile of the tumor microenvironment
(TME). To enable a better understanding of how models are
interpreting images, we aim to include tools that enable visuali-
zation of model activation maps on images. This can be done via
techniques such as class activation maps (CAM)46. Currently, our
SlideGraph+ pipeline utilizes functionalities from various parts of
the codebase and integrates them into a notebook. In future, we
plan to fully integrate a graph predictor engine within the tool-
box, in addition to our existing patch predictor, semantic seg-
mentor and nucleus instance segmentor engines. Going forward,
the TIAToolbox could act as an enabler for commercial growth
and encourage the use of CPath applications in a clinical setting.
We anticipate and encourage users to contribute new features and
integrate the provided tools into their own CPath pipelines to
accelerate development of CPath as a field.

Data availability
All datasets analysed during the production of TIAToolbox, except for one private oral
dysplasia cohort dataset for HoVer-Net+ , are publicly available. They can be accessed
for research and non-commercial use at the following web addresses: The Cancer
Genome Atlas (TCGA)47 available at https://www.cancer.gov/tcga, PanNuke36,37

available at https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke, PatchCamelyon
(PCam)30 available at https://github.com/basveeling/pcam, Kather 100k29,48 available at
https://zenodo.org/record/1214456, Kumar (MoNuSeg Subset)49 available at https://
monuseg.grand-challenge.org/, MoNuSAC38 available at https://monusac-2020.grand-
challenge.org/ and CoNSeP1 available at https://warwick.ac.uk/fac/cross_fac/tia/data/
hovernet/. The private oral dysplasia cohort dataset is not available because we do not
currently have ethical approval to share this dataset publicly but the trained model is
already published with ethical approval details listed in the original publication28.

Code availability
All source code for TIAToolbox is available on GitHub (https://github.com/
TissueImageAnalytics/tiatoolbox/tree/publication) and Zenodo50 (https://doi.org/10.
5281/zenodo.6808365) under the BSD 3-clause license. Model weights downloaded at
runtime are publicly hosted and maintained on TIA Centre servers under a creative
commons non-commercial use license (CC-BY-NC 4.0). All parts of the toolbox,
including model weights, may be freely used for research and non-commercial purposes.
Model weights can be made available for commercial use on request depending on ethical
approvals from the data source.
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