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2 SUMMARY 

SUMMARY 

The intracellular distribution of a specific protein is essential for its function. Proper protein localization 

is therefore an essential biological process, regulated at many levels and central for eukaryotic 

compartments organization. Consequently, several methods have been established to globally profile 

proteomes at different subcellular regions. Many of these approaches rely on the different biochemical 

features of eukaryotic compartments to separate them and analyse their relative protein composition 

in parallel. In this study we assessed the protein distribution of HEK293 cells using BirA* proximity 

labelling activity and restricting its localization at cellular regions difficult to purified with traditional 

methods: the cytosol-facing sides of the endoplasmic reticulum, mitochondria, and plasma 

membranes. We obtained high-quality datasets for each of the compartment examined, both 

recapitulating the protein distribution known from literature and discovering new candidates at the 

investigated subcellular regions. Interestingly, we also identified proteins localizing at more than one 

subcellular compartment, providing useful insights on the protein composition shared by different 

organelles. 

Proteins with different biological activity were captured by our proximity labelling approach, such as 

metabolic enzymes and integral receptors. RNA-binding proteins (RBPs) were also found in our 

datasets, but the direct interactions between them and RNA molecules could not be validated using 

only BirA* biotinylation. To obtain an activity-based RBP profiling and assess the composition of 

protein binding to RNA in different cellular compartments, we developed the f-XRNAX protocol. It 

consists of UV-crosslinking, cellular fractionation and organic-phase enrichment of RBPs coupled with 

mass spectrometry. We recovered background-corrected proteomes for nuclei, cytoplasm and 

membranes of HEK293 cells. Protein domain analysis of peptides crosslinked to ribonucleotides 

showed an enrichment in known RNA-binding domains. We also determined the protein domains 

where the RNA-protein contacts occurred in vivo using enriched peptides profiles and reported some 

cases of differential domain usage of the same protein in two different compartments. Surprisingly, 

many non-canonical RBPs were identified in the membrane fraction, and their peptide profiles were 

enriched in regions with high density of intrinsically disordered regions, indicating a possibly weak 

interaction with RNA mediated by these non-structural motives. Lastly, we provided evidence of the 

differential binding to RNA of the same protein in different HEK293 compartments. 

In the second part of this thesis, we focused on the determination and quantification of newly 

transcribed RNAs at the single-cell level. The kinetics of RNA transcription, processing and degradation 

were until recently not measurable at the single-cell level. Thus, we have developed a novel approach 

(called SLAM-Drop-seq ) by adapting the published SLAM-seq method to single cells. We used SLAM-

Drop-seq to estimate time-dependent RNA kinetics rates of transcription and turnover for hundreds 
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of oscillating transcripts during the cell cycle of HEK293 cells. We found that genes regulate their 

expression with different strategies and have specific modes to fine-tune their kinetic rates along the 

cell cycle. 

 

ZUSAMMENFASSUNG  

Die intrazelluläre Verteilung eines bestimmten Proteins ist für seine Funktion von wesentlicher 

Bedeutung. Die korrekte Proteinlokalisierung ist daher ein wesentlicher biologischer Prozess, der auf 

vielen Ebenen reguliert wird und für die Organisation eukaryontischer Kompartimente von zentraler 

Bedeutung ist. Infolgedessen wurden mehrere Methoden entwickelt, um ein globales Profil der 

Proteome in verschiedenen subzellulären Regionen zu erstellen. Viele dieser Ansätze beruhen auf den 

unterschiedlichen biochemischen Merkmalen eukaryontischer Kompartimente, um diese zu trennen 

und ihre relative Proteinzusammensetzung parallel zu analysieren. In dieser Studie untersuchten wir 

die Proteinverteilung in HEK293-Zellen mit Hilfe der BirA*-Näherungsmarkierungsaktivität und 

beschränkten ihre Lokalisierung auf zelluläre Regionen, die mit herkömmlichen Methoden nur schwer 

zu reinigen sind: die dem Zytosol zugewandten Seiten des endoplasmatischen Retikulums, 

Mitochondrien und Plasmamembranen. Wir erhielten für jedes der untersuchten Kompartimente 

qualitativ hochwertige Datensätze, die sowohl die aus der Literatur bekannte Proteinverteilung 

rekapitulierten als auch neue Kandidaten in den untersuchten subzellulären Regionen entdeckten. 

Interessanterweise haben wir auch Proteine identifiziert, die in mehr als einem subzellulären 

Kompartiment lokalisiert sind, was nützliche Einblicke in die gemeinsame Proteinzusammensetzung 

der verschiedenen Organellen liefert. 

Proteine mit unterschiedlicher biologischer Aktivität wurden durch unseren Proximity-Labelling-Ansatz 

erfasst, wie z. B. Stoffwechselenzyme und integrale Rezeptoren. Auch RNA-bindende Proteine (RBPs) 

wurden in unseren Datensätzen gefunden, aber die direkten Wechselwirkungen zwischen ihnen und 

RNA-Molekülen konnten nicht allein durch BirA*-Biotinylierung validiert werden. Um ein 

aktivitätsbasiertes RBP-Profil zu erstellen und die Zusammensetzung der Proteinbindung an RNA in 

verschiedenen zellulären Kompartimenten zu bewerten, haben wir das f-XRNAX-Protokoll entwickelt. 

Es besteht aus UV-Vernetzung, zellulärer Fraktionierung und Anreicherung der RBPs in der organischen 

Phase in Verbindung mit Massenspektrometrie. Wir gewannen hintergrundkorrigierte Proteome für 

Kerne, Zytoplasma und Membranen von HEK293-Zellen. Die Analyse der Proteindomänen von 

Peptiden, die mit Ribonukleotiden vernetzt sind, zeigte eine Anreicherung in bekannten RNA-

bindenden Domänen. Wir bestimmten auch die Proteindomänen, in denen die RNA-Protein-Kontakte 

in vivo stattfanden, indem wir Profile angereicherter Peptide verwendeten, und berichteten über 

einige Fälle unterschiedlicher Domänenverwendung desselben Proteins in zwei verschiedenen 
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Kompartimenten. Überraschenderweise wurden viele nicht-kanonische RBPs in der Membranfraktion 

identifiziert, und ihre Peptidprofile waren in Regionen mit hoher Dichte an intrinsisch ungeordneten 

Regionen angereichert, was auf eine möglicherweise schwache Interaktion mit RNA hinweist, die durch 

diese nicht-strukturellen Motive vermittelt wird. Schließlich konnten wir die unterschiedliche Bindung 

desselben Proteins an RNA in verschiedenen HEK293-Kompartimenten nachweisen. 

Im zweiten Teil dieser Arbeit konzentrierten wir uns auf die Bestimmung und Quantifizierung von neu 

transkribierten RNAs auf Einzelzellebene. Die Kinetik der RNA-Transkription, -Prozessierung und -

Degradation war bis vor kurzem auf Einzelzellebene nicht messbar. Daher haben wir einen neuen 

Ansatz (SLAM-Drop-seq genannt) entwickelt, indem wir die veröffentlichte SLAM-seq-Methode an 

Einzelzellen angepasst haben. Wir haben SLAM-Drop-seq verwendet, um die zeitabhängigen RNA-

Kinetikraten der Transkription und des Umsatzes für Hunderte von oszillierenden Transkripten 

während des Zellzyklus von HEK293-Zellen zu schätzen. Wir fanden heraus, dass Gene ihre Expression 

mit unterschiedlichen Strategien regulieren und spezifische Modi zur Feinabstimmung ihrer 

kinetischen Raten entlang des Zellzyklus haben. 
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INTRODUCTION 

Protein localization in eukaryotic cells 

Cells are dynamic and complex entities. To properly maintain cellular homeostasis, these seemingly 

chaotic and crowded environments need to be highly organized and coordinated. One way to regulate 

different types of activities is to assign specific tasks to diverse spatial locations. Like in human 

corporation system, where different teams have separate areas in a building to work on precise 

assignments, cells are composed of separate intracellular compartments, each of which having its set 

of specialized roles. For example, in eukaryotic cells the endoplasmic reticulum (ER) is the cellular 

central storage for calcium ions (Baumann and Walz, 2001) and the place where synthesis and 

glycosylation of secreted and membrane-attached proteins occurs (Reily et al., 2019). In the nucleus, 

the genome is stored and RNA is transcribed and processed. Mitochondria, on the other hand, produce 

ATP molecules and have the potential to activate the apoptosis intrinsic pathway if stressed (Spinelli 

and Haigis, 2018). Most of these compartments are physically separated between each other with lipid 

membranes bilayers, while other are in cellular continuity with the surrounding milieu and are formed 

by large protein complexes (e.g. centrosomes) or condensates formed by phase separation of their 

constituents (e.g. stress granules) (Helder et al., 2016). Membrane-bound organelles offer different 

chemical properties: the cytosol is a reducing environment, while within the ER is an oxidative one 

(Hwang et al., 1992). Functionally different organelles and compartments are one of the hallmarks of 

eukaryotic cells and ensure partition of biological processes. 

The described membrane separation does not only define distinct physical spaces, but also allow for 

flexibility and integration of responses to stimuli. In fact, these different compartments and cellular 

functions should not be seen as independent or isolated entities inside the eukaryotic cell, but as 

modular and integrative networks. For example, a signalling pathway may start with an extracellular 

stimulus, delivered to the intracellular space by conformational changes of a specific receptor 

integrated in the plasma membrane, which leads to cytosolic protein modifications, rearranging their 

structure and promoting their re-localization to another subcellular compartment. 

Membrane-enclosed organelles communication is central for responding to stimuli and maintaining 

cellular homeostasis. Physical contacts between them remodel their structure and induces transfer of 

metabolites and propagation of signals (Cohen et al., 2018). 

Most of the functions at these specialized cellular compartments is carried out by proteins. Thus, the 

presence or absence of proteins at a restricted area of the cell enables the acquisition and 

implementation of specific cellular activities. One way to regulate the presence of proteins is to 

regulate them at the level of abundance, making or degrading more of them, thus increasing or 
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decreasing their local concentration. However, this mechanism is time and energy consuming, since 

de novo synthesis of polypeptides involves all the steps of gene expression regulation and it cannot be 

implemented when fast cellular responses are needed. A much more energy-efficient way to regulate 

cellular function is to selectively localize proteins at the cellular compartment of interest with specific 

targeting peptides and modulate the protein activity by means of post-translational modifications or 

substrate binding. This allows for a fast and effective response to changes in environmental 

circumstances, like stress conditions or extracellular signalling. In order to do so, each protein must 

contain a certain kind of information in their polypeptide sequence which allows for its correct cellular 

localization. Another way to obtain subcellular protein localization and rapid response to stimuli is to 

halt RNA translation and localize the transcript where the protein needs to be produced (Das et al., 

2021; Engel et al., 2020). These mechanisms and cellular controls defining RNA localization are not 

subject of discussion here. 

The various cellular compartments adopt different mechanisms to preferentially localize polypeptides 

of interest. Protein translation usually starts in the cytosol, with the first amino acids emerging from 

the ribosome determining the destination of a translated protein. In fact, if the first 16-30 codons 

translate a sequence that is recognized by the Signal Recognition Particle (SRP) protein (Zimmermann, 

2009), translation is halted and the complex of mRNA-ribosome-SRP is relocated to the endoplasmic 

reticulum membrane (ERM), where translation continues and the newly synthetized protein is 

“threaded” in the lumen of the endoplasmic reticulum (ER). In this case, the primary regulatory 

targeting information resides in the N-terminal amino acids of the protein, but once in the ER lumen 

or integrated in the ER membrane other factors will determine the further localization of the protein. 

For example, two well known signals for retention in the ER of luminal and membrane proteins are 

coded close to their C-terminus, namely the KDEL (Munro and Pelham, 1987) and KXXX (Jackson et al., 

1990) target peptides. The nuclear localization signal (NLS) is instead composed by stretches of basic 

amino acids and it is recognized by importin proteins which bind to the NLS-containing protein and 

transport it into the nucleus (Kosugi et al., 2009). Conversely, proteins containing nuclear export signal 

(NES) are excluded from the nucleus by active transportation to the cytosol (Fischer et al., 1995; 

Stewart, 2019). Finally, a 15-70 amino acids long alpha helix with positively charged recognized by the 

TOM complex is what determines the restricted localization of a protein in the mitochondria (Bolender 

et al., 2008), while a variety of sequences allow for protein lipidation and a subsequent targeting to 

the plasma membrane (Chen et al., 2018).  

The described targeting peptides can however be quite variable, and many more signals exist for 

preferential localizations of a protein to other compartments (lysosomes, Golgi, peroxisomes, 

extracellular environment). Bioinformatic tools are of great help for the identification of sequence 

motifs coding for targeting peptides (Fukasawa et al., 2015; Savojardo et al., 2018) and the analysis of 
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localized proteins (Gatto et al., 2014; Jiang et al., 2021). Nonetheless, these computational methods 

have limitations: they are not accurate, for example, in assigning the correct localization to 

polypeptides found in more than one compartment and in quantitatively estimating their abundance 

(Jiang et al., 2021). These tools are also inefficient to build a strong predictive model for proteomes in 

sub-organellar regions with little information available and are unable to discern the distribution of 

polypeptides affected by a mutations (Nielsen, 2017). Thus, in vivo biochemical validation of protein 

localization must always be performed to confirm bioinformatical predictions. Moreover, proteins 

deployed of targeting signals can also be temporary relocated to a specific cellular region (through 

phosphorylation, for example) and perform there a precise function. Therefore, different strategies 

and methods should be applied to map protein localization in eukaryotic cells and their dynamics upon 

stimuli or changes of environmental conditions.  

The importance of an accurate and complete catalogue of protein localization stems also from the fact 

that disruption or impairment in protein trafficking is a leading cause for various diseases (Bridges and 

Bradbury, 2018; Cheung and Ip, 2012; Guardia et al., 2018). The mislocalization of proteins is 

implicated for example in cystic fibrosis (Cheng et al., 1990), amyotrophic lateral fibrosis (Guo and 

Shorter, 2017) and pulmonary atrial hypertension (Sehgal and Lee, 2011). An accurate understanding 

of protein localization in health and disease can therefore guide therapeutic strategies. 

 

Approaches to study protein compartmentalization 

Different methods have been developed to study the localization of proteins in living or fixed cells. 

Immunofluorescence (IF) is a widely used approach to detect the cellular expression and distribution 

of a particular protein of interest in fixed cells or tissues. It is straight-forward, inexpensive and works 

at individual cell resolution. Downsides of IF include the limited number of proteins traceable per 

experiment, the requirement of cell fixation and permeabilization which introduces artifacts in cellular 

morphology (Schnell et al., 2012), and the necessity to rely on antibodies with varying affinities and 

specificities depending on the sampled protein(s). Still, thousands of independent academic works 

have used IF to study the cellular distribution of proteins of interest. Even more impressive, an 

international scientific collaboration used immunofluorescence to create the Human Protein Atlas, a 

database with subcellular information for 12003 proteins in human cell lines (Thul et al., 2017). The 

online and downloadable data provide an excellent source of information for a great part of human 

proteome in specific cell lines (Cho et al., 2022).  

The use of fluorescent proteins (like Green or Red Fluorescent Protein, GFP or RFP) fused by genetic 

manipulation to a gene of interest has also been broadly used to map the protein localization in vivo 

in different biological systems (Huh et al., 2003; Leonetti et al., 2016), without the issue of fixation and 
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with a single cell resolution. Nonetheless, this approach requires genetic manipulation of the cells and 

the exogenously introduced fluorescent polypeptides may influence the behaviour and distribution of 

the investigated protein. Moreover, the number of different proteins analysed per experiment is 

rather low. 

Instead of focusing on few proteins, different approaches have been developed in the last decades to 

retrieve entire proteomes localized at specific subcellular regions. These methods do not rely on 

microscopy and results are obtained analysing mass spectrometry data, i.e. averaging the information 

among many cells. To obtain more extensive and unbiased information about the compartment-

specific protein repertoire within one experiment, the two main approaches are cellular fractionation 

and proximity labelling (PL). Cell fractionation relies on the distinct biochemical properties of the 

different cellular compartments and is based on sequential detergent extractions (Baghirova et al., 

2015), or gradient density centrifugation, where a differential centrifugation is applied to homogenized 

cells in a continuous or discontinuous gradient (usually of sucrose), allowing the separation of 

organelles and sub-cellular particles based on their density (Duve, 1975). Fractionation approaches are 

generally inexpensive, reproducible and with no requirements of genetically manipulate the samples 

to be analysed. However, the similarity of biochemical composition between compartments does not 

always allow to obtain pure fractions and damage can lead to artefacts (like the microsomes formed 

by fragmented endoplasmic reticulum), which reduces the specificity of cell fractionation-based 

approaches.  

A more recent approach is proximity labelling (PL), which takes advantage of enzymes attaching biotin 

moieties to proteins in their vicinity, followed by selective avidin/streptavidin purifications to recover 

the modified proteins (Sunbul and Jäschke, 2019). The two most frequently used enzymes for PL are 

BirA* and APEX, as well as variations thereof. BirA is a biotin-ligase enzyme found in E. coli and mutated 

(BirAR118G = BirA*) to render its biotinylation activity not substrate-specific, i.e. promiscuously 

biotinylating all proteins in its vicinity (Roux et al., 2012). Ascorbate peroxidase (APEX) (Rhee et al., 

2013) and its improved version APEX2 (Lam et al., 2015) are engineered peroxidases developed in the 

laboratory of Alice Ting (Stanford University) relying on H2O2-driven creation of biotin-phenol radicals, 

which are very reactive and conjugate with nearby proteins. The biotinylation induced by APEX is fast 

Fig. I Three widely used approaches to study protein localization. (Image created in BioRender.com) 
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(30-60 seconds), but it has the downsize to require a stress-inducing agent (H2O2) and to produce 

radicals able to diffuse from the location where they are produced. On the other hand, BirA* directly 

biotinylates proteins in its vicinity, but with a much slower kinetic (around 16-18 hours). In order to 

solve this problem, a faster version of BirA* was developed called TurboID, which is able to induce a 

fast biotinylation (5-10 minutes) and can also be applied in vivo (Branon et al., 2018). In addition, APEX2 

biotinylates ribonucleic acids in its vicinity, and this property was used to provide subcellular 

distribution maps of transcripts (Fazal et al., 2019).  

The described proximity labelling approaches have been applied in recent years to investigate 

proteomes at different cellular compartments, from membrane enclosed environments like 

mitochondria, ER and nuclei (Hung et al., 2017; Rhee et al., 2013), to subcellular regions without a lipid 

bilayer surrounding them like the mitochondrial nucleoid, the stress granules and the synaptic cleft 

(Han et al., 2017; Loh et al., 2016; Markmiller et al., 2018).  

Still not fully characterized is the composition of proteomes located at compartment interfaces (in 

contrast to the compartment themselves), like for example the cytosol-facing surfaces of ER and 

mitochondria, which cannot be enriched by fractionation approaches. These subcellular regions are in 

fact engaged in a wide variety of cellular functions, from lipid biosynthesis, protein translation and 

secretion to cell death and calcium ion regulation. Obtaining a high confidence protein map of these 

cellular locations could shed more light on the functional units regulating the processes taking place 

there and identify new candidates with unknown or unspecific cellular localization.  

Proximity labelling with APEX2 revealed the protein composition at these specialized compartments 

(the cytosol-facing membranes of ER and mitochondria) and validated the molecular function for some 

of the proteins at the contact sites between them (Hung et al., 2017). In order to do so, APEX2 was 

fused to a peptides which targeted its trafficking to the cytosol facing membranes of the ER and the 

mitochondria. Thanks to a carefully designed, SILAC-based mass spectrometry experiment, the authors 

identified proteins at the cytosolic surfaces of these membranous compartments and also the one 

which co-localized between the ER and mitochondria. Some of these proteins did not have any 

previous annotation to the compartment they were found: the authors found 22 mitochondria and 72 

ER ‘orphans’, one of which (C2 Domain Containing 3 Centriole Elongation Regulator, C2CD3) was 

validated by immunofluorescence (Hung et al., 2017). 

This work provided the first evidence of the protein composition at subcellular regions difficult to 

annotate with standard approaches. Although informative, the true protein content might be 

underestimated or misidentified. The fold change thresholds to assign a protein to one compartment 

respect to background were as low as 0.08. The short biotinylation time with APEX2 might be a cause 

for the low enrichment of proteins in these experimental conditions. A longer biotin labelling of nearby 

proteins might enhance the efficiency of resident proteins recovery. 
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Furthermore, the proteome mapping of other subcellular compartment difficult to purify would be 

informative, like for example the cytosol-facing side of the plasma membrane. This region is involved 

in major roles for cellular integrity and response to stimuli, since most of receptors and proteins for 

extracellular contacts reside here (Serna et al., 2016). Although much is known about their composition 

and interactions, a systematic approach with a focus on the proteome in near contact to the cytosolic 

surface of the human plasma membrane has never been applied.  

 

RNA-binding protein function & localization 

RNA-binding proteins (RBPs) have an essential role in living cells and are evolutionary well conserved 

in eukaryotic organisms. They are the main actors for RNA metabolism, regulating the processing, 

nuclear export, localization, translation, stability and degradation of virtually all transcripts produced 

in a cell. Proteins and transcripts together form ribonucleoprotein particles (RNP), which finally 

coordinate the output of gene expression, i.e. regulating cellular homeostasis and responses to stimuli 

(Singh et al., 2015). Therefore, the study and characterization of proteins interacting with RNAs is 

fundamental to understand the RNA regulatory processes and the modulation of cell activity.  

The first high-throughput studies to identify the RNA-binding proteome (RBPome) were based on 

screens with immobilized RNAs or proteins (Butter et al., 2009; Tsvetanova et al., 2010). However, 

Fig. II RNA-binding proteins are involved in every step in the life cycle of mRNA transcripts. RBPs fine 
tune the splicing, processing, export, localization, translation and degradation of virtually every RNA in 
human cells. [Image from (Gebauer et al., 2021)] 



INTRODUCTION 11 

these approaches were applied in vitro, lacking the full complexity of the cellular environment and 

requiring more experiments to validate the results. In the last decade, several high-throughput 

approaches have been developed to identify the set of proteins binding RNA in vivo. They all rely on 

the ultraviolet light (UV) property to form covalent bonds between RNA nucleotides and proteins 

found in close proximity to them, around 2 Å (Brimacombe et al., 1988; Burger et al., 2013). The 

so-called RNA interactome capture (RIC) protocols were the first established for the unbiased 

detection of RBPs and consist of UV crosslinking between RNA and contacting proteins followed by 

purification with oligo(dT)-coated beads (Baltz et al., 2012; Castello et al., 2012). The enriched proteins 

are then digested to peptides and analysed with mass spectrometry. These ground-breaking 

approaches showed that the amount of annotated RBPs had been massively underestimated, with 

many novel RBPs lacking any known RNA-binding domain (RBD) or roles associated to RNA biology 

(Beckmann et al., 2016; Hentze et al., 2018). RIC was applied to many different model systems and 

conditions (Beckmann et al., 2015; Kwon et al., 2013; Reichel et al., 2016; Sysoev et al., 2016; Wessels 

et al., 2016) and was further optimized by using locked nucleic acids as probes (Perez-Perri et al., 2018). 

Nonetheless, a main disadvantage of these techniques is the bias towards polyadenylated transcripts, 

overlooking the binding of proteins to RNA lacking a poly(A) tail, such as nascent pre-mRNAs, rRNAs, 

tRNAs and ncRNAs. 

To address this issue, two methods were concurrently developed, named CARIC and RICK (Bao et al., 

2018; Huang et al., 2018), in which RNA is labelled with 5-EU (and 4sU in CARIC), cells are then 

irradiated with UV light and enrichment of labelled transcripts is achieved via click chemistry. These 

approaches led to the identification of many proteins bound to transcripts without a poly(A) bias. 

Because of the use of synthetic nucleotides and their reported toxicity over long period of incubation 

with cells (Burger et al., 2013), these protocols are more suited to study the RBPome restricted to 

nascent RNA. Furthermore, the incorporation of ribonucleotide analogues in animal model is 

challenging, limiting the systems where these approaches can be applied. 

In 2019, three groups independently published similar methods, named PTex (Urdaneta et al., 2019), 

XRNAX (Trendel et al., 2019) and OOPS (Queiroz et al., 2019), tackling the described challenges. In all 

studies, the authors took advantage of the physical-chemical properties of UV crosslinked protein-RNA 

complexes and organic phase separation. This resulted in the identification of RBPomes without 

synthetic nucleotides labelling and with no bias towards polyadenylated transcripts, while reducing 

the amount of input material needed per experiment. In all three publications, the number of detected 

proteins interacting with RNA was larger than the number of annotated RBPs in human, highlighting 

once again how the composition of human RBPome has been so far underestimated. It has been 

showed that many of these unconventional RBPs have roles in the intermediate metabolic pathways 
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and for some of these proteins their moonlighting activity as RBP has been explored in more details. 

Although, the function and role for the majority of them remains still to be explored.  

 

One poorly studied aspect of RBPs functional characterization is their comprehensive localization in 

cellular compartments adopting high-throughput techniques. Nonetheless, RNA-binding protein 

compartmentalization is of central importance during many biological processes requiring RNA 

molecules localization at a specific area of the cell. The localization of transcripts is more cost-effective 

from an energetical point of view than the transport of proteins, and is a cellular mechanism conserved 

from bacteria to multi-cellular organisms (Das et al., 2021).  

Recently, two approaches have been independently developed to bridge this gap of knowledge and, 

by coupling proximity labelling with APEX or cellular fractionation with organic phase separation, they 

were able to map the relative abundance of human proteins binding to RNA in different subcellular 

regions (Qin et al., 2021; Yan et al., 2021). This resulted in not only the identification of new proteins 

with RNA-binding potential, but also in their characterization in a spatio-temporal fashion.  

These findings show the importance of combining different methods to study proteins actively binding 

to RNAs and to determine their relative cellular distribution. How the protein-RNA affinities change 

between compartments and which RBDs mediate these interactions are still unanswered questions. 

 

 

Approaches to study temporal RNA dynamics 

As previously described, the primary role of RBPs is to regulate the post-transcriptional life of RNA 

molecules by influencing their processing, localization, translation and decay. This is of crucial 

importance because the cellular transcriptome represents a central output of gene expression and its 

post-transcriptional regulation shapes the fate and function of a cell. All the mentioned RNA-linked 

processes regulated by RBPs are not statically determined for every cell, but have kinetics associated 

to them, which can be dynamically modulated by the cellular machinery. 

The homoeostasis of cells and their responses to intrinsic and extrinsic signals rely on the regulation 

of gene expression. Therefore, the global measurement of transcripts abundance is central to 

understand the biology of any cellular system. Even if sometimes the amount of RNA molecules 

measured in a sample is used as a proxy for transcriptional activity, we now know that its regulation is 

driven by the complex interplay of RNA synthesis, processing and turnover. The cellular RNA levels are 

dynamically fine-tuned according to the environmental conditions, and their proper regulation is 

central for an appropriate response to stimuli (Reilly and Noonan, 2014).  
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The total amount of a specific transcript can be post-transcriptionally regulated by fine tuning its 

synthesis and decay rates as well as splicing. The kinetics related to these processes are also associated 

to dynamic responses according to the cellular state and environmental conditions. One central aim 

for cell biology is to better understand the kinetic rates associated to RNA regulation, and to have 

quantitative information about how fast a transcript is synthetized or degraded and how changes in 

environmental conditions lead to the fine-tuning of these parameters. In fact, understanding how gene 

regulation is coordinated at the cellular level has the potential to unravel how cells maintain 

homeostasis and drive differentiation, and how aberrant regulation leads to diseases (Lee and Young, 

2013; de-Leon and Davidson, 2007). 

The well established and widely used bulk RNA-sequencing (RNA-seq) experiments are very 

informative regarding the steady state level of thousands of genes in a cell population, but they cannot 

determine the processes leading to the accumulation or depletion of transcripts. Several independent 

approaches have been developed in the last 20 years to measure global changes of RNA synthesis and 

decay, focusing on the dynamics between different cell states. Inhibition of transcription with different 

compounds (alpha-amanitin, actinomycin D, flavopiridol or DRB) coupled to microarray or RNA-seq has 

been the first genome-wide method to measure RNA decay rates (Chen et al., 2015; Lam et al., 2001; 

Raghavan et al., 2002; Yang et al., 2003). Although informative, these approaches are highly invasive, 

impairing cellular physiology and the processes controlling transcripts stability and localization 

(Bhattacharyya et al., 2006; Shyu et al., 1989; Tani et al., 2012). Furthermore, the global block of 

transcription does not stop precursor RNA molecules processing, particularly interfering with the half-

life measurements of transcripts with a slow splicing rate.  

Enriching transcripts associated with chromatin or active RNA polymerase II accurately identified the 

de novo synthesized RNAs and revealed new features of gene expression (Core et al., 2008; Kwak et 

al., 2013; Mayer and Churchman, 2016), but with little quantitative information. In fact, these 

approaches cannot disentangle the presence of transcripts or the velocity of RNA polymerase II from 

the efficiency of RNA synthesis, lacking the information to measure the transcriptional output (Furlan 

et al., 2020a). These protocols could also be influenced by binding of non-specific RNAs or proteins. 

Moreover, using these approaches does not reveal any information regarding transcript stability. 

The first quantitative, transcriptome-wide informative data about RNA kinetics were achieved by RNA 

metabolic labelling. In these approaches, cells are incubated with nucleotides analogue (the most 

frequently used being 4-thiouridine – 4sU, 5’-bromouridine – BrU, 5-ethinyluridine – 5EU), which are 

incorporated into newly synthetized RNAs. The labelled transcripts are then biochemically separated 

from the unlabelled ones, resulting in two RNA populations: ‘total and ‘new’. These two pools of 

transcripts are then treated and analysed independently. Using different experimental designs (single-

pulse, pulse or pulse-chase experiments (Uvarovskii et al., 2019)) and times of incubation, the 
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sequencing of labelled and unlabelled transcripts enables a reliable estimation of transcription and/or 

decay rates genome-wide (Dölken et al., 2008; Miller et al., 2011; Rabani et al., 2011; Schwalb et al., 

2016; Schwanhäusser et al., 2011). Noteworthy, these methods are not only used to study RNA kinetics 

in cell culture under steady-state conditions, but they can also be applied to different cellular systems 

and dynamic biological processes, as for example zebrafish development or cellular stimulation with 

inflammatory molecules (Rabani et al., 2011, 2014).  

 

All the described approaches are relatively laborious and require biochemical separation, thus being 

very sensitive to the accuracy of labelled molecules enrichment. They also require relatively high 

amount of starting material and might contain up to 30% unlabelled RNA contaminants in the labelled 

fraction (Furlan et al., 2020b). To circumvent these limitations, new metabolic labelling protocols were 

recently developed. SLAM-seq (Herzog et al., 2017), TimeLapse-seq (Schofield et al., 2018) and TUC-

seq (Riml et al., 2017) are all based on in vivo labelling of RNAs with 4sU and biochemical in vitro 

conversion of the thiolated nucleotides into a cytosine-analogue using different compounds 

(iodoacetamide, TFEA/NaIO4 or OsO4/NH4Cl, respectively). This treatment modifies the pairing 

property and leads to an accumulation of T to C conversions during RNA-seq library preparation at the 

position where 4sU was incorporated. These conversions are then used to detect and quantified newly 

transcribed RNAs by computational analysis. Thus, it is possible to distinguish in silico the ‘new’ and 

‘pre-existing’ transcripts populations present and calculate the associated kinetic rates of RNA 

synthesis and decay for hundreds of genes, without performing pull-down or immunoprecipitation 

enrichment steps (Baptista and Dölken, 2018). Recently, a labelling strategy using a combination of 

nucleotide analogues has been applied to obtain RNA synthesis and decay rates that are more reliable 

(Gasser et al., 2020; Kawata et al., 2020).  

Different computational pipelines were developed in parallel to the experimental optimization of 

metabolic labelling approaches to quantify RNA dynamics: cDTA (Sun et al., 2012), DRiLL (Rabani et al., 

2014), INSPEcT (Pretis et al., 2015) and GRAND-SLAM (Jürges et al., 2018) are some of them. Ultimately, 

these methods began to reveal how the fine tuning of temporal RNA dynamics contributes to gene-

specific regulation and the outcome of complex transcriptional cellular responses.  

 

The described methods are based on the analysis of bulk RNA-seq data, averaging the transcriptome 

expression over the whole cell population. An approach that could distinguish the RNA kinetics for 

every single cell present in a sample would be advantageous and more informative. Recently, single 

cell RNA sequencing (scRNA-seq) has become the method of choice to investigate the complexity and 

heterogeneity of cell populations (Alles et al., 2017; Hashimshony et al., 2012; Macosko et al., 2015; 

Pepe-Mooney et al., 2019). It provides a snapshot of the cellular RNA abundance for individual cells in 
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the analysed samples. Typically, scRNA-seq focuses on the mature RNA expression for the 

identification of cell identity and cell states, without direct measurement of the transcript kinetics. 

RNA velocity analysis (Manno et al., 2018) estimates gene-specific transcription and degradation rates 

using both spliced and unspliced transcripts retrieved from scRNA-seq data. Although crude estimates 

of kinetic parameters of a subset of genes are used to identify the overall direction of the expression 

state (Bergen et al., 2020), the analysis opens the door to the study of RNA kinetics using single cell 

data.  

More recently, single cell methods have been established to investigate dynamic gene-specific 

temporal RNA kinetic (scSLAM-seq (Erhard et al., 2019), NASC-seq (Hendriks et al., 2019), scEU-seq 

(Battich et al., 2020), sci-fate (Cao et al., 2020) and scNT-seq (Qiu et al., 2020)). While these approaches 

are similar to each other in some aspects, there are important differences: SMART-seq based methods 

(scSLAM-seq, NASC-seq, scEC-seq, sci-fate) can perform deep coverage of transcripts in each cell, but 

can only assay hundreds of cells. When many cells in heterogeneous populations need to be analysed, 

droplet-based approaches such as scNT-seq are more advantageous, recovering thousands of cells per 

experiment. Moreover, methods that are devoid of any cell sorting or pull-down procedures would be 

favourable, since they would diminish cellular stress, introduction of biases and sample handling time.  

To date, the described single-cell approaches have been exclusively applied to investigate gene-specific 

changes on transcriptome kinetics between states of cell activation, differentiation or infection. Since 

biological phenomena are continuous processes, it would be more informative to investigate the RNA-

associated kinetic rates in a time-dependent manner, assigning quantitative values throughout the 

course of the biological event such as the cell cycle. 

 

RNA kinetic rates analysis during the cell cycle 

Cell cycle progression is tightly regulated at the of transcriptional (Dynlacht, 1997), post-transcriptional 

(Schafer, 1998) and post-translational levels, in order to avoid unwanted and possibly harmful cell 

divisions. Cell cycle checkpoints and regulatory genetic circuits survey the progression through the cell 

cycle and are tuned to prevent unwanted cell divisions when DNA damage or other types of stressors 

threaten it (Cho et al., 2001; Pines, 1999). Hundreds of genes regulate these sophisticated biological 

processes and many of them are expressed at precise time points of the cell cycle, i.e. their relative 

RNA amount oscillates respect to the cell cycle phase. Of note, the disruption of their coordinated 

regulation is a major cause of several disorders, including cancer (Hanahan and Weinberg, 2011; 

Matthews et al., 2022), emphasizing the importance of understanding how they are regulated. In the 

last decades, the expression profiles for genes oscillating during the cell cycle have been determined 

in several cellular systems and with different approaches (Breeden, 2003; Gauthier et al., 2008; Liu et 



16 INTRODUCTION 

al., 2017; Whitfield et al., 2002). On the other hand, the processes underlying gene expression (i.e., 

transcription, splicing and degradation) and their relative kinetic rate dynamics throughout the cell 

cycle are still poorly characterized. Because of its importance in every eukaryotic cell, a global, 

quantitative and time-depended profiling of RNA kinetics during the cell cycle would be of extreme 

value. 

Previous approaches to study RNA kinetics of the cell cycle synchronized cell population by blocking 

cells around a phase of the cell cycle using drugs or serums. Subsequent RNA expression profiling of 

synchronized cells was analysed along specific cell cycle states, revealing hundreds of periodically 

expressed genes in human cells (Grant et al., 2013; Whitfield et al., 2002). Although informative, 

synchronization procedures introduce biases which are difficult to account for (Cooper, 2019; 

Darzynkiewicz et al., 2011; Ligasová and Koberna, 2021). Fluorescent reporters have been engineered 

to overcome some of these limitations and discern the cell cycle phase of individual cells from a 

population of unsynchronized cells (Koh et al., 2016; Sakaue-Sawano et al., 2008), but they require 

genetic manipulation. Moreover, both synchronization and fluorescent reporters recover cell 

populations from discrete cell cycle phases, partially losing the temporal resolution of RNA regulation 

dynamics.  

Assigning a precise cell cycle time to unperturbed single cells using their transcriptional information 

(i.e., oscillating cell cycle marker genes) would overcome this temporal inaccuracy. Recent approaches 

have enabled the in silico reconstruction of cell cycle phases from scRNA-seq data (Schwabe et al., 

2020; Wolf et al., 2019). Integrating this accurate cell cycle temporal assignment of single cells with a 

method profiling their transcriptional activity would allow the study of RNA synthesis and degradation 

kinetics in the continuous cell cycle at an unprecedent temporal resolution. 
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AIMS OF THE THESIS 

 

The unbiased assessment and quantification of the determinants of biological entities is a central goal 

for system biology. In this work, we aimed to develop novel approaches to identify different 

biochemical characteristics of human cells. 

 

The proper compartmentalization of proteins determines their function and activity. New methods 

and datasets aiming to define their localization are useful to have a more comprehensive 

understanding of cellular biology. Moreover, the development of activity-based approaches to 

annotate the RNA-bound proteome at a specific cellular region could also offer insights about the 

distribution of RBPs and their modality of binding to RNAs in different cellular compartments.  

Lastly, improving the resolution to study temporal kinetic information of gene regulation not only in 

cell population but also in single cells has the potential to unravel new gene-specific mechanisms 

regulating gene expression in continuous processes. 

 

Overall, the aim of this thesis is to provide a more detailed description of the spatial and temporal 

regulation of gene expression in a human cell line. 

 

More specifically, the aims of this PhD thesis are: 

1) Determine the repertoire of proteins localized on the cytosolic surface of the endoplasmic 

reticulum, mitochondria and plasma membranes in HEK293 cells.  

2) Establish an approach to characterize proteins actively binding to RNA in different cellular   

compartments and categorize some of their binding properties. 

3) Develop a method to study RNA temporal dynamics in single cells and apply it to study the 

kinetics of RNA synthesis and turnover during the cell cycle of HEK293 cells.  
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RESULTS 

 

Localization of proteins in human cells by proximity labelling with BirA* 

The identification of human proteomes resident in compartments difficult to purify (i.e., the cytosol-

facing membranes of ER, mitochondria and plasma membrane) was addressed by implementing a 

compartment-specific proximity labelling by BirA* and mass spectrometry analyses of enriched 

proteins.  

 

Generation and validation of BirA* stable cell lines 

A key problem in the previous research on protein localization is the identification of the interface-

bound proteome. We therefore implemented an approach aiming to determine the protein 

composition at selected cellular compartments namely the cytosolic sides of ER, mitochondria and 

plasma membranes. ). As discussed in the introduction, the proteomes resident in these cellular 

locations are involved in many different biological processes and pathways (apoptosis, secretion, 

extracellular response to stimuli, etc.), but they are also difficult to purified and therefore 

understudied. HEK293 were selected as a model cell line. These cells offer the advantage to be quickly 

genetically modifiable: any gene of interest can be stably integrated in their genome and transcribed 

through the induction of a doxycycline-controlled promoter. 

 The promiscuous biotin ligase BirA* was chosen as the enzyme to perform proximity labelling (Figure 

1). Even with a slow labelling kinetic (around 16 hours), this enzyme does not require toxic compounds 

Figure 1 Schematic representation of the experimental 
workflow to identify the proteome composition of 
different subcellular compartments in HEK293 cells.  

BirA* compartment-specific fusion proteins (indicated in 
orange color) are expressed upon doxycycline induction 
and localize at specific cellular compartments via a 
genetically fused target peptide. BirA* at the cytosol 
facing side of ER (above) and mitochondria (below) is 
shown, but cell lines were also created with BirA* at the 
plasma membrane and diffusing in the cytosol. 
Biotinylation of nearby proteins (indicated in blue) is then 
induced by addition of biotin for 16 hours. 
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to start the biotinylation reaction, as the H2O2 required by APEX (Lam et al., 2015) and its expression 

does not induce cellular stress.  

Stable HEK293 cell lines expressing BirA* in different subcellular compartments were created using 

plasmids coding for the promiscuous biotin ligase linked to a specific peptide targeting to the desired 

cellular localization (Figure 1). BirA* was localized at the cytosol-facing membrane surfaces of three 

different compartments: endoplasmic reticulum (ER-BirA*, via fusion to the N-terminal first 27 amino 

acids of the human protein P450 2C1), outer mitochondrial membrane (MITO-BirA*, via fusion to the 

C-terminal 31 amino acids of the MAVS protein) and plasma membrane (PM-BirA*, via fusion to the 

prenylation motif CaaX, derived from the Rev protein of the HIV-1 virus). Two control cell lines were 

also created, with soluble cytoplasmic BirA* to distinguish the resident proteins at a particular location 

from proteins with short interactions with the analysed compartments: cyto1-BirA*, by fusing a NES 

motif, and cyto2-BirA*, by mutating the cytosine in CaaX motif of PM-BirA* a serine residue. The 

cytoplasmic cell lines were important as background controls: they were used to distinguish the 

resident proteins at a particular location (ER, mitochondria or plasma membrane) from proteins with 

short interactions with the analysed compartments. 

The doxycycline-inducible expression of BirA* in them was checked using Western blotting analysis 

with antibodies against the N-terminally fused HA epitope tag. The correct localization of the enzyme 

Figure 2 BirA* cell-line specific localization and biotinylation is validated. 

A) Immunofluorescence showing the cellular localization of the BirA* enzyme in four generated cell lines. Nuclei are in red 
and BirA* in green. The enzyme is freely diffusing in the cytosol in the cyto-BirA* cell line, while it forms the typical ER 
structures in the ER-BirA* cell line. Cells expressing the fusion protein of PM-BirA* localize the biotin ligase on the cell surfaces, 
while it can be visualized in the mitochondria in the MITO-BirA* cell line.  

B) Western blotting analysis for protein markers of mitochondria and ER (TOMM20 and BCAP31, respectively) show a specific 
enrichment only if BirA* localized to the respective compartment. Proteins were purified with streptavidin beads after 
biotinylation by BirA* was induced for 16 hours and equal volumes were run on a polyacrylamide gel. 
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at the addressed cellular region was confirmed by immunofluorescence microscopy (Figure 2A). The 

proteins biotinylated by BirA* were also visualized by immunofluorescence with streptavidin 

conjugated to a fluorophore, showing a preferential distribution in the different cell lines (not shown). 

The accuracy of compartment-specific biotinylation was then tested as following. BirA* biotinylation 

activity was induced in the different stable cell lines and the biotin-labelled proteins were enriched via 

streptavidin beads pull-down. Western blots against known protein-markers of the different cellular 

compartments showed specific protein enrichment in the expected sample, confirming the specificity 

of the biotinylation (Figure 2B). 

In summary, we created five HEK293 cell lines expressing the promiscuous biotin-ligase BirA* linked to 

different targeting peptides. BirA* was properly localized at the addressed cellular compartment and 

its enzymatic activity was reliably restricted to the expected area of the cell. 

 

Mass spectrometry reveals proteomes compartmentalization 

 To identify the population of biotinylated proteins at the selected cellular regions, we performed an 

enrichment experiment coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) 

in collaboration with Dr. Guido Mastrobuoni (in the laboratory of Dr. Kempa at the MDC / Berlin). The 

different BirA* cell lines and a control sample without the biotin-ligase (HEK293) were induced with 

doxycycline and biotin was added to the cell culture media to stimulate the biotinylation for 16 hours. 

Proteins with a covalently attached biotin were enriched from lysed cells using streptavidin beads, 

digested by proteases and submitted for label-free mass-spectrometry (Figure 3). LFQ and iBAQ 

intensities of four biological replicates were calculated with the software MaxQuant (Cox and Mann, 

2008). 

Figure 3 Scheme representing the experimental outline to study proteome compartmentalization using locally-restricted 
BirA* and MS. BirA* expression and biotinylation is induced in the different cell-lines (with doxycycline and biotin). The 
subcellular-specific proteomes are enriched after cell lyses with streptavidin pull-downs. The proteins are digested and 
analyzed with LC-MS/MS. m/z = mass to charge ratio. Four biological replicates were prepared.  
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A minimum of two unique peptides and an absence of missing values for LFQ intensities in at least one 

condition were the requirements for a protein to be considered in the analysis. After these and other 

filtering steps (see Material and Methods), 3706 different proteins were detected in our data. The 

scripting language R was used to perform quality check and data analysis.  

The correlation of LFQ intensities between the different replicates was good, except for replicate 4 

which was therefore excluded. Figure 4A shows the high correlation of LFQ intensities between 

replicates of the same condition (Pearson correlation coefficient > 0.9), except for the control HEK293 

sample, which is not surprising since these proteins can be mostly regarded as random background 

attached to the beads. The correlation diminishes when comparing different conditions between each 

other, with higher correlation between the two cytosol samples. 

As a control for the equal loading and pull-down efficiency of the different samples, the intensities of 

four proteins known to be endogenously linked to a biotin moiety (i.e., not added by BirA*) were 

compared. Their LFQ intensities were very similar between all samples, also in the control HEK293 

sample which does not express a BirA* fusion protein (Figure 4B). This indicates that the amount of 

protein lysate per sample was comparable and, once the background proteins from the control 

condition were filtered out, the differences in LFQ intensities of proteins between samples is due to a 

localized BirA* mediated biotinylation. The LFQ intensities were then normalized to trypsin, which was 

added in equal amount in the different samples.  

Figure 4 Replicates reproducibility and equal samples loading is recapitulated in MS data. 

A) Correlation matrix of pair-wise comparisons between proteins’ LFQ intensities from BirA* cell lines. It shows high 
correlation (Pearson coefficient > 0.9) between replicates of the same condition, except for the control HEK293 sample.  

B) Histogram of LFQ intensities for four endogenously biotinylated proteins. MCCC1, PCC1, PC and PCCB are physiologically 
biotinylated proteins in human cells and their LFQ intensities are proportional between all samples analyzed (mean between 
replicates), indicating a comparable loading of the samples for MS.  
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The number of proteins detected in each sample is indicated in Figure 5A, and ranges from a minimum 

of 1439 to a maximum of 2339 between BirA* samples, while in the control HEK293 sample much less 

proteins were identified (only 121 were identified in all the replicates). These proteins were defined 

as background and were filtered out from the data analysis. 

The principal component analysis of the top 500 variable proteins (without HEK293 sample, Figure 5B) 

shows a clear separation of the different samples and clustering of replicates for each condition. Of 

note, the two cytosolic BirA* samples cluster in close proximity, while the other conditions have a 

higher variability between each other in both principal components. This highlights how the proteomes 

recovered are dependent on the cellular localization of the BirA* enzyme and the reproducibility of 

the detection is very high between the replicates of the same sample.  

The R-package “limma” (Ritchie et al., 2015) was applied to identify the differential localization of 

proteins in the selected compartments. This package uses protein-wise linear models and empirical 

Bayes statistics to calculate LFQ intensity fold changes and p-values. Pair-wise comparisons of the LFQ 

intensities for each protein in the different conditions were tested and we considered a protein to be 

specifically localize to one compartment if it had a log2 fold change of LFQ intensities greater than 1 

and an adjusted p-value (Benjamini-Hochberg correction for multiple comparisons) lower than 0.01. If 

a protein did not meet these thresholds, it was assigned as non-compartment specific. The samples 

with BirA* localized in the cytoplasm were used as a background control and proteins enriched in them 

were not considered for further analysis. Since all the other cell lines have BirA* facing the cytosol, an 

abundant cytoplasmatic protein like GAPDH would be biotinylated and enriched in every sample. Using 

two cytosol-background samples, allowed to filter these proteins from the datasets. 

Figure 5 Quality control of proteins enriched in different BirA* samples 

A) Histogram showing the total number of proteins identified in the different samples and replicates. 

B) PCA analysis of the top 500 variable proteins in the BirA* datasets. Replicates of the same condition cluster together, while 
conditions are well separated between each other along the first two principal components, except for the two cytosolic 
proteomes.  
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The heatmap of significantly localized proteins (Figure 6A) shows the distribution of LFQ intensities 

among the different samples and highlights clusters of proteins enriched in specific compartments. 

Colocalization of proteins can also be visualized, like for example between plasma membrane and ER 

(highlighting the connection of these compartments in the secretory pathway) or between 

mitochondria and ER (possible candidates for mitochondria-ER contact sites proteins). The two 

cytosolic controls show similar intensities in the majority of proteins detected, apart from a cluster 

enriched in the cyto2-BirA* cell line. This result was expected, due the difference of the targeting 

peptide sequences in the two cell lines: while cyto1-BirA* is strictly localized to the cytosol via a 

nuclear-export signal, cyto2-BirA* is diffusing in both cytosol and nuclei by a mutation introduced in 

its prenylation sequence. Therefore, the proteins enriched only in the cyto2-BirA* cell line are mostly 

nuclear proteins, including e.g. 36 zinc-finger transcription factors and 13 dead box helicases. 

When looking at some specific protein markers of ER, mitochondria or plasma membrane, the LFQ 

intensities distribution indicated an enrichment of the respective protein in the compartment where 

it would be expected to be (Figure 6B). These results gave us confidence that the enrichment and 

detection of localized proteins following the applied protocol was biologically meaningful. 

 

After filtering and enrichment analysis as described above, 475 proteins were found preferentially 

localized at the cytosolic surface of the ER membrane, 450 at the plasma membrane and 281 at the 

Figure 6 MS data analysis recapitulates subcellular compartmentalization of proteins. 

A) Unsupervised hierarchical clustering separates proteins in different groups, according to their LFQ intensities.  

B) Protein markers for the different compartments (BCAP31 & LRRC69 for ER, TOMM20 &LRPPRC for the mitochondria, IRS4 
& CD44 for the plasma membrane) are successfully detected and enriched for the expected compartment. 
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outer membrane of the mitochondria (Figure 7A). Overlaps between the datasets indicate multiple 

locations for some proteins and/or a close proximity of the two compartments. Only 39 proteins were 

identified to be enriched in all three compartments. The Gene Ontology analysis for cellular 

compartment resulted in terms strongly related to the location investigated (Figure 7B), indicating 

accuracy of the enriched proteomes and computational analysis. 

As examples, the following proteins were found at the endoplasmic reticulum: the translocon 

SEC61/62/63, the lectin associated proteins CNX, ERP57 and CRT, the COP-II vesicles associated 

SEC13/31, SEC23/24 and SEC12, the ER-stress receptors PERK, IRE1 and ATF6 and its associated protein 

BiP, the p180 receptor and many others.  

Within the mitochondrial enriched proteins, we found for example the SAM complex, composed by 

the SAM50, MTX1/3 and MTX2 proteins, and the TOM complex, from which the MITO-BirA* cell line 

efficiently biotinylated TOMM40, 20, 22, 7, 70A and 5. The KEGG pathway enriched with the proteins 

found at the plasma membrane with BirA* were instead related to cell-to-cell tight junction (e.g. CLDN, 

OCLN, JAM1, JAM2 and JAM3 proteins) and to neuronal pre- and post-synaptic contacts (e.g. PVRL1, 

PVRL3, IGSF4, PTPRF, SDC, NGL3 and ITGB1 proteins). This analysis gave us further confidence that the 

proteome enriched were accurately resembling the in vivo protein distribution in HEK293 cells.  

After having identified these proteins at the investigated cellular compartments, we compared our 

results with published datasets. The coverage of proteins enriched at the ER was assessed by 

Figure 7 Proteomes retrieved from the different BirA* cell lines 

A) Venn diagram of protein distribution found to be enriched in the indicated compartments through our BirA* proximity 
labelling approach and mass spectrometry analysis.  

B) Gene ontology (GO) terms enrichment analysis for cellular component for proteins identify to exclusively localize at the ER, 
plasma membrane or mitochondria membranes. Fold enrichments and FDR are calculated by DAVID. The number of proteins 
for each term is indicated by ‘n’. 
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comparing it to a list of manually annotated true positive proteins located at the endoplasmic 

reticulum (Hung et al., 2017). Our proteome enriched for around 42% of the annotated ER proteins 

and performed very similarly to the one previously detected with similar approaches (APEX2 and 

TurboID, Figure 8A). To define the specificity of the proteome enriched by ER-BirA*, we determined 

the fraction of proteins with a previous secretory annotation (according to GOCC and Phobius). In the 

ER-BirA* dataset 98.5% of the proteins are annotated to be in the secretory pathway, against 62% of 

the total human proteome and 91% of the ER-APEX and ER-TurboID datasets (Figure 8B). This result 

suggests that, even if our dataset is smaller than the one published in the APEX or TurboID paper, the 

specificity for secretory proteins enrichment was higher. When comparing the sub-secretory 

annotation of the proteins retrieved, my ER-BirA* proteome is enriching for more proteins with an ER 

annotation respect to the other dataset (Figure 8C), confirming its high specificity and accuracy for ER 

resident proteins.  

 

Of the entire human proteome, only about 8% localize at the mitochondria. Our mitochondrial dataset 

instead consists of more than 60% proteins with previous mitochondrial annotation (Figure 9A). The 

majority of the remaining proteins are cytosolic, suggesting a transient interaction these proteins 

might have with the mitochondria. The comparison of my MITO-BirA* proteome with a list of well-

annotated mitochondrial proteins did retrieve more than half of them, a higher score respect to the 

previously annotated datasets using APEX2 and TurboID (Figure 9B). The sub-mitochondrial specificity 

was also checked: between the different compartments of the mitochondria (outer mitochondrial 

membrane — OMM, inner mitochondrial membrane — IMM, intermembrane space — IMS, and 

matrix), the proteins localized at the mitochondrial outer membrane in human are around 18%, 

Figure 8 Bar plots indicating the sensitivity and specificity of the proteome enriched by ER-BirA*.  

A) Identification of ER annotated proteins (true positive) in proteomes from previous studies (ER-APEX and ER-TurboID) and 
this study (ER-BirA*). B) Annotation for secretory pathways in proteins composing the human proteome or detected by ER-
APEX, ER-TurboID and ER-BirA*. C) Sub secretory protein annotation of indicated datasets based on Gene Ontology cellular 
components terms 
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according to GOCC. In our dataset, with BirA* localized at the cytosol facing side of the outer 

mitochondrial membrane, we counted around 40% of proteins localized at the OMM (Figure 9C), 

underlying a compartment-specific enrichment of the proteins retrieved in my MITO-BirA* dataset. 

Compared to the MITO-APEX dataset, MITO-BirA* detects more proteins at the outer mitochondrial 

membrane (141 versus 91), but with less sub-mitochondrial specificity.  

 

The specificity of the proteins reported in the PM-BirA* dataset is shown in Figure 10. As expected an 

enrichment of protein located on the plasma membrane was observed in respect to their composition 

in the human proteome or according to their sub-secretory distribution. 

 

Our approach and computational analysis detected polypeptides not restricted to only one 

compartment. Proteins co-localizing in more than one cellular region provide information about 

Figure 9 Bar plots indicating the sensitivity and specificity of the proteome enriched by MITO-BirA*. A) Coverage of known 
localized mitochondrial proteins (true positives) in 3 datasets. B) Mitochondrial protein annotation for human, MITO-APEX 
and MITO-BirA* proteomes. C) Sub-mitochondrial specificity of localization between the different datasets. OMM = outer 
mitochondrial outer, IMS = intermembrane space, IMM = inner mitochondrial membrane. 

Figure 10 PM-BirA* enriches for plasma membrane annotated proteins. A) Bar plot showing the 
enrichment of the PM-BirA* dataset for proteins with plasma membrane annotation or (B) with sub-
secretory annotation to it, compared with the total human or secretory proteomes. 
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potential physical contacts between two compartments. In fact, we detected proteins previously 

identified at mitochondrial-ER interaction sites to share the reported localization in our approach too 

(i.e., VDAC1, INF2 and others, see Discussion). 133 proteins co-localize at the plasma membrane and 

ER in our dataset and, while many of them are part of the secretory pathway as expected, some of 

them are known to mediate the physical contacts between the two compartments, like the adenylyl 

cyclases 3 and 8 (Okeke et al., 2016). 

 

In summary, our compartment-specific proximity labelling approach in combination with mass 

spectrometry created high quality datasets of localized proteomes and described for the first time the 

localization of proteins in HEK293 cells at these subcellular regions. 
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Localization of RNA-binding proteins in HEK293 cells 

We coupled cellular fractionation with organic phase enrichment (XRNAX) to detect proteins actively 

binding RNA in vivo in the nucleus, membranes and cytoplasm of HEK293 cells. The global identification 

of these proteomes through LC-MS/MS revealed their localization, their RBD composition and the 

compartment-specific RNA-binding preference.  

 

Mapping RBPs at different subcellular compartments with f-XRNAX 

To identify the subcellular distribution of human RNA-binding proteins and to have a better 

understanding of RBPs actively engaging with RNA molecules, we developed a novel approach that 

enables the identification of proteins binding to transcripts from a cellular compartment of choice. We 

combined sequential detergent extraction fractionation with XRNAX (Trendel et al., 2019), an organic-

aqueous phase separation method enriching proteins crosslinked to nucleic acid (Figure 11A). I 

developed this new approach in collaboration with Dr. Igor Minia, a post-doctoral scientist in the 

laboratory of Markus Landthaler (MDC/Berlin). 

Dr. Minia first optimized the fractionation protocol described previously for HEK293 cells (Jagannathan 

et al., 2011), testing different buffer compositions and timing of compartment dissociation (see 

Material and Methods). This optimized approach allowed us to obtain high-quality fractionated 

samples of HEK293 cytoplasm, membranes and nuclei. The purity of each fraction was confirmed by 

Western blot analysis with antibodies against known proteins of these compartments: the left panel 

of Figure 11B shows the detection of cytosolic protein Beta-tubulin only in the cytoplasmic fraction, of 

the ER-localized BCAP31 only in the membrane fraction and of histone H3 in the nucleus of HEK293 

cells.  

After obtaining good quality cellular fractions, we attempted to enrich RBPs from them. We applied 

UV light at 254 nm wavelength on intact cells to crosslink proteins to nucleic acids in their proximity, 

performed the fractionation protocol while blocking translation with cycloheximide and applied 

XRNAX from these fractions. This led to an enrichment of proteins linked to nucleic acids while 

retaining spatial information. The efficiency of RBPs recovery was validated using Western blotting 

analysis with specific antibodies against known protein which bind nucleic acids. Furthermore, protein 

samples from cells with and without UV crosslinking were compared: Figure 11B right panel Western 

blots show how the applied protocol specifically enriches for proteins binding to RNA in the UV-

irradiated experimental condition, conserving the information of their cellular localization in the 

cytosol, membranes and/or nuclei. The proteomes recovered in the different fractions and conditions 

were separated by SDS-PAGE and visualized using silver staining, clearly showing enrichment in the UV 

crosslinking condition of the same compartment. When comparing between different fractions, the 
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amount and identity of proteins identified by silver staining is varying widely, pointing to a differential 

proteome composition dependent on the cellular compartment. These results confirmed our goal to 

obtain compartment-specific enrichment for RBPs. The novel protocol of cell fractionation in 

combination with the isolation of crosslinked protein-RNA complexes was termed ‘f-XRNAX’. 

Having established reproducible conditions for RBP recovery from specific cellular compartments, we 

designed an experiment to identify the overall composition of proteins binding to RNA in the cytosol, 

membranes and nucleus of human cells. We applied f-XRNAX to HEK293 cells with or without UV254nm 

crosslinking and treated the RBP-enriched fractions with partial enzymatic digestion, column 

purification and complete Trypsin/Lys-C digestion (see Material and Methods). The obtained peptides 

Figure 11 Mapping RBPs localization with fractionation coupled to XRNAX. 

A-B) Scheme of the experimental procedure (A) and its specificity assessed by Western blots (B). Briefly, cells are UV-irradiated 
and treated with different buffers to obtain cytosolic, membrane and nuclear fractions. The purity of the fractions is assessed 
by detection of compartment protein markers (β-Tubulin for cytosol, BCAP31 for membrane and histone H3 for nucleus). The 
XRNAX protocol was performed on the different fractions and its accuracy checked with Western blots with antibodies against 
RBPs with a preferential compartment localization (FUS for nucleus, RPS6 for membrane, GAPDH and H3 for cytosol). 
Enrichment of RBP is only in the +UV condition. Loading controls are shown below (Ponceau and silver staining). 
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were submitted for liquid chromatography tandem mass spectrometry (LC-MS/MS) to Dr. Marieluise 

Kirchner (collaborator in Philipp Mertens laboratory). Input samples from the different fractions 

without the XRNAX enrichment step were also analysed in order to detect total protein abundance 

before RBP-enrichment. In addition to cytosol, membrane and nuclei fractions, a sample of 

unfractionated HEK293 cells was included (total). Five biological replicates of the experiment were 

prepared and label-free quantification was applied to analyse protein samples (Figure 12) 

 

RBPs compartmentalization 

MaxQuant (Cox and Mann, 2008) was used to analyse data from the LC-MS/MS experiment and to 

calculate the LFQ and iBAQ intensities for proteins detected in all analysed samples. We applied 

stringent thresholds to filter for high-confidence data: hits with less than two unique peptides were 

discarded and only proteins with no missing values in all replicates in at least one condition were kept 

Figure 13. f-XRNAX enriches for RBPs.  

A) The iBAQ fraction for the 25 most enriched proteins with 
f-XRNAX is shown in comparison with the one from the HEK 
proteome.  

B) The percentage of iBAQ intensities for annotated RBPs is almost 
double in the f-XRNAX extract respect to whole cell lysate.  

C) Not annotated RBP are less enriched respect annotated ones in 
the total f-XRNAX sample. 

 

Figure 12. Experimental outline of 
f-XRNAX coupled to LC-MS/MS.  

UV-crosslinked (+UV) and non-crosslinked 
(-UV) samples were separated in different 
cellular fractions, which were then 
subjected to XRNAX and LC-MS/MS. Input 
samples were also analysed by mass 
spectrometry. 5 replicates were prepared. 
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(see Material and Methods for more details). To confirm the high quality of the data, we calculated 

the relative abundance of the top 25 proteins enriched by f-XRNAX compared to HEK293 total lysate: 

all 25 proteins are annotated as RBPs and are all more represented in the experimental condition 

compared to the whole cell lysate (Figure 13A). Furthermore, the proteomes obtained with f-XRNAX 

have a higher fraction of proteins previously annotated as RBP compared to the HEK293 total 

proteome (Figure 13B). When looking at the total sample proteome obtained with f-XRNAX, the 

fraction of proteins without a previous annotation of RNA-binding are less enriched (lower cumulative 

intensity values) respect to established RBPs (Figure 13C). These results confirmed that the applied 

protocol specifically enriched for RBPs and allowed us to focus on the detection of RBPs differentially 

localized in the analysed compartments.  

To filter out background noise from the data, we first normalized the LFQ intensities with trypsin 

(added equally to each sample before LC-MS/MS) and then compared them gene-wise between the 

+UV and -UV conditions of the same fraction. Replicates of the same sample not correlating well with 

each other (Pearson correlation coefficient < 0.85) were discarded: this left 5 replicates for the 

membrane and nuclear fractions, 4 for the total sample and 3 for the cytosolic one.  

We applied R packages limma and eBayes to calculate fold changes of LFQ intensities and determine 

p-values of the determined contrasts. The Benjamini-Hochberg correction was used to test for false 

Figure 14 Removing background proteins from the nuclear fraction of f-XRNAX.  

A) Total number of identified proteins per replicate in the -UV and +UV conditions of nuclear f-XRNAX experiment are 
indicated. 

 B) Volcano plot of LFQ intensities (log2) against adjusted p-values (-log10) between the +UV and -UV conditions of nuclear 
f-XRNAX. Proteins with a fold-change higher than 1 and adjusted p-value lower than 0.01 are categorized as significantly 
enriched in the nucleus (yellow = RBP annotated, black = not annotated as RBP). The rest of proteins (gray) were removed 
from the analysis. Some known RBP are indicated. 
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discovery rate and calculate adjusted p-values. Proteins were called to be enriched in the +UV 

condition of a specific cellular fraction if their log2 fold change was greater than 1 compared to the -

UV condition and their adjusted p-value lower than 0.01. Figure 14 shows two steps of the analysis to 

remove background proteins from the nuclear fraction: on the left, the total number of identified 

proteins per replicate is depicted. This number remains consistent in the +UV condition, while it is 

more variable in the -UV one. On the right side, the volcano plot shows the enriched proteins in the 

+UV condition, with the thresholds for LFQ intensity fold change and adjusted p-values. Most of the 

proteins removed from background are annotated as RBPs, with some examples indicated. The 

mitochondrial RBP LRPPRC is not a nuclear protein and was, as expected, filtered out from the analysis. 

We applied this filtering process to all the different conditions. In this way, we obtained a high-

confidence datasets of localized RBPs in cytosolic, membrane and nuclear fractions of HEK293 cells. 

 

The total number of proteins detected in each replicate after filtering and +UV enrichment analysis is 

displayed in Figure 15A. In the membrane condition, we consistently identified a higher number of 

proteins (>1700) compared to the other samples, even the total. This can be explained by the fact that 

the performed fractionation specifically enriches for a cellular compartment, making the detection of 

proteins with weak or few RNA interactions easier, which would not be identified in the analysis of 

whole cell lysate (see later section on a more in-depth analysis on the membrane-enriched RBPs).  

The correlation plot of LFQ intensities in Figure 15B shows a very good agreement between replicates 

of the same condition (> 0.9 Pearson correlation coefficient), while the value decreases between 

different samples. As expected, the correlation of the ‘total’ sample versus other conditions is slightly 

higher, because most proteins identified in the total sample should also be present in cytosol, 

membrane and nucleus.  

The PCA analysis of the 500 most variable proteins shows also a clear separation of the different 

conditions and cluster of the replicates for the same sample (Figure 15C), emphasizing reproducibility 

and enrichment for different sets of proteins in the respective subcellular locations.  

Examples of proteins with RNA-binding annotation and known localization preference are plotted in 

Figure 15D: the centered LFQ intensity distribution (i.e., mean samples’ intensity set to zero) between 

the analysed compartments for GAPDH, LRRC59 and NAT10 proteins reflects their expected cellular 

distribution, with an enrichment in the cytosolic, membrane and nuclear fractions, respectively. This 

finding suggested that differences between samples’ enriched proteomes is based on the cellular 

fractions obtained, and their purity was recapitulated in the high-throughput mass spectrometry 

experiment.  

Interestingly, the protein isoelectric point (pI) distribution is comparable to published data (Kurotani 

et al., 2019), with acidic cytosolic polypeptides and more basic nuclear ones. While RBPs captured with 
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RIC methods show on average a high pI (Beckmann et al., 2015; Castello et al., 2012), novel approaches 

have demonstrated that many proteins binding to RNA can also display a lower isoelectric point 

(Urdaneta et al., 2019) 

Protein enrichment in one compartment respect to another, or co-localization between more than one 

fraction was determined using the R packages limma and eBayes and comparing conditions between 

each other. We used a mixed imputation approach (see Material and Methods) to determine the LFQ 

intensities in replicates with missing values. Proteins were compared pair-wise in two conditions and 

called to be enriched in one compartment if the log2 fold change was greater than 1 and the adjusted 

Figure 15. Compartmentalization of RNA-binding proteins is detected by mass spectrometry data analysis. 

A) Total number of proteins detected per in the replicates analyzed for the samples after background proteins filtering (+UV vs 
-UV comparison).  

B) LFQ intensities correlation shows high reproducibility between replicates of the same sample.  

C) PCA plots of the 500 most variable proteins.  

D) Distribution of LFQ intensities (centered on the mean, gene-wise) between three RBPs with a preferential localization in 
human cells.  

E) Isoelectric point distribution for proteins enriched with f-XRNAX and separated by their compartment localization.  
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p-value (Benjamini-Hochberg correction) lower than 0.01. In this way, we created a dataset of proteins 

binding to RNA which are preferentially located in the cytosol, membrane or nuclear compartment in 

HEK293 cells. The proteins that did not pass these thresholds were assigned to have a shared 

localization between more than one compartment. In Figure 16A the assignment of proteins to the 

different cellular compartments is represented: 138 and 78 proteins specifically localized in the nucleus 

and cytosol, and most of them have a previous annotation as RNA-binding. An unexpected result are 

the 630 proteins assigned to the membrane compartment, of which the majority has so far no assigned 

RNA-binding potential: only 46% has been annotated as RBPs in other studies using HEK293 cells (Baltz 

et al., 2012; Trendel et al., 2019), compared to the 96% and 78% in the nucleus and cytosol, 

respectively. 173 proteins do not have a preferential localization in one of the three compartments, 

while there are 160 and 468 proteins which are shared between the membrane-nucleus and 

membrane-cytosol compartments, respectively.  

The Gene Ontology terms enrichment analysis for the localized proteins revealed biological processes 

related to RNA metabolism and recapitulated the specific compartmentalization (Figure 16B). For 

example, the nuclear localized proteins have term related to rRNA processing and RNA unwinding, 

Figure 16. RBPome classification and characterization. 

A) Number of proteins distributed between and among the compartments studied with f-XRNAX. Total count of annotated 
RNA-binding proteins is indicated in red. 

B) Gene ontology annotation for biological process for proteins found specifically enriched in cytosol, membrane and nuclei 
in the f-XRNAX experiment. P-value for the terms shown are < 0.01. 
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while the membrane localized ones are more associate to translation in the mitochondria and 

transmembrane transport (Figure 16B). 

 

 

RNA-binding domains profiling 

After the identification and compartment-classification of proteins enriched with f-XRNAX, we focused 

on the determination of the structural properties of the identified polypeptides. The characterization 

of the protein domain guiding the contact with ribonucleic acid molecules (the so-called RNA-binding 

domain or RBD) is of particular interest for RBP classification. 

The peptides detected by mass spectrometry following our experimental approach provided additional 

information about the protein domains interacting with RNA in vivo. In fact, a minority of peptides 

were identified as crosslinked to RNA nucleotides and can be used to better characterize the location 

where the protein-RNA contacts occurred. Two ribonucleotides have been previously identified to be 

UV-crosslinked to peptides: cyclic-uridine monophosphate (cU) and uridine monophosphate (U) 

(Trendel et al., 2019). It is possible to detect these ribonucleotide-peptides adducts in mass 

spectrometry analysis by searching for peptides with a mass shift corresponding to the modification of 

cU and U (324 and 306 Dalton, respectively. See Material and Methods). We identified 175 and 57 

peptides conjugated to cyclic uridine and uridine in samples irradiated with UV light, respectively, 

distributed in 73 and 29 proteins, with 26 proteins bearing peptides with both the modifications. Many 

proteins had multiple peptides with a crosslinked monophosphate nucleotide, like different 

heterogeneous nuclear ribonucleoproteins (e.g. HNRNPA1, HNRNPA2B1 and HNRNPA3), ribosomal 

proteins (e.g. RPL14, RPL27 and RPL4), translation regulating factors (e.g. EIF4B and EIF4H) and others. 

Analysis of the protein domain composition of the different peptides with crosslinked cyclic-uridine 

and uridine revealed a clear enrichment of protein domains related to RNA-binding, particularly of the 

RRM and S1 superfamily (Figure 17A). 

The amino acid composition of peptides with crosslinked cyclic-uridine and uridine was also analysed 

and it showed an enrichment for the amino acid lysine (K) compared to the amino acid composition of 

peptides from total HEK lysate (Figure 17B). This result suggestedd a possible crosslink between the 

reported amino acid and the uracil base on the RNA in HEK293 cells, as it was already previously 

showed in another cell line (Trendel et al., 2019). Furthermore, based on the identification by MS/MS 
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or by using matching between runs (Yu et al., 2020), the software MaxQuant assigns probabilities to 

which amino acid the cyclic-uridine / uridine was bound. According to these calculated probabilities, 

four amino acids are forming covalent contacts with RNA uridine nucleotides: lysine, glycine, valine 

and phenylalanine. Between them, lysine is the most represented in my dataset, with an enrichment 

of over 6 folds compared to the other amino acids, further supporting the evidence of a probable 

crosslink of the amino acid with nucleic acids.  

Almost the totality of proteins containing peptides crosslinked to a ribonucleotide were already 

annotated as RBPs. Their cellular distribution following the f-XRNAX protocol is illustrated in Figure 

17C. 

In addition to the RNA-peptide adducts identified for a relatively small fraction of proteins, we aimed 

to retrieve additional information about RBDs by looking at the mass spectrometry data generated 

with our approach. The XRNAX protocol includes a partial tryptic digestion step before silica columns 

purification and complete tryptic digestion for MS ((Trendel et al., 2019), Figure 18A). The limited 

digestion is performed to reduce the mass of proteins attached to RNAs and to not clog the silica 

Figure 17 Peptides crosslinked to ribonucleotides are used to identify the domains of protein-RNA contacts.  

A) Number of peptides crosslinked to cyclic-uridine (above) or uridine (below) with an assigned protein domain.  

B) Relative occurrence of amino acids in peptides with crosslinked cU or U respect to the HEK proteome.  

C) Cellular distribution of proteins with at least one crosslinked ribonucleoside. Unannotated RBPs are shown In red  
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columns, which purify peptides only if they are bound to nucleic acids. Because of the partial tryptic 

digestion, only the protein domains in the proximity of covalently attached RNAs are purified through 

silica columns and identified by LC-MS/MS. Therefore, we expected an enrichment of peptides close 

to the RNA-protein contacts. Moreover, peptides with crosslinked cyclic uridine or uridine could also 

be mapped to their respective protein regions and give more confidence about statements on RNA-

protein contacts. Peptides from the input samples were used to normalize the data and reduce 

background signal (see Material and Methods). Thus, we obtained protein specific profiles of enriched 

peptides, which can be used to locate RNA-binding protein domains.  

The profiles in the top panel of Figure 18B show the coverage of enriched peptides for three well 

known RBPs (FUS, YBX1 and RBM3), indicating their distribution along the primary sequence and the 

presence of crosslinked cyclic-uridine / uridine. Each profile is compared to the data from pCLAP, a 

protocol designed to specifically enrich RNA-binding domains applied in HEK293 cells (Mullari et al., 

2017) and to the protein domain annotation from UniProt (Consortium et al., 2020). The clustering of 

enriched peptides for the analysed proteins correlates well with the data from pCLAP and it matches 

the areas where RBDs are annotated in UniProt. Our approach detected enriched peptides 

corresponding to the cold shock domain of YBX1, which are missed by pCLAP. The C-terminal portion 

of the protein is consistently enriched in both approaches, emphasising a potential RNA-binding 

Figure 18. Enriched peptides profiles from f-XRNAX recapitulate the position of known RNA-binding domains in annotated 
RBPs.  

A) Scheme of the XRNAX protocol coupled to mass spectrometry (MS). The partial tryptic digestion is highlighted, the critical 
step leading to an enrichment of peptides in close proximity of RNA-protein contacts after silica column purification.  

B) Top panel: examples of enriched peptides profiles for the three human proteins FUS, YBX1 and RBM3 obtained with f-XRNAX 
and normalized with input sample. Enriched peptides are in blue and regions with crosslinked uridine or cyclic-uridine 
monophosphate are in red. Peptides detected by the RBD-specific enrichment protocol pCLAP are shown in the middle panel. 
UniProt protein domain annotation in the bottom part of the figure.  
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domain of YBX1 not annotated as such. The presence of peptides with crosslinked ribonucleotides 

supports the confidence of calling a region of the protein binding to RNA and it correlates with the 

RBDs annotated by UniProt (as seen in the previous analysis and illustrated in Figure 16A).  

The clustering of enriched peptides on and in the vicinity of RNA-binding domains can also be analysed 

in relation to the cellular compartmentalization of the protein in question. The peptide profiles showed 

in Figure 18B can be separated according to how much the cytosolic, membrane and nuclear 

compartments contribute to its abundance. In this way, it is possible to gain information about how 

much a protein binds to RNA in the different compartments and, more specifically, which protein 

domains are more involved in these interactions. The spatial and domain protein-specific information 

can then be used to investigate if proteins have a preferential domain usage depending on the 

compartment where they are localized. Even if the data is noisy for low abundant proteins and a global 

conclusion cannot be drawn from this analysis, we found examples where RBDs of the same protein 

are preferentially used in one cellular compartment respect to another. In Figure 19 is illustrated the 

distribution of enriched peptides for the two paralog proteins ELAVL1 and ELAVL2, according to their 

Figure 19 Compartment-specific RBDs differential binding in ELAVL1 and ELAVL2. The enriched peptides profiles obtained 
with f-XRNAX for ELAVL1 and ELAVL2 are shown according to the protein cellular localization in HEK293 cells. In red are 
highlighted peptides that were found crosslinked with cyclic uridine or uridine monophosphate. The dashed black lines 
indicates the peptide coverage in the different compartment of the C-terminal RRM domain, showing a conserved enrichment 
in the membrane respect to the cytosolic compartment between the two paralog proteins. 
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cellular distribution in HEK293 cells. The structural similarity between the two proteins is reflected in 

their protein domains composition and their enriched peptides profiles, but differences are present. 

The distribution of peptides between cytosol and membrane in the region associated to the more N-

terminal RNA-recognition motif (RRM) domains is comparable. On the other hand, the C-terminal RRM 

domain is clearly enriched in the membrane (and nucleus for ELAVL1) compartment, while it is less 

represented in the cytoplasmic fraction. The fact these findings were reported for two paralog proteins 

points to a possible evolutionary conserved function of the RRM in ELAV1 and ELAV2, where the 

localization of the protein plays a role in its binding to transcripts.  

 

Characterization of RBPs in the membrane compartment 

The number of proteins identified by f-XRNAX in the membrane compartment without a previous RNA-

binding annotation is higher than expected and for this reason was further scrutinized.  

Figure 20A shows the volcano plot of LFQ intensity fold changes versus adjusted p-value for proteins 

in the membrane and nuclear compartments. Of note, 399 out of 620 membrane localized proteins 

does not have a previous annotation as RNA-binding protein (Figure 16A). These proteins have been 

identified in all five biological replicates of the +UV membrane fraction of the f-XRNAX experiment, so 

they are unlikely to represent background or experimental artefacts. The majority of proteins enriched 

Figure 20 Not annotated RBPs compose a large fraction of the proteome in the f-XRNAX membrane fraction. 

A) Volcano plot of LFQ intensities fold change between nuclear and membrane compartments. Red-dashed lines delimit the 
thresholds set to call a protein specifically enriched to one compartment (adj. p-value < 0.01, |log2 (LFQ fold change) | > 1).  

B) Density plot of iBAQ intensities for proteins enriched in the membrane fraction, colored by RBP annotation.  
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in the membrane compartment is not glycosylated, a post-translational modification that resemble 

the physical-chemical properties of RBPs crosslinked to RNAs during TRIzol extraction. Furthermore, if 

a protein would be capture due to glycosylation, it should be detected in the -UV condition too and 

filtered during computational analysis.  

However, the iBAQ intensities distribution of the non-annotated RBPs on the membrane fraction is 

overall lower than the one for the annotated ones (Figure 20B), indicating less stable RNA-protein 

interactions. These contacts could be transient and captured only upon the compartment enrichment 

by fractionation performed in f-XRNAX. Nonetheless, their presence in the membrane sample was 

remarkable and it contributed to 44% of the total iBAQ intensity of the sample. 

 

In total, we identified 399 new potential RBPs that reside and bind to RNA on membranes of HEK293 

cells. A GO term enrichment analysis for biological process revealed how these proteins are associated 

with different types of transport, particularly of ions and molecules (Figure 21A). The protein domain 

composition of the membrane fraction proteins shows a significant increase in transmembrane and 

signal peptide containing domains proteins not annotated as RBP (Figure 21B). In fact, in this class of 

proteins enriched with f-XRNAX on human membranes, 71 belong to the solute carrier (SLC) 

superfamily and 21 to the TMEM family, both of which are groups of proteins with known 

transmembrane domains, and both with localization at the ER and plasma membranes. Some of the 

components of the SLC and TMEM families have already been described to bind RNAs (SLC3A2, 

Figure 21 Characterization of not annotated RNA-binding proteins at the membrane compartment.  

A) Gene Ontology term enrichment analysis for biological function for proteins detected at the membrane compartment with 
f-XRNAX lacking RBP annotation. Fold enrichment is indicated on the abscissa and GO term name of the top six enriched terms 
on the ordinate. Adjusted p-value (Benjamini-Hochberg correction) is shown by the color bar.  

B) Protein domain distribution of transmembrane helices and signal peptides for proteins found in the membrane compartment 
of the f-XRNAX experiment. The groups of protein with and without annotation as RBPs are compared. 
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SLC25A3, TMEM165 and TMEM214 for example (Baltz et al., 2012; Trendel et al., 2019)), but many 

more proteins seem to have this potential according to the f-XRNAX data.  

 

Although transmembrane domains and signal peptides are more represented in these RBP candidates, 

protein domain enrichment analyses to find a common motif which binds RNAs did not lead to any 

conclusive results. One possibility is that these proteins do not have a structurally stable domain which 

binds to nucleic acid, but they might have intrinsically disordered regions (IDR) with the potential of 

interacting with RNA. In fact, in the last decade, there have been several works where the role of IDR 

in RNA-binding has been highlighted and discussed (Basu and Bahadur, 2016; Protter et al., 2018; 

Varadi et al., 2015).  

 Using the MobiDB database (Piovesan et al., 2020), we defined the number of proteins with IDRs in 

the f-XRNAX data set. We found that proteins in the membrane fraction without RBP annotation are 

much more likely to contain IDRs (Figure 22A), while for proteins in the cytosol or nucleus this is not 

the case. We subsequently compared the position of IDRs within each protein to its peptide profile 

from our data. For many of the non-annotated RBPs at the membrane compartment there was a 

Figure 22 Intrinsically disordered regions are 
potentially involved in unconventional RNA-
binding at the membrane compartment.  

A) Distribution of protein counts with or without 
IDR, subdivided by localization and RNA-binding 
protein (RBP) annotation.  

B) Three examples of correlation between IDR 
intensity (retrieved from the Mobi database) 
and enriched peptide profiles for proteins not 
annotated as RBPs.  
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correlation between the probability of IDRs and the number of f-XRNAX detected peptides. As shown 

in Figure 22B, the number of identified peptides for the protein M6PR clusters with the annotated IDR 

regions towards at its C-terminus. Similar observations can be made for the proteins SLC38A9 and BSG 

(Figure 22B). These results suggest a possible function for intrinsically disordered regions in contacting 

RNA, particularly in the membrane compartment of human cells.  

Differential RNA-binding of proteins in different compartments 

The proteins identified by f-XRNAX can be found co-localizing in more than one of the compartments 

analysed (Figure 16A). Nevertheless, the f-XRNAX data does not take into consideration the total 

amount of protein present at the different cellular compartments (binding + not binding to RNA). We 

took advantage of the mass spectrometry data generated by the “input” samples (cellular fractions 

before the XRNAX purification) to normalize the f-XRNAX data and account for protein abundance in 

the different fractions. In this way, we obtained protein-wise normalised values of LFQ-intensities that 

could be used to evaluate the different RNA-binding potential of different proteins in the respective 

compartments. In fact, if a protein is reported to be localized aspecifically between the membrane and 

cytosol in the f-XRNAX data, but it is also described as having a greater abundance in the membrane 

“input” before the RBP-enrichment step, this can represent a higher potential of that protein to bind 

RNA in the cytosol compared to the membrane compartment. Figure 23 shows the results of this 

analysis between the nucleus and membrane compartments and indicates how the same protein can 

bind to RNA with different affinity depending on its localization. The protein taking into consideration 

for this analysis had to be found in both analysed fraction in the f-XRNAX experiment and in the input 

fractions. Also, the difference of protein abundance (measured in log2 LFQ intensities) between the 

two compartments in the input samples was set to be not larger than 2. In this way, it was avoided to 

compare proteins which localization in HEK293 cells is severely skewed to one compartment.  

Therefore, the f-XRNAX approach and the data generated can used to evaluate the differential RNA-

binding of RBPs in multiple compartments. 
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Figure 23 Proteins detected in more than one compartment show differntial binding to RNA depending on their localization. 
Proteins identified in both nuclear and membrane compartments of f-XRNAX experiment are plotted. LFQ intensities are 
normailzed protein-wise by the intensity from the fraction-specific input MS data.  
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RNA dynamics in HEK293 single cells 

RNA expression is coordinated by the rates of its synthesis, processing and degradation. We set up a 

novel experimental and computational approach to investigate these parameters at the single cell 

level. We focused on their temporal dynamics during a fundamental biological process: the cell cycle.  

 

Development of the SLAM-Drop-seq protocol 

RNA metabolic labelling in living cells using ribonucleotide analogues is a widely applied method to 

study gene expression kinetics in cell populations (Baptista and Dölken, 2018). For a better 

understanding of the temporal dynamics regulating RNA production, splicing and degradation at the 

single cell level, we developed a new approach, based on the published SLAM-seq protocol (Herzog et 

al., 2017) and on microfluidic systems for single cell sorting (Davey et al., 2021; Macosko et al., 2015).  

In SLAM-seq, cells are incubated for a determined amount of time with the nucleotide analogue 4sU, 

which is incorporated into newly synthetized transcripts; RNA is then purified and treated with 

iodoacetamide (IAA). This last step induces the alkylation of 4sU residues and leads to the 

incorporation of T to C transitions during the reverse transcription step of RNA-seq library preparation. 

These transitions are detected and quantified by computational analysis, identifying the ‘new’ and ‘old’ 

populations of transcripts in the sample.  

We wanted to apply the tracking the temporal dynamics at the single cell level. In order to do so, we 

introduced cellular fixation with methanol after 4sU labelling of HEK293 cells, similar to the one used 

in some scRNA-seq protocols (Alles et al., 2017). Next, we optimized the conditions for the RNA 

alkylation with iodoacetamide within fixed cells. In SLAM-seq, purified RNA is treated with IAA for 5 

minutes at 55 °C, in slightly basic buffer containing 50% DMSO. However, we had to achieve efficient 

alkylation in cell suspensions, while maintaining the integrity of the individual cells and their 

transcripts.  

Several conditions were tested. We optimized the temperature, time, pH and composition of buffers, 

in which the alkylation reaction occurred. As a readout for the efficiency of 4sU alkylation, we set up a 

“biotinylation blocking assay” (Figure 24A). The thiol group of 4sU can react with the commercial 

compound MTS-XX-biotin (Duffy et al., 2015), which can subsequently be conjugated with streptavidin-

HRP and detected by chemiluminescence. In case 4sU was alkylated by IAA, MTS-XX-biotin would be 

unable to react with free thiol groups, resulting in a decrease of chemiluminescent signal by 

streptavidin-HRP. Using this semi-quantitative assay, the ratio between the chemiluminescent readout 

of IAA treated versus untreated samples determined the efficiency of alkylation in the different applied 
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conditions. Moreover, the RNA integrity was determined in parallel, since degraded transcripts reduce 

data quality.  

Figure 24B shows three examples of conditions tested and the readout obtained in order to optimize 

the protocol: cells were incubated with 4sU, fixed with methanol and resuspended in the three 

different buffers indicated (80% methanol, 50% DMSO or DPBS pH 8.0) with or without IAA. Cells were 

then lysed and RNA extracted to perform the biotinylation blocking assay and check for efficiency of 

IAA-induced alkylation (‘Biotin detection’). RNA integrity was assessed using agarose gels. The buffer 

with the best efficiency of alkylation and potential to keep RNA intact was the solution of 80% 

methanol and 20% DPBS (same composition of the fixation buffer). Several other conditions were 

tested, such as different concentration of IAA and 4sU, and timing of the alkylation, and finally we 

found the optimal ones for an efficient 4sU alkylation and purification of not degraded RNA, as 

described in the next paragraph. 

The fixation of 4sU-labelled single cell suspension was performed in 80% methanol and 20% DPBS 

solution (i.e., fixation buffer). As mentioned previously, this step was fundamental for the preparation 

of single cell RNA libraries, because it blocks cell metabolism but leaves cellular compartments mostly 

intact. In addition, these conditions inactivate RNases and permeabilizes cell membranes, allowing the 

IAA-induced alkylation of labelled transcripts to take place within fixed cells, a novel step which 

reduces the hands-on time and complexity of similar protocols (Qiu et al., 2020). After fixation, cells 

are incubated with 10 mM IAA (final concentration) in fixation buffer overnight at room temperature, 

with slight agitation and in the dark. The cell suspension is then washed, rehydrated and IAA quenched 

with DTT (free IAA would impair the function of reverse transcriptase and other enzymes in the 

downstream protocol). At this point, cells could be used for single cell encapsulation with one of the 

available microfluidic system. The newly developed approach has been termed “SLAM-Drop-seq”. 

Figure 24 Optimization of RNA alkylation in fixed cells.  

A) Scheme of the biotinylation blocking assay to check for alkylation 
efficiency. Briefly, 4sU-labelled RNA is exposed in succession to IAA 
or buffer, MTSEA-biotin-XX and streptavidin-HRP. The samples with 
or without IAA treatment are compared in a luminometer and a loss 
of chemiluminescent signal is reflects 4sU alkylation efficiency.  

 B) Optimization of the alkylation step for SLAM-Drop-seq. Different 
buffers were used to induce the alkylation of 4sU labelled RNA in 
single HEK293 cells. Its efficiency was checked with a biotinylation 
blocking assay (biotin detection). RNA load (EtBr) and integrity are 
also showed. 
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SLAM-Drop-seq protocol was used on HEK293 cells, which were 4sU-labeled for 30, 60 and 120 minutes 

and compared to unlabelled cells. The efficiency of IAA alkylation was shown by the dot-blot analysis 

(Figure 25A). In RNA samples from cells where IAA was added, only a background signal was present, 

indicating efficient alkylation of 4sU residues. The quality of the RNA was checked with a 2100 

Bioanalyzer Instrument (Agilent), showing a RIN value greater than 8 for all the samples.  

 To quantitively check the efficiency of 4sU alkylation in cell suspension, we constructed bulk poly(A)+ 

RNA-seq libraries. As expected, we detected increased T to C transitions when cells were incubated 

with 4sU and RNA alkylated with IAA, and this rise correlated with the time of 4sU labelling (Figure 

25B). Nucleotide changes different from T to C did not show this correlation and remained constantly 

low (median around 0.0002 per gene, Figure 25B). More interestingly, our protocol generated a 

number of T to C conversions very comparable to the published SLAM-seq protocol, using purified RNA 

instead of cell suspension to perform the alkylation step (Figure 25C, green bars versus blue bars 

Figure 25 SLAM-Drop-seq efficiently alkylates labelled transcripts in cell suspension.  

A) Representative dot blot of biotinylation blocking assay showing the efficiency of 4sU incorporation with different labelling 
times and the efficiency of alkylation by IAA in fixed cell suspensions. Biotin signal was detected with streptavidin-HRP by 
chemiluminescence, methylene blue staining was used for RNA loading control.  

B) Nucleotide mutations per genes detected in a bulk polyA+ RNA-seq experiment upon 4sU labelling following the SLAM-
Drop-seq protocol. Only T to C conversions correlate with the incubation time with 4sU. The conversion rate is calculated by 
dividing the number of mismatches by the number of the original nucleotide (i.e., T to C conversion rate = number of T to C 
divided by total number of Ts).  

C) T-to-C conversion rates of bulk SLAM-seq polyA+ libraries. RNA was alkylated with IAA either in fixed cells (green bars) or 
in vitro (blue bars, i.e. purified RNA was derivatized with IAA in vitro following the published SLAM-seq protocol); no IAA 
alkylation control (pink bar) served for estimation of T > C conversion rate caused by 4sU alone and to check the efficiency of 
IAA-derivatization in fixed cells. 
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comparison). This gave us the confidence to couple our protocol with microfluidics for single cell library 

preparation.  

 

SLAM-Drop-seq detects newly synthetized transcripts in single cells.  

The schematic workflow of the SLAM-Drop-seq protocol is represented in Figure 26. In our experiment, 

HEK293 cells were labelled for 0, 15, 30 or 60 minutes with 300 µM 4sU, fixed in methanol-based buffer 

and then collected for SLAM-Drop-seq. Two biological replicates were prepared for each time point. 

The alkylation efficiency of 4sU residues in cell suspensions was checked with a biotinylation-blocking 

experiment and the RNA quality assessed using a TapeStation device (Agilent). All samples showed a 

satisfactory IAA-induced alkylation of 4sU-labelled RNA and a RIN value higher than 8. We then used 

the Nadia platform (Dolomite Bio) to encapsulate single cell together with beads attached to 

oligonucleotides containing a poly(dT) tails, specific cellular barcode (CB, to distinguish the different 

cells captured) and unique molecular identifier (UMI, to distinguish the different RNA molecules 

captured within a cell). PolyA+ RNAs attached to the beads were purified, reverse transcribed and 

amplified via PCR. Transposase-driven tagmentation was used to fragment the libraries and ligate 

sequences necessary for deep sequencing. The 15 minutes 4sU-labelled samples were first sequenced 

on a NextSeq machine (Illumina), and later on NovaSeq instrument (Illumina). 

As declared in the ‘Statement of Contributions’, the computational analysis related to SLAM-Drop-seq 

was carried out by H. Liu, with help from M. Schilling and Dr. Schwabe.  

 

We identified a total of 7280 single cells expressing at least 200 genes. The average gene expression 

correlation between the different replicates and time points was high (Pearson correlation coefficient 

r > 0.99, Figure 27A), indicating that 4sU incubation did not introduce any apparent change in gene 

expression. 

To have a deeper sequencing coverage, we developed a novel method that computationally extends 

the reads containing the same UMI. As shown previously, 4sU is incorporated in 1 out of 40 uridines 

on average (Herzog et al., 2017; Jürges et al., 2018), which lowers the probability of detecting a T to C 

Figure 26 Scheme of the SLAM-Drop-seq experiment. Briefly, HEK293 cells are incubated with 4-thiouridine (4sU) and fixed. 
4sU residues in the newly synthesized RNAs are alkylated by IAA in situ, which results in T->C transitions during the reverse 
transcription step after encapsulation of single cells in oil droplets using Drop-seq or Nadia devices. Single-cell RNA libraries 
are prepared after droplet lysis and the T->C conversions in barcoded reads detected by computational analysis. 
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transition due to a read length of only around 130 nucleotides. By merging reads generated from the 

same RNA molecule (i.e., same UMI) we lowered the probability of such false negatives: our approach 

increased the median number of thymidines in a read by 52% (from 32 to 49, Figure 27C). As it was 

already shown for the bulk SLAM-seq data, the number of T to C transitions per cell increases 

proportionally to the time of incubation with 4sU (Figure 27B), while the other possible nucleotide 

changes were constantly low between the different samples. RNA molecules containing T to C 

transitions (i.e., 4sU-labelled) were categorized as newly transcribed, while the other as pre-existent 

(i.e., 4sU-unlabelled). We observed a linear correlation between the mean number of newly 

synthetized molecules per cell and the 4sU-labelling time (Figure 27D), meaning that diagnostic T to C 

conversions were detected with high sensitivity. 

Figure 27 SLAM-Drop-seq identifies newly synthetized transcripts in single cells. 

A) Gene expression pairwise Pearson correlation analysis of single cell SLAM-Drop-seq experiment shows high reproducibility 
between replicates and samples. The four samples differ for incubation times with 4sU (0, 15, 30 and 60 minutes). 

B) Conversion rate per cell for different mutational pattern following the SLAM-Drop-seq protocol upon different timing of 
4sU incubation.  

C) Histogram showing the increased number of thymidines (Ts) obtained by merging reads with the same UMI. 

D) Correlation between the number of newly transcribed molecules per cell and the metabolic labelling time. The linear 
regression is based on the mean of the mean value between replicates of one time point. R^2 = coefficient of determination, 
p = p-value of the regression. 
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To calculate RNA kinetic rates, not only we had to separate the newly transcribed and pre-existing RNA 

populations, but also detect their splicing status, i.e. whether the sequenced reads contained intron 

sequences. Based on the 4sU-labelling and splicing status, we were able to assign each RNA molecule 

in each single cell to one of four RNA types (labelled-spliced, labelled-unspliced, unlabelled-spliced, 

unlabelled-unspliced), instrumental for the calculation of the RNA kinetic rates.  

 

Cell cycle reconstruction 

To give a temporal value to the calculation of the RNA kinetic rates, we focused on a dynamic biological 

process. Since we applied the SLAM-Drop-seq protocol to a population of unsynchronized and 

exponentially proliferating HEK293 cells, we decided to study changes of synthesis, processing and 

degradation during the cell cycle. In order to do so, we first assigned to each cell its corresponding cell 

cycle time based on their gene expression using Revelio (Schwabe et al., 2020). Figure 28 shows the 

expression profiles of known house-keeping and cycling genes as determined by Revelio.  

Based on the cell cycle time assignment and identification of the four RNA types, we developed the 

R-package Eskrate to calculate the time-dependent transcriptome-wide RNA kinetic rates. Eskrate 

solves a system of four ordinary differential equations (ODEs), describing the RNA abundance changes 

over the cell cycle time for the described four types of RNAs (labelled-spliced, labelled-unspliced, 

unlabelled-spliced, unlabelled-unspliced) and calculates their dynamic profiles along the cell cycle. 

Notably, we solved the time-dependent version of the ODEs: we thus obtained the estimation of 

kinetic rates as a continuous function of the cell cycle time. Since the amount of unspliced RNA in our 

data was relatively low, we simplified the kinetic model assuming that splicing is much faster than 

degradation (Alpert et al., 2017; Herzog et al., 2017). Eskrate was then able to estimate the cell cycle 

time-dependent RNA synthesis and degradation rates transcriptome wide from SLAM-Drop-seq data.  

 

Figure 28 Examples of gene 
expression dynamics along the 
cell cycle for six genes. Each dot 
represents a cell, assigned to that 
cell cycle time with Revelio. 
HPRT1 is a non-cycling house-
keeping gene. UNG and PCNA are 
G1/S markers. TOP2A,CCNB1, 
PLK1 are G2/M markers. 
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To investigate the regulation of temporal RNA kinetic rates during the cell cycle, we focused on genes 

whose expression oscillates along the cell cycle (i.e., cycling genes). After some filtering steps, we 

identified 399 genes with expression peaking at a specific phase of the cell cycle (Figure 29A). The vast 

majority of them were well-predicted by comparing gene-wise predictions (from our kinetic model) to 

the observations (data from SLAM-Drop-seq experiment). Their estimated transcription and 

Figure 29 Gene expression and kinetic rates for cycling genes are highly dynamic along the cell cycle. 

A) Heatmap representation of the expression fluctuation throughout the cell cycle for 399 cycling genes (each row represents one 
gene). The ‘observed’ is the expression from single-cell sequencing, while the ‘preticted’ is the expression derived from our kinetic 
model. On the right the gene-wise deviation between observed and predicted is shown. A deviation lower than 0.2 classifies a 
gene as well-predicted. HIST1H4C is the gene displayed.  

B) Gene-wise profiles of estimated transcription and degradation rates calculated by Eskrate.  

C) Profiles of the observed gene expression (total and 4sU-labelled), estimated kinetic rates of transcription and degradation, and 
predicted expression for the HIST1H4C gene. On the left panels, each point represents the normalized read counts for each cell 
at the assigned cell cycle time. The points are smoothed to a profile. In the middle panel, the estimated transcription and 
degradation rates are displayed with the 90% confidence intervals in gray. CPM = counts per million; FC = fold change (ratio 
between max and min values of the profile). 
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degradation rates are also shown in Figure 29B, and display a dynamic regulation throughout the cell 

cycle.  

To validate our estimations, we looked at the profiles from the histone gene HIST1H4C. This gene is a 

well-known S-phase marker and was previously reported to be transcribed just before its expression 

peak, while its stability decreases during the G2 phase of the cell cycle (Harris et al., 1991). These 

findings were confirmed from our estimates of HIST1H4C RNA kinetics (Figure 29C). 

 

As a more global analysis, we also compared the estimates of our degradation rates to independent 

studies on RNA half-life (Murakawa et al., 2015; Schofield et al., 2018). Even if these publications 

calculated the degradation rates at steady state, we obtained positive correlation when comparing our 

results with them (Spearman correlation coefficients were 0.60 and 0.46, respectively). 

 

Different regulation strategies for different cycling genes 

To understand which component between transcription and degradation had a bigger importance in 

defining the expression profile of cycling genes, we classified them according to their dependency on 

the dynamics of transcription and degradation by checking the prediction changes upon constant 

kinetic rate setting. After filtering for well-predicted genes exhibiting too many peaks for their 

synthesis and/or degradation rates profiles (Figure 30A, see Material and Methods), we obtained a set 

of 377 genes which we called “robust-cycling”. We then fixed the transcription or degradation to a 

constant value (mean between all cells) and calculated how much the new predicted expression would 

differ from the original one. If a gene was highly depended on RNA synthesis to shape its expression 

along the cell cycle, this difference would be relatively large, and the same is true if the expression of 

a gene was more dependent on its stability. From this analysis, genes were classified in three different 

groups: regulated by dynamic transcription, dynamic degradation, or both (Figure 30B). The majority 

(337) of cycling genes showed a dependence on both kinetic rates to shape their expression peak, 

implicating that the regulation of RNA stability is highly involved in the cell cycle control of HEK293 

cells. Moreover, we identified 16 and 21 genes applying a dynamic degradation or dynamic 

transcription strategy, respectively. As expected, the profiles (without fixing any value to a constant) 

of genes regulated by dynamic degradation show an approximately constant transcription rate 

throughout the cell cycle, while genes classified as regulated by dynamic transcription displayed a 

relatively steady time-dependent profile of degradation rate Figure 30C.  

 

In conclusion, SLAM-Drop-seq coupled with the bioinformatical tool Eskrate enabled the quantitative 

and time-dependent profiling of synthesis and kinetic rates along the cell cycle of HEK293 cells. 
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Figure 30 Different strategies regulate the expression of cycling genes.  

A) Representation of the number of transcription and degradation peaks in well-predicted cycling genes. In dark-gray are 
shown the set of genes which were selected for further analysis.  

B) Robust-cycling genes are classified based on their dependency on dynamic transcription and dynamic degradation. By 
forcing either degradation or synthesis to a fixed value and after calculating the similarity (i.e., dependency) between old and 
new expression profiles, we classified the robust-cycling genes in three kinetic modes. Genes indicated are the one shown in 
the next figure.  

C) Examples of expression, transcription and degradation rates profiles along the cell cycle for three genes belonging to the 
three different categories of kinetic regulation.  
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DISCUSSION 

 

In this PhD thesis, several biological challenges have been addressed by implementing a combination 

of novel biochemical methods and computational approaches. The high-quality datasets created 

within this work describe protein localization, RNA-binding proteins compartmentalization and RNA 

kinetic rates temporal dynamics in HEK293 cells, and report some of the biological implications these 

findings are contributing to form. 

The aim at the foundation of the developed approaches is to better describe the spatial and temporal 

determinants of gene regulation in human cells. Since many biological processes are involved in the 

fine-tuning of gene expression, we investigated different cellular mechanisms with a combination of 

newly developed high-throughput techniques. The identification of proteins and RBPs localization, and 

the profiling of time-dependent gene expression dynamics increased our understanding of the cellular 

environment and its regulation. From this information, new predictive models can be created on how 

eukaryotic cells maintain homeostasis and respond to stimuli. 

 

Proximity labelling at the cytosolic side of ER, mitochondria and plasma membranes 

We investigated the global localization of proteins in cellular regions difficult to assess with traditional 

high-throughput methods (such as cellular fractionation or differential centrifugation). We focused on 

the characterization of proteins localized at the cytosolic side of endoplasmic reticulum, outer-

mitochondrial and plasma membranes. These subcellular regions play central roles in several essential 

biological processes. The endoplasmic reticulum membrane is involved in protein translation and 

secretion, lipid synthesis, calcium signalling, etc. The outer mitochondrial membrane mediates 

apoptosis, proteins import and interaction with other organelles. The plasma membrane is critical for 

the regulation of the flow of material, information and energy between intra and extracellular spaces. 

Despite their vital roles for a functional cellular environment, the protein composition at these 

subcellular regions is still not fully characterized, which would be essential for their in-depth 

understanding. 

To detect the resident proteomes at the selected compartments, we created stable HEK293 cell lines 

expressing the promiscuous biotin ligase BirA* fused to specific targeting peptides. Mass spectrometry 

data analysis revealed that our approach reproducibly purified proteomes specific to one localization 

and confirmed the accuracy of the compartment-specific enrichment. We were able, for example, to 

recapitulate the expected localization of compartment-specific protein markers by looking at their 

intensities in the different conditions (Figure 6B).  
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The proteomes obtained with the different BirA* cell lines recapitulated the expected functional 

processes of the compartment where the enzyme was targeted. Furthermore, new candidate proteins 

have been identified which were previously unknown to localize in these cellular regions, mostly at the 

mitochondrial and plasma membranes. Therefore, our approach can be informative to further 

characterize and understand the proteomes located at the cytosol facing ER, mitochondria and plasma 

membranes. 

We identified 479 proteins localized at the cytosolic side of the ER membrane, including many 

members involved in protein processing pathways at the ER. For example, the proteins composing the 

coat protein complex II (COPII) vesicles are well represented in our dataset: the activating and cargo-

selecting SEC13/31 complex, the inner-coat SEC23/24 heterodimer and the SAR1A-acivating 

guanidine-exchange factor SEC12 are found enriched in the ER-BirA* dataset. The SAR1A protein 

however, which is also a component of COPII vesicles, was found to co-localize between ER and 

mitochondria. These results might reflect the function of SAR1A, which is freely diffusing in the cytosol 

when bound to GDP (i.e., inactive) and only when activated by SEC12 exposes a hydrophobic tail, fusing 

to the ER membrane. The ambiguity of SAR1A localization and the numerous contacts between 

endoplasmic reticulum and outer mitochondrial membrane could explain why SAR1A is found in both 

of these compartments. This indicates that mixed localization are biologically meaningful. Still, more 

than 99% of the proteins enriched by ER-BirA* are annotated as components of the secretory-pathway, 

indicating a strong enrichment of the dataset created here.  

More than 480 proteins showed a preferential localization to the cytosolic part of the plasma 

membrane. Many of them are known to localize at the plasma membrane or in its vicinity. This includes 

G-protein coupled receptors (like GRK6, GNA11, GNA13, GNAI2, GPRIN1 and GPRIN3 proteins), solute 

carrier proteins (like the leucine heterodimer transporter SLC3A2/ SLC7A5 (Nguyen et al., 2018), the 

glucose transporter SLC2A1, the zinc transporter SLC30A1, and 27 more), proteins associated to 

phospholipid transport and processing (PPAP2B, ATP11A, ATP11C and ATP8B2), and many others.  

Proteins not integrated in the cellular membrane, but in close contact with its cytosolic side, were also 

detected: the Rho GTPase-activating proteins ARHGAP21, ARHGAP5, ARHGAP32, ARHGAP5 and the 

associated guanine exchange factors FARP1, FARP2, FGD1, FGD6, or phosphodiesterases PLCB1, 

PLCB3, PLCB4, PLCH1 mediating intracellular cascades of signal transduction. These results indicate 

that proteins do not require a transmembrane helix to be characterized as membrane-anchored in our 

approach, indicating that BirA* biotinylation is able to also enrich for proteins which are in close 

proximity to the localization of the enzyme. 

  

The MS analysis detected 280 proteins localized at the cytosolic surface of the mitochondria outer 

membrane. Our data recapitulated the expected localization of proteins mediating mitochondrial 
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fission and fusion (MFN1, MFN2, MFF, MTFR1, MTFR1L, MTFR2, MIEF2, etc.), apoptosis (BCL2L11, 

BCL2L2, BCL2L13, BNIP3, BNIP3L, VDAC2, AIFM1, BAX, MCL1, CYC1, etc.) and cellular respiration, i.e. 

the respiratory chain complex (NDUFA8, TIMMDC1, AIFM1, NDUFS5, NDUFAF4, ACAD9, NDUFS1 and 

BCS1L).  

Nonetheless, several proteins without any prior annotation at the mitochondrial membrane were also 

identified. For example, many peroxisomal proteins are biotinylated by MITO-BirA*, indicating the 

close proximity of these two organelles in HEK293 cells. Previous studies have shown that 

mitochondria and peroxisomes can indeed be close to each other (Fan et al., 2016; Fransen et al., 

2017), and share the regulation of some metabolic processes, such as fatty acids oxidation and 

homeostasis of reactive oxygen species (Wanders et al., 2016). Since we did not target BirA* at the 

membrane of peroxisomes, we cannot have a full characterization of the proteins more likely to 

mediate the interactions with mitochondria, but our approach provides a first comprehensive insight 

into potential candidates at the interfaces of the two compartments. Further studies, including a 

proximity labelling enzyme at the cytosolic-facing membrane of peroxisome will better characterize 

the proteome at these specialized cellular regions.  

 

Proteins found to co-localize in two compartments are valuable to understand the functional 

properties and communications between different regions of human cells. For example, when looking 

at proteins similarly enriched at both the outer mitochondrial and ER membranes, we not only found 

proteins previously detected at these locations, like VDAC1 (Shoshan-Barmatz et al., 2004), FKBP8 

(Kwak et al., 2020), INF2 (Chakrabarti et al., 2018) and DFCP1 (Hamasaki et al., 2013), but also many 

unannotated ones, for a total of 102 proteins at ER-mitochondrial contacts. Interestingly, more than 

10% of proteins without previous annotation at these specialized compartments (for example ABCD3, 

ALDH3A2, PTPN1) were recently also detected by a similar approach focusing on the identification of 

the proteome composition at ER-mitochondrial contacts (Cho et al., 2020), indicating a potential 

underestimation of the proteins shared by these cellular regions. 

Many of the proteins involved in the communication and regulation between different cellular 

compartments have still to be clearly characterized, and our datasets provide insights on their 

potential composition in human cells.  

 

A similar study to the one presented here was published by the Ting laboratory (Hung et al., 2017), 

where the ascorbate peroxidase APEX2 was used instead of BirA*. Although the kinetic of biotinylation 

of APEX2 is much faster than BirA* (seconds versus hours), its activation requires the use of high 

concentration (1 mM) of H2O2, a well know cell stressor that could quickly affect protein localization. 

TurboID is an evolutionary selected version of BirA*, displaying a faster biotinylation kinetics (minutes) 
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without the need of toxic reagents to induce proximity labelling (Branon et al., 2018). Although, when 

the experiment is planned with proper cytosolic controls such as the one used in this study, the slow 

kinetic of the BirA* permits a better characterization of proteins, which have stable interactions with 

the compartment interrogated. Proteins with transient contacts are instead filtered out. Therefore, 

BirA* proximity labelling should not be utilized to investigate cellular processes occurring with fast 

dynamics and short time periods, but it is a potent approach to study the resident composition of a 

cellular region. 

 

RNA-binding protein compartmentalization in HEK293 cells 

Our BirA*-based and other similar approaches (Geladaki et al., 2019; Hung et al., 2017; Thul et al., 

2017) to study protein localization in a high-throughput manner do not take into consideration the 

functional properties of the captured polypeptides. For example, RNA-binding proteins are 

represented in these datasets, but the method does not assess their binding to transcripts. Since the 

interaction with RBPs influences every step of the life of an RNA molecule, the location of actively 

binding RBPs would be useful to better understand where these proteins perform their functions and 

compare their RNA-binding affinities dependent on the compartment. Moreover, by separating the 

analysis of RBP-RNA interactions to different cellular locations, the complexity of the cellular 

environment is reduced and the identification of these contacts increases. Nucleus, cytosol and 

membranes compose an eukaryotic cell. These three compartments carry out different cellular 

functions, thus the RBPs repertoire is expected to differ between each other.  

For these reasons, we developed a novel activity-based protocol to purify proteins binding to RNA in 

the nucleus, the cytosol and at the membranes of HEK293 cells. We coupled cellular fractionation and 

acidic guanidinium thiocyanate-phenol-chloroform biphasic extraction (XRNAX (Trendel et al., 2019)) 

with mass spectrometry. The data obtained allowed us to characterize the protein-RNA interactome 

in different locations, to analyse the protein domains mediating the interactions and to compare how 

the RNA-binding affinities change in the different compartments.  

 

Development of f-XRNAX 

When compared to proximity labelling approaches, biochemical fractionation methods are regarded 

as less specific due to incomplete separation between the different samples. Still, proximity labelling 

is useful to gain insights about proteomes in specific regions of the cell, but is less adapted to give a 

global picture of the whole cell compartmentalization. Proximity labelling also requires cell-line genetic 

manipulation and more hands-on time compared to fractionation-based methods.  
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For these reasons, we opted to develop a protocol which does not rely on proximity labelling and 

optimized a detergent-based fractionation until pure cytosolic, membrane and nuclear fractions were 

obtained, with no samples cross-contamination (Figure 11B). We also chose to lose in resolution of the 

compartments analysed (i.e., we cannot distinguish nucleolar RBPs from spliceosomal ones), but retain 

the full information regarding the cellular environment of the analysed compartment (i.e., nucleus, 

membranes and cytosol). On top of these fractions, we applied and adapted a protocol for RBP 

enrichment called XRNAX (Trendel et al., 2019) and detected the purified proteins through mass 

spectrometry. Respect to previously established protein occupancy profiling on transcripts (Baltz et al., 

2012; Bao et al., 2018; Castello et al., 2012; Huang et al., 2018), XRNAX is not biased to capture RNAs 

with a poly(A) tail and does not require ribonucleoside analogues.  

As for the majority of biochemical techniques, f-XRNAX suffers of background noise. That’s why 

polypeptides are identified also in the control condition (the non UV-irradiated samples) polypeptides 

are identified. Although this might be seen as a drawback of our approach, the presence of these 

proteins makes the comparison between control and experimental conditions easier. In fact, it is more 

quantitative and reliable to calculate enrichment over some low intensity value than over something 

that is imputed or not detected.  

 

RBPome localization in HEK293 cells 

The analysis of the proteins detected with f-XRNAX showed a clear enrichment for RBPs and 

recapitulated the expected cellular localization for known cell-compartment markers. After stringent 

filtering (e.g. adjusted p-values < 0.01) and careful comparisons, we obtained high-quality datasets for 

proteins actively binding to ribonucleic acids in the nucleus, membranes and cytosol of HEK293 cells, 

and the intersections between these cellular regions. Although the majority of proteins were 

previously annotated as RNA-binding, our approach revealed new potential candidates RBPs. For 

example, LSM5, RBIS and NUP85 are binding to RNA in the nucleus according to our data. While these 

proteins have not been previously identified with RIC or XRNAX approaches in human cells, they are 

involved in cellular processes related to regulation of RNA metabolism. LSM5 is a Sm-like protein 

involved in splicing, RBIS in ribosome biogenesis in the nucleolus and NUP85 is a component of the 

nuclear pore, where all mRNA targeted to the cytosol have to pass through. Thus, these proteins are 

likely binding or in close contact to RNA in the nucleus and these interactions were previously missed.  

Similarly, in the cytosolic fractions, some of the proteins which lack evidence of RNA-binding activity, 

are involved in RNA regulation: EAF1, for example, stimulates RNA polymerase II elongation (Kong et 

al., 2005). On the other hand, many cytosolic proteins not identified by RIC or XRNAX in HEK293 are 
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metabolic enzymes (PFKP, NRD1, PLK2, PGD, TPI1), a class of polypeptides which has been repeatedly 

identified to ‘moonlight’ as RBPs (Hentze et al., 2018).  

Differently from the cytosolic and nuclear samples, the membrane fraction enriched for a large number 

of proteins not annotated as RBPs. This result likely arises from the applied procedure: instead of 

recovering RNA-binding proteins from whole cell lysate as in previous approaches, the applied 

fractionation in f-XRNAX separates the different cellular compartments. As a result, the sample 

complexity was reduced and the sensitivity of RBP detection was increased, i.e. for low abundant 

proteins or those with weak/transient interactions. These findings are in accordance with the ones 

from another organic-phase enrichment approach (Queiroz et al., 2019), which identified many 

unannotated RBPs and predicted their localization at the membrane compartment. 

We have also provided evidences that these potential RBPs are usually integrated in the membranes 

(i.e., they contain a transmembrane domain) and their contacts with transcripts mostly occur in region 

depleted of protein domains. These IDRs have the potential to bind RNA, and an approach aimed to 

define the RBD in human cells showed that more than half of the identified domains contained IDRs 

(Castello et al., 2016). 

 

In addition, we identified the position of RNA-protein contacts with amino acid resolution for 76 

polypeptides, by analyzing peptides crosslinked to ribonucleosides. Thus, we determined the protein 

domains interacting in vivo with RNA in HEK293 cells for a subset of proteins. Unsurprisingly, many of 

the peptides with crosslinked ribonucleosides were found in well annotated RNA-binding domains, 

such as RRM and S1-like. The ability to infer which part of a protein is in contact with RNA in vivo 

provides a mean to define RBDs. In the near future, the development of faster and more accurate 

algorithms to informatically search for peptides crosslinked to ribonucleotides will provide a powerful 

tool to identify novel RBDs and with a deeper protein coverage. 

Although highly informative, only a minority of peptides in our datasets were crosslinked with cyclic 

uridine or uridine monophosphate. To determine the protein domains in proximity to RNA for the rest 

of the polypeptides, we observed how peptides identified by MS were distributed along the protein 

sequence. With f-XRNAX, accumulation of peptides in one region of the protein is a good indication 

that RNA was crosslinked in its vicinity. Computational analysis confirmed that the obtained peptides 

profiles recapitulated the RBD positions in well know RNA-binding proteins (Figure 18).  

The same analysis can further be exploited to discover novel and unannotated protein domains 

potentially binding to RNA. As an example, the protein YBX1 in Figure 18 displayed a peptides 

enrichment at its C-terminal, a region devoid of known structural domains. These results indicate a 

possible involvement of that part of the protein in interactions with ribonucleic acids. YBX1 is a well 

known RBP, with cellular function spanning from RNA splicing (Raffetseder et al., 2003) and stability 
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(Chen et al., 2019), to RNA loading of exosomes (Shurtleff et al., 2016) and binding to methylated 

ribonucleotides (Chen et al., 2019). While the cold shock domain of YBX1 has been extensively studied 

(Zhang et al., 2020), the regulatory activity of its C-terminal part is less characterized. Nevertheless, 

there have been evidence on its involvement in RNA translation inhibition in vitro (Nekrasov et al., 

2003) and many positively charged residue are found in this part of YBX1, facilitating the interaction 

with negatively charged molecules as RNAs. This information, together with our data, suggests a 

potential and not characterized RNA-binding domain within YBX1 C-terminus.  

The same analysis can be performed to find other uncharacterized RBDs, integrating the data from our 

datasets with the one from previous works (Castello et al., 2016; Maticzka et al., 2018; Mullari et al., 

2017). The enriched peptides analysis was a qualitative measurement of the RNA-protein contacts and 

its findings should be confirm experimentally.  

 

The uniqueness of our datasets consists in the distinction of the RBPome retrieved at different cellular 

environments. Integrating the enriched peptides profiles in our analysis, we were able to distinguish 

the differential domain usage for the same protein according to its cellular localization. 

We found that the two paralogue proteins ELAVL1 and ELAVL2 exhibit a domain- and compartment-

specific RNA-binding behaviour, with the most C-terminal RRM (RRM3) displaying higher binding 

capacity to ribonucleic acids in the membrane region.  

ELAV protein family is a well described class of RBPs in mammals, binding to adenylate/uridylate-rich 

elements within untranslated regions of transcripts. Interestingly, RRM3 is the least characterized of 

the three RRMs in ELAV proteins. It has been recently shown that it preferentially binds to polyU 

stretches, versus the UAUUA binding motif recognized by RRM1-2 and it is prone to dimerization, 

which increases its affinity of RNA-binding (Ripin et al., 2019). The difference in binding discrimination 

and the ability to increase its local concentration through oligomerization may likely be two important 

reasons why RRM3 in the two ELAV paralogues is binding with higher affinity to RNA in the membrane 

compartment. The membrane compartment localizes a different transcript set than the cytosol or the 

nucleus and could provide a suitable surface enhancing the dimerization of RRM3. The fact that we 

found comparable results for two paralogue proteins provides further support for this hypothesis.  

Nevertheless, only proteins with many peptides provided enough information for this analysis and 

deeper dataset will provide a more comprehensive understanding of RBDs usage in different 

subcellular compartment. 

 

As every biochemical protocol, also the f-XRNAX approach suffers of limitations. Because of the large 

amount of cells and replicates required to obtain valuable data, a SILAC approach was disregarded 

because it would have been too expensive. Normalization with control samples (-UV) and 
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quantification with LFQ intensities applied in this work is doable, but retains a lower quantification 

resolution compared to a SILAC experiment. An RBP-enrichment approach like OOPS (Queiroz et al., 

2019), which requires less cells as starting material would allow an experimental design including 

amino acid labelling with stable isotopes. 

 

The RBPome enriched are also slightly biased for proteins interacting with one or more uracil. It has 

been previously shown, in fact, that UV-crosslinking of protein-RNA contacts is more efficient on uracil 

bases (Smith and Meun, 1968). Since the UV-driven covalent bond between RBP and RNA is a necessary 

pre-requisite for the purification of RNP complexes, proteins not in direct contact with uracil 

ribonucleotides have a minor probability to be enriched  

 

A common limitation of organic-phase RBP enrichment protocols is that they poorly distinguish RBPs 

from glycosylated proteins, due to their phyco-chemical similarities. Thus, parallel methods have to be 

employed to better characterize the RNA-binding properties of proteins with covalently attached sugar 

groups and their pattern of subcellular distribution.  

Because of the depth of the data, the computational analysis of protein composition in the different 

subcellular compartments from the f-XRNAX experiment was conducted without considering distinct 

protein isoforms generated from differentially spliced RNA. Thus, our analysis is not considering a key 

factor contributing to protein heterogeneity in human cell, namely the different composition of 

polypeptides generated from the same gene but with different splicing pattern.  

 

 

RNA kinetics during the cell-cycle 

To accurately distinguish newly synthetized and pre-existing RNA molecules in single cells, we 

developed a novel protocol, named SLAM-Drop-seq. To achieve this goal, we metabolically labelled 

proliferating cells with the ribonucleotide 4sU and optimized the conditions for IAA-driven alkylation 

within fixed individual cells. Single cell encapsulation is then performed with one of the available 

droplet-based method, and libraries containing cell barcodes and UMI are prepared. Newly 

synthetized and pre-existent molecules are computationally identified and quantified by detecting T 

to C transitions in the sequenced reads. In addition, we have also developed the R package Eskrate to 

estimate the transcriptome-wide and time-dependent RNA kinetic rates of transcription, processing 

and degradation over the course of a dynamic biological event.  

As a first application, we implemented our novel approaches to study the RNA kinetic rates associated 

with the cell cycle of unsynchronized HEK293 cells. We found 377 genes with an oscillating expression 
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along the cell cycle, with a defined peak of expression and a low amount of dropout (i.e., cells with no 

information on that gene). Using the kinetic model and solutions of the ODEs calculated by Eskrate, 

we were able to identify the underlying transcription and degradation rates giving rise to the observed 

expression. Importantly, these estimations are time-dependent and change continuously accordingly 

to the cell cycle time. This means that this novel approach not only assigned single cells to a continuous 

cell cycle time, without relying on the strict definition of cell cycle phases as in previous synchronization 

studies (Grant et al., 2013; Whitfield et al., 2002), but is also superior to other single cell analysis relying 

on pseudo-time assignments or RNA velocity to determine RNA kinetics (Manno et al., 2018). 

Furthermore, the temporal information retrieved with our approach led us to assign physical units to 

the parameters of RNA synthesis (molecules per minute) and decay (1/ minute, inversely proportional 

to half-life), which is highly valuable for accurate quantifications of transcripts produced or degraded 

in a defined timeframe.  

 

We found that the gene expression profiles form vast majority of the identified 377 cycling genes rely 

not only on temporal changes of RNA synthesis but also on degradation. This is in contrast with 

previous reports (Cho et al., 2001; Liu et al., 2017) which stated that the main driver for human cycling 

gene expression is RNA transcription. We have shown that the expression of only 6% cycling genes is 

regulated during the cell cycle largely by transcription. Therefore, at least in the case of HEK293 cells, 

our approach was useful to define the expression strategies that each gene employs along the cell 

cycle. Not only we have identified degradation to be highly involved in the regulation of gene 

expression together with transcription, but we have also found 16 genes that solely rely on temporal 

changes of decay to shape their expression profiles, with an approximately constant RNA synthesis 

rate. Our findings emphasize the different strategies that HEK293 cells exhibit to regulate gene 

expression throughout the cell cycle, and how the assignment of temporal units to these parameters 

allow a better comprehension and quantification of the underlying biological phenomena. While the 

temporal changes of transcription and degradation rates have been previously revealed in the cell 

cycle with low time resolutions (Battich et al., 2020; Eser et al., 2014), we infer these rates in much 

higher time resolution (i.e., less than one minute).  

During the course of this dissertational work, different approaches to study RNA kinetics at the single 

cell resolution were published (Battich et al., 2020; Cao et al., 2020; Erhard et al., 2019; Hendriks et al., 

2019; Qiu et al., 2020). scSLAM-seq (Erhard et al., 2019) and NASC-seq (Hendriks et al., 2019) couple 

4sU metabolic labelling with Smart-seq2 (Picelli et al., 2014), a sequencing protocol recovering a high 

number of full-length RNA molecules per single cell. Nonetheless, these approaches capture at least 

an order of magnitude less cells respect to droplet-based sorting. The published scSLAM-seq and NASC-

seq studies sequenced less than 50 and 75 cells per condition, respectively, making them less reliable 
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to track the full dynamics of complex biological processes. In scEU-seq (Battich et al., 2020) FACS-

sorting of single cells and pull-down were performed to enrich for labelled RNAs, which is laborious 

and prone to introduce biases in the procedure. A complex protocol was also applied to obtain the 

combinatorial indexes in sci-fate (Cao et al., 2020). On the other hand, scNT-seq (Qiu et al., 2020) is 

conceptually and methodologically similar to SLAM-Drop-seq, except the already discussed alkylation 

in fixed cells, which reduces the hands-on time and experimental complexity. Moreover, Qui et al. do 

not focus on time-dependent estimation of RNA decay rate, but more on their differences between 

cellular states (e.g. differentiation from mESC to 2C cells), losing on temporal and quantitative 

resolution of the transcriptional degradation rate. This is also true for NASC-seq, scSLAM-seq and sci-

fate, where the decay rate was fit under steady state assumptions. In scEU-seq, Battich and colleagues 

introduced the florescent reporter FUCCI (Sakaue-Sawano et al., 2008) to assign cell cycle time to each 

cell and estimated the RNA kinetic rates by pooling cells at close cell cycle times (accordant to the 

FUCCI reporter fluorescence). Thus, they not only genetically manipulated a cell line to infer the time 

variable, but also calculated the synthesis and degradation rates from small cell populations, instead 

of assigning each single cell to a specific cell cycle time and to RNA kinetics rates, as in SLAM-Drop-seq. 

The implementation of a fluorescent reporter would also be less suitable for studies in primary cells or 

experimental conditions where genetic manipulation might be difficult or not feasible. 

 

One limitation of SLAM-Drop-seq is the enrichment with oligo-dT beads of polyadenylated transcripts 

(or, more rarely, long poly(A) stretches in CDS or UTRs). To reduce the described 3’-end bias and 

increase the coverage of sequenced nucleotides per molecule, we developed a computational 

approach to merge in silico reads containing the same UMI. In this way, we accomplished a more 

reliable quantification of newly synthetized and pre-existing RNAs in thousands of single cells, without 

relying on full-transcript and low cell-throughput approaches as Smart-seq2.  

Labelling RNA with 4sU could also been addressed as a limiting step of the developed protocol, because 

of its reported toxicity (Burger et al., 2013) and the limited application in living animals. Computational 

analysis did not reveal any change in gene expression and no alteration of unspliced transcripts upon 

4sU treatment, indicating that incubation with the ribonucleotide analogue did not cause cellular 

toxicity. Furthermore, even if not discussed in the presented thesis, the SLAM-Drop-seq protocol, 

described in this thesis, has also been successfully applied to other biological systems in collaborations 

with colleagues from MDC and Charite, like patient-derived colon organoids (Uhlitz et al., 2021) and in 

vivo in developing zebrafish (Holler et al., 2021). This highlights the feasibility of the approach, which 

can be applied to different cellular contexts and processes. 
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A constraint of the SLAM-Drop-seq approach and its data analysis was that we had to adjust our kinetic 

model and introduced simplifications, because of the low amount of unspliced transcripts detected 

per cell. This made the estimation of transcription and degradation rates more accurate, even at the 

expenses of not being capable of calculating the processing rates (i.e., splicing rate). Nonetheless, the 

mathematical framework used in our approach would be able to estimate the processing rate if deeper 

data were feed to it. The SLAM-Drop-seq protocol is adjustable to many different single cell sequencing 

platforms, since the alkylation step is preceding the cell encapsulation / sorting and was successfully 

used in combination with a Dolomite Nadia system, a self-built Drop-seq device and to 10x Genomics 

Chromium sequencer. Probably in the near future, innovative single cell sequencing protocols can be 

coupled with the SLAM-Drop-seq approach to achieve a deeper coverage of single cell transcriptomes 

and, by using the Eskrate package, achieve a reliable estimation also for the splicing rates. Moreover, 

Eskrate is capable to implement times different from the cell cycle one, opening the doors to study 

different dynamical biological processes with time-dependent RNA kinetics. 
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MATERIAL AND METHODS 

Cell culture 

Human HEK293 Flp-In T-Rex cells (HEK293, Thermo Fisher Scientific) were cultured at 37 °C supplied 

with 5 % CO2 and were grown in Dulbecco's Modified Eagle Medium (Gibco, 41965039) supplemented 

with 10 % fetal bovine serum (Gibco, 10270106) and 2 mM L-Glutamine (Gibco, 25030081). TrypLE 

Express Enzyme (Gibco, 12605036) was used to detach cells and split them 2-3 times per week. 

Contamination with Mycoplasma was checked every week with a specific PCR kit (ITW Reagents, 

38221900). All the samples submitted for sequencing weren’t contaminated with Mycoplasma.  

BirA* cell lines generation 

All the DNA plasmids used to generate BirA* cell lines were derived from the pcDNA5-FRT-TO vector 

and contained the FLAG-HA epitope tag. BirA* was synthetized by BioCat and cloned with a plasmid 

already present in the laboratory containing the N-terminal first 27 amino acids of the P450 2C1 

protein (MDPVVVLGLCLSCLLLLSLWKQSYGGG) and cloned into the pcDNA5-FRT-TO vector. This plasmid 

was used to create the ER-BirA* cell line. A similar procedure was used to clone the plasmid for MITO-

BirA*: the C-terminal 31 amino acids of the protein MAVS (RPSPGALWLQVAVTG VLVVTLLVVLYRRRLH) 

were inserted in the C-terminus of BirA* (with a GS linker between them) and the construct was cloned 

into a pcDNA5-FRT-TO vector containing the FLAG-HA tag. The plasmid for PM-BirA* was cloned using 

a DNA oligonucleotide containing the sequence of the CaaX domain from the KRAS4B protein 

(KMSKDGKKKKKKSKTKCVIM) and cloning it (using restriction enzymes) in the MITO-BirA* plasmid 

substituting the C-terminal MAVS peptide. For the cytosolic controls, one plasmid was obtained by 

mutational PCR of the PM-BirA* construct, substituting the cytosine in the CaaX domain (essential for 

the protein prenylation and insertion in the inner leaflet of the plasmatic membrane) with a serine 

residue; the second cytosolic control was created by adding via PCR the nuclear export signal of the 

Rev protein from HIV-1 virus (LQLPPLERLTLD) to the C-terminus of BirA*. Stable HEK293 cell lines were 

created by plasmids transfection and colony selection with hygromycin (Gregersen et al., 2014). The 

expression of the integrated gene of interest was achieve by adding 1µg/mL of doxycycline to the 

culture medium for around 16 hours.  

Immunofluorescence 

Stable HEK293 cell lines were grown on a glass coverslip in 6-well plates. BirA* expression was induced 

for 16 hours with 1 µg/mL doxycycline. Cells were fixed in 3.7% formaldehyde (dissolved in DPBS) for 

10 minutes at room temperature, washed 3 times with DPBS and permeabilized with ice-cold methanol 

for 5 minutes at -20 °C. Cells were then washed 3 times with DPBS, blocked with 3% BSA (dissolved in 
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DPBS) for 3 hours at room temperature and incubated overnight at 4 °C with anti-HA antibody (1:1000 

dilution). The excess of primary antibody was washed three times with 0.2% Tween20 - DPBS (DPBS-

T) and the anti-mouse Alexa fluorophore 488 (Thermo Fisher Scientific) secondary antibody was 

incubated for 1 hour at 4 °C (1:750 dilution, in blocking buffer). After 3 more washes with DPBS-T, cells 

were incubated for 5 minutes with 10 µg/µL Hoechst 33342 (stock 10 mg/mL, dilution 1:1000), 

mounted on a glass surface using ProLong Gold Antifade Mountant (Thermo Fisher Scientific) and 

imaged with Keyence BZ-X700 microscope. 

 

BirA* cell lines biotinylation and streptavidin pull-down  

The protocol set in the Gingras lab for BioID was followed (Roux et al., 2012), with some modifications. 

One 15 cm plate was used for each biological replicate. HEK293 cell lines were splitted two days before 

the experiment and induced with 1 µg/ml doxycycline to express the locally-restricted BirA* and 50µM 

biotin to promote proximity biotinylation for 16 hours. Cells were then carefully washed three times 

with 10mL warm DPBS to remove all residual free biotin, which would impair the streptavidin beads 

enrichment. They were afterwards collected in DPBS using a cell scraper, collected by centrifugation 

(3 minutes, 300g, 4°C) and the pellet snap frozen with liquid nitrogen and kept at -80°C. When samples 

were ready for cell lysis and affinity purification, they were thaw on ice and lysed in RIPA buffer (50mM 

Tris-HCl pH 7.5, 150 mM NaCl, 1% NP-40, 1mM EDTA, 1 mM EGTA, 0.1% SDS, Sigma protease inhibitors 

P8340 1:500, and 0.5% Sodium deoxycholate) and 250 units of benzonase for 1 hour, 750rpm, at 4°C. 

After sonication, lysates were cleared for 30 minutes at > 20 000g, 4°C. Streptavidin agarose beads (GE 

Healthcare System) were washed three times with RIPA buffer and 30µL of bed volume was transferred 

to each cleared sample. The affinity purification took place at 4°C, for three hours with mild rotations. 

Beads were then washed two times in RIPA buffer, two times in TAP lysis buffer (50 mM HEPES-KOH 

pH 8.0, 100 mM KCl, 10% glycerol, 2 mM EDTA, 0.1% NP-40) and an additional 3 times in ABC buffer 

(50mM ammonium bicarbonate pH 8.0). Samples in ABC buffer are ready for mass spectrometry. 

 

Mass spectrometry of BirA* samples 

Streptavidin beads with biotinylated proteins attached to them were resuspended in 200 µl of 50 mM 

ammonium bicarbonate containing 1 µg trypsin (Promega V511A). The samples were incubated for 16 

hours in a Thermomixer (Eppendorf) at 37 °C and 750 rpm shaking. After this time, one µg of trypsin 

was again added and sample incubated further for 2 hours. Samples were then centrifuged at 400 g 

for 2 minutes and the supernatant transferred to a new vial. To ensure complete beads removal, the 

samples were centrifuged again at 16000 g for 10 minutes and the supernatants were transferred to a 
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new vial containing 2.5 µl of trifluoroacetic acid. Each sample was loaded on two StageTips (Rappsilber 

et al., 2003) for desalting. Eluates for each sample were pooled together prior to mass spectrometry.  

For all the samples of the experiment, 5 µL were injected in duplicate on a LC-MS/MS system (Ekspert 

NanoLC 415 [Eksigent] coupled to Q Exactive HF [Thermo Fisher Scientific]), using a 240 minutes 

gradient ranging from 2% to 45% of solvent B (80% acetonitrile, 0.1% formic acid; solvent A= 5% 

acetonitrile, 0.1% formic acid). For the chromatographic separation, 30 cm long capillary (75 µm inner 

diameter) was packed with 1.8 µm C18 beads (Reprosil-AQ, Dr. Maisch). On one end of the capillary 

nanospray tip was generated using a laser puller (P-2000 Laser Based Micropipette Puller, Sutter 

Instruments), allowing fretless packing. 

The nanospray source was operated with a spay voltage of 2.2 kV and an ion transfer tube temperature 

of 260 degrees. Data were acquired in data dependent mode, with a top10 method (one survey MS 

scan with resolution 120,000 at m/z 200, followed by up to 10 MS/MS scans on the most intense ions, 

resolution 30,000, intensity threshold 5,000). Once selected for fragmentation, ions were excluded 

from further selection for 30 seconds, in order to increase new sequencing events. 

Raw data were analysed using the MaxQuant proteomics pipeline (v1.5.3.30) and the built in the 

Andromeda search engine (Cox et al., 2011) with the Uniprot Human database. Carbamido-

methylation of cysteines was chosen as fixed modification, oxidation of methionine and acetylation of 

N-terminus were chosen as variable modifications. The search engine peptide assignments were 

filtered at 1% FDR and the feature match between runs was not enabled; other parameters were left 

as default. 

 

Data analysis of BirA* samples  

The “ProteinGroups” file from the MaxQuant software was analysed with R (version 4.0.4) RStudio 

(version 1.4.1106). Proteins detected with two or more unique peptides were included in the analysis 

(5842 out of 7069). If a protein was detected as ‘Potential contaminant’ or ‘Reverse’, it was also filtered 

out (36 in total). We used the “DEP” package (Zhang et al., 2018) to filter the dataset for proteins 

without any missing values for LFQ intensities in at least one condition and to impute the remaining 

missing value using a manually defined left-shifted Gaussian distribution (1.8 left-shift from median 

and 0.3 width relative to original LFQ-distribution). The package was also used to plot the total number 

of proteins, Pearson-correlation, PCA, heatmap and single-protein centered-intensity analysis. Limma 

(Ritchie et al., 2015) was then used to perform protein-wise enrichment tests between conditions and 

compute empirical Bayes statistics. The resulting p-values were corrected for multiple comparison 

using the Benjamini-Hochberg FDR approach (Benjamini and Hochberg, 1995). Proteins were called 

significantly enriched in one condition respect to a second one if the adjusted p-value was lower than 
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0.01 and the log2 LFQ-intensity fold change greater than 1. A protein was assigned to be specifically 

localize to one compartment when these conditions were met against all possible contrasts. When two 

or more conditions met the set thresholds against other conditions, the proteins were called to co-

localize. The analysis using HEK293 without BirA* detected enriched background proteins (68), which 

were filtered out.  

GO-term analysis was carried out with DAVID (Huang et al., 2009) using the desired list of genes and 

the total amount of proteins experimentally identified as background. 

The true positive proteins of ER and mitochondrial were taken from a manually curated lists of 

annotated localized proteins (Hung et al., 2017). The secretory and sub- secretory protein annotation 

was extracted from the Human Protein Atlas (Thul et al., 2017), Phobius (Käll et al., 2004) and Gene 

Ontology (Consortium, 2015). The dataset of TurboID and APEX2 were retrieved from their respective 

publication (Branon et al., 2018; Hung et al., 2017). The mitochondrial and sub-mitochondrial 

annotation was assessed with Mitocarta 3.0 (Rath et al., 2020). The Human Protein Atlas was used to 

check the annotation of a protein in the plasma membrane compartment.  

 

Optimized fractionation protocol for HEK293 cells 

The fractionation protocol was derived by the published paper from Jagannathan et al. and optimized 

for HEK293 cells. The main changes from the previous protocol are: increased incubation time in both 

lysis buffers for 10 min; lysis occurring while rocking at 4 °C instead of incubation in ice; in the second 

lysis buffer the concentration of NP-40 was decreased to 0,5% instead of 1% and sodium-deoxycholate 

was not added (this helped to preserve nuclei); an extra step to the purification of nuclei was added 

through a 10% sucrose cushion. 

HEK293 cells were splitted the day before the fractionation experiment and reached ~80% confluency 

the day after. Cells were washed with warm DPBS, without detaching them. Cold DPBS was used to 

scrape them from plates. Cells were then spin down and resuspended in DPBS + 50ug/ml CHX for 10 

min, on ice (200µL for one 10cm plate). ¼ of the volume was taken and collected as the total fraction. 

Cells were spun down again and resuspended in ‘Permeabilization buffer’ (110mM KOAc, 25mM K-

HEPES pH 7. 2, 2.5mM Mg(OAc)2, 1mM EGTA, 1mM DTT, 0.015% digitonin , 50μg/ml CHX, 1× Complete 

Protease Inhibitor Cocktail (Roche), 20U/mL SUPERase•In™ (Thermo Fisher Scientific)) for 10 minutes, 

rotating slowly at 4°C. The supernatant after the spin was collected as the cytosolic fraction. The cell 

pellet was then washed once in ‘Washing Buffer’ (110mM KOAc, 25mM K-HEPES pH 7.2, 2.5mM 

Mg(OAc)2, 1mM 

EGTA, 0.004% digitonin, 1mM DTT, 50μg/ml CHX) and then resuspended in ‘Lysis buffer’ (400mM 

KOAc, 25mM K-HEPES pH 7.2, 15mM Mg(OAc)2, 0.5% NP-40, 1mM DTT, 50μg/ml CHX, 1× Complete 
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Protease Inhibitor Cocktail, 20U/mL SUPERase•In™). for 5 minutes on ice. After the spin, the 

supernatant was collected as the membrane fraction. The nuclei were collected after being passed 

through a 10% sucrose cushion. The membrane and cytosolic fractions were further clarified with a 

centrifugation 7500g, 4°C, 10 min.  

 

Western blotting analysis 

The Western blots were performed using pre-casted 4-12% acrylamide Bis-Tris gel (Thermo Fisher 

Scientific). Samples were resuspended in Laemmli loading buffer (32mM Tris HCl pH 6.8, 10% glycerol, 

1% SDS, 0.002 % Bromophenol blue) with 2-mercaptoethanol (final concentration 355 nM), sonicated 

(5 seconds at 80% intensity) and boiled for 5 minutes at 95°C before loading equal volumes on the gel, 

which was run with 1x SDS MOPS buffer (prepared from 20x NuPAGE™ MOPS SDS Running Buffer). The 

proteins were then transfer to a nitrocellulose membrane (Whatman) using a semi-dry blotting 

apparatus (1 hour, 20 Volts) in transfer buffer (25mM Tris pH 8.3, 192mM glycine and 20% (v/v) 

methanol). The transferred proteins were then visualized with Ponceau staining (0.1% Ponceau S, 5% 

acetic acid) and the membrane was blocked for 1 hour at room temperature with 5% milk diluted in 

TBST (150 mM NaCl, 20 mM Tris-HCl pH 7.5, 0.1% Tween20). The primary antibody was incubated 

overnight in agitation, at 4°C. The membrane was then washed 3 times for 5 minutes at room 

temperature with TBST and incubated for another hour at room temperature with the secondary 

antibody. After washing 3 times for 5 minutes in TBST, the membrane was visualized using ECL 

detection reagent (GE Healthcare) and imaged with an Amersham Imager 680 imaging system or a LAS-

4000 imaging system or an (GE Healthcare). 

 

Silver staining 

The polyacrylamide gel containing the proteins separated by molecular weight was incubated for 1h 

in fixation solution (30mL ethanol, 15 mL acetic acid and 55 mL ddH2O) and one additional hour at 

room temperature in 0.5 M NaOAc, 12 mM Na2S2O3, 0.125% glutaraldehyde, 25% ethanol. It was then 

washed three times for 10 minutes in ddH2O and left for 30 minutes in staining solution (0.1% AgNO3 

and 0.011% formaldehyde in ddH2O). After the gel was briefly washed in ddH2O, the developer solution 

was added (236 mM Na2CO3, ,0.011% formaldehyde in ddH2O) and the reaction was stopped when 

bands saturation was nearly reached by 50mM EDTA. The gel was washed in ddH2O and imaged with 

an Amersham Imager 680 imaging system or a LAS-4000 imaging system or an (GE Healthcare). 
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f-XRNAX protocol 

For each biological replicate of the f-XRNAX experiment, we used 250 million of exponentially growing 

HEK293 cells (~70% confluency on the day of the experiment). The +UV samples were crosslinked with 

150mJ/cm2 UV254nm, without detaching them from the plate. The fractionation protocol follows the 

above described optimized protocol, adjusting the volumes accordingly and with minor changes: cells 

were left in permeabilization buffer for 20 minutes, instead of 10 and samples were snap frozen in 

liquid nitrogen and kept at -80°C. Input samples from the different fractions were saved.  

The XRNAX procedure followed the published protocol (Trendel et al., 2019), adjusting for volumes. 

Each sample had five biological replicates and +UV and -UV conditions. Since the different fractions 

were diluted in their respective buffers, we used a self-made version of Trizol LS (50% ROTI-phenol for 

RNA, 1M guanidinium thiocyanate, 0.5M ammonium thiocyanate, 0.12M sodium acetate pH 5.0, 10% 

glycerin) to separate the organic and aqueous phase, using a 3:1 volume ratio between Trizol LS and 

sample. After adding chloroform (one fifth of the volume) and centrifugation (7500g, 10’, 4°C), the 

interphase containing the proteins crosslinked to RNA is carefully captured and dissociated twice with 

TE + 0.01% SDS and two more times with TE + 0.05% SDS. Samples were then precipitated with 

isopropanol (1 volume 2-pronol, 150mM NaCl, 1µL GlycoBlue™ Coprecipitant (Thermo Fisher 

Scientific)) and the pellet washed with 70% ethanol. The pellet was then rehydrated in distilled water 

and chromatin was digested for 90 minutes with DNAse I. Samples were again precipitated with 

isopropanol and washed with 70% ethanol and resuspended in water. The RNA concentration was 

measured with Nanodrop.  

For mass spectrometry preparation, equal volumes of f-XRNAX samples were reduced at 60 °C for 30 

minutes at 700 rpm in 5 mM Tris-HCl pH7.5, 0.04% SDS and 10 mM DTT. Alkylation occurred for 30 

minutes at room temperature using 20 mM CAA. 100 ng Trypsin/ LysC (Promega) were added for 15 

minutes at room temperature for partial digestion to occur. The reaction was stopped by adding 3.5 

mL RTL buffer. The silica column purification was performed using Quiagen RNeasy Midi Kit as 

described in the published XRNAX paper (Trendel et al., 2019). Samples were then heated for 5 minutes 

at 65 °C and cooled on ice before adding 1.5 µL of RNase I (Ambion, AM2295), RNase A (Thermo Fisher 

Scientific, EN0531) and RNase T1 (Thermo Fisher Scientific, EN0541). The RNA digestion lasted for 12 

hours at 37 °C. The complete protein digestion was achieved by adding 500 ng Trypsin/ LysC for 16 

hours at 37° C, shaking. The digested peptides were submitted to mass spectrometry 

 

Mass spectrometry of f-XRNAX 

f-XRNAX sample preparation and LC-MS analyses:  



70 MATERIAL AND METHODS 

Sampled were acidified with formic acid (final concentration 1%), cleaned up and stored on C18 stage 

tips (Rappsilber et al., 2003). Peptides were eluted from stage tips (80% acetonitrile, 0.1% formic acid), 

and after evaporating the organic solvent, they were resolved in sample buffer (3% acetonitrile/ 0.1% 

formic acid). From each sample one fourth of peptide material was injected into the LC-MS system. 

Peptide separation was done on a 20 cm reversed-phase column (75 µm inner diameter, packed with 

ReproSil-Pur C18-AQ (1.9 µm, Dr. Maisch GmbH)) using a 200 min gradient with a 250 nL/min flow rate 

of increasing Buffer B concentration (from 2% to 60%) on a High-Performance Liquid Chromatography 

(HPLC) system (Thermo Fisher Scientific). Peptides were measured on a Q Exactive HF-X instrument 

(Thermo Fisher Scientific). The mass spectrometer was operated in the data dependent mode with a 

60K resolution, 3 x 106 ion count target and maximum injection time 10 ms for the full scan, followed 

by Top 20 MS2 scans with 15K resolution, 1 x 105 ion count target and maximum injection time of 22 

ms.  

 

Total cell lysate protein extraction (“input”), digest and LC-MS analyses: 

Cell pellets were lysed in SDS buffer (2% sodium dodecyl sulphate, 100 mM Tris-HCl pH 8, 1 mM EDTA, 

150 mM NaCl, 10 mM dithiothreitol, 40 mM chloroacetamide), heated for 10 minutes at 95°C, cooled 

down to room temperature and incubated with 25 U Benzonase (Merck) for 30 min, followed by 

addition of 20 mM dithiothreitol. Insoluble parts were removed by centrifugation for 20 min at 14,000 

rpm, and the supernatant (containing the proteins) was collected. Protein concentration was 

measured (Bio-Rad DC Protein assay) and 100 µg of each sample were further processed using SP3 

clean up and digestion protocol (Hughes et al., 2019). Briefly, 1mg of paramagnetic bead mix 

(containing 1:1 hydrophilic and hydrophobic beads) was added to the sample (ratio protein:beads 

1:10). Acetonitrile was added to a final concentration of 70% and samples were incubated for 20 

minutes on a rotator. Samples were washed 2 times with 70% ethanol and ones with 100% acetonitrile. 

50ul 100 mM ammonium bicarbonate containing 2 µg sequence grade trypsin (Promega) and 2 µg LysC 

(Wako) were added and samples were incubated over night at 37°C. After collecting the supernatant, 

beads were incubated with another 50 µl 100 mM ammonium bicarbonate and both supernatants 

were combined (containing the peptides). Samples were acidified with formic acid (final concentration 

1%) and desalted on C18 material (Rappsilber et al., 2003).  

Peptide samples were eluted from stage tips (80% acetonitrile, 0.1% formic acid), and after 

evaporating the organic solvent peptides were resolved in sample buffer (3% acetonitrile/ 0.1% formic 

acid). For each sample two analytical runs with 2ug of peptide material per run were performed. 

Peptide separation was done on a 20 cm reversed-phase column (75 µm inner diameter, packed with 

ReproSil-Pur C18-AQ (1.9 µm, Dr. Maisch GmbH) using a 200 min gradient with a 250 nL/min flow rate 

of increasing Buffer B concentration (from 2% to 60%) on a High Performance Liquid Chromatography 
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(HPLC) system (Thermo Fisher Scientific). Peptides were measured on a Q Exactive HF-X instrument 

(Thermo Fisher Scientific). The mass spectrometer was operated in the data dependent mode with a 

60K resolution, 3 x 106 ion count target and maximum injection time 10 ms for the full scan, followed 

by Top 20 MS2 scans with 15K resolution, 1 x 105 ion count target and maximum injection time of 22 

ms.  

 

MaxQuant Data Analyses: 

Raw data were processed using MaxQuant software package (v1.6.0.1). The internal Andromeda 

search engine was used to search MS2 spectra against a decoy human UniProt database 

(HUMAN.2019-01) containing forward and reverse sequences. The search included variable 

modifications of oxidation (M), deamidation (N,Q), N-terminal acetylation and fixed modification of 

carbamidomethyl cysteine. For f-XRNAX sample analyses the variable modification of cyclic uridine and 

uridine monophosphate (K, F, G, V) was added. Minimal peptide length was set to seven amino acids 

and a maximum of three missed cleavages was allowed. The FDR (false discovery rate) was set to 1% 

for peptide and protein identifications. Unique and razor peptides were considered for quantification. 

Retention times were recalibrated based on the built-in nonlinear time-rescaling algorithm. MS2 

identifications were transferred between runs with the “Match between runs” option, in which the 

maximal retention time window was set to 0.7 min. The integrated iBAQ algorithm was applied. The 

resulting text files were filtered to exclude reverse database hits, potential contaminants, and proteins 

only identified by site. 

 

Data analysis of f-XRNAX samples 

Proteins with at least two unique peptides were kept for the analysis, while reverse hits and potential 

contaminant were filtered out. As a first step of the analysis, background proteins from non UV-

irradiated samples (-UV) were filtered out. To achieve this, samples from the same compartment 

(cytosol, membrane, nucleus or total) were compared between the two conditions (with or without 

UV254nm crosslinking). Proteins without any missing value for LFQ intensities in at least one condition 

were kept, and the remaining missing values imputed with a manual imputation approach (left-shifted 

Gaussian) using the DEP package (Zhang et al., 2018). The differences between -UV and +UV conditions 

for the same compartment were then tested with limma (Ritchie et al., 2015), which performed a 

protein-wise enrichment test. False discovery rates were estimated using Benjamini-Hochberg 

correction. Proteins with log2 fold change of LFQ intensity greater than 1 and an adjusted p-value 

lower than 0.05 were considered enriched in the +UV condition and considered for further analysis. 

The other proteins were filtered out.  
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After obtaining compartment-enriched and background-depleted proteomes from the different 

cellular location interrogated, they were merged together. The remaining missing values were imputed 

with a “mixed” approach: values missing in more than 80% of replicates in one condition, were 

considered as MNAR (missing not at random), while the rest were labelled as MAR (missing at random). 

MNAR values were imputed using the default ‘MinProb’ variables from the MSnbase R package (Gatto 

and Lilley, 2012), while MAR with a left-shifted Gaussian distribution as before. LFQ intensities fold 

changes and false discovery rates were calculated with limma and Benjamini-Hochberg correction, 

respectively. Proteins were assigned to be significantly enriched in one compartment respect to 

another if their fold change was greater than 2 and adjusted p-value smaller than 0.01. If these 

thresholds were not met, the protein was labelled as co-localizing in both compartments. The DEP 

package was used to plot the total number of proteins per replicates, their intensity Pearson 

correlation and PCA, and the centered LFQ-intensity for protein examples. Isoelectric point data was 

obtained from ‘Proteome-pI’ (Kozlowski, 2017).  

The profiles of enriched peptides were calculated using the “evidence” files from MaxQuant of the 

f-XRNAX and input samples. Identified peptides were aligned and counted along the protein length. 

Position-specific peptides from the input condition were subtracted from the one of the f-XRNAX 

experiment, leading to the identification of enriched peptides. Negative values (i.e., more peptides 

identified in input respect to f-XRNAX) were set to zero.  

Peptides identified to be crosslinked to uridine or cyclic uridine residues were further filtered with an 

FDR of 0.05 and a score > 40. Protein domains from the resulting peptides were computed and 

investigated using the Batch-CD search from NCBI (Marchler-Bauer et al., 2011). Their relative amino 

acid abundance was also calculated and compared with the one from peptides of HEK lysates (i.e., 

‘total input’). 

The transmembrane domains and signal peptides annotation was downloaded from Ensembl Biomart 

using the human genome assembly hg38 while the intrinsically disordered regions were mapped using 

the mobiDB database(Piovesan et al., 2020). GO term analysis was performed using DAVID (Huang et 

al., 2009) and having as background proteins identified in the input samples.  

For the analysis of RBPs differential RNA-binding between two cellular compartments, proteins 

retrieved in both localization in the f-XRNAX experiment and with LFQ intensity fold change (log2) less 

than 2 in the relative input samples were taken into consideration. Protein-wise LFQ intensities from 

the f-XRANX samples were normalized with the relative ones from the input samples, and plotted. A 

linear regression analysis was performed and if proteins had a distance of +/-2 from the linear fit, they 

were called as significantly differentially binding to RNA. The adjusted p-value from the f-XRNAX 

compartments comparison data are also plotted. 
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Bulk RNA alkylation and sequencing 

HEK293 cells were incubated with 300 µM 4sU for 30, 60 and 120 minutes; control sample without 4sU 

incubation. RNA was isolated and 5µg of purified total RNA was alkylated with iodoacetamide (IAA, 

Sigma-Aldrich, I6125) following the published SLAM-seq protocol (Herzog et al., 2017). 1µg of alkylated 

total RNA was processed for stranded mRNA library preparation with the Illumina TruSeq kit 

(20020595) and sequenced on a NextSeq 500/550 HO. 

 

Biotinylation blocking assay and SLAM-Drop-seq procedure 

Cells reached ~ 60% confluence on the day of the experiment (i.e., they were in exponential growth 

phase) and were incubated with 300 µM 4sU (ChemGenes, RP-2304; from a 0.5 M stock, dissolved in 

DMSO) for different times (15, 30, 60, 120 minutes). Cells were washed with DPBS and dissociated with 

TrypLE Express Enzyme (Gibco, ref. 12605028) for 2 minutes. 

After a wash in cold DPBS, cells were resuspended at a final concentration of 1-2 million cells/mL in 

cold DPBS. Methanol was added (four volumes) to perform the fixation (around 30 minutes at -20 °C). 

After re-equilibration of the samples at room temperature, they were separated in half: in one IAA was 

added at a final concentration of 10 mM (+IAA), in the other was added DPBS. IAA-induced alkylation 

was performed overnight, in the dark, at room temperature and with a mild agitation. After washing 

the samples with fixation buffer two times, they were split again: half was used for RNA extraction dot-

blot assay, while the other half was conserved at -80 °C for scRNA-seq. . Samples were then centrifuged 

(300 g, 2 minutes, 4 °C), supernatant removed and washed once with the fixation buffer. Cell pellets 

were resuspended in fixation buffer. 2/3 of the sample was used for RNA extraction  

We used TRIzol Reagent (Thermo Fisher Scientific, 15-596-018) to purify the total RNA and we used 1-

10 μg of purified RNA to be biotinylated with MTSEA-XX-biotin (Biotium, 90066, 10 μg/ml final 

concentration) in biotinylation buffer (20 mM Tris-HCl pH 7.5, 1 mM EDTA, in ddH2O, 100 uL final 

volume) for > 1 hour in the dark at room temperature. Phenol/Chloroform extraction with Phase Lock 

Gel Heavy tubes (Quantabio, 2302830) removed the excess of MTS-XX-biotin. The samples were then 

blotted on a nylon membrane (Amersham Hybond-N+, RPN203B) and crosslinked with 2400 μJ UV 254 

nm. The membrane was blocked in blocking solution (DPBS, 10% SDS, 1 mM EDTA) for 20 minutes at 

RT and probed with 1:10000 dilution of 1 mg/mL streptavidin-HRP (Pierce, 21130) in blocking solution. 

The membrane was washed six times with a blocking solution containing decreasing concentration of 

SDS (10%, 1%, 0.1%, applied twice each) for 10 minutes. The biotin signal was visualized by ECL 

detection reagent (GE Healthcare, RPN2209). 
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Single cell library preparation and sequencing 

Single cell were resuspended in rehydration buffer (DPBS - BSA 0.01% + 1 U/µL 1:100 Superasein RNAse 

Inhibitor (Thermo Fisher)) and IAA was quenched wit 100 mM DTT for 5 minutes at RT. Cell suspensions 

were washed once, resuspended in rehydration buffer and passed through a cell strainer (40 µm). The 

obtained single cells were counted with a TC20 automated cell counter (Bio-Rad) and encapsulated 

using a Nadia device (Dolomite Bio) and following the version 1.8 of the protocol from the 

manufacturer. 250 µL of rehydration buffer containing ~ 75 000 cells were mixed with 3 mL QX200 

Droplet Generation Oil (Bio-Rad #1864006) and 250 µL lysis buffer (, 0.2% Sarkosyl, 6% Ficoll PM-40020 

mM EDTA, 200 mM Tris pH 7.5, 50 mM DTT). The encapsulated transcripts were reverse transcribed 

(Maxima H- RT enzyme, Thermo Fisher EP0753) and RNA was removed with exonuclease NEB (NEB 

#M0293). No second strand synthesis was carried out.  

SMART PCR amplification was carried out in 6 replicates, each containing 4 000 beads, for 14 cycles. 

AMPure XP beads (Beckman Coulter, A63881) were used to purify the PCR reactions, which were then 

quantified with QuBit (Thermo Fisher Scientific) and Bioanalyzer DNA HS chip. Tagmentation of the 

libraries was carried out using the Nextera XT v2 DNA sample preparation kit (Illumina) and using 1000 

pg of DNA and 11 amplification steps. After two purification with AMPure XP Beads, the libraries were 

quantified and pooled.The Illumina Nextseq500 sequencer was used for the 15 minutes labelling 

samples (library concentration 1.8 pM; Nextseq 500/550 High Output v2 kit (150 cycles) in paired-end 

mode; read 1 = 20/21 nt using the custom primer Read1CustSeqB (Macosko et al., 2015) , read 2 = 

133/132 nt). The 0, 30 and 60 minutes 4sU-labeled samples were sequenced on a Illumina NovaSeq 

6000 device (SP configuration, pair-end; read 1 = 20 nt using the custom primer Read1CustSeqB, index 

1 (i7) = 8 nt, read 2 = 150 nt) 

 

Data processing for SLAM-Drop-seq 

Bcl2fasq v2.20.20 and FastQC v0.11.15 demultiplexed raw sequencing data and checked for its quality, 

respectively. Drop-seq tools v2.2.0 identified molecular and cellular barcodes. STAR v2.6.0a (Dobin et 

al., 2013) aligned reads to HEK293 genome and we filtered out non-uniquely mapped reads. Bedtools 

(Quinlan, 2014) assigned the exonic and/or intronic composition of reads using gtf annotation files.  

T to C conversion per read were counted using an adapted version of NASC-seq analysis pipeline 

(Hendriks et al., 2019). To increase the coverage per read, we merged reads with the same UMI in each 

cell by collapsing overlapping regions, while keeping the annotation of the read as labelled or not 

labelled.  



MATERIAL AND METHODS 75 

The splice status of a merged molecule was assigned “spliced” if all read were mapped to exonic 

regions, “intronic” if there was at least one read from an intro, “ambiguous” if reads did not fit one of 

the two criteria. Ambiguous reads were not used to estimate kinetic rates.  

Gene expression was normalized to counts per million (CPM) and smoothed along the cell cycle using 

GAM (Wood, 2017). Gene expression correlation between samples was calculated comparing the 

average of gene-specific CPM over all single cells and using the common set of genes between the 

compared samples.  

 

In silico cell cycle sorting 

We first filtered cells containing more than 5% mitochondrial RNA and cells with high content of stress 

related genes. 

Revelio (Schwabe et al., 2020) sorted the cells to a continuous cell cycle using the single cell data 

information. The intersection of default Revelio and variable genes were used to calculate PCA. The 

algorithm transform the high-dimensional data from single cell sequencing to a two dimensional 

circular trajectory and the cell-cycle progression is approximated using the angular component of it. 

Cell cycle phases boundaries and durations were determined using knowledge from previous studies 

(Cheng and Solomon, 2008) and the cell cycle was simplified to a circle, with a phase Φ values varying 

between 0 and 2π.  

 

Time-dependent RNA kinetic model 

Using 4sU labelling and splice annotation information, we obtained 4 RNA types: pu - unlabelled 

precursors (pre-existing precursors), mu - unlabelled matures (pre-existing matures), pl - labelled 

precursors (newly synthesized precursors), ml - labelled matures (newly synthesized matures) 

The total amounts of precursor RNA p(Φ) and the total amounts of mature RNA m(Φ) are defined by: 

 

 
Extending the commonly applied RNA kinetic rate model for steady state analysis (Manno et al., 2018; 

Zeisel et al., 2011), we obtained a system of four ordinary differential equations, which describes the 

changes in abundance over time of the four different RNA types, depending on the rate parameters of 

synthesis alpha, splicing beta and degradation gamma. 
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Transcript splicing is usually much faster than degradation. This assumption led to a simplification of 

the model and, since in our data the average of precursor reads are less than 2%, we decided to further 

approximate the model and solve it to obtain the approximations: 

 

Profile peaks identification 

Profiles of expression and kinetic rates were smoothed by penalized splines. The fold change between 

the maximum and minimum values of the profile was defined as fold change (fc).  

 

 
A profile was considered to peak if the fc was greater than 1.5. The total number of peaks per profile 

were counted and genes with one peak were defined as cycling. 

 

Deviation and half-life calculation 

We defined the mean absolute deviation parameter (dev) in order to compare the gene expression 

calculated from estimated synthesis and degradation rates (pred) to the one calculated from 

scRNA-seq data (obs), with m indicating the cell number: 
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To check how the prediction changed upon setting one kinetic rate to a constant value, we calculated 

the deviation from constant (devc) as follows: 

 

 
The half-life of transcripts was determined using the RNA decay rate. The averaged time-dependent 

decay rate over cells was calculated for each gene and derived the half life calculating:  

 

 
 

Antibodies 

Antibody Vendor Dilution 

BCAP31 Proteintech, 11200-1-AP 1:1000 

GAPDH Cell Signaling, #2118 1:5000 

Goat Anti-Mouse Ig/HRP Agilent-Dako, P0447 1:2000 

Goat Anti-Mouse Alexa 488 Thermo Fisher, A-11001 1:750 

Goat Anti-Rabbit Ig/HRP Agilent-Dako, P0448 1:2000 

H3 Cell Signaling, #9715 1:5000 

HA Covance, MMS-101P-1000 1:2000 

RPS6 Abcam, ab40820 1:4000 

TOMM20 Scbt, SC-11415 1:2000 

Beta-Tubulin Sigma-Aldrich, T8328 1:4000 
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4sU: 4-thiouridine 
APEX : ascorbate peroxidase 
BirA*:  BirA-R118G 
CDS: coding sequence 
COPII: coat protein complex II 
CPM: counts per million 
DMEM: Dulbecco’s modified Eagle medium 
DNA :  deoxyribonucleic acid 
ER :  endoplasmic reticulum 
FBS :  fetal bovine serum 
GO :  gene ontology 
GOCC:  GO cellular component 
HEK :  human embryonic kidney 
HEK293: HEK293 Flp-In T-Rex 
HRP :  horseradish peroxidase 
IAA:  iodoacetamide 
iBAQ :  intensity-based absolute 
IF:  immunofluorescence 
IMM: inner mitochondrial membrane 
IMS:  intramitochondrial space 
LC-MS/MS: liquid chromatography tandem MS 
MITO:  mitochondria 
MS: mass spectrometry 
mRNA : messenger RNA 
ODE : ordinary differential equation 
OMM: outer mitochondrial membrane 
PBS:  phosphate buffer saline 
PCA: principal component analysis 
pI: isoelectric point 
PL: proximity labelling 
PM:  plasma membrane 
RBD: RNA-binding domain 
RBP:  RNA-binding protein 
RIC: RNA-interactome capture 
RIN:  RNA integrity number 
RNA:  ribonucleic acid 
RRM:  RNA-recognition motif  
T to C:  thymidine to cytosine transitions 
UMI:  unique Molecular Identifier 
UTR:  untranslated region 
UV:  ultraviolet light 
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