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H I G H L I G H T S  

• The effect of N:P areal capacity ratio on Li-ion cells behaviour is studied. 
• A Methodology of design of experiments, machine learning and explanation is given. 
• The N:P ratio impact is dominated by features like thickness and mass loading. 
• The impact of N:P ratio is linear at low and nonlinear at high Crates capacities.  
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A B S T R A C T   

This work studies the impact of the ratio between the areal capacity of Graphite anode to NMC622 cathode for 
Lithium-ion batteries compared to the electrode characteristics of thickness, mass loading and cathode areal 
capacity, on their electrochemical properties. The influence of factors on energy capacity and gravimetric ca
pacity at various Crates starting from C/20 up to 10C is quantified by combining experiments obtained via design 
of experiment techniques, machine learning modelling and explanation techniques. The results highlight that the 
performance at all Crates is highly affected by all features however their relative importance, and the linearity 
and nonlinearity of the dependencies is quite unique for each Crate capacity. N:P ratio is showing a relatively 
smaller effect on electrochemical performance compared to thickness, mass loading of active material and 
cathode areal capacity. It is also concluded that while the impact of N:P ratio is almost linear at lower Crates, it is 
nonlinear with a local optimum at medium and high Crates. This study offers a methodology for smart selection 
of a ratio between anode and cathode aerial capacity for a balanced performance of cells at all Crates.   

1. Introduction 

Lithium-ion (Li-ion) batteries lead the market for electric vehicles [1] 
as well as large-scale energy storage systems [2]. As a result, an 
increasing attraction to this technology has been developed from aca
demic and industrial researchers. The Li-ion cell electrodes, their 
properties and manufacturing techniques are recognised to be crucial 
when defining the cell performance. As a result, revealing the impact of 
electrode chemistry, structural features, and manufacturing variables on 
cell characteristics has turned to the top priority of a considerable 
number of recent studies [3–5]. 

Balancing the anode and cathode characteristics defined by the 
active material mass loading, thickness, and the capacity ratios between 

the negative and positive electrodes, which is called N:P ratio, is critical 
however challenging for Li-ion cells [6,7]. N:P ratio by itself is a decisive 
factor for battery performance and safety [8–10]. It has shown to highly 
affect the rate of lithium plating for Silicon Carbide (Si–C), Lithium Iron 
Phosphate (LFP) cells, such that a ratio of 0.8 leads to no plating and a 
long cycle life [6]. N:P ratio also influences the energy density of cells as 
confirmed by Ref. [10]. Graphite (Gr), LFP cells with N:P ratios lower 
than 0.87 have higher cell-level specific capacity at early cycles of 
discharge but degrade much faster later on. For Silicon Oxides Graphite 
(SiOx-Gr), LiNiCoAlO (NCA) cells, the most stable cycling performance 
after 500 cycles is shown to be achieved by a ratio of 1.03 [9]. For 
Lithium (Li) metal cell the optimal N:P for a stable performance was 
detected to be 1, where a balance between the Li consumption, 
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electrolyte depletion and solid electrolyte interphase formation was 
achieved [11]. N:P ratio, as the anode to cathode effective area [12,13], 
has also been confirmed to influence the rate capacity which declines 
with increased anode area. Discharge capacity retention during 1C/1C 
charge and discharge remains almost unchanged for increased anode 
area and in fact only a minor capacity decrease appears for cells with 
larger anodes. 

Although the impact of N:P ratio on the performance and charac
teristics of the cells has proven to be significant and covered by above
mentioned research, its relative importance compared to the other 
physical characteristics of the cells has not yet been fully quantified to 
the best of the authors’ knowledge. On the other hand, a vast majority of 
the existing studies have performed experiments for the purpose of N:P 
impact studies based on try-and-error approach and have conducted the 
analysis via conventional visualisations rather that systematic evalua
tions and investigations. 

Motivated by this research gap and in search for a comprehensive 
understanding of the impact of N:P ration on cell performance, this 
paper has conducted a complementary analysis. To be specific the 
objective of this paper is to answer the following questions.  

1. How important the N:P ratio is in defining the cells characteristics 
compared to other electrode properties?  

2. What is the nature of the dependency between the cell performance 
and N:P ratio at various conditions? 

To answer these questions, a methodology based on design of ex
periments (DoEs) and machine learning (ML) modelling techniques is 
developed. ML techniques has already been proven to be very powerful 
in investigation of the complex electrochemical characteristics of cells 
[14,15], and especially during the manufacturing process with a large 
number of control factors [16–18]. However, they have not been fully 
utilised for N:P impact analysis. 

In this methodology, the impact of N:P ratio on cell performance and 
its energy density has been studied via experiments designed to cover 
the ranges with suitable breakpoints, and then conducted in strictly 
controlled conditions so that the influences can be distinguished from 
the effects of other factors effectively. 

In general, the correlated characteristics of electrodes, such as mass 
loading, thickness and the expected capacity necessitates a large number 
of experiments to be run by the common approach of “change one factor 
at a time”, which is very costly and time consuming. In response to that, 
the novelty if this paper is taking a DoE approach [19,20], based on the 
practical ranges of the control variables to obtain the maximum amount 
of information from the minimum number of experiments. The design of 
experiment approach when tailored to the problem of electrode 
manufacturing helps to identify the influential factors and pinpoint the 
optimal combination of those for an effective study and analysis. A 
comprehensive review of various DoE techniques for the context of 
Li-ion battery electrode preparation is traceable in Refs. [21,22]. 

Based on the data generated vis a purposeful DoE, this paper then 
utilises the Explainable Machine Learning (XML) models [23,24] to 
reveal the correlation, interactions, and dependencies in between the 
control and response variables. While the conventional ML techniques 
have been utilised to solve the problem raised in the field of Li-ion 
battery electrode manufacturing and very well reviewed in studies 
such as [25–27], the XML methods have not been used comprehensively 
for such analysis to the best of the authors’ knowledge. 

With the power of DoEs and XML, the study offers a methodology 
where experiments with more than one factor changing at a time can 
still facilitate systematic analysis very effectively and via affordable 
experimental and computational costs. This methodology while is dis
cussing the particular case of Gr/NMC Li-ion battery coin cells, it is 
highly adaptable to other chemistries as well as different manufacturing 
processes of Li-ion batteries. This study is believed to guide the re
searchers at laboratories or pilot-scale lines as well as the manufacturers 

in industry-scale to move towards smart, optimized, and clean 
manufacturing of electrodes for high-quality Li-ion batteries. 

The structure of the paper is as follows. Section 2 describes the 
methodology, including the details of the experiments, the cell 
manufacturing, instrumentation, as well as modelling approach via 
machine learning and analysis backed up by explainable machine 
learning methods. Section 3 reports the main results which include 
prediction by models, correlation, and dependency analysis. This section 
also offers discussions. Section 4 concludes the findings and elaborates 
the future works. Appendix includes the formulations and the repro
ducibility guides. 

2. Methodology 

The methodology of this study includes three main steps as described 
on Fig. 1, step 1 experiments, step 2 modelling, and step three expla
nation. Step 1 starts with the design of experiments where the range and 
break points of each control variable is decided by the experts. The 
ranges of the variables are such that the response variables cover a 
practical range for manufactured cells within the pilot-line. The values 
are selected to be within the range used in commercial lithium-ion cells, 
but sufficiently different that significant changes in performance can be 
anticipated. For example, cathode coatings at 2 mA h cm− 2 are expected 
to have a much higher discharge capacity ratio (5 C: 0.2 C) than 4 mA h 
cm− 2 cathodes. The full list of control and response variables are given 
in Table 1. 

The electrodes’ (expected) capacity, (expected) areal capacity, and 
N:P ratio is defined by Eqs (1)–(3). 

Expected Capacity(mAh) =

Coating Mass(g) × Dry Composition(%)

100
× Capacity Active Powder(mAh/g)

(1)  

Expected Areal Capacity
(
mAh

/
cm2) =

Expected Capacity(mAh)
Coating Area(cm2)

(2)  

N : P Ratio =
Expected Areal Capacity Anode(mAh/cm2)

Expected Areal Capacity Cathode(mAh/cm2)
(3) 

In the second step, the experimental data are fed into a machine 
learning model to relate the control and response variables. The data as 
well as the models are utilised in the final step to explain the de
pendencies and the impact of each factor or responses. In the upcoming 
subsections details of the experiments and models are provided. 

2.1. Experiments 

The experiments for this study are conducted in the WMG, University 
of Warwick, pilot-line electrode and cell manufacturing facilities. They 
follow the set of variables and break points given in Table 2. 

For these experiments, the N:P ratio and the cathode areal capacity 
are independent control features. The anode areal capacity is calculated 
for the given N:P ratio and the active material weights are also calcu
lated based on the areal capacities. As the table shows, the coating 
process was planned by considering a range from low (2 mAh/cm2) to 
high (4 mAh/cm2) coating weights for cathode (5 target values) and 
determining the anode coating weight needed for the N:P ratio of in
terest (9 target values). Experiments of 12–16 were aimed to be a repeat 
of the previous ones to ensure the repeatability and reproducibility of 
the data of this study. 

Anode formulation was 95.25% S-360 E− 3 graphite, 1% C45 carbon 
black, 1.5% BVH8 CMC (carboxymethyl cellulose) and 2.25% BM-451B 
SBR (styrene butadiene rubber). Cathode formulation was 96% NMC 
622, 2% C65 carbon black and 2% 5130 PVDF (polyvinylidene fluoride). 
For anode, the solvent used in mixing the slurries was water to achieve a 
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final solid content of 46%. For cathode NMP (n-methyl-2- pyrrolidone) it 
was used for the solid content of 67%. 

The coating was performed using a pilot-line coater with three dry
ing zones (Megtec). The anode slurry was coated onto copper foil with 
thickness 10 μm, and the cathode slurry was coated onto Aluminium foil 
with 15 μm thickness, using the same line parameters for all cases. The 
parameters of coating process included the coating ratio of 150% and 

line speed 1.2 m/min. The drying conditions for anode were tempera
ture at 45 ◦C in the first zone, 60 ◦C in the second and third zone. The 
drying air speed was 5 m/s. For cathode, the ovens were set at 85 ◦C for 
first zone, 110 ◦C for the second z and 95 ◦C for the third zone. For 
cathode, the drying air speed was set to 5 m/s. 

Electrode sheets were calendered to reach a target porosity of ~30% 
using a laboratory calendar (Innovative Machine Corporation). Anode 
was calendered at room temperature and cathode with the rolls heated 
to 85 ◦C. after calendering, the electrode discs were cut (15 mm diam
eter anode and 14.8 mm diameter cathode for 2023 coin-cell). Elec
trodes with coating weight within ~1% of the target were selected for 
assembling coin cells. Anode and cathode electrodes were matched to 
obtain N:P rations within ~1% of the target value. 

Full cells were assembled in argon filled glovebox, containing H1609 
separator (Celgard) with 16 μm thickness, and 60ul of electrolyte with 
the composition 1 mol/L LiPF6 in EC:EMC = 3:7 (by vol.) + 1% wt% VC 
(where EC is ethylene carbonate, EMC- Ethyl methyl carbonate, VC- 
vinylene carbonate). 

The details of the manufacturing processes of the electrodes, 
including precursor materials, mixing, coating, and calendering is fully 
described in previous works [18,28,29]. 

After electrode preparation, 3 cells were made for each experiment 
and the electrode properties were measured (thickness, mass) or 
calculated (coating weight, density, porosity, area capacity, N:P ratio) 
and a databased was created. The manufactured cells were finally put 
under formation processes and various testing conditions for charac
terisation. The cell formation protocol included one cycle (charge and 
discharge at C/20 rate) followed by 5 conditioning cycles (charge and 
discharge at C/5 rate). During the testing protocol, capacity was 
measured during discharge at different C rates: C/5, C/2, C, 2C, and 5C 
(each followed by a charging at C/5 rate before ethe next experiment) at 
room temperature and nominal voltage range between 2.5 and 4.2 V. 
The gravimetric capacity was calculated by diving the capacity to the 
cathode’s coating weight. After manufacturing and testing, there were a 
total of 48 cells ready for modelling and analysis activities. 

2.2. Machine learning model 

The machine learning models enable relating the control and 
response variables. Here the models are utilised for the prediction of cell 
capacity and gravimetric capacity as response variables given the impact 
factors or the control variables of cathode active material weight, Anode 

Fig. 1. The pipeline of experiments, modelling, and explanation for this study.  

Table 1 
List of input and output variables.  

List of inputs List of output 

Cathode Areal Capacity 
(CaACap) 

Discharge Capacity at C/20, C/5, C/2, 1C, 5C 

Cathode Active Materiel weight 
(CaAM) 

Discharge Gravimetric Capacity at C/20, C/5, C/ 
2, 1C, 5C, 10C 

Anode Active Materiel weight 
(AnAM) 

Discharge Capacity ratio (5C to C/5) 

Cathode Thickness (CaTh) 
Anode Thickness (AnTh) 
N:P ratio (NP)  

Table 2 
Design of the experiments for this study.  

Experiment N:P 
ratio 

Cathode 
Areal 
Capacity 
(mAh/cm2) 

Anode 
Areal 
Capacity 
(mAh/cm2) 

Cathode 
Active 
Material 
Weight (g/ 
m2) 

Anode 
Active 
Material 
Weight (g/ 
m2) 

1 1 2.0 2.0 119 66 
2 1 4.0 4.0 238 131 
3 1.2 2.0 2.4 119 79 
4 1.1 3.0 3.3 178 108 
5 1.2 4.0 4.8 238 158 
6 0.9 3.0 2.7 178 89 
7 1.1 2.0 2.2 119 72 
8 1 3.3 3.3 198 109 
9 0.9 4.0 3.6 238 118 
10 1.1 4.0 4.4 238 144 
11 1 2.7 2.7 158 88 
12 1.2 2.0 2.4 119 79 
13 1.1 3.0 3.3 178 108 
14 0.9 3.0 2.7 178 89 
15 1 2.0 2.0 119 66 
16 1.1 3.0 3.3 178 108  
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active material weight, cathode thickness, anode thickness, anode areal 
capacity, and anode to cathode areal capacity ratio (N:P). The machine 
learning model developed for this study is a Random Forest (RF) [30]. 
RF is a decision tree-based model with a more efficient development 
compared to single decision trees [31]. 

In training of a RF model, multiple de-correlated decisions trees are 
created where each tree is developed via a random subset of all the 
predictors and hence suggests the model’s name as random forest. De
cisions trees of RF are constructed from a finite number of decision as 
well as the leaf nodes. When training samples are fed into the model, 
they are evaluated by each decision node through a test function and 
passed to the different branches based on their features [32]. 

If consider the control and response dataset O =

{ (X1, z1) (X2, z2) ⋯ (Xn, zn) }, n = 1,…,N, where X is the control 
vector and z is the responses for N samples, then the RF model of G can 
be implemented taking the three steps below:  

• Bootstrap sampling, sampling the data with replacements and create 
bootstrap sets of Oi

n, i = 1,…,BS with the same size of the original 
set, O. The purpose of bootstrapping is to sample data with 
replacement from the original training dataset repeatedly for BS 
times to create multiple training sets. The bootstrapping would help 
the model to reduce its variance when predicting the responses as 
generally decision trees tend to be very high variance estimators and 
the addition of limited number of training data points may result in a 
different performance [32].  

• Creation of regression trees, Gi for each bootstrap set, and obtaining 
the prediction results of ẑi = Gi(X,Oi

n)i, whereẑ is the predicted 
response for each tree.  

• Computing the final predicted value, G(X) by combining the output 
of each decision tree model G(X) =

∑BS
i=1Gi(X,Oi

n)i.

Random forest algorithm is illustrated in Fig. 2. 
The RF model here is developed and validated by the cross-validation 

approach [33]. For this purpose, first the data are divided into K 
non-overlapping batches of equal size. The model training and valida
tion is attempted for K iterations. At each iteration K-1 batches are used 
for model hyperparameter optimisation, and one batch is left for vali
dation and test. The average performance of all iterations is defined as 
the final performance of the model. 

The evaluation of model performance in estimating the cell is per
formed via goodness of fit metrices that include root mean squared error 
(RMSE), mean absolute error (MAE), and R-squared (R2) [34]. While the 
first two focus on the average error between each sample’s experimental 
value and its model-based estimation, the third metric describes the 
percentage of the data that can be described by the ML model 
successfully. 

2.3. Machine learning explanation 

Generally, the ML models are black boxes that relate the response 
variables to the control factors. While they can perform very accurately 
in predicting the responses, understanding their performance and their 
internal mechanisms are not very straightforward. 

Explainable (interpretable) machine learning techniques could help 
shedding light on the model behaviour [23]. These techniques can show 
why a particular decision is made and why a specific predicted values 
are obtained as an output of the model. While there exist various tech
niques for XML, the explanation of the machine learning model in here is 
performed via methods of accumulated local effects, (ALE) [35], relative 
and global feature contribution (importance) via SHAP (Shapley addi
tive explanations) [36,37] and linear correlation analysis [38]. For each 
technique the dataset, and the predictions from the ML model are uti
lised in a framework given by Fig. 1. 

All techniques are model agnostic which give the opportunity for 
applying them on any models of preference including RFs. ALEs are used 
to quantify how each control variable is contributing towards the pre
dicted values of the responses. To show the ranked and relative impact of 
each feature on the total predictions the SHAP is calculated. SHAP is a 
particular version of Shapley values called Shapley additive explana
tions. It is equal to the classical Shapley values of a conditional expec
tation function of the model, but easier and more efficient in terms of 
calculation [23,37]. SHAP describes the contribution of a coalition of 
features to the total prediction. The contribution of each feature is the 
expected value across all possible coalition of features not coalition that 
specific feature of the prediction change caused by adding this feature to 
the coalition. The final item which is a linear correlation analysis is to 
show the strength of linear dependency between control variables and 
responses. The correlation coefficients are unitless values between − 1 
and 1 where a positive value shows a direct correlation and means that 
an increase in the control variable would lead to an increase in the 
response variable. A negative value means an inverse correlation. When 
the coefficients are close to zero, positively or negatively, they indicate 
that there is not sufficient evidence regarding a strong linear correlation 
between variables [38]. 

The formulation of the three methods mentioned above, are included 
in Appendix Section and the readers are referred to Ref. [35] for ALE 
[36], for SHAP and [38] for linear correlation analysis to gather further 
information regarding the formulations and detailed mathematical 
equations. 

3. Results and discussions 

In this section, the focus is on the impact of different N:P ratios on the 
rated performance of cells, their possible causes and implications. Beside 
the main factor of N:P, the relative effect of other correlating factors on 
cell performance is quantified and the possibility of predicting the cell 
performance given the control factors defined in the previous section is 
also investigated. It is worth mentioning that the ML model with the list 
of inputs and outputs/responses of Table 1, has been iterated for 40 
times for a stable output. 

3.1. Impact of factors on cell capacity 

Cell performance in this section is characterised by its capacity 
(mAh) at C/20, C/5, C/2, 1C, and 5C. accordingly the cell capacity ratio Fig. 2. Random Forest modelling algorithm illustration.  
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is defined by Eq. (4). 

Rate Discharge 5C : C
/

5 =
Discharge Capacity 5C(mAh)
Charge Capacity C/5(mAh)

× 100 (4) 

The distribution of N:P ratios with respect to cell capacity at various 
Crates of this study is visualised at Fig. 3. As the figures show the N:P 
ratio has an impact on the performance of the cell. At each N:P ratio the 
cell capacity increases for thicker cells up to 5C. 

At 5C the trend is opposite and thicker electrodes at all N:P ratios 
result in lower capacity values. Similar trend is witnessed for capacity 
ratio, where thicker electrodes at almost all N:P ratios end up with full li- 
ion battery cells with lower 5C to C/5 rates. Furthermore, for all per
formance characteristics, the N:P ratio of 1.2 shows two clusters at very 
low and very high capacity, while for the rest of the N:P ratios there is a 
smoother transition from low to high capacity with cathode coating 
weight. 

Considering the abovementioned finding from the data, clearly 
although the impact of cathode thickness at a constant N:P is inferable 
visually, determining N:P ratio’s influence on the cell performance is not 
straight forward due to the correlation with other electrode character
istics such as cathode weight. The ML models and explainability tech
niques are necessary reveal this correlation. 

The Machine learning model’s estimation of the cell performance 
compared to the experiments is illustrated in Fig. 4. According to the 
results demonstrated at this figure and the model performance metrices 
at Table 3, the model can estimate the cell performance given its elec
trode characteristics. For all metrices the results are reported in mean 
and standard deviation of the multiple runs of the model. Also, the cross 
validation has been performed with K = 5, which means that at each try 
80% of data are used for training and 20% for validation and testing. 

For capacity at C/20, C/5 and C/2 the R-squared is above 0.9 which 
means that the model has captured the variation is the data for more 
than 90% accuracy. for 1C capacity the accuracy is about 89.7% and for 
5c slightly lower at 77.9%. the capacity ratio is also predictable with an 
accuracy of 88.5%. in all cases the RMSE and MAE values are below 1 
mAh which shows the models ability in relating the input and output 
variables very successfully. When comparing the accuracy of models for 
various Crates, it is worth noting that, in lower Crates due to the slow 

rate of the electrochemical reactions, the impact of the factors such as N: 
P ratio and active material weight is more of linear type, this is shown 
via the ALE analysis on Fig. 5. As the Crate increase the impact of factors 
tend to be more nonlinear and more complex due to an increase in side- 
reactions that are not easy to be quantified. In such cases the ability of 
model for capturing the relation between the predictors (factors) and the 
responses reduces. Therefore, the model’s performance is slightly 
weaker in higher Crates. 

Considering the performance of the ML models, the explainability 
techniques can now be utilised to reveal the input-output relationships. 
The effect of the N:P ratio on the cell performance via ALE analysis is 
depicted at Fig. 5. It is worth noting that while the x-axis of each figure 
refers to the control variable, the y-axis is centred to the mean value of 
each response variables. 

According to Fig. 5, as the N:P ratio increases the capacity at C/20 
decreases linearly. The C/5 capacity decreases with an increase of N:P 
from 0.9 to 1, it then remains flat till 1.1 and demonstrates further 
decrease when N:P rises to 1.2. For C/2 and 1C capacity the trends look 
almost the same, it starts with a plateau between N:P of 0.9–1, a local 
increase in capacity around 1.05 and then a sharp drop till N:P of 1.2. 
For capacity ratio, the trend is much like the 5C capacity, a sharp in
crease is witnessed from 0.9 to 1 N:P, after which the ratio drops slightly 
till the N:P of 1.2. 

To further increase the transparency of models when estimating the 
cell performance, a feature contribution (importance) analysis via Shap, 
as mentioned in Section II, is conducted. The global feature importance 
plots are given at Fig. 6 which visualise the absolute Shap value of each 
electrode characteristic averaged over all samples. All the Shap values 
have the same unit of the model output, that is cell performance prop
erty. These charts are showing how the cell performance is affected by 
each individual electrode characteristic as an average of all samples and 
what it’s the relative importance of each feature on cell performance. 

According to Fig. 6 (a), cathode active material weight has an impact 
of average 0.5 mAh on the cell C/20 capacity, while this impact from N:P 
ratio is only 0.04 mAh, therefore cathode active material weight is more 
important in defining the cell C/20 capacity compared to N:P ratio. 
Similar analysis and justifications apply to Fig. 6 (b)–(f). 

As this set of figures demonstrate, the importance of features is quite 

Fig. 3. The distribution of N:P with respect to cathode weight and full cell capacity at (a) C/20, (b) C/5, (C) C/2, (d) 1C, (e) 5C, and (f) capacity ratio.  
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different from one Crate to another. While for lower Crates cathode 
active material weight and its thickness are more important, for 5C ca
pacity anode active material weight also appears among more important 
features. A common explanation between all feature is about the 
importance of N:P ratio compared to others. For all Crates, the N:P ratio 
is the least important feature. 

In full cells, the rate performance is usually limited by the cathode, 
rather than the anode. Most lithium-ion electrode show a transition from 
a resistance limited process to a mass transport limited process, as the 
rate of discharge increases. The transition point will depend on the 
electrode thickness, and hence the coat weight and areal capacity. For 
these cells, the transition points were 5 C for the 2 mAhr/cm2 cathodes, 
2C for the 3 mA/cm2 cathodes, and 1C for the 4mAh/cm2 cathodes. In 
thicker coatings and at higher rates, it is more difficult for the electrolyte 
to provide the flux of ions required, and only a limited proportion of the 
electrode will be utilised. 

3.2. Impact of factors on cell gravimetric capacity 

The impact of N:P ratio and other cathode and anode characteristics 
are reported on the cell’s gravimetric capacity (GCap) in this subsection. 
The gravimetric capacity of a cell is defined as its capacity (mAh) 

divided by the cell’s cathode weight in (g) as Eq. (5). 

Gravemetric Capacity
(
mAh

/
cm2) =

Capacity(mAh)
Coating Weight(g)

(5) 

According to the analysis and modelling results, while the ML model 
performance was very desirable at all Crates for cell capacity, the ac
curacy obtained for Gravimetric capacity is about 65%. Due to the space 
limitation, this subsection only reports the feature ranking and de
pendency for two Crates of 5C and 10C where the models have the 
highest predictability. The 5C model has an accuracy quantified by a 
RMSE of 15.598 ± 2.026 (mAh/g), MAE of 11.414 ± 3.360 (mAh/g) 
and R2 of 0.885 ± 0.022%. The 10C model accuracy is reported as 
10.569 ± 5.712 (mAh/g), MAE of 7.587 ± 3.072 (mAh/g) and R2 of 
0.685 ± 0.018%. 

The ALEs graphs as well as the feature raking charts for the gravi
metric capacity is depicted in Fig. 7. According to this figures, cathode 
active material mass and its thickness appear as the most important 
features for both 5C and 10C gravimetric capacity and the contribution 
of N:P ratio on 10C capacity is more significant than that for 5C case. 

According to the ALEs graphs of Fig. 7 (c) and (d), both Crate ca
pacities has a nonlinear dependency with N:P. As the figures show, the 
highest 10C gravimetric capacity values are at medium ranges of N:P 
and the gravimetric capacity drops at high ratios while for 5C, it happens 
at slightly higher N:P ratios. The difference in shapes between Fig. 7 (c) 
and (d) is interesting. At 10C, all the cathodes are operating under mass 
transport control, whether that be ionic diffusion or migration. At high 
N:P ratios, this decreases the gravimetric capacity. However, at 5C, the 
low coat weight cathodes (2 mAh/cm2) are still under resistance control. 
Since the cathode active material weight is a more significant factor than 
the N:P ratio, this complicates the interpretation of the N:P ratio. All 
three of the N:P = 0.9 tests were at medium to high coat weight, while 
two out of the three N:P = 1.2 tests were at the lower coat weight. 

The implication is that the extreme N:P ratios have a bigger adverse 
influence when the cathode is operating under mass transport control. 
To further highlight the impact of features on the gravimetric capacity at 
other Crates, especially the lower Crates, linear correlation analysis is 

Fig. 4. Machine learning model estimation vs experiments at (a) C/20, (b) C/5, (C) C/2, (d) 1C, (e) 5C, and (f) capacity ratio.  

Table 3 
Accuracy metrices for estimation of cell performance via ML model.  

Metrices C/20 
(mAh) 

C/5 
(mAh) 

C/2 
(mAh) 

1C 
(mAh) 

5C 
(mAh) 

Cap 
Ratio 

RMSE 
(Mean, 
Std) 

0.397 
(0.161) 

0.208 
(0.081) 

0.278 
(0.097) 

0.383 
(0.138) 

0.342 
(0.078) 

0.081 
(0.013) 

MAE 
(Mean, 
Std) 

0.245 
(0.097) 

0.142 
(0.027) 

0.217 
(0.031) 

0.230 
(0.084) 

0.311 
(0.104) 

0.070 
(0.011) 

R2 

(Mean, 
Std) 

0.905 
(0.031) 

0.963 
(0.013) 

0.925 
(0.053) 

0.897 
(0.052) 

0.779 
(0.106) 

0.885 
(0.044)  
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performed. Results can be found in Fig. 8. 
Fig. 8 (a) includes the linear correlation coefficients, as calculated in 

Appendix A.3, while Fig. 8 (b) has the associated p-values [39,40], 
related to the significance of that correlation. As Fig. 8 shows, while the 
correlation between all feature and gravimetric capacity values at 5C 
and 10C is significant, the correlation at other crates is less considerable. 
This is compatible with what earlier was found regarding the accuracy 
for ML models at low and medium Crate. This confirms that while the 
impact of N:P on higher crates is accurately quantifiable, for a better 
understanding of about gravimetric capacity at low and medium crates 
further studies with more break points and a more extended set of 
control variables is required. 

4. Conclusions 

The anode to cathode ratio of expected capacity is a critical factor in 

defining the electrochemical properties of Li-ion cells with a particular 
formulation and chemistry. The impact of this factor is very different on 
cells rated performance. The cell capacity at low Crates such as C/20 and 
C/2 is linearly dependent to N:P ratio, but for higher Crates, such as 2C 
and 5C, as well as the capacity ratio of the cells, of a nonlinear rela
tionship is evident. For higher Crates the existence of a local optima for 
maximising the rated capacity is obvious. Similar justifications apply to 
the gravimetric capacity of cells. The GCap results confirm that the 
contribution of N:P ratio to the capacity value is not equal at every Crate. 
In fact, the higher the Crate the clearer the correlation between N:P and 
gravimetric capacity. the analysis of this study showed that, although 
the N:P ratio is a crucial factor for the cell characteristics, its relative 
importance compared to the other factors such as anode and cathode 
active material mass and thickness is much less. This confirms that the 
individual electrode features are masking the impact of N:P ratio on 
responses and if this factor is to be investigated in more details, a DoE 

Fig. 5. The effect of N:P on cell capacity at (a) C/20, (b) C/5, (C) C/2, (d) 1C, (e) 5C, and (f) capacity ratio.  

Fig. 6. The importance of electrode characteristics on full cell performance at (a) C/20, (b) C/5, (C) C/2, (d) 1C, (e) 5C, and (f) capacity ratio.  
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taking care of masking factors would be necessary. Based on the analysis 
provided here, further works for future can be recommended to be 
conducted; a new design of experiment and model-based study with a 
focus on the gravimetric capacity, as well as other electrochemical 
features of cells such as internal resistance is one of interesting ones. It is 
also worth expanding this study to other material and combinations of 
anode and cathode formulations, as well as other cell characteristics 
such as cycle life. While the ML-based approach for analysis in this work 
is tied to the specifications of the data used for that and it is expected 
that other materials and features show a different behaviour, the pro
posed methodology which consists of 1) Design of Experiments, 2) 
Electrode Preparation, 3) Machine Learning Modelling, and 4) 
Explainability is highly transferable from one case study to another. It 
should be fairly mentioned that during this transfer, a new hyper
parameter optimisation is necessary but straightforward via the tech
niques such as grid search optimisation that has been addressed within 
this study. 
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AppendixCalculation of Explainability Metrics 

A.1. Accumulated local effects 

Accumulated local effects [23] are calculated for a single output with respect to a particular feature, or input of xf. For this purpose first the feature 
space is partitioned into Pf(l) intervals with the limits specified by wl,f for l = 1,2, …, Lf, where l is the indicator of the interval and f refers to the fth 
feature and Lf is the total number of features. Here, P is selected by the modelling researcher considering the range and the distribution of the data. In 
fact, P can be decided considering the number of the clusters of the feature values. Considering the feature values within each interval, the difference 
between the prediction of the random forest model, RF, with the exact value of the feature and the feature at the upper and lower limits of the interval 
is used as inputs. The accumulated differences R̃Ff ,ALE(xf ), are obtained via equation (a.1). 

R̃Ff ,ALE

⎛

⎜
⎝xf

⎞

⎟
⎠=

∑Lf

l=1

1
nf
(
l
)
∑

n:x(n)f ∈Pf

(
l
)

[
RF
(

wl,f , x(n)− f

)
− RF

(
wl− 1,f , x(n)− f

)]
(a.1)  

where x(n)
− f defines the pool of features excluding the feature that ALE is calculated for, (feature xf), p indicates each data sample, and x(n)

f are all the 
samples of the feature xf. nf (l) is the total number of samples in each segment ofPf (l). Without loss of generality, the ALE calculated via (a.1) is then 
centred via (a.2) as Mf ,ALE(xf ) across all samples of Ns, so that the mean effect is zero. 

RF f ,ALE

(

xf

)

= R̃Ff ,ALE

(

xf

)

−
1
Ns

∑N

n=1
R̃Ff ,ALE

(

x(n)f

)

(a.2) 

The centred value is the main effect of the fth feature at a certain point in comparison to the average prediction of the response via model. 

A.2. SHAP Values 

SHAP values quantify the contribution of each feature to the overall prediction achieved by the model for the particular response. Considering Lf as 
the total number of features which is 5 in here, including the N:P ratio, Cathode Areal Capacity (mAh/cm2), Anode Areal Capacity (mAh/cm2), 
Cathode Active Material Weight (g/m2), Anode Active Material Weight (g/m2), SHAP is calculated via equation (a.3). 

φf (v)=
1
⃒
⃒Lf
⃒
⃒

∑

S⊆Lf \{f}

( ⃒
⃒Lf
⃒
⃒ − 1

|S|

)− 1

(v(S∪{f}) − v(S)) (a.3)  

Here, S is a set (or coalition) of features, v(S) is the prediction based on this coalition or the response value obtained based on this subset, φf (v) is the 
Shapely value for feature f. Lf\{f} refers to all the possible coalitions or subsets excluding the feature f. Based equation (a.3), first that particular feature f 
is excluded from the pool of features, then all the possible coalitions of features without f are formed, then the marginal value of adding feature f to the model is 
calculated. Finally, the summation of all marginal values which include all the permutations of each coalition size formed out of all other factors is obtained. This 
summation when scaled to the number of all features, provides the final mean SHAP value of feature f [36,41]. 

A.3. Linear correlation 

The correlation analysis between the characteristics of the electrodes, f, which include N:P ratio, Cathode Areal Capacity (mAh/cm2), Anode Areal 
Capacity (mAh/cm2), Cathode Active Material Weight (g/m2), Anode Active Material Weight (g/m2), and the electrochemical features of the half-cells, y, 
which indicates the capacity at a specific Crate, is performed via (a.4) [38]. Here the correlation strength is rf,y and recognised as Pearson product-moment 
correlation coefficients. Here, μ refers to the mean value of each variable, σ is the associated standard deviation and E denotes the expectation. 

rf ,y =
E
[(

f − μf

)(
y − μy

)]

σf σy
(a.4) 

rf,y is a value within the range of [0, 1] and could be positive or negative which refers to a direct or reverse correlation respectively. For each correlation 
coefficient obtained via (a.4) a p-value, which is with the range of 0 and 1, is also calculated which refers to the probability of ‘Null Hypothesis’ being true. The 
null hypothesis is about having no relationship between the control and response variables [39]. p-values are necessary to validate the correlation analysis and 
provide insights about the generalisation of the results from sample to population [40]. A value of correlation coefficient closer to 1 or -1 when accompanied 
with a low, usually below 0.05, p-values confirms a strong relationship between control and response variables with a confidence of 95% 
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A.4. Model Hyperparameters 

To increase the reproducibility of the results reported in this research, the model configuration and the hyper-parameters are listed as below. All 
the analysis are performed in Python 3 via scikit-learn. A grid search optimisation approach has been taken to optimise the model. 

Number of estimators range = [1–5] × e3, Minimum samples leaf range = [2–5], minimum samples split = 2, Criterion selections = [Squared error, 
Absolute error]. 
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