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A B S T R A C T

Human Reliability Analysis aims at identifying, quantifying and proposing solutions to human factors
causing hazardous consequences. Quantifying the influence of the human factors gives rise to human error
probabilities, whose estimation is a cumbersome problem. Since these human factors are usually related to
other organisational or technological factors, it has been proposed to apply probabilistic graphical models,
such as Bayesian or credal networks. However, these can be problematic when conditional probabilities on
missing data are involved. While the solutions proposed so far combine frequentist and subjective approaches
and are in general not robust to small modifications in the dataset, in this paper we propose an alternative
based on distortion models, which are a type of imprecise probabilities. We perform a comparative analysis,
showing that our proposal is consistent with the previous studies while giving rise to robust estimations.
1. Introduction

Major accidents in industry may have catastrophic consequences,
and for this reason it is of the utmost importance to have techniques
that allow measuring, and then reduce, the associated risks. In this
respect, human reliability analysis (HRA) collects the different qualita-
tive and quantitative methods that aim to analyse the human errors
involved in these accidents. The former seek to identify the factors
involved in the human errors and the latter measure the extent of
these errors. By means of the quantitative approach, the computation
of human error probabilities (HEP) is made.

There are many HRA techniques that have been successfully em-
ployed in the estimation of HEP and the associated risks; we may
consider for instance the SLIM method (Kirwan, 1994; Noroozi et al.,
2013; Svenson, 1989) in which the preference for a set of options
is quantified based on expert judgment; HEART (Ward et al., 2013;
Williams, 1986), that modifies the estimations of HEP taking into
account the Error Promoting Conditions (EPC); or THERP (Humphreys,
1995; Swain and Guttmann, 1983), that combines a dataset of error
probabilities suitably modified by the assessor using the Performance
Shaping Factors (PSF). We refer to (Kirwan, 1996; Kirwan et al., 1997;
Kirwan, 1997) for a validation of some of these techniques.

One of the main contributions in HRA is the Swiss Cheese Model
developed by Reason (1990), that shows that major accidents are
usually due to a combination of several errors, both human caused
and not, instead of a single one. Based on this, several HRA methods
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take into account the variety of factors and the interaction between
them; this is for instance the case of ATHEANA (Cooper et al., 1996),
CAHR (Sträter, 2000) or CREAM (Hollnagel, 1998).

One of the main challenges when performing a rigorous HEP analy-
sis with the above methods is that there may be some degree of subjec-
tivity in the models because of the role the assessor plays; in addition,
the use of several experts may entail having to aggregate preferences
and resolve disagreements. For this reason, it has also been advocated
the use of methods that depend only on the available data. However, it
is also difficult to find a complete dataset with information about major
accidents with a unified taxonomy. After some earlier studies in Bel-
lamy et al. (2007), Moura et al. (2015, 2016) created the Multi-attribute
Technological Accidents Dataset, MATA-D, with information about 238
major accidents that occurred in different industries from 1953 to 2013,
using reliable sources such as governments, regulators or insurance
companies. Following the CREAM taxonomy (Hollnagel, 1998), they
analysed the presence of 53 different factors in each accident, splitting
them into organisational, technological and person-related factors.

The MATA-D dataset was statistically analysed in Moura et al.
(2016), showing that in the vast majority of accidents there was a
combination of the three families of errors. Moreover, Morais et al.
(2019a,b) built a Bayesian network gathering the conditional depen-
dence between the factors. While Bayesian networks have been advo-
cated in the HRA context for some time (see, among many others, Groth
and Mosleh (2011), Islam et al. (2018, 2020), Mkrtchyan et al. (2015),
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Mu et al. (2015)) due to their efficient representation of the probabilis-
tic information and the dependencies between the nodes, Morais et al.
(2019a,b) noticed that specifying the conditional probabilities can be
quite arbitrary when unobserved events enter the picture. They propose
to tackle this issue by considering instead a credal network, that allow
or sets of probability measures instead of a single one to be assessed on
ach node. In this manner, they consider a fully conservative (vacuous)
odel when conditioning must be done on an unobserved event, and
roceed with the standard algorithms for credal networks to obtain a
et of estimations for the HEP. The use of credal networks is in line with
ther authors that advocated the use of tools from the imprecise prob-
bility theory in reliability engineering, such as Zhang et al. (2018),
ho proposed the use of a credal network approach in the analysis of
aritime accidents, or (Coolen, 1997; Coolen and Newby, 1994), who
roposed the use of the imprecise Dirichlet model in reliability analysis.

While we agree with Morais et al. that a credal network approach is
he path to follow in situations of imprecise or missing information, we
hink that the vacuous approach they consider has a couple of issues
hat may be overcome using tools from imprecise probability theory.
n the one hand, the results obtained are not necessarily robust: by

ust modifying one observation from the dataset we can eliminate all
ero probabilities from the conditioning events, and this would lead
o much more precise estimations of the HEP. On the other hand, the
pproach alternates between a purely frequentist non-robust approach
when there is some observation about the conditional parent nodes in
he credal network) with an overly cautious subjective approach (when
here is not) in the estimation of the probabilities.

We believe that these two issues can be addressed more efficiently
y considering a robust approach based on distortion or neighbourhood
odels (Destercke et al., 2022; Montes et al., 2020a,b), which are sets of
robabilities built around a probability measure in terms of a distortion
arameter and a distance function. They include as particular cases
ome of the usual models employed in robust statistics (Huber, 1981)
uch as the linear vacuous model (Walley, 1991) or the Kolmogorov
odel, among others, and they are connected to the mathematical
heory of imprecise probabilities (Walley, 1991). Moreover, in some cases
hey allow to overcome the issues related to conditioning on events of
ero probability.

Credal networks have been very scarcely employed in the context of
RA, with the few exceptions discussed earlier; this paper contributes

o illustrate their usefulness in this framework and introduces the nov-
lty of using distortion models to give a robust model of the uncertainty
n each node.

The paper is organised as follows: after recalling the basics of
ayesian and credal networks (Section 2) and distortion models (Sec-
ion 3), we explain in Section 4 the use of credal networks by Morais
t al. in HRA, and our approach based on some types of distortion
odels. Next, we perform a comparison of the estimations obtained

etween the two approaches in Section 5. Our final comments are given
n Section 6.

. Bayesian and credal networks

.1. Bayesian networks

One efficient graphical representation of the uncertainty associated
ith a complex experiment is by means of Bayesian networks (Pearl,

1988), which are probabilistic graphical models encoding the depen-
dencies between the different variables as well as the associated (con-
ditional) probability distributions.

Formally, a Bayesian network is a directed acyclic graph where the
nodes correspond to the variables {𝑋1,… , 𝑋𝑛}, and the edges represent
the dependencies between them. An edge 𝑋𝑖 → 𝑋𝑗 between two nodes

𝑖, 𝑋𝑗 (𝑖 ≠ 𝑗) means that there is conditional dependence between
he parent (𝑋𝑖) and the child (𝑋𝑗 ). The probabilistic information is

thus represented by means of the conditional distribution of each node,
2

o

Fig. 1. Example of the relationship between events.

given its parents, as well as the marginal distributions on the nodes
without parents. From this information, it is possible to derive the joint
distribution using the law of total probability and the assumptions of
conditional independence.

Fig. 1 shows an example of a Bayesian network with two parents
(𝑋𝐴 and 𝑋𝐵 , in green) and one child (𝑋𝐶 , in blue), the three of them
inary variables indicating the occurrence, or not, or the events 𝐴,

and 𝐶, respectively. The edges 𝑋𝐴 → 𝑋𝐶 and 𝑋𝐵 → 𝑋𝐶 show a
onditional dependence of 𝑋𝐶 on the values of the parents 𝑋𝐴 and 𝑋𝐵 ,
.e., the occurrence of 𝐶 depends on the occurrence of the events 𝐴 and
. However, since there is no arc between 𝑋𝐴 and 𝑋𝐵 , events 𝐴 and 𝐵
re assumed to be statistically independent.

In this example, we must specify the probability of occurrence of
, 𝑃 (𝑋𝐴 = 𝐴), and that of 𝐵, 𝑃 (𝑋𝐵 = 𝐵). Next, we must specify the
onditional probability of occurrence of 𝐶 given the occurrence or not
f the parents, 𝐴 and 𝐵. This would allow us for instance to obtain

(𝑋𝐴 = 𝐴,𝑋𝐵 = 𝐵,𝑋𝐶 = 𝐶) =

(𝑋𝐶 = 𝐶|𝑋𝐴 = 𝐴,𝑋𝐵 = 𝐵)𝑃 (𝑋𝐵 = 𝐵)𝑃 (𝑋𝐴 = 𝐴),

sing the independence between 𝐴 and 𝐵.

.2. Credal networks

While Bayesian networks provide an efficient tool for managing
he probabilistic information associated with an experiment, there are
ituations where this information may be imprecisely or ill-specified,
ue for instance to the existence of missing data or conflicting sources
f information. This has given rise to a number of models, usually
eferred to under the common term imprecise probabilities (Augustin
t al., 2014).

The question naturally arises of whether it is possible to extend
he ideas behind Bayesian networks to be able to deal also with these
cenarios of imprecise information. This has produced the model called
redal networks, from the seminal work by Lamata and Moral (1990)
s well as the works in Cano et al. (1993), Cozman (2000), Fagiuoli
nd Zaffalon (1998); we refer to Mauá and Cozman (2020) for a recent
urvey on the topic.

A credal network is a generalisation of a Bayesian network where,
nstead of considering (conditional) probability measures, the uncer-
ainty is represented using a closed and convex set of probability
easures, or credal set (Levi, 1980). This credal set contains the prob-

bility measures which are compatible with the available information
bout the probability distribution of the random variable 𝑋. A credal
et, usually denoted by (𝑋), may be equivalently represented by
eans of its lower and upper envelopes1 𝑃 and 𝑃 , given by:

𝑃 (𝐴) = min{𝑃 (𝐴) ∣ 𝑃 ∈ (𝑋)}, (1)

𝑃 (𝐴) = max{𝑃 (𝐴) ∣ 𝑃 ∈ (𝑋)}

or each event 𝐴. These two functions are conjugate, in the sense that
(𝐴)+𝑃 (𝐴𝑐 ) = 1, and therefore it suffices to work with any of the two.

1 These are called coherent lower and upper probabilities in the terminology
f (Walley, 1981).
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The possibility of conditioning on sets of (lower) probability zero
leads to a number of different updating procedures. Out of these, the
most informative one is referred to as the regular extension (de Campos
et al., 1990; Fagin and Halpern, 1991), and is applicable when the
conditioning set has positive upper probability. In that case, we can
update the credal set by considering:

(𝑋 ∣ 𝐵) = {𝑃 (⋅ ∣ 𝐵) ∣ 𝑃 ∈ (𝑋), 𝑃 (𝐵) > 0}.

That is, we apply Bayes’ rule to all the probability measures in the
credal set that give strictly positive probability to the conditioning
event.

When 𝑃 (𝐵) > 0, the regular extension coincides with what Pe-
er Walley called the natural extension in Walley (1991). However, if
= 𝑃 (𝐵) < 𝑃 (𝐵), the natural extension will be vacuous: (𝑋|𝐵)

ill be the set of all probability measures on 𝐵, while the regular
xtension will produce in general a more informative model. We refer
o Miranda (2009), Miranda and Montes (2015) for a detailed study of
he connection between the regular and natural extensions.

Several algorithms have been proposed over the last 30 years for
ealing with credal networks. See for example (Antonucci et al., 2013;
ano et al., 2004; de Campos and Cozman, 2007; Mauá et al., 2012b) as
ell as (Cabañas et al., 2016; De Bock et al., 2014; Mauá et al., 2012a)

or algorithms in the context of decision making.

. Credal networks with distortion models

Credal networks allow accounting for imprecision in a Bayesian
etwork using closed and convex sets of (conditional) probability mea-
ures. However, working general credal sets may be involved and
omputationally expensive: for instance, some inferences with credal
ets require determining their set of extreme points, which may have an
nfinite number of elements or, even when it is finite, may be difficult
o determine. For this reason, in this paper we propose to consider
articular cases of credal sets that will be easier to handle, and that
re associated with distortion models (Montes et al., 2020a,b).

Consider a probability measure 𝑃0, a distorting function 𝑑 and a
distortion factor2 𝛿. These elements allow us to consider the credal set
of those probability measures differing at most 𝛿 from 𝑃0:
𝛿
𝑑 (𝑃0) = {𝑃 probability measure ∣ 𝑑(𝑃 , 𝑃0) ≤ 𝛿}.

aking lower and upper envelopes on events, this set determines a
ower and upper probability 𝑃 𝑑 , 𝑃 𝑑 (see Eq. (1)); more generally, for

any function 𝑓 ∶  → R it allows us to determine lower and upper
expectation operators3:

𝑃 𝑑 (𝑓 ) = min
{

𝑃 (𝑓 ) ∣ 𝑃 ∈ 𝐵𝛿
𝑑 (𝑃0)

}

,

𝑃 𝑑 (𝑓 ) = max
{

𝑃 (𝑓 ) ∣ 𝑃 ∈ 𝐵𝛿
𝑑 (𝑃0)

}

,

where 𝑃 (𝑓 ) is understood as the expectation of 𝑓 with respect to 𝑃 .
Whenever 𝑑 is convex and continuous (Montes et al., 2020a, Prop.1),
it is possible to obtain 𝐵𝛿

𝑑 (𝑃0) as:

𝐵𝛿
𝑑 (𝑃0) = {𝑃 probability measure ∣ 𝑃 (𝑓 ) ≥ 𝑃 𝑑 (𝑓 ) ∀𝑓}.

Distortion models appear naturally in many different scenarios. Under
a frequentist approach, we may estimate 𝑃0 from the available data
and let 𝛿 be related to the proportion of noisy data or the distance to
the model up to which we want to be robust; within decision making,
an expert may elicit its (subjective) probability measure 𝑃0 and 𝛿 may
epresent her credibility; and from a behavioural point of view, we can

2 While some distortion models are defined by transforming directly a
robability measure into a lower probability, it can be checked (Montes et al.,
020a) that they can be embedded into the above, arguably more intuitive,
ormalism.

3 These are called lower and upper previsions in the imprecise probability
3

iterature (Walley, 1991). p
sometimes interpret 𝑃 𝑑 , 𝑃 𝑑 as supremum buying and infimum selling
prices for gambles. This has led to the proposal of many different
distortion models, such as the pari mutuel (Montes et al., 2019; Pe-
lessoni et al., 2010; Walley, 1991), the constant odds ratio (Benavoli
and Zaffalon, 2013; Walley, 1991), the linear vacuous (Huber, 1981),
the total variation (Herron et al., 1997) or the distortion models based
on the Kolmogorov or 𝐿1 distances (Montes et al., 2020b).

The vast amount of distortion models renders important the exis-
tence of comparison criteria that allow selecting the most appropri-
ate one in each scenario. We may consider the following desirable
properties:

(a) That the distortion model is determined by its values 𝑃 𝑑 ({𝑥}),
𝑃 𝑑 ({𝑥}) on singletons, and therefore that it is computationally
simple.4

(b) That it satisfies 𝑃 (𝐵) > 0 for any event 𝐵, allowing to avoid
the problem of conditioning on sets of probability zero. In this
respect, we are assuming throughout that there is logical indepen-
dence between the factors, meaning that any combination of them
is assumed to be possible. In the finitary context of this paper,
it makes sense then that an imprecise model gives zero lower
probability to an event that has not been observed but also a
strictly possible upper probability. Note also that if the estimation
of the model has been done with a large dataset, the size of this
dataset can be taken into account in the estimation of this upper
probability, by means of the distortion parameter 𝛿.

(c) That the conditional model belongs to the same family of distor-
tion models, i.e., the model is closed under conditioning.

(d) In that case, that we avoid the phenomenon of dilation (Seidenfeld
and Wasserman, 1993), meaning that the distortion parameter of
the conditional model is not greater than that of the unconditional
one.

(e) That the set of probability measures 𝐵𝛿
𝑑 (𝑃0) is simple, in that it

has a small number of extreme points.
(f) That the lower probability 𝑃 satisfies the property of ∞-monoton-

icity, that allows us to interpret it in terms of multi-valued map-
pings (Dempster, 1967).

Finally, it is also worth analysing the amount of imprecision caused
by the distortion model, in terms of the comparison between the credal
sets 𝐵𝛿

𝑑 (𝑃0) for different distorting functions 𝑑 in terms of set inclusion,
once 𝛿 and 𝑃0 are fixed.

Table 1 establishes such a comparison, based on the work carried
out in Montes et al. (2020a,b).

Taking these results into account, in this work we have decided to
work with the linear vacuous model and the total variation model. Given
a probability measure 𝑃0 and a distortion factor 𝛿, the linear vacuous
model is defined as the coherent lower probability given by:

𝑃𝐿𝑉 (𝐴) =

{

(1 − 𝛿)𝑃0(𝐴) if 𝐴 ≠  .
1 if 𝐴 =  .

Its conjugate upper probability is given by:

𝑃𝐿𝑉 (𝐴) = 1 − 𝑃𝐿𝑉 (𝐴
𝑐 ) =

{

(1 − 𝛿)𝑃0(𝐴) + 𝛿 if 𝐴 ≠ ∅.
0 if 𝐴 = ∅.

ts associated credal set is given by:

(𝑃𝐿𝑉 ) = {(1 − 𝛿)𝑃0 + 𝛿𝑃 ∣ 𝑃 probability measure}.

his allows us to give a robust interpretation of the linear vacuous
odel: we consider that with probability 1 − 𝛿 the ‘‘true’’ probability
easure is 𝑃0, and with probability 𝛿 any other probability measure is

possible.

4 In the language of imprecise probabilities, this means that the model is a
robability interval (de Campos et al., 1994).
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Table 1
Comparison of the distortion models. (PMM: Pari-mutuel model; LV: Linear-vacuous; COR: constant odds ratio; TV: total
variation: K: Kolmogorov; 𝐿1: neighbourhood model associated with the 𝐿1 distance). N.A.=Not applicable; 1-Worst, 5-Best.
Criterion Distortion model

PMM LV COR TV K 𝐿1

Determined by values on singletons? YES YES NO NO NO NO
𝑃 (𝐵) > 0 ∀𝐵 ≠ ∅? NO YES NO YES YES YES
The conditional model belongs to the same YES YES YES YES NO NOfamily of distortion models?
Avoids dilation? NO NO YES NO N.A. N.A.
Order in terms of fewer extreme points 3 5 1 4 3 Open problem
𝑃 ∞-monotone? NO YES NO NO YES NO
Order of imprecision for 𝑃0 , 𝛿 fixed 4 4 5 3 2 4
a

e
a
f
o

t

On the other hand, the total variation model is defined as the
onjugate coherent lower and upper probabilities:

𝑇𝑉 (𝐴) = max{𝑃0(𝐴) − 𝛿, 0},

𝑃 𝑇𝑉 (𝐴) = min{𝑃0(𝐴) + 𝛿, 1} ∀𝐴 ⊆  .

This model has a robust interpretation: the credal set (𝑃 𝑇𝑉 ) is formed
y those probability measures at a TV-distance of at most 𝛿 from 𝑃0.

As we can see from Table 1, these distortion models possess a
umber of interesting properties. Among them, they both give strictly
ositive upper probability to any event 𝐵, allowing to compute the con-
itional models by means of regular extension. For the linear vacuous,
he updated model is given by:

𝐿𝑉 (𝐴 ∣ 𝐵) =

{

(1 − 𝛿𝐿𝑉 )𝑃0∣𝐵(𝐴), if 𝐴 ⊂ 𝐵,
1, if 𝐴 = 𝐵,

(2)

where 𝑃0∣𝐵(𝐴) = 𝑃0(𝐴 ∣ 𝐵) and

𝛿𝐿𝑉 = 𝛿
(1 − 𝛿)𝑃0(𝐵) + 𝛿

= 𝛿
𝑃𝐿𝑉 (𝐵)

, (3)

or any 𝐴 ⊆ 𝐵 whenever 𝑃0(𝐵) > 0, while 𝑃𝐿𝑉 (𝐴) = 0 for any 𝐴 ⊂ 𝐵
when 𝑃0(𝐵) = 0. This means that the conditional model 𝑃𝐿𝑉 (⋅ ∣ 𝐵) also
belongs to the family of linear vacuous models.

For the total variation model, the updated model is given by:

𝑃 𝑇𝑉 (𝐴 ∣ 𝐵) = 𝑃0∣𝐵(𝐴) −
𝛿

𝑃0(𝐵)
= 𝑃0∣𝐵(𝐴) − 𝛿𝑇𝑉 , (4)

for any 𝐴 ⊆ 𝐵 whenever 𝑃0(𝐵) > 0, while 𝑃 𝑇𝑉 (𝐴) = 0 for any 𝐴 ⊂ 𝐵
when 𝑃0(𝐵) = 0. This means that 𝑃 𝑇𝑉 (⋅ ∣ 𝐵) is again a total variation
model when 𝑃0(𝐵) > 0, being vacuous otherwise.

Even if both the linear vacuous and the total variation models are
preserved under conditioning, on the downside they endure the phe-
nomenon of dilation: in the conditional model the distortion parameter
𝛿 is greater than in the unconditional one, and therefore the updated
model is more imprecise than the initial one for both the linear vacuous
and total variation models.

4. Estimation of Human Error Probabilities

In this section we summarise the work carried out in Morais et al.
(2019a,b), Moura et al. (2016) to estimate human error probabilities.
We begin (Section 4.1) by recalling the MATA-D dataset built in Moura
et al. (2016) as well as the procedures carried out in Morais et al.
(2018) using Bayesian networks (Section 4.2) and in Morais et al.
(2019a,b) using credal networks (Section 4.3). Finally, we introduce
our proposal in Section 4.4: the use of distortion models in order to
overcome some of the shortcomings of the papers above.

4.1. MATA-D dataset

The lack of complete, unified and rigorous datasets containing infor-
mation about major accidents is an obstacle that hinders the accuracy of
a human reliability analysis. To address this issue, Moura et al. (2016)
created the Multi-Attribute Technological Accidents Dataset (MATA-D in
4

e

what follows), containing information about 238 major accidents in
industry (refine, oil and gas, . . . ) reported from reliable sources such
as governments or regulators.5 For each of the 238 catastrophes, 53
factors that could have had an influence were analysed. These were
split into three main categories following the CREAM taxonomy (Holl-
nagel, 1998): man, organisational and technological, each of them with

number of subcategories (see Figures 2–4 in Moura et al. (2016)).
A descriptive analysis of the MATA-D dataset can be found in Moura

t al. (2016), from which a number of observations stand out. First of
ll, the vast majority of accidents are due to the combination of factors
rom different categories: for instance, in merely 0.84% of the accidents
nly errors from the factors included in the man group were involved,

whereas in 47.48% of the accidents there was a combination of factors
from the man, organisational and technological groups. This is in line
with the Swiss Cheese Model mentioned in Section 1. Secondly, at least
one error from the man category appeared in 57.14% of the cases, for
82.35% and 95.38% in the case of technological or organisational issues,
meaning that the former, while frequent, are less common than latter
two categories. And finally, design failures were detected in 157 of the
238 accidents, and in 72.80% of the accidents where at least one factor
from the man group was involved.

On the other hand, a deeper statistical analysis of the MATA-D
dataset, based on clustering and data mining procedures, was car-
ried out in Moura et al. (2017a,b). It split the accidents into four
clusters, taking into account the factors involved in each of them.
Recently, (Morais et al., 2022b) applied different machine learning
tools to the MATA-D dataset to identify human error and to find
interactions between the factors.

4.2. Bayesian network approach

Following (Mkrtchyan et al., 2015), Morais et al. constructed a
Bayesian network summarising the interactions between the different
factors (Morais et al., 2018). For this aim, each factor is represented
by a node, and the arcs represent the significant conditional depen-
dences between them, based on the analysis performed in Moura et al.
(2017a,b). A simplified version of the Bayesian network including 15 of
the 53 factors was considered in Morais et al. (2019b). It is represented
in Fig. 2, where the colour of each node is related to the type of factor.
The meaning of these 15 factors is summarised Table 2.6

The estimation of the probability distribution in each node is made
by means of the MATA-D dataset. In the case of nodes without par-
ents, the unconditional probability distribution is estimated using the
relative frequency. For instance, since design failure occurred in 157
accidents out of 238, the estimation of its probability of occurrence is
0.6597. For those nodes with predecessors in the graph, the conditional

5 This dataset is freely available at http://datacat.liverpool.ac.uk/1018/.
6 While we are reproducing here the 15 factors in Morais et al. (2019b),

he full list of possible PSF can be found in Morais et al. (2022b) or in Moura
t al. (2015).

http://datacat.liverpool.ac.uk/1018/
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Fig. 2. Bayesian network representing the connection between the considered factors.
Source: From (Morais et al., 2019b, Figure 3).
Table 2
Classification of the factors considered in the Bayesian network in Fig. 2.

Organisational Technological Person-related Human
factors factors factors Errors

Design failure Inadequate procedure Distraction Faulty diagnosis
Inadequate quality control Equipment failure Cognitive bias Inadequate plan

Maintenance failure Wrong reasoning
Ambient conditions Observation missed

Communication failure
Insufficient knowledge

Inadequate task allocation
m
e

probabilities are estimated using also the conditional relative frequen-
cies. For example, equipment failure has only one parent, maintenance
ailure, and using the dataset it is estimated that the probability of
quipment failure when there is maintenance failure is 0.675, while the

probability of equipment failure when there is not maintenance failure
is 0.484.

This approach has in our view a couple of shortcomings. The first
one is already mentioned in Morais et al. (2019b): if for a given node
the relative frequency of a combination of values of its parents is zero
(that is, if that combination has not been observed in the dataset),
then it is not possible to obtain any conditional relative frequency.
This is for instance the case with the factor inadequate plan, that has
four parents; there is no accident in the MATA-D dataset combining
the occurrence of distraction and wrong reasoning but without errors in
nsufficient knowledge and inadequate task allocation; we refer to Table 5
ater on where the full conditional probability table for the factor
nadequate plan is shown.

The second issue is the lack of robustness of the estimated probabili-
ies. Even if the MATA-D dataset contains information about 238 major
ccidents, the probabilities obtained from the dataset are estimated
rom the relative frequencies. Since these involve rare events, changing
he absolute frequency in one unit may have a significant impact in the
ubsequent estimations. This is particularly relevant when an estimated
robability changes from zero to a strictly positive number, because
n the latter case we will be able to compute conditional relative
requencies.

.3. Credal network approach

The first of these issues was tackled in Morais et al. (2019a,b,
022a) by using a credal network. Specifically, they used the rela-
ive frequencies of the MATA-D dataset to estimate the probability
istributions in the nodes without parents and the conditional prob-
bility distributions in those cases where there were observations of
5

he combination of values for the parents. For those cases where there
were no observations, they used the [0,1] interval as the estimation
of the conditional probability. This procedure leads then to a network
where in each node we have possibly a set of (conditional) probability
measures, that is, a credal network.

Even if we agree with the benefits of using a credal network-based
approach, we believe that this approach has a number of shortcomings:
first of all, it does not address the lack of robustness, in the sense
that the modification of one observation may have a significant impact
in the estimations, particularly because the conditional probability
measure may change from being the [0,1] interval to an exact relative
frequency7; secondly, the approach combines a very conservative ap-
proach in some nodes and a precise approach in others, while it would
be better to have a unified principle; and finally, from a technical point
of view the use of the vacuous model [0,1] is equivalent to applying
what is called natural extension in the imprecise probability literature,
while other, more informative options, can also be applied.

4.4. Our proposal: distortion model approach

Our proposal in this paper is to use distortion models to overcome
the issues discussed above. We follow a two-step approach:

(i) First of all, we consider a distortion of the precise uncondi-
tional probability measure 𝑃0 that is estimated from the MATA-D
dataset. Taking into account the discussion in Section 3, we shall
use the linear vacuous and total variation models with some fixed
distortion parameter 𝛿. These will give rise to a credal set , or
equivalently to a lower and an upper probability 𝑃 , 𝑃 .

7 Note that this problem may also be overcome by considering an imprecise
odel that takes into account the amount of data used in the estimation in

ach node, as proposed recently by Morais et al. (2021) using c-boxes (Ferson,
2020).
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Table 3
Full conditional probability tables for the factors Wrong Reasoning (left) and Faulty Diagnosis (right) for the direct estimation from the dataset
(frequentist), the approach in (Morais et al., 2019a,b, 2022a) and the LV and TV approaches with distortion parameter 𝛿 = 0.001.

Parent Cognitive True False
bias

Wrong
Reasoning

Frequentist 0.294 0.0995
True Morais et al. 0.294 0.0995

LV (𝛿 = 0.001) [0.2899,0.3039] [0.0994,0.1005]
TV (𝛿 = 0.001) [0.2800,0.3080] [0.0984,0.1006]

Parents Inadequate True True False False
Plan

Cognitive True False True False
Bias

Faulty
Diagnosis

Frequentist 0.5 0.155 0.444 0.065
True Morais et al. 0.5 0.155 0.444 0.065

LV (𝛿 = 0.001) [0.4839,0.5161] [0.1546,0.1571] [0.4330,0.4578] [0.0649,0.0668]
TV (𝛿 = 0.001) [0.4703,0.5298] [0.1525,0.1575] [0.4180,0.4708] [0.0631,0.0669]
Table 4
Estimation of the HEP with the linear vacuous model for different values of 𝛿 (FD: Faulty Diagnosis, WR: Wrong Reasoning,
OM: Observation Missed, IP: Inadequate Plan (IP)).
Estimations with the linear vacuous model

𝛿 FD WR OM IP

0.00001 [0.13005,0.1301] [0.11338,0.11341] [0.15546,0.15562] [0.10344,0.10361]
0.00005 [0.13,0.13023] [0.11337,0.11347] [0.15541,0.15618] [0.10336,0.10423]
0.0001 [0.12993,0.1304] [0.11335,0.11357] [0.15537,0.1569] [0.10323,0.105]
0.00015 [0.12986,0.13057] [0.11333,0.11366] [0.15531,0.15765] [0.10319,0.10579]
0.0002 [0.1298,0.13074] [0.11331,0.11375] [0.15526,0.1583] [0.10302,0.10657]
0.0003 [0.12966,0.13108] [0.11327,0.11392] [0.15518,0.1597] [0.10274,0.10825]
0.0004 [0.12953,0.13142] [0.11322,0.1141] [0.15485,0.16139] [0.10254,0.10985]
0.0005 [0.12939,0.13176] [0.11318,0.11428] [0.15471,0.16279] [0.10261,0.11127]
0.0006 [0.12926,0.1321] [0.11314,0.11446] [0.1547,0.16381] [0.10243,0.11279]
0.0007 [0.12912,0.13245] [0.1131,0.11464] [0.15455,0.16504] [0.10219,0.11482]
0.0008 [0.12899,0.13279] [0.11306,0.11482] [0.1542,0.16676] [0.102,0.1159]
0.0009 [0.12885,0.13313] [0.11302,0.115] [0.15414,0.16825] [0.10196,0.11743]
0.001 [0.12872,0.13347] [0.11298,0.11518] [0.15406,0.16874] [0.10171,0.11932]

Result in 0.13 0.113 [0.155,0.168] [0.103,0.109](Morais et al., 2019b)
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(ii) Secondly, the conditional model in each node with predecessors
in the network shall be obtained by means of regular extension
(Eq. (2) for the linear vacuous and (4) for the total variation
model).

Note then that in step (i) we are adding imprecision to our model,
hile in step (ii) we are making it in some cases more precise: as
e said before, when 𝑃0(𝐵) = 0 Morais et al. consider the vacuous

conditional model on 𝐵 (that is, the set of values for 𝑃0(𝐴|𝐵) is the [0, 1]
interval for any proper subset 𝐴 of 𝐵); however, since by construction
he linear vacuous model satisfies 𝑃𝐿𝑉 (𝐵) > 0 for any event 𝐵 ≠
∅, we can apply regular extension, that will lead in general to an
interval

[

𝑃𝐿𝑉 (𝐴|𝐵), 𝑃𝐿𝑉 (𝐴|𝐵)
]

that is strictly included in [0, 1]. The
same comment applies to the total variation model, which also satisfies
𝑃 𝑇𝑉 (𝐵) > 0 for any 𝐵 ≠ ∅. Whenever 𝑃0(𝐵) > 0, the updated total
ariation model also gives rise to a proper subinterval of [0,1].

This approach makes the estimations of the probabilities involved
n the model more robust, and the extent of this robustness can be
easured in terms of the parameter 𝛿. It allows us moreover to avoid

he presence of zero probabilities, that, under the frequentist approach
onsidered in Morais et al. (2019a,b) appear as soon as a combination
f factors was not observed in any of the 238 accidents: in our method,
or any such event we will obtain an interval of probabilities [0, 𝛿] that
e can update by means of regular extension.

. Comparative analysis

Using the MATA-D dataset, the Bayesian network represented in
ig. 2 and taking the linear vacuous and total variation models, we
ave performed a comparative analysis with the approach in Morais
6

t al. (2019b). For the numerical computations we have used the
pen Cossan Software (Patelli et al., 2018) with the credal network

oolbox (Tolo et al., 2018). To illustrate the comparison, we consider
wo cases, where the approach by Morais et al. gives precise and
mprecise estimations, respectively.

.1. Faulty diagnosis and wrong reasoning

We start considering the factors faulty diagnosis (FD) and wrong
easoning (WR). Their respective full conditional probability tables are
iven in Table 3 for the frequentist estimation and the estimations using
he approach by Morais et al. and LV approach with 𝛿 = 0.001. As
t can be seen in Fig. 2, the factor WR only has one parent: cognitive
bias. In the MATA-D dataset, there are both observations where this
factor is present and absent, meaning that it is possible to derive the
conditional probabilities from the unconditional model using Bayes’
rule. This means that in this case the approach in Morais et al. (2019b)
gives a precise estimation of the presence of the factor WR in the
accident. The same happens for the factor FD: even if this factor has
several parents, there is enough information in the MATA-D dataset
for applying Bayes’ rule. These values are reported in the last row in
Tables 4 and 6

Tables 4 and 6 also give the interval of lower and upper probabilities
for the probability of error for FD and WR for different values of
the distortion factor 𝛿. Looking at these values, we observe that the
imprecision obtained using the linear vacuous model is rather small:
the difference between the upper and lower probabilities is smaller than
0.0025 (FD) and 0.0011 (WR) for 𝛿 ≤ 0.005. The imprecision increases
when considering the total variation model: it is approximately twice
the imprecision of the linear vacuous model approach.
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Fig. 3. Graphical representation of the estimated HEP (Faulty Diagnosis (FD), Wrong Reasoning (WR), Observation Missed (OM) and Inadequate Plan (IP)) using the approach
from (Morais et al., 2019a,b) (in red), the linear vacuous model (in blue) and the total variation model (in green). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
5.2. Observation missed and inadequate procedure

We now consider two other factors: observation missed (OM) and
inadequate plan (IP). The full conditional probability tables are given
in Table 5 for the frequentists estimation and the estimations using the
approach by Morais et al. and LV and TV approaches with 𝛿 = 0.001.
Both factors have four parents and, in contrast with WR and FD, here it
is not always possible to apply Bayes’ rule to estimate the conditional
probabilities because some combinations of values of the parents have
not been observed in the dataset. In those cases, the approach in Morais
et al. (2019b) uses the vacuous model, and the combination of all the
values produces the lower and upper probabilities in the last row of
Tables 4 and 6.

These tables also show our estimation for the error probabilities
of these factors for different values of the distortion factor 𝛿. Note
that, while these intervals have always a non-empty intersection, they
neither include nor are included in general in the one obtained in the
approach by Morais et al.

The graphical representation of the results obtained with the linear
vacuous and total variation models can be seen in Fig. 3.

5.3. Discussion

The results shown in Tables 4 and 6 for the linear vacuous and total
variation models, respectively, or the graphical representation in Fig. 3,
suggest that the distortion model based approach is an interesting and
robust alternative for the estimation of HEP. There are a number of
reasons supporting our claim.

First of all, the estimations obtained are consistent with those
in Morais et al. (2019b). It can be seen that the precise estimations
(for FD or WR) are either included in the intervals determined by the
lower and upper probabilities or, for very small values of 𝛿, the precise
estimation from Morais et al. (2019b) is very close to the lower bound
of the interval probability. For the interval estimations (OM or IP), the
interval probabilities obtained in Morais et al. (2019b) and the ones
obtained using the linear vacuous or the total variation model are quite
similar, and in particular they are never disjoint; we observe also that
there is not in general a relation of inclusion between the intervals.
7

Secondly, as we can see from the detailed studies of the distortion
models in Destercke et al. (2022), Montes et al. (2020a,b), the esti-
mations obtained with the total variation model are uniformly more
imprecise than those obtained with the total variation model. This
means that for obtaining a similar imprecision, the total variation
approach requires a smaller distortion parameter.

Thirdly, regarding the interval estimations (OM and IP), it should
be mentioned that the lower bounds obtained using the linear vacuous
model and the approach in Morais et al. (2019b) are quite similar for all
the values considered for 𝛿. Nevertheless, when considering the upper
bound, the linear vacuous approach gives a tighter estimation than the
approach in Morais et al. (2019b) for values of 𝛿 ≤ 0.0005. There is an
intuitive reason behind this fact: in the approach of Morais et al. when
there is not enough information to apply Bayes’ rule, they assign an
interval probability of [0,1]. If we compare it with the one determined
by our approach, usually the value 0 will not be very distant from the
lower bound given by the linear vacuous model. However, the upper
probability 1 will be substantially larger than the upper probability
determined by the conditional linear vacuous model, and this is what
eventually leads to a too large upper estimation of the HEP for OM and
IP. As we explained in previous sections, the vacuous model (the [0,1]
interval) adds too much imprecision in the model, and this is a problem
that can be easily overcome with the distortion based approach.

In spite of these positive comments regarding the distortion based
approach, a natural criticism would be related to the appropriate
election of the distortion parameter 𝛿. Of course, choosing the adequate
distortion parameter is the crucial point of this approach.

Indeed, the adequate choice of the distortion parameter has also
been analysed in a number of other applications of distortion mod-
els (see for instance (Antonini et al., 2020) for the linear vacuous
or (Langer, 2017) for the total variation model). While we refer
to Montes et al. (2020a,b) for a general discussion of the interpretation
of 𝛿 in the case of the linear vacuous and total variation models,
in the specific context of HRA we believe that the election of the
parameter should be made by an expert taking into account different
facets: (i) we are estimating small probabilities, hence the amount of
imprecision we add to the model (directly related to 𝛿) should be

‘‘small’’. Note that any 𝛿 > 0 allows to give strictly positive upper
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Table 5
Full conditional probability tables for the factors Observation Missed (above) and Inadequate Plan (below) for the direct estimation from the dataset (frequentist), the approach in (Morais et al., 2019a,b, 2022a) and the LV and TV
approaches with distortion parameter 𝛿 = 0.001. Note: T, F and ? denote true, false and unknown, respectively.

Parents

Equipment Failure T T T T T T T T F F F F F F F F
Ambient Conditions T T T T F F F F T T T T F F F F
Faulty Diagnosis T T F F T T F F T T F F T T F F
Inadequate Plan T F T F T F T F T F T F T F T F

Observation
Frequentist ? ? 0 0.125 0 0.333 0.125 0.1 ? ? ? 0.125 0.25 0.385 0.375 0.149

Missed
True Morais et al. [0,1] [0,1] 0 0.125 0 0.333 0.125 0.1 [0,1] [0,1] [0,1] 0.125 0.25 0.385 0.375 0.149

LV (𝛿 = 0.001) [0,0.2241] [0,0.0334] [0,1] [0.1213,0.1510] [0,1] [0.3267,0.3466] [0.1213,0.1510] [0.0998,0.1021] [0,0.2756] [0,0.0411] [0,1] [0.1213,0.1510] [0.2351,0.2946] [0.3776,0.3959] [0.3638,0.3936] [0.1482,0.1514]
TV (𝛿 = 0.001) [0,0.2241] [0,0.0334] [0,1] [0.0953,0.1547] [0,1] [0.3036,0.3631] [0.0953,0.1547] [0.0976,0.1024] [0,0.2756] [0,0.0411] [0,1] [0.0953,0.1547] [0.1905,0.3095] [0.3663,0.4029] [0.3453,0.4047] [0.1454,0.1519]

Parents

Wrong Reasoning T T T T T T T T F F F F F F F F
Inadequate Task

T T T T F F F F T T T T F F F F
Allocation

T F F

Insufficient
T T F F T T F F T T F F T T F F

Knowledge
F T F

Distraction T F T F T F T F T F T F T F T F

Inadequate
Frequentist 0.5 0 ? 0.2 ? 0.333 ? 0 0.667 0.116 0.2 0.072 0 0.188 0 0.056

Plan
True Morais et al. 0.5 0 [0,1] 0.2 [0,1] 0.333 [0,1] 0 0.667 0.116 0.2 0.072 0 0.188 0 0.056

LV (𝛿 = 0.001) [0.4405,0.5595] [0,0.0149] [0,0.3830] [0.1902,0.2393] [0,0.3830] [0.3069,0.3862] [0,0.5764] [0,0.2380] [0.6138,0.6931] [0.1156,0.1212] [0.1905,0.2381] [0.0722,0.0757] [0,0.2380] [0.1847,0.1996] [0,0.0793] [0.0561,0.0595]
TV (𝛿 = 0.001) [0.3810,0.6190] [0,0.0149] [0,1] [0.1524,0.2476] [0,0.3830] [0.2540,0.4127] [0,0.5764] [0,0.2380] [0.5873,0.7460] [0.1107,0.1218] [0.1524,0.2476] [0.0690,0.0759] [0,0.2380] [0.1726,0.2024] [0,0.0793] [0.0530,0.0597]
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Table 6
Estimation of the HEP with the total variation model for different values of 𝛿 (FD: Faulty Diagnosis, WR: Wrong Reasoning,
OM: Observation Missed, IP: Inadequate Plan (IP)).
Estimations with the total variation model

𝛿 FD WR OM IP

0.00001 [0.13002,0.13011] [0.11337,0.11341] [0.1554,0.15564] [0.10336,0.10364]
0.0005 [0.12983,0.1303] [0.11328,0.1135] [0.15508,0.15628] [0.10298,0.10435]
0.0001 [0.12959,0.13054] [0.11317,0.11361] [0.15464,0.15713] [0.10254,0.10521]
0.00015 [0.12935,0.13078] [0.11306,0.11372] [0.15418,0.15782] [0.10191,0.10619]
0.0002 [0.12912,0.13191] [0.11295,0.11383] [0.15368,0.15865] [0.10157,0.10699]
0.0003 [0.12865,0.13149] [0.11273,0.11405] [0.15276,0.16061] [0.10055,0.10874]
0.0004 [0.12817,0.13196] [0.11251,0.11427] [0.15193,0.16204] [0.099333,0.11092]
0.0005 [0.1277,0.13244] [0.11229,0.11449] [0.15097,0.16352] [0.098504,0.11249]
0.0006 [0.12723,0.13292] [0.11208,0.11471] [0.15033,0.1651] [0.097586,0.11414]
0.0007 [0.12676,0.1334] [0.11186,0.11493] [0.1497,0.16677] [0.096944,0.11597]
0.0008 [0.12629,0.13388] [0.11164,0.11515] [0.14908,0.16756] [0.095972,0.11806]
0.0009 [0.12582,0.13435] [0.11142,0.11537] [0.14825,0.16918] [0.095247,0.1197]
0.001 [0.12535,0.13483] [0.11121,0.11559] [0.14667,0.1709] [0.09371,0.12108]

Result in 0.13 0.113 [0.155,0.168] [0.103,0.109](Morais et al., 2019b)
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probability to any combination of factor, capturing the assumption that
all the combinations are possible, even if some of them may be rather
improbable; (ii) the problem with the approach in Morais et al. appears
when there is not enough information to apply Bayes’ rule. This means
that there are events whose estimation in the sample is 0 (out of 238).
If such an event appears in the next observation, we would obtain
an estimation of 1/239, hence it seems natural to take a parameter
𝛿 smaller than that value (which gives 𝛿 ≤ 0.0042); in fact, this idea
f taking the sample size into account when considering the amount of
mprecision that is entered into the model is also present in the recent
ork by Morais et al. (2021); (iii) we should take into account that,
ven if both the linear vacuous and total variation models are preserved
nder conditioning, they both suffer from the problem of dilation. This
eans that the distortion parameter increases any time that we update

he model. Hence, the parameter 𝛿 should be small enough such that
fter updating the model a number of times, the distortion parameter is
till small enough. In order to control the dilation, a strategy could be
o fix the amount of imprecision in the updated models, and from this
mprecision derive, using Eqs. (3) or (4), the largest 𝛿 that assures that
fter conditioning we will always obtain an updated parameter smaller
han the fixed amount of imprecision.

All these comments led us to perform our analysis with different
alues of 𝛿 varying from 0.0001 to 0.001. In fact, we have already
rgued that for distortion factors 𝛿 ≤ 0.0005, the results from the linear

vacuous model are quite consistent with those in Morais et al. (2019b),
or even less imprecise. This goes in line with our previous comments:
choosing a distortion factor smaller than the inverse of the sample
size allows to obtain satisfactory results. If in addition the number of
times that the model must be updated is large, the expert may decrease
further to account for the dilation, as discussed earlier.

6. Conclusions

Our results show that the use of a distortion model can be used to
overcome the issues caused by conditioning on sets of probability zero
in the Bayesian network, while at the same time providing a robust
interpretation of the model. Moreover, the estimations are comparable
to those obtained by Morais et al. by means of a mixture of precise and
vacuous models, when the conditioning events have positive and zero
probability, respectively.

One of the fundamental ideas of the distortion model approach
proposed in this paper is that it allows to encompass the idea that
any combination of factors is possible, by giving it a positive upper
probability, even if this can be very small, considering the sample size,
the fact that it may have been so far unobserved (see for instance
Tables 3 and 5) and the value of the distortion parameter chosen.
9

However, this is not to say that our approach is without short-
comings. While the linear vacuous and total variation models have
many interesting properties, they also suffer from the phenomenon of
dilation, that means that the conditional models also belong to the same
family but are associated with a greater distortion parameter. It would
be interesting then to consider some alternative that is not affected by
this problem. Unfortunately, the constant odds ratio model, that is the
only dilation free in our comparative, does not guarantee in general
that all conditioning events have positive upper probability, which is
necessary if we want to apply the procedure of regular extension to
obtain the conditional models.

In addition, it would be interesting to deepen into our approach so
as to give some further guidelines about the choice of the distortion
parameter 𝛿 and its relationship with the imprecision in the estimation
of the probabilities of the different events. This would also allow us to
deepen in the comparison with the results of Morais et al.

As future lines of research, it would also be interesting to compare
our estimations with the model recently proposed by Morais et al.
(2021), where the transition between precise and imprecise conditional
probabilities in the nodes is made more gradual by introducing con-
fidence boxes. In this respect, one feature of our approach is that
distortion models can be used directly when the credal network in-
volves non-binary variables, and some of their properties, such as the
small number of extreme points of the associated credal set, are more
advantageous in that case; presumably, in such a case confidence boxes
may have to be replaced by other models such as 𝑝-boxes. In addition,
it would be interesting to apply the distortion based approach to the
whole network with the 53 factors considered in Morais et al. (2022b).

Finally, our approach advocates the estimation of the HEP from
the available data and the only input of the assessor is to introduce
the cautious parameter 𝛿. As argued before, this parameter should be
smaller than the inverse of the sample size and may also take into
account the number of times the model is updated. Nevertheless, there
are of course many interesting features in the models mentioned in the
introduction that may be interesting to incorporate in our model and
that should help to improve the estimations. A deeper analysis of this
matter is our main open task for the future.
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