
Essays on Information and Knowledge
in Microeconomic Theory

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum politicarum

(Doktor der Wirtschaftswissenschaft)

eingereicht an der

Wirtschaftswissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von

Friederike Julia Heiny, M.Sc.

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Peter Frensch (kommissarisch)
Dekan der Wirtschaftswissenschaftlichen Fakultät:
Prof. Dr. Daniel Klapper

Gutachter: 1. Prof. Dr. Anja Schöttner
2. Prof. Dr. Roland Strausz

Tag des Kolloquiums: 13.09.2022





Acknowledgements

First and foremost, I am very grateful to my supervisors, Anja Schöttner and Roland
Strausz, for their support, advice and guidance. The insightful discussions on each
of the essays made this thesis possible.
Secondly, I benefited tremendously from the cooperation with my co-authors Tianchi
Li, Anja Schöttner and Michel Tolksdorf. I am proud of the papers we created and
thankful to them for pushing the boundaries.
During this thesis I received helpful input from a group of PhD students, postdocs and
professors in Berlin. Particularly, I want to thank Pio Baake, Tobit Gamp, Maren
Hahnen, Radosveta Ivanova-Stenzel, Harvey Upton and Ran Weksler for taking
the time to discuss my work in-depth and giving me and my co-authors valuable
comments. At Tel Aviv University Zvika Neeman hosted and supported me during
and after my stay which I am much obliged to. I thank Regine Hallmann, Viviana
Lalli, Kristin Schwier, Myrna Selling and Sandra Uzman for their administrative
support.
I started my PhD at the graduate center of the DIW and later joined the BDPEMS.
The time with my fellow PhD students and the lasting friendships that formed in
the past years made this an unparalleled experience. I especially thank Pia Hüttl,
Viola Kuzmova and Jan Stede for their continuous support, their friendship and the
amazing dinners.
Last but not least, I am indebted to my family and friends. While I cannot name all
of them, I am especially thankful to my parents, Andrea and Manfred, my grandpa,
my support network from Tübingen, Tina and above all Nick for their love and
unwavering faith in me.

Berlin, February 2022

Friederike Julia Heiny

i





Contents

Page

List of Figures v

List of Tables vii

Abstract ix

Zusammenfassung xi

Introduction 1

1 We Value Your Privacy: Behavior-based Price Discrimination
Under Endogenous Privacy 5

1.1 Introduction ................................................................................... 6
1.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Theory .......................................................................................... 10
1.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Endogenous Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Experiment .................................................................................... 23
1.3.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Conclusion ..................................................................................... 37

1.A Appendix A: Theory ....................................................................... 40

1.B Appendix B: Experiment.................................................................. 53

2 Adoption of Teamwork in Knowledge-intensive Production 65

2.1 Introduction ................................................................................... 66
2.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2 Model ........................................................................................... 70
2.2.1 Basic Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2.2 Individual Production . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.3 Team Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

iii



iv CONTENTS

2.3 Analysis......................................................................................... 74
2.3.1 Knowledge Profiles under Individual Production . . . . . . . . . . . 75
2.3.2 Knowledge Profiles under Team Production . . . . . . . . . . . . . . 75
2.3.3 Organizational Design . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.3.4 Organizational Design and Problem Uncertainty . . . . . . . . . . . 78

2.4 Extension....................................................................................... 81

2.5 Conclusion ..................................................................................... 84

2.A Appendix: Proofs ........................................................................... 86

2.B Appendix: Extension....................................................................... 91

3 One-sided Knowledge Transfer in Teams: The Role of Commitment 99

3.1 Introduction ................................................................................... 100
3.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2 Model ........................................................................................... 104

3.3 No Commitment ............................................................................. 107

3.4 Commitment .................................................................................. 113

3.5 Value of Commitment ...................................................................... 116

3.6 Conclusion ..................................................................................... 117

3.A Appendix: Proofs ........................................................................... 119

Bibliography 137



List of Figures

We Value Your Privacy: Behavior-based Price Discrimination Under
Endogenous Privacy 5
1.1 Timeline of the game. . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Customer segments under open data in t = 2. . . . . . . . . . . . 14
1.3 Customer segments under exclusive data. . . . . . . . . . . . . . . 19
1.4 Prices of Firm A for θ̄ = 1 and θ1 = 0.5. . . . . . . . . . . . . . . 20
1.5 Conversion of theoretical into experimental market. . . . . . . . . 25
1.6 Share of purchase tracking allowed over periods by treatment. . . 35
1.7 Observed and predicted average transportation costs per round. . 37
1.A.1 Total costs in equilibrium (solid) and for individual deviators (dotted). 42
1.A.2 Line with multiple segments in case (i). . . . . . . . . . . . . . . . 43
1.A.3 Line with two segments in case (i). . . . . . . . . . . . . . . . . . 44
1.A.4 Line with multiple segments in case (ii). . . . . . . . . . . . . . . 44
1.A.5 Line with two segments in case (ii). . . . . . . . . . . . . . . . . . 45
1.A.6 Total costs in equilibrium (solid) and for individual deviators (dotted). 49
1.A.7 Line with multiple segments in case (i). . . . . . . . . . . . . . . . 50
1.A.8 Line with two segments in case (i). . . . . . . . . . . . . . . . . . 51
1.A.9 Line with multiple segments in case (ii). . . . . . . . . . . . . . . 51
1.A.10 Line with two segments in case (ii). . . . . . . . . . . . . . . . . . 52
1.B.1 Representation of the Game of 22. . . . . . . . . . . . . . . . . . . 55
1.B.2 Share of tracking allowed over periods by Treatment and privacy

concern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.B.3 Share of tracking allowed per location by Treatment and privacy

concern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.B.4 Game of 22 scores by Treatment. . . . . . . . . . . . . . . . . . . 60
1.B.5 IUIPC scores by Treatment. . . . . . . . . . . . . . . . . . . . . . 60
1.B.6 Observed and predicted prices in the open data treatment. . . . . 61
1.B.7 Observed and predicted prices in the exclusive data treatment. . . 61

Adoption of Teamwork in Knowledge-intensive Production 65
2.1 Problem types and exemplary knowledge profiles for A and B . . 71
2.2 Graphic outline of Proposition 2.2 . . . . . . . . . . . . . . . . . . 81

v



vi LIST OF FIGURES

One-sided Knowledge Transfer in Teams: The Role of Commitment 99
3.1 Timeline without commitment . . . . . . . . . . . . . . . . . . . . 106
3.2 Timeline with commitment . . . . . . . . . . . . . . . . . . . . . . 106



List of Tables

We Value Your Privacy: Behavior-based Price Discrimination Under
Endogenous Privacy 5
1.1 Prices visible to buyers according to purchase and tracking decision. . . 26
1.2 Summary statistics for pricing choices of sellers. . . . . . . . . . . 28
1.3 Summary statistics for purchasing and privacy choices of buyers. . 29
1.4 Fixed-effects regression on price differences within treatments. . . 31
1.5 Random-effects regression on treatment effects for prices. . . . . . 33
1.6 Observed and adjusted price predictions under pooling assumption. 34
1.7 Share of purchases from the far seller at equal total costs. . . . . . 34
1.8 Impact of learning on tracking decision. . . . . . . . . . . . . . . . 35
1.9 Effects of treatment and privacy choice on switching, poaching and

retaining of buyers. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.B.1 Share of purchasing orders and information disclosure by treatment

and location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.B.2 Impact of treatment, tracking and learning on purchasing decision

when total costs are equal. . . . . . . . . . . . . . . . . . . . . . . 62
1.B.3 Interaction between privacy concern, learning and location. . . . . 63

vii





Abstract

The dissertation consists of three independent chapters that help to understand
how knowledge and information is used in microeconomic theory. While Chapter 1
contributes specifically to the literature on behavior-based price discrimination,
Chapters 2 and 3 contribute to the literature on knowledge transfers in organizations.

In Chapter 1, we study a duopoly model of behavior-based pricing where
consumers decide on their data privacy. Contrasting two data environments, we
find unique equilibria for each. In an open data environment, all consumers reveal
their data. Firms price discriminate causing welfare losses due to poaching. In an
exclusive data environment, consumers anonymize, prices are uniform and the market
is efficient. We test these contrasting predictions in an experiment. In the open data
treatment, subjects predominantly act as predicted. In the exclusive data treatment
buyers initially share data but adjust towards anonymization, when sellers start to
use poaching strategies.

In Chapter 2, we study a model of an organization engaging in knowledge-
intensive production. The organizational designer hires workers endowed with
knowledge to solve problems whose types are ex ante unknown. The designer
determines whether workers produce individually or as a team. As a team, workers
can communicate and share their knowledge, while when working individually they
can only use their own knowledge. This chapter focuses on the coordination issues
that arise in designing the production. We find that teamwork is optimal when
knowledge spillovers are sufficiently high. Particularly, when knowledge spillovers are
perfect or all problem types are equally likely, self-managed teams arise as a special
form of teamwork.

In Chapter 3, I explore a dynamic model with a moral hazard problem and
knowledge transfer. A principal hires two risk-neutral, wealth-constrained agents to
each perform an individual task in a project. Before they address their tasks, the
agents can decide to transfer knowledge that increases the task-related productivity
of the knowledge receiver. The one-sided knowledge transfer is costly for both. I
find that the principal can induce a knowledge transfer with or without commitment
power through a joint performance signal. It is not clear that commitment is always
better, even though with commitment the first-best allocation can be achieved.
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Zusammenfassung

Die Dissertation besteht aus drei unabhängigen Kapiteln, die helfen zu verstehen,
wie Wissen und Informationen in der Mikroökonomik verwendet werden. Während
Kapitel 1 speziell zur Literatur über verhaltensbasierte Preisdiskriminierung beiträgt,
tragen Kapitel 2 und 3 zur Literatur über Wissenstransfer in Organisationen bei.

In Kapitel 1 untersuchen wir ein Duopolmodell, bei dem die Firmen ihre Preise
basierend auf dem Verhalten der Konsumierenden setzen und die Konsumierende
über den Schutz ihrer Daten entscheiden. Wir betrachten zwei verschiedene Ansätze
bezüglich der Handhabung von Konsumentendaten und ermitteln in jedem Ansatz
ein eindeutiges Gleichgewicht. Wenn die Daten beiden Firmen zur Verfügung ste-
hen, geben alle Konsumierende ihre Daten preis. Die Firmen nutzen die Daten der
Konsumierenden, um bei der Preisgestaltung zu diskriminieren, was zu Wohlfahrtsver-
lusten aufgrund von Abwerbung führt. Wenn die Daten exklusiv der Firma zur
Verfg̈ung steht, bei der ein/ eine Konsument:in gekauft hat, geben die Konsumieren-
den ihre Daten nicht preis. Die Preise sind einheitlich und der Markt ist effizient.
Wir testen diese gegensätzlichen Gleichgewichte in einem Experiment. In dem Open-
Data-Ansatz verhalten sich die Probanden:innen überwiegend wie in der Theorie
vorhergesagt. In dem Exclusive-Data-Ansatz teilen die Probanden:innen zunächst
ihre Daten. Sobald jedoch Abwerbungsstrategien verwendet werden, anonymisieren
sie sich.

In Kapitel 2 untersuchen wir ein Modell einer Organisation, die eine wissensin-
tensive Produktion betreibt. Der/ die Organisationsdesigner:in stellt Mitarbeitende
ein, die über Wissen verfügen, das sie zum Lösen von Problemen verwenden, deren
Art ex ante unbekannt ist. Der/ die Designer:in bestimmt, ob die Mitarbeitenden
einzeln oder im Team arbeiten. Im Team können die Mitarbeitenden kommunizieren
und ihr Wissen teilen, während sie bei Einzelarbeit nur ihr eigenes Wissen nutzen
können. Dieses Kapitel konzentriert sich auf die Koordinationsprobleme, die bei
der Gestaltung der Produktion auftreten. Wir stellen fest, dass Teamarbeit optimal
ist, wenn der Wissens-Spillover ausreichend hoch ist. Insbesondere dann, wenn
der Wissens-Spillover perfekt ist oder alle Problemarten gleich wahrscheinlich sind,
entstehen selbstorganisierte Teams als spezielle Form der Teamarbeit.

In Kapitel 3 untersuche ich ein dynamisches Modell mit einem Moral-Hazard
Problem und der Option auf einen Wissenstransfer. Ein/ eine Prinzipal:in stellt zwei
risikoneutrale Agenten:innen ein, die über ein eingeschränktes Vermögen verfügen. Die

xi



Agenten:innen übernehmen jeweils eine Aufgabe, die Teil eines gemeinsamen Projekts
ist. Bevor sie an ihren Aufgaben arbeiten, können die Agenten:innen entscheiden,
ihr Wissen zu teilen. Durch einen Wissenstransfer steigt die Produktivität des
Empfangenden von Wissen bezüglich der Aufgabe. Der Wissenstransfer ist einseitig
und für beide mit Kosten verbunden. Dadurch das der/ die Prinzipal:in ein Signal
zur gemeinsamen Leistung der Agenten:innen erhält, kann er/sie ihnen einen Anreiz
geben, ihr Wissen zu teilen. Es existieren optimale Verträge sowohl, wenn der/ die
Prinzipal:in verbindlich zu Beginn des Spiels einen Vertrag anbieten kann als auch
wenn er/ sie das nicht kann. Es ist nicht eindeutig klar, dass es immer besser ist,
wenn der/ die Prinzipal:in verbindlich einen Vertrag zu Beginn des Spiels anbieten
kann.

xii



Introduction

“The Master said, Yu, shall I teach you about knowing? To regard knowing it as
knowing it; to regard not knowing it as not knowing it – this is knowing."
– Confucius, Analects 2.17 (translated by Brooks and Brooks (1998)).

“Knowledge is power. Information is liberating. Education is the premise of progress
in every society, in every family."
– Kofi Anan, Address to World Bank Conference ‘Global Knowledge 1997’.

Knowledge and information are essential to any economic system, even more so in the
age of data and digitalization. On a macroeconomic level, knowledge is a driver of
value creation and therefore also of economic growth. Knowledge as an input factor
does not become scarce nor does it suffer from diminishing returns as opposed to
physical inputs. On a microeconomic level, companies are in need of skilled workers.
The demand for skilled workers increases steadily, while the skills gap is growing
(Bundesministerium für Wirtschaft und Klimaschutz, 2021, International Labour
Organization, 2021). Thus, rendering education, further training and upskilling
necessary to close the gap and resolve the shortage of skilled workers. In today’s
digital economy, tech companies such as Apple, Microsoft, Alphabet, Meta and
Alibaba, made a business out of gathering information about individuals through
collecting and analyzing their online data (UNCTAD – United Nations Conference on
Trade and Development, 2021). The economic importance of data and information
for businesses was addressed by Hal Varian and Carl Shapiro as early as 1998 in their
book called fittingly “Information Rules". All these points indicate the relevance and
far-reaching impact of knowledge and information today.
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The three chapters of this thesis consider the role of knowledge and information1

in theoretic microeconomic models. The value of knowledge and information in itself
is regarded, as well as how knowledge and information can be used to create value.
The focus of the distinct models lies particularly on the transfer and application of
knowledge and information. Each chapter can be read as a self-contained paper, in
which a common situation from day-to-day life is analyzed in a microeconomic model.
Taken together the chapters illustrate the wide range of situations in which knowledge
and information take center stage and thus reveal the importance of information and
knowledge in our daily lifes. While Chapter 1 examines the decision of individuals to
share information with a company and how this information is used by the company,
Chapters 2 and 3 analyze knowledge sharing between workers within organizations
and how it impacts the structure and contracts of organizations. Throughout this
thesis my co-authors and I studied the impact of knowledge or information sharing
on companies, consumers as well as employees and their co-workers. Subsequently, I
describe the role of information or knowledge in each chapter with more (technical)
detail.

In Chapter 1, my co-authors, Tianchi Li and Michel Tolksdorf, and I look at
a situation that happens to everyone on a daily basis: One visits a website and
immediately is asked whether one accepts the use of cookies.2 Through the use of
cookies, a website can access certain information and data of visitors which can be
used e.g. to personalize advertisement to individual preferences or to adjust pricing.
In Chapter 1, we are interested in the latter utilization of data and information.
With the help of a game-theoretic model, we analyze a market with two companies
that offer the same product and compete for consumers via prices which can be
based on information about consumers. In the model we focus on one piece of
information, consumer’s purchasing history, instead of considering a set of data that
is contained in an actual cookie. We study the consumer’s decision to share this
information with the companies, i.e., to accept the use of cookies, as well as the
subsequent pricing decision of the companies. The model is a two-period game where
a continuum of consumers is uniformly distributed along a Hotelling line and the
two companies are located at either end of the line. In the first period, companies
offer the good without information about consumers. The consumers decide where
to buy the good and whether they disclose the information about their purchase.
In the second period, companies offer the good again, however, they now may have
information about the consumers previous purchase and can therefore set different

1According to Davenport et al. (1998b) information is an easily accessible message with the purpose
to have an effect on the receiver’s actions, behavior or judgement. Information is one step up from
data, which are objective facts without interpretation or purpose. Knowledge on the other hand is
broader. Davenport and Prusak describe it as “fluid mix of framed experience, values, contextual
information, and expert insight [...]".

2Due to the General Data Protection Regulation of the European Union, websites must now ask
you to share your data and information before they can collect and use it.
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prices for loyal customers, new customers and consumers they want to poach.3 In
our model, we examine what happens under two distinct data sharing rules. In an
open data environment, the competing firms both receive the information about
consumer’s purchase history, if consumers decide to disclose this information. Thus,
firms compete on symmetric information. This data environment shows potential
outcomes of an open data policy.4 In an exclusive data environment, consumers’
information is only shared with the company that the consumer bought from. We
analyze the theoretic model and conduct a laboratory experiment to get a more
realistic assessment of our theoretic results. We find that the willingness to share
information depends on who receives them in both our theoretic model and the
laboratory experiment, though the differences for the distinct data environments are
more pronounced in the theoretic results. This chapter shows a possible utilization of
consumer information and the strategic aspects of transmitting data for e-commerce.

Chapters 2 and 3 leave aside the competitive environment and instead focus on
sharing knowledge between co-workers. Both chapters examine the same situation
within organizations: Workers on a team are assigned to their individual tasks,
however, they have the option to cooperate by sharing their knowledge with a co-
worker, which increases the prodcutivity of the workers who receive knowledge. An
example for this is a project team at a consultancy where each team member has
to work on their own tasks. However, when a team member faces a problem they
can ask for their co-workers’ experiences and expertise. This knowledge can help
them to solve the problem. Chapters 2 and 3 address the coordination and incentive
problems, respectively, involved in such situations.

In Chapter 2 my co-author Anja Schöttner and I study under which conditions
a company in the knowledge economy wants their employees to work in teams and
cooperate by sharing knowledge. The task of each worker is to solve a problem which
they can do by working alone or as a team. When they try to solve a problem alone
only their own knowledge is available to them. When they work as a team, workers
can ask their co-worker for help and learn from them. In such interactions between
workers both sender and receiver of knowledge can benefit. While the receiver directly
gains from the knowledge of the sender, the sender may be able to learn from the
interaction through knowledge spillovers. Thus, when working as a team not only
their own knowledge is avaiable to a worker but also the knowledge of their co-worker.
However, as in real life, knowledge sharing is not perfect. Workers may not be able
to learn from each other when their background is too dissimilar or when it is too
similar so that the benefits from knowledge sharing are marginal. Therefore, the
conditions under which sharing knowledge is beneficial depend on the knowledge of
the workers. We find that for individual work a company should hire workers with

3This kind of price discrimination has been observed in online retailing by Mikians et al. (2012,
2013).

4Such an open data policy has already been discussed in the European Union (European Commission,
2020).
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the same knowledge background, while for teamwork a company should hire workers
with different knowledge backgrounds so they can benefit from working in a team.
A company chooses teamwork over individual work, when knowledge spillovers in
the interaction between workers are high. This way, both workers can benefit from
sharing knowledge.

In Chapter 3, I study how managers can induce employees to share their knowledge
with co-workers, thus increasing the co-workers’ productivity. While the knowledge
spillovers in Chapter 2 allowed a two-sided knowledge transfer up to a certain
degree, the knowledge transfer in this model is only one-sided. Nevertheless, sharing
knowledge is costly for both parties. The sender incurs costs due to the time and
effort it takes to explain something to their co-worker, the receiver of knowledge
needs to put effort into understanding and learning. Therefore, the workers may
not be motivated to share knowledge on their own accord. I find that managers can
motivate workers to share knowledge due to a joint performance signal, even though
they have no verifiable information on the knowledge transfer. That is, the manager
evaluates the workers’ performance based on a team outcome and can therefore
provide workers with an incentive to share knowledge. In Chapters 2 and 3 we regard
knowledge as a central factor for production and learn about the value of employees’
knowledge for the organization they work for.

As researchers we are in the knowledge business. We ask questions to which we
do not know the answer. We apply what we know to the problem at hand, we get
new information and create knowledge. As a final step we share our knowledge in
research papers. This thesis conveys what my co-authors and I learned and know
from the different research projects.

4



Chapter 1

We Value Your Privacy:
Behavior-based Price
Discrimination Under
Endogenous Privacy
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1.1. INTRODUCTION CHAPTER 1. PRIVACY

1.1 Introduction5

With an increased capability to process big data and the passing of EU’s General Data
Protection Regulation (GDPR), behavior-based price discrimination and consumer
privacy have become a hot topic. Firms use consumers’ data to price discriminate
between them. The first major web experiment of behavior-based price discrimination
was conducted by Amazon as early as 2000 (Streitfeld, David, 2000). The company
discriminated between consumers based on the number of previous purchases at
Amazon. Since then consumers’ (private) data has been used for behavior-based
pricing in online retailing. Mikians et al. (2012, 2013) find evidence for price and
search discrimination in e-commerce based on geographical location and consumer’s
budget in an online field experiment.

A lot has changed in the field of data protection and privacy since Amazon’s
experiment. Particularly, the passing of the GDPR in May 2018 was a major
breakthrough for privacy protection. In accordance with the regulation, consumers
can now decide whether to allow websites to access their personal information
contained in cookies (Parliament and Council of the European Union, 2016). Cookies
are placed by websites to track and record information about previous visits and online
activities.6 The collected data are used by online retailers to make personalized offers
in line with behavior-based pricing. The GDPR gives consumers control over their
personal information by having a choice to opt-out. By denying cookies, consumers
stay anonymous and cannot be identified (as previous customers). Conversely, when
consumers allow a firm to access their cookies, they can be identified and targeted
with customized prices. This choice to opt-out allows consumers to act strategically.
Through the GDPR, consumers’ data are exclusively accessible to one retailer at a
time. If that retailer plans on distributing consumers’ data to third parties, consumers
have to explicitly consent.

In this paper, we contrast two different data policies, one that is akin to the
GDPR and one where data sharing among firms is mandated. The latter is referred to
as an open data environment, whereas, the former is an exclusive data environment,
in which only the firm that a consumer bought from receives the consumer’s data.
We use a behavior-based price discrimination model à la Fudenberg and Tirole
(2000) and include an endogenous privacy decision of consumers to study the two
aforementioned data environments.7 We address the following questions: How do
consumers react to behavior-based price discrimination when their privacy choice is

5This chapter is joint work with Tianchi Li and Michel Tolksdorf. Financial support by Deutsche
Forschungsgemeinschaft through CRC TRR 190 is gratefully acknowledged. We thank discussants
at BiGSEM Workshop, seminar at UC Louvain and 12th PhD Workshop at Collegio Carlo Alberto,
Turin, as well as, participants at workshops and seminars in Berlin, Bielefeld, Delhi, Thessaloniki,
Turin, and Tutzingen, EEA Virtual Conference, and ESA Conference.

6Throughout this paper, we use the term “cookie” to refer to information about past purchases
only.

7The European Commission explores the idea of business-to-business data sharing in a recent
strategy proposal (European Commission, 2020).
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CHAPTER 1. PRIVACY 1.1. INTRODUCTION

endogenous? How do firms change their pricing strategy? And how does consumers’
and firms’ behavior differ in the two data environments?

In the first part of this paper, we develop a theoretical model of behavior-based
pricing with consumers’ endogenous privacy choice. We solve our theoretical model
for pure-strategy equilibria that determine consumers’ strategy concerning their
privacy and firms’ price setting. In the second part, we test our theoretical results in
a laboratory experiment with human subjects taking the role of buyers and sellers.
We explore whether subjects follow our predicted strategies. In the experiment, we
want to observe whether consumers act rationally in their privacy decision since
previous experimental literature has shown that subjects value their data privacy
in itself and therefore make behavioral decisions when presented with the choice to
reveal data (Acquisti et al., 2016, Schudy and Utikal, 2017). Both aspects of the
analysis are important to comprehend how firms adapt their pricing to different data
environments and to understand how this changes consumers’ behavior towards their
data privacy. The theoretical analysis gives us an insight on firms’ and consumers’
optimal behavior, while the experiment provides evidence of actual consumer behavior.
With our research we also contribute to the EU’s debate about a policy that mandates
data sharing among firms.

Following Fudenberg and Tirole (2000), we build on the Hotelling (1929) linear
city model with two competing firms and a continuum of consumers. We consider
a two-period game, where a consumer buys one unit of a non-durable product in
each period from one of the firms. In the first period, firms set identical prices
for all consumers with no information about consumers’ preferences. Consumers
then decide from which firm to buy and whether to accept the use of cookies. In
the second period, based on consumers’ strategy, firms can set different prices and
consumers, again, decide where to buy. In the open data environment, firms share
the obtained information with each other.8 In the exclusive data environment, given
consumers accept cookies, only the supplier that a consumer has bought from can
access the private information. To realize our experiment, we only need to discretize
the number of consumers in the market. Hence, the experiment closely resembles
our theoretical model. In order to further explore consumers’ behaviour, we have
subjects play the market game for 20 consecutive rounds, such that we can control
for learning effects. As additional measures to learn more about our subjects, we
include a task on strategic thinking to control for subjects’ cognitive abilities and a
survey on their privacy concern.

In the open data environment, when consumers’ data are available to both
competitors, consumers in equilibrium choose to reveal their data, in order to increase
competition between firms.9 Firms use the data to price discriminate between loyal
consumers and consumers, who previously purchased from the competitor. We can

8Ghosh et al. (2015) show a concrete example in which information is shared via cookie matching.
9Ali et al. (2020) and Casadesus-Masanell and Hervas-Drane (2015) also support this result in

their theoretical models.
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confirm this result with experimental evidence from the open data treatment. Buyers
predominantly allow tracking of their past purchase, which gives sellers the chance
to use behavior-based pricing. We observe that sellers use poaching prices as reward
for accepting cookies that are lower than prices for loyal or anonymous customers.

In the exclusive data environment, when consumers’ data are only available to the
respective firm they bought from, consumers are individually best off by maintaining
their privacy. Given that data is exclusive to firms, consumers are individually worse
off by revealing their data because firms can use their data to price discriminate
without intensifying competition. Yet, if consumers collectively coordinated to reveal
their data, they would improve their outcome.10 To our knowledge, this is a novel
finding in competitive settings with privacy decisions. In our experiment we find that
consumers initially share their information readily. However, there is a downwards
trend in the cookie sharing rate over time when sellers begin to price discriminate.
Buyers adjust accordingly by anonymizing more.

From a theoretical point of view, social welfare is maximal in the exclusive data
environment, even though it hurts consumers. In equilibrium, all consumers choose to
be anonymous and, therefore, firms set uniform prices. In this equilibrium consumers
do not switch between firms. On the other hand, in equilibrium, consumer welfare
is larger in the open data environment, because consumers benefit from poaching
offers. However, the experimental results exhibit no significant difference in social
welfare between treatments. This indicates that an open data environment can be
an option to enhance competition between firms without incurring a loss in total
welfare. Our theoretical and experimental results show that mandated data sharing
among firms leads consumers to share more data to their own benefit, providing an
argument in favor of an open data mandate.

1.1.1 Related Literature

Our paper is related to a set of articles in the theoretical and the experimental
literature on behavior-based price discrimination and consumer privacy.

The two papers closest to our theoretical research are Ali et al. (2020) and Conitzer
et al. (2012). Conitzer et al. (2012) study a monopoly with an outside option where
consumers can choose to let the monopolist track their purchases. They find that
under free anonymization all consumers choose to do so, which gives the monopolist
the highest payoff. Importantly, the introduction of competition raises issues in the
handling of the information structure, which leads to our separation of the open
and exclusive data environments. As in our paper, consumers have an endogenous
privacy choice. However, Conitzer et al. (2012) do not study a competitive situation
of behavior-based pricing, where the strategic action of consumers has different
implications for pricing. Our focus is on consumers’ privacy choice for different
data environments, in which we diverge from the theoretical analysis of Conitzer
10The privacy choice resembles a multi-player prisoners’ dilemma in the exclusive data environment.
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et al. (2012). Ali et al. (2020) study how complete consumer control over their data
affects personalized pricing in a monopoly as well as under competition. They focus
on comparing disclosure channels and analyze consumers sharing rich and simple
evidence about their types. In our model we only look at a dichotomous disclosure
technique, tracking versus no tracking, but support the same result, that voluntary
disclosure amplifies competition.

To our knowledge the only other studies besides Ali et al. (2020) that deal
with endogenous privacy choices in a competitive market are Acquisti and Varian
(2005) and Casadesus-Masanell and Hervas-Drane (2015). Differing from our paper
Acquisti and Varian (2005) only consider two consumer types instead of a continuous
differentiation and undifferentiated products. Casadesus-Masanell and Hervas-Drane
(2015) consider homogenous goods in a one-period model, where information is
provided directly by consumers and not indirectly in form of their purchase history.

Colombo (2016) considers a set-up of incomplete information sharing in a duopoly
case similar to our exclusive data environment (in Section 1.2.2.2). Colombo uses a
fixed parameter as share of anonymous consumers and does not consider consumers’
endogenous privacy choice. Belleflamme and Vergote (2016) employ a similar pa-
rameter as the precision of the tracking technology in a monopolistic setting with
endogenous privacy choices as in Conitzer et al. (2012) but without repeat purchases.
The main point of our study, however, is to analyze the strategic decisions of con-
sumers in a duopolistic setting with repeat purchases over two periods. Other papers
that are also concerned with price discrimination and exogenous privacy are Esteves
(2014) and Liu and Serfes (2004).

Choi et al. (2019), Montes et al. (2018) and Taylor (2004) extend the idea of price
discrimination and privacy to include a data broker. Montes et al. (2018) consider a
duopoly with a costly privacy choice for consumers. They focus on a data broker
who sells consumers’ data to competing firms. One of their main results is that
information is usually only sold to one of the firms. We feature this as the exclusive
data environment, where we observe a higher producer surplus than in the open data
environment. Choi et al. (2019) study the stage of data collection and show that
either due to a monopolistic platform or due to the emergence of data brokerage an
excessive amount of data is collected to the detriment of consumers.

Extensive reviews of the literature on behavior-based price discrimination in
general and the economics of privacy can be found in Acquisti et al. (2016), Armstrong
(2006), Fudenberg and Villas-Boas (2006) and Esteves et al. (2009).

The experimental analysis of behavior-based pricing under endogenous privacy
relates to two branches in the experimental literature. Firstly, the basic structure
and procedure are related to spatial competition experiments. We extend the
existing literature on behavior-based price discrimination and spatial competition
with location choice experiments. Behavior-based pricing experiments have been
conducted by Brokesova et al. (2014) and Mahmood (2014). Brokesova et al. (2014)
computerize the buyer’s side, which we do not. Mahmood (2014) only considers

9
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two fixed locations for buyers, whereby the experimental market rather resembles a
Bertrand market with differentiated products than a spatial competition. We employ
a behavior-based pricing experiment similar to those two but introduce features from
spatial competition with location choice experiments by Barreda-Tarrazona et al.
(2011) and Camacho-Cuena et al. (2005), which is how we transform the theoretical
set-up into an experimental set-up with treatments corresponding to the two data
environments.

Secondly, we introduce privacy and data sharing elements. Similar issues have
been studied before, but to our knowledge not in the context of an explicit market
experiment. Acquisti et al. (2013) identify a considerable gap between willingness to
accept disclosure of private information and willingness to pay for the protection of
private information. To alleviate this issue we renounce enforcing a default option on
privacy, assuming disclosure and protection are both costless. Beresford et al. (2012)
and Preibusch et al. (2013) find that subjects have a remarkably low willingness-
to-accept for giving up their privacy and are not acting on their stated privacy
decisions when protection of privacy is costless. This finding contrasts Tsai et al.
(2011) who find that subjects act on websites’ certified privacy protection qualities
when shopping online. They suggest that subjects might in fact be willing to pay
premiums for privacy protection.

Schudy and Utikal (2017) find that subjects’ willingness to share personal in-
formation decreases when the number of recipients of said information increases.
Between our open and exclusive data treatments the number of recipients varies. In
support of their findings, we observe a higher willingness to share information in
the early rounds of the exclusive data treatment. In later rounds we observe more
information sharing in the open data treatment, which is in line with our theoretical
predictions. This indicates that participants see the privacy decision as a strategic
choice, which allows them to face lower prices.

We contribute to the literature by focusing on consumers’ endogenous privacy
decisions in competitive markets under a set of different information schemes. Com-
bining a theoretical model with an experiment is a novel approach to answer our
research questions.

The rest of the article is structured as follows. In Section 1.2, we develop our
theoretical model and analyze the two different data environments. In Section 1.3,
we present our experimental set-up and the results from our analysis of seller and
buyer behavior. Section 1.4 concludes the article.

1.2 Theory
In this part of the paper we present our theoretical model and the results from the
analysis. First, we introduce the model set-up. Next, we analyze our theoretical model
under the open data environment, where information about previous purchases is
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given to both firms. This is followed by the analysis of the exclusive data environment,
where only the firm that a consumer has bought from in the first period can access
consumers’ cookies. Last but not least, we state welfare results from the theoretical
model.

1.2.1 Model

We consider a set-up following Hotelling (1929), where a line segment of length
θ̄ spans a product characteristic space. Along the line, consumers are uniformly
distributed with a density of θ̄−1, i.e., we assume a consumer mass of 1. A consumer’s
type is denoted by θ ∈

[
0, θ̄

]
, such that θ serves as the consumer’s preferred variety

of a good.
There are two firms each producing a variant of the same good at constant marginal

costs normalized to zero; fixed costs are neglected. We normalize production costs
because we do not focus on firms’ production processes. Firm A is located at the left
end of the line segment, while firm B is placed at the right end. The firms compete
for two periods, t = 1, 2.

In each period, consumers buy one unit of the good either from firm A or B,
bt ∈ {A,B}, i.e., we assume that the good’s valuation is large enough to make
sure each consumer buys one unit in each period. No outside option is available.
Considering a consumer located at θ̂, their utility is given by UA = v − pA − θ̂ or
UB = v−pB−(θ̄− θ̂), depending on their purchasing decision. We assume consumers’
unit transportation cost to be normalized to one. Consumers’ valuations, v, are the
same over time for all consumers. Their rationale is to maximize their utility. We do
not take discounting into account to simplify the analysis.

On top of the buying decisions, bt, consumers also decide whether to accept the
use of cookies, q ∈ {0, 1}, in the first period. We use the term “cookies” as proxy
for a consumer’s buying decision in the first period, which is revealed to a company
if q = 1. In that case, a firm is able to identify a buyer from period t = 1 and can
thus set a different price in the upcoming period. Consumers have the option to
act strategically with regards to revealing information. In the literature, it is often
assumed that generating privacy involves some costs (Conitzer et al., 2012, Montes
et al., 2018). However, Loertscher and Marx (2020) show that the act of providing
data can even be costly for consumers. We refrain from assumptions on privacy costs
to keep the theoretical predictions clean from any of these effects. This is important
for the experiment, because we can then observe subjects’ unbiased privacy concern.

In the first period, competing firms set price pi1, where i, j = A,B and i ̸= j.
In the second period, pricing is more involved. Depending on the preceding cookie
choice of consumers, there is a share λ of anonymous consumers who denied the use
of their cookies and a share 1 − λ of identifiable consumers. The shares are derived
from the aggregation of consumers’ choices regarding their cookies. We assume that
λ is common to both firms.

11
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Given a consumer’s cookie choice, we differentiate between two data environments,
which differ with regards to the number of recipients of consumers’ data. The
information about consumers’ buying decision in the first period is either available
to both firms, which we call open data environment, or a firm exclusively receives
the information, which we call exclusive data environment.

In the open data environment, accepting the use of cookies means that both
firms can access the information about a consumer’s past purchase (contained in the
cookie). In the exclusive data environment, accepting the use of cookies means that
only the firm a consumer has bought from can access information about a consumer’s
past purchase (contained in the cookie).

In the open data environment, where both firms can target the competitors’
consumers, each firm distinguishes three prices in the second period: pi2,i, is firm i’s
loyalty price for identifiable consumers who bought from firm i in the first period; pi2,j ,
is firm i’s poaching price for identifiable consumers who bought from j in the first
period; and pi2, is firm i’s new customer price for anonymous consumers who belong
to the share λ. The idea of poaching consumers was first explored in Fudenberg and
Tirole (2000).

In Section 1.2.2.2, we diverge from the open data environment and assume that
only firms that consumers have bought from in the first period can learn about the
purchasing history. This alters the pricing strategy considering that firms can no
longer set a poaching price pi2,j , since the information needed is not available to
them.

Consumers learn
type, θ ∈

[

0, θ̄
]

Firms set
pi
1

Consumers make
1st purchase, b1 ∈ {A,B}

and privacy choice q ∈ {0, 1}

Firms set
pi
2,i, pi

2,j , pi
2

Consumers make
2nd purchase, b2 ∈ {A,B}

Figure 1.1: Timeline of the game.

Figure 1.1 depicts the timing of the game. At the beginning, each consumer
learns their type θ. Then in the first period, firms each set price pi1. Afterwards,
consumers simultaneously make their purchasing decision, b1 ∈ {A,B} and their
cookie choice, q ∈ {0, 1}. In the second period, firms set prices p2 = (pi2,i, pi2, pi2,j).11

At the end of the second period consumers again choose to buy from A or B. Finally,
consumers receive their utilities and firms earn profits.

We solve for perfect Bayesian Nash equilibria (PBE) in pure strategies. In this
context a PBE comprises firm’s and consumers’ strategy. Firms’ strategies contain
first- and second-period prices for the respective data environment and their beliefs
about consumers’ types given their cookie choice.12 Consumers’ strategies contain
11There is no poaching in the exclusive data environment, since it is equivalent to inducing pi

2,j ≡ pi
2.

12The strategy should also contain second-period prices if firms had set different prices in the first
period. This is omitted here for simplicity.
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their first purchase and the privacy choice dependent on their type, firms’ first-period
prices and anticipation of optimal second-period prices and their second purchase
dependent on their type and second-period prices.

1.2.2 Endogenous Privacy

In this section we analyze our endogenous privacy model and solve for PBE.13 The
potential equilibria can be categorized into pooling and separating equilibria based on
the consumer’s cookie choice and their type. In a pooling equilibrium, all consumers
make the same cookie choice independent of their type. Firms observe the share
of anonymous consumers, λ, and believe this to be identical to the probability to
hide data for each consumer. Analogously, 1 − λ, corresponds to the probability
that each consumer reveals their data. In a separating equilibrium, consumers base
their cookie choice on their type. This means that firms can form beliefs over any
number of segments of arbitrary length where within each segment consumers either
all disclose or all hide their information (due to pure strategy). We consider the two
possible equilibrium categories one after another, starting out with deriving possible
pooling equilibria. We relax assumptions on pooling, respectively separating, once
we identify equilibrium candidates.

1.2.2.1 Open data environment

In the open data environment, both firms receive information about a consumer’s
previous purchase given the consumer decides to grant access to their cookie. Con-
sumers who did not let firms access their cookies in the first period are anonymous
to both firms and are treated as new customers. Therefore, they face prices pA2 (pB2 )
from firm A (firm B) in the second period. Consumers who revealed information
about the purchase in the first period can be recognized by firms and thus are offered
different prices in the second period. The prices pA2,A (pB2,A) are offered by firm A

(firm B) for consumers who bought from firm A in the first period, and pB2,B (pA2,B)
are set by firm B (firm A) for consumers who bought from firm B in the first period.

In the second period, based on firms’ beliefs, we divide consumers by their privacy
choice into identifiable and anonymous consumers. As we begin our analysis under
the pooling assumption we can consider two separate Hotelling lines, one for the group
of identifiable and one for the group of anonymous consumers. On the anonymous
consumers’ line, there are λ consumers uniformly distributed. We show that on this
line, there exists a marginal consumer, θ2, who is indifferent between buying from firm
A and firm B. The marginal consumer is determined by v−pA2 −θ2 = v−pB2 −(θ̄−θ2)
as

θ2 = θ̄

2 + pB2 − pA2
2 .

13We restrict our analysis to pure strategy equilibria due to intractability of mixed strategy
specifications.
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Therefore, consumers with type θ ∈ [0, θ2) buy from firm A in the second period
given they chose to anonymize. Similarly, consumers with θ ∈ (θ2, θ̄] buy from firm
B.

The other line has a mass of 1−λ uniformly distributed and identifiable consumers.
They are confronted with behavior-based price discrimination. Among the mass of
1 − λ consumers, those who bought from firm A in the first period are given two
prices in the second period: pA2,A as loyalty price set by firm A, and pB2,A as a poaching
price from firm B. Similarly, consumers who bought from firm B in the first period
also face two prices now, pB2,B as loyalty price from firm B, and pA2,B as a poaching
price from firm A.

On A’s turf there is a marginal consumer indifferent between buying from firm A

at pA2,A and buying from firm B at pB2,A. They are characterized by

θA2 = θ̄

2 +
pB2,A − pA2,A

2 .

Accordingly, on B’s turf the marginal customer θB2 is determined by

θB2 = θ̄

2 +
pB2,B − pA2,B

2 .

Identified consumers with θ ∈ [0, θA2 ) and θ ∈ (θB2 , θ̄] are loyal to the firm they
bought from in the first period. Contrarily, consumers located at θ ∈ (θA2 , θ1) and
θ ∈ (θ1, θ

B
2 ) are poached by the competing firm, where θ1 denotes the first-period

marginal consumer who is indifferent between buying from A and B.
Figure 1.2 depicts the consumer shares and respective pricing by spanning a

rectangle over both lines connected vertically through the share λ under pooling
beliefs. The maximization problem of the firms concerning the anonymous consumers

0

Firm A

θ̄

Firm B

θ1θA
2

θB
2

θ2

1

λ

pA
2,A pB

2,A pA
2,B pB

2,B

pA
2

pB
2

Figure 1.2: Customer segments under open data in t = 2.
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is given by

max
pA

2

λpA2

[
θ̄

2 + pB2 − pA2
2

]
,

max
pB

2

λpB2

[
θ̄ −

(
θ̄

2 + pB2 − pA2
2

)]
.

From the first-order conditions, we obtain the prices for anonymous consumers
pA2 = pB2 = θ̄ and the marginal consumer, θ2 = θ̄

2 .
Among the identified consumers with mass 1 − λ, we have the following maxi-

mization problems:

max
pA

2,A,p
A
2,B

(1 − λ)
[
pA2,Aθ

A
2 + pA2,B

(
θB2 − θ1

)]
,

max
pB

2,B ,p
B
2,A

(1 − λ)
[
pB2,B

(
θ̄ − θB2

)
+ pB2,A

(
θ1 − θA2

)]
.

By plugging θA2 and θB2 into these two equations, we can solve for the prices.

Lemma 1.1 The set of prices in the second period depend on θ1 and the parameter θ̄.
Loyalty prices are given by

pA2,A =


1
3(2θ1 + θ̄) if 1

4 θ̄ ≤ θ1

θ̄ − 2θ1 otherwise.
pB2,B =


1
3(3θ̄ − 2θ1) if 3

4 θ̄ ≥ θ1

2θ1 − θ̄ otherwise.

Poaching prices are given by14

pA2,B =


1
3(3θ̄ − 4θ1) if 3

4 θ̄ ≥ θ1

0 otherwise.
pB2,A =


1
3(4θ1 − θ̄) if 1

4 θ̄ ≤ θ1

0 otherwise.

New customer prices are pA2 = pB2 = θ̄.
Proof. See Appendix.

Lemma 1.1 shows that if a customer chooses not to share their information in the first
period, they will face uniform pricing in the second period under a pooling assumption.
However, if they reveal information in the first period, they are confronted with
behavior-based prices, including poaching prices offered by the competitive firm
in the second period. Lemma 1.1 demonstrates that prices are independent of λ

14When θ1 <
1
4 θ̄ it follows that pB

2,A = 0, and so Firm A sets pA
2,A such that v−pA

2,A −θ1 = v−(θ̄−θ1).
Accordingly for firm B.
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under pooling. Moreover, the result pi2 > pi2,i > pi2,j holds generally, irrespective of
θ1 ∈ (0, θ̄).15

In the first period, we look at consumers’ endogenous decisions about their cookies.
By comparing second-period prices for anonymous consumers to second-period prices
for recognized consumers, we can show that prices for anonymous consumers are
always higher. Consumers can strategically choose to share their purchasing history
in the first period, in order to receive lower prices in the second period. Thus, every
consumer discloses their information, which implies that the mass λ of consumers on
the anonymous line is zero. Firms form their beliefs accordingly.

Lastly, we consider price setting of firms in the first period. Similar to the second
period, there are two separated lines in the first period. For the line of consumers
who did not share their cookies, there is a cut-off customer, θ̂1, who, in the first
period, is indifferent between buying from firm A at pA1 and buying from firm B at
pB1 .16 It is determined by θ̂1 = θ̄

2 + 1
2(pB1 − pA1 ).

On the other hand, on the line of those who shared their cookies in the first
period, the marginal customer, θ1, is defined by the following equivalence,

v − pA1 − θ1 +
[
v − pB2,A −

(
θ̄ − θ1

)]
= v − pB1 −

(
θ̄ − θ1

)
+
[
v − pA2,B − θ1

]
.

The equation represents consumers indifferent between buying from firm A at pA1 in
period 1 and afterwards from firm B at pB2,A in period 2, and buying from firm B

at pB1 in period 1 and then purchasing from firm A at pA2,B in period 2. Hence, the
marginal consumer is given by θ1 = θ̄

2 + 3
8(pB1 − pA1 ).

In the first period, firms maximize the overall profits, thus firm A’s problem is to
maximize the following term with respect to the first-period prices

πA = λpA1 θ̂1 + (1 − λ)pA1 θ1 + λpA2 θ2 + (1 − λ)
[
pA2,Aθ

A
2 + pA2,B

(
θB2 − θ1

)]
.

Similarly, firm B maximizes

πB =λpB1
(
θ̄ − θ̂1

)
+ (1 − λ)pB1

(
θ̄ − θ1

)
+ λpB2

(
θ̄ − θ2

)
+ (1 − λ)

[
pB2,A

(
θ1 − θA2

)
+ pB2,B

(
θ̄ − θB2

)]
.

From the second-period analysis, we have obtained pA2 = pB2 = θ̄ and θ2 = θ̄
2 . There-

fore, the respective third terms in the profit functions do not affect the maximization
problem. Solving the maximization problems under consideration of consumers’
privacy choices yields our first proposition.

15In the special cases of θ1 = 0 (θ1 = θ̄) we would have pA
2,B = pB

2,B = pA
2 = pB

2 (pA
2,A = pB

2,A = pA
2 =

pB
2 ) under pooling.

16θ̂1 is not influenced by second-period prices, because firms maximize their profits by choosing pA
2

and pB
2 which are independent of the first period.
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Proposition 1.1 The prices under open data for the competing firms in both periods
are

pA1 = pB1 = 4
3 + λ

θ̄, pA2,A = pB2,B = 2
3 θ̄, pA2,B = pB2,A = 1

3 θ̄.

The marginal consumer in the first period is located at θ1 = θ̄
2 . Consumers’ strategy

is to disclose data such that λ = 0 ∀θ. Therefore, we obtain a symmetric PBE in
pure strategies.
Proof. See Appendix.

Proposition 1.1 shows firms’ price choices and consumers’ privacy choice, λ, in
equilibrium. The limit cases of λ reveal an interesting insight. If λ = 1, which means
that none of the consumers grants access to their cookie in the first period, this
results in a uniform pricing strategy, pA1 = pB1 = θ̄. If on the other hand λ = 0,
which means that all consumers share their information in the first period, we get
that pA1 = pB1 = 4

3 θ̄, which is a standard behavior-based pricing strategy. Therefore,
for all values of λ ∈ (0, 1), pA1 and pB1 represent a mixture of uniform pricing and
behavior-based pricing. In equilibrium we find that all consumers choose to reveal
their data, λ = 0, thus firms’ prices for anonymous consumers are not realized.17

We derive the equilibrium in Proposition 1.1 under pooling beliefs. In the proof
of Proposition 1.1, we use a refinement argument, relaxing pooling beliefs, to show
that an individual deviation from consumers’ cookie choices is not desirable. Now
we inspect whether there are alternative equilibria under separating beliefs, where
consumers base their cookie choice on their type. We check for potential equilibria
in pure strategies. The results are summarized in the following proposition.

Proposition 1.2 There exists no separating equilibrium in pure strategies in the
open data environment. The pooling equilibrium derived above is unique among pure
strategies.
Proof. See Appendix.

Proposition 1.2 shows that under the open data environment the equilibrium derived
in Proposition 1.1, where all consumers reveal their information, is unique. From the
results in Propositions 1.1 and 1.2 we gather that an open data environment leads to
identical results as in standard behavior-based pricing with exogenous privacy where
competitors do not share information (see Fudenberg and Tirole, 2000). Consumers
are best off by revealing data, because they can benefit from the lower customized
prices in the second period.

17Surprisingly, we find the same pricing and privacy choices when consumers are myopic in their
first-period purchasing decision, but strategic in their privacy choice. This indicates that the privacy
choice absorbs the strategic properties of the first-period purchasing decision. When transportation
costs are quadratic we find qualitatively similar pricing choices and the same privacy choices as in
the case of linear transportation costs. See Appendix.
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1.2.2.2 Exclusive data environment

In this section, we analyze a setting where firms only learn about cookies of customers
who actually bought from them. This implies that there is exclusive data in the
market, as for example consumers of firm B, might reveal their purchasing history to
B, such that B can identify them. However, firm A does not receive the information
and therefore, these consumers are anonymous to A. The pricing strategy in the
second period is distinct from the open data environment, where three different prices
were set by each firm after consumers made a decision regarding their cookie choices.
In comparison, in the exclusive data environment firms cannot distinguish between
a competitor’s customers and their own anonymous consumers. They are just a
mass of non-identifiable consumers. This implies that firms cannot set a poaching
price to steal consumers from each other. The pricing strategy for the second period
only entails a loyalty price, pi2,i, and a new customer price, pi2 for i = A,B. The
first-period pricing is similar to the open data environment and not affected by the
difference in the data environment. As before, there is a marginal consumer in the
first period, θ1, who is indifferent between buying from A and B.18

In the exclusive data environment, the Hotelling lines cannot be separated as
in the open data environment. The reason is that the new customer price serves
two functions. Firstly, it is the price for the own consumers who are not identifiable
and secondly, it serves as a “poaching price” for competitors’ consumers. Figure 1.3
below depicts this clearly, since pi2 appears on both lines. Firms want to maximize
their profits by choosing prices pi2,i and pi2 for i = A,B in the second period. As
before, we start by employing the pooling beliefs. There is a share 1 −λ of consumers
who choose to give access to their cookies and a share λ of consumers who hide
their cookies, with λ corresponding to the probability of hiding for every consumer.
For the share λ of anonymous consumers there is an indifferent customer located
at θ2, who is impartial between buying from A at price pA2 and B at price pB2 . For
the identifiable consumers, there is a marginal consumer in each firms’ turfs: θA′

2
is indifferent between buying from A as identifiable consumer and buying from B

as anonymous customer, whereas θB′
2 is the respective cut-off value on B’s turf.

Figure 1.3 shows this customer segmentation and price setting in a rectangle, where
the two horizontal lines are again connected by λ.
From Figure 1.3 we derive the maximization problems of the firms in the second
period:

max
pA

2 ,p
A
2,A

πA2 = max
pA

2 ,p
A
2,A

λpA2 θ2 + (1 − λ)pA2,A θA
′

2 + (1 − λ)pA2
(
θB

′
2 − θ1

)
,

max
pB

2 ,p
B
2,B

πB2 = max
pB

2 ,p
B
2,B

λpB2

(
θ̄ − θ2

)
+ (1 − λ)pB2,B

(
θ̄ − θB

′
2

)
+ (1 − λ)pB2

(
θ1 − θA

′
2

)
.

18The analysis is similar to Colombo (2016). However, the essential difference is that he treats λ as
an exogenous parameter, while we use it as proxy for consumers’ endogenous decisions regarding
their cookies.
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Figure 1.3: Customer segments under exclusive data.

Lemma 1.2 Solving the maximization problems, we can derive the following prices
for the second period. For firm A:

pA2 (λ,p1) = (9 − 2λ+ 5λ2)θ̄ − 4(3 − λ)(1 − λ)θ1
3 [4 − (1 − λ)2] ,

pA2,A(λ,p1) = (3 + 10λ− λ2)θ̄ + 2(3 − λ)(1 − λ)θ1
3 [4 − (1 − λ)2] .

For firm B:

pB2 (λ,p1) = (−3 + 14λ+ λ2)θ̄ + 4(3 − λ)(1 − λ)θ1
3 [4 − (1 − λ)2] ,

pB2,B(λ,p1) = (9 + 2λ+ λ2)θ̄ − 2(3 − λ)(1 − λ)θ1
3 [4 − (1 − λ)2] .

Proof. See Appendix.

The second-period prices in this case are not only dependent on the first-period
prices, as is the case in the analysis of the open data environment, but also depend
on λ as the share of buyers who choose to be anonymous.

All prices increase with λ, i.e., the more likely consumers are to hide their cookies,
the higher are not only the new customer prices but also the loyalty prices of both
firms. This always holds for 1−λ

3−λ θ̄ ≤ θ1 ≤ 2
3−λ θ̄. Under this condition, loyalty prices

are larger or equal to new customer prices.19

Figure 1.4 depicts loyalty and new customer prices of firm A for θ̄ = 1 and θ1 = 1
2 .

At λ = 0, firms set symmetric prices with pA2 = pB2 = 1
3 and pA2,A = pB2,B = 2

3 . The
price setting corresponds to poaching and loyalty prices in the open data environment,
respectively. Given λ → 120 all prices converge to θ̄ = 1, the uniform pricing strategy.
There is no price discrimination in this case since there is no information available.

19When we derive first-period prices we show that the market is separated symmetrically between
the firms such that the condition holds.
20Notice that for λ = 1, the loyalty prices are no longer contained in the maximization problems.
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The graph shows that prices are convex, increasing in λ and within the range
of λ ∈ [0, 1) loyalty and new customer prices do not cross. Therefore, even though
the new customer prices increase with λ, they are always below the loyalty prices.
In Figure 1.4, we observe a situation that is similar to the prisoner’s dilemma.
Consumers face the highest prices when λ approaches 1. When λ = 1 only new
customer prices are realized and correspond to uniform prices of 1. On the other
hand, if consumers were to decide to hide their information with probability λ = 0,
this would lead them to a price of 2

3 which is below 1. This means, if consumers
can coordinate on putting zero probability on anonymizing, they would all gain.
However, consumers have an incentive to deviate to stay anonymous with a positive
probability, since for any λ ∈ (0, 1) they face a new customer price below the loyalty
price. This incentive leads all consumers to anonymize.

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0
λ

Price

Loyalty price

New customer price

Figure 1.4: Prices of Firm A for θ̄ = 1 and θ1 = 0.5.

Because consumers’ best strategy is to hide their cookies with probability λ = 1,
the two periods in this game are independent of each other. Therefore, in the first
period firms solve the following maximization problems:

pA1 = arg max
pA

1

πA = pA1 θ1 + πA2 ,

pB1 = arg max
pB

1

πB = pA1 (θ̄ − θ1) + πB2 ,

where θ1 = pB
1 −pA

1 +θ̄
2 for λ = 1.

Proposition 1.3 In the exclusive data environment, final prices all coincide with
the uniform pricing strategy, such that prices on the first and second period are θ̄.
Therefore, the PBE is a pooling equilibrium in pure strategies with λ = 1.
Proof. See Appendix.
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Proposition 1.3 shows that, in the equilibrium all consumers have an incentive to
anonymize, i.e. λ = 1. Consequently, firms resort to uniform pricing. Similar to the
open data environment, this result is derived under pooling beliefs of firm A and
B. In the proof of Proposition 1.3 we use the same refinement argument as before
and find that there is no profitable individual deviation, when relaxing the pooling
beliefs.

Same as in the analysis of the open data environment, we now turn to a situation
where firms form separating beliefs, so that we can identify other potential equilibria.
The results are summarized in the following Proposition.

Proposition 1.4 There exists no separating equilibrium in pure strategies in the
exclusive data environment. The pooling equilibrium derived above is unique among
pure strategies.
Proof. See Appendix.

Proposition 1.4 proves the uniqueness of the equilibrium under exclusive data, in
which all the consumers hide their information. Combining Propositions 1.3 with 1.4,
it follows that in the unique equilibrium firms set uniform prices. Thus, the exclusive
data environment yields the same result as the benchmark case in Fudenberg and
Tirole (2000), where price discrimination is either prohibited or first-period buying
decisions are not observable.

While in the open data environment consumers increase competition between
firms through their choice to reveal data, here consumers cannot influence competition
between firms with their cookie choice. In the exclusive data environment, firms
do not operate under symmetric information when consumers reveal their data.
Therefore, by sharing cookies in this data environment consumers are worse off
because firms can use the data to price discriminate on them without needing to
intensify competition. In the exclusive data environment, firms obtain larger profits
because they do not receive information about their consumers. Therefore, the firms
cannot set customized prices but have to conform to a uniform pricing strategy.

1.2.3 Welfare

In this step, we analyze consumer and producer surplus as well as social welfare for
both data environments. The theoretical analysis is based on the equilibria we find
in Proposition 1.1 and Proposition 1.3.

The producer surplus (profit) shows that in equilibrium firms prefer a setting
where information is not shared with a competitor as

π∗
open = 17

18 θ̄
2 < π∗

excl. = θ̄2.

The profits are larger in the equilibrium under exclusive data. Consumers’ equilibrium
strategy is to anonymize, hence firms set uniform prices in both periods. Compared
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to the open data environment, prices are higher in the second stage of the exclusive
data environment, benefiting firms. In the open data environment, profits are lower
because in equilibrium consumers choose to accept cookies. This leads to an increase
in competition among the two firms. In our model, firms cannot commit to not
use information about their customers. Therefore, firms prefer a setting where in
equilibrium they do not receive any information about consumers.

For consumers the case is not as simple, since they receive different utilities based
on their type. Utilities are determined by the data environment and the buying
decisions over two periods. It matters whether consumers are loyal to a firm over both
periods or whether they were poached in the second period, i.e., they switch between
firms. The type-dependent equilibrium utilities for the different data environments
are given by the following terms:

U∗
open(θ) =



2(v − θ̄ − θ) for θ ∈ [0, θ̄3)

2v − 8
3 θ̄ for θ ∈ ( θ̄3 ,

2θ̄
3 )

2(v − 2θ̄ + θ) for θ ∈ (2θ̄
3 , θ̄],

U∗
excl.(θ) =


2(v − θ̄ − θ) for θ ∈ [0, θ̄2)

2(v − 2θ̄ + θ) for θ ∈ ( θ̄2 , θ̄].

When comparing the utility levels of the different data environments, we find that
consumers obtain the same utility for θ ∈ [0, θ̄3) and θ ∈ (2θ̄

3 , θ̄], but obtain a higher
utility for θ ∈ ( θ̄3 ,

2θ̄
3 ) from the open data environment. Consumers who are located

further away from the firms can benefit from behavior-based pricing and receive a
larger rent due to lower poaching prices that are available to them.

From the utilities we can derive the consumer surplus for both data environments
as

CSopen = 2vθ̄ − 22
9 θ̄

2, CSexcl. = 2vθ̄ − 5
2 θ̄

2.

We find that
CSopen > CSexcl.

Consumers and firms prefer opposing data environments. Consumers’ interest is to
share their data with all firms on the market because firms cannot commit to not
use the data. This increases competition between firms. On the other hand, firms
benefit from a situation in which each competitor keeps their consumers’ data to
themselves. The level of data available to firms drives the results.

The total welfare for both data environments is

Wopen = 2vθ̄ − 5
9 θ̄

2, Wexcl. = 2vθ̄ − 1
2 θ̄

2.
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From this follows
Wexcl. > Wopen.

The overall welfare level is higher under the firm-preferred, exclusive data environment.
The efficiency loss incurred by firms in an open data environment is larger than the
loss of consumers in an exclusive data environment. The welfare loss under open
data comes from inefficient switching, i.e., consumers that are poached do not buy
from the closest firm. While consumers gain from being poached, as can be seen in
the comparison of their utility levels, firms lose profits (compared to the exclusive
data environment) because of the lower poaching prices they set.

The theoretical analysis shows that social welfare is lower in the open data
environment, since sharing of data between firms incentivizes consumers to grant
access to their data and to inefficiently switch between firms.

1.3 Experiment
As we have shown, our theory makes strong predictions towards consumers’ privacy
choices. It suggests that an open data directive could benefit consumers, while
probably doing so at cost of total welfare. However, this requires consumers to be
fully rational by choosing to share their data with firms in an open data environment.
Because consumers have an active role in the theoretical model it would be desirable
to empirically verify their behavior and check the implications of our model. However,
we cannot use real-world data because firstly, to our knowledge there is no mandated
open data directive in place and secondly, we would need to gather data on consumers
who may object to their data being gathered.

Due to these reasons, we employ a laboratory experiment. This circumvents
the stated issues and allows us to i) fully control the data environment and ii)
fully observe whether and which data are disclosed by consumers. Going into our
experimental design, we derive qualitative hypotheses from our theoretical model.

1.3.1 Hypotheses

For our first hypothesis, we define second-period discounts as any difference between
the first-period price and a second-period price (loyalty, poaching or new customer
price). Comparing first- and second-period prices within data environments following
Propositions 1.1 and 1.3 we arrive at Hypothesis 1.

Hypothesis 1 We expect second-period discounts in the open data environment, but
not in the exclusive data environment.

We define poaching discounts as a (positive) difference between loyalty price and
poaching price.21 Note that firms cannot set poaching prices in the exclusive data
21Similarly, we define loyalty discounts as a (positive) difference between new customer price and
loyalty price.
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environment, but may “poach” by means of the new customer price. We only expect
poaching discounts in the open data environment, because from the theoretical model,
we learned that firms set lower poaching prices to induce customers who bought from
their competitor to switch.

Hypothesis 2 We expect poaching discounts in the open data environment but not
in the exclusive data environment.

From the theoretical analysis, we expect that all consumers reveal their information
in the open data environment, while no consumer should reveal information in the
exclusive data environment.22 When all consumers disclose their information, both
data environments conform to behavior-based price discrimination. The opposite
case, i.e., full anonymization, corresponds to uniform pricing. While full disclosure is
always better for consumers, the exclusive data environment yields a coordination
problem for consumers, since every consumer has an incentive to anonymize.

Hypothesis 3 We expect more information disclosure in the open data environment
compared to the exclusive data environment.

In the following, we define switching as any instance of consumers that purchase
from a different firm in period two than in period one. Further, we define poaching
as any instance of switching when consumers switch from their nearest firm to
their respective farthest firm. This entails negative impacts on total welfare (cf.
Section 1.2.3). Likewise, we define retaining as any instance of switching where
consumers shift from the farthest to the nearest firm. This form of switching restores
efficiency in terms of total welfare. Given that our derived equilibria are symmetric,
we do not expect any instances of retaining, which implies that every occurrence of
switching should follow our definition of poaching. In theory, we observed that welfare
in the open data environment was lower than in the exclusive data environment
because of poaching.

Hypothesis 4 We expect more switching in the form poaching and lower total
welfare in the open data environment compared to the exclusive data environment.

1.3.2 Design

Our experimental design has two parts. The first and main part is a multi-stage
market game, closely resembling our theoretical set-up. In the second part, we
collect additional measures to control for cognitive ability, privacy concern and
demographics.

22Due to discretization, consumers bear a mass in the experiment. However, no matter what the
number of consumers is, at most one consumer who is located centrally would disclose information.
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1.3.2.1 Market game

Our implemented market game closely follows the theoretical set-up and aims at
testing our predictions concerning the buyers’ privacy choices and the sellers’ pricing
choices under the two data environments. Subjects take the role of buyers or sellers,
corresponding to consumers and firms in our theoretical model, with roles remaining
fixed for the duration of the experiment. Each market contains six buyers and two
sellers and lasts for two periods. A market is formed by eight adjacent locations, with
sellers being located at either end and six buyers in between on distinct locations as
depicted in Figure 1.5.

Theoretical representation:

0
A

1 2 3 4 5 6
B

Experimental representation:

A

Location 1

1

Location 2

2

Location 3

3

Location 4

4

Location 5

5

Location 6

6

Location 7

B

Location 8

Figure 1.5: Conversion of theoretical into experimental market.

Two markets are simultaneously formed within one matching group, with matching
groups consisting of six buyers and four sellers. Buyers are active in both markets
with locations drawn independently. Sellers are only active in one market and are
randomly located at location 1 or location 8, which corresponds to taking the role of
seller A or seller B. This allows for a randomization of seller composition between
market rounds, so that markets are independent between rounds and resemble one-
shot interaction.23 In total there are 20 market rounds to allow participants to get
acquainted with the market game.

Similar to Camacho-Cuena et al. (2005) and Barreda-Tarrazona et al. (2011),
we allow sellers to choose integer prices from the interval [0, 10]. Buyers exert
unit transportation costs per unit of distance traveled.24 Under consideration of
transportation costs, the price interval ensures that buyers never have negative
earnings. Our two treatment variations are (i) open data treatment and (ii) exclusive
data treatment according to the two data environments in our theoretical model.

The course of action follows the timeline of the theoretical model. Initially, sellers
choose the first-period price. Buyers afterwards decide whether to purchase from
seller A or B and whether to allow tracking of their purchase decision or not. Sellers
23In comparable seller-only experiments by Brokesova et al. (2014), matching groups of four were
shown to be suitable, according to Mahmood (2014) buyer involvement increases when active in
multiple markets.
24For example, a buyer at location five has to bear transportation costs of five to buy from a seller
at location zero.
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then learn the first-period price of their competitor and the number of buyers of both
sellers. They do not learn which or how many buyers allow tracking of their purchase.
By this we employ a fully belief-based interpretation of our theoretical model, with
beliefs not only governing the distribution, but also the share of anonymizing buyers.
In the second period of the open data treatment, sellers choose a loyalty price, a
poaching price and a new-customer price. In the second period of the exclusive data
treatment, sellers are limited to choosing a loyalty price and a new customer price.
After sellers have chosen the second-period prices, buyers are confronted with one
price per seller according to their first-period purchase and tracking decisions as
shown in Table 1.1.

Purchase
decision

Tracking
decision

Price of
seller A

Price of
seller B

Open data treatment
Seller A allow Loyalty price Poaching price
Seller A don’t allow New customer price New customer price
Seller B allow Poaching price Loyalty price
Seller B don’t allow New customer price New customer price

Exclusive data treatment
Seller A allow Loyalty price New customer price
Seller A don’t allow New customer price New customer price
Seller B allow New customer price Loyalty price
Seller B don’t allow New customer price New customer price

Table 1.1: Prices visible to buyers according to purchase and tracking decision.

Buyers then make their second-period purchase decision. After this, the sellers
receive full information about the buyers’ decisions. By this they also indirectly learn
about the buyers’ tracking decisions. This information is fully conclusive in case of
the open data treatment, as the total number of buyers that bought at the loyalty or
poaching prices corresponds to the total number of buyers that allow tracking. In
the exclusive data treatment, it serves as a lower bound, in the number of buyers
that bought at the loyalty prices. Those who bought at the new customer prices
may or may not have allowed tracking. When entering a new market round, the
information of all past market rounds is accessible via a history box. While market
rounds are independent, the history of past rounds may serve sellers in forming their
beliefs of the share of anonymous consumers.

At the end of a market round, a seller receives the profit

Π = p1 · n1 + p2 · n′
2

with p1 corresponding to the chosen first-period price under which n1 is the number
of buyers who bought from the seller. Similarly, p2 is the vector of the second-period
prices and n2 the vector of the number of second-period buyers who bought from
the seller. Buyers have an induced reservation value of 15. The utility of a buyer for
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a purchase25 is
Ut = 15 − pt − τ

with pt describing the price of the product that the buyer chose in period t and τ

describing the transportation costs. Profits and utilities are aggregated over all 20
market rounds, making every decision payment relevant.

1.3.2.2 Control measures

We complemented our market game by collecting several control measures. First,
we employed a novel single-player version of the Game of 21 Dufwenberg et al.
(2010) which we call the Game of 22. This task serves several purposes. We suspect
pricing decisions in this rather complex environment to be cognitively challenging
for subjects. Heterogeneity of the subjects can lead to different observations of
pricing behavior. We capture some of this heterogeneity in the capability of iterative
reasoning. Likewise, buyers’ first period purchasing and privacy choices may be
correlated with their ability to backward induct. A full description, instructions and
results of the Game of 22 are found in the Appendix.

Second, in an ensuing questionnaire, we ask participants to express their opinion
about privacy issues and whether they are concerned about privacy breaches. The
survey is based on Malhotra et al. (2004), which we use to calculate the Internet
Users’ Information Privacy Concerns (IUIPC) score. It consists of ten statements,
to which participants answer on a seven-point Likert scale from “strongly agree” to
“strongly disagree”.26 Agreeing to the statement reflects a higher “privacy concern”.
The statements cover three broad categories: data collection, data control and data
usage. The IUIPC score is calculated as the equally weighted average of the average
within-category scores normalized to [0, 1]. We use the score as a rough indication of
the participants’ general stance towards privacy related issues.

In the post-experimental questionnaire, we additionally collected the participants
age, gender and field of study.

1.3.2.3 Procedure

In total 160 students participated, with 96 taking the role of a buyer and 64 taking the
role of a seller in the market game. For both treatments, we formed eight independent
matching groups with six buyers and four sellers each. Both buyers’ utilities and
sellers’ profits from the market game are measured in ECU (Experimental Currency
Unit) and exchanged at the rate 10 ECU = 0, 20 EUR. On average, subjects earned
about 20 EUR in the 90 minutes experiment. Most subjects were majors in economics,
mathematics or industrial engineering. 36 % of the subjects were female. Participants
earned 2 EUR when they won against the computer in the Game of 22, which 91.25 %

25Within one market round a buyer makes four purchases. One per period per market.
26The full questionnaire is found in the Appendix.
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of the participants successfully did. Lastly, participants were awarded 1 EUR for
filling out the privacy survey. Sessions were conducted in the laboratory of TU
Berlin and WZB in September and November 2019 with participants drawn from
the ORSEE pool (Greiner, 2015). The experiment was programmed and conducted
with the experiment software z-Tree (Fischbacher, 2007).

1.3.3 Results

Seller and buyer decisions are mutually dependent. Therefore, we first briefly discuss
summary statistics concerning both buyers and sellers. Afterwards, in order of action,
we examine sellers pricing decisions and then buyers purchasing and privacy decisions,
including switching patterns and welfare implications.27

Treatment Open data Exclusive data

First-period price
All 20 rounds 5.68 5.47
Last 10 rounds 5.55 5.54
Equilibrium prediction 8 6

Loyalty price
All 20 rounds 4.12 3.94
Last 10 rounds 3.97 4.07
Equilibrium prediction 4 n/a

New customer price
All 20 rounds 4.20 4.02
Last 10 rounds 3.85 3.79
Equilibrium prediction n/a 6

Poaching price
All 20 rounds 3.28 n/a
Last 10 rounds 3.01 n/a
Equilibrium prediction 2 n/a

Table 1.2: Summary statistics for pricing choices of sellers.

Table 1.2 shows average prices of all 20 rounds and the last ten rounds of the
experiment and the associated theoretical predictions. The inclusion of separate
statistics for the second half of the experiment accounts for learning and the continuing
formation of beliefs. First-period prices are substantially larger than second-period
prices in both treatments and overall somewhat higher in the open data treatment
compared to the exclusive data treatment. In the open data treatment, we observe
poaching prices about one unit below loyalty and new customer prices, while the
latter two are relatively equal. This difference remains constant, while overall prices
are lower in the second half. In the exclusive data treatment, we observe some
poaching by means of the new customer prices, which are below loyalty prices in the
second half of the experiment.
27While buyers actions dictate sellers beliefs, we assume those to be fixed when entering a new
market round. Likewise, buyers beliefs about second period prices are fixed when entering a new
market round.
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Treatment Open data Exclusive data

Information disclosure
All 20 rounds 67.19 % 65.36 %
Last 10 rounds 66.77 % 58.54 %
Model prediction 100 % 0 %

Share of switching
All 20 rounds 23.18 % 15.73 %
Last 10 rounds 23.44 % 17.40 %
Model prediction 33.3̄ % 0 %

Share of poaching
All 20 rounds 13.02 % 7.50 %
Last 10 rounds 13.02 % 9.17 %
Model prediction 33.3̄ % 0 %

Share of retaining
All 20 rounds 10.16 % 8.23 %
Last 10 rounds 10.42 % 8.23 %
Model prediction 0 % 0 %

Table 1.3: Summary statistics for purchasing and privacy choices of buyers.

We find buyers do not favor one seller over the other. In the open data treatment
(exclusive data treatment), 49.01 % (51.25 %) purchased from seller A in the first
period and 49.69 % (49.48 %) purchased from seller A in the second period.28 Buyers
rather predominantly purchase at the lowest total costs, where total costs are the
sum of the price and transportation costs. In the open data treatment (exclusive data
treatment), 97.29 % (96.56 %) of the first-period purchases and 97.34 % (98.39 %)
of the second-period purchases were made at the lowest total costs.29 As shown in
Table 1.3, the share of information disclosure is nearly equal for both treatments at
around 2

3 . We find that the rate decreases for the second half in the exclusive data
treatment. Switching is more prevalent in the open data treatment compared to the
exclusive data treatment. However, we observe an increase in switching over time in
the exclusive data treatment which is driven by an increase in poaching, as the share
of retaining remains unaffected.

Going forward, we express purchases in terms of the proximity to the closest
seller to account for the symmetry of the market environment. This allows us to
clearly distinguish switchers into two subgroups as defined for Hypothesis 4. We
consider those as poached who first purchase from their close seller and switch to
their far seller and those as retained who first purchase from their far seller and
switch to their close seller. While the former is detrimental to total welfare, the
latter restores welfare in inefficient first-period outcomes. In Table 1.3, we show that
there is considerable retaining in both treatments.

In Table 1.B.1, we show the order of purchases per buyer location. We observe that
the share of those who bought from the same seller twice decreases with increasing

28When restricting to the last ten rounds all figures are closer to 50 %
29When restricting to the last ten rounds all figures are closer to 100 %.
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distance from the seller. Switchers who purchased from different sellers between
periods are more prevalent closer to the center, with highest occurrence at the central
locations 4 and 5. Further, we show the distribution of information disclosure in
Table 1.B.1. At first glance we find that information disclosure is largely independent
of locations in both treatments. Notably disclosure rates are slightly smaller (larger)
in the central locations in the open data treatment (exclusive data treatment).
However, Pearson’s chi-squared tests neither reveal a significant difference from a
uniform distribution in the open data treatment, χ2(5, N = 1290) = 3.78, p = 0.58,
nor in the exclusive data treatment, χ2(5, N = 1255) = 2.57, p = 0.77.30

1.3.3.1 Sellers’ pricing decisions

First we investigate price setting of sellers within treatments as this is instrumental
to understand privacy and purchasing decisions of buyers. We employ a fixed-effects
regression, clustered on group level. We regress on respective price differences and
analyze the constant remainder, while considering the impact of learning, since the
fixed-effects absorb any other subject-specific characteristics.

As shown in Table 1.4, we find significant differences between all second-period
prices compared to first-period prices. We expected this for the open data treatment,
but not for the exclusive data treatment according to Hypothesis 1. Predictions for
the exclusive data treatment are rested on the fact that consumers fully anonymize.
However, we observe a high rate of information sharing, which is consistent with
differences between first- and second-period prices. As a second-order effect this
should also lead to price discrimination, which we only observe to a small extent in
the second half as seen in the last column of Table 1.4.

There are significant differences between poaching price compared to loyalty and
new customer price in the open data treatment. These differences remain over the
course of the experiment. We find mixed results on the difference between new
customer and loyalty prices. Initially, new customer prices are significantly larger
than loyalty prices, while the opposite is true in the second half of the experiment
as indicated by the second-half dummy for both treatments. However, this is only
significant in the exclusive data treatment and it is the only instance of a significant
impact of the second-half dummy that is reversed to the initial effect.

Now we turn to the relation of information disclosure and pricing strategies.
Especially in the exclusive data treatment the high rate of information sharing
should have led sellers to increase their loyalty prices according to our theory. Sellers
initially seem reluctant to do so, but we find some indication of sellers adopting
poaching strategies in the exclusive data treatment towards the end of the experiment.
Furthermore, the analysis of pricing behavior of sellers sheds some light on the high
rate of information disclosure in the early rounds of the exclusive data treatment,

30In Section 1.B in the Appendix we explore how privacy concern affects disclosure rates for some
locations.
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as sellers in fact offer loyalty discounts in the early rounds and only later adopt a
different strategy, where they actually employ loyalty mark-ups.

Lastly, we are interested in differences in price setting behavior between treatments.
We measure the effects on prices between treatments by random-effects regressions
with group-level clustering. Since fixed-effects regression is not applicable to detect
treatment differences, we use available controls in demographics, iterative thinking
capability and learning effects.

In Table 1.5, we show the results. We find no significant effects on first-period,
loyalty and new customer prices. Though insignificant, the signs of all three effects
correspond to our theoretical predictions. Most notably there is a significant effect
on poaching prices, indicating that sellers poach more (intensively) in the open data
treatment, by roughly the same magnitude as the within-treatment analysis has
revealed for the open data treatment. These results are in favor of Hypothesis 2.

We calculate the optimal average second-period prices under the observed share
of anonymous consumers and the observed number of first-period buyers according
to our derived reaction functions from Lemmas 1.1 and 1.2 to correct the predictions
of our model for the respective second-period sub-game under pooling beliefs. We
have shown earlier via chi-squared tests that the privacy choices over locations are
not significantly different from a uniform distribution, supporting the use of pooling
beliefs here.

In Table 1.6, we show the observed prices compared to the predictions when
adjusted for the observed first-period purchasing and privacy choices. In Figure 1.B.6
and Figure 1.B.7, we show how the observed and predicted prices develop over
rounds. We find that sellers adjusted loyalty and poaching prices in the open data
treatment reasonably well. We find a striking discrepancy for the new customer
price in the open data treatment compared to the prediction. As we have shown in
Table 1.4, sellers chose new customer prices relatively close to loyalty prices. This
is reminiscent of the off-path response of sellers to deviating buyers, which we lay
out in Lemma 1.A.1. While this should lead to a ratchet effect on the loyalty and
poaching prices, which we do not observe, it might explain the sellers approach. In
the exclusive data treatment, we see a similar but slowed down adjustment process
to the open data treatment for loyalty and poaching prices. Together with the
second-period discounts, this qualitatively fits the predictions from our model when
accounting for observed first-period purchases and privacy choices.

1.3.3.2 Buyers’ purchasing and privacy choices

Though buyers opted for the lowest total costs when purchasing, this does not
conclusively suggest myopic purchasing decisions. To account for strategic purchase
decisions, we check what purchasing decisions buyers made when total costs were
equal.
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Loyalty price New customer price Poaching price

Open data treatment
Observed average prices
All 20 rounds 4.20 4.12 3.28
Last 10 rounds 3.85 3.94 3.01

Model prediction
All 20 rounds 4.12 6 2.14
Last 10 rounds 4.13 6 2.11

Exclusive data treatment
Observed average prices
All 20 rounds 3.94 4.02 n/a
Last 10 rounds 4.07 3.79 n/a

Model prediction
All 20 rounds 4.55 3.10 n/a
Last 10 rounds 4.66 3.33 n/a

Table 1.6: Observed and adjusted price predictions under pooling assumption.

Open data Tracking
treatment allow don’t allow

First half 59.57 % 43.48 %
Second half 70.83 % 55.17 %

Exclusive data Tracking
treatment allow don’t allow

First half 36.84 % 35.29 %
Second half 35.59 % 33.33 %

Table 1.7: Share of purchases from the far seller at equal total costs.

As shown in Table 1.7, the share of buyers who purchase at the far seller when total
costs are equal increases towards the second half of the experiment and is amplified
for those who allow purchase tracking in the open data treatment. The same is
not true for the exclusive data treatment, where the share is within two percentage
points around 35 % under all conditions. As sellers offered loyalty discounts in the
initial rounds, it is sensible for buyers to stick with the close seller initially. Though
sellers refrained from offering loyalty discounts in the later rounds, buyers did not
adapt and were still more likely to choose the close seller when total costs were equal.
In Table 1.B.2 in the Appendix, we show that we can confirm a significant treatment
effect. Under equal total costs buyers were more likely to purchase from the far
seller in the open data treatment, suggesting strategic purchase decisions in the first
period.

Upon first inspection in Figure 1.6, we observe two things regarding the purchase
tracking decision between treatments over rounds. Allowing tracking is initially
more and subsequently less prevalent in the exclusive data treatment compared to
the open data treatment. Albeit the similar sharing rate over all treatments, this
suggests that the adaptive processes are different between treatments. This reflects
the findings of Schudy and Utikal (2017) who show that subjects are less inclined to
share information, if more parties receive the information. Subjects in our experiment
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face a similar situation, since there are two recipients in the open data treatment
and only one in the exclusive data treatment.

.3

.4

.5

.6

.7

.8

.9

1

0 5 10 15 20
Period

Open data treatment Exclusive data treatment

Figure 1.6: Share of purchase tracking allowed over periods by treatment.

Dependent variable: Tracking allowed ∈ {0, 1}
Treatment +

Treatment Learning
(1) (2) (3) (4)

Exclusive 0.036 0.357 0.442 0.777
(0.278) (0.501) (0.295) (0.516)

Second half -0.046 -0.046
(0.107) (0.107)

Exclusive × Second half -0.763∗∗∗ -0.771∗∗∗

(0.156) (0.157)
Market No Yes No Yes
Location No Yes No Yes
Demographics No Yes No Yes
Privacy concern No Yes No Yes
Iterative thinking No Yes No Yes

Observations 3840 3800 3840 3800
Standard errors in parentheses. Estimation by multilevel mixed-effects logistic regres-
sion with hierarchical clustering on group and subject level. *, ** and *** denote
significance at the 10 %, 5 % and 1 % level, respectively.

Table 1.8: Impact of learning on tracking decision.

In Table 1.8, we explore this by employing a multi-level logit model on the tracking
decision of buyers, while controlling for demographics and experiment specific factors,
as well as, iterative thinking capability and privacy concern. Following specifications
(1) and (2), we see no immediate treatment effect. In specifications (3) and (4), we
explore the role of learning, by including a dummy variable which indicates the second
half of the experiment, corresponding to rounds 11 and after, and an interaction effect
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of treatment and second half dummy.31 There is a significant drop in information
disclosure in the exclusive data treatment, while there is no change after learning
in the open data treatment. We find some evidence towards Hypothesis 3, when
accounting for learning effects. We observe less information sharing in the exclusive
data treatment over time, though information sharing is much more prevalent than
predicted. This reflects the public good nature of information disclosure in the data
environment.

Dependent variable:
Switched ∈ {0, 1} Poached ∈ {0, 1} Retained ∈ {0, 1}

(1) (2) (3) (4) (5) (6)

Exclusive -0.501∗∗∗ -0.065 -0.658∗∗∗ -0.111 -0.223 -0.064
(0.148) (0.198) (0.226) (0.325) (0.147) (0.225)

Tracking 0.600∗∗∗ 0.649∗∗∗ 0.247
(0.140) (0.174) (0.177)

Exclusive × Tracking -0.597∗∗∗ -0.677∗∗ -0.203
(0.208) (0.271) (0.263)

Market No Yes No Yes No Yes
Location No Yes No Yes No Yes
Demographics No Yes No Yes No Yes
Privacy concern No Yes No Yes No Yes
Iterative thinking No Yes No Yes No Yes

Observations 3840 3840 3840 3800 3840 3840
Standard errors in parentheses. Estimation by multilevel mixed-effects logistic regression with
hierarchical clustering on group and subject level. *, ** and *** denote significance at the 10 %,
5 % and 1 % level, respectively.

Table 1.9: Effects of treatment and privacy choice on switching, poaching and retaining of buyers.

Next, we take a closer look at the switching behavior of buyers. As discussed
earlier and shown in Table 1.B.1, we observe instances of poached and retained
buyers. In specification (1) of Table 1.9, we show that switching is significantly
more prevalent in the open data treatment. In specification (2), we show that this
effect is not merely driven by the treatment, but by those who disclose information.
While the effect is significant and positive in the open data treatment, we find a
negative significant effect with nearly the same magnitude in the interaction with
the exclusive data treatment. This indicates that information disclosure is predictive
of switching in the open data treatment, but not in the exclusive data treatment.
We observe the same pattern in specifications (3) and (4) when limiting to those
instances of switching that follow our definition of poaching. In contrast, none of the
stated effects is found when limiting to retained buyers in specifications (5) and (6),
suggesting that this is neither driven by the treatment, nor by the privacy decisions.
Together, the results speak in favor of the first part of Hypothesis 4. We observe
significantly more switching, in the form of poaching, in the open data treatment
compared to the exclusive data treatment.

31Results are similar when using a continuous variable indicating the round instead of the dummy
for the second half.
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1.3.3.3 Welfare findings

In order to analyze the effect of switching on welfare, we use average transportation
costs as an inverse measure for welfare. Figure 1.7 depicts predicted and observed
average transportation costs. The left and right boundaries of the line give the

min max

4 4.3̄

Predicted

4.375 4.515

p > 0.1

Observed
Exclusive dataOpen data

Figure 1.7: Observed and predicted average transportation costs per round.

average minimal and maximal transportation costs per market round (i.e., two
periods). This implies that the left boundary corresponds to the maximum welfare.
Four are the lowest average transportation costs per round if buyers purchase from
the closest seller. This is also the predicted value for average transportation costs in
the exclusive data treatment because we expect all buyers to anonymize and buy
from the closest seller in both periods. The predicted average transportation costs for
the open data treatment are 4.3̄ because we expect all buyers to share information
and a portion of 1/3 to switch (cf. Table 1.3) to the far seller in the second period.
Underneath the line, we depict the observed average transportation costs across
treatments. The exclusive data treatment’s observed average transportation costs
are 4.375. The open data treatment’s observed average transportation costs are
4.515. Although both values are close to the maximum welfare of four, they are
above the prediction of the open data treatment of 4.3̄. Based on a random effects
regression clustered on group level with time fixed effects, we do not find a significant
difference between the observed transportation costs across treatments. This means
that social welfare is not significantly different between the open and exclusive data
treatment, despite higher switching rates in the open data treatment. This relies on
the fact that switching not only occurs inefficiently due to poaching of customers,
but also efficiently in retaining close customers. We cannot confirm the second part
of Hypothesis 4.

1.4 Conclusion and Discussion
In this chapter, we analyze consumers’ endogenous privacy decisions in a duopolistic,
dynamic market where firms employ behavior-based price discrimination. We consider
two data environments, distinct in their data sharing levels. Data are contained in
cookies placed by firms and reveal consumers’ purchasing history. In the open data
environment, data disclosed by consumers are fully shared between firms, whereas in
the exclusive data environment data are only available to the provider of the good.
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In our theoretical analysis, we find a unique pure-strategy equilibrium for each
data environment. When information is available to both firms, all consumers fully
disclose their data, which amplifies competition. Second-period prices are below
first-period prices and firms offer poaching discounts. When information is exclusive
to firms, all consumers hide their data because they are individually better off by
anonymizing. Second-period prices and first-period prices correspond to uniform
pricing. While consumers’ data sharing is favorable in both data environments, there
is an incentive to do so in the open data environment, but not in the exclusive
data environment. The exclusive data environment exhibits information externalities
where a collective choice of full information disclosure would lead to a better outcome
for consumers, but individually consumers refrain from sharing information. This
is also reflected in consumer’s welfare which suffers under exclusive data and is
higher under open data due to poaching discounts. For firms, profits are higher
in the exclusive data environment. Social welfare is maximal in the exclusive data
environment because in the absence of poaching discounts there is no inefficient
switching.

In order to verify our theoretical results, we conduct a laboratory experiment
that is aligned with our theoretical model with subjects acting in the roles of sellers
and buyers. We employ two treatments corresponding to the two data environments.
We find that the data sharing rate in the open data environment is high which
is in line with our theory. The data sharing rate in the exclusive treatment is
significantly lower compared to the rate in the open data treatment when factoring
in an adjustment process. Sellers act largely in accordance with our theory in the
open data treatment. They price discriminate on the basis of data they receive
by offering poaching discounts. In the exclusive data treatment, sellers initially do
not offer discounts to anonymous buyers even though they have access to necessary
information. Over time, sellers in the exclusive treatment begin to adopt poaching
strategies and in turn buyers refrain from disclosing information, which is in line
with our predictions.

The theoretical welfare results hinge on the unique pooling equilibria. That
social welfare is higher under exclusive data is solely driven by the fact that there
is no inefficient switching. However, we cannot confirm this social welfare effect
in our experiment. Though we can confirm increased switching in the open data
treatment over the exclusive data treatment, we find no significant difference in social
welfare across treatments. From a policy maker’s perspective, these are important
results for the discussion on whether to implement an open data environment. The
European Commission is already discussing such a mandated data sharing policy
when consumers are in control over their own data (European Commission, 2020).
In our analyses, the difference between open data and exclusive data environment
shows that mandated data sharing among firms will lead more consumers to share
data because they can benefit from intensified competition. Whereas under exclusive
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data, firms can use consumers’ data to price discriminate without the pressure of
increased competition because firms operate under asymmetric information.

It would be interesting to study consumers’ concern for their data privacy in the
e-commerce setting. When do consumers decide to share data? On what basis do
consumers make their decision about accepting access to their cookies? When we
think of extending our model, a setting in which consumers are in complete control
of their data deserves attention. Complete control entails that consumers can decide
whether each firm independently receives data about their previous purchases. This
way, consumers can also exclusively share their purchasing history with firms that
they have not bought from. Basically, this extends our open data environment by
allowing consumers to choose a different option for each firm. Along this line, one can
also imagine a situation of asymmetric information, i.e., a small retailer unable to
collect and process consumers’ data versus a large retailer accessing a wide range of
personal data. It might be interesting to verify what firms’ and consumers’ optimal
strategies are when one competitor is not able to use data.

It is equally important to explore firms’ perspective and study under which
conditions they have an incentive to share obtained data with other firms, as our
open data environment implies mandated data sharing, while under exclusive data
this possibility was not given at all. Another vein for future research is the extension
of the time horizon to more than two periods, either with long-lived consumers or in
form of a overlapping generations model.
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1.A Appendix A: Theory
Proof of Lemma 1.1

Firms’ maximization problems for anonymous consumers give the following first-order
conditions

θ̄

2 + pB2
2 − pA2 = 0 θ̄

2 − pB2 + pA2
2 = 0.

From these we derive prices pA2 = pB2 = θ̄ and the marginal consumer, θ2 = θ̄
2 .

By plugging θA2 = θ̄
2 + pB

2,A−pA
2,A

2 and θB2 = θ̄
2 + pB

2,B−pA
2,B

2 into the maximization
problems, we have

max
pA

2,A,p
A
2,B

(1 − λ)
[
pA2,A( θ̄2 +

pB2,A − pA2,A
2 ) + pA2,B( θ̄2 +

pB2,B − pA2,B
2 − θ1)

]
,

max
pB

2,B ,p
B
2,A

(1 − λ)
[
pB2,B(θ̄ − θ̄

2 −
pB2,B − pA2,B

2 ) + pB2,A(θ1 − θ̄

2 −
pB2,A − pA2,A

2 )
]
.

First-order conditions solve

(1 − λ)
[ θ̄
2 +

pB2,A
2 − pA2,A

]
= 0,

(1 − λ)
[ θ̄
2 +

pB2,B
2 − pA2,B − θ1

]
= 0,

(1 − λ)
[ θ̄
2 − pB2,B +

pA2,B
2 ] = 0,

(1 − λ)
[
θ1 − θ̄

2 − pB2,A +
pA2,A

2 ] = 0,

where we can derive the results as

pA2 = θ̄, pA2,A = 1
3(2θ1 + θ̄), pA2,B = 1

3(3θ̄ − 4θ1),

pB2 = θ̄, pB2,B = 1
3(3θ̄ − 2θ1), pB2,A = 1

3(4θ1 − θ̄).

From these equations we observe that anonymous prices pA2 and pB2 are strictly
positive, the same for loyalty prices pA2,A and pB2,B. However, poaching prices pA2,B
and pB2,A depend on θ1 and the parameter θ̄. When 1

4 θ̄ ≤ θ1 ≤ 3
4 θ̄, it is an interior

solution and the equilibrium prices are just as above. When θ1 <
1
4 θ̄, it is a corner

solution where pB2,A = 0. Firm A should set pA2,A such that v−pA2,A−θ1 = v− (θ̄−θ1),
in order to protect the marginal customer located at θ1. Therefore pA2,A = θ̄ − 2θ1

and the other pirces are the same as in the interior solution. When θ1 >
3
4 θ̄ it follows
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that pA2,B = 0, and thereby firm B sets pB2,B such that v − θ1 = v − pB2,B − (θ̄ − θ1).
So in this case pB2,B = 2θ1 − θ̄ and the other prices do not change.

Proof of Proposition 1.1

By inserting pA2,A, pB2,A, pA2,B, pB2,B, and θ1 into firms’ maximization problems in the
first period, we can derive the fiirst-order conditions for A and B, respectively,

θ̄

2 + 3 + λ

8 pB1 − 3 + λ

4 pA1 − 5
16(1 − λ)(pB1 − pA1 ) = 0,

θ̄

2 + 3 + λ

8 pA1 − 3 + λ

4 pB1 + 5
16(1 − λ)(pB1 − pA1 ) = 0,

which gives us firms’ prices for both periods.
When all consumers reveal their information, beliefs about anonymous consumers

govern off-path behavior. If a single consumer individually deviates, both firms are
driven to a situation of perfect competition for this single consumer, which grants
the highest rent possible. Considering that both firms perfectly compete and denote
ũ(θ) as the utility of a consumer of type θ who deviates:

ũ(θ)32 =


v − θ̄ + θ if θ ≤ θ̄

2

v − θ if θ ≥ θ̄

2 .

From firms’ perspective, their belief about who may deviate depends on the utilities
a consumer gets with and without deviation. Based on the optimal pricing strategy
from Proposition 1.1 and the utility with deviation ũ(θ) derived above, we check
six cases separately: when 0 ≤ θ ≤ θ̄

6 , the utility of a consumer of type θ without
deviation is v− 2

3 θ̄−θ, which is larger or equal to the utility ũ(θ) if they deviate, that
is v − θ̄ + θ. When θ̄

6 < θ ≤ θ̄
3 , the utility of a consumer of type θ without deviation

is again v − 2
3 θ̄ − θ, which is strictly smaller than the utility if they deviate, that is

v − θ̄ + θ. When θ̄
3 < θ ≤ θ̄

2 , the utility of a consumer of type θ without deviation
becomes v − 1

3 θ̄ − (θ̄ − θ), which is smaller than the utility ũ(θ) if they deviate,
that is v − θ̄ + θ. Similarly, when θ̄

2 < θ ≤ 2
3 θ̄, the utility of a consumer without

deviation changes to v − 1
3 θ̄ − θ, which is smaller than the utility with deviation,

equivalent to v − θ. When 2
3 θ̄ < θ < 5

6 θ̄, the utility of a consumer without deviation
is v − 2

3 θ̄ − (θ̄ − θ), which is smaller than the utility with deviation v − θ. Finally,
when 5

6 θ̄ ≤ θ ≤ θ̄, the utility of a consumer without deviation is again v− 2
3 θ̄− (θ̄−θ),

which is larger or equal to the utility with deviation v − θ. Overall, we get that
consumers located between 1

6 θ̄ and 5
6 θ̄ may have an incentive to deviate, thus firms

form their off-path belief accordingly. Figure 1.A.1 depicts the total costs v − ũ(θ)

32In the perfect competition, the firm further away from the deviating consumer would set the price
at zero and this consumer would be indifferent between buying from either firm.
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for consumers under individual deviation, given the sellers’ responses.

0 1

6
θ̄

1

3
θ̄

1

2
θ̄

2

3
θ̄

5

6
θ̄

θ̄

θ̄

1

2
θ̄

2

3
θ̄

Potential deviators

Figure 1.A.1: Total costs in equilibrium (solid) and for individual deviators (dotted).

Corollary 1.A.1 If firms observe a deviation of consumers’ privacy choice, they
believe with equal probability that it is any consumer located at θ ∈ (1

6 θ̄,
5
6 θ̄). The

off-path price for this segment is 2
3 θ̄.

Since they cannot identify the exact type of the consumer who deviates, their belief
is that the consumer with an incentive to deviate is uniformly distributed between
1
6 θ̄ and 5

6 θ̄. Therefore, as a best response, they set the optimal off-path price 2
3 θ̄

33

if they observe a deviation. This price is equivalent to the optimal loyalty price
derived in Proposition 1.1. Under these beliefs no consumer anonymizes because the
total costs are not lower than under revealing information. Therefore, there is no
profitable deviation for any consumer, which completes the proof.

Proof of Proposition 1.2

In this section, we prove the non-existence of a separating equilibrium in pure
strategies under open data and thereby confirm the uniqueness of the pooling
equilibrium derived in Proposition 1.2.

We divide all the potential scenarios into two cases: (i) when the first-period
cut-off goes through a “hide” segment34 and (ii) when the first-period cut-off goes
through a “give” segment.35 We differentiate separating equilibria according to
whether the line consists of two segments or of mutiple segments. For instance, the
Figure 1.A.2 shows the scenario of multiple segments when the first-period cut-off
goes through a “hide” segment.
Definition: If not all consumers within one segment buy from the same firm, we
say that there exists poaching behavior in this segment.
33Considering this off-path price, two firms face a continuum of consumers uniformly distributed
between 1

6 θ̄ and 5
6 θ̄, thus they choose p̃A

2 and p̃B
2 to maximize their respective profits p̃A

2 ( θ̄
2 + p̃B

2 −p̃A
2

2 − θ̄
6 )

and p̃B
2 [ 5

6 θ̄ − ( θ̄
2 + p̃B

2 −p̃A
2

2 )], where we get that p̃A
2 = p̃B

2 = 2
3 θ̄.34That is, to the left of the cut-off all the consumers bought from firm A in the first period and to

the right all bought from firm B.
35Please note that no assumption about symmetry is needed.
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θ′0 θ̄

give hide give

first-period cut-off

Figure 1.A.2: Line with multiple segments in case (i).

Lemma 1.A.1 In a separating equilibrium with multiple segments, there exists no
poaching behavior in any segment except for the segment that the first-period cut-off
goes through, i.e., there is no poaching behavior in a lateral segment.

Proof. We take the figure above as an example and use a proof by contradiction
here. Assume Lemma 1.A.1 is not true and there exists poaching behavior in the left
“give” segment, which means that to the left of θ′ consumers buy from firm B at pB2,A
and to the right of θ′ consumers buy from firm A at pA2 . Since the consumer located
at θ′ is indifferent between revealing and hiding information, the costs of two options
should be the same for them, i.e., pB2,A + (θ̄ − θ′) = pA2 + θ′. However, for those who
are located to the left of θ′ and buy from firm B at pB2,A, they have an incentive to
deviate. That is, because by deviating to decline cookies, the total cost of buying
from firm A would be strictly smaller than the cost before.36 Thus, there exists a
profitable deviation, which contradicts our initial assumption. The same method can
be applied to a “hide” segment. This completes the proof.

Lemma 1.A.1 shows that in a separating equilibrium with multiple segments there
is no poaching behavior in lateral segments. Based on cut-offs between the lateral
segments we can infer that pi2 = pi2,i ∀ i = A,B. Now, we start to prove the
non-existence of a separating equilibrium in pure strategies.

As mentioned before, we have to look at case (i) and (ii) and in each case
differentiate by the number of segments (two or multiple). In other words, we need
to check four possible scenarios. Let’s first focus on the figure above, where there
are multiple segments in case (i). If we check the consumer located at θ′, they are
indifferent between revealing and hiding information. By Lemma 1.A.1, there is no
poaching behavior in the “give” segments, so pA2,A = pA2 . Similarly, pB2,B = pB2 also
holds. However, under such circumstances both firm A and firm B have an incentive
to deviate from their pricing strategy. By increasing their loyalty prices when the
consumers are segmented as in the figure above, both firms could gain profit from
loyal customers while keeping the profit from anonymous customers the same as
before. Thus, firms have a profitable deviation and such a separating equilibrium
does not exist.
36Assume that they are located at θ′′ with θ′′ < θ′. Since they buy from firm B at pB

2,A, the initial
costs are pB

2,A + (θ̄ − θ′′), which is strictly larger than pB
2,A + (θ̄ − θ′). By deviating to hide the

cookies, the total costs would be pA
2 + θ′′, which is strictly smaller than pA

2 + θ′. Combining together,
we get that pA

2 + θ′′ < pA
2 + θ′ = pB

2,A + (θ̄ − θ′) < pB
2,A + (θ̄ − θ′′), which shows the benefit from

deviation.
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Then we look at the scenario with just two segments in case (i). Figure 1.A.3
below describes such a scenario:

0 θ̄

give hide

first-period cut-off

Figure 1.A.3: Line with two segments in case (i).

Firstly, we can show that in the “hide” segment there exists poaching behavior.
Otherwise, one of the firm’s new customer prices should be 0, since both pA2 and
pB2 are exclusively used in the “hide” segment and the firms have no reason to set a
price above zero if they get no market share in this interval. If this were the case,
the customers from the “give” segment would deviate to hide their cookies, since by
doing so they could benefit from the zero new customer price. Secondly, similar to
Lemma 1.A.1 we can prove that in the “give” segment no poaching behavior exists.
In other words, all consumers buy from firm A at pA2,A, and pA2,A = pA2 . However,
firm A has an incentive to raise their loyalty price, in order to obtain more from
loyal customers who grant access to their cookies. Thus, this structure of separating
equilibrium is not possible. Combining these two scenarios, we can conclude that in
case (i) (when the first-period cut-off goes through the “hide" segment) there is no
separating equilibrium in pure strategies.

0 θ̄

hide give hide

first-period cut-off

Figure 1.A.4: Line with multiple segments in case (ii).

In case (ii) when the first-period cut-off goes through the “give” segment, let’s
first look at the scenario with multiple segments along the line. In Figure 1.A.4
above, by Lemma 1.A.1, there is no poaching behavior in all “hide” segments. This
means that in the left “hide” segments firm A serves all customers at a price of pA2
and in the right “hide” segments firm B serves all at a price of pB2 . It is similar for
all “give” segments on the sides, such that pA2 = pA2,A and pB2 = pB2,B. Under such
circumstances both firms have an incentive to increase their new customer prices pA2
and pB2 because this leads to a higher profit for “hide” segments while keeping “give”
segments the same as before.37 Hence, there is no separating equilibrium in pure
strategies in this scenario.

37This situation is similar to a Hotelling line with discontinuous demands proposed by Ackley (1942)
and Shilony (1977).
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θ′0 θ̄

hide give

first-period cut-off

Figure 1.A.5: Line with two segments in case (ii).

Finally, we check the scenario with just two segments. Considering the interval
between θ′ and the first-period cut-off in Figure 1.A.5, there should exist poaching
behavior. Otherwise, by the same logic mentioned before, either pA2,A or pB2,A38 is
zero, and some outside customers deviate. Then similar to Lemma 1.A.1, we can
easily show that no poaching behavior exists in the “hide” segment and all customers
buy from firm A at pA2 . In this condition firm A has an incentive to increase the new
customer price, in order to get more profit from the “hide” segment. To sum it up,
we prove that there is no separating equilibrium in pure strategies in case (ii) when
the first-period cut-off goes through the “give” segment.

All the analyses above show that there is no separating equilibrium in pure
strategies in the open data environment, which completes the proof of Proposition 1.2.

Open Data with Myopic Consumers

In the main analysis, we consider consumers to be strategic. Now we want to extend
our analysis to a situation in which some consumers are myopic in the first stage
with regard to their purchasing decision (Baye and Sapi, 2014, Carroni et al., 2015).
We assume that there is a share α of myopic consumers and a share 1 −α of strategic
consumers. For myopic consumers, their rationale is to choose the cheaper good in
the first stage, however, they are strategic afterwards, including the cookie choice
and the purchasing decision in the second stage. To the contrary, strategic consumers
are always forward-looking in both stages. Therefore, the difference in this setting
lies in the first stage, where, among myopic consumers, marginal consumer θ′

1 is just
indifferent between buying from firm A at pA1 in stage 1 and buying from firm B at
pB1 in stage 1, that is, v− pA1 − θ′

1 = v− pB1 − (θ̄− θ′
1), leading to θ′

1 = θ̄
2 + pB

1 −pA
1

2 . On
the other hand, among strategic consumers,39 the cut-off consumer θ1 is indifferent
between buying from firm A at pA1 in stage 1 and then buying from firm B at pB2,A in
stage 2, and buying from firm B at pB1 in stage 1 and then buying from firm A at
pA2,B in stage 2,40 therefore,

v − pA1 − θ1 +
[
v − pB2,A − (θ̄ − θ1)

]
= v − pB1 − (θ̄ − θ1) +

[
v − pA2,B − θ1

]
.

38This interval represents those who bought from firm A in the first stage and gave the cookies.
Therefore, they are facing the loyalty price pA

2,A and poaching price pB
2,A.

39To make it more precise, strategic consumers mean those who are forward-looking and reveal
their data in the first stage.
40This indifference condition is the same as under open data with strategic consumers.
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In order to solve this two-stage problem, we apply backward induction. Starting
from the second stage, again there are two separated lines for consumers who did
and who did not give their cookies, respectively. No matter whether they belong to
the group of myopic consumers or the group of strategic consumers, the cut-offs are
the same, since even myopic consumers are strategic in the second stage. Among
those who granted access to their cookies in the first stage, the two cut-offs, θA2 and
θB2 , are equivalent to θ̄

2 + pB
2,A−pA

2,A

2 and θ̄
2 + pB

2,B−pA
2,B

2 , respectively.41 Moreover, for
those who did not give their cookies in the first stage, as we discussed before, they
will face uniform pricing in the second stage, with pA2 = pB2 = θ̄ and θ2 = θ̄

2 .
Therefore, the competitors maximize their profits from the line with mass 1 − λ

as follows

max
pA

2,A,p
A
2,B

α(1 − λ)
[
pA2,Aθ

A
2 + pA2,B(θB2 − θ′

1)
]

+ (1 − α)(1 − λ)
[
pA2,Aθ

A
2 + pA2,B(θB2 − θ1)

]
,

max
pB

2,B ,p
B
2,A

α(1 − λ)
[
pB2,B(θ̄ − θB2 ) + pB2,A(θ′

1 − θA2 )
]

+ (1 − α)(1 − λ)
[
pB2,B(θ̄ − θB2 ) + pB2,A(θ1 − θA2 )

]
.

Lemma 1.A.2 Combining these two optimization problems and deriving the first
order conditions, we obtain the following prices in the second stage

pA2,A = θ̄

3 + 2
3θ1 + 2

3α(θ′
1 − θ1), pA2,B = θ̄ − 4

3θ1 + 4
3α(θ1 − θ′

1),

pB2,B = θ̄ − 2
3θ1 + 2

3α(θ1 − θ′
1), pB2,A = − θ̄

3 + 4
3θ1 + 4

3α(θ′
1 − θ1).

Note that on the line with consumer mass λ, nothing changes and therefore the
prices correspond to uniform pricing.

On the first stage, the cut-offs are different among the myopic consumers and
strategic consumers, and also depend on whether they decline cookies or not. There-
fore, there are four groups of different consumers. Among the mass of λ consumers
who do not share their information, a mass of αλ are myopic and a mass of (1 − α)λ
are strategic. However, no matter whether they are myopic or strategic, the cut-offs
they face are the same, that is θ′

1 = θ̄
2 + pB

1 −pA
1

2 .42 Similarly, among the mass of 1 − λ

consumers, there are α(1 − λ) myopic consumers facing the cut-off of θ′
1, while a

mass of (1 − α)(1 − λ) are strategic consumers with the cut-off of θ1.
Combining these indifference conditions and the results from Lemma 1.A.2, we

obtain θ′
1 = θ̄

2 + pB
1 −pA

1
2 and θ1 = θ̄

2 − 4α−3
8(1−α)(pB1 − pA1 ). Maximizing the overall profits

in the first period with respect to the first-stage prices, the two firms have the

41The method to derive these cut-offs are identical to the open data environment with strategic
consumers.
42θ′

1 will not be influenced by the prices in the second stage, which is similar to the open data
environment with strategic consumers.
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resulting objective functions

πA = α
[
λpA1 θ

′
1 + (1 − λ)pA1 θ′

1 + λpA2 θ2 + (1 − λ)pA2,AθA2 + (1 − λ)pA2,B(θB2 − θ′
1)
]

+ (1 − α)
[
λpA1 θ

′
1 + (1 − λ)pA1 θ1 + λpA2 θ2 + (1 − λ)pA2,AθA2 + (1 − λ)pA2,B(θB2 − θ1)

]
,

πB = α[λpB1 (θ̄ − θ′
1) + (1 − λ)pB1 (θ̄ − θ′

1) + λpB2 (θ̄ − θ2) + (1 − λ)pB2,B(θ̄ − θB2 )

+ (1 − λ)pB2,A(θ′
1 − θA2 )] + (1 − α)

[
λpB1 (θ̄ − θ′

1) + (1 − λ)pB1 (θ̄ − θ1) + λpB2 (θ̄ − θ2)

+ (1 − λ)pB2,B(θ̄ − θB2 ) + (1 − λ)pB2,A(θ1 − θA2 )
]
.

Corollary 1.A.2 Substituting the respective prices into the system of equations given
by the first-order conditions, we derive the final results for the first- and second-stage
prices:

pA1 = pB1 = 4
3 + λ

θ̄, pA2,A = pB2,B = 2
3 θ̄,

pA2,B = pB2,A = 1
3 θ̄, pA2 = pB2 = θ̄.

Everyone chooses to give cookies, therefore the optimal λ is 0 and the resulting prices
are identical to the open data environment with strategic consumers.

The result above is a robustness check, showing that being strategic or myopic in
the first period purchase does not affect any decisions. Consumers choose to grant
firms access to their cookies, in order to benefit from competition; while firms use
standard behavior-based price discrimination to maximize their profits. Moreover,
the strategic cookie choice is sufficient to yield identical results including first period
prices. This is not the case in standard behavior-based pricing models without the
cookie stage.

Open Data Environment with Quadratic Transportation Costs

In this variation of the model, the utility for a consumer located at θ is either
v − pi − θ2 if buying from firm A, or v − pj − (θ̄ − θ)2 if buying from firm B.
As in the standard model, we employ backward induction and finally find that
pA1 = pB1 = 4

3+λ θ̄
2, and θ1 = 1

2 θ̄, p
A
2,A = pB2,B = 2

3 θ̄
2, pA2,B = pB2,A = 1

3 θ̄
2. If the cost

is quadratic in the standard behavior-based pricing model, prices in the first stage
are pA1 = pB1 = 4

3 θ̄
2, and the uniform pricing strategy is pA1 = pB1 = θ̄2. Prices reflect

quadratic transportation costs. Thus, each buyer reveals their cookies, λ = 0, in
order to get the lower price in the second stage and thus all the results in the open
data environment hold with quadratic transportation costs.
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Proof of Lemma 1.2

When maximizing the profit functions of the second stage, we get the following
expressions for the first-order conditions:

∂πA2
∂pA2

= λ

2 (pB2 − 2pA2 + θ̄) + (1 − λ)
2 (pB2,B − 2pA2 + θ̄) − (1 − λ)θ̄ = 0,

∂πA2
∂pA2,A

= (1 − λ)
2 (pB2 − 2pA2,A + θ̄) = 0,

∂πB2
∂pB2

= λ

2 (−2pB2 + pA2 + θ̄) + (1 − λ)
2 (−2pB2 + pA2,A − θ̄ + 2θ1) = 0,

∂πB2
∂pB2,B

= (1 − λ)
2 (−2pB2,B + pA2 + θ̄) = 0.

This gives a system of equations, where prices are dependent on each other and need
to be substituted into each other in order to receive the final set of prices of the
second period that are only depending on λ, pA1 and pB1 :

pA2,A(pB2 ) = θ̄ + pB2
2 ,

pA2 (pB2 ) = (3 − λ)θ̄ + 2λ · pB2 − 4(1 − λ)θ1
3 + λ

,

pB2,B(pA2 ) = θ̄ + pA2
2 ,

pB2 (pA2 ) = −(1 − 3λ)θ̄ + 2λ · pA2 + 4(1 − λ)θ1
3 + λ

.

Please note that unlike Lemma 1.1, we do not need to consider the corner solution
here. In the open data environment, the poaching price from one firm may be zero,
but in the exclusive data environment, firms cannot poach and use the new customer
price instead. For any firm i, setting the price pi2 at zero is a weakly dominated
strategy since its marginal cost is just zero. However, when the information is
exclusive, the new customer price is also applied to those who hide their cookies.
Considering the firm i again, if the new customer price from another firm pj2 is not
zero, they always have an incentive to set the price above zero in order to get some
profits from those who hide their cookies, which will make them strictly better off
than choosing the corner solution. Thus, we do not consider the corner solution in
the exclusive data environment. All the equations above can easily derive the results
in Lemma 1.2.
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Proof of Proposition 1.3

In the case where all consumers hide their information, the counterfactual of con-
sumers who disclose information is governed by off-path beliefs. Suppose, without loss
of generality, a single (atom-less) consumer who bought from A in period 1 deviates
by disclosing information. The price setting of firm B remains unchanged, since B
cannot target the deviating consumer and the impact on the price is negligible. This
consumer who identifies towards A can only be located on [0, θ1] and will receive a
price from firm A to make him indifferent between buying from firm A and firm B.
Thus, the utility ũ(θ) of a consumer of type θ who deviates is:

ũ(θ)43 =


v − 2θ̄ + θ if θ ≤ θ̄

2

v − θ̄ − θ if θ ≥ θ̄

2 .

From the firm’s side, their belief about who may deviate depends on the utilities
that the consumer get with and without deviating. By Proposition 1.3 and the
utility with deviation ũ(θ) derived above, we check different scenarios separately:
when 0 ≤ θ < θ̄

2 , the utility of a consumer of type θ without deviation is v − θ̄ − θ,
which is strictly larger than the utility ũ(θ) if they deviate, that is v − 2θ̄+ θ. When
θ̄
2 < θ ≤ θ̄, the utility of a consumer of type θ without deviation is v − θ̄ − (θ̄ − θ),
which is strictly larger than the utility ũ(θ) if they deviate, that is v − θ̄ + θ. Only
when θ = θ̄

2 , the utility of a consumer of type θ does not change with or without the
deviation, as shown in Figure 1.A.6 at hands of the total costs v − ũ(θ).

0 1

2
θ̄

θ̄

2θ̄

3

2
θ̄

θ̄

Potential deviator

Figure 1.A.6: Total costs in equilibrium (solid) and for individual deviators (dotted).

Corollary 1.A.3 If firms observe any deviation from consumers, they form the
off-path belief that it is the consumer located at θ̄

2 and set the off-path price θ̄ as a
best response.

43Please note the firm that the deviating consumer did not buy from in the first stage sets the price
at θ̄ and this consumer is indifferent between buying from either firm.
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Since only the consumer in the center of the line gets the same utility from deviating,
firms’ best response is to set the uniform price θ̄. However, consumers do not benefit
from the deviation, since the utility does not change. Therefore, the proof is complete.

Proof of Proposition 1.4

In this section, we look at the exclusive data environment, where similar arguments
compared to the proof of Proposition 1.2 are applied to prove that there is no
separating equilibrium in pure strategies. To do so we first expand Lemma 1.A.1 to
the case of exclusive data.

Lemma 1.A.3 If there exists a separating equilibrium for a line with multiple seg-
ments under exclusive data, there is no poaching behavior in the lateral segments.

θ′0 θ̄

give hide give

first-period cut-off

Figure 1.A.7: Line with multiple segments in case (i).

Proof. Let’s take Figure 1.A.7 as an example where the first-period cut-off divides a
“hide” segment. Assume towards a contradiction that there exists poaching behavior
in the left segment. This means that consumers to the left of θ′ buy from firm B
at pB2 and to the right of θ′ buy from firm A at pA2 . The consumer located at θ′ is
indifferent between accepting and declining cookies. The cost of each option should
be the same for this indifferent consumer, i.e., pB2 + (θ̄ − θ′) = pA2 + θ′. However,
consumers located to the left of θ′ who buy from firm B at pB2 , have an incentive to
deviate. By deviating to hide cookies, the total cost of buying from firm A would be
strictly smaller than the cost before.44 The same method can be applied to the case
when the first-period cut-off divides the “give” segment, which together shows that
if there is poaching behavior in the lateral segments, consumers have an incentive to
deviate, such that a separating equilibrium in pure strategies cannot exist.

From Lemma 1.A.3 we can generally infer that in a separating equilibrium firms
give up their option to price discriminate since the cut-offs between lateral segments
the following must hold: pi2 = pi2,i, ∀i = A,B. Based on Lemma 1.A.3, we show the
non-existence of a separating equilibrium in pure strategies under exclusive data.

Similar to the previous proof of Proposition 1.2, we distinguish between two
cases: (i) when the first-period cut-off divides a “hide” segment, and (ii) when the
44Assume that they are located at θ′′ with θ′′ < θ′. Since they buy from Firm B at pB

2 , the initial
costs are pB

2 + (θ̄ − θ′′), which is strictly larger than pB
2 + (θ̄ − θ′). By deviating to hide their data,

the total costs would be pA
2 + θ′′, which is strictly smaller than pA

2 + θ′. Combining together we can
get that pA

2 + θ′′ < pA
2 + θ′ = pB

2 + (θ̄− θ′) < pB
2 + (θ̄− θ′′), which shows the benefit from deviation.
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first-period cut-off divides a “give” segment. Combining with the number of the
segments along the line, we need to, again, check four possible scenarios separately.

Let’s first consider case (i) with multiple segments. As mentioned in Figure 1.A.7,
we assume towards a contradiction that there is a separating equilibrium with pure
strategies. In order for such a separating equilibrium to exist Lemma 1.A.3 must hold
and poaching behavior in lateral segments is excluded, which means that firms cannot
poach with their new customer prices in “give” segments. Again, this implies that
firms give up the option to price discriminate in pure-strategy separating equilibria,
which is directly shown from pi2 = pi2,i. Yet, it is obvious that firms have an incentive
to price discriminate on consumers who share their cookies. By increasing their
loyalty prices when consumers are segmented as in the figure above, firms gain by
giving up less rent to the consumers. This is a direct contradiction to the existence
of a possible separating equilibrium.

0 θ̄

give hide

first-period cut-off

Figure 1.A.8: Line with two segments in case (i).

Then we look at the scenario with just two segments in case (i). If there exists
such a separating equilibrium as in Figure 1.A.8, from Lemma 1.A.3 we find no
poaching behavior in the “give” segment. Moreover, based on the customer indifferent
between hiding and accepting cookies, we have pA2,A = pA2 . Please note that under
such circumstances the firms again give up price discrimination. However, firm A has
an incentive to raise the loyalty price pA2,A. By doing so, they get more profit from
loyal customers and not affect the profit from anonymous customers. Therefore, this
structure is not possible and we can conclude that there is no separating equilibrium
in pure strategies in case (i).

0 θ̄

hide give hide

first-period cut-off

Figure 1.A.9: Line with multiple segments in case (ii).

In case (ii) when the first-period cut-off divides a “give” segment, let’s first look at
the scenario with multiple segments along the line. In Figure 1.A.9, by Lemma 1.A.3
we know that there is no poaching behavior in the lateral segments. This means that
pA2,A = pA2 and pB2,B = pB2 , and firms give up their option to price discriminate in the
lateral segments. Now, we focus on the central “give” segment. To the left of the
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first-period cut-off, all consumers face pA2,A from firm A and pB2 from firm B. Similarly,
to the right of this cut-off, all consumers choose between pA2 from firm A and pB2,B
from firm B. Given the fact that pA2,A = pA2 and pB2,B = pB2 , the second-period cut-offs
in these two intervals coincide, which means that θA2 = θB2 . Considering the location
of θA2 and θB2 , there are three possibilities: to the left of the first-period cut-off, to
the right of the first-period cut-off, and coinciding with the first-period cut-off.45

If θA2 and θB2 are to the left of the first-period cut-off, no consumers located to the
right of the first-period cut-off buy from firm A at pA2 . However, in such a condition,
firm A has an incentive to raise pA2 in order to get more profit. Thus, we can rule out
this possibility. Similarly, if θA2 and θB2 are to the right of the first-period cut-off, no
consumers located to the left of the first-period cut-off will buy from firm B at pB2
and firm B would like to increase their new customer price. Therefore, this possibility
is also excluded. Finally, if θA2 and θB2 coincide with the first-period cut-off, no
customers in the central “give” segment buy from firm A at pA2 or from firm B at pB2 .
Under such circumstances, both firm A and firm B have an incentive to raise their
new customer prices and they benefit from this deviation. Overall, we have shown
that no separating equilibrium exists in this scenario.

θ′0 θ̄

hide give

first-period cut-off

Figure 1.A.10: Line with two segments in case (ii).

Finally, we check the scenario with just two segments when the first-period
cut-off divides the “give” segment. Firstly, in the “give” segment, there should be
some consumers buying from firm A at pA2,A and some buying from firm B at pB2,B.
Otherwise, since pA2,A and pB2,B are exclusively set in this segment, either pA2,A or
pB2,B should be zero and some outside consumers will deviate to this interval. Then,
similar to Lemma 1.A.3, we can easily show that there is no poaching behavior in the
“hide” segment and pA2 = pA2,A. Under such circumstances, there are two groups of
consumers buying from firm A at pA2 on this line: those who choose to decline cookies
and those who accept cookies and buy from firm B in the first stage. Apparently, due
to the higher transportation cost, the second group of consumers has an incentive to
deviate. They would choose to hide cookies in the first stage, and the structure of
this separating equilibrium collapses accordingly. As a summary, we can conclude
that no separating equilibrium in pure strategies exists in case (ii). This completes
the proof.

45Please note that θA
2 and θB

2 do not need to be within the central “give” segment. All results hold
even if they are not within the central “give” segment.
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1.B Appendix B: Experiment
Instructions for the Market Game - Exclusive Data [Open Data]46

A market
Participants take the role of buyers or sellers and are active in a market with eight
locations. Two sellers sell the same good and are located on either end of the market.
Six buyers are located between the two sellers according to the following graphical
depiction:

Seller

Location 1

Buyer

Location 2

Buyer

Location 3

Buyer

Location 4

Buyer

Location 5

Buyer

Location 6

Buyer

Location 7

Seller

Location 8

Buyers buy exactly one good in each of the two periods. Sellers choose prices p
at the beginning of each period. Prices must be integers between 0 and 10. Buyers
pay the price of a good and transportation costs t according to their distance to
the respective seller. Buyers pay transportation costs of one unit per field and have
to move to the sellers’ location. Buyers receive earnings according to the following
earnings function:

Earnings = 15 − p− t

At the beginning of the first period, sellers choose an introduction price. Buyers
choose one seller and decide whether to allow cookies. At the beginning of the second
period, sellers choose three prices: a loyalty price[, a poaching price] and a new
customer price. The profit of sellers in a market corresponds to the sold number of
goods multiplied with their respective price according to the following profit function:

Profit = p · n

The following table depicts which buyer sees which price of the two sellers in the
second period, according to their initial purchasing decision and cookie choice.

Chosen seller
in first period

Allow use
of cookies

Price of
seller 1

Price of
seller 2

Seller 1 allow Loyalty price New customer price
Seller 1 don’t allow New customer price New customer price
Seller 2 allow New customer price Loyalty price
Seller 2 don’t allow New customer price New customer price

[Differences in the open data treatment underlined.]

46Here you find translated versions of the instrutions for the experiment. Original instructions are in
German and can be made available upon request. Note that transportation costs in the instructions
are denoted by t which corresponds to θ in the main body.
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Chosen seller
in first period

Allow use
of cookies

Price of
seller 1

Price of
seller 2

Seller 1 allow Loyalty price Poaching price
Seller 1 don’t allow New customer price New customer price
Seller 2 allow Poaching price Loyalty price
Seller 2 don’t allow New customer price New customer price

Procedure
At the beginning of the experiment each participant is assigned a role, which remains
fixed for the remainder of the experiment of 20 rounds in total. In each round there
are two markets with two sellers each. Six buyers are active in both markets, while
sellers are active in one of the markets. Within one round locations of buyers and
sellers are fixed. Each round buyers are assigned random new locations in both
markets. Sellers are randomly assigned to one market with a random location at
either end of the market in each round.

The Game of 22

The iterative thinking task is a variation of the “Game of 21” (Dufwenberg et al.,
2010, Gneezy et al., 2010). In our version, players take turns increasing a counter
that starts at 0 by increments of 1, 2 or 3. The game ends when either of two players
reaches 22, where the player who picks 22 loses. Thereby, the game stays true to
the original variation, where the player who picks 21 wins the game directly. The
winning path constitutes of picking any number that is a multiple of three. Instead of
using an interactive game between two subjects, as intended in the original variation,
we let each subject play against the computer. This is necessary in order to gather a
measure on correct iterative reasoning for every subject.47 Subjects learn that they
play against the computer, without any detailed explanation on how the computer
chooses. Unknown to the players, the computer avoids winning, while randomizing
between the two or three available options48. This is necessary so that we can capture
the exact turn in which participants realized how to win the game.

Instructions for the Game of 2249

The rules of the game are as follows: This is a two-player game in which players
increase a counter. This counter starts at zero and ends at 22 and must be moved
each turn by one, two or three steps, with players acting sequentially. You will play
this game against the computer and you are the first to move. The player who

47If two players interact and one plays the optimal strategy, no conclusions can be drawn concerning
the other player.
48Whenever the player is on the winning path, the computer randomizes between all three options,

while only randomizing between the two options which avoid the winning path, whenever the player
is not on the winning path.
49Instructions are originally in German and presented on screen.
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reaches 22 loses. If the computer loses the game, you will earn EUR 2, while you
will earn EUR 0 if you lose.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 1.B.1: Representation of the Game of 22.

Results of the Game of 22

Figure 1.B.4 shows the distribution of scores in the Game of 22. The score represents
the number of consecutive turns on the winning path before the game ended. Our
findings are in line with Dufwenberg et al. (2010) where the majority of subjects are
able to solve two steps of backward induction (mean: 2.01, median: 2, mode: 2 ). In
contrast to their results, our subjects did not show an ability to immediately solve
the game, with barely anyone solving the full six steps of induction. Overall, the
results suggest that the game is suitable as a rough measure of iterative thinking
capability and we cannot detect any differences between our treatments, χ2(6, N =
80) = 0.8359, p = 0.991.

Privacy Concern Survey (IUIPC Score)50

All statements are rated by the subjects on a seven-point scale from “strongly agree”
to “strongly disagree”. The first three statements relate to control issues, statements
four to six relate to awareness and the remaining four statemtents relate to collection
issues.

1) Consumer online privacy is really a matter of consumers’ right to exercise
control and autonomy over decisions about how their information is collected,
used, and shared.

2) Consumer control of personal information lies at the heart of consumer privacy.

3) I believe that online privacy is invaded when control is lost or unwillingly
reduced as a result of a marketing transaction.

4) Companies seeking information online should disclose the way the data are
collected, processed, and used.

5) A good consumer online privacy policy should have a clear and conspicuous
disclosure.

6) It is very important to me that I am aware and knowledgeable about how my
personal information will be used.

7) It usually bothers me when online companies ask me for personal information.
50Original questions of Malhotra et al. (2004) were translated into German.
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8) When online companies ask me for personal information, I sometimes think
twice before providing it.

9) It bothers me to give personal information to so many online companies.

10) I’m concerned that online companies are collecting too much personal informa-
tion about me.
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The Role of Privacy Concern

In this section, we take a deeper look into our control measure of privacy concern
and how it relates to information disclosure. Our observed IUIPC-scores are depicted
in Figure 1.B.5. The distributions do not show treatment differences, t(158) =
1.4147, p = 0.1591. However, there is a tendency towards high privacy concern among
our subjects. Going forward, we classify our subjects into three groups, using the
median (0.2014) as an initial breaking point and 1-median (1 − 0.2014 = 0.7986)
as the second breaking point. We classify a score below the median as “privacy
concerned”, a score between the median and 1-median as “privacy considerate”, and
a score above 1-median as “privacy unconcerned”. By nature of this classification,
half of our subjects fall into the first category of concerned, while surprisingly not a
single subject falls into the last category of unconcerned. Thus, the remaining half
of the subjects are “considerates”.51
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Figure 1.B.2: Share of tracking allowed over periods by Treatment and privacy concern.

In Figure 1.B.2, we show the average rate of information disclosure over period
by treatment and privacy concern classification. There are two major observations
here. In the open data treatment, “concerned” and “considerate” buyers have a
similar sharing rate. In the exclusive data treatment, “considerate” subjects have a
lower sharing rate than “concerned” subjects, which relates to the privacy paradox.52

Moreover, we find that the initially large sharing rate in the exclusive data treatment
is largely driven by “concerned” subjects.

Beresford et al. (2012) and Preibusch et al. (2013) find that subjects did not act
according to their stated privacy preferences when faced with a market environment.
This is also reflected in Figure 1.B.2, where more concerned participants are actually
sharing more information. However, for both privacy concerned and considerate buy-
51Among the considerates, we also observe a tendency leaning towards privacy concern. Moreover,
irrespective of the final score all subjects expressed concern at least once within the 10 item
questionnaire.
52Acquisti et al. (2016) and Dinev and Hart (2006) explain the paradox with a privacy calculus
model, which describes a mental negotiation of benefits versus concerns from disclosing information
in an e-commerce setting.
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ers we see a drop in information sharing over periods, where particularly considerate
buyers in the exclusive data treatment drop below the sharing rates of the remaining
three groups in the last ten rounds.
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Figure 1.B.3: Share of tracking allowed per location by Treatment and privacy concern.

Next, we investigate whether similar discrepancies are present in the locational
information disclosure between privacy types. In Figure 1.B.3, we show how in-
formation disclosure depends on consumers’ locations under classification between
privacy types. This ties in directly with our theoretical analysis which largely relies
on the pooling assumption in the construction of equilibria. Again, we differentiate
between “concerned” and “considerate” consumers. Figure 1.B.3 depicts that there is
no locational preference for information disclosure in case of “concerned” consumers
for both treatments. However, “considerate” consumers share less information than
“concerned” consumers in the exclusive data treatment. This is true for all locations
and is considerably balanced.

The time trend did not reveal an impact of privacy concern on information
disclosure in the open data treatment, but we find an impact of location in the
case of considerate consumers. Considerate subjects in the open data treatment
are less likely to share information at the “far” location than concerned subjects,
χ2(2, N = 670) = 7.50, p < 0.03. In comparison to concerned consumers we find that
considerate consumers share slightly more information in close and mid locations
and less information in the far location.53 These counteracting effects cancel each
other out, so that the average disclosure rate of considerate consumers is similar to
the disclosure rate of concerned consumers. While we cannot explain this behavior
on theoretical grounds, we can suggest that considerate consumers are more involved
when it comes to disclosure of private information and both data environments (open
and exclusive data) and the individual preferences (where preferences are described
by location) are factored into the decision. Overall, this extends our evidence towards

53These deviations relate to Lemma 1.A.1 in that the most probable deviations are suspected in
the central locations. The according response by sellers is setting the loyalty price equal to the new
customer price. This corresponds to the pricing observations we have shown earlier.
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Hypothesis 3. That is, we observe less information sharing in the exclusive data
treatment, which is mainly driven by privacy “considerate”, i.e. less concerned
subjects. This is akin to the commonly observed privacy paradox. Those who express
more concern about privacy issues are not consistently acting on it.

In Table 1.B.3, we include a Considerate dummy, as well as an interaction of
Considerate with the treatment and second-half dummies. The main effects that
we have shown in Table 1.8 still hold when allowing for this richer interaction
with privacy concern. Moreover, we can confirm the results we discussed before.
Considerates share less information in the exclusive treatment overall, whereas this
effect is weakened in the far location. Considerates share less information in the far
location in the open data treatment.
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Additional Figures and Tables
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Figure 1.B.4: Game of 22 scores by Treatment.
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Figure 1.B.5: IUIPC scores by Treatment.
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Figure 1.B.6: Observed and predicted prices in the open data treatment.
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Figure 1.B.7: Observed and predicted prices in the exclusive data treatment.
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Location
2 3 4 5 6 7 Total

Open data treatment
Purchasing order (b1, b2)
(A,A) 92.50% 83.12% 43.12% 5.62% 1.88% 0.31% 37.76%
(A,B) 3.12% 9.06% 25.94% 20.94% 7.50% 0.94% 11.25%
(B,A) 2.81% 5.62% 23.12% 29.38% 1.88% 0.31% 11.93%
(B,B) 1.56% 2.19% 7.81% 44.06% 83.44% 95.31% 39.06%
Information disclosure 67.50% 69.38% 62.81% 61.88% 70.00% 71.56% 67.19%

Exclusive data treatment
Purchasing order (b1, b2)
(A,A) 96.25% 89.38% 57.50% 10.31% 0.94% 0.62% 42.50%
(A,B) 2.19% 3.75% 18.75% 18.12% 7.19% 2.50% 8.75%
(B,A) 1.56% 5.31% 14.69% 15.31% 3.44% 1.56% 6.98%
(B,B) 0.00% 1.56% 9.06% 56.25% 88.44% 95.31% 41.77%
Information disclosure 60.94% 62.19% 69.38% 67.19% 65.31% 67.19% 65.36%
Seller A is located at location 1, seller B is located at location 8, just outside the depicted locations.
(b1, b2) is the purchase order, where b1 ∈ {A,B} is the first period purchase and b2 ∈ {A,B} is the
second period purchase.

Table 1.B.1: Share of purchasing orders and information disclosure by treatment and location.

Bought from far seller in period 1
at same total costs ∈ {0, 1}

(1) (2) (3) (4)

Exclusive -1.168∗∗∗ -1.194∗∗∗ -1.192∗∗∗ -1.198∗∗∗

(0.408) (0.398) (0.407) (0.397)
Tracking 0.404 0.489

(0.342) (0.361)
Second half 0.226 0.177

(0.292) (0.299)
Market No Yes No Yes
Location No Yes No Yes
Demographics No Yes No Yes
Privacy concern No Yes No Yes
Iterative thinking No Yes No Yes

Observations 310 297 310 297
Standard errors in parentheses. Estimation by multilevel mixed-effects
logistic regression with hierarchical clustering on group and subject
level. *, ** and *** denote significance at the 10 %, 5 % and 1 % level,
respectively.

Table 1.B.2: Impact of treatment, tracking and learning on purchasing decision when total costs are
equal.
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Chapter 2

Adoption of Teamwork in
Knowledge-intensive Production
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2.1 Introduction54

Over the past decades, teamwork has become an integral part of work processes in
organizations. Lawler et al. (2001) show that the share in Fortune 1,000 firms with
more than 20 % of their employees in teams rose from 37 % in 1987 to 66 % in 1996.
More recently, in a global survey among leaders of organizations, 31 % of the surveyed
reported that most of the work in their organization is done in teams (Deloitte, 2019).
One explanation why teamwork plays such a crucial role in organizations is that it
can improve the productivity of workers (Hamilton et al., 2003) by combining workers’
complementary skills (Lazear and Shaw, 2007). Therefore, workers’ knowledge and
skills become more important with teamwork. The importance of their knowledge for
organizations is also highlighted by the increased implementation of human resource
practices such as multi-tasking, job rotation and hiring highly-skilled workers (Caroli
and Van Reenen, 2001, Ichniowski et al., 1997).

Empirical studies show that teamwork is favorable in complex production en-
vironments, i.e., knowledge is important (Boning et al., 2007, Cooper and Kagel,
2005). Furthermore, team performance in complex production environments can be
improved by endowing teams with decision-making authority (Cordery et al., 2010,
Haas, 2010, Rousseau and Aubé, 2010). Such self-managed teams can often decide
on performance goals, task assignment and schedules, as well as team composition
(Hollenbeck et al., 2012, Magpili and Pazos, 2018).

The purpose of this chapter is to help understand under which conditions orga-
nizations engaged in knowledge-intensive production adopt teamwork. Absent any
incentive issues, we study the coordination problems of an organization presented
with the choice to implement teamwork from a theoretical point of view. Furthermore,
we help understand when an organizational designer implements self-managed teams.

We develop a model of a knowledge-intensive organization where production
takes place in form of problem solving. Workers are endowed with knowledge
profiles determining their ability to solve problems. We assume that problem types,
which we define as the knowledge needed to solve a problem, are unknown ex ante.
An organizational designer hires workers based on their knowledge profiles and
decides on the organizational structure, i.e., how much time workers spend producing
individually and in teams. When they work individually they can only rely on their
own knowledge to solve a problem. Workers in teams can communicate and help each
other by exchanging knowledge. Therefore, as a team, workers can use each others’
knowledge to solve problems. We assume that knowledge transfer is not perfect.

There are different explanations for why knowledge cannot be perfectly transferred.
Nonaka (1994) categorizes knowledge into tacit and explicit knowledge. While explicit
knowledge is tangible and can easily be transferred, tacit knowledge is based on

54This chapter is joined work with Anja Schöttner. We thank participants at the Annual Conference
of the TRR 266 in Mannheim, and LEOH 2019 in Berlin as well as participants in seminars in
Berlin and Munich. I acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Project-ID 403041268-TRR 266.
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learning from experience and is connected to a person. It can, therefore, not be
transferred as easily. An empirical study by Hollenbeck et al. (2004) shows that
some overlap in workers’ skills makes communication more effective. This implies
that agents with similar knowledge profiles can share knowledge more easily. We
take this into account with frictions in knowledge transfer55 that depend on workers’
knowledge profiles. For the organizational designer there is a three-way trade-off
between the degree of specialization in knowledge, frictions in knowledge transfer and
the production design. The more overlap there is in workers’ knowledge, the smaller
are the transfer frictions. However, the more similar workers’ knowledge is the less
they can benefit from exchanging knowledge (Hollenbeck et al., 2004). Therefore,
relying on an individual’s knowledge to solve a problem can be better than to work
in a team. Since transferring knowledge is costly, the organizational designer must
assess when it is optimal to work in teams.

We can describe the optimal organization as follows. In terms of knowledge
profiles, we find that under pure individual production, the organizational designer
hires workers with identical knowledge profiles. Optimal knowledge profiles depend
on the degree of problem uncertainty such that a decrease in problem uncertainty
leads to workers being more specialized in the relevant knowledge dimension. Under
pure teamwork, a certain degree of differentiation in workers’ knowledge profiles is
optimal. Workers can benefit from the differentiation because they can learn from
knowledge transfers. However, since we assume that transfer frictions depend on the
degree of specialization, it is optimal when workers’ knowledge profiles span both
dimensions.

In terms of organizational design, we observe that the organization is optimally
either involved in pure teamwork or pure individual work. Pure teamwork is optimal
if knowledge spillovers are sufficiently high. High knowledge spillovers imply that
knowledge transfers between team members go both ways, thus communication is
more effective. When spillovers are below the threshold, individual production is
optimal as communication between workers is not worthwhile. Given that pure
teamwork is optimal and problem types are uncertain, the organizational designer
directs the communication within the team and decides which problem workers
talk about. Thus, the team is management-led. Generally, the designer decides
that the worker whose knowledge is more likely to be relevant learns from their
co-worker. However, when spillovers are perfect or problem types are equally likely,
i.e., problem uncertainty is very high, the organizational designer gives the team
decision-making authority over the communication process. That means, the team
members themselves can decide which problem they talk about. We refer to this
as a self-managed team. Self-managed teams are weakly optimal in our model and
arise endogenously. We can also determine the optimal organizational design in
terms of the interaction between problem uncertainty and spillovers. The expected

55We refer to these as transfer frictions.
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output from teamwork is linearly increasing in a lower problem uncertainty, whereas
the expected output from individual production is convexly increasing in a lower
problem uncertainty. We find that when spillovers are sufficiently high, teamwork is
optimal for a sufficiently high problem uncertainty. When spillovers are only at an
intermediate level, teamwork is optimal only for an intermediate problem uncertainty
but not for a high problem uncertainty. Under teamwork some of the marginal cost
from an increased uncertainty can be compensated with higher knowledge spillovers.
Higher knowledge spillovers imply that even the worker who is not working on their
own problem but helping their co-worker has a higher likelihood of solving their own
problem.

2.1.1 Related Literature

This chapter is related to the literature on team theory that focuses on coordina-
tion, communication and specialization of workers in organizations. Bolton and
Dewatripont (1994) depict the organization of firms as a communication network
of workers who process a steady flow of information. Workers’ specialization can
increase productivity. However, more specialization needs more communication
within the organization. Therefore, efficient networks are centralized and pyramidal
to avoid duplication of communication. Becker and Murphy (1992) study a similar
trade-off. Workers can increase productivity by focusing on different tasks, however,
coordinating specialized workers is costly. Thus, specialization is limited by coor-
dination costs. Common to both articles is the idea that workers need to combine
their tasks or information to produce an output, thus, they engage in teamwork.
In an empirical study, Hamilton et al. (2003) demonstrate that the introduction of
teamwork in a garment factory increased productivity by 14 % and explain the result
with the use of complementary skills in teams.

Becker and Murphy (1992) as well asBolton and Dewatripont (1994) both recognize
costs of communication and coordination as limits to specialization. In a more recent
article by Dessein and Santos (2006), the authors study the effect of improvements
in modern communication technology on workers’ specialization. The above articles
predict that improving communication leads to more specialization. Dessein and
Santos (2006), however, take into account that organizations can also choose the
degree to which they adapt to local information. Adaptive organizations reduce
coordination costs by limiting specialization. Therefore, improving communication
on the one hand favors adaptive organizations and reduces specialization, but on the
other hand it reduces the cost of coordinating and leads to more specialization. The
former effect can also account for the observed transformation in organizations towards
more teamwork, multi-tasking and empowering employees (Caroli and Van Reenen,
2001).

Garicano (2000) takes a different perspective on the organization of production
in an organization. He views knowledge as the central ingredient to production
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and identifies acquisition, communication and use of knowledge as the coordination
problems that arise in organizations. The coordination problems emerge because
knowledge is dispersed among workers who face a time constraint. In his model,
an organization optimally takes the form of a knowledge-based hierarchy. That is,
workers on the production floor try to solve problems and ask managers in the next
layer for help if they cannot solve a problem. Agents in each hierarchy layer have
the same knowledge and knowledge is ranked by complexity.

This chapter is part of the literature on team theory as we also focus on coordi-
nation problems in organizations that arise from specialization and communication.
However, we focus on the coordination problems connected to choosing between
teamwork or individual production. We look at communication in terms of helping
team members and specialization in terms of knowledge acquisition as in Garicano
(2000).

There is a vast literature that studies teamwork and team incentives. Holmstrom
and Milgrom (1990) investigate under which conditions a principal wants to compen-
sate agents as team. They find that even when two agents perform technologically
independent tasks, team compensation can be optimal. It is optimal when agents
are risk averse and face negatively correlated risks. If risks are interdependent each
agent’s output signal contains information about the other agent as well. According
to the informativeness principle this information should be used in compensation
schemes to reduce the risk premium paid to the agents. Itoh (1992) researches in a
similar vein. He asks under which conditions a principal wants to induce cooperation
among groups of agents. In his model, there are two agents who each exert effort in
the same two tasks. This way the agents can act as team. He shows that if agents
are compensated as a team the principal benefits from side-contracting of agents.
Due to the agents monitoring activity, the principal can induce the same effort levels
while paying a lower risk premium. Che and Yoo (2001) study the effect of repeated
interaction on incentives for teams. They find that repeated interaction between
agents leads to peer pressure with a feasible punishment strategy. That way implicit
incentives for agents increase and the principal can reduce explicit incentives. All
these articles offer incentive-driven explanations for when organizations implement
teamwork. In this chapter, we offer an explanation based on an organization’s
coordination problems.

Researchers in the management and organization literature realized the impor-
tance of SMTs and investigated research questions such as: How can managers
effectively implement SMTs? What makes SMTs successful (Elmuti, 1997, Langfred,
2007, Magpili and Pazos, 2018, Wageman, 1997, 2001)? Despite the high practical
relevance of SMTs, the economic perspective on SMTs is still underdeveloped. Kräkel
(2017) looks at SMTs that have authority to decide on team composition. In his
model, workers decide whether they want to work in a homogeneous or heterogeneous
team. Since workers have better information about which match is efficient, the
firm delegates the decision to make use of the decentralized information. However,
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workers can use this authority to engage in mismatching in order to influence the
incentive pay. Adrian and Möller (2020) focus on incentives for self-managed teams
and research the effect of pay dispersion on the performance of self-managed teams.
The authors show that pay dispersion has a positive effect on team effort, but a
negative effect on information sharing within the team. Hence, the optimal incentives
for information sharing are diametrically opposed to the optimal incentives for effort
exertion. The economic literature on SMTs focuses on incentive problems. We
contribute to this literature by helping to understand under which conditions an
organization chooses to implement SMTs without taking the effects of incentives into
account.

This chapter is organized as follows: In Section 2.2, we develop the model set-up.
After that, in Section 2.3, we analyze the model with respect to workers’ knowledge
profiles and organizational design. Section 2.4 presents an extension of the baseline
model. Finally, Section 2.5 discusses and summarizes the results.

2.2 Model
In this section, we first explain the basic assumptions and set-up of the model.
Afterwards we focus on the setting of pure individual production and pure team
production, respectively.

2.2.1 Basic Set-up

We analyze the optimal design of an organization with two workers, A and B. The
workers produce by solving problems. Worker A and worker B each have one unit of
time to try and solve a problem that they draw from a commonly known distribution.
A problem that is successfully solved gives the organization an output of one. An
unsolved problem yields an output of zero. Since we do not consider contracting in
this setting, the wage for workers is normalized to zero.

Workers need to have knowledge in order to solve problems. Knowledge has two
dimensions, dimension 1 and dimension 2. Worker A’s and worker B’s knowledge
profiles are denoted a = (a1, a2) and b = (b1, b2), respectively. Thus, a worker’s
knowledge in dimension 1 and 2 is represented by i1 and i2, respectively, for i = a, b.
Knowledge is non-negative, i1, i2 ≥ 0. We assume that a worker’s knowledge profile
corresponds to one specific point on a “quarter” circle with radius one in a two-
dimensional space reflecting the knowledge dimensions, i.e., i21+i22 = 1 (cf. Figure 2.1).
Hence, we can express workers’ knowledge in dimension 2 in terms of dimension 1,
since i2 =

√
1 − i21. We drop subscripts whenever this is possible without causing

confusion and write a1 = a and b1 = b. The organizational designer chooses knowledge
profiles by hiring workers with the respective knowledge. All knowledge profiles
with i21 + i22 = 1 and i1, i2 ≥ 0 are available on the labor market. Without loss of
generality, we assume that a ≥ b, such that worker A is weakly more knowledgeable
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Dimension 1

Dimension 2

p = (0, 1)

p = (1, 0)

(a1, a2)

(b1, b2)

Figure 2.1: Problem types and exemplary knowledge profiles for A and B

in dimension 1 than worker B, whereas worker B is weakly more knowledgeable in
dimension 2.

A problem is characterized by the combination of knowledge that is required to
solve it with certainty, i.e., p = (p1, p2), with p1, p2 ≥ 0 and p2

1 + p2
2 = 1. Dimension 1

of a problem, p1, is the realization of a random variable that is distributed according
to the cdf H(·), and p2 is given by p2 =

√
1 − p2

1. We call p the problem’s type
and assume that p is not observable. This assumption indicates that problems are
novel, non-routine issues. It is unclear how they can be solved and what knowledge
is required to solve them until a solution is found. This also implies that it is not
sensible to let workers switch their problems, since they do not know ex ante what
knowledge they need in order to solve it. In the baseline model, we restrict our
attention to two different problems that workers can encounter. Either a problem is
of type p = (1, 0) or of type p = (0, 1).56 Accordingly, for each given problem, one
can find a solution by applying only knowledge from one of the dimensions. However,
which dimension is crucial to solve a problem is only revealed when a solution is
found. The probability function of the problem types is given by Pr[p1 = 1] = r

and Pr[p1 = 0] = 1 − r with r ∈ [0, 1]. Without loss of generality, we assume r ≥ 1
2 ,

i.e., problems requiring knowledge in dimension 1 are relatively more likely to occur.
Figure 2.1 illustrates our assumptions on knowledge profiles and problem types
graphically. The dashed vectors display possible knowledge profiles of workers A and

56As this chapter is a work in progress, we make this assumption to simplify the analysis for some
first results. In Section 2.4, we extend the model to three different problems.
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B along the unit circle. The light and dark blue vectors give the positioning of the
problems we restrict our attention to in the baseline model of this chapter.

As an example for such a situation, take the setting that Cordery et al. (2010)
study in a field experiment, namely problem solving in wastewater plants. In
simplified terms, the goal of any wastewater plant is to emit water that conforms
to a certain quality standard. This goal can be reached either through biological
or chemical processes. If a worker observes that the water quality is below the
acceptable level, it can either be a problem due to miscalculation of chemicals or due
to an error in the biological process. Only by successfully rectifying the problem,
can the worker find out whether it was a chemical or a biological issue. This reflects
the kind of problems we have in mind for this model: Non-routine tasks that are
solved through trial-and-error.

The organizational designer decides to what extent workers engage in teamwork
or individual work. Particularly, they choose how much time each worker spends
working alone, helping their colleague or learning from their colleague. Let twj denote
the time worker j (j = A,B) spends working individually on a problem, thj denotes
the time worker j helps their colleague with the colleague’s problem, and tlj the time
worker j receives help (learns) from their colleague. The time budget constraint
states that twj + thj + tlj = 1, since each worker has one time unit to solve a problem.

2.2.2 Individual Production

We first describe the problem-solving process for the case of pure individual work, i.e.,
twA = twB = 1. If each worker works only individually on a problem that they drew,
then the problem is solved with probability i1p1 + i2p2 for i = a, b. When we look at
Figure 2.1 this means the larger the angle between, e.g., vectors a and p = (1, 0),
the less likely worker A is to solve this type of problem. A problem p will be solved
with certainty if and only if the worker’s knowledge profile perfectly matches the
problem, i.e., i1 = p1 and i2 = p2. In the opposite extreme, if the worker is fully
specialized in one dimension, say dimension 1 (i.e., a = 1), but the problem requires
maximum knowledge in dimension 2 (i.e., p = (0, 1)), the problem cannot be solved
with pure individual work. Accordingly, under pure individual work worker A’s and
worker B’s expected output as a function of their knowledge is

QA(a) := ra+ (1 − r)
√

1 − a2,

QB(b) := rb+ (1 − r)
√

1 − b2,

respectively. With probability r, a problem that requires specialization in dimension
1 is drawn, i.e., p = (1, 0). Then, only the workers’ knowledge in dimension 1 is
relevant to solve that problem. With probability 1 − r, a problem that requires
specialization in dimension 2, i.e., p = (0, 1), is drawn. Then, only knowledge in
dimension 2 defines the probability of solving that problem.
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2.2.3 Team Production

When workers deal with a problem as a team, still each worker draws a problem,
but they can communicate about how to solve the problems. By communicating,
workers can learn from each other through knowledge transfers. However, they can
only work on one problem at a time. This means that they talk either about A’s or
B’s problem. In the former case, we say that A receives help or learns from B. In
the latter case, the opposite applies. In terms of the organizational designer’s choice
on time allocation, this means thj = tlk, and twj = twk := tw for j, k = A,B and j ̸= k.
Therefore, it suffices to concentrate on the time allocation for tw, thA and tlA.57

We proceed with explaining the problem-solving process under pure teamwork,
i.e., tw = 0 and thus thA + tlA = 1. If the workers talk only about A’s problem, i.e.,
tlA = 1, worker A’s expected output is

QTA(a, b) := ra+ (1 − r)(
√

1 − b2 −K(a, b)).

Similarly, if thA = 1 so that A helps B all the time, worker B’s expected output is
given by

QTB(a, b) := r(a−K(a, b)) + (1 − r)
√

1 − b2.

To understand these functions, consider worker A. If worker A encounters a problem
p = (1, 0), their own knowledge in dimension 1 determines the success probability,
since we assume without loss of generality that A is weakly more knowledgeable
in dimension 1 than B. This determines the first term of A’s expected output.
In contrast, if A encounters a problem p = (0, 1), their colleague’s knowledge in
dimension 2 determines the success probability, since B is weakly more knowledgeable
in dimension 2 than A. However, the knowledge available from B is reduced by a
friction occurring in the knowledge transfer, K(a, b). This defines the second term of
A’s expected output. The same holds for the expected output of worker B.

We assume that knowledge transfers are not perfect and workers with similar
knowledge profiles can share knowledge more easily, as we already discussed in the
introduction (Nonaka, 1994, Hollenbeck et al., 2004, Dessein and Santos, 2006). The
function K(a, b) ≥ 0 describes these frictions in knowledge transfer where K(a, b)
is increasing in the angle between the vectors (a1, a2) and (b1, b2). We assume
that K(·) is a strictly convex function. Moreover, K(a, a) = 0 for all a, i.e., if
workers have identical knowledge profiles and thus there is no scope for knowledge
transfer, there are no frictions either. Additionally, Ka(a, a) = Kb(a, a) = 0 for all
a, i.e., starting from an identical background and then specializing just a little bit
does not entail transfer frictions either. We exclude “de-learning”, meaning that
knowledge transfer will not reduce a worker’s knowledge, that is a−K(a, b) ≥ b and√

1 − b2 − K(a, b) ≥
√

1 − a2 for all a, b with a ≥ b. A function that fulfills all of

57We could eliminate one more time allocation variable by using tw + thA + tlA = 1, but decided to
keep all three variables as we believe this is more instructive.
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these characteristics is

K(a, b) = 1 − ab−
√

1 − a2
√

1 − b2 = 1 − cos(θ),

where θ denotes the angle between the knowledge profiles (a1, a2) and (b1, b2).
Finally, we assume that while helping their colleague, a worker may also learn

something that is helpful to solve their own problem. The parameter s ∈ [0, 1]
indicates the strength of such knowledge spillovers. Consider worker B’s expected
output when tlA = 1. That is, we are looking at the expected output of B when
their time is fully allocated to help A. Since we assume that the communication
and learning process goes both ways via a parameter for spillovers s, worker B’s
productivity is sQTB if tlA = 1. Similarly, if thA = 1 such that A helps B all the time,
worker A’s expected output is sQTA.

Overall, the total expected output of the organization is given by

Q(a, b, tw, tlA, thA) := tw(QA(a) +QB(b)) + (tlA + sthA)QTA(a, b)

+ (thA + stlA)QTB(a, b). (2.1)

The first term of the equation gives the expected output from individual work, taking
into account the time allocated to individual work. The second and third term
represent the expected output from teamwork. Recall that QTA is A’s expected output
when workers talk only about A’s problem (tlA = 1). The term is weighted with the
time A learns (tlA) and the time A helps but can learn through spillovers from B

(sthA). It is analogous for B.
The timing is as follows:

1. The organizational designer chooses knowledge profiles a, b and the organi-
zational design, i.e., tw, thA, and tlA in order to maximize the total expected
output of the organization.

2. Each worker draws a problem.

3. Workers try to solve the problems, allocating their time between individual
production and team production as stipulated by tw, tlA, and thA.

4. Outcomes are observed, i.e., whether a worker’s problem has been solved or
not.

2.3 Analysis
In the analysis of the model, we first derive the optimal knowledge profiles of workers
under pure individual production (i.e., tw = 1) and pure team production (i.e.,
tw = 0), respectively. In a second step, we analyze the optimal organizational design,
i.e., we study the optimal time allocation for tw, thA, and tlA.
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2.3.1 Knowledge Profiles under Individual Production

Let us first look at knowledge profiles under pure individual production. That means
we take tw = 1 as given for this section, so that no communication is allowed. Each
worker draws a problem and tries to solve it alone. The organizational designer hires
workers with knowledge profiles that maximize the organization’s total expected
output given that tw = 1. That is, they choose a and b to solve maxa,bQA(a)+QB(b).

Lemma 2.1 Under pure individual production, tw = 1, the organizational designer
hires workers A and B with identical knowledge profiles such that

aI = bI := r√
1 − 2r(1 − r)

.

Proof. See Appendix.

In Lemma 2.1, the optimal knowledge in dimension 1 is increasing in r. The larger r,
i.e., the more likely a problem of type p = (1, 0) is, the more specialized are workers
in dimension 1. Workers then have a higher chance of solving a problem they draw.
If r > 1/2, then aI >

√
1 − (aI)2, implying that workers have more knowledge in

dimension 1 than in dimension 2. If r = 1/2, i.e., both problems are equally likely,
then aI = 1/

√
2. That is, workers are not specialized in one of the dimensions, but

rather equally knowledgeable in each dimension. The vector of the knowledge profile,
(aI1, aI2), corresponds to the 45-degree line. On the other hand, if r = 1, meaning it is
certain ex ante that a problem of type p = (1, 0) arises, workers are fully specialized
in dimension 1. Notice that this is the only situation under individual production
where workers are fully specialized.

2.3.2 Knowledge Profiles under Team Production

We now turn to a situation where workers can communicate to solve their problems.
Particularly, we investigate pure team production and thus take tw = 0 as given,
which implies that thA + tlA = 1 due to the time budget constraint. Moreover, in this
section, we also take thA as given, which then determines tlA and thus characterizes
the optimal knowledge profiles for a given allocation of helping and learning time
under pure team production. Recall that under pure teamwork if A gets help from
B for the whole time unit, i.e., tlA = 1, worker A’s expected productivity is

QTA(a, b) := ra+ (1 − r)(
√

1 − b2 −K(a, b)).

Similarly, if thA = 1 so that A helps B all the time, worker B’s expected productivity
is given by

QTB(a, b) := r(a−K(a, b)) + (1 − r)
√

1 − b2.
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The expected output of the organization under pure teamwork can be written as

QT (a, b) = (tlA + sthA)QTA(a, b) + (thA + stlA)QTB(a, b)

= (1 + s)Q̄T (a, b) −
[
(1 − r)(tlA + sthA) + r(thA + stlA)

]
K(a, b), (2.2)

where Q̄T (a, b) := ra+ (1 − r)
√

1 − b2 denotes the expected output under pure team
production in the absence of transfer frictions, i.e., if we had K(a, b) = 0 for all a, b.

To determine the optimal knowledge profiles of workers A and B for fixed thA
and tlA under pure teamwork, the organizational designer’s objective is to maximize
equation (2.2) with respect to a and b while taking tlA and thA as given.

Lemma 2.2 Consider pure teamwork, thA + tlA = 1, for a fixed thA. Let aT and
bT denote the optimal knowledge in dimension 1 of worker A and B, respectively.
For r = 1, the workers’ optimal knowledge profiles are identical and we obtain
aT = bT = 1. For r ∈ [1/2, 1), we obtain aT > bT , i.e., the workers’ knowledge
profiles differ.
Proof. See Appendix.

Lemma 2.2 shows that when the nature of the problem is uncertain (i.e., r < 1),
the optimal knowledge profiles under teamwork differ, which is in contrast to the
identical knowledge profiles under individual production. The organizational designer
chooses workers with heterogeneous knowledge profiles for teams, so workers can
benefit from communication and the expected output of the team increases compared
to a situation with identical knowledge profiles. To obtain this result, our assumption
Ka(a, a) = Kb(b, b) = 0 is important as it implies that frictions in knowledge transfers
are negligible when workers specialize a bit more starting from identical knowledge
profiles. This makes at least some specialization beneficial for an organization that
implements teamwork. Moreover, our assumption that knowledge transfer is less
effective the more workers’ knowledge profiles differ implies that workers’ knowledge
should in general comprise both knowledge dimensions, i.e., aT < 1 and bT > 0.

For the special case of r = 1 where it is ex ante certain that problem type
p = (1, 0) is encountered, it is optimal for the organizational designer to hire workers
with identical fully specialized knowledge profiles. Both workers are experts in the
required knowledge dimension 1, such that a = b = 1. In that case, there is no benefit
from communicating in a team.

2.3.3 Organizational Design

In this section we focus on the question, how the organizational designer structures
the production by choosing tw, thA and tlA. First, note that we can rewrite the total
expected output from equation (2.1) as follows:

Q(a, b, tw, thA, tlA) =tw(QA(a) +QB(b)) + (tlA + thA)(1 + s)Q̄T (a, b)
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−
[
(1 − r)(tlA + sthA) + r(thA + stlA)

]
K(a, b)

=tw(QA(a) +QB(b)) + (1 − tw)(1 + s)Q̄T (a, b)

−
[
(1 − r)(tlA + sthA) + r(thA + stlA)

]
K(a, b).

For the first equation we used the definition of Q̄T (from Section 2.3.2), for the
second equation we used the time budget constraint, tw + tlA + thA = 1.

We first consider the special case where the nature of the problem is certain ex
ante, i.e., r = 1. Expected output then reduces to

Q(a, b, tw, thA, tlA) = tw(a+ b) + (1 − tw)(1 + s)a− (thA + stlA)K(a, b).

It is then optimal to hire two workers with knowledge only in dimension 1, a = b = 1,
and implement pure individual work, tw = 1, because this leads to the maximum
possible output of 2. When the nature of the problem is certain, there is no gain
from hiring workers with different knowledge profiles and communication is even
detrimental as the worker who helps their colleague cannot work on their own
problem. Henceforth, we focus on situations where the nature of the problem is ex
ante uncertain, r ∈ [1

2 , 1).
We now characterize the optimal organizational design depending on the extent

of knowledge spillovers.

Proposition 2.1 Suppose that the nature of the problems drawn by the workers is
uncertain, i.e., r ∈ [1/2, 1). There exists a threshold s̄(r) ∈ (0, 1), such that pure
individual work (tw = 1) is optimal if s ≤ s̄(r). Otherwise, pure teamwork (tw = 0)
is optimal and problem solving within the team is structured as follows:

(i) If s > s̄(r) and r > 1/2, worker B always helps worker A with their problem,
i.e., thA = 0 and tlA = 1.

(ii) If s > s̄(r) and r = 1/2, the organizational designer does not need to impose
any structure on the problem-solving process as any pair tlA, thA with tlA + thA = 1
is optimal.

(iii) If s = 1, again any pair of tlA, thA with tlA + thA = 1 is optimal. That is, the
optimal design does not depend on r.

Proof. See Appendix.

In Proposition 2.1, we look at the organizational designer’s optimal choices for tw, thA
and tlA when problems are ex ante uncertain. We find that the optimal choice of tw

is a corner solution. The total expected output is linear in tw for all r ∈ [1
2 , 1) so that

it is optimal to choose tw ∈ {0, 1}. In our model, the unit of time workers are given
to solve a problem is valued uniformly. Choosing an organizational design where
workers, for example, first engage in individual production and towards the end of
their time unit get involved in team production cannot be optimal in our model.
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Pure individual work is implemented when knowledge spillovers are below the
threshold s̄(r). Pure teamwork is implemented when spillovers are sufficiently high.
When spillovers are high, communication between co-workers is more efficient because
not only the expected output of the team member who learns increases, but also the
expected output of the co-workers who helps.

In the second part of Proposition 2.1, we focus on the designer’s choice of thA and
tlA which determines the communication process in the team. Given that spillovers
are above the threshold s̄(r) so that pure teamwork is optimal, it is optimal to set
thA = 0 and tlA = 1 if r > 1

2 . Intuitively, as a problem of type p = (1, 0) is more likely
to be drawn, worker A’s specialization is more likely to be useful than B’s to solve
the problem since a ≥ b. Hence, A’s expected output under teamwork is larger than
B’s, because B encounters transfer frictions in dimension 1 which is more likely to
be relevant. To minimize the cost from transfer frictions, the organizational designer
decides that worker B must learn via spillovers from A rather than facing full transfer
frictions from A helping B directly. Workers focus on A’s problem because A is more
likely to solve a problem. B can learn from spillovers in dimension 1.

Overall, the organizational designer decides that the worker whose knowledge
is more likely to be relevant spends all their time learning. We call this team a
management-led team, since the organizational designer directs the rules for commu-
nication ex ante and decides which problem a team talks about.

On the other hand, when both problem types are equally likely (r = 1
2) or when

spillovers are perfect (s = 1) the designer can let the team decide on values for thA
and tlA. We refer to this as a self-managed team because the team can decide on their
own how to allocate their time and thus the team shapes the communication process.
A self-managed team arises endogenously in our model as a corner solution to the
organizational designer’s problem to determine the organization’s optimal structure.
However, a self-managed team is just weakly optimal as it leads to exactly the same
output as a management-led team.

2.3.4 Organizational Design and Problem Uncertainty

In this section, we discuss how the optimal organizational design depends on the
degree of problem uncertainty, which is described by the parameter r in our model.

In Lemma 2.1, we solved for the optimal knowledge profiles, aI , under individual
production. The corresponding expected total output is given by

QI(r) := 2
√

1 − 2r(1 − r),

which is strictly increasing and strictly convex in r. Intuitively, if it is more likely
that a problem of type p = (1, 0) is drawn, the organization can safely hire workers
that are more specialized in dimension 1 and therefore more likely to solve their
problems. This increases the expected output. Hence, pure individual work is more
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effective the more precise the ex-ante knowledge of the type of problem workers
are going to face. When r = 1, as we showed in Section 2.3.2, it is optimal for the
organizational designer to hire workers who are specialized in dimension 1 such that
a = b = 1. Each worker is able to solve their problem on their own with certainty
and QI(1) = 2, which is the maximum feasible output.

For teamwork, the analysis is not as simple as optimal knowledge profiles and
consequently output depends on the specific functional form of K(a, b). In Lemma 2.2,
we established that knowledge profiles under teamwork are optimally differentiated.
However, we cannot determine the optimal knowledge profiles as functions of r.
Therefore, to simplify the analysis, we assume in this section that transfer frictions
are independent of a and b such that K(a, b) = K̄ for all a ̸= b with K̄ ∈ (0, 1).
In such a situation, there is no benefit from hiring workers that are less than fully
specialized, since the effectiveness of knowledge transfers does not decrease with
the workers’ specialization. The optimal choice of the organizational designer is to
hire worker A as an expert in dimension 1, aT = 1, and worker B as an expert in
dimension 2, bT = 0. Notice that this is in contrast to what we find when transfer
frictions are not fixed. In that case, workers’ knowledge usually comprise both
knowledge dimensions, because we assume that transfers are less effective the more
workers’ knowledge profiles differ.

We can show that for sufficiently high spillovers, the results from Proposition 2.1
qualitatively extend to the case of fixed transfer frictions.58 By substituting workers’
fully specialized knowledge profiles into the overall expected output in equation (2.1)
and applying the results from Proposition 2.1, the expected output for teamwork as
a function of r is

QT (r) = 1 + s− (1 − r(1 − s))K̄.

The expected team output is linearly increasing in r. Because knowledge profiles are
fully specialized, r affects the expected team output only through the probability
with which transfer frictions arise. The more certain a problem of type p = (1, 0)
becomes, the more relevant is knowledge in dimension 1. Since worker A is fully
specialized in dimension 1, A’s knowledge is more relevant. To minimize the cost
from transfer frictions, it is optimal that worker B helps A, as we developed in
Proposition 2.1. This implies that transfer frictions reduce expected team output
less the higher r because frictions arise from B learning via spillovers from A.

The expected team output reaches its maximum at r = 1. However, as we
determined above, for r = 1 it is optimal to hire workers who are both specialized in
dimension 1. Since workers cannot transfer knowledge, communication is harmful.
Therefore, the expected output from teamwork under certainty is always below the
optimal output from individual production.

58For s > 2
√

1−2r(1−r)+(1−r)K̄−1
1−rK̄

, it is optimal to choose teamwork over individual work when
transfer frictions are fixed.
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Proposition 2.2 Suppose that frictions in knowledge transfer are such that K(a, b) =
K̄ > 0 for all a ̸= b. We can distinguish three cases:

(i) If s is sufficiently small, pure individual work is optimal.

(ii) If s takes intermediate values, pure individual work is optimal for sufficiently
small and sufficiently high r. For intermediate r, pure teamwork is optimal.

(iii) If s is sufficiently high (i.e., s ≥
√

2
1−K/2 − 1), there exists a threshold r̄ ∈ (1

2 , 1)
such that pure individual work is optimal if and only if r > r̄ and pure teamwork
is optimal otherwise.

Proof. See Appendix.

The results presented in Proposition 2.2 are driven by the fact that with fixed
frictions in knowledge transfer, the optimal knowledge profiles under teamwork
are independent of r. Workers are fully specialized so that, ignoring frictions in
knowledge transfer, their expected output is also independent of r. If K̄ was zero,
two fully specialized workers engaging in teamwork would solve worker A’s problem
with certainty, while the chance of solving worker B’s problem depends on knowledge
spillovers ((1 + s)Q̄T (1, 0) = 1 + s). Thus, with K̄ > 0, changes in r only affect the
probability with which frictions in knowledge transfer occur. The lower the degree
of uncertainty, the smaller the probability with which transfer frictions arise. As a
consequence, the marginal benefit from a reduced problem uncertainty is constant
under teamwork, i.e., QT (r) is linearly increasing in r. We can see from Proposition 2.2
that there is an interaction between s and r in the expected output from teamwork.
When the probability of solving B’s problem is high enough, it can compensate the
probability with which transfer frictions arise, so that teamwork dominates individual
production for certain r (cases (ii) and (iii) of Proposition 2.2). By contrast, under
individual production the marginal benefit from a reduced problem uncertainty is
increasing, i.e., QI(r) is convexly increasing in r. A decrease in uncertainty implies
that workers’ knowledge profiles can be specialized more in the dimension that is
more likely to be relevant. The higher degree of workers’ specialization complements
the higher chance of being able to solve a problem. The effect is stronger the higher
r.

Figure 2.2 outlines the results of Proposition 2.2 graphically. The graphs depict
QT as a linear function of r and QI as a convex function of r. For sufficiently
small spillovers (cf. Figure 2.2a), teamwork is dominated by individual production
for all r ∈ [1

2 , 1]. This result also holds for non-fixed transfer frictions, K(a, b), as
described in Proposition 2.1. For intermediate spillovers (cf. Figure 2.2b), teamwork
dominates individual work for intermediate values of r. For sufficiently high spillovers
(cf Figure 2.2c), teamwork dominates individual work as long as problem uncertainty
is below the threshold r̄.
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Figure 2.2: Graphic outline of Proposition 2.2

2.4 Organization with Three Problems
In this section, we extend the baseline model to include a third problem, thus
increasing the degree of uncertainty. The two workers each draw a problem from the
set of three problem types: p = (1, 0), p = (0, 1) and p = ( 1√

2 ,
1√
2). The last problem

requires that workers are equally knowledgeable in both dimensions. The problems
are drawn according to the following probability distribution: Pr[p1 = 1] = r,
Pr[p1 = 0] = q and Pr[p1 = 1√

2 ] = 1 − r − q with r, q ∈ [0, 1] and r + q ≤ 1. We keep
all other assumptions from the baseline model, so that results are comparable.

In pure individual production, the expected productivity of a worker is now
defined as

QjP (i) := ri+ q
√

1 − i2 + (1 − r − q) 1√
2

(i+
√

1 − i2),

for all i = a, b and j = A,B. This function is a basic extension of workers’ expected
output as described in Section 2.3.1. The last term adds the expected output
from solving a problem of type p = ( 1√

2 ,
1√
2) where workers use both knowledge

dimensions.
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Due to the third problem that now needs to be taken into account, the knowledge
profiles of workers cannot be explicitly defined anymore. However, since the expected
output is well-behaved, the knowledge profiles are implicitly determined by

i√
1 − i2

=
r + 1√

2(1 − r − q)
q + 1√

2(1 − r − q)
. (2.3)

The left-hand side expresses the ratio of knowledge in dimension 1 to knowledge
in dimension 2. When i increases the left-hand side increases. The right-hand side
is increasing in r and decreasing in q. That means if a problem of type p = (1, 0)
is more likely, the right-hand side of (2.3) increases and hence the left-hand side
must also increase. Thus, when a problem that requires knowledge in dimension 1 is
more likely to arise, the knowledge profile becomes more specialized in dimension
1. Since workers’ expected output functions are the same for all j = A,B,C, the
organizational designer optimally chooses identical knowledge profiles. In that sense,
they are not qualitatively different from the knowledge profiles derived in Lemma 2.1.

In pure teamwork, the maximum feasible expected output is given by

Q̄TP (a, b) := ra+ q
√

1 − b2 + 1√
2

(1 − r − q)(a+
√

1 − b2).

It reflects the fact that A is more knowledgeable in dimension 1 while B is more
knowledgeable in dimension 2. We can use this function to define the expected team
output of workers A and B as the maximal possible benefit from teamwork minus
the cost from transfer frictions

QTP (a, b) := (1 + s)Q̄TP (a, b)

−
[
r(thA + stlA) + q(tlA + sthA) + 1√

2
(1 − r − q)(1 + s)(1 − tw)

]
K(a, b). (2.4)

The last term in square brackets expresses the transfer frictions that emerge from
talking about the new problem. Notice that this term is independent of time
allocations thA and tlA, because both workers can learn from each other in one
dimension that is relevant to solving the problem. Equation (2.4) is not essentially
different from (2.2) and (2.4) is also concave. Hence, we can follow the proof of
Lemma 2.2 and show that optimal knowledge profiles under pure teamwork are
heterogeneous even when there are three problem types. They are, therefore, also
not qualitatively different from the optimal knowledge profiles of the baseline model.
In the special case where a problem type is certain ex ante, optimally both workers’
knowledge profiles are identical. As before, when a problem of type p = (1, 0) or
p = (0, 1) is drawn with certainty, the knowledge profiles are specialized in the
respective relevant dimension. However, if a problem of type p = ( 1√

2 ,
1√
2) arises

with certainty, both workers are equally knowledgeable in both dimensions.
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Now, we turn to the optimal organizational design, i.e., the designer’s choice of
tw, thA and tlA. The overall expected output with three problem types is given by

QP (a, b) = tw(QAP (a) +QBP (b)) + (1 − tw)(1 + s)Q̄TP (a, b)

−
[
r(thA + stlA) + q(tlA + sthA) + 1√

2
(1 − r − q)(1 + s)(1 − tw)

]
K(a, b). (2.5)

In the special cases where a problem type is certain ex ante and thus it is optimal
to have workers who both have the relevant knowledge to solve the problem that is
certainly drawn, communication is useless or even detrimental as a worker who helps
their co-worker cannot work on their own problem. Therefore, we focus on situations
where problem types are ex ante uncertain, i.e., r, q ∈ (0, 1).

Following Proposition 2.1, we can characterize the optimal organizational design
with three problem types depending on knowledge spillovers.

Corollary 2.1 Suppose problem types are uncertain, r, q ∈ (0, 1), there exist two
thresholds s̄P (r), s̄P (q) ∈ (0, 1). For r > q pure individual work (tw = 1) is optimal
if s ≤ s̄P (r), while for r < q pure individual work is optimal if s ≤ s̄P (q). Otherwise,
pure teamwork (tw = 0) is optimal. Problem solving within the team is structured as
follows:

(i) If s > s̄P (r) and r > q, worker B always helps worker A with their problem,
i.e., thA = 0 and tlA = 1 is optimal.

(ii) If s > s̄P (q) and r < q, worker A always helps worker B with their problem,
i.e., thA = 1 and tlA = 0 is optimal.

(iii) If s > s̄P (q), s̄P (r) and r = q = 1
3 , the organizational designer does not need to

impose any structure on problem-solving as any pair thA, tlA that satisfies the
time budget constraint is optimal.

(iv) If s = 1 for all r, q ∈ (0, 1), again any pair thA, tlA is optimal.

Proof. See Appendix.

Corollary 2.1 closely resembles Proposition 2.1. Instead of one threshold for knowledge
spillovers, however, there are two thresholds, s̄P (r) and s̄P (q), when there are three
problem types involved. The additional problem that can be drawn in this situation
requires both workers to be equally knowledgeable in both dimensions and does
not affect the organizational designer’s choice of thA, tlA and tw (cf. Equation (2.5)).
Therefore, the results of the analysis are also not essentially different from the baseline
model. It is still optimal to either choose pure individual work or pure team work. In
the special cases where spillovers are perfect or where spillovers are sufficiently high
and all problems are equally likely, the organizational designer still gives authority
to the team to decide on thA and tlA. On the other hand, if pure teamwork is optimal

83



2.5. CONCLUSION CHAPTER 2. TEAMWORK

and a problem that requires specialization in dimension 1 is more likely, the designer
decides that worker B always helps worker A who is more knowledgeable in the
relevant dimension. Therefore, having a higher degree of uncertainty does not lead to
qualitatively different results in the optimal organizational design compared to the
baseline model. This is due to the fact that the additional problem in this section
does not influence the organizational designer’s choice of the time allocation.

2.5 Conclusion and Discussion
In this chapter, we develop a model of an organization which produces by solving
problems. An organizational designer faces two coordination issues: hiring workers
with optimal knowledge profiles and choosing the optimal organizational design with
respect to allocation of workers’ time.

In terms of workers’ knowledge profiles, we observe that an organizational designer
chooses different knowledge profiles depending on the organizational design. If workers
engage in pure individual production, the organizational designer hires employees with
identical knowledge profiles, because workers do not engage in knowledge transfer.
Depending on the probability with which a specific problem type is drawn, workers
are more specialized in one or the other dimension. However, if the designer chooses
pure teamwork, the knowledge profiles of workers are differentiated such that they
can benefit from communicating with each other. This reflects the idea that teams
can benefit from the complementary skills of their members (Hamilton et al., 2003,
Lazear and Shaw, 2007). The degree of specialization in the knowledge profiles hinges
on transfer frictions. When transfer frictions are fixed, it is optimal to hire workers
that are fully specialized in one dimension each, because under fixed transfer frictions
workers can still transfer knowledge even if they know nothing about the dimension
of their co-worker. When transfer frictions depend on the degree of differentiation
between the knowledge profiles, workers’ knowledge should in general comprise both
knowledge dimensions. Optimal knowledge profiles depend on problem uncertainty
and knowledge spillovers.

In terms of the organizational design, we find that it is always optimal to have
an organization that engages in pure individual work or in pure teamwork. We find
that there is a threshold in knowledge spillovers such that pure teamwork is optimal
if spillovers are above this threshold. Sufficiently high knowledge spillovers make
teamwork worthwhile, because both workers can learn from each other. Within
pure teamwork, the problem-solving process is either managed by the organizational
designer in that they choose workers’ time allocations or the team itself manages
the allocation of their time. The latter we refer to as self-managed team. Self-
managed teams arise as corner solutions when knowledge spillovers are perfect or
when different problem types are equally likely to be drawn, i.e., problem uncertainty
is very high. This speaks to the fact that, as empirical studies showed, self-managed
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teams perform better than management-led teams when tasks are unpredictable
(Rousseau and Aubé, 2010). Furthermore, we find that the designer’s decision between
pure individual work and pure teamwork also depends on the interaction between
knowledge spillovers and the uncertainty of problem types. For this part of the
analysis we focus on fixed transfer frictions such that optimal knowledge profiles
under teamwork do not depend on the degree of uncertainty. As before, we find that
for sufficiently small spillovers, individual production dominates teamwork. However,
for intermediate spillovers, pure teamwork is optimal when uncertainty of problem
types is intermediate. For sufficiently high spillovers, pure teamwork is optimal
when uncertainty of problem types is below a threshold. In teamwork, high problem
uncertainty can be compensated with high knowledge spillovers.

In an extension, we add a third problem that can arise supplementary to the
problems in our baseline model. We want to study whether higher uncertainty
changes the organizational structure. The additional problem requires workers to
be equally knowledgeable in both dimension. This problem does not impact the
designer’s decision on the organizational structure. Therefore, the results are not
qualitatively different to that effect. In Appendix 2.B, we include a second extension.
We add a third knowledge dimension to increase the complexity of solving a problem.
The organization hires three workers that each need to solve one problem from a
set of three problem types. In this extension, we assume that transfer frictions are
fixed. In terms of optimal organizational design, we find that for sufficiently high
spillovers pure teamwork is optimal. Again, self-managed teams arise endogenously
as corner solutions. Interestingly, when it is not unambiguous which of the three
problem types is least likely to be drawn, there exists a partially self-managed team.
The organizational designer directs parts of the communication between workers and
leaves some parts to be determined by the workers themselves.

We want to point to two results in our model that we want to extend in future
research. First, self-managed teams as optimal organizational design only arises
as a corner solution in our model when spillovers are perfect or when different
problem types arise with the same probability. We want to find a way to obtain self-
managed teams as an interior solution without including a technological advantage
for teamwork.

Closely connected to this result is the second point that we want to focus on in
future research. In our model, we find that either pure teamwork or pure individual
work is optimal because production is linear in the unit of time workers are allotted.
However, in reality organizations often combine individual work with teamwork, e.g.
by first working individually and when a solution is not reached quickly enough
workers switch to teamwork. Such an organizational design cannot be obtained
in our model. In future research, it would be interesting to extend our model by
a production function that depends on time in a non-linear way. Is the optimal
organization then a hybrid of teamwork and individual production? What are the
optimal knowledge profiles for workers?
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Another interesting extension includes the option for the designer to invest in
learning about the problem uncertainty. Before the organizational designer hires
workers and chooses an organizational design, they can decide whether to pay a
fixed cost to learn about the problem uncertainty. This opens up the possibility
to reduce uncertainty thereby increasing workers’ specialization. If the cost of
screening problem types is too high, the organizational designer can still implement
self-managing teams as is optimal in our baseline for high problem uncertainty.

Last but not least, a logical extension of our model also needs to address the
incentive system of such an organization. How can the organization induce knowledge
transfer in teamwork? What kind of incentives does an organization choose if
production is a hybrid of individual work and teamwork?

2.A Appendix: Proofs
Proof of Lemma 2.1

The organizational designer maximizes the total expected output of the organization
or, equivalently under individual work, a single worker’s expected output,

max
i∈[0,1]

ri+ (1 − r)
√

1 − i2,

for i = a, b. For r = 1, the objective function is monotonically increasing in i so
that we obtain a corner solution where the optimal i equals 1. For r ∈ [1/2, 1), the
optimal solution is characterized by the first-order condition,

r − (1 − r) i√
1 − i2

= 0,

because the objective function is strictly concave,

∂2Qj
∂i2

= −(1 − r)
[√

1 − i2

1 − i2
+ i2

(1 − i2)3/2

]
< 0,

for j = A, i = a and j = B, i = b. We thus obtain the optimal, identical knowledge
profiles, aI = bI , presented in Lemma 2.1.

Proof of Lemma 2.2

The organizational designer solves

max
a,b∈[0,1]

QT (a, b)

= max
a,b∈[0,1]

(1 + s)(ra+ (1 − r)
√

1 − b2) − [(1 − r)(tlA + sthA) + r(thA + stlA)]K(a, b).
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For r = 1, the objective function boils down to (1 + s)a− (thA + stlA)K(a, b), which
implies that identical knowledge for both workers as well as maximum knowledge in
dimension 1 for worker A is optimal. Thus, aT = bT = 1.

Now consider r ∈ [1/2, 1). The expected output is strictly concave since K(a, b)
is strictly convex while the Hessian matrix of Q̄T (a, b) = ra+ (1 − r)

√
1 − b2 reveals

that Q̄T is weakly concave

Hess(Q̄T (a, b)) =

0 0
0 −(1−r)(

√
1−b2+b2)

3√1−b2

 .
The first derivatives of the objective function with respect to a and b are

(1 + s)r −
[
(1 − r)(tlA + sthA) + r(thA + stlA)

]
Ka(a, b),

−(1 + s)(1 − r) bT√
1 − bT 2

−
[
(1 − r)(tlA + sthA) + r(thA + stlA)

]
Kb(a, b),

respectively. From Ka(a, a) = Kb(a, a) = 0, it follows that when workers have identi-
cal knowledge in dimension 1, the expected output is increasing in a and decreasing in
b. Thus, starting from identical knowledge, it always pays off to marginally increase
a or marginally decrease b, thereby utilizing benefits from specialization. Hence, we
must have aT > bT .

Proof of Proposition 2.1

Recall that the organization’s expected output is given by

tw(QA +QB) + (1 − tw)(1 + s)Q̄T −
[
(1 − r)(tlA + sthA) + r(thA + stlA)

]
K(a, b). (2.6)

We first characterize the optimal choice of thA and tlA. If r = 1/2, the expected output
can be simplified to

tw(QA +QB) + (1 − tw)(1 + s)Q̄T − 1
2
[
(1 + s)(tlA + thA)

]
K(a, b)

= tw(QA +QB) + (1 − tw)(1 + s)
(
Q̄T − 1

2K(a, b)
)
. (2.7)

Hence, the exact choice of tlA and thA is immaterial. For the special case where s = 1,
(2.6) simplifies to

tw(QA +QB) + 2(1 − tw)Q̄T − (tlA + thA)K(a, b)

= tw(QA +QB) + (1 − tw)
[
2Q̄T −K(a, b)

]
,
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which is independent of thA and tlA. Thus, any choice of thA and tlA that satisfies
thA + tlA = 1 − tw is optimal.

Now suppose that r ∈ (1/2, 1). Then, for any fixed tw, the variables tlA and thA
should be chosen such that the term in square brackets in (2.6) is minimized. As
r > 1/2 and s < 1, the organizational designer should set thA = 0 and tlA = 1 − tw.
We can then use thA = 0 and tlA = 1 − tw to rewrite the expected output such that

tw(QA +QB) + (1 + s)(1 − tw)Q̄T − [(1 − r)(1 − tw) + rs(1 − tw)]K(a, b)

= tw(QA +QB) + (1 − tw)
[
(1 + s)Q̄T − (1 − r(1 − s))K(a, b)

]
. (2.8)

Note that, for r = 1/2, the expression in (2.8) is identical to the expression in (2.7).
Thus, for any r ∈ [1/2, 1), the organizational designer’s objective function can be
simplified to (2.8).

We next characterize the optimal tw. Because the expected output, as given in
(2.8), is linear in tw, it is maximized by setting either tw = 0 or tw = 1. Setting
tw = 0 is strictly optimal if and only if

max
a,b∈[0,1],a≥b

QA +QB < max
a,b∈[0,1],a≥b

(1 + s)Q̄T − (1 − r(1 − s))K(a, b). (2.9)

If s = 0, inequality (2.9) does not hold as QA +QB > Q̄T for all a, b. Thus, tw = 1
is optimal. If s = 1, inequality (2.9) becomes

max
a,b∈[0,1],a≥b

QA +QB < max
a,b∈[0,1],a≥b

2Q̄T −K(a, b). (2.10)

From Lemma 2.1, choosing a = b = aI solves the problem maxa,b∈[0,1],a≥bQA +QB.
Moreover, for a = b = aI both sides of inequality (2.10) are identical. From
Lemma 2.2, however, we know that maxa,b∈[0,1],a≥b 2Q̄T −K(a, b) is solved by het-
erogeneous knowledge profiles aT > bT . Hence, inequality (2.10) is always satisfied,
which implies that tw = 0 is optimal in case s = 1. Finally, by the envelope theorem,
the first derivative of the right-hand side of (2.9) with respect to s is

Q̄T (aT , bT ) − rK(aT , bT ) = r(aT −K(aT , bT )) + (1 − r)
√

1 − (bT )2 = QTB(aT , bT ),

which is non-negative. The right-hand side of (2.9) is thus increasing in s, which
implies that there must be a threshold s̄(r) ∈ (0, 1) as described in the proposition.

Proof of Proposition 2.2

First, we can observe that pure individual work always dominates pure teamwork
if r = 1. This is because QT (1) = 1 + s(1 − K̄) < 2 = QI(1) for all s ∈ [0, 1].
Note that QT (r) is linear and increasing in r. Moreover, it can be shown that
QI(r) is strictly convex and increasing in r and that QIr(1/2) = 0. It follows that,
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if QI(1/2) < QT (1/2), then there must be a threshold r̄ ∈ (1
2 , 1) as described in

case (iii) of the proposition. The inequality QI(1/2) < QT (1/2) is equivalent to
s >

√
2

1−K̄/2 − 1.

If s =
√

2
1−K̄/2 −1, then QI(1/2) = QT (1/2). Because QIr(1/2) = 0 while QTr (1/2) >

0, pure individual work is weakly optimal for r = 0 and strictly optimal if r is
sufficiently high.

Now suppose that s decreases, starting from s =
√

2
1−K/2 − 1. Then, QT (r) and

QI(r) at first have exactly two intersections such that QT (r) > QI(r) for intermediate
r, which corresponds to case (ii) of the proposition. As s continues to decrease, at
some point, QT (r) < QI(r) for all r ∈ [1/2, 1]. This is true because, at s = 0, we
have QT (r) = 1 − (1 − r)K̄ < 1 for all r, whereas QI(r) ≥

√
2.

Proof of Corollary 2.1

Recall the overall expected output for this extension

QP (a, b) = tw(QP,A +QP,B) + (1 − tw)(1 + s)Q̄TP

−
[
r(thA + stlA) + q(tlA + sthA) + 1√

2
(1 − r − q)(1 + s)(1 − tw)

]
K(a, b). (2.11)

To characterize the optimal choice of thA and tlA, we first look at the special case
of r = q = 1

3 such that all problem types are equally likely. The overall expected
output can be simplified to

tw(QP,A +QP,B) + (1 − tw)(1 + s)Q̄TP

−
[1

3(1 + s)(thA + tlA) + 1
3
√

2
(1 − r − q)(1 + s)(1 − tw)

]
K(a, b). (2.12)

Hence, when r = q = 1
3 the exact choice of tlA and thA is immaterial. For the special

case where s = 1 the overall expected output simplifies to

tw(QP,A +QP,B) + 2(1 − tw)Q̄TP − (1 − tw)
[
r + q + 2√

2
(1 − r − q)

]
K(a, b).

Again, any choice that satisfies thA+ tlA = 1− tw is optimal. Now we focus on the cases
where r, q ∈ (0, 1). For any fixed tw, the variables thA and tlA should be chosen such
that the term in square brackets in (2.4) is minimized. Notice that the additional
third problem has no influence on the designer’s choice of thA and tlA. Therefore,
when r > q and s < 1, tlA = 1 − tw while thA = 0 and vice versa for r < q.

Now we can characterize the optimal choice of tw. For r > q we can re-write the
expected output as
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tw(QP,A +QP,B) + (1 − tw)(1 + s)Q̄TP

− (1 − tw)(rs+ q + 1√
2

(1 − r − q)(1 + s))K(a, b).

For r < q it can be simplified to

tw(QP,A +QP,B) + (1 − tw)(1 + s)Q̄TP

− (1 − tw)(r + qs+ 1√
2

(1 − r − q)(1 + s))K(a, b).

In both cases the expected output is linear in tw. Hence, it is maximized by tw ∈ {0, 1}.
Setting tw = 0 is optimal if and only if

(i) in case r > q:

max
a,b∈[0,1], a≥b

QP,A +QP,B < max
a,b∈[0,1], a≥b

(1 + s)Q̄TP

− (rs+ q + 1√
2

(1 − r − q)(1 + s))K(a, b) (2.13)

(ii) in case q > r:

max
a,b∈[0,1], a≥b

QP,A +QP,B < max
a,b∈[0,1], a≥b

(1 + s)Q̄TP

− (r + qs+ 1√
2

(1 − r − q)(1 + s))K(a, b) (2.14)

For both (2.13) and (2.14), the inequality isn’t satisified for s = 0 for any a, b.
Therefore, tw = 1 is optimal. For s = 1, LHS of both (2.13) and (2.14) is maximized
for some identical knowledge profile a = b, while RHS are equivalent to LHS for
a = b. However, RHS are maximized for some aTP ̸= bTP , thus tw = 0 is optimal.

By the envelope theorem, the first derivative of RHS of (2.13) and (2.14) with
respect to s are non-negative:

Q̄TP − (r + 1√
2

(1 − r − q))K(aTP , bTP ) = QTP,B

Q̄TP − (q + 1√
2

(1 − r − q))K(aTP , bTP ) = QTP,A,

respectively. For both cases (i) and (ii), the RHS is increasing in s which implies
that there must be a threshold s̄P (r) ∈ (0, 1) and s̄P (q) ∈ (0, 1).
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2.B Extensions: Organization with Three-dimensional
Problems

In this extension, we study what happens when problems require three dimensional
knowledge profiles. We assume that there are three problem types each located in
the three-dimensional space. In order to stay with our one-to-one relation of workers
to problem types from the baseline model, we assume that there are three workers.
We want to study whether this set-up changes the organizational structure.

Model

In this set-up, we have three workers j = A,B,C who each draw a problem and
have one unit of time to solve it. In order to solve a problem, workers now need
a three-dimensional knowledge profile i = (i1, i2, i3) for i = a, b, c. Knowledge is
non-negative, i1, i2, i3 ≥ 0. We assume that a worker’s knowledge profile corresponds
to a specific point on the sphere with radius 1 in the three-dimensional space reflecting
the knowledge profiles, i.e., i21 + i22 + i23 = 1. This means, we expand the model from
a circle with radius 1 to a sphere with radius 1. Hence, we can express everything
in terms of dimensions 1 and 2, since i3 =

√
1 − i21 − i22. Note that before we were

able to express everything in dimension 1 only. We assume that each worker is more
knowledgeable in one dimension than their colleagues, i.e, a1 ≥ b1, c1, b2 ≥ a2, c2

and
√

1 − c2
1 − c2

2 ≥
√

1 − a2
1 − a2

2,
√

1 − b2
1 − b2

2.59 Notice that this is not a complete
ordering of knowledge profiles. Among workers who are not more knowledgeable than
their colleague in a specific dimension, it is not obvious who is more knowledgeable
than the other.

Problems are characterized by the knowledge that is needed to solve them
with certainty, p = (p1, p2, p3) with p1, p2, p3 ≥ 0 and p2

1 + p2
2 + p2

3 = 1 such
that p3 =

√
1 − p2

1 − p2
2. We focus on three specific problem types: p = (1, 0, 0),

p = (0, 1, 0) and p = (0, 0, 1). Dimension 1 and 2 of a problem is the realization
of a random variable such that Pr[(p1, p2) = (1, 0)] = α, Pr[(p1, p2) = (0, 1)] = β

and Pr[(p,p2) = (0, 0)] = 1 − α − β, where α, β ∈ (0, 1) and α + β ≤ 1. Problem
types are unknown ex ante, so workers do not know which knowledge dimension is
relevant to solve the problem. Compared to the baseline model, one can argue that
three-dimensional problems introduce a higher level of difficulty in the sense that
workers need to be specialized in one out of three dimensions.

As before, solving a problem occurs with probability i1p1 + i2p2 + i3p3. The
probability can only be equal to 1 if there is an exact match between knowledge profile
and problem type. The larger the angle between problem vector and knowledge
profile, the less likely the worker is to solve a given problem.

59This assumption is not without loss of generality, as we cannot exclude that it might be optimal
to have one agent who is more knowledgeable in two dimensions.
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The organizational designer determines the optimal production process by choos-
ing how workers spend their time. Particularly, the designer decides how much time
a worker spends working individually, twj , how much time they spend helping, thj ,
and how much time they spend learning, tlj . Overall, they have one time unit to
solve a problem, i.e., tw + thj + tlj = 1 for all j = A, B, C.

When workers engage in pure individual production, we do not diverge from the
assumptions of the baseline model. When twj = 1 for all j = A,B,C, the expected
output of a worker is

QjD(i1, i2) := αi1 + βi2 + (1 − α− β)
√

1 − i21 − i22,

for all j = A,B,C and i = a, b, c. The expected output takes into account that there
are three problem types that each require specialization in a different knowledge
dimension in order to be solved.

For teamwork, we need to establish some rules to guide the communication process
with three workers. We assume for now that workers can discuss one problem at a
time and that all workers are involved in the discussion.60 Since all three workers
are involved in the same communication process, they all spend the same amount
of time working individually, i.e., twA = twB = twC := tw. The time a worker spends
helping their colleagues is thj for all j = A, B, C. Since two workers simultaneously
help their third colleague, it must hold that thA + thB + thC ≤ 2. The time a worker
spends learning is tlj . Since one worker listens to both colleagues simultaneously, it
must hold that tlA+ tlB + tlC ≤ 1.Under pure teamwork, tw = 0, a worker who receives
help from their colleagues all the time (tlj = 1), has an expected output of

QTD,A = αa1 + β(b2 − K̄) + (1 − α− β)(
√

1 − c2
1 − c2

2 − K̄)

QTD,B = α(a1 − K̄) + βb2 + (1 − α− β)(
√

1 − c2
1 − c2

2 − K̄)

QTD,C = α(a1 − K̄) + β(b2 − K̄) + (1 − α− β)
√

1 − c2
1 − c2

2

The expected outputs reflect that each worker has one dimension where they are
more knowledgeable than their colleagues and two dimensions where they can learn
from their colleagues. In the dimensions where they learn from their colleagues,
workers face a fixed knowledge friction, K̄ ∈ (0, 1), that is similar to the transfer
frictions in Section 2.3.4. Transfer frictions, therefore, do not depend on workers’
knowledge profiles, such that knowledge can even be transferred if workers know
nothing about the dimension they are learning about. The total expected output of
the organization is then given by

60To be transparent, this means that a worker can learn from both colleagues at the same time.
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QD :=tw(QAD +QBD +QCD) + (sthA + tlA)QTD,A + (sthB + tlB)QTD,B

+ (sthC + tlC)QTD,C . (2.15)

The first term of (2.15) reflects the expected output from individual work, while the
other terms originate from expected output in teamwork. Notice that we also take
into account that when workers spend their time helping their colleagues they can
also learn from both colleagues via knowledge spillovers, s ∈ [0, 1].

Individual Production

First, we look at knowledge profiles under pure individual work, tw = 1. The expected
output of a worker j = A,B,C is

Qj(i1, i2) = αi1 + βi2 + (1 − α− β)
√

1 − i21 − i22

for all i = a, b, c. Under pure individual work the organizational designer maximizes
the total expected output under tw = 1 with respect to the knowledge dimension
i1, i2.

Lemma 2.B.1 Under pure individual production, tw = 1, the organizational designer
hires workers A, B and C with identical knowledge profiles such that

iI1 = α√
(1 − α− β)2 + α2 + β2 ,

iI2 = β√
(1 − α− β)2 + α2 + β2 ,

for all i = a, b, c.

Proof.
The designer’s objective function is

max
i1,i2

αi1 + βi2 + (1 − α− β)
√

1 − i21 − i22

for i = a, bc. Solving the first-order conditions for knowledge in dimension 1 and 2
yields

α

(1 − α− β)i1
= 1√

1 − i21 − i22

,

β

(1 − α− β)i2
= 1√

1 − i21 − i22

,

93



2.B. APPENDIX: EXTENSION CHAPTER 2. TEAMWORK

which gives the optimal knowledge profiles because the objective function is concave.
In case one of the problem types is drawn with certainty, i.e., α = 1 or β = 1 or
1 − α − β = 1, the expected output is monotonically increasing in the respective
knowledge dimension. Therefore, in this special cases we reach a corner solution for a
worker fully specialized in the respective dimension. For example, if α = 1, expected
output is monotonically increasing in i1, and thus all workers are optimally fully
specialized in dimension 1.

As in the baseline model, we observe that it is optimal to choose workers with
identical knowledge profiles. Knowledge dimension 1 is increasing in α and decreasing
in β while it is vice versa for dimension 2. This means if a problem that is intensive
in dimension 1 is more likely, then optimally knowledge in dimension 1 increases and
it decreases when a problem that is intensive in dimension 2 is more likely. When
each problem type is drawn with the same probability (α = β = 1

3), workers have
the same degree of specialization in each dimension:

iI1 = iI2 = iI3 = 1√
3
.

On the other hand, if one problem type arises with certainty, e.g., α = 1 so
that problem type p = (1, 0, 0) is drawn, all workers are optimally fully specialized
in dimension 1. Notice that these are the only situations where workers are fully
specialized in pure individual production. The results are qualitatively equivalent to
the baseline model.

Team Production

When we look at pure teamwork (tw = 0), a worker who receives help from their
colleagues all the time (tlj = 1), has an expected productivity of

QTD,A = αa1 + β(b2 − K̄) + (1 − α− β)(
√

1 − c2
1 − c2

2 − K̄),

QTD,B = α(a1 − K̄) + βb2 + (1 − α− β)(
√

1 − c2
1 − c2

2 − K̄),

QTD,C = α(a1 − K̄) + β(b2 − K̄) + (1 − α− β)
√

1 − c2
1 − c2

2.

Workers can learn from their colleagues in the dimensions they are not the most
knowledgeable, however, they incur the fixed transfer frictions that diminish the
transfer. Using the constraints on time allocation, the total expected output from
pure teamwork is given by

QTD =(1 + 2s)Q̄TD − (tlA + sthA)(1 − α)K̄

− (tlB + sthB)(1 − β)K̄ − (tlC + sthC)(α+ β)K̄, (2.16)
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where Q̄TD := αa1+βb2+γ
√

1 − c2
1 − c2

2 denotes the expected output from teamwork if
there were no transfer frictions. When transfer frictions are fixed, the organizational
designer decides to hire workers who are fully specialized, because transferring
knowledge is possible even if a co-worker has no knowledge in the required dimension.
Hence, the designer optimally hires workers with aT = (1, 0, 0), bT = (0, 1, 0) and
cT = (0, 0, 1). Each worker is specialized in one dimension. The optimal expected
output from pure teamwork (tw = 0) is then

QTD(aT , bT , cT ) =(1 + 2s) − (tlA + sthA)(1 − α)K̄

− (tlB + sthB)(1 − β)K̄ − (tlC + sthC)(α+ β)K̄.

Organizational Design

When we turn to the question of the optimal organizational design, the organizational
designer wants to maximize the total expected output with respect to thj , tlj and tw

for all j = A, B, C. The total expected output from (2.15) can be re-written as

QD =tw(QAD +QBD +QCD) + (1 − tw)(1 + 2s)Q̄TD − ((tlA + sthA)(1 − α)

+ (tlB + sthB)(1 − β) + (tlC + sthC)(α+ β))K̄. (2.17)

Notice that the term (1 − tw)(1 + 2s) reflects the notion that a worker can learn
from both colleagues and both colleagues can simultaneously help them. The special
case where a problem is certain ex ante, it is optimal to hire three workers who are
specialized in the relevant knowledge dimension so they can solve their problems
under pure individual work. Teamwork and communication is detrimental when
problem types are certain ex ante because a worker who helps their colleague cannot
work on their own problem.

Therefore, we focus on situations where problem types are not certain ex ante,
i.e. α, β ∈ (0, 1). Following Proposition 2.1, we can characterize the optimal
organizational design depending on knowledge spillovers, s.

Lemma 2.B.2 Suppose problem types are uncertain, α, β ∈ (0, 1). Pure teamwork
(tw = 0) is optimal if s is sufficiently high. Otherwise, pure individual work is optimal.
Problem solving in teams is structured as follows:

(i) If α = β = 1
3 , any allocation of thj and tlj for j = A, B, C is optimal that

satisfies tlA + tlB + tlC = 1 and thA + thB + thC = 2.

(ii) If 1−β
2 < α < β, workers B and C help worker A with their problem all the

time, i.e., tlA = 1, thB = thC = 1. Analogous for any case where one of 1 − α,
1 − β and α+ β is strictly smaller than the other two terms.
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(iii) If α = β > 1
3 , worker C spends all their time helping (thC = 1, tlC = 0) while

any pair tlA + tlB = 1 and thA + thB = 1 is optimal. Analogous for any case where
two of the terms 1 − α, 1 − β and α+ β are equivalent and smaller than the
third term.

(iv) If s = 1 and K̄ sufficiently small, any allocation of thj and tlj for j = A, B, C

is optimal that satisfies tlA + tlB + tlC = 1 and thA + thB + thC = 2.

Proof.
Recall that the total expected output is given by

QD = tw(QAD +QBD +QCD) + (1 − tw)(1 + 2s)Q̄TD

−
(
(tlA + sthA)(1 − α) + (tlB + sthB)(1 − β) + (tlC + sthC)(α+ β)

)
K̄. (2.18)

We first characterize the optimal choice of tlj , tlj for j = A, B, C.
(i) For α = β = 1

3 the total expected output simplifies to

tw(QAD +QBD +QCD) + (1 − tw)(1 + 2s)(Q̄TD − 2
3K̄)

such that the exact choice of thj , thj for j = A, B, C is immaterial. In this case pure
teamwork is optimal if

s >
3
√
α2 + β2 + (1 − α− β)2

2(1 − 2/3K̄
− 1

2 .

(ii) If 1 − α, 1 − β or α + β is strictly smaller than the other two terms, the
organizational designer wants to minimize the impact of the transfer frictions by
maximizing the time spent learning, tlj = 1 − tw, of the worker associated with the
strictly smallest term of 1 − α, 1 − β and α + β. This implies that the other two
workers each spend th−j = 1 − tw helping their colleague; for j = A,B,C. Pure
teamwork is optimal in this specific case if

s >
3
√
α2 + β2 + (1 − α− β)2 + (1 − α)K̄ − 1

2 − (1 + α)K̄
.

(iii) If two of the three terms 1 − α, 1 − β or α+ β are equivalent and smaller
than the third, the organizational designer minimizes the impact of K̄ on the total
expected output by choosing thj = 1 − tw for the worker associated with the largest
of the three terms 1 − α, 1 − β or α+ β. While the exact choice of time allocations
for the other two workers is immaterial as long as they satisfy the time constraints.
Pure teamwork is optimal if

s >
3
√
α2 + β2 + (1 − α− β)2 + (1 − α)K̄ − 1

2 − (1 + α)K̄
.
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(iv) If s = 1 the total expected output simplifies to

QD = tw(QAD +QBD +QCD) + (1 − tw)[3Q̄TD − 2K̄],

such that the exact choice of thj , thj for j = A, B, C is immaterial. Pure teamwork
is optimal if

K̄ <
3
2(1 −

√
α2 + β2 + (1 − α− β)2.

Next, we characterize the optimal choice of tw. In (i)-(iv), the total expected
output is linear in tw, such that it is maximized by choosing tw = 0 or tw = 1. For
sufficiently high s it is then optimal to choose pure teamwork.

Lemma 2.B.2 is similar to Proposition 2.1. Even though we do not find a specific
threshold, we can define a certain level of knowledge spillovers above which pure
teamwork is optimal. When spillovers are sufficiently high, communication between
workers is worthwhile not only for the worker who gets help but also for the workers
who are helping.

Particularly, the second part of Lemma 2.B.2 resembles Proposition 2.1 in that it
is also concerned with the optimal time allocations under pure teamwork. Special
cases (i) and (iv) reveal a situation where the specific choice of thj and tlj is immaterial.
We refer to teamwork in these cases as self-managed teamwork, because the team
decides how to allocate their time. Hence, they structure the problem solving process
on their own.

In case (ii), it is unambiguous which worker the organizational designer assigns to
spend all their time learning to minimize transfer frictions because one of the terms
in (2.17) associated with tlj + sthj is smaller than the other two. This choice implies
that the other two workers spend all their time helping. The team is managed by
the organizational designer and cannot self-manage.

In case (iii), it is not clear which worker spends all their time learning. Two
of the terms associated with tlj + sthj in (2.17) are equivalent and smaller than the
third term. Hence, in order to minimize transfer frictions the organizational designer
decides that the worker associated with the largest term spends all their time helping.
For the other two workers, the organizational designer is indifferent about how they
spend their time. It needs to be satisfied the total time learning sums up to one and
the total time spend helping sums up to two for all three workers. In this case, the
organizational designer manages one communication channel, while giving the team
authority to manage the other two communication channels on their own.
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Chapter 3
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3.1 Introduction61

Knowledge is an important input factor for production especially in today’s informa-
tion economy where firms compete through creating new and advanced products. A
firm’s competitive advantage is built on the knowledge62 that is accumulated and
created by its employees (Davenport et al., 1998b, Feldman and Sherman, 2001,
Grant, 1996, Romer and Kurtzman, 2004). Each employee brings their own set
of skills to a firm which combined with other employees’ knowledge creates new
expertise and increases their productivity (Nonaka et al., 2000).63 To use an em-
ployee’s knowledge to its full potential, it must be shared with co-workers so that
it disseminates and becomes part of the organization (Fahey and Prusak, 1998,
Davenport et al., 1998b). Managing this process is a big challenge for firms (Fahey
and Prusak, 1998, Prusak, 2001). Feldman and Sherman (2001) estimated that an
organization employing 1,000 knowledge workers loses 2.5 to 3.5 million US Dollars
due to inefficient knowledge management. Knowledge management is an integral
part of leveraging an organization’s full set of resources.

A key lever of effective knowledge management is to motivate workers to share
their expertise instead of hoarding it. Since knowledge is inherent to individuals, the
easiest way to transfer it is through formal and informal interactions (Davenport et al.,
1998b). Take for example a group of workers who is assigned to work on a project. In
regular meetings, lunches and phone calls, workers have ample chance to talk about
the project, exchange ideas, experiences and knowledge. The newly appropriated
expertise may help them tackle their individual tasks not only in the specific project
but across all their tasks in their work. However, since knowledge “belongs” to an
individual, they may have an incentive to hoard it. Exclusive knowledge can be used
as a bargaining chip in negotiations and viewed as an advantage over competitors.
Sharing such knowledge means losing the advantage (Bartol and Srivastava, 2002,
Davenport et al., 1998b). Therefore, employees might be reluctant to share their
knowledge. Furthermore, knowledge is sticky, i.e., it is costly to transfer in terms of
time and effort that go into explaining and understanding (Davenport et al., 1998b,
Nonaka et al., 2000), which also deters employees from engaging in a knowledge
transfer.

In this context, the main aim of a firm is to identify how it can motivate workers
to share their knowledge. This is especially important since interactions that lead
to a knowledge transfer between workers are hardly verifiable even though they

61I thank Maren Hahnen, Anja Schöttner, Harvey Upton as well as participants of the Microeconomic
Colloquium in Berlin for their helpful comments.
62I use the term knowledge to describe information as well as tacit and explicit knowledge – similar
to Bartol and Srivastava (2002). For a differentiated definition of knowledge consult Davenport et al.
(1998b) or Nonaka et al. (2000)
63Lazear and Shaw (2007) argue that cooperation between workers enhances productivity by
combining complementary skills, which is a part of knowledge.
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may be observable by a manager.64 In this chapter, I answer the question how
a principal can induce two agents to engage in a one-sided knowledge transfer. I
develop a dynamic model where two risk-neutral and wealth-constrained agents are
hired to each perform an individual task in a project. Before they address their task,
they decide whether they want to transfer knowledge which increases the receiver’s
task-related productivity while it is costly for both sender and receiver. The principal
can neither observe agents’ task nor transfer effort level, they just receive a joint
performance signal of the project. I study the optimal contracts when a principal
can commit to a contract at the beginning of the game and when they can only
offer a contract after agents already chose their transfer effort level. For the latter
environment, it is important that the principal observes whether a knowledge transfer
occurred, however, that information is not verifiable. I analyze how the principal
can induce a transfer and under which conditions it is optimal to do so for each
contractual environment. To evaluate the difference of the environments, I determine
whether there is a value in commitment.

Solving the model for Nash equilibria, I find that with and without commitment
a knowledge transfer can be optimal under specific conditions. When the principal
cannot commit to a contract at the beginning of the game, the principal pays the
agents a rent for their task effort. Given the agents engage in a knowledge transfer,
the principal can pay the knowledge receiver a lower rent to induce a task effort
because their productivity increases. Thus, a knowledge transfer can be cost-saving
for the principal. A knowledge transfer is an equilibrium when it is optimal to offer
a contract where both agents receive a positive rent only after the principal observed
a non-verifiable transfer. When the principal does not observe a knowledge transfer,
they can credibly threaten the agents to not pay both of them a rent. Therefore, the
agents face a lower expected pay-off when they do not transfer knowledge due to the
joint performance signal.

However, when the principal can commit to a contract at the beginning of the
game, they pay the agents a rent for their task and their transfer effort(s). They can
induce a knowledge transfer in equilibrium when they at least implement a task effort
from the knowledge receiver, such that a transfer is worthwhile in terms of realizing
the productivity increase. Off-equilibrium, that is when the agents do not engage in
a knowledge transfer, the probability for a success must be lower than on-equilibrium
path. In both contractual environments, the joint performance signal drives the
knowledge transfer, in that the principal uses the fact that the outcome depends on
both agents’ task effort choice to induce them to choose a high transfer effort given it
is the other agent’s best response. In this model, it is not clear that commitment is
always better for the principal even though the first-best allocation can be achieved
under commitment. With commitment power, the principal pays the agents a rent

64Knowledge transfers are hard to grasp in that they are complicated to measure except if they
take the form of contributions to company wikis or exchange forums (Davenport et al., 1998a), e.g.
Stack Exchange.
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that compensates them for their task and their transfer effort. Without commitment
power a higher expected profit can be reached, because they only pay agents a rent
that compensates them for their task effort and still induces a knowledge transfer.

This chapter is structured as follows. After classifying the chapter into the
existing literature, I introduce the model set-up. In Section 3.3, I analyze the model
with a principal who has no commitment power. This is followed by the analysis of
the model with commitment. Before I conclude, I explore in Section 3.5 whether it
is better to have commitment power.

3.1.1 Related Literature

This chapter is related to a set of articles on knowledge and information transfer,
team theory and knowledge-based theory of the firm.

The article closest to this chapter is Siemsen et al. (2007). They study different
types of linkages between employees and how a principal induces the employees to
cooperate. Just as in my model, knowledge-linked agents can engage in a productivity-
increasing knowledge transfer. In contrast to this chapter, the knowledge transfer
in Siemsen et al. (2007) is two-sided. In a static model with risk-averse agents,
they find that individual and group incentives are necessary to induce cooperative
behavior. The agents transfer knowledge, if the recipient uses it to increase their
outcome such that the sender can benefit from it through the group component of
the incentives. This chapter, in contrast, studies a dynamic model with risk-neutral
and wealth-constrained agents. Through a joint performance signal, the principal
can motivate a non-verifiable knowledge transfer by paying each agent a rent. This
implies that a team incentive is sufficient to induce a one-sided knowledge transfer.

d’Aspremont et al. (1998) and Severinov (2001) study knowledge transfer in
R&D projects with competitive firms. d’Aspremont et al. (1998) focus on the issue
of motivating knowledge transfer and effort. While exerting effort is a standard
moral hazard problem, knowledge transfer is viewed as an adverse selection problem
considering the strategic aspects of information exchange. Hence, d’Aspremont et al.
(1998) examine the interaction between moral hazard and adverse selection, whereas
Severinov (2001) considers a dual moral hazard problem, taking into account the flow
of information between firms and the need to regulate the transfer of information.
Both models have in common that they look at the strategic aspects of knowledge
transfer in a setting with competitive firms. My model distinguishes itself from these
as it focuses on intra-firm knowledge transfer without discussing implications outside
of the firm.

Another environment where knowledge is shared are apprenticeships which are
studied in Garicano and Rayo (2017) and Fudenberg and Rayo (2019) who build on
each other. While Garicano and Rayo (2017) focus on the speed at which knowledge
is transferred in the dynamic relationship between expert and novice, Fudenberg and
Rayo (2019) expand the model by also considering the novice’s effort. In the latter
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model, a principal shares knowledge with an apprentice in return for effort. The
principal specifies the optimal effort path, task allocation and knowledge transfer.
The optimal contract, however, is inefficient for the principal as they train the
apprentice inefficiently slowly to reduce the apprentice’s outside option. Both articles
conclude on this same result. In addition, Fudenberg and Rayo (2019) show that
the apprentice works inefficiently hard for the training. My set-up differs from these
articles, as in my model neither sender nor recipient of knowledge have authority
such that knowledge cannot be traded for effort. Furthermore, in the articles by
Fudenberg and Rayo (2019) and Garicano and Rayo (2017) knowledge affects not
only the novice’s productivity but also their outside option, while in my model the
knowledge transfer only has an effect on the receiver’s productivity.

In addition, this chapter also contributes to the literature on team theory which
studies incentives that induce cooperation between agents. In its general set-up,
the effort choice in my model resembles a static version of the dynamic game in
Che and Yoo (2001). They study the effect of repeated interaction on incentives
for teams and find that repeated interaction between agents leads to peer pressure
with a feasible punishment strategy. That way implicit incentives for agents increase
and the principal can reduce explicit incentives. I study a two-period game, where
the second period is based on the one-shot game in Che and Yoo (2001). However,
the first period in my model is detached from Che and Yoo (2001) and examines
a specific form of cooperation between agents, a knowledge transfer. The research
on team theory originates from Holmstrom (1982) who studies moral hazard in a
multi-agent setting. He focuses on the role of free-riding and competition between
agents in determining optimal incentives. His two main findings are: firstly, group
incentives can resolve the free-riding problem and, secondly, competition in the form
of relative performance evaluation reduces moral hazard costs due to information
elicited through the contract.

In this tradition, Holmstrom and Milgrom (1990) investigate under which condi-
tions a principal wants to compensate agents as a team. They find that even when
two agents perform technologically independent tasks, team compensation can be
optimal. It is optimal when agents are risk-averse and face negatively correlated risks.
If risks are interdependent, each agent’s output signal contains information about
the other agent as well. According to the informativeness principle, this information
should be used in compensation schemes to reduce the risk premium paid to the
agents. Itoh (1991, 1992) researches in a similar vein, analyzing at what point a
principal wants to induce cooperation among groups of agents. In Itoh (1991), agents
can engage in an effort task and in helping another agent, where helping affects the
task outcome. The principal induces teamwork, i.e., agents work on their task and
also help each other if agents do not free-ride on the help they receive but increase
their task-related effort with help. In his later article Itoh (1992) there are two
agents who each exert effort in the same two tasks. This way, the agents can act as
a team. He shows that if agents are compensated as a team, the principal benefits
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from side-contracting of agents. The principal can induce the same effort levels while
paying a lower risk premium due to the agents monitoring activity.

Related to Holmstrom and Milgrom (1990) and Itoh (1991, 1992) is Macho-Stadler
and Perez-Castrillo (1993) who discuss the optimal incentive structure for cooperative
behavior when cooperation between risk-averse agents is technically profitable and
agents have different levels of commitment capacity to cooperate. In a team setting,
agents make all their decisions together and the efficient level of cooperation can be
realized with a sharing rule. However, the principal gives up the power to determine
individual rewards. A group of agents that only decide on their collaboration level
together but not on their individual efforts, reaches a higher than optimal cooperation
level. The articles on team theory all study general cooperative behavior and how a
principal can induce it. In all these articles, cooperative behavior affects the task
outcome. I contribute to this literature by focusing on knowledge transfer as a
specific type of cooperation that affects the productivity of the agent who receives
knowledge. The principal pays the agents rents to exert effort for individual tasks of
a joint project and thus can also induce the agents to cooperate.

Lastly, Grant (1996), Nickerson and Zenger (2004) and Osterloh and Frey (2000)
qualitatively develop a knowledge-based theory of the firm and discuss coordination
problems that arise from using, generating and transferring knowledge. Garicano
(2000) regards knowledge as the central ingredient to production in his model and
identifies acquisition, communication and use of knowledge as the coordination
problems that arise in organizations. Such problems emerge because knowledge is
dispersed among workers who face a time constraint. In his model, an organization
optimally takes the form of a knowledge-based hierarchy. That is, workers on the
production floor try to solve problems and ask managers in the next higher layer for
help if they cannot solve a problem. Agents in each hierarchy layer have the same
knowledge which is ranked by complexity. This literature deals with coordination
problems of knowledge and complements the literature on incentive problems that
concern knowledge. Together they explain the role knowledge plays in a firm and
how it can be managed. This chapter contributes to this literature by helping to
understand how a knowledge transfer, that only benefits one agent, can be induced.

3.2 Model
A principal hires two agents, A and B, to each perform a task. All parties are
risk-neutral and the agents are protected by limited liability such that the principal
cannot pay negative wages.65 I assume that the agents’ outside option is zero. If the
principal hires the agents, they interact with each other for two periods, t = 1, 2.

In t = 1, agent A can transfer knowledge to agent B such that B is more
productive in the following period. Both agents must simultaneously decide whether

65A simple explanation for this assumption is that the agents have no wealth.
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they want to transfer knowledge. They make a binary effort decision, ei ∈ {0, 1} for
i = A,B at the cost of ρei ≥ 0 with ρ > 0. The transfer is costly for agent A because
they have to “teach” agent B. For B it is costly because they have to “learn” from A.
The knowledge transfer takes place if and only if both agents exert a high effort, i.e.,
eA = eB = 1 and thus T = 1. Otherwise, knowledge is not transferred, i.e., T = 0.
The principal cannot observe the agents effort choice but they can observe whether a
transfer took place. The information, however, is not verifiable. This can happen for
example when a principal witnesses two agents talking about work. The interaction
between the agents suggests that some form of knowledge transfer might take place,
however, it is not verifiable by a third party. Such situations are common in various
organizations where one worker needs help with a task they have less experience in.
They ask a co-worker for help who, e.g., was assigned a similar task before and can,
therefore, talk from experience.

After a knowledge transfer took place, T = 1, agent B’s production cost in t = 2
is reduced by factor 0 < α(T = 1) < 1. When there was no transfer, agent B’s
production cost in t = 2 is multiplied by α(T = 0) = 1. That is the value of α
depends on T such that

0 < α(T )

= 1 if T = 0

< 1 if T = 1.

In t = 2, both agents address their assigned tasks which belong to the same project.
Each agent decides to exert a high or low effort towards their task, i.e., agent A
chooses a ∈ {0, 1} and agent B chooses b ∈ {0, 1}. Choosing a high effort is costly
for the agents. For agent A their task is costly with ψa ≥ 0 with ψ > 0. The task
effort cost of agent B depends on whether a transfer took place in t = 1, such that
effort costs are α(T )θb ≥ 0 with θ > 0 and 0 < α(T ) ≤ 1. Whereas, agent A cannot
directly gain from a knowledge transfer. The principal cannot verify the agents’
task effort choice, however, the principal observes the verifiable joint outcome of the
project, which A and B contribute to with their tasks. The outcome, Y , is binary
such that the project is either successful, Y = 1, in which case the principal receives
a revenue R > 0 or the project failed, Y = 0, then the principal receives nothing.
The probability of a successful outcome depends on agents’ effort choices in t = 2,

Pr[Y = 1|a, b] = pab.

The success probability satisfies p11 > p10 ⋛ p01 > p00 ≥ 0. Notice, that I do not
make an assumption about whether the success probability is higher or lower when
only agent A exerts a task effort compared to when only agent B exerts a task effort.
Even though agent A shares knowledge with agent B this does not necessarily imply
that agent A is more productive. It might as well be that agent B’s task is more
crucial for the project’s success.
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t

Agents choose
ei ∈ {0, 1}

T ∈ {0, 1} observed
by principal and agents

Principal proposes
wi = (w̄i, wi)

Agents accept
or reject wi

If agents accept,
they choose
a, b ∈ {0, 1}

Outcome is
realized

Figure 3.1: Timeline without commitment

The principal offers the agents a contract that depends on the project’s outcome.
In case of success, the agents receive a wage w̄i for i = A,B. In case of a failure, the
agents receive a wage wi. Hence, the principal offers a contract wi = (w̄i, wi) for
i = A,B. The principal’s objective is to maximize their expected profit.

In the analysis of this model, I look at two different contractual environments, that
are determined by the role of commitment. When the principal has no commitment
power, they can only propose a contract in the beginning of the second period. This
implies that the principal cannot directly induce the agents on their action in the first
period when they set up the contract. The timeline for the game in this contractual
environment is shown in Figure 3.1. A situation like this can arise when the agents
already work for the principal but are offered new contracts such that a contract is
only provided in the second period.66 This way the agents have the opportunity to
exchange relevant knowledge before they sign a contract with the principal.

In this contractual environment, assuming that the principal is able to observe
whether a transfer took place is a crucial assumption because the principal observes
T before they offer a contract. Thus, they can select a contract accordingly.

In the second contractual environment, the principal can commit to a contract in
the beginning of the first period. The principal uses long-term contracts to hire two
agents who work on the same project and can transfer knowledge. The timeline for
the game in this contractual environment is depicted in Figure 3.2. Notice that when

t

Principal proposes
wi = (w̄i, wi)

Agents accept
or reject wi

If agents accept,
they choose
ei ∈ {0, 1}

T ∈ {0, 1} observed
by principal and agents

Agents choose
a, b ∈ {0, 1}

Outcome is
realized

Figure 3.2: Timeline with commitment

the principal has commitment power it makes no difference whether they observe
T ∈ {0, 1}, because they cannot use the additional information as they commit to a
contract ex ante. So in this environment, assuming that the principal can observe
whether a transfer takes place is irrelevant.

66Alternatively, it could be that the principal hires two agents who already interacted with each
other previously. During a job interview the principal can learn about their previous interactions.
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To determine the first-best contract, suppose that both agents are induced to
exert a task effort. Therefore, they are each paid an expected wage equal to their
respective effort costs. From a social planner’s perspective a knowledge transfer in
the first period is efficient if

θ > α(1)θ + 2ρ, (p11 − p10)R > α(1)θ + 2ρ,

(p11 − p01)R > ψ − θ(1 − α(1)) + 2ρ, (p11 − p00)R > ψ + α(1)θ + 2ρ.

I derive the conditions by comparing the expected pay-off for T = 1 and both agents
exerting effort to the expected pay-offs for T = 0 and the different task efforts
that can be implemented.67 The first condition shows that the total costs from a
knowledge transfer must be lower than B’s task effort costs without a knowledge
transfer, i.e., a knowledge transfer must be profitable. The following three conditions
reveal that the gain from knowledge transfers and both agents exerting a task effort
must be larger than the sum of the respective effort costs.

When solving this game for Nash equilibria, I focus on equilibria with a knowledge
transfer. The principal’s aim is to maximize their profit given that a transfer occurred.
In the analysis of each contractual environment, I derive parameter restrictions under
which a knowledge transfer is profitable for the principal.

3.3 No Commitment
In this section, the principal does not commit to a contract in the first period. They
observe T ∈ {0, 1} and only afterwards offer a contract to the agents. I focus on
determining conditions under which knowledge transfer is a Nash equilibrium in the
first period. Solving the game via backward induction, I start by defining the optimal
contract in the second period given the outcome of the first period.

To that effect, I first characterize the respective contracts that minimize the
principal’s expected costs for inducing a given second-period effort profile. The
principal has the option to induce both agents, only one agent or none of them to
exert a task effort.

67Comparing it to the pay-offs without a transfer is more restrictive than the pay-offs with a
knowledge transfer due to the transfer costs.
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Lemma 3.1 The contracts wi = (w̄i, wi) minimizing the principal’s expected costs
for a given second-period effort profile, (a, b), are

(i) wA =
(

ψ
p11−p01

, 0
)

and wB =
(

α(T )θ
p11−p10

, 0
)

to implement (1, 1).

(ii) wA = (0, 0) and wB =
(

α(T )θ
p01−p00

, 0
)

to implement (0, 1).

(iii) wA =
(

ψ
p10−p00

, 0
)

and wB = (0, 0) to implement (1, 0).

To induce both agents to exert no task effort, a wage of zero in both states suffices.
Proof. See Appendix.

Lemma 3.1 presents the four different contracts for the possible effort profiles of A
and B. In (i), (ii) and (iii) there is at least one agent who is induced to exert a high
effort. In order to induce agents to exert a high effort, the principal pays them a
positive rent when the project is successful and a wage of zero when it fails. Because
of the agents’ limited liability, the principal cannot use a negative wage to punish
them. Instead, the limited liability condition is binding in case of failure and in case
of success the principal pays a wage that more than compensates agents for their
effort costs. Thus, inducing an agent to exert effort. In order to induce an agent to
exert no effort, it is sufficient to pay them a zero wage for both outcomes, i.e., limited
liability conditions are binding for both wages. Lemma 3.1 further shows that agent
A’s wages are independent of the first-period outcome for all second-period effort
profiles. By contrast, agent B’s rents depend on T since the value of factor α(T ) is
determined by the outcome of the first period. Hence, whenever the principal induces
B to exert effort, the value of the rent is determined by the knowledge transfer.
Suppose for example that T = 1, B’s rent in part (i) and (ii) of Lemma 3.1 are
multiplied by 0 < α < 1, such that B’s productivity gain from a knowledge transfer
is directly translated into lower rent and thus into a gain for the principal. Therefore,
if it is optimal for the principal to induce agent B to exert a task effort, they can
directly benefit from a knowledge transfer in the first period.

In Lemma 3.1, the second-period optimal contracts were established. Now given
the outcome of the first period, we determine the optimal contracts.

Proposition 3.1 For T ∈ {0, 1} it is optimal to implement second-period effort
profile

(i) (1, 1) if R is sufficiently high, i.e., if the following three conditions hold

R ≥ p11
p11 − p01

(
ψ

p11 − p01
+ α(T )θ
p11 − p10

)
− p01
p11 − p01

α(T )θ
p01 − p00

, (3.1)

R ≥ p11
p11 − p10

(
ψ

p11 − p01
+ α(T )θ
p11 − p10

)
− p10
p11 − p10

ψ

p10 − p00
, (3.2)

R ≥ p11
p11 − p00

(
ψ

p11 − p01
+ α(T )θ
p11 − p10

)
. (3.3)
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(ii) (0, 1) if R takes on intermediate values, specifically under the following three
conditions

R ≤ p11
p11 − p01

(
ψ

p11 − p01
+ α(T )θ
p11 − p10

)
− p01
p11 − p01

α(T )θ
p01 − p00

, (3.4)

R ≥ p01α(T )θ
(p01 − p10)(p01 − p00) − p10ψ

(p01 − p10)(p10 − p00) , (3.5)

R ≥ p01α(T )θ
(p01 − p00)2 . (3.6)

(iii) (1, 0) if R takes on intermediate values, specifically, under the following three
conditions

R ≤ p11
p11 − p10

(
ψ

p11 − p01
+ α(T )θ
p11 − p10

)
− p10
p11 − p10

ψ

p10 − p00
, (3.7)

R ≥ p10ψ

(p01 − p10)(p10 − p00) − p01α(T )θ
(p01 − p10)(p01 − p00) , (3.8)

R ≥ p10ψ

(p10 − p00)2 . (3.9)

(iv) (0, 0) if R is sufficiently low, i.e., if the following three conditions hold

R ≤ p11
p11 − p00

(
ψ

p11 − p01
+ α(T )θ
p11 − p10

)
, (3.10)

R ≤ p01α(T )θ
(p01 − p00)2 , (3.11)

R ≤ p10ψ

(p10 − p00)2 . (3.12)

Proof. See Appendix.

Proposition 3.1 shows the optimality conditions of the different contracts. The
conditions trade-off the principal’s expected revenue and wage costs of the respective
contracts derived in Lemma 3.1. Notice that the conditions are set up to include
both first-period outcomes T = 1 and T = 0. For each contract there are three
conditions because the principal’s expected profit from implementing a specific effort
profile is compared to the expected profit from each of the three remaining effort
profiles.

The conditions in part (i) ensure that the principal’s expected profit is largest
when they implement effort profile (1, 1). If they are satisfied, the principal pays
both agents a rent so that they both exert an effort, thus increasing the probability
of success. This can only be profitable if the revenue is sufficiently high so that the
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principal can afford the wage costs. Conditions (3.2) and (3.3) are easier satisfied for
T = 1, because B’s rent is lower due to the productivity gain.

Contrary to part (i) is part (iv) since neither agent is induced to exert a task
effort. The conditions guarantee that the expected profit is highest when the principal
implements effort profile (0, 0). This implies that the principal incurs no wage costs
but also that there is a lower probability of success. If the revenue is low, the principal
cannot afford to pay rents and thus not implementing effort from both agents is
optimal. In opposition to (i), conditions in (iv) are more restrictive for T = 1 than
for T = 0. Because B’s rent becomes more affordable for the principal after a transfer
occurred, the conditions are easier satisfied for T = 0.

If the revenue takes on intermediate values, it is profitable for the principal to
induce one of the agents to exert an effort, however, they can only afford to pay
one rent. Whether they induce agent A or agent B to work depends on the relation
between p01 and p10 together with the task effort costs, ψ and α(T )θ. Part (ii)
expresses the conditions for which it is optimal to offer a contract that induces only
B to exert an effort. Part (iii) states the conditions for which it is optimal to only
induce A to exert an effort. In both parts, the first condition indicates that R must
not be too large otherwise the principal can afford to pay both agents a rent. The
respective second and third conditions bound the revenue from below. While the
respective last conditions make sure that the revenue is not too low so that it is
profitable to pay one rent. The right-hand side of the respective second conditions
are not necessarily positive.68 Thus, it is ambiguous whether the conditions in (ii)
and (iii) are easier satisfied for T = 1 or T = 0. Nevertheless, it is intuitive that the
third restriction of (ii) is less restrictive for T = 1 since the principal pays a lower
rent to agent B, whereas the first restriction of (iii) is more easily fulfilled for T = 0
because lowering B’s rent makes it more affordable to induce agent B to exert an
effort instead of agent A.

The analysis of the second period has shown that a productivity-enhancing
knowledge transfer implies that the principal can induce agent B to exert an effort
for a lower rent. Furthermore, depending on the parameter values, all available
contracts can be optimal given the outcome of the first period.

Turning to the first period, I analyze the agents’ transfer effort choice and focus
on characterizing the conditions under which exerting a high transfer effort is a
mutual best response for both. For the agents to engage in a knowledge transfer it
has to pay off to incur the additional effort costs ρ. However, the principal cannot
directly compensate them since they only offer them a contract in the beginning of
the second period. Thus, given the optimal contract, their overall expected pay-off
has to be larger for T = 1 than for T = 0. This already implies that agents only exert
a transfer effort if they earn a rent, since otherwise their expected pay-off would be
negative. Therefore, it must be optimal for the principal to induce effort profile (1, 1)

68For small ψ the right-hand side of (ii)’s second condition is positive and, therefore, negative for
the second condition in (iii).
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for T = 1, so that they pay each agent a positive rent to compensate them for the
transfer effort costs.

Proposition 3.2 Given the optimal contract implements second-period effort profile
(1, 1) for T = 1,

- and it is optimal to implement effort profile (0, 1) for T = 0, a knowledge
transfer is a subgame-perfect Nash equilibrium if

ψ ≥
p11 − p01

p01
ρ and α(1)θ ≥

p11 − p10

p10

 p00

p01 − p00
θ + ρ

 .
- and it is optimal to implement effort profile (1, 0) for T = 0, a knowledge

transfer is a subgame-perfect Nash equilibrium if

ψ ≥
(p11 − p01)(p10 − p00)

p01p10 − p11p00
ρ and α(1)θ ≥

p11 − p10

p10
ρ.

- and it is optimal to implement effort profile (0, 0) for T = 0, a knowledge
transfer is a subgame-perfect Nash equilibrium if

ψ ≥
p11 − p01

p01
ρ and α(1)θ ≥

p11 − p10

p10
ρ.

Proof. See Appendix.

Proposition 3.2 lists the three feasible cases in which, if the parameter conditions
are satisfied, an agent’s expected pay-off is higher when they engage in a knowledge
transfer rather than refraining from it given that their co-worker also engages in a
knowledge transfer. In all cases, it is the agents’ mutual best response to choose a
high transfer effort if the costs from the transfer effort is not too high or alternatively
if the costs from the task effort, i.e., ψ for agent A and α(1)θ for agent B, are
sufficiently high. As a consequence, the agents’ expected rent from the second period
is large enough to compensate them for the costs from the transfer effort. In case of
agent B, this implies that α(1) must not be too low and therefore the gain from the
knowledge transfer must not be too high. Consequently, agent B’s rent is sufficiently
large. In all three cases, the agents gain from a transfer through a higher success
probability for T = 1 than for T = 0 because the principal induces both agents to
exert a task effort for T = 1. This is especially relevant for agent A in the first case
and agent B in the second case because the respective agent is induced to exert a
task effort for both T = 1 and T = 0. Thus, the conditions for these cases are more
restrictive. The last case combines the less restrictive conditions for both agents,
because both agents receive a wage of zero for T = 0. The agents do not exert
a transfer effort given that it is optimal to implement the same effort profile for
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T = 1 and T = 0. In that situation agents always receive a lower expected pay-off
when they exert a transfer effort. Likewise, given that it is optimal to implement
an effort profile that pays one or both agents a zero wage for T = 1, the agent(s)
do not choose a high transfer effort since they would incur the additional costs ρ
without compensation. Notice that for each case presented in Proposition 3.2 there
exists another Nash equilibrium where agents choose no transfer effort such that no
knowledge transfer occurs. However, under the given parameter restrictions on the
effort costs, the Nash equilibrium where both agents exert a transfer effort yields a
higher expected pay-off.

In terms of the optimal contract, all three cases have in common that for T = 1
it must be that the revenue is large enough so that it is optimal to induce both
agents to exert a task effort and pay them a rent in the second period. The cases
are distinct in the optimal contract for T = 0. In the first two cases, R must take
intermediate values so that the principal can afford to induce one agent to exert a
task effort, whereas in the last case the revenue must be low so that none of the
agents receives a rent and exerts an effort. It follows that a knowledge transfer is
profitable for the principal for R sufficiently large to induce effort profile (1, 1) for
T = 1 (cf. part (i) of Proposition 3.1). While simultaneously R cannot be too large
for T = 0, so that the principal does not implement effort profile (1, 1) for T = 0,
as well. That is either restriction (3.4), (3.7) or (3.10) from Proposition 3.1 must
hold for T = 0. In all three cases after the principal observed T = 1 the agents are
induced to exert a second-period task effort. It is the agents’ mutual best response
to choose a transfer effort.

When the principal cannot commit to a contract but can observe the outcome of
the first period, a knowledge transfer can be achieved if the principal’s revenue takes
an intermediate value where they can only pay both agents a rent if a knowledge
transfer occurred. Through the transfer one of the agents becomes more productive in
their task which in return leads to cost saving for the principal. It is less expensive to
induce this agent to exert effort towards their task after a knowledge transfer. When
the revenue fulfills the conditions in the paragraph above, the principal can credibly
threaten to not pay both agents a rent if they do not observe a knowledge transfer.
That is, in case the agents do not engage in a knowledge transfer one or both of
them would forego a rent. Additionally, the probability for a success of the joint
project decreases since the probability is highest when both agents exert a task effort.
Therefore, both agents have something to loose when a knowledge transfer does not
take place. When a principal receives a joint signal about the performance of both
agents, e.g. agents work in a team, and they commit to a contract only after they
observed a non-verifiable outcome, they can induce the agents to transfer knowledge
even though they do not directly compensate them for the transfer costs. Due to the
trade-off between rent extraction and efficiency, only a second-best allocation can be
reached.
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3.4 Commitment
In this section, the principal commits to a contract at the beginning of the first
period. Therefore, it is irrelevant whether they observe T , since they cannot use the
information for the contract they offer. Different from Section 3.3, in this section
the principal determines whether to induce a knowledge transfer and chooses effort
profiles for T = 1 and T = 0 at the beginning of the first period. I focus on contracts
that induce a knowledge transfer while maximizing the principal’s expected profit.

To that effect, I first characterize all contracts that induce a knowledge transfer
by means of the effort profiles implemented for T = 1 and T = 0. Afterwards, I
determine the optimal contract among these and define a condition under which the
knowledge transfer is profitable for the principal.

Proposition 3.3 The principal can only induce a knowledge transfer when they
implement second-period effort profiles

(i) (1, 1) for T = 1 and (1, 0) or (0, 0) for T = 0 or

(ii) (0, 1) for T = 1 and (1, 0) or (0, 0) for T = 0.

In the resulting Nash equilibria it is the agents’ mutual best response to exert a
knowledge transfer and at least agent B exerts a task effort.
Proof. See Appendix.

Proposition 3.3 describes all contracts that lead to a knowledge transfer in equilibrium.
We learn that a knowledge transfer is only part of a Nash equilibrium if the principal
induces both agents or only agent B to exert a task effort on-equilibrium path, i.e.
for T = 1. Off-equilibrium path, the principal either implements second-period effort
profile (1, 0) or (0, 0). By inducing effort profile (1, 0) or (0, 0) off-equilibrium path,
in part (i) of Proposition 3.3 the principal provides the agents with an incentive to
exert a transfer effort as mutual best response since the success probability is lower
off-equilibrium path than the success probability on-equilibrium path. For part (ii),
it is more complicated because previously I made no assumption on the relation
between the success probabilities p10 and p01, i.e., p10 ⋛ p01. However, the specific
wages for part (ii) reveal that p10 ≥ p01 so that the limited liability constraints
can be satisfied.69 Therefore, the same argument of a lower success probability
off-equilibrium path applies for part (ii) as well.

As in Section 3.3, in order to induce agents to exert task efforts the principal
pays them a positive rent in case of success and a wage of zero in case of failure due
to the limited liability conditions. However, different from Section 3.3, the principal
also pays a rent to agent A even when they are not induced to exert a task effort
on-equilibrium path, i.e. in part (ii) of Proposition 3.3. That is because the principal
compensates agents not only for their task effort costs if applicable but also for their
transfer effort costs.
69The specific wages of the contracts are derived and described in the Proof. See Appendix.
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The contracts in Proposition 3.3 are the only ones that result in a Nash equilibrium
with a knowledge transfer. For the contracts described in the proposition, firstly, this
implies that the principal cannot induce a knowledge transfer when they implement
the same second-period effort profiles on- and off-equilibrium path. If the principal
were to implement the same second-period effort profile on- and off-equilibrium path,
i.e., (1, 1) for part (i) and (0, 1) for part (ii), agent A would have no incentive to
exert a transfer effort. In contrast to agent B, agent A cannot benefit from an
increased productivity through the knowledge transfer and there is also no gain
from a higher success probability. Instead agent A only incurs the additional effort
costs ρ > 0 if they exert a transfer effort. Thus, a knowledge transfer is not a Nash
equilibrium. Secondly, specific to part (i) of Proposition 3.3 a knowledge transfer in
equilibrium cannot be reached when implementing effort profile (0, 1) off-equilibrium
path. Similarly, for part (ii) a knowledge transfer in equilibrium cannot be reached
for effort profile (1, 1) off-equilibrium path. The intuition for part (i) and (ii) is the
same. In both cases, only agent A would be induced to choose a different task effort
on- and off-equilibrium path. However, this is not feasible since A’s performance
in the second period is not directly affected by the outcome of the first period.
Therefore, the principal cannot induce agent A to change their behavior based on
the first-period outcome and implement the proposed effort profiles. Thirdly, the
principal can also not induce a transfer when they implement effort profile (1, 0) or
(0, 0) on-equilibrium path. Intuitively, the principal cannot benefit from a knowledge
transfer if agent B whose productivity increases through the knowledge transfer is
not induced to exert a task effort on-equilibrium path. The principal only incurs
the costs from paying higher rents to induce a knowledge transfer without gaining
from the productivity-increasing transfer since agent B does not exert an effort.
Furthermore, for effort profile (0, 0) on-equilibrium path, all off-equilibrium path
effort profiles lead to a success probability that is at least as high as on-equilibrium
path.

To determine the optimal contract among the contracts characterized in Proposi-
tion 3.3, I assume for tractability that p11 > 0 and p10, p01, p00 = 0. This implies
that a positive success probability is only reached when both agents exert a task
effort. That is, for production both agents’ effort is needed which is common in
situations where two employees work on the same project.

Proposition 3.4 Suppose that p11 > 0 and p01, p10, p00 = 0, the optimal contract,
among the contracts that induce a knowledge transfer in equilibrium, implements
second-period effort profile (1,1) for T = 1 and (0, 0) for T = 0 with

wA∗ =
(
ψ + ρ

p11
, 0
)

and wB∗ =
(
α(1)θ + ρ

p11
, 0
)
.

The contract achieves the first-best allocation.
Proof. See Appendix.
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The principal induces both agents to exert task effort on-equilibrium path without
paying them a rent. Instead they only compensate agents for their participation. It
is the agents’ mutual best response to exert a transfer effort. Thus, the principal
achieves the first-best allocation. Under the simplifying assumption, any second-
period effort profile where only one agent is induced to exert effort can neither
be implemented on- nor off-equilibrium path. The reason is that they incur their
respective effort costs, however, the success probability remains zero if they are the
only one exerting a task effort, so that they do not benefit from the exerted effort.
Therefore, the Nash equilibrium in Proposition 3.4 is unique.

The principal profits from inducing a knowledge transfer if θ > α(1)θ + 2ρ and
p11R > ψ+α(1)θ+2ρ. The first condition states that the total costs from a knowledge
transfer must be below the costs without a knowledge transfer. This condition is
equivalent to the condition derived in Section 3.2 for the first-best allocation. The
second condition simply specifies that the expected revenue from the optimal contract
must be larger than the costs. This condition corresponds to the last condition
derived for the first-best allocation.70

The first-best outcome can also be reached for p11 > p10 ⋛ p01 > p00 = 0. In
equilibrium the agents engage in a knowledge transfer and both exert a task effort,
while off-equilibrium path the principal implements effort profile (0, 0). The principal
does not pay the agents a rent as long as θ p11

p01
≥ α(1)θ + ρ and p11−p10

p10
ψ ≥ ρ, i.e.,

as long as the costs from a transfer are below the costs without a transfer. The
assumption on the success probabilities is less restrictive, since it is only presumed
that if both agents do not exert a task effort the project fails with certainty. However,
under this assumption the Nash equilibrium is not unique and deriving the conditions
under which the contract is optimal and when the transfer is profitable are not
tractable.

When the principal has commitment power, they can commit to compensating
the agents for their transfer costs and induce a knowledge transfer in equilibrium.
In order to do so the principal must at least offer agent B an incentive to exert a
task effort in the second-period. As shown in Proposition 3.3, when the principal
induces a knowledge transfer, the agents gain from a higher success probability
on-equilibrium path compared to off-equilibrium path. This is similar to the case
without commitment: Under certain conditions regarding the revenue, the principal
provides an incentive for a transfer by implementing effort profile (1, 1) only after
they observed a transfer. Thus, agents are faced with a lower success probability
when they did not engage in a knowledge transfer. What is different between the
two contractual frameworks, however, is that the principal always pays agents a rent
when they induce a knowledge transfer under commitment. As a result, the first-best
allocation can be reached when the principal has commitment power.

70I do not need to compare the expected profit from the optimal contract to a contract where
second-period effort profile (1, 0) or (0, 1) is implemented since they cannot be achieved under the
simplifying assumption.
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3.5 Value of Commitment
This section proceeds on the assumption that a principal wants to induce a productivity-
increasing knowledge transfer between agents. When looking at the contracts in
Sections 3.3 and 3.4, the structures differ when the principal has commitment power
versus when they do not. When the principal has no commitment power, they offer a
contract at the beginning of the second period after they observed T ∈ {0, 1}. Thus,
they can implement a different effort profile for T = 1 and T = 0. Given it is optimal
for the principal to induce effort profile (1, 1) after T = 1 and a different effort profile
after T = 0, under certain restrictions (cf. Proposition 3.2) it is the agents’ mutual
best response to exert a transfer effort. Hence, without commitment a transfer can
only be realized in equilibrium when the principal implements effort profile (1, 1) after
T = 1 and a different effort profile after T = 0. When the principal has commitment
power, they offer a contract at the beginning of the first period without observing T .
It implements an effort profile for T = 1 and T = 0 and can provide an incentive
to exert a transfer effort as a mutual best response. The contracts that lead to a
knowledge transfer in equilibrium implement effort profile (1, 1) or (0, 1) for T = 1
and respectively a different contract for T = 0 (cf. Proposition 3.3).

Commitment can provide a value to the principal in that they can also induce
effort profile (0, 1) for T = 1 and still reach a Nash equilibrium with a knowledge
transfer. This proves to be valuable in situations where the revenue is so low that
it is not optimal for the principal to pay two rents and induce effort profile (1, 1)
without commitment (cf. Proposition 3.1), while the revenue is still large enough for
a profitable implementation of effort profile (0, 1) and T = 1 with commitment.

Furthermore, under the simplifying assumption that p11 > 0 and p01, p10, p00 = 0,
I found that the optimal, knowledge-transfer inducing contract achieves the first-best
allocation. Using the same assumption when the principal has no commitment power,
they can implement effort profiles (1, 1) and (0, 0) with wages that exactly satisfy the
agents’ participation constraints, so that there is no rent for the agents. However,
even if it is optimal to implement effort profile (1, 1) after T = 1 and effort profile
(0, 0) after T = 0, this does not result in a knowledge transfer as Nash equilibrium.
Because the agents do not receive a rent, they have no incentive to incur the transfer
costs to exert a transfer effort. Particularly, since B’s wage is lowered through a
knowledge transfer. Therefore, the first-best allocation cannot be reached. Without
commitment power, a transfer can only be a Nash equilibrium, if agents are also
effective when they are the only one to exert a task effort.

On the other hand, having commitment power is not always better though. For
high transfer costs, ρ, not having commitment power can be more profitable since the
principal does not internalize the transfer effort costs in their optimization problem.
Thus, for specific parameter constellations and ceteris paribus, the expected profit
is higher without commitment than with commitment. In conclusion, commitment
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power is not a value in itself. For certain parameter values a principal may be better
off if they have no commitment power.

3.6 Conclusion
In this chapter, I examine the incentive structure behind knowledge transfer a
principal’s options to induce such transfer between workers. I develop a dynamic
principal-agent model with a standard moral hazard problem with respect to the
agents’ effort and add a stage for a non-verifiable knowledge transfer between agents.
A principal hires two risk-neutral and wealth-constrained agents to exert non-verifiable
effort towards a task for each agent. Before the agents address their tasks they
can choose to transfer knowledge which increases the productivity of the knowledge
receiver. The knowledge transfer is one-sided and costly for sender and receiver. I
explore the principal’s options to induce a knowledge transfer when they do not have
commitment power and when they have commitment power.

In the model specification when the principal cannot commit to a contract at the
beginning of the game, they pay the agents a rent for their task effort. A knowledge
transfer which increases the productivity of one agent leads to a decrease of their
rent. Thus, a knowledge transfer can be cost-saving for the principal. I find that for
sufficiently low transfer costs a knowledge transfer is an equilibrium given that it is
optimal for the principal to induce both agents to exert a task effort only after the
principal observed a non-verifiable transfer. Hence, it must be profitable to pay two
rents only after a knowledge transfer occurred and it must be too expensive without
a knowledge transfer. As a consequence, the principal can credibly threaten to not
pay either agent a rent if they do not observe a knowledge transfer. Thus, one agent
foregoes their rent while they are both affected by a lower success probability if they
do not transfer knowledge.

In the alternative model specification when the principal commits to a contract at
the beginning of the first period, the contracts are characterized by the effort profiles
that are implemented for T = 1 and T = 0 and the principal either induces agents
to transfer knowledge or not. The principal pays agents a rent for their transfer
and task effort(s). In contrast to the environment without commitment, this means
that they also pay a rent if an agent does not exert a task effort. I find that a
Nash equilibrium with a knowledge transfer induces at least agent B, the receiver
of knowledge, to exert a task effort on-equilibrium path. Off-equilibrium path, the
principal must implement an effort profile that leads to a lower success probability.
This notion is similar to the environment without commitment. With commitment,
the first-best allocation can be achieved under two different parameter restrictions
regarding the success probabilities. The first-best allocation is only attained when
the principal has commitment power. However, in this model, it is not clear that
commitment is always better than no commitment. For high transfer costs, when the

117



3.6. CONCLUSION CHAPTER 3. KNOWLEDGE TRANSFER

principal induces a transfer, having no commitment power can be at least as good as
commitment in terms of the expected profits. That is, because the principal pays
agents a rent for their transfer effort even if they do not exert a task effort. Without
commitment, the principal saves the cost from compensating the agents for their
transfer effort.

This chapter contributes to the literature as it focuses on knowledge transfer
as a specific form of cooperation between workers. A main driver in my model is
the joint signal on the agents’ performance. Since the success probability depends
on both agents’ task effort, it can provide them with an incentive to engage in a
one-sided knowledge transfer. In practice, however, workers exchange knowledge
not only within their team but also across teams. It is one of management’s biggest
challenges to ensure that knowledge, which already exists in companies, is used and
distributed. Therefore, it would be interesting for future research to consider a model
on knowledge transfer where agents do not work in a team and where there is no joint
signal on agents’ performance. Can they be induced with monetary rewards to share
knowledge? Is that so even if it is a one-sided knowledge transfer? Another starting
point for future research is to take this model and study how the results change for
a two-sided knowledge transfer. The agents might have an intrinsic motivation to
transfer knowledge under these circumstances. Therefore, a principal may be able
to induce a knowledge transfer with lower-powered incentives. What role does the
crowding-out effect play in such a setting?
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3.A Appendix: Proofs

Proof of Lemma 3.1

(i) The principal’s optimization problem given they implement effort profile (1, 1)
is

min
w̄i,wi

p11(w̄A + w̄B) + (1 − p11)(wA + wB)

subject to

p11w̄
A + (1 − p11)wA − ψ ≥ p01w̄

A + (1 − p01)wA (ICA)

p11w̄
B + (1 − p11)wB − α(T )θ ≥ p10w̄

B + (1 − p10)wB (ICB)

p11w̄
A + (1 − p11)wA − ψ ≥ 0 (PCA)

p11w̄
B + (1 − p11)wB − α(T )θ ≥ 0 (PCB)

w̄A, w̄B, wA, wB ≥ 0 (LL)

The participation constraints of both agents are implied by the respective incentive
constraints. Therefore, the participation constraints are slack. The limited liability
constraint is binding in a low state such that wA, wB = 0. Substituting this result
into the agents’ incentive constraints indicates the optimal wages in a high state, i.e.,

w̄A = ψ

p11 − p01
w̄B = α(T )θ

p11 − p10
.

(ii) & (iii) The principal’s optimization problems given they implement effort profile (0, 1)
or (1, 0), respectively are:

min
w̄i,wi

p01(w̄A + w̄B) + (1 − p01)(wA + wB)

subject to

p01w̄
A + (1 − p01)wA ≥ p11w̄

A + (1 − p11)wA − ψ (ICA)

p01w̄
B + (1 − p01)wB − α(T )θ ≥ p00w̄

B + (1 − p00)wB (ICB)

p01w̄
A + (1 − p01)wA ≥ 0 (PCA)

p01w̄
B + (1 − p01)wB − α(T )θ ≥ 0 (PCB)

w̄A, w̄B, wA, wB ≥ 0 (LL)

119



3.A. APPENDIX: PROOFS CHAPTER 3. KNOWLEDGE TRANSFER

and

min
w̄i,wi

p10(w̄A + w̄B) + (1 − p10)(wA + wB) (3.13)

subject to

p10w̄
A + (1 − p10)wA − ψ ≥ p00w̄

A + (1 − p00)wA (ICA)

p10w̄
B + (1 − p10)wB ≥ p11w̄

B + (1 − p11)wB − α(T )θ (ICB)

p10w̄
A + (1 − p10)wA − ψ ≥ 0 (PCA)

p10w̄
B + (1 − p10)wB ≥ 0 (PCB)

w̄A, w̄B, wA, wB ≥ 0 (LL)

The proofs of (ii) and (iii) of Lemma 3.1 are similar to each other. In (ii) agent B
is the only one who is induced to choose a high task effort while in (iii) it is agent A.
The respective other agent is incentivized to choose a low task effort. For that agent
their limited liability constraints are binding, such that in (ii) w̄A, wA = 0, while in
(iii) w̄B, wB = 0.

On the other hand, for the agent who is induced to choose a high effort in
the respective Lemma, the proof is the same as in part (i) of Lemma 3.1. The
participation constraint of that agent is implied by the incentive constraint which is
binding. While the limited liability condition binds in the low state. This indicates
the optimal wages.

Last but not least, the principal’s optimization problem when implementing effort
profile (0, 0) is given by

min
w̄i,wi

p00(w̄A + w̄B) + (1 − p00)(wA + wB) (3.14)

subject to

p00w̄
A + (1 − p00)wA ≥ p10w̄

A + (1 − p10)wA − ψ (ICA)

p00w̄
B + (1 − p00)wB ≥ p01w̄

B + (1 − p01)wB − α(T )θ (ICB)

p01w̄
A + (1 − p01)wA ≥ 0 (PCA)

p00w̄
B + (1 − p00)wB ≥ 0 (PCB)

w̄A, w̄B, wA, wB ≥ 0 (LL)
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The incentive constraints imply that it is A’s and B’s mutual best response to choose
a low effort given the other agent’s action. The limited liability constraints are
binding for both agents revealing the wages.

Proof of Proposition 3.1

The principal’s expected profit for contract (i) of Lemma 3.1 is

Π(1, 1) = p11

(
R− ψ

p11 − p01
− α(T )θ
p11 − p10

)
.

It is higher for T = 1 than for T = 0 due to the productivity gain.
The principal’s expected profit for contract (ii) of Lemma 3.1 is given by

Π(0, 1) = p01

(
R− α(T )θ

p01 − p00

)
.

It is again higher for T = 1 than for T = 0.
The principal’s expected profit for contract (iii) of Lemma 3.1 is

Π(1, 0) = p10

(
R− ψ

p10 − p00

)
,

which is the same for any T .
The principal’s expected profit when they induce both agents to not exert an

effort is equivalent to their expected revenue p00R.
The three restrictions in (i) of Proposition 3.1 depict the following three inequali-

ties

Π(1, 1) ≥ Π(0, 1) Π(1, 1) ≥ Π(1, 0) Π(1, 1) ≥ Π(0, 0).

Parts (ii) to (iv) of Proposition 3.1 follow the same pattern revealing the restric-
tions under which each effort profile gives the largest expected profit.

Proof of Proposition 3.2

It is optimal for the agents to choose eA∗ = eB
∗ = 1 if each their overall expected

pay-offs are higher than if they choose differently, given the optimal contracts.
The expected pay-offs consider the wage and effort costs from the second-period
and if applicable the effort costs from the first period. Thus, the conditions in
Proposition 3.2 are derived by comparing the agents’ expected pay-offs if they choose
to exert a transfer effort given the optimal contract for T = 1 to the expected pay-off
if they choose to not exert a transfer effort given the optimal contract for T = 0. In
the first case of the Proposition for agent A this means that

p11
ψ

p11 − p01
− ψ − ρ ≥ 0
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must hold so that they choose a positive transfer effort. Analogous for agent B it
must hold that

p11
α(1)θ

p11 − p10
− α(1)θ − ρ ≥ p01

θ

p01 − p00
− θ.

In the second case for agent A it must hold that

p11
ψ

p11 − p01
− ψ − ρ ≥ p10

ψ

p10 − p00
− ψ,

while for agent B it must be that

p11
α(1)θ

p11 − p10
− α(1)θ − ρ ≥ 0.

The final case combines constraints from the first two cases for agent A and B, i.e.,

p11
ψ

p11 − p01
− ψ − ρ ≥ 0

and
p11

α(1)θ
p11 − p10

− α(1)θ − ρ ≥ 0

must be satisfied for A and B, respectively.
Now, I show that there exist no other cases where both agents choose to exert a

high transfer effort. First, assume towards a contradiction that the principal offers a
contract that induces effort profile (1, 1) for any T . In this case, the agents receive
the same expected wage for T = 1 and for T = 0. However, they incur the additional
effort costs ρ > 0 for T = 1. Hence, it is never optimal to choose eA, eB = 1. The
proof is the same for any other contract that is offered independent of T . Second,
assume that for T = 1 the principal offers a contract where one agent receives a zero
wage in both states, that is in this case the principal implements second-period effort
profile (1, 0), (0, 1) or (0, 0). That agent’s expected pay-off is −ρ < 0 if they choose a
high transfer effort. Therefore, they are always better off by choosing a low transfer
effort, since their expected pay-off is at least non-negative. Hence, choosing to exert
a transfer effort is only a mutual best response when both agents receive a positive
rent.

Proof of Proposition 3.3

(i) The principal induces a knowledge transfer and effort profiles (1, 1) for T = 1
and (1, 0) or (0, 0) for T = 0. Thus, the first optimization problem is given by

min
wA,wB≥0

p11(w̄A + w̄B) + (1 − p11)(wA + wB)

subject to
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wA, wB, w̄A, w̄B ≥ 0 (LL)

p11w̄
A + (1 − p11)wA − ψ − ρ ≥ 0 (PCA)

p11w̄
B + (1 − p11)wB − α(1)θ − ρ ≥ 0 (PCB)

p11w̄
A + (1 − p11)wA − ψ ≥ p01w̄

A + (1 − p01)wA (3.15)

p11w̄
B + (1 − p11)wB − α(1)θ ≥ p10w̄

B + (1 − p10)wB (3.16)

p10w̄
A + (1 − p10)wA − ψ ≥ p00w̄

A + (1 − p00)wA (3.17)

p10w̄
B + (1 − p10)wB ≥ p11w̄

B + (1 − p11)wB − θ (3.18)

p11w̄
A + (1 − p11)wA − ψ − ρ ≥ p10w̄

A + (1 − p10)wA − ψ (3.19)

p11w̄
B + (1 − p11)wB − α(1)θ − ρ ≥ p10w̄

B + (1 − p10)wB (3.20)

Second-period incentive constraints (3.15) and (3.16) ensure that given T = 1, agent
A’s (agent B’s) best response to agent B’s (A’s) action is to choose a high effort.
Second-period incentive constraints (3.17) and (3.18) ensure that given T = 0 it is
A’s (B’s) best response to choose a high (low) effort. For agent B’s second-period
incentive constraints, (3.16) and (3.18), to be satisfied at the same time, it must
be that α(1) ≤ 1 which is true by the definition of α(T ). First-period incentive
constraints (3.19) and (3.20) reflect that it is both agents mutual best response to
choose a high transfer effort.

The participation constraints for both agents are not binding because they are
implied by the respective first-period incentive constraints, (3.19) and (3.20), and
limited liability conditions on wi. Therefore, the participation constraints are slack
and limited liability constraints for wi∀i = A,B are binding.

For agent A it holds that any wage in case of success that satisfies

w̄A ≥ ψ

p11 − p01
,

ψ

p10 − p00
,

ρ

p11 − p10
,

fulfills all three incentive constraints, (3.15), (3.17), (3.19). That means it depends on
the parameter constellation which incentive constraint is binding. The second-period
incentive constraint, (3.15), binds if

ψ

p11 − p01
≥ ψ

p10 − p00
,

ρ

p11 − p10
.

The second-period incentive constraint, (3.17), binds if

ψ

p10 − p00
≥ ψ

p11 − p01
,

ρ

p11 − p10
.

123



3.A. APPENDIX: PROOFS CHAPTER 3. KNOWLEDGE TRANSFER

Last but not least, the first-period incentive constraint binds if

ρ

p11 − p10
≥ ψ

p11 − p01
,

ψ

p10 − p00
.

Agent B’s second-period incentive constraint given T = 1, (3.16), is implied by
their first-period incentive constraint, (3.20), as the right-hand sides are equal while
the left-hand side of (3.20) is strictly smaller than the right-hand side of (3.16), since
ρ > 0. Therefore, whenever (3.20) is satisfied (3.16) also holds, such that (3.16) is
not binding. Any wage that satisfies (3.18) and (3.20), i.e.,

θ

p11 − p10
≥ w̄B ≥ αθ + ρ

p11 − p10

fulfills all incentive constraints. Thus, the sufficient constraints, (3.18) and (3.20)
are satisfied for the same parameter constellation. However, (3.20) indicates the
lower wage of the two and therefore it is binding.Agent B’s second-period incentive
constraint given T = 0 represents an upper bound for w̄B, such that θ ≥ α(1)θ + ρ

is a necessary condition for B’s wage scheme.
The wages that implement effort profiles (1, 1) for T = 1 and (1, 0) for T = 0 are

given by

w̄A =



ψ
p11−p01

if ψ p11−p10
p11−p01

≥ ρ & p10 + p01 ≥ p11 + p00

ψ
p10−p00

if ψ p11−p10
p10−p00

≥ ρ & p11 + p00 ≥ p10 + p01

ρ
p11−p10

if ψ p11−p10
p10−p00

, ψ p11−p10
p11−p01

≤ ρ,

wA = 0 and

w̄B = α(1)θ + ρ

p11 − p10
for θ ≥ α(1)θ + ρ, wB = 0.

For small ρ, that is for low transfer costs, it suffices to pay agent A a rent based
on their task effort costs to induce a high task effort and a high transfer effort. On
the other hand, for large ρ, that is for high transfer costs, the principal pays A a rent
that is based on the transfer costs to induce a high effort in both periods. Agent B’s
wage w̄B is determined by their first-period incentive constraint. To induce agent
B to exert a transfer effort but a task effort only for T = 1, they must earn a rent
based on the sum of their effort costs given T = 1. This wage satisfies all incentive
constraints, if the effort costs without a transfer are at least as high as the effort
costs with a transfer. That is the productivity gain from a knowledge transfer offsets
the additional transfer costs. The productivity gain is translated into a rent lowered
by α(1), such that B does not have an incentive to choose a high task effort given
T = 0.
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The optimization problem for effort profiles (1, 1) for T = 1 and (0, 0) for T = 0
is given by

min
wA,wB≥0

p11(w̄A + w̄B) + (1 − p11)(wA + wB)

subject to

p11w̄
A + (1 − p11)wA − ψ − ρ ≥ 0 (PCA)

p11w̄
B + (1 − p11)wB − α(1)θ − ρ ≥ 0 (PCB)

w̄A, wA, w̄B, wB ≥ 0 (LL)

p00w̄
A + (1 − p00)wA ≥ p10w̄

A + (1 − p10)wA − ψ (3.21)

p00w̄
B + (1 − p00)wB ≥ p01w̄

B + (1 − p01)wB − θ (3.22)

p11w̄
A + (1 − p11)wA − ψ − ρ ≥ p00w̄

A + (1 − p00)wA (3.23)

p11w̄
B + (1 − p11)wB − α(1)θ − ρ ≥ p00w̄

B + (1 − p00)wB (3.24)

and (3.15), (3.16).

Second-period incentive constraints for T = 1 are the same as in part (i). Second-
period incentive constraints for T = 0, (3.21) and (3.22), ensure that A’s and B’s
mutual best response is to choose a low effort. The first-period incentive constraints,
(3.23) and (3.24), ensure that it is their mutual best response to choose a high transfer
effort.

Both agents’ participation constraints are not binding because they are implied
by the respective first-period incentive constraints, (3.23) and (3.24) and limited
liability constraints on wi. Therefore, the participation constraints are slack and
limited liability conditions for wi∗ = 0 ∀i = A,B.

For agent A it holds that any wage w̄A ≥ 0 that satisfies

ψ

p10 − p00
≥ w̄A ≥ ψ

p11 − p01
,

ψ + ρ

p11 − p00

fulfills all three necessary incentive constraints. That means it depends on the
parameter constellation which incentive constraint is binding. The second-period
incentive constraint, (3.15), binds if

ψ

p10 − p00
≥ ψ

p11 − p01
and ψ

p11 − p01
≥ ψ + ρ

p11 − p00
.
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The first-period incentive constraint, (3.23), binds if

ψ

p10 − p00
≥ ψ + ρ

p11 − p00
and ψ + ρ

p11 − p00
≥ ψ

p11 − p01
.

Finally, second-period incentive constraint, (3.21), binds if

ψ

p10 − p00
≥ ψ

p11 − p01
,

ψ + ρ

p11 − p00
.

For agent B it holds that any wage w̄B ≥ 0 that satisfies

θ

p01 − p00
≥ w̄B ≥ α(1)θ

p11 − p10
,
α(1)θ + ρ

p11 − p00

fulfills all three necessary incentive constraints. That means it depends on the
parameter constellation which incentive constraint is binding. The second-period
incentive constraint, (3.16) binds if

α(1)θ
p11 − p10

≥ α(1)θ + ρ

p11 − p00
and θ

p01 − p00
≥ α(1)θ
p11 − p10

.

The first-period incentive constraint, (3.24), binds if

α(1)θ
p11 − p10

≤ α(1)θ + ρ

p11 − p00
and θ

p01 − p00
≥ α(1)θ + ρ

p11 − p00
.

The other second-period incentive constraint, (3.22), binds if

θ

p01 − p00
≥ α(1)θ
p11 − p10

,
α(1)θ + ρ

p11 − p00
.

The wages that implement effort profiles (1, 1) for T = 1 and (0, 0) for T = 0 are
given by

w̄A =



ψ
p10−p00

if ψ p11−p10
p10−p00

≥ ρ & p11 + p00 ≥ p01 + p10

ψ
p11−p01

if ψ p01−p00
p11−p01

≥ ρ & p11 + p00 ≥ p01 + p10

ψ+ρ
p11−p00

if ψ p11−p10
p10−p00

≥ ρ ≥ ψ p01−p00
p11−p01

,

wA = 0 and

w̄B =



θ
p01−p00

if θ p11−p00
p01−p00

≥ α(1)θ + ρ & p11−p10
p01−p00

≥ α(1)

α(1)θ
p11−p10

if α(1)θ p10−p00
p11−p10

≥ ρ & p11−p10
p01−p00

≥ α(1)

α(1)θ+ρ
p11−p00

if θ p11−p00
p01−p00

≥ α(1)θ + ρ & α(1)θ p10−p00
p11−p10

≤ ρ,
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wB = 0.

Similar to above, A’s rent for w̄A is based on their task effort cost, ψ, if the
transfer costs are low. For small ρ this also induces them to choose a high transfer
effort. If ρ takes intermediate values, A gets a rent based on the sum of their effort
costs of the first and second period. Agent B’s wage w̄B is determined by their three
incentive constraints. When θ is larger than the sum of the effort costs and there is a
large gain from a transfer, i.e., α(1) is small, the principal pays B a rent based on θ.
This ensures that agent B chooses a high effort in both periods. However, when the
gain from a transfer is still high but α(1)θ is also larger than ρ, the rent is based on
α(1)θ. Finally, the principal pays B a rent based on the sum of the first and second
period effort costs, when ρ is large but the sum of the effort costs is still smaller than
the effort costs without a transfer. Agent B, thus only has an incentive to choose a
task effort given T = 1.

(ii) The principal induces a knowledge transfer and effort profiles (0, 1) for T = 1
and (1, 0) or (0, 0) for T = 0. Thus, the first optimization problem is given by

min
wA,wB

p01(w̄A + w̄B) + (1 − p01)(wA + wB)

subject to

p01w̄
A + (1 − p01)wA − ρ ≥ 0 (PCA)

p01w̄
B + (1 − p01)wB − α(1)θ − ρ ≥ 0 (PCB)

w̄A, wA, w̄B, wB ≥ 0 (LL)

p10w̄
A + (1 − p10)wA − ψ ≥ p00w̄

A + (1 − p00)wA (3.25)

p10w̄
B + (1 − p10)wB ≥ p11w̄

B + (1 − p11)wB − θ (3.26)

p01w̄
A + (1 − p01)wA − ρ ≥ p10w̄

A + (1 − p10)wA − ψ (3.27)

p01w̄
B + (1 − p01)wB − αθ − ρ ≥ p10w̄

B + (1 − p10)wB (3.28)

and (3.29), (3.30).

The agents’ second-period incentive constraints given T = 1 are the same as in part
(i), (3.29) and (3.30). Second-period incentive constraints given T = 0, (3.25) and
(3.26) ensure that it is agent A’s best response to select a high effort given B’s action,
while it is B’s best response to choose a low effort. First-period incentive constraints,
(3.27) and (3.28), reflect that it is the agents’ mutual best responses to choose a high
task effort.
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The participation constraints for both agents are not binding because they are
implied by the respective first-period incentive constraints, (3.27) and (3.28) and
limited liability constraints for wi. Therefore, the participation constraints are slack
and the limited liability constraints for wi∗ = 0 ∀i = A,B are binding to minimize
the expected costs.

For agent A any wage that satisfies

ψ

p11 − p01
≥ w̄A ≥ ψ

p10 − p00
,

ρ− ψ

p01 − p10
≥ 0

fulfills all three constraints for a different set of parameters. The first-period incentive
constraint, (3.27), is binding if

ρ− ψ

p01 − p10
≥ 0 and ψ

p11 − p01
≥ ρ− ψ

p01 − p10
≥ ψ

p10 − p00
.

The second-period incentive constraint, (3.25), is binding if

ψ

p10 − p00
≥ ρ− ψ

p01 − p10
and ψ

p11 − p01
≥ ψ

p10 − p00
.

Last but not least, the second-period incentive constraint, (3.29), binds if

ψ

p11 − p01
≥ ψ

p10 − p00
,

ρ− ψ

p01 − p10
.

Agent B’s first-period incentive constraint implies the second-period incentive
constraint (3.30). The right-hand sides of both constraints are equivalent, while
the left-hand side of (3.28) is strictly smaller. Thus, (3.30) is slack. Any wage that
satisfies

θ

p11 − p10
≥ w̄B ≥ αθ + ρ

p01 − p10
≥ 0

satisfies all necessary constraints. Agent B’s first-period incentive constraint is
binding as it represents the lowest possible wage that satisfies all constraints for
θ p01−p10
p11−p10

≥ αθ + ρ. Notice that the optimal wage must also ensure that the limited
liability constraints are fulfilled. Therefore, it must be that p01 > p10.

The wages that implement effort profiles (0, 1) for T = 1 and (1, 0) for T = 0 are
given by

w̄A =



ψ
p11−p01

if ψ p11−p10
p11−p01

≥ ρ & p10 + p01 ≥ p11 + p00

ψ
p10−p00

if ψ p01−p00
p10−p00

≥ ρ & p10 + p01 ≥ p11 + p00

ρ−ψ
p01−p10

if ψ p11−p10
p11−p01

≥ ρ ≥ ψ p01−p00
p10−p00

,

wA = 0 and
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w̄B = α(1)θ + ρ

p01 − p10
for θ

p01 − p10
p11 − p10

≥ α(1)θ + ρ,

wB = 0.

Notice that the contract can only satisfy the limited liability conditions for
p01 ≥ p10.71 Otherwise, agent B’s wage is negative. For small ρ, the principal still
bases A’s rent on their task effort cost, ψ. Thus, compensating the agent for a high
transfer effort but not paying them enough so that they would also choose a high task
effort given T = 1. For intermediate values of ρ, notice that A’s wage only meets the
limited liability conditions if p10 ≥ p01 and ψ ≥ ρ or if p01 ≥ p10 and ρ ≥ ψ. Taking
into account that for B’s wage to conform to the limited liability conditions it must
be that p01 ≥ p10, ρ should be larger or equal to ψ to satisfy the limited liability
conditions for agent A. The principal pays A a rent that is based on the difference
between the transfer costs and the task effort costs, such that they are induced to
only choose a high transfer effort. Agent B’s wage is non-negative if p01 ≥ p10. The
principal compensate B for a high transfer and task effort by basing the rent on the
sum of the effort costs. This rent induces B to only choose a high task effort given
T = 1 if the effort costs without a transfer are larger than the effort costs with a
transfer such that there is a gain in productivity.

The optimization problem for effort profiles (0, 1) for T = 1 and (0, 0) for T = 0
is given by

min
wA,wB

p01(w̄A + w̄B) + (1 − p01)(wA + wB)

subject to

p01w̄
A + (1 − p01)wA − ρ ≥ 0 (PCA)

p01w̄
B + (1 − p01)wB − α(1)θ − ρ ≥ 0 (PCB)

w̄A, wA, w̄B, wB ≥ 0 (LL)

p01w̄
A + (1 − p01)wA ≥ p11w̄

A + (1 − p11)wA − ψ (3.29)

p01w̄
B + (1 − p01)wB − α(1)θ ≥ p00w̄

B + (1 − p00)wB (3.30)

p00w̄
A + (1 − p00)wA ≥ p10w̄

A + (1 − p10)wA − ψ (3.31)

p00w̄
B + (1 − p00)wB ≥ p01w̄

B + (1 − p01)wB − θ (3.32)

p01w̄
A + (1 − p01)wA − ρ ≥ p00w̄

A + (1 − p00)wA (3.33)

71One possible explanation is that agent B’s task is more relevant for the performance of the team
than agent A’s task.
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p01w̄
B + (1 − p01)wB − α(1)θ − ρ ≥ p00w̄

B + (1 − p00)wB (3.34)

Second-period incentive constraints, (3.29) and (3.30), ensure that given T = 1 it is
agent A’s (B’s) best response to choose a low (high) effort. Second-period incentive
constraints, (3.31) and (3.32), ensure that given T = 0 it is the agents mutual best
response to choose a low effort. First-period incentive constraints (3.33) and (3.34)
reflect that it is both agents’ mutual best response to choose a high transfer effort.

The participation constraints for both agents are not binding because they are
implied by the respective first-period incentive constraints, (3.33) and (3.34) and the
limited liability constraints for wi. Therefore, the participation constraints are slack
and limited liability constraints for wi∗ = 0 ∀i = A,B is binding.

For agent A any wage that satisfies

ψ

p11 − p01
,

ψ

p10 − p00
≥ w̄A ≥ ρ

p01 − p00

can satisfy all three incentive constraints. The first-period incentive constraint
represents the lowest possible wage that can also fulfill the second-period incentive
constraints under certain parameter restrictions. When these parameter restrictions
do not hold, one of the second-period incentive constraints is binding. That is, the
first-period incentive constraint is binding if

ψ

p11 − p01
,

ψ

p10 − p00
≥ ρ

p01 − p00
.

Second-period incentive constraint (3.29) is binding if

ψ

p11 − p01
≥ ρ

p01 − p00
and ψ

p10 − p00
≥ ψ

p11 − p01
.

Second-period incentive constraint (3.31), is binding if

ψ

p10 − p00
≥ ρ

p01 − p00
and ψ

p11 − p01
≥ ψ

p10 − p00
.

Agent B’s first-period incentive constraint, (3.34), implies the second-period
incentive constraint (3.30), because while the right-hand sides are equivalent, the
left-hand side of the first-period incentive constraint is strictly smaller due to ρ > 0.
Thus, (3.30) is slack.

Any wage that satisfies

θ

p01 − p00
≥ w̄B ≥ α(1)θ + ρ

p01 − p00

fulfills all necessary incentive constraints. Thus, the sufficient constraints, (3.32) and
(3.34) are satisfied for the same parameter constellation. However, (3.34) gives the
lower wage of the two and therefore it is binding. Agent B’s second-period incentive
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constraint given T = 0 is an upper bound for w̄B, such that θ ≥ α(1)θ + ρ is a
necessary condition for B’s wage scheme.

The wages that implement effort profiles (0, 1) for T = 1 and (0, 0) for T = 0 are
given by

w̄A =



ρ
p01−p00

if ψ p01−p00
p10−p00

, ψ p01−p00
p11−p01

≥ ρ

ψ
p10−p00

if ψ p01−p00
p10−p00

≥ ρ ≥ ψ p01−p00
p11−p01

& p01 + p10 ≥ p11 + p00

ψ
p11−p01

if ψ p01−p00
p11−p01

≥ ρ ≥ ψ p01−p00
p10−p00

& p11 + p00 ≥ p10 + p01,

wA = 0 and

w̄B = α(1)θ + ρ

p01 − p00
for θ ≥ α(1)θ + ρ, wB = 0.

Agent A must be compensated for their transfer costs ρ but must not be induced
to choose a high task effort. Therefore, the principal pays them a rent that is based
on ψ, their task effort costs, if ρ takes on larger values. However, if ρ is small it
suffices to base their rent on ρ itself. Agent B’s wage w̄B is determined by their
first-period incentive constraint. The principal pays them a rent based on the sum
of effort costs if this sum is smaller than θ, the task effort costs, given T = 0. This
ensures that B only chooses a high task effort after a transfer occurred.

I show that there are no other contracts that induce a transfer except for the ones
in Proposition 3.3 through a proof by contradiction. Suppose towards a contradiction
that a contract exist that induces a knowledge transfer and implements effort profiles
(1, 1) for T = 1 and (1, 1) or (0, 1) for T = 0. First, take as given that the principal
induces (1, 1) for T = 0. Agent A’s first-period incentive constraint is given by

p11w̄
A + (1 − p11)wA − ψ − ρ ≥ p11w̄

A + (1 − p11)wA − ψ,

which reveals that because ρ is positive, agent A does not have an incentive to exert
a transfer effort. Thus, this does not lead to a Nash equilibrium with a transfer.
Second, given the principal implements effort profile (0, 1) for T = 0, agent A’s
incentive constraints are given by

p11w̄
A + (1 − p11)wA − ψ − ρ ≥ p01w̄

A + (1 − p01)wA,

p11w̄
A + (1 − p11)wA − ψ ≥ p01w̄

A + (1 − p01)wA,

p01w̄
A + (1 − p01)wA ≥ p11w̄

A + (1 − p11)wA − ψ.

To satisfy both second-period incentive constraints simultaneously they need to hold
with equality such that ∆wA = ψ

p11−p01
. However, with this wage difference the first-

period incentive constraint cannot be satisfied since it implies that ∆wA ≥ ψ+ρ
p11−p01
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and ρ is positive. Therefore, a Nash equilibrium with a transfer cannot be reached by
implementing effort profile (1, 1) for T = 1 and effort profile (1, 1) or (0, 1) for T = 0.

Assume towards a contradiction that a contract exists that induces a transfer and
implements effort profile (0, 1) for T = 1 and (0, 1) or (1, 1) for T = 0. First, given
the principal implements (0, 1) for T = 0, agent A’s first-period incentive constraint
is given by

p01w̄
A + (1 − p01)wA − ρ ≥ p01w̄

A + (1 − p01)wA.

This incentive constraint cannot be satisfied since ρ > 0.Thus, there is no contract
for agent A such that they exert a transfer effort. Second, given the principal induces
effort profile (1, 1) for T = 0, agent A’s incentive constraints are

p01w̄
A + (1 − p01)wA ≥ p11w̄

A + (1 − p11)wA − ψ,

p11w̄
A + (1 − p11)wA − ψ ≥ p01w̄

A + (1 − p01)wA,

p01w̄
A + (1 − p01)wA − ρ ≥ p11w̄

A + (1 − p11)wA − ψ.

To satisfy both second-period incentive constraints simultaneously, they have to hold
with equality, such that ∆wA = ψ

p11−p01
. However, this wage difference cannot meet

the first period incentive constraint, which requires that ∆wA ≤ ψ−ρ
p11−p01

. Therefore,
there exists no Nash equilibrium with a transfer, where the principal implements
effort profile (0, 1) for T = 1 and effort profile (0, 1) or (1, 1) for T = 1.

Assuming towards a contradiction that there exists a contract that induces a
transfer and implements effort profile (1, 0) for T = 1, I check the different effort
profiles the principal can implement for T = 0 starting with (1, 0). The agents’
first-period incentive constraints,

p10w̄
A + (1 − p10)wA − ρ− ψ ≥ p10w̄

A + (1 − p10)wA − ψ,

p10w̄
B + (1 − p10)wB − ρ ≥ p10w̄

B + (1 − p10)wB,

cannot be satisfied since ρ > 0. Thus, neither agent exerts a task effort and a
transfer cannot take place. Given the principal induces (1, 1) for T = 0, the agent
A’s first-period incentive constraint cannot be satisfied because ρ > 0 and p11 > p10,

p10w̄
A + (1 − p10)wA − ψ − ρ ≥ p11w̄

A + (1 − p11)wA − ψ,

such that A does not have an incentive to exert a transfer effort. To satisfy agent
B’s second-period incentive constraints,

p10w̄
B + (1 − p10)wB ≥ p11w̄

B + (1 − p11)wB − θ,

p10w̄
B + (1 − p10)wB ≤ p11w̄

B + (1 − p11)wB − θ,
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they have to hold with equality, such that ∆wB = θ
p11−p10

. However, with this wage
difference the first-period incentive constraint,

p10w̄
B + (1 − p10)wB − ρ ≥ p11w̄

B + (1 − p11)wB − θ,

does not hold. Given the principal implements (0, 0) for T = 0 agent A’s incentive
constraints are given by

p10w̄
A + (1 − p10)wA − ψ − ρ ≥ p00w̄

A + (1 − p00)wA,

p10w̄
A + (1 − p10)wA − ψ ≥ p00w̄

A + (1 − p00)wA,

p00w̄
A + (1 − p00)wA ≥ p10w̄

A + (1 − p10)wA − ψ.

The second-period incentive constraints can only be satisfied simultaneously for
∆wA = ψ

p10−p00
. However, this wage does not satisfy the first-period incentive

constraint according to which ∆wA ≥ ψ+ρ
p10−p00

. Finally, given the principal induces
effort profile (0, 1) for T = 0, agent A’s incentive constraints are given by

p10w̄
A + (1 − p10)wA − ψ − ρ ≥ p01w̄

A + (1 − p01)wA ⇔ ∆wA ≥ ψ + ρ

p10 − p01
,

p10w̄
A + (1 − p10)wA − ψ ≥ p00w̄

A + (1 − p00)wA ⇔ ∆wA ≥ ψ

p10 − p00
,

p01w̄
A + (1 − p01)wA ≥ p11w̄

A + (1 − p11)wA − ψ ⇔ ∆wA ≤ ψ

p11 − p01
.

In order for the first-period incentive constraint to be satisfied it must be that
p10 ≥ p01. Otherwise, the left-hand side is smaller than the right-hand side and the
first-period incentive cannot be fulfilled. Given p10 ≥ p01 the first-period incentive
constraint implies the second incentive constraint since p01 > p00 such that this
constraint is never binding. The last incentive constraint is fulfilled if

ψ

p11 − p01
≥ ψ + ρ

p10 − p01
.

However, this restriction cannot be satisfied because p11 > p10 and ρ > 0. Thus,
implementing effort profile (1, 0) for T = 1 does not result in a Nash equilibrium
with a transfer.

Next, we assume towards a contradiction that there exists a contract that induces
a transfer and implements effort profile (0, 0) for T = 1. I go through the different
effort profiles the principal can implement for T = 0, beginning with (0, 0). Again,
the agents’ first-period incentive constraints,

p00w̄
A + (1 − p00)wA − ρ ≥ p00w̄

A + (1 − p00)wA,

133



3.A. APPENDIX: PROOFS CHAPTER 3. KNOWLEDGE TRANSFER

p00w̄
B + (1 − p00)wB − ρ ≥ p00w̄

B + (1 − p00)wB

reveal that agents cannot be induced to choose a high transfer effort since ρ > 0.
Therefore, this does not lead to a Nash equilibrium where a transfer takes place.
Given the principal induces (1, 1) for T = 0, agent A’s incentive constraints are

p00w̄
A + (1 − p00)wA − ρ ≥ p11w̄

A + (1 − p11)wA − ψ,

p00w̄
A + (1 − p00)wA ≥ p10w̄

A + (1 − p10)wA − ψ,

p11w̄
A + (1 − p11)wA − ψ ≥ p01w̄

A + (1 − p01)wA.

However, first and last constraint contradict each other because p01 > p00 and ρ > 0.
The same applies for agent B with p10 > p00. Thus, this also does not support a
contract that leads to a transfer. Given the principal implements (1, 0) for T = 0,
agent A’s incentive constraints,

p00w̄
A + (1 − p00)wA − ρ ≥ p10w̄

A + (1 − p10)wA − ψ,

p00w̄
A + (1 − p00)wA ≥ p10w̄

A + (1 − p10)wA − ψ,

p10w̄
A + (1 − p10)wA − ψ ≥ p00w̄

A + (1 − p00)wA,

reveal that the first and the last incentive constraint cannot be satisfied at the same
time. Whereas, for agent B the first-period incentive constraint cannot be fulfilled,

p00w̄
B + (1 − p00)wB − ρ ≥ p10w̄

B + (1 − p10)wB

since p10 > p00 and ρ > 0. Finally, given the principal induces (0, 1) for T = 0, agent
A’s first-period incentive constraint can never be satisfied,

p00w̄
A + (1 − p00)wA − ρ ≥ p01w̄

A + (1 − p01)wA,

since p01 > p00 and ρ > 0. Agent B’s incentive constraints are

p00w̄
B + (1 − p00)wB − ρ ≥ p01w̄

B + (1 − p01)wB − θ

p00w̄
B + (1 − p00)wB ≥ p01w̄

A + (1 − p01)wB − θ

p01w̄
B + (1 − p01)wB − θ ≥ p00w̄

B + (1 − p00)wB.

However, the first and the last incentive constraint cannot be satisfied simultane-
ously. Hence, implementing effort profile (0, 0) for T = 1 does not result in a Nash
equilibrium where a transfer takes place.
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Therefore, except for the contracts characterized in Proposition 3.3 the principal
cannot induce a transfer in equilibrium with any other effort profiles.

Proof of Proposition 3.4

Suppose that p11 > 0 and p10, p01, p00 = 0, the principal induces a transfer and
implements effort profile (1, 1) for T = 1 and effort profile (0, 0) for T = 0. The
optimization problem is

min
wA,wB≥0

p11(w̄A + w̄B) + (1 − p11)(wA + wB)

subject to

wA, wB, w̄A, w̄B ≥ 0 (LL)

p11w̄
A + (1 − p11)wA − ψ − ρ ≥ 0 (PCA)

p11w̄
B + (1 − p11)wB − α(1)θ − ρ ≥ 0 (PCB)

p11(w̄A − wA) − ψ ≥ 0 (3.35)

p11(w̄B − wB) − α(1)θ ≥ 0 (3.36)

0 ≥ −ψ (3.37)

0 ≥ −θ (3.38)

p11(w̄A − wA) − ψ − ρ ≥ 0 (3.39)

p11(w̄B − wB) − α(1)θ − ρ ≥ 0 (3.40)

Due to limited liability constraints the principal cannot use a negative wage and
therefore minimizes the expected costs with binding limited liability constraints for wi.
Thus, first-period incentive constraints or alternatively the participation constraints
for agents A and B are binding and yield the optimal wages. The second-period
incentive constraints, (3.37) and (3.38), ensure that it is each agent’s best response
to not exert an effort for T = 0 and are always satisfied, since ψ, θ > 0.

To show that this contract is unique and therefore optimal, take a look at the
incentive constraints in the proof of Proposition 3.3. Plugging in p01, p10, p00 = 0
reveals that there is always at least one incentive constraint that cannot be satisfied.
All these situations have in common that the principal implements an effort profile
where one agent exerts an effort alone. However, under the given assumption the
success probability is zero even if one agent exerts an effort. Therefore, the agents
pay the effort costs but get no higher success probability in return. The principal
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cannot induce an agent to do so, so that implementing effort profile (1, 1) for T = 1
and (0, 0) for T = 0 is a unique Nash equilibrium.

Suppose that p11 > p10 ⋛ p01 > p00 = 0, as above the principal induces the same
behavior and implements the same effort profiles. The objective function, limited
liability conditions, participation constraints and first-period incentive constraints,
(3.39) and (3.40), remain the same. However, the second-period incentive constraints
change:

(p11 − p01)(w̄A − wA) − ψ ≥ 0 (3.41)

(p11 − p10)(w̄B − wB) − α(1)θ ≥ 0 (3.42)

ψ ≥ p10(w̄A − wA) (3.43)

θ ≥ p01(w̄B − wB). (3.44)

As before, the limited liability constraints for wi are binding such that the first-
period incentive constraints and participation constraints are equal. The first-period
incentive constraints imply the second-period incentive constraints (3.41) and (3.42)
for agents A and B, respectively. The first-period incentive constraints are binding
for

p11 − p10
p10

ψ ≥ ρ
p11
p01

θ ≥ α(1)θ + ρ.

When the first-period incentive constraints are binding, the first-best outcome is
reached and the wages are therefore,

wA =
(
ψ + ρ

p11
, 0
)

and wB =
(
α(1)θ + ρ

p11
, 0
)
.

136



Bibliography

Ackley, G. (1942). Spatial competition in a discontinuous market. The Quarterly
Journal of Economics, 56(2):212–230.

Acquisti, A., John, L. K., and Loewenstein, G. (2013). What is privacy worth? The
Journal of Legal Studies, 42(2):249–274.

Acquisti, A., Taylor, C., and Wagman, L. (2016). The economics of privacy. Journal
of Economic Literature, 54(2):442–92.

Acquisti, A. and Varian, H. R. (2005). Conditioning prices on purchase history.
Marketing Science, 24(3):367–381.

Adrian, N. and Möller, M. (2020). Self-managed work teams: An efficiency-rationale
for pay compression. Journal of Economics & Management Strategy, 29(2):315–334.

Ali, S. N., Lewis, G., and Vasserman, S. (2020). Voluntary disclosure and person-
alized pricing. In Proceedings of the 21st ACM Conference on Economics and
Computation, pages 537–538.

Armstrong, M. (2006). Recent Developments in the Economics of Price Discrimi-
nation, volume 2 of Econometric Society Monographs, pages 97–141. Cambridge
University Press.

Barreda-Tarrazona, I., García-Gallego, A., Georgantzís, N., Andaluz-Funcia, J., and
Gil-Sanz, A. (2011). An experiment on spatial competition with endogenous
pricing. International Journal of Industrial Organization, 29(1):74–83.

Bartol, K. M. and Srivastava, A. (2002). Encouraging knowledge sharing: The role
of organizational reward systems. Journal of Leadership & Organizational Studies,
9(1):64–76.

Baye, I. and Sapi, G. (2014). Targeted pricing, consumer myopia and investment in
customer-tracking technology.

Becker, G. S. and Murphy, K. M. (1992). The division of labor, coordination costs,
and knowledge. The Quarterly Journal of Economics, 107(4):1137–1160.

Belleflamme, P. and Vergote, W. (2016). Monopoly price discrimination and privacy:
The hidden cost of hiding. Economics Letters, 149:141–144.

137



Beresford, A. R., Kübler, D., and Preibusch, S. (2012). Unwillingness to pay for
privacy: A field experiment. Economics Letters, 117(1):25–27.

Bolton, P. and Dewatripont, M. (1994). The firm as a communication network. The
Quarterly Journal of Economics, 109(4):809–839.

Boning, B., Ichniowski, C., and Shaw, K. (2007). Opportunity counts: Teams and the
effectiveness of production incentives. Journal of Labor Economics, 25(4):613–650.

Brokesova, Z., Deck, C., and Peliova, J. (2014). Experimenting with purchase history
based price discrimination. International Journal of Industrial Organization,
37:229–237.

Brooks, E. B. and Brooks, A. T. (1998). The original analects: Sayings of Confucius
and his successors. Columbia University Press, New York.

Bundesministerium für Wirtschaft und Klimaschutz (2021). Fachkräfte für deutsch-
land. https://bmwi.de/Redaktion/DE/Dossier/fachkraeftesicherung.html.

Camacho-Cuena, E., García-Gallego, A., Georgantzís, N., and Sabater-Grande, G.
(2005). Buyer-seller interaction in experimental spatial markets. Regional Science
and Urban Economics, 35(2):89–108.

Caroli, E. and Van Reenen, J. (2001). Skill-biased organizational change? Evidence
from a panel of British and French establishments. The Quarterly Journal of
Economics, 116(4):1449–1492.

Carroni, E. et al. (2015). Competitive behaviour-based price discrimination among
asymmetric firms. CERPE.

Casadesus-Masanell, R. and Hervas-Drane, A. (2015). Competing with privacy.
Management Science, 61(1):229–246.

Che, Y.-K. and Yoo, S.-W. (2001). Optimal incentives for teams. American Economic
Review, 91(3):525–541.

Choi, J. P., Jeon, D.-S., and Kim, B.-C. (2019). Privacy and personal data collection
with information externalities. Journal of Public Economics, 173:113–124.

Colombo, S. (2016). Imperfect behavior-based price discrimination. Journal of
Economics & Management Strategy, 25(3):563–583.

Conitzer, V., Taylor, C. R., and Wagman, L. (2012). Hide and seek: Costly consumer
privacy in a market with repeat purchases. Marketing Science, 31(2):277–292.

Cooper, D. J. and Kagel, J. H. (2005). Are two heads better than one? Team versus
individual play in signaling games. American Economic Review, 95(3):477–509.

138

https://bmwi.de/Redaktion/DE/Dossier/fachkraeftesicherung.html


Cordery, J. L., Morrison, D., Wright, B. M., and Wall, T. D. (2010). The impact of
autonomy and task uncertainty on team performance: A longitudinal field study.
Journal of Organizational Behavior, 31(2-3):240–258.

d’Aspremont, C., Bhattacharya, S., and Gérard-Varet, L.-A. (1998). Knowledge as a
public good: Efficient sharing and incentives for development effort. Journal of
Mathematical Economics, 30(4):389–404.

Davenport, T. H., De Long, D. W., and Beers, M. C. (1998a). Successful knowledge
management projects. MIT Sloan Management Review, 39(2):43.

Davenport, T. H., Prusak, L., et al. (1998b). Working Knowledge: How organizations
manage what they know. Harvard Business Press.

Deloitte (2019). Global human capital trends. Deloitte Insights.

Dessein, W. and Santos, T. (2006). Adaptive organizations. Journal of Political
Economy, 114(5):956–995.

Dinev, T. and Hart, P. (2006). An extended privacy calculus model for e-commerce
transactions. Information Systems Research, 17(1):61–80.

Dufwenberg, M., Sundaram, R., and Butler, D. J. (2010). Epiphany in the game of
21. Journal of Economic Behavior & Organization, 75(2):132–143.

Elmuti, D. (1997). Self-managed work teams approach: Creative management tool
or a fad? Management Decision, 35(3):233–239.

Esteves, R.-B. (2014). Price discrimination with private and imperfect information.
The Scandinavian Journal of Economics, 116(3):766–796.

Esteves, R. B. et al. (2009). A survey on the economics of behaviour-based price
discrimination. Technical report, NIPE-Universidade do Minho.

European Commission (2020). A European strategy for
data. https://ec.europa.eu/info/sites/info/files/

communication-european-strategy-data-19feb2020_en.pdf.

Fahey, L. and Prusak, L. (1998). The eleven deadliest sins of knowledge management.
California management review, 40(3):265–276.

Feldman, S. and Sherman, C. (2001). The high cost of not finding information: An
IDC White Paper. KM World Magazine, pages 1–10.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments.
Experimental Economics, 10(2):171–178.

Fudenberg, D. and Rayo, L. (2019). Training and effort dynamics in apprenticeship.
American Economic Review, 109(11):3780–3812.

139

https://ec.europa.eu/info/sites/info/files/communication-european-strategy-data-19feb2020_en.pdf
https://ec.europa.eu/info/sites/info/files/communication-european-strategy-data-19feb2020_en.pdf


Fudenberg, D. and Tirole, J. (2000). Customer poaching and brand switching. RAND
Journal of Economics, pages 634–657.

Fudenberg, D. and Villas-Boas, J. M. (2006). Behavior-based price discrimination
and customer recognition. Handbook on Economics and Information Systems,
1:377–436.

Garicano, L. (2000). Hierarchies and the organization of knowledge in production.
Journal of Political Economy, 108(5):874–904.

Garicano, L. and Rayo, L. (2017). Relational knowledge transfers. American Economic
Review, 107(9):2695–2730.

Ghosh, A., Mahdian, M., McAfee, R. P., and Vassilvitskii, S. (2015). To match or not
to match: Economics of cookie matching in online advertising. ACM Transactions
on Economics and Computation (TEAC), 3(2):1–18.

Gneezy, U., Rustichini, A., and Vostroknutov, A. (2010). Experience and insight in
the race game. Journal of Economic Behavior & Organization, 75(2):144–155.

Grant, R. M. (1996). Toward a knowledge-based theory of the firm. Strategic
Management Journal, 17(S2):109–122.

Greiner, B. (2015). Subject pool recruitment procedures: Organizing experiments
with ORSEE. Journal of the Economic Science Association, 1(1):114–125.

Haas, M. R. (2010). The double-edged swords of autonomy and external knowl-
edge: Analyzing team effectiveness in a multinational organization. Academy of
Management Journal, 53(5):989–1008.

Hamilton, B. H., Nickerson, J. A., and Owan, H. (2003). Team incentives and worker
heterogeneity: An empirical analysis of the impact of teams on productivity and
participation. Journal of Political Economy, 111(3):465–497.

Hollenbeck, J., Beersma, B., and Schouten, M. (2012). Beyond team types and
taxonomies: A dimensional scaling conceptualization for team description. Academy
of Management Review, 37(1):82–106.

Hollenbeck, J. R., DeRue, D. S., and Guzzo, R. (2004). Bridging the gap between
I/O research and HR practice: Improving team composition, team training, and
team task design. Human Resource Management: Published in Cooperation with
the School of Business Administration, The University of Michigan and in alliance
with the Society of Human Resources Management, 43(4):353–366.

Holmstrom, B. (1982). Moral hazard in teams. The Bell Journal of Economics,
pages 324–340.

140



Holmstrom, B. and Milgrom, P. (1990). Regulating trade among agents. Journal of
Institutional and Theoretical Economics, pages 85–105.

Hotelling, H. (1929). Stability in competition. The Economic Journal, 39(153):41–57.

Ichniowski, C., Shaw, K., and Prennushi, G. (1997). The effects of human resource
practices on manufacturing performance: A study of steel finishing lines. American
Economic Review, 87(3):291–313.

International Labour Organization (2021). Addressing rising demand for digital
skills. https://ilo.org/global/topics/apprenticeships/publications/

toolkit/innovations-and-strategies/innovations-and-trends/

addressing-demand/lang--en/index.htm.

Itoh, H. (1991). Incentives to help in multi-agent situations. Econometrica: Journal
of the Econometric Society, pages 611–636.

Itoh, H. (1992). Cooperation in hierarchical organizations: An incentive perspective.
Journal of Law, Economics, and Organization, 8(2):321–45.

Kräkel, M. (2017). Self-organizing teams. Economics Letters, 159:195–197.

Langfred, C. W. (2007). The downside of self-management: A longitudinal study of
the effects of conflict on trust, autonomy, and task interdependence in self-managing
teams. Academy of Management Journal, 50(4):885–900.

Lawler, E. E., Mohrman, S. A., and Benson, G. (2001). Organizing for high perfor-
mance: Employee involvement, TQM, reengineering, and knowledge management
in the Fortune 1000: The CEO report. Jossey-Bass.

Lazear, E. P. and Shaw, K. L. (2007). Personnel economics: The economist’s view of
human resources. Journal of Economic Perspectives, 21(4):91–114.

Liu, Q. and Serfes, K. (2004). Quality of information and oligopolistic price discrimi-
nation. Journal of Economics & Management Strategy, 13(4):671–702.

Loertscher, S. and Marx, L. M. (2020). Digital monopolies: Privacy protection or
price regulation? International Journal of Industrial Organization, page 102623.

Macho-Stadler, I. and Perez-Castrillo, J. D. (1993). Moral hazard with several agents:
The gains from cooperation. International Journal of Industrial Organization,
11(1):73–100.

Magpili, N. C. and Pazos, P. (2018). Self-managing team performance: A systematic
review of multilevel input factors. Small Group Research, 49(1):3–33.

Mahmood, A. (2014). How do customer characteristics impact behavior-based price
discrimination? An experimental investigation. Journal of Strategic Marketing,
22(6):530–547.

141

https://ilo.org/global/topics/apprenticeships/publications/toolkit/innovations-and-strategies/innovations-and-trends/addressing-demand/lang--en/index.htm
https://ilo.org/global/topics/apprenticeships/publications/toolkit/innovations-and-strategies/innovations-and-trends/addressing-demand/lang--en/index.htm
https://ilo.org/global/topics/apprenticeships/publications/toolkit/innovations-and-strategies/innovations-and-trends/addressing-demand/lang--en/index.htm


Malhotra, N. K., Kim, S. S., and Agarwal, J. (2004). Internet users’ information pri-
vacy concerns (IUIPC): The construct, the scale, and a causal model. Information
Systems Research, 15(4):336–355.

Mikians, J., Gyarmati, L., Erramilli, V., and Laoutaris, N. (2012). Detecting price
and search discrimination on the internet. In Proceedings of the 11th ACM workshop
on hot topics in networks, pages 79–84.

Mikians, J., Gyarmati, L., Erramilli, V., and Laoutaris, N. (2013). Crowd-assisted
search for price discrimination in e-commerce: First results. In Proceedings of the
ninth ACM Conference on Emerging Networking Experiments and Technologies,
pages 1–6.

Montes, R., Sand-Zantman, W., and Valletti, T. (2018). The value of personal
information in online markets with endogenous privacy. Management Science.

Nickerson, J. A. and Zenger, T. R. (2004). A knowledge-based theory of the firm:
The problem-solving perspective. Organization Science, 15(6):617–632.

Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organi-
zation Science, 5(1):14–37.

Nonaka, I., Toyama, R., Nagata, A., et al. (2000). A firm as a knowledge-creating
entity: A new perspective on the theory of the firm. Industrial and Corporate
Change, 9(1):1–20.

Osterloh, M. and Frey, B. S. (2000). Motivation, knowledge transfer, and organiza-
tional forms. Organization Science, 11(5):538–550.

Parliament and Council of the European Union (2016). Regulation (eu) 2016/679.
http://data.europa.eu/eli/reg/2016/679/oj.

Preibusch, S., Kübler, D., and Beresford, A. R. (2013). Price versus privacy: An
experiment into the competitive advantage of collecting less personal information.
Electronic Commerce Research, 13(4):423–455.

Prusak, L. (2001). Where did knowledge management come from? IBM Systems
Journal, 40(4):1002–1007.

Romer, P. M. and Kurtzman, J. (2004). The knowledge economy. In Handbook on
Knowledge Management 1, pages 73–87. Springer.

Rousseau, V. and Aubé, C. (2010). Team self-managing behaviors and team ef-
fectiveness: The moderating effect of task routineness. Group & Organization
Management, 35(6):751–781.

Schudy, S. and Utikal, V. (2017). You must not know about me: On the willingness
to share personal data. Journal of Economic Behavior & Organization, 141:1–13.

142

http://data.europa.eu/eli/reg/2016/679/oj


Severinov, S. (2001). On information sharing and incentives in R&D. RAND Journal
of Economics, pages 542–564.

Shilony, Y. (1977). Mixed pricing in oligopoly. Journal of Economic Theory, 14(2):373–
388.

Siemsen, E., Balasubramanian, S., and Roth, A. V. (2007). Incentives that induce
task-related effort, helping, and knowledge sharing in workgroups. Management
Science, 53(10):1533–1550.

Streitfeld, David (2000). On the web, price tags blur. https://washingtonpost.

com/archive/politics/2000/09/27/on-the-web-price-tags-blur/

14daea51-3a64-488f-8e6b-c1a3654773da.

Taylor, C. R. (2004). Consumer privacy and the market for customer information.
RAND Journal of Economics, pages 631–650.

Tsai, J. Y., Egelman, S., Cranor, L., and Acquisti, A. (2011). The effect of online
privacy information on purchasing behavior: An experimental study. Information
Systems Research, 22(2):254–268.

UNCTAD – United Nations Conference on Trade and Development (2021). Digital
economy report 2021: Cross-border data flows and development.

Wageman, R. (1997). Critical success factors for creating superb self-managing teams.
Organizational Dynamics, 26(1):49–61.

Wageman, R. (2001). How leaders foster self-managing team effectiveness: Design
choices versus hands-on coaching. Organization Science, 12(5):559–577.

https://washingtonpost.com/archive/politics/2000/09/27/on-the-web-price-tags-blur/14daea51-3a64-488f-8e6b-c1a3654773da
https://washingtonpost.com/archive/politics/2000/09/27/on-the-web-price-tags-blur/14daea51-3a64-488f-8e6b-c1a3654773da
https://washingtonpost.com/archive/politics/2000/09/27/on-the-web-price-tags-blur/14daea51-3a64-488f-8e6b-c1a3654773da




Erklärung zu Selbstständigkeit
und Hilfsmitteln

Hiermit erkäre ich, dass ich die Dissertation selbständig und nur unter der Verwendung
der angegebenen Hilfen und Hilfsmittel angefertigt habe. Software:

- Stata

- Mathematica

- MiKTex

Literature: siehe Literatureverzeichnis
Ich bezeuge durch meine Unterschrift, dass meine Angaben über die bei der

Abfassung meiner Dissertation benutzten Hilfsmittel, über die mir zuteil gewordene
Hilfe sowie über frühere Begutachtungen meiner Dissertation in jeder Hinsicht der
Wahrheit entsprechen.

Berlin, den 28. Februar 2022

Friederike Julia Heiny




	List of Figures
	List of Tables
	Abstract
	Zusammenfassung
	Introduction
	1 We Value Your Privacy: Behavior-based Price Discrimination Under Endogenous Privacy
	1.1 Introduction
	1.1.1 Related Literature

	1.2 Theory
	1.2.1 Model
	1.2.2 Endogenous Privacy
	1.2.3 Welfare

	1.3 Experiment
	1.3.1 Hypotheses
	1.3.2 Design
	1.3.3 Results

	1.4 Conclusion
	1.A Appendix A: Theory
	1.B Appendix B: Experiment

	2 Adoption of Teamwork in Knowledge-intensive Production
	2.1 Introduction
	2.1.1 Related Literature

	2.2 Model
	2.2.1 Basic Set-up
	2.2.2 Individual Production
	2.2.3 Team Production

	2.3 Analysis
	2.3.1 Knowledge Profiles under Individual Production
	2.3.2 Knowledge Profiles under Team Production
	2.3.3 Organizational Design
	2.3.4 Organizational Design and Problem Uncertainty

	2.4 Extension
	2.5 Conclusion
	2.A Appendix: Proofs
	2.B Appendix: Extension

	3 One-sided Knowledge Transfer in Teams: The Role of Commitment
	3.1 Introduction
	3.1.1 Related Literature

	3.2 Model
	3.3 No Commitment
	3.4 Commitment
	3.5 Value of Commitment
	3.6 Conclusion
	3.A Appendix: Proofs

	Bibliography



