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Transcriptomic diversity in human medullary
thymic epithelial cells
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The induction of central T cell tolerance in the thymus depends on the presentation of
peripheral self-epitopes by medullary thymic epithelial cells (mTECs). This promiscuous gene
expression (pGE) drives mTEC transcriptomic diversity, with non-canonical transcript
initiation, alternative splicing, and expression of endogenous retroelements (EREs) repre-
senting important but incompletely understood contributors. Here we map the expression of
genome-wide transcripts in immature and mature human mTECs using high-throughput 5'
cap and RNA sequencing. Both mTEC populations show high splicing entropy, potentially
driven by the expression of peripheral splicing factors. During mTEC maturation, rates of
global transcript mis-initiation increase and EREs enriched in long terminal repeat retro-
transposons are up-regulated, the latter often found in proximity to differentially expressed
genes. As a resource, we provide an interactive public interface for exploring mTEC tran-
scriptomic diversity. Our findings therefore help construct a map of transcriptomic diversity
in the healthy human thymus and may ultimately facilitate the identification of those epitopes
which contribute to autoimmunity and immune recognition of tumor antigens.
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ARTICLE

he random generation of T cell receptors during T cell

development in the thymus ensures adequate repertoire

diversity while presenting a unique challenge for the
development of self-tolerance!. A key player in the induction of
central tolerance are medullary thymic epithelial cells (mTECs),
which act as a molecular mirror of the peripheral self through
promiscuous gene expression (pGE). This process of pGE allows
mTECs to express a comprehensive library of self-antigens®3
against which developing T cells are screened and, if reactive,
eliminated. Even the absence of a single tissue-restricted antigen
(TRA) is sufficient to induce organ-specific autoimmunity in
mice*> and human mTEC TRA expression has been shown to
correlate with the risk of autoimmune disease®8. While the
degree of pGE has been shown to increase with mTEC matura-
tion, the underlying regulatory mechanisms remain poorly
understood?, particularly in the human thymus.

At the core of thymic pGE is the unique transcription factor
autoimmune regulator (AIRE)!®!1. In contrast to conventional
motif-specific transcription factors, AIRE appears to recognize
generic epigenetic markers and release stalled RNA polymerase
I1'2-14, ATRE localizes to super enhancers in mice!® and works in
conjunction with the chromatin remodelers CHD4!¢ and
BRG1!7. Consequently, AIRE-induced TRA expression is inde-
pendent of canonical tissue-specific transcription factors!8-21,
AIRE is not solely responsible for pGE?2, however, with forebrain
embryonic zinc-finger-like protein 2 (FEZF2) recently identified
as an AIRE-independent regulator of TRA expression?3. AIRE
and FEZF2 together account for approximately 60% of pGE in
mice?3.

While mouse mTECs express more than 89% of protein-coding
genes?4, the detection of a given gene does not necessarily imply
the expression of all possible epitopes contained within that gene.
Targeted transcription start site (TSS) analysis in mouse mTECs
revealed alternative initiation sites for a subset of TRAs, notably
including insulin (Ins2) with potential implications for the
pathogenesis of type 1 diabetes!8. Mis-initiation of the
melanoma-associated antigen recognized by T cells (MART-I1)
gene in human mTECs resulted in the expression of a truncated
transcript, impairing central tolerance and consequently gen-
erating a measurable antigen-specific T cell response?>. As AIRE
induces TRA expression in a manner independent from typical
peripheral regulators!8-21, it is not surprising that mTECs could
use different TSSs. Beyond limited examples, the genome-wide
prevalence of transcript mis-initiation has not been systematically
examined in human mTECs.

Co- and post-transcriptional modifications further increase the
number of unique peripheral epitopes?®. Alternative splicing
allows for a single gene to produce multiple unique transcripts
with an estimated 10-15% of these transcripts lacking
mouse mTEC expression?’ and potentially contributing to
autoimmunity?$-30. Conversely to initial findings of AIRE-
mediated promiscuous RNA splicing in mice3!, more recent
reports indicate that AIRE-induced genes have lower rates of
alternative splicing compared to AIRE-neutral genes?, with
mTECs favoring the production of known splicing variants
through a subset of peripheral splicing factors33. The extent of
alternative splicing has not yet been studied in human mTECs.

Another potential source of epitope diversity is the expression
of endogenous retroelements (EREs). Due to their mutagenic
potential, EREs are largely silenced in somatic cells; however,
domesticated EREs that serve host functions and the occurrence
of somatic transposition events suggest that silencing is
incomplete3*. Accordingly, EREs are heterogeneously expressed
across diverse human tissues and contribute to the immuno-
peptidome. In human mTECs, ERE expression is unusual in
magnitude and diversity>>. The significance of this elevated

expression diversity and how ERE expression compares at dif-
ferent mTEC maturation stages are unknown. While mouse
models have been invaluable for our understanding of pGE and
mTEC biology, a clear picture of the epitope-generating processes
in the human mTEC compartment was lacking.

We here employ high-throughput 5Cap and RNA sequencing
to map the expression of genome-wide transcripts in human
immature and mature mTECs. Our results demonstrate increased
rates of global transcript mis-initiation among the mature mTEC
population with transcript initiation stochasticity prevalent
among AIRE, but not FEZF2, induced genes. We further show
that human mTECs express an average of 20,426 genes, favoring
the expression of, on average, 78,573 known transcripts that
appear to be driven primarily by differential expression of per-
ipheral splicing factors rather than generating novel transcripts
through promiscuous splicing. Finally, specific EREs enriched in
long terminal repeat (LTR) retrotransposons are upregulated
during mTEC maturation, but contribution to initiation of TRA
transcripts is rare, suggesting that ERE expression is largely a
passive consequence of pGE. Together, our findings provide
molecular insight into the roles of transcript mis-initiation,
alternative splicing, and ERE expression in generating human
mTEC diversity.

Results

Identification of high-quality mTEC transcription start sites.
We first set out to identify TSSs in human mTECs. Through their
interaction with developing T cells, mTECs undergo a maturation
and differentiation process in which the level of pGE and the total
number of expressed TRAs increases (Fig. 1A). The maturation
process can be broadly traced on the cellular level by MHCII
expression, with AIRE and FEZF2 expression predominately
confined to a subset of the mature MHCIM mTEC
population?3-36-38, We sorted epithelial cells from five pediatric
human thymus samples (Supplementary Table 1) into mature
MHCIIM and immature MHCII® mTEC populations (Supple-
mentary Fig. 1A, hereafter referred to as mTECh and mTECl,
respectively). To examine genome-wide transcript initiation in
mTECs, we used high-throughput 5°Cap sequencing®*-4! which
selects for RNA molecules with a 5°Cap followed by standard
Mlumina sequencing (Fig. 1B). We identified and quantified TSSs
at single-nucleotide resolution by aligning the 5Cap-derived
reads and counting the number of transcripts beginning at each
genomic position (Fig. 1C), followed by normalizing to tags per
million (power-law normalization#243, Fig. 1D). As closely clus-
tered single-nucleotide TSSs functionally represent the same start
site for a given transcript*4, we collapsed closely related TSSs into
transcription start regions (TSRs) and report the set of TSRs
meeting a conservative expression threshold. We identified a total
of 52,033 unique TSRs, representing 16,117 unique genes (13,322
protein-coding), combined across all mTECM and mTECl
samples.

We next assessed the quality of these TSRs. Raw tag counts of
TSSs identified using HeliScope Cap Analysis of Gene Expression
(hCAGE) single-molecule sequencing follow a power-law
distribution4243, an observation consistent with our 5Cap
sequencing data and well-conserved across all of our biological
replicates (Fig. 1D). Similarly, we found that our 5Cap
sequencing method identified TSRs with an enrichment in TATA
motifs and CG nucleotide content that is characteristic of known
promoter regions and closely resembles those previously reported
in the RefT'SS*> database (Fig. 1E and Supplementary Fig. 2A).
We further observed conservation of TSRs across human mTEC
samples, with 15% (3466) found in all ten samples and up to 47%
(23,109) of TSRs observed in at least two independent samples
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Fig. 1 Overview of mTEC transcription start regions identified by 5'Cap
sequencing. A Medullary thymic epithelial cells (mTECs) undergo a
maturation process that is characterized by the levels of promiscuous gene
expression (pGE), MHCII expression, and expression of transcription
factors AIRE and FEZF2. B Schematic overview of the 5'Cap sequencing
method. As previously described39-4, transcripts with a 5'Cap were
isolated using calf intestinal phosphatase (CIP) and tobacco acid
pyrophosphatase (TAP) prior to single-stranded RNA (ssRNA) ligation,
incorporation of unique molecular identifiers (UMIs), and further library
preparation. € Following next-generation sequencing, reads were aligned
and the number of transcription start sites (TSSs) detected using 5'Cap
sequencing were counted at each genomic position. Nearby TSSs were
clustered into transcription start regions (TSRs). Distribution of TSSs
identified using 5'Cap sequencing followed D a power-law distribution
(colors represent samples) and E enrichment of TATA motifs for TSRs
were concordant with those identified in the RefTSS database>. F Principal
component (PC) analysis shows clustering of mTECN (n=5) and mTEC'®
samples (n=5). Source data for E and F are provided in the Source

Data file.

(Supplementary Fig. 2B). We additionally confirmed that the
majority of our TSRs were associated with protein-coding genes
and mapped to known promoter regions (Supplementary
Fig. 2C-E). Together, our data demonstrate that 5Cap sequen-
cing allows for the high-throughput identification of genome-
wide mTEC TSRs in a reliable and reproducible manner.

mTECh have increased rates of transcript mis-initiation. TSS
usage has been shown to differ between mTECs and their
respective  peripheral tissues for a limited number of
transcripts!®2>. Given the non-specific mechanisms used by
AIRE to induce TRA expression!>16, we hypothesized that
AIRE expression could result in increased transcript initiation
stochasticity.

To investigate this, we first needed to understand TSR usage
patterns at the global and sample levels. Globally, principal
component analysis on normalized TSR expression levels across
mTECs showed a clear separation of the mTECh and mTEC!®
populations (Fig. 1F). At the sample level, all against all
correlation analysis showed that the correlation between TSR
expression was greater among mTEChM-mTECh and mTECe-
mTECl® samples taken from different individuals than the
correlation between mTECh-mTEC!® pairs taken from the same
individual (Supplementary Fig. 3). As these findings demonstrate
that TSR patterns within mTEC populations outweigh sample-
specific TSRs, we next sought a population-specific TSR usage
cut-off which would allow us to study TSR usage differences in
these two populations on transcript level. We defined mTECHI-
specific TSRs as those 1855 unique TSRs representing 1500
unique genes that were independently observed in at least two
mTECM samples and not observed in any mTECI® sample (see
Methods and Note: population-specific TSR definition). Using the
same definition, we identified 2374 TSRs from 2011 unique genes
that were unique to the mTEC!® population.

To assess TSR usage in TRAs, we next calculated a conservative
set of human TRAs on both the gene and transcript levels (Eq.
(1), Supplementary method: Estimating TRAs from GTEx;
Supplementary Data 1 and 2). We identified a total of 7063
TRA-genes and 35,497 TRA-transcripts by applying a previously
developed?® tissue exclusivity score to samples representing 22
human tissue types from the Genotype-Tissue Expression (GTEx)
project?’. As expected given the increased pGE of TRAs in the
mTECM population (Figs. 1A and 4E), we found that TSRs
mapping to TRA-genes were enriched (p=2.3x 1073, by two-
sided paired t-test) in the mTECh population while mTEC-
specific TSRs were more commonly associated (p=4.3 x 10~2)
with housekeeping genes*® (Fig. 2A).

We then analyzed TSR usage with respect to their dependence
on the known transcriptional regulators of pGE, AIRE, and
FEZF2 (see Note: human AIRE- and FEZF2-dependent genes).
Again as expected given the increased expression of AIRE and
FEZF2 in mature mTECs, we confirmed that TSRs associated
with AIRE (p=4.9x1073 by paired t-test) and FEZF2
(p=2.1 x 1072) dependent genes composed a significantly higher
fraction of the mTECM-specific TSR population relative to the
mTEC-specific TSRs (Fig. 2B). Overall, the FEZF2-dependent-
TRA-genes (odds ratio [OR] 15, p=1x 10~ by Fisher’s exact
test), AIRE-dependent-TRA-genes (OR 2.5, p=1x1079), and
other (i.e., not dependent on either FEZF2 or AIRE) TRA-genes
(OR 1.7, p=2x10"%) were significantly enriched in the set of
mTEChPispecific TSRs. Housekeeping genes (OR 0.8,
p=82x10"2) were more commonly found in the mTECl-
specific TSR population (Fig. 2C). Consistent with an increase in
the frequency of mis-initiation events, we observed that the
mTECM population had a statistically significant increase in the
number of TSRs identified per gene relative to the mTEC
population (1.24 vs. 1.17 TSRs per gene, p = 0.02 by two-sided
Mann-Whitney U test).

We next annotated each TSR according to its genomic location
with  HOMER?, finding that mTEC-specific TSRs were
significantly more likely to map to known promoter regions
(p = 4 x 10~ by two-sided paired ¢-test, Fig. 2D). Examination of
the distribution of TSRs to non-promoter sites revealed that
mTEC!-specific TSRs more frequently mapped to the 5 UTR
(p=1x10"2), which are immediately downstream of known
promoters (Fig. 2E). The mTECM-specific TSRs were more
commonly found in all other annotated genomic regions,
including exonic (p = 0.001 by two-sided paired t-test), intronic,
intergenic, transcript termination sites (all p <0.01), and 3° UTRs
(p <0.05). Non-coding regions were also skewed toward mTEChi
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Fig. 2 The mTEChi population has increased rates of transcript mis-initiation. Comparison of the frequency with which transcription start regions (TSRs)
are associated with A tissue-restricted antigens (TRAs), housekeeping genes, B autoimmune regulator (AIRE)- and FEZF2-dependent genes between
paired (gray lines) human mTEC!® (orange) and mTECN (blue) samples. € mTECh vs. mTEC!® odds ratio comparing the frequency of FEZF2- and AIRE-
induced TRAs, other TRAs not associated with FEZF2 or AIRE, and housekeeping genes. D Fraction of mTEC-population-specific TSRs mapping to known
promoter regions. E Distribution of genomic location annotations for TSRs unique to either the mTECN or mTEC!® populations. Boxplots show median
values with interquartile ranges and extrema (whiskers at 1.5x IQR). Outliers beyond 1.5% IQR are shown as dots. TTS transcription termination site, UTR
untranslated region. F mTECh vs. mTEC!® odds ratio for TSRs falling into 5' UTR, known promoter regions, and all other annotated regions. G Overlap
between TSRs found in at least one mTECh, mTEC!®, and/or normal FANTOMS peripheral tissue sample30. H Leave-one-out analysis®' comparing TSR
usage across mTECN, mTEC!®, and 10 pooled peripheral tissue samples from the FANTOMS5 consortium. In brief, one sample type was excluded and the set
of TSRs unique to one tissue type among the remaining samples was calculated. The fraction of TSRs expressed in the excluded sample was then reported
for each set of otherwise tissue-specific TSRs as a row z-score. The top barplot shows the column mean z-score across all tissue types. Error bars show
either standard deviation (A, B, D) or 95% confidence intervals (C, F). Odds ratio values (C, F) greater than 1 represent increased use in mTECN TSRs; bars
color-coded by population with increased odds. Values above horizontal bars indicate p values derived by two-sided paired t-test (A, B, D, E, H) or two-

sided Fisher's exact test (C, F); all panels: n=5 paired mTEC samples. Source data for all panels are provided in the Source Data file.

TSRs (p = 0.15). Overall, mTECh TSRs were more than twice as
likely to fall outside of these known promoters and nearby 5 UTR
regions (OR 2.4, p=1x 10743 by two-sided Fisher’s exact test,
Fig. 2F). These findings demonstrate a substantial increase in the
frequency of mis-initiation events (i.e., those falling outside of
known promoter regions) in the mTECh population.

This observed shift away from known promoter regions in the
mTECh population is consistent with an increased rate of
genome-wide transcript mis-initiation, presumably mediated by
non-canonical regulatory mechanisms. We hypothesized that this
increase in transcript initiation stochasticity would lead mTECsh!
to share peripheral tissue-specific TSRs less often than mTECIo
cells. To test this, we compared our mTEC TSRs to TSRs in 10
pooled human organ samples from the FANTOMS repository>’.
For comparability of TSRs, we downloaded raw FANTOMS5
hCAGE datasets and ran the sequencing reads through our TSR
calling pipeline (Fig. 1C; see Note: TSR calling approaches). We
found that approximately 27% (8268) of mTECh and 29% (8680)
of mTEC!® TSRs were also found in at least one of these 10
FANTOMS samples, with 37% (16,078) of our unique mTEC
TSRs found in both of our mTECM and mTEC!® populations
(Fig. 2G), though these estimates are potentially limited by the
comparative lack of sequencing saturation in our mTEC samples
(Supplementary Fig. 1B). Performing a leave-one-out analysis as
previously described®!, we indeed found that TSRs were more
commonly shared (p = 0.008 by two-sided paired ¢-test) uniquely
between the mTECI samples and the peripheral tissues (Fig. 2H).
While these findings together demonstrate an mTECM-specific

increase in the rate of transcript initiation outside of the known
promoter regions used by peripheral tissues, the regulatory roles
of AIRE and FEZF2 in this mis-initiation remain unclear.

AIRE, but not FEZF2, may promote transcript mis-initiation.
We next explored possible regulatory mechanisms responsible for
the observed increase in mTECM transcript initiation stochasti-
city. We first searched for known transcription factor binding
motifs within 200 base pairs of each TSR and calculated the
mTECh:mTECle OR for each of these known motifs (Fig. 3A).
Half of the transcription factor binding motifs found to be
enriched around mTEC! TSRs belonged to the Kriippel-like
factor/Specificity protein (KLF/Sp) family, representing highly-
conserved zinc-finger transcription factors that regulate the
expression of a diverse set of genes involved with tissue-specific
differentiation and development>2. We found two NF-xB binding
motifs to be enriched around the mTECh-specific TSRs (Fig. 3A),
consistent with previous findings demonstrating a role for NF-xB
activation in inducing mTEC AIRE expression®>4. Other pro-
moter motifs enriched in the mTECh TSRs included several
transcription factors associated with stem cell pluripotency,
including NANOG?>, ASCL2°%, and PRDM10°7. RNA sequencing
performed on three of these paired mTECh and mTEC!® samples
(see Differential TRA expression in human mTECs) showed that
these transcription factors are expressed in both populations
(Supplementary Fig. 4), however, for the majority of the tran-
scription factors without a significant (g <0.05) enrichment in
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their expression levels (Fig. 3B); i.e, our data demonstrate
enrichment of transcription factor sequence motifs around mTEC
TSRs without corresponding differential expression of the tran-
scription factor expression (Fig. 3A, B).

We therefore hypothesized that differences in underlying
epigenetic regulation between the two mTEC populations could
alter the accessibility of these binding motifs and account for the
observed sequence enrichment. AIRE localizes to chromatin
regions with highly concentrated regulatory elements known as
super-enhancers (SEs) in mice, inducing distal gene expression
with the help of the chromatin remodeler CHD41%16, While the
mTEC chromatin landscape has been explored in mices,
functional genomic data and thereby TEC-specific SEs are
currently not available for human mTECs. As a baseline to
investigate the contribution of SEs to transcript mis-initiation, we
used the human super-enhancer database (SEdb; representing SEs
across 240 human tissue and cell types®®), and calculated the
genomic distance between each TSR and the nearest known SE.
We found that the mature mTEChi-specific TSRs were con-
sistently closer to these known SE regions than those TSRs

Fig. 3 AIRE may predominately contribute to transcript mis-initiation.
A Log, odds ratio (OR) point estimate for transcription factor motifs
enriched (p < 0.05 by Fisher's exact test after Bonferroni correction) within
200 bp of either mTECi- or mTEC!®-specific TSRs. OR values greater than
0 represent increased use surrounding mTECN-specific TSRs; color-coded
by population with increased odds. B Of those known transcription factor
motifs enriched around mTEChi- or mTEC!o-specific TSRs (A), only six
genes were found to be differentially expressed (Wald test,
Benjamini-Hochberg adjusted g <0.05) by RNA sequencing. Only 3 of
these 6 transcripts (indicated by an asterisk) were enriched in the mTEC
population expected from the motif enrichment around the TSRs.

C Distance in kilobases (kb) to nearest known super enhancer or D typical
enhancer in SEdb>°. E mTEChi-specific TSRs were more commonly located
outside of known promoter regions for AIRE-induced genes, but not for
FEZF2-induced genes. TRAs not induced by either AIRE or FEZF2 and
housekeeping genes also show mTECh-specific TSRs enriched outside
promoters. F Distribution of transcript-level expression values in mTEChi
cells demonstrates a higher average expression of FEZF2-induced genes
relative to AIRE-induced genes. TPM transcripts per million. G Mouse
Chromatin ImmunoPrecipitation sequencing (ChIP-Seq) data (n = 4)24
demonstrates higher mean (central line) counts per million mapped reads
(CPM) of H3K4me3 (histone marker of transcriptional activation, top) for
FEZF2 genes. Conversely, higher CPM of H3K27me3 (transcriptional
repression, bottom) was observed for AIRE-induced genes. Error bars or
bands show either 95% confidence intervals (A, G) or standard deviation
(E); boxplots show median (central line) with interquartile range (IQR, box)
and extrema (whiskers at 1.5x IQR). Outliers beyond 1.5x IQR are shown as
dots (C, D, G). Values above horizontal bars indicate p values derived by
the two-sided Mann-Whitney U test (C, D, F) or by the two-sided paired t-
test (E). A-F: n=15 paired mTEC samples. Source data for A-F are provided
in the Source Data file.

specific to the mTEC! population (Fig. 3C). The importance of
AIRE-SE mediated interactions in driving mTECM-specific TSR
usage is further supported by the observation that the mTECh
TSRs were further from typical enhancers than their mTEC
counterparts (Fig. 3D). Although inter-chromosomal interactions
make nucleotide distance a relatively poor proxy for SE function,
our data is compatible with mTECM specific TSRs more
commonly falling within SE neighborhoods and consequently
an increased role for non-specific, long-distance interactions
mediated by AIRE. We theorized that the use of SE-based long-
range regulatory mechanisms employed by AIRE could be the
predominant driver of transcript initiation stochasticity in the
mTECM population. This is in contrast to FEZF2, which has been
shown to recognize local promoter sequences in neurons® and
cooperatively regulate promoter chromatin states in mouse
mTECs!.

Consistent with this hypothesis, we found that AIRE-induced
TSRs were more commonly initiated outside of known promoter
regions in mTECM cells relative to the mTEC® population
(p =0.007 by two-sided paired t-test, Fig. 3E and Supplementary
Fig. 5A). Importantly, no difference in the frequency of transcript
mis-initiation was observed between the two mTEC populations
for TSRs associated with FEZF2-induced genes (Fig. 3E and
Supplementary Fig. 5B). That is, pGE mediated by AIRE, but not
FEZF2, was frequently initiated outside of known promoter
regions in human mTECs. To confirm these findings, we
calculated the fraction of genes with mis-initiated transcripts
(at least one TSR mapping outside of a known promoter region).
As the identification of TSRs is dependent on gene expression, we
limited this analysis to a set of transcripts with comparable
expression levels in our mTEC bulk RNA-seq samples. We indeed
found that AIRE, but not FEZF2, induced genes had higher rates
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of transcript mis-initiation in the mTECD relative to the mTEC®
population (Supplementary Fig. 6A, B).

We further observed that the expression of FEZF2-induced
genes was, on average, higher than that of AIRE-induced genes in
human mTECh cells (Fig. 3F), as previously reported in mouse
mTECs!®. To better delineate the functional role of AIRE in
transcript mis-initiation, we next examined epigenetic regulation
of AIRE- and FEZF2-induced genes using mouse mTEC
Chromatin ~ ImmunoPrecipitation  sequencing  (ChIP-Seq)
datasets24. Previous studies have reported increased chromatin
accessibility around FEZF2-induced gene TSSs in contrast to
increased markers of chromatin repression around AIRE-induced
gene TSSs!. Extending this analysis across the full gene body, we
again found enrichment of the active histone marker trimethy-
lated lysine 4 of histone 3 (H3K4me3) predominately around the
TSS for FEZF2 relative to AIRE-induced genes in the murine
mTECM population (Fig. 3G). In contrast, examining the
trimethylated lysine 27 of histone 3 (H3K27me3) histone marker
demonstrated increased epigenetic repression of transcription for
AIRE-induced genes across the full gene body relative to FEZF2-
induced genes (Fig. 3G). Together, AIRE’s localization to distal
SEs and recruitment to repressed chromatin markers elevated
across the gene body, in conjunction with increased chromatin
accessibility for AIRE-induced TRAs at sites distal to the TSS,
would suggest a relatively high degree of initiation stochasticity.
Under this model, AIRE-induced genes would be expected to
more frequently have initiation sites outside of known promoter
regions and have overall lower expression, consistent with the
findings presented above.

Beyond these AIRE- and FEZF2-induced genes, we additionally
found that both housekeeping genes and TRAs not known to be
induced by either transcription factor had increased rates of
transcript mis-initiation in the mTECh-specific TSR population
relative to the mTEC!® population (Fig. 3F and Supplementary
Figs. 5C, D and 6C, D). Limited by the caveat that human AIRE-
and FEZF2-induced genes have only been defined by lifting over
from the corresponding mouse gene sets, these findings suggest
that AIRE is not the sole driver of transcript mis-initiation in
mTECM and other factors are involved, likely including
differences in global chromatin remodeling®!.

In summary, AIRE-induced genes in the mTECP population
had the highest rates of transcript mis-initiation when compared
with AIRE- and FEZF2-independent TRAs and housekeeping
genes (Supplementary Fig. 6), strongly supporting a direct role for
AIRE, but not FEZF2, in promoting transcript mis-initiation.

Differential TRA expression in human mTECs. Previous
reports have estimated that mouse mTECs express approximately
89% of known protein-coding genes2* and extrapolation of gene
expression in the complete human TEC compartment (including
cortical and medullary TECs) estimates close to 100,000
transcripts®2. To measure the fraction of gene- and transcript-
level TRAs expressed in human mTECs, we performed deep RNA
sequencing on paired mTECh and mTEC!® samples from three of
the five individuals (Supplementary Table 1 and Supplementary
Fig. 10). We found that individual human mTEC samples express
on average 20,426 +483 (mean * standard deviation) unique
genes and 78,573 + 3664 unique transcripts, corresponding to an
overall average expression of protein-coding genes of 75.6 £ 0.7%.
Together, we detected 22,504 (95.9%) protein-coding genes that
were expressed at >1 transcript per million (TPM) (see Alter-
native splicing in mTECs is non-promiscuous) in at least one of
the six mTEC samples. In addition, 96.1% of TSRs identified in
our previous analyses had corresponding gene expression mea-
surements in this data, with additional expression being detected

for which TSS sequencing yield was likely not deep enough
(Supplementary Fig. 1B). Examining differential gene expression
between these mTEC populations, we identified 5474 transcripts
(3430 unique genes) and 2143 transcripts (1465 unique %genes)
significantly enriched (g < 0.05, by Wald test) in the mTEC™ and
mTEC populations, respectively (Fig. 4A).

We first confirmed that expression of the mTEC maturity
markers MHCII and CD80 was increased in the mTECshi
(Fig. 4A, B), consistent with the mTEC development pathway
(Fig. 1A). Similar to findings in mice, we found that expression of
FEZF2 (125-fold) and AIRE (292-fold) was higher in human
mTECsh relative to mTECs!® (Fig. 4C). We further confirmed the
enrichment of nine previously reported human mTECh marker
genes®? in our dataset (Fig. 4D). These findings suggest a high
degree of homology between mouse and human mTEC maturity
stages.

We next compared the expression of TRAs across the mTECh
and mTEC!® populations. We identified 1747 TRA-transcripts
(1348 unique TRA-genes) and 374 TRA-transcripts (273 unique
TRA-genes) significantly (g <0.05) enriched in the mTECM and
mTEC population, respectively (Fig. 4E). Consistent with the
function of AIRE and FEZF2 in mature mTECs, differentially
expressed TRAs were more than twice as likely to be expressed
by the mTECM population (OR 2.2, p=7.7 x 10739 by Fisher’s
exact test). TRA-genes enriched within the mTEC!® population
were strongly associated with gene ontology terms®* related to the
skeletal and cardiac muscle (Fig. 4F). These findings are
consistent with single-cell sequencing data suggesting that the
expression of muscle-specific antigens was predominately
limited to a cluster of MHCII-low myoid cells in the human
thymus®3,

To further assess differences in the coverage of TRAs by
mTEC maturity, we calculated the fraction of TRA-genes and
TRA-transcripts expressed based on a TPM threshold (=1 TPM)
in the mTECh and mTECl populations. We found thymic
representation was lowest for adipose and testis TRA-genes, as
previously reported in mice®! (Fig. 4G). TRA-transcripts map-
ping to adipose tissue, the spinal cord, and frontal cortex showed
the lowest levels of thymic representation (Fig. 4H), potentially
reflecting a lack of certain peripheral tissue-specific splicing factor
expression in the thymus33, Comparing TRA coverage by the
stage of mTEC maturity, we again found that the mTECl
population expressed a higher fraction of both genes and
transcripts with expression in the periphery restricted to the
heart and skeletal muscle (Fig. 4F-H). The mTEC!® population
additionally expressed a higher fraction of ovarian and cerebel-
lum TRA genes and transcripts. While a higher fraction of both
TRA-genes and TRA-transcripts for all other sampled tissue types
were expressed by the mTECh population, the difference in
expression between the two mTEC populations was more
pronounced on TRA-gene than TRA-transcript level (Fig. 4I).
That is, the mTEC!® expressed a relatively higher number of
TRA-transcripts than TRA-genes when compared to the mTECh!
population. Together, these findings potentially reflect a higher
rate of mTEC! alternative splicing.

Alternative splicing in mTECs is non-promiscuous. Mouse
mTECs express a significantly higher number of isoforms than
are found on average in peripheral tissues®>! and seem to
generate these known isoforms by reusing peripheral splicing
factors33. Furthermore, AIRE-induced genes seem to have lower
rates of alternative splicing events when compared with AIRE-
neutral genes2. As our examination of TRA expression demon-
strated a relatively increased expression of transcripts per gene in
our mTEC population, we hypothesized that differential
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expression of peripheral tissue splicing factors could drive an
increase in human mTECI alternative splicing.

To investigate alternative splicing in mature and immature
human mTECs, we first calculated splicing entropy (Eq. (2)), for
our mTEC and 25 GTEx healthy peripheral tissue samples. On a
per gene basis, a higher splicing entropy represents more diverse
isoform expression (i.e., splicing entropy for a given gene is
maximal when all isoforms for a given gene are equally
expressed). The overall splicing entropy reported for each tissue
is then the sum of all genes with an expression of more than one
transcript in that tissue. With the notable exception of the testis,
the mTEC samples had significantly higher splicing entropy
relative to all other surveyed peripheral tissue types (Fig. 5A).
This finding is consistent with previous observations in mice3!
and suggests that the human thymus similarly expresses a large
number of isoforms. No significant difference was detected in
splicing entropy between the mTEC!® and mTECM populations.

We next calculated the fraction of known transcripts expressed
in each tissue type at varying TPM thresholds (Fig. 5B). We again
found that the testis expressed the highest fraction of the

Fig. 4 Differential expression of tissue-restricted antigens across mTEC
populations. A Enrichment of the mature mTEC marker CD80 and MHCII
transcripts, as well as AIRE and FEZF2 transcripts in the mTECh population
(Wald test, effect size >0). B Comparison of average expression across all
transcripts for CD80, MHCII, € FEZF2, and AIRE. D mTECh marker genes
identified previously®3 were similarly enriched in our mTECN population:
FXYD3, FXYD2, TNFRSF9, SP1B (p <0.001), CD70 (p = 0.01), MARCO
(p=0.005), ILALT (p =0.1) and CH13L1 (p = 0.004); by two-sided
Mann-Whitney U test. E Enrichment of 1747 and 374 tissue-restricted
antigen (TRA) transcripts in the mTECh and mTEC!® populations,
respectively (Wald test, effect size >0). F Gene ontology analysis of those
TRASs enriched in the mTEC!® population revealed a strong preference for
muscle-related functions. SM skeletal muscle, CM cardiac muscle, M
muscle, Regen regeneration, Pos. reg. positive regulation, Contr contraction,
diff differentiation, Commit commitment. G Percentage of tissue-specific
TRA genes and H transcripts expressed in the mTEC!® and mTECh
populations; absolute numbers in parentheses. 1 Odds ratio of
mTEChi:mTEC!® TRA expression on gene and transcript level. The relative
expression of TRA transcripts was more similar between the two
populations. Error bars show 95% confidence intervals. Boxplots show
median (central line) with interquartile range (IQR, box) and extrema
(whiskers at 1.5x IQR). Outliers beyond 1.5% IQR are shown as dots (B, D).
Values above horizontal bars indicate p values derived by the two-sided
Mann-Whitney U test (B, C) or Fisher's exact test (I); all panels: n=5
paired mTEC samples. Source data for all panels are provided in the Source
Data file.

transcriptome regardless of the chosen threshold, closely followed
by the mTEC!® and mTECM populations. The mTECh popula-
tion expressed a larger percentage of the transcriptome only at
relatively low thresholds (TPM <0.55), with nearly 60% of known
transcripts having detectable expression in the mTEC samples.
Selecting an expression threshold of 1 TPM, we next modeled the
total number of expressed transcripts as a function of expressed
genes for all tissue types. We found that while the mTECl
population expressed a higher number of transcripts per gene, the
number of expressed transcripts in both the mTECh and mTECl
samples appeared to be directly related to the increased number
of genes expressed in these samples (Fig. 5C). Consistent with
recent findings in mice2, we found that the mTECM population
expressed a lower than expected number of transcripts per AIRE-
dependent gene (Supplementary Fig. 7A). In contrast, no such
difference was observed for the number of transcripts expressed
per FEZF2-dependent, AIRE- and FEZF2-independent TRA, or
housekeeping gene in the mTECh population (Supplementary
Fig. 7B, D).

Finally, we asked whether the differential expression of
peripheral splicing factors could account for differences in mTEC
isoform diversity. Using rMATS®® to quantify differential
alternative splicing between stages of human mTEC maturity,
we found a total of 3411 differentially expressed isoforms (FDR
<0.05 and a difference in percent spliced greater than 10%;
Fig. 5D). A slight majority (55%) of these were enriched in the
mTEC! population, including a greater number of skipped exons,
retained introns, and alternative 5 and 3’ splice sites. The
mTECM population demonstrated a slightly higher number of
mutually exclusive exons. When specifically considering AIRE-
dependent, FEZF2-dependent, AIRE- and FEZF2-independent
TRA, and housekeeping transcripts, alternative splicing patterns
were consistent with the whole transcriptome analysis though
higher rates of skipped exons were observed for AIRE- and
FEZF2-dependent transcripts in the mTECM population (Supple-
mentary Fig. 8). Notably, no specific difference in the distribution
of alternative splicing events was observed for AIRE-dependent
transcripts. To determine whether the preferential expression of
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Fig. 5 Alternative splicing in mTECs is mediated by differential
expression of peripheral splicing factors. A Splicing entropy calculated for
mTECN and mTEC!® as well as 25 healthy peripheral tissue samples from
GTEx#. Boxplots show median (central line) with interquartile range (IQR,
box) and extrema (whiskers at 1.5x IQR). QOutliers beyond 1.5% IQR are
shown as dots. B Fraction of transcriptome expressed at varying transcript
per million (TPM) thresholds for mTEC and peripheral tissue samples.

C Linear regression fitting the number of expressed transcripts as a function
of the number of expressed genes in healthy GTEx samples predicts
number of transcripts in mTECh and mTEC!® samples. The gray shaded
area marks the 95% confidence interval. D Differential splicing between the
mTECN and mTEC!® populations as predicted by rMATS®> divided by
skipped exons (SE), retained introns (RI), alternative 5' and 3' splice sites
(A5SS, A3SS), and mutually exclusive exons (MXE). E Clustermap showing
row z-scored expression of known peripheral tissue splicing factor
transcripts significantly (g <0.05 by Wald test) enriched in either the
mTEC® (count = 38) or mTEChi (count = 22) population. All panels: n=5
paired mTEC samples, n=6 samples per GTEx tissue. Source data for

A, C-E are provided in the Source Data file.

peripheral splicing factors could account for these differences, we
searched for differentially expressed splicing factors from
previously identified 287 RNA binding proteins®-%8. We
identified 60 unique transcripts representing 48 genes that were
differentially expressed (g < 0.05) between mature and immature
mTECs (Fig. 5E, full list of splicing factors and their expression
provided in Supplementary Data 3). Together, our findings
support the generation of peripheral tissue isoforms through the
use of known splicing factors>3.

LTR retrotransposons are upregulated during mTEC matura-
tion. ERE expression is unusually elevated in the human mTEC
compartment3®. To investigate if ERE expression changes during
mTEC maturation and how it compares to peripheral tissue
expression, we quantified the expression of ERE subfamilies from
the LTR, SINE, LINE, and composite classes (“Other”) in mTECh
and mTEC!° populations, as well as embyronic stem cells and the
25 healthy peripheral tissue samples from GTEx. We found that
the observed increase in ERE expression magnitude and diversity
relative to peripheral tissues has contributions from both mTEC
populations (Fig. 6A). In addition, we noticed differences in ERE
expression between mTECM and mTEC! and hypothesized that
specific EREs that contribute to antigen diversity could be
induced during mTEC maturation. Of 818 subfamilies, differ-
ential expression analysis identified 77 upregulated and 49
downregulated subfamilies (Fig. 6B), with upregulated subfamilies
enriched for LTR retrotransposons (p=2.2x 10~* by Fisher’s
exact test; Supplementary Fig. 11A). LTR retrotransposon derived
peptides have also been found enriched in EREs that contribute to
the immunopeptidome as ERE-derived MHC-I associated pep-
tides (ereMAPs) in B-lymphoblastoid cell lines (B-LCLs)?. To
profile the expression of these ereMAPs, we quantified the
expression of EREs at a locus level and mapped the ereMAP
sequences back to their genomic coordinates. Of the 108 ereMAP
loci identified in B-LCLs, 100 and 99 ereMAP transcripts were
detected (RPKM >1) in mTECM and mTEC populations,
respectively, and only four ereMAP loci were differentially
expressed between mTECM and mTEC! populations. Overall,
ereMAP loci were most highly expressed in mTEC populations
but heterogeneously expressed across peripheral tissues (Supple-
mentary Fig. 11B). This suggests that while ereMAP loci are
abundantly expressed in mTECs, their expression is largely
independent of the maturation state.

Having quantified the expression of ERE subfamilies on a per
locus level, we observed that their expression is consistent with
the expression profile of genes located within 1000 bp of the
EREs’ TSS (Fig. 6C); i.e., start sites of ERE loci upregulated in
mTECM cells are enriched in the vicinity of mTECh! upregulated
genes, and likewise for downregulated ERE loci and genes
(p< 10716 and p = 7.1 x 10713, respectively, by Fisher’s exact test).
As co-option of ERE promoters can drive the expression of genes
in early development and oncogenes in tumorigenesis®®, we
hypothesized that initiation from ERE promoters could con-
tribute to antigen diversity by facilitating pGE. We used LIONS to
measure transcription initiated by EREs’? and detected 61 ERE-
initiated chimeric transcription events (Supplementary Data 4),
with 18 of those specific to the mTECh population (Fig. 6D),
exemplified by the initiation of the protein-coding gene LRRC61
from the promoter of LTR MER41B (Fig. 6E). ERE-initiated genes
included both protein-coding and long non-coding RNAs
(IncRNAs), consistent with previous studies reporting EREs as a
major source of IncRNA transcripts’!. However, the protein-
coding genes initiated from ERE promoters did not show a
preference for TRAs. In summary, while we find that ERE
expression is a common feature of mTECs irrespective of
maturation stage and yields transcripts that can translate to
ereMAPs, there is currently no evidence that ERE expression
actively contributes to pGE by initiating transcription indepen-
dent of AIRE- and FEZF2-driven mechanisms.

Discussion

Thymic negative selection identifies and removes autoreactive
T cells, in part, through the ectopic expression of peripheral self-
antigens by mTECs. Through use of genetic models, these pro-
cesses have been studied in great detail in mouse, but a detailed
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Fig. 6 Changes in ERE expression during mTEC maturation. A Expression (in z-scored TPM counts) for 613 ERE subfamilies identified with SalmonTE'08
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Expression tracks show counts per million in the mTEC populations. All panels: n =5 paired mTEC samples, n = 6 samples per GTEXx tissue. Source data for

A-D are provided in the Source Data file.

examination of the different layers of gene expression regulation
in the human thymus has been missing. Here, we combined high-
throughput 5°Cap sequencing with standard RNA sequencing to
investigate gene expression and transcript diversity in immature
and mature human mTECs. We provide an interactive tran-
scriptome browser to explore the transcript diversity we uncov-
ered at http://transcriptomediversity.cshl.edu/.

Targeted TSS analyses in mouse and human mTECs have
pointed to mis-initiation events for a limited number of periph-
eral antigens, leading to the escape of autoreactive T cells into the
periphery!825. To investigate transcription initiation events on a
genome-wide level, we profiled TSS in five paired mature mTECh
and immature mTEC® healthy human mTEC samples. We found
that mTECM had substantially higher rates of transcript initiation
outside of known promoter regions when compared with
mTECl, Likely reflecting differences in the underlying regulatory
mechanisms, transcript mis-initiation was observed at increased
rates for AIRE—deE_endent, but not FEZF2-dependent, genes in
the human mTEC™ population.

To investigate whether differences in chromatin regulation
could underlie AIRE-specific transcript mis-initiation, we reana-
lyzed mouse ChIP-seq data as we are unaware of any human
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mTEC functional genomic data. We found increased markers of
chromatin activation around FEZF2-induced genes, in contrast to
increased markers of chromatin repression across the full gene
body of AIRE-induced genes in mouse mTECs. Similarly, studies
in mice have shown increased chromatin accessibility around
FEZF2-induced promoters relative to AIRE-induced genes!®. The
high degree of chromatin accessibility, combined with FEZF2’s
action at proximal promoter sequences®®, would mechanistically
favor a low degree of initiation stochasticity and thereby support
the induction of relatively high gene expression levels at canonical
TSSs. In contrast, AIRE’s localization to distal SEs!> and non-
specific recruitment to regions of silenced chromatin!224 likely
contribute to increased transcript mis-initiation in AIRE-induced
genes. Other potential contributors to mTECh transcript mis-
initiation include the action of chromatin remodeler BRG1, with
less than 10% of mouse BRGI-induced chromatin opening
occurring within 1kb of known TSSs!”. To directly assess these
epigenetic mechanisms in human, further work investigating
AIRE, FEZF2, and BRGI binding in conjunction with chromatin
accessibility in human mTECs is needed. In addition to
mechanistic insight, those results will also aid in deriving human-
specific FEZF2- and AIRE-dependent gene lists.
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We next studied overall pGE and alternative splicing in human
mTECs. Earlier work on the levels of pGE in human mTECs
relied on micro-array analysis and relative comparisons between
different subsets of mTECs’273, whereas more recent studies
provide an atlas of the human thymus focused on general thymus
biology with limited work on TEC-specific questions®>74. Both
approaches are additionally limited in their ability to detect splice
variants. We performed RNA sequencing on a subset of samples,
detecting 22,504 (95.9%) protein-coding genes with expression >1
TPM in at least one of our six mTEC samples. Muscle-related
genes were differentially expressed in the mTEC! population,
consistent with the MHCII® myoid cluster identified in the
human thymus atlas®®74 While mature mTECsM expressed a
significantly higher number of TRA genes than immature
mTECs!®, this difference was less pronounced at the TRA tran-
script level. We detected a corresponding increase in the number
of splicing factors differentially expressed in the mTECI popu-
lation, similar to results obtained in a recent study in mice33.
They identified RBFOX splicing factors as influential on TEC
development, and our analysis shows the same differential
expression of RBFOX1 in human as in mice, a finding worth
future investigation. Overall, however, the total number of
expressed transcripts was proportional to the number of expres-
sed genes in both mTEC populations relative to peripheral tissues.
Together these findings are consistent with mTECs generating
known isoforms through the re-use of peripheral splicing
factors33 rather than ATRE-dependent promiscuous splicing®!.

Larouche et al. showed that the expression of EREs is unusually
elevated in the mTEC compartment3®. Here, we have extended
their findings by identifying a specific set of EREs which are
induced during mTEC maturation and enriched for LTR retro-
transposons. In general, ERE expression mirrors that of nearby
genes, but this could not be explained by transcription initiation
from EREs. Instead, it is likely that ERE expression is a passive
consequence of epigenetic remodeling that enables pGE20.
Interestingly, mature mTECs exhibit loss of imprinting at the
IGF2 locus??, suggesting they share epigenetic features with the
pre-implantation embryo, in which ERE expression is also
widespread”. Future functional genomic studies in human
mTECs may shed light on the cause of ERE expression by probing
the chromatin landscape at ERE loci.

Ultimately, we hope that future studies will be able to expand
upon these features of thymic transcriptome diversity and lead to
the creation of a comprehensive database of the epitopes
responsible for inducing thymic tolerance in humans. By com-
paring such a genome-wide set of thymic epitopes with those
encountered in the periphery, missing epitopes responsible for
autoreactive T cell escape or for driving immune recognition of
tumor neoantigens could be systematically identified. While the
present study represents an important first step, comprehensive
sequencing of TSRs, complete isoform coverage, and further
studies on regulatory mechanisms for ERE expression in human
mTECs are still necessary to achieve this goal.

Specifically, our TSR analysis has shown that 5’Cap sequencing
followed by standard Tllumina sequencing®-4! is a powerful tool
for genome-wide transcription initiation analysis without relying
on highly specialized single-molecule sequencing. However, in
comparison to standard RNA-seq in the matched thymic samples
or hCAGE data from FANTOM50, we find that we have not
reached saturation levels for the detection of TSRs in mTECs.
Deeper sequencing’® and additional human mTEC samples will
be necessary to refine the definition of mTEC population-specific
TSRs and achieve comprehensive coverage for comparison with
peripheral TSRs.

On the transcript level, enhanced epitope maps in mTECs
could be generated using long-read sequencing for the discovery

of potentially novel transcript isoforms. Peptidomic experiments
in human mTECs will additionally be necessary to correlate this
transcriptomic epitope expression with the peptide diversity
directly observed by developing T cells. Furthermore, our
understanding of the complexities of mTEC maturation is still
evolving and is not fully captured by the canonical mature
MHCN- and immature MHC!-populations3¢-38, Careful deli-
neation of these mTEC sub-populations, such as via the lectin
Tetragonolobus purpureas agglutinin staining to distinguish post-
AIRE MHCl® mTECs from immature MHC'® mTECs”7, will
thereby be an important component of future studies. Finally,
studies investigating the specific roles of mTEC pGE in the
development of various T cell subsets”®7?, including autoreactive
regulatory T cells (Tregs)8Y, will also be of interest.

In conclusion, our study has demonstrated several mechanisms
that underlie the generation of transcriptomic diversity in human
mTECs. Our results represent an important first step toward the
generation of a detailed understanding of the mTEC tran-
scriptome and ultimately the identification of epitopes not seen
by developing T cells during the induction of central tolerance.
Future comprehensive identification of these missing antigens
will play a crucial role in the identification of epitopes with the
potential to trigger autoimmune responses against healthy tissue
or drive immune recognition of tumor neoantigens.

Methods
Statistical tests. Appropriate statistical tests and their p value are reported for
each analysis. All tests were conducted in a two-sided manner.

Tissue-specific antigens. We used the measure 7 as introduced in ref. 46 and
benchmarked in ref. 8! to determine a list of human TRAs on both gene and
transcript levels (TRA-genes and TRA-transcript, respectively):
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where x; is the expression of the gene/transcript in tissue i and » is the number of
tissues. We started with 40,481 genes and 194,360 transcripts across the 22 human
tissues obtained from the GTEx consortium (see GTEx peripheral tissue expression
data). After filtering for all genes/transcripts with a TPM =1, we obtained 26,131
genes and 118,256 transcripts for which we independently computed 7. All genes/
transcripts with 7> 0.8 were considered as TRAs. To determine the tissues in which
these TRAs are expressed, we used the binarization approach also described by
Yanai et al.4%. For each TRA, expression values are sorted and the maximum
difference between sorted values is detected. All tissues with expression larger than
the value separated by the maximum difference are considered as expressing this
TRA. Estimation of TRAs, tissue-specificity of tissue-specific genes, and compar-
ison to previous methods in Supplementary document, section Estimating TRAs
from GTex.

Human Aire- and Fezf2-dependent genes. While knockout studies in mice have
defined lists of FEZF2- and AIRE-dependent genes?>24, such lists are difficult to
experimentally derive for human mTECs. However, murine and human AIRE and
FEZF2 protein have high protein sequence similarity (71% and 96%, respectively)
and all functional protein domains are conserved? (Supplementary Fig. 9). Fur-
thermore, AIRE mutations in human patients and Aire knockout studies in mice
show similar phenotypes with autoreactive antibodies and lymphocyte infiltration in
the same tissues®83. Together with the evidence for conserved mechanism guiding
gene regulation in mouse and human®4, we followed previous studies’>$° to obtain
AIRE- and FEZF2-dependent gene lists, by using orthologues of murine FEZF2%3
and AIRE-dependent genes?“. Lists were converted from mouse to human ortho-
logues using biomaRT (v2.46.3 89), via attribute hsapiens_homolog_ensembl_gene.
(a) AIRE-dependent genes: AIRE-dependent genes were defined by Sansom et al. as
differentially expressed genes between Aire knockout mTECs and mature Aire
expressing mTECs in mice (Benjamini-Hochberg corrected p values <0.05). Sup-
plementary Table 3, sheet 16 of ref. 24 provides all differentially expressed genes,
applying a fold change threshold of <2 yields the 3980 AIRE-dependent genes
described in the paper. Our homology matched this set of AIRE-dependent genes to
human, obtaining a final list of human AIRE-dependent genes that consisted of
3361 unique ensembl gene identifiers. The class of AIRE-dependent TRA genes
(n=2213) was established by intersecting AIRE-dependent genes and TRA genes.
(b) FEZF2-dependent genes: Hiroyuki Takaba kindly provided a full table of nor-
malized gene expression in wild-type mTECs and Fezf2 knockout mTECs described
in ref. 23. Genes that were differentially expressed between wild-type and knockout
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mTECs (p value <0.05 and fold change >2 in WT mTECs vs. Fezf2 KO mTECs)
were homology mapped to human. The final list of human FEZF2-dependent genes
included 256 unique ensembl gene identifiers. These were merged with the TRA
gene list to obtain FEZF2-dependent TRA genes (n = 195).

Human housekeeping genes. Eisenberg and Levanon published a full list of
human housekeeping genes which we mapped from refseq to ensemble gene
identifiers, yielding 4211 unique genes*S.

FEZF2 conservation. Murine and human FEZF2 protein sequences were obtained
from uniprot with the identifiers sp| QOESP5 and sp|Q8TB]J5, respectively, and were
aligned using clustal omega (v1.2.4 87). CD-Search® was used to identify their
protein domains.

Human thymus tissue. Human thymus samples were obtained in the course of
corrective cardiac surgery at the Department of Cardiac Surgery, Medical School of
the University of Heidelberg, Germany; informed written consent was obtained
from all patients; patients were not compensated for taking part in the study. The
study was approved by the Institutional Review Board of the University of
Heidelberg.

Tissue processing. MTEC samples were isolated as described previously?®. In
brief, thymi were digested sequentially with three rounds of collagenase/dispase for
20 min each at 37 °C, followed by trypsin for 10 min each at 37 °C in a water bath
with magnetic stirring. The trypsin fractions were pooled and filtered through

60 um gauze. Enrichment of mTECs was performed by magnetic cell sorting fol-
lowed by cell staining and FACS. Magnetic cell sorting was performed using anti-
CD45 Microbeads (Miltenyi Biotech, Germany). The labeled CD45+ cells were
depleted using the autoMACSTM Pro Separator (Miltenyi Biotech). The enriched
stromal cell fraction (CD45-) was stained with biotinylated anti-epithelial cell
adhesion molecule (EpCAM/sav-PE clone HEA125, kindly provided by Gerhard
Moldenhauer, DKFZ, 1:100 dilution), CDR2-Alexa4888° (cortical dendritic reti-
culum antigen 2, DKFZ, Alexa Fluor 488 Protein Labeling kit; Molecular Probes,
Invitrogen, Germany, 1:100 dilution), Alexa 680-conjugated mAb HLA-DR73
(Alexa Fluor 680 Protein Labeling kit; Molecular Probes; clone 1243, kindly pro-
vided by Gerhard Moldenhauer, DKFZ, 1:500 dilution), and anti-CD45- PerCP73
(clone 2D1, BD Biosciences, 1:100 dilution). MTECs were sorted as CD45-, CDR2-,
EPCAM+ cells and MHCII (HLA-DR) was used to separate immature mTECle
and mature mTECM cell populations. Dead cells were excluded with propidium
iodide (0.2 pg/ml). Cell sorting was performed on a FACS Aria (BD Biosciences).
The gating strategy is depicted in Supplementary Fig. 1A (BD FACSDiva Software
(v8.2) and FlowJo -(v7.6)). RNA from sorted mTECH and mTECl® populations was
extracted using the High Pure RNA Isolation Kit (Roche).

5'Cap sequencing of human mTEC populations. TSSs were sequenced following
the detailed protocol described in%’. This method pre-selects only those RNA
molecules from the RNA lysate that carry a 5’Cap (Fig. 1B), i.e., captures true start
sites of transcripts, ignoring the 5° ends of degraded and fragmented RNA strands.
Library preparation included the ligation of unique molecular identifiers (UMIs) to
ensure PCR amplifications can be identified. Libraries were sequenced on Illumina
HiSeq 2000. Reads were demultiplexed, UMIs trimmed via umi_tools extract
(umi_tools v1.1%9), screened for contamination with fastq_screen (v0.14.0°1),
aligned to GRCh38/Gencode annotation (release 33) using STAR (v2.7.2b 92) and
deduplicated based on UMIs using umi_tools dedup. Deduplicated, aligned reads
were filtered for uniquely mapped reads via samtools view -b -q 255 (samtools
v1.1193). Quality control of sequencing and alignment was conducted using FastQC
(v0.11.8 °4) and picard CollectRnaSeqMetrics (v2.18.20 9%) and summarized with
multige (v1.9 96). Throughout the manuscript, we graphically show paired mTECl
and mTECh taken from the same individual and report the results of appropriate,
two-sided paired-sample statistical testing whenever possible.

Transcription start regions in human mTEC populations. For TSS calling, only
the forward (i.e., 5’ end) of each read pair was retained via samtools view -h -f 0x40.
TSS was then defined as the 5’ position of the uniquely mapped, forward reads. The
expression levels of the TSSs for each mTEC sample were normalized to tags per
million using the power-law normalization implemented in CAGEr (v1.32 ).
After normalization, removeBatchEffect in limma (v3.46 97) was used to remove
sequencing batch effects. Normalized TSSs in each sample were combined into
TSRs using paraclu (v9 44) with a minimum tag cluster expression of 2 tags per
million and a maximum cluster length of 20bp. TSRs across samples were com-
bined with bedops (v2.4.38 98) and consensus, strand-specific TSRs in human
mTEC samples called by merging TSRs derived from different samples within 20bp
proximity using bedtools merge (v2.29.2 *°). The variability of TSR expression
across samples, and specifically the high prevalence of TSRs expressed only in a
subset of mTEC samples, made identification of mTEC population-specific TSRs
difficult using conventional differential gene expression approaches (see Supple-
mentary Note: Population-specific TSR definition). In order to identify mTEChi-
and mTEC!°-specific TSR sequences that were reproducible (i.e., detected in at least

two independent samples), we empirically defined mTECMi-specific TSRs as those
TSRs that were expressed in at least two mTECM and not detected in any mTECl®
samples; mTEC-specific TSRs were called accordingly. TSRs were annotated using
HOMER (v4.11.1 19), including mapping to the closest gene, calculation of TSR
CpG/GC content (-CpG), and TATA motif search with the provided motif file (-m
HOMER/motifs/tata.motif).

Transcription start region motif and enhancer analyses. Transcription factor
motifs were identified within 200 base pairs around each TSR using HOMER*’
(findMotifsGenome.pl). We included the 400 curated transcription factor motifs
using the default HOMER list for both mTEC!®- and mTECM-specific TSRs
independently. The mTEC!:mTECh OR was then calculated according to the
number of TSRs in each population containing a given transcription factor motif.
Those transcription factors with a Bonferroni-corrected p value <0.05 were
reported. Super- and typical-enhancer coordinates were downloaded from the
human SEdb*® (http://www.licpathway.net/sedb/), which encompasses a compre-
hensive set of enhancers drawn from 240 human tissue and cell types. We calcu-
lated the linear intra-chromosomal distance in base pairs between each of our TSRs
and the nearest super- or typical-enhancer in SEdb.

FANTOMS transcription start site analysis. Raw FANTOM5 hCAGE sequen-
cing data for brain, colon, esophagus, heart, kidney, liver, lung, ovary, small
intestine, testis, thymus, and thyroid were downloaded from the DNA Data Bank
of Japan at ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/DRA000/; for index and
accession numbers see Supplementary Table 2. Reads were aligned to GRCh38/
Gencode annotation (release 33) using STAR (v2.7.2b 92) and filtered for read
quality of at least 255 with samtools view -q 255. The 5 position of the uniquely
mapped, forward reads were defined as TSS, and the TSRs calling pipeline
(described for mTEC samples above) was applied to obtain TSRs in the ten tissues
analyzed. Analogous to consensus TSRs calling within mTECs samples, we also
computed consensus TSRs from mTEC and FANTOM5 TSRs.

Saturation analysis of TSS. For each of the ten mTEC samples, the total number
of demultiplexed, qc-ed, and aligned 5°Cap reads was determined with samtools
idxstats. For a specified set of read thresholds downsampling proportions depen-
dent on the samples’ total library size were computed and sambamba view

(v0.8 101) used to downsample libraries to the specified proportion. After down-
sampling, each set of reads was processed as described in 5°Cap sequencing of
human mTEC populations. We then counted the number of TSS discovered at each
read threshold as the number of 5 position of the uniquely mapped, forward reads.

RNA-seq of human mTEC populations. The libraries were prepared manually
using the NEBNext®Ultra™ Directional RNA Library Prep Kit according to the
manufacturer’s instructions. Libraries were sequenced using Illumina HiSeq 2000.
Quality control was conducted using FastQC (v0.11.8 94),

GTEx peripheral tissue expression data. Raw bam files including both aligned
and unaligned reads for 25 tissues (Adipose Subcutaneous, Adrenal Gland, Brain
Basal Ganglia, Brain Cerebellum, Brain Frontal Cortex (BA9), Brain Spinal cord
(cervical cl), Breast Mammary Tissue, Colon Transverse, Esophagus Mucosa,
Heart Left Ventricle, Kidney Cortex, Liver, Lung, Muscle Skeletal, Ovary, Pancreas,
Prostate, Skin Sun Exposed, Skin Not Sun Exposed (Suprapubic), Small Intestine
Terminal Ileum, Spleen, Stomach, Substantia Nigra, Testis, Thyroid) were obtained
from the GTEx consortium through dbGap (accession: phs000424, authorized
access for project #28176, approval 2/24/21; Supplementary Table 3). Skin (Sun
Exposed), Basal Ganglia, and Substantia Nigra were not used in the calculation of
TRAs in order to avoid duplicate tissue types. For each tissue, we choose three
samples from each sex (if applicable) and, when possible, equally from the fol-
lowing age ranges: <30, 30-60, and >60. The resulting bam files were then sorted
(samtools sort) and converted to fastq files using bedtools bamtofastq.

RNA-sequencing read processing and quantification. For mTEC and GTEx
samples, reads were filtered with fastp (v0.11.8 192) for minimum phred quality (-q
25) of at most 10% unqualified bases (-u 10), a minimum length of 50 bp (-I 50), at
least 30% complexity (-y) and polyX tail trimming (-x). Filtered reads were pseudo-
aligned and quantified using Kallisto (v0.4.6 193) with 100 bootstrap samples.

Differential expression analysis. Sleuth (v0.30.0 194) was used for differential
expression analysis between mTECM and mTEC! samples, adjusting for patient
effect in the reduced and full model. Transcripts with g value <0.05 were con-
sidered differentially expressed. Gene annotation was added to transcript IDs using
biomaRt (v2.46.3 86). List of annotated transcripts (Fig. 4A): AIRE transcripts—
ENST00000530812, ENST00000527919, ENST00000291582, ENST00000337909,
ENST00000397994; FEZF2 transcripts—ENST00000283268, ENST00000475839,
ENST00000486811; CD80—ENST00000478182, ENST00000264246; MHCII—
ENST00000411959, ENST00000484643, ENST00000468299, ENST00000461508,
ENST00000383126, ENST00000437183, ENST00000433975, ENST00000419685,
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ENST00000429783, ENST00000546801, ENST00000443184, ENST00000374975,
ENST00000449560, ENST00000476192.

Splicing entropy and abundance analyses. For mTEC and GTEx samples, fil-
tered reads were aligned to GRCh38/Gencode annotation (release 33) using STAR
(v2.7.2b 92) with the following options: outFilterType BySJout, out-
FilterMultimapNmax 1, alignSjoverhangMin 8, alignSJDBoverhangMin 1, out-
FilterMismatchNmax 999, alignIntronMin 20, alignIntronMax 1000000 and
alignMatesGapMax 1000000. Splicing entropy was calculated for a given gene as in
ref. 31 with:

> P(g)log,(P(g,) @

where P(g;) is the relative expression of the ith isoform of gene g. The overall
entropy for a sample is defined as the median splicing entropy for all genes with >1
isoforms and is reported in bits.

Differential splicing analysis. rMATS (v4.1.1 %) was used for differential splicing
analysis between mTECh and mTEC samples.

Endogenous retroelement read mapping and quantification. ESC RNA-seq data
from!%> was downloaded from SRA (accessions: SRR488684 and SRR488685). Fil-
tered reads were aligned to GRCh38 using STAR (v2.7.2b 92) with the following
options: sjdbOverhang 100, winAnchorMultimapNmax 200, outFilterMultimapNmax
100. Aligned reads were used for raw transposable element/gene counts quantification
using TEtranscripts (v2.2.1199) or TElocal (v1.1.1107) with default parameters, for
subfamily- and locus-level quantification, respectively. To obtain TPM counts at a
subfamily level, SalmonTE (v0.4 198) was run on the filtered reads in “quant” mode
with the following options: reference=hs, exprtype=TPM.

Endogenous retroelement differential expression analysis. ERE counts were
extracted (RepeatMasker class “LTR”, “LINE”, “SINE” or “Retroposon”; Retro-
posons in text referred to as “composite”) and filtered for entries with a minimum
of 2 reads across samples. Differential expression analysis on this set of counts was
performed with DESeq2 (v1.30.1 19%). EREs with a Benjamini-Hochberg -adjusted
p value < 0.05 were considered differentially expressed.

Endogenous retroelement genomic position analysis. EREs encoding MAPs
were identified by intersecting the genomic coordinates of previously identified
MAPs3 with the RepeatMasker annotation. Genes nearby EREs were identified by
searching for GENCODE V38-annotated genes within 1000 bp of RepeatMasker-
annotated ERE start sites.

Endogenous retroelement chimeric transcription analysis. Chimeric tran-
scription events were detected with LIONS’? using the “oncoexaption” preset and
recurrence/specificity settings of 2 and 1, respectively.

Mouse ChlIP-seq analysis. ChIP-seq data for H3K4me3 and H3K27me3 in
mTECh cells derived from 4-week-old C57BL/6 mice described in ref. 24 was
obtained from SRA (SRP033578, runs SRR1045003-SRR1045008) using fastq-
dump. Raw read files were split into forward and reverse reads using “fastq-dump
—split-files” before quality control with fastp (v0.11.8 192). QCed reads were aligned
with STAR (v2.7.2b 92) using default parameters. Picard tools (v2.18.20 9°) “picard
MarkDuplicates” with “~-REMOVE_DUPLICATES true” was used to remove
duplicates before merging aligned reads of biological replicates into a single file.
ngs.plot.r (v2.61 119) was used to analyze and visualize the results for H3K4me3 and
H3K27me3 ChIP signal across TSS and gene bodies (“ngs.plot.r -R TSS” and
“ngs.plot.r -R genebody”) of AIRE- and FEZF2-dependent genes (see Gene lists
section below).

Note: population-specific transcription start region definition. When compared
with traditional RNA-seq data, 5’Cap-seq TSR abundance is much more variable
across samples!!!, Supplementary material. Specifically, even TSRs that are highly
expressed in several samples may not be detected in many other samples (Sup-
plementary Fig. 2). This variability across samples increases the statistical noise of
TSR expression and makes it difficult to identify differentially expressed TSRs using
traditional differential gene expression pipelines such as DESeq2!%% or Sleuth!04,
Consider the following example of a TSR that is expressed in none of the five
mTEC samples (represented by vector [0,0,0,0,0]) and expressed at 100 transcripts
per million in % mTECh samples ([100,100,100,0,0]). By paired t-test, this yields a p
value of 0.07, which would not be considered statistically significant at a common «
level of p=0.05, even before correcting for multiple testing. As such, only a very
small number of TSRs would be called as differentially expressed using standard
methods and we felt it necessary to seek alternative definitions that would allow us
to empirically define TEC population-specific TSRs. We defined a TSR as specific to
either of the mTEC populations if it was expressed in at least two samples from that
population and not detected in the other population. This ensures that TEC-specific

TSRs are reproducible (expressed in at least two independent samples) without
being too restrictive for downstream analysis.

A further consideration is that our 5°Cap sequencing approach does not allow
for absolute saturation and detection of every TSR from each sample
(Supplementary Fig. 1B). It is therefore possible that some of the “TEC-specific”
TSRs using our approach might be expressed in both populations. However,
incorrectly calling TSRs as specific to one of the populations when they are actually
shared would make the two populations appear more similar to one another in our
subsequent analyses. The observed differences between the mTEC! and mTECh
populations identified using this method are therefore likely conservative.

Note: transcription start region calling approaches. In the following section, we
will briefly review the original method for TSR calling in the FANTOMS5 database
and contrast it with our approach.

The FANTOMS consortium investigated TSSs in 998 human and 394 mouse
tissues using single-molecule hCAGE!!!. To analyze these data, they developed a
custom method for identifying peaks in the CAGE profiles called decomposition
peak identification (DPI; https://github.com/hkawaji/dpil/; described in ref. !11,
Supplementary material). DPI takes aligned and quality-controlled HeliScope reads
from each sample, converts them to BigWig files, and subsequently pools the
BigWig files from all samples/tissues into one BigWig file which is used to
determine consensus TSRs. In brief, any single-nucleotide start site supported by 2
or more reads across all samples was selected and grouped into tag clusters with
other nearby start sites (within 20 bp). The resulting tag clusters passing a size
length threshold (greater than 50 bp) were then segregated into distinct
transcription start events by applying independent component analysis. On these
components and the short tag clusters (less than 50 bp), TSRs were called at
different stringency thresholds of evidence, yielding a set of permissive and robust
consensus TSRs. To obtain sample-specific TSR profiles, the consensus TSRs were
overlapped with the TSS per sample where any overlap detected is considered
expressed. Counts of TSRs per sample were then normalized to tags per million
using the relative log expression method in edgeR!!2.

As described in Methods: Transcription start site analyses, we choose a
conceptually similar, but a different approach for calling TSR in human mTECs.
After normalizing the read counts in each mTEC sample to tags per million using a
power-law transformation, we applied paraclu** on each sample to call TSRs in
each sample independently, choosing a maximum length of 20 bp per TSR and a
minimum coverage of two tags per million. We then analyzed the sample-specific
TSRs for consensus clusters by combining TSRs across samples with bedops and
calling consensus, strand-specific TSRs by merging TSRs derived from different
samples within 20bp proximity using bedtools merge.

The main difference between the two approaches lies in the sample pre-
processing and the level at which consensus clusters are called. In the FANTOMS5
analysis, samples were pooled and consensus clusters called before any individual
sample-specific TSR was derived; in addition, thresholding for expression level
(tags per million) was applied after TSR calling. Using this approach makes the
discovered clusters specific to the samples included in the analysis. In particular
start regions with low support (low tags per million) that are found in similar
sample types could be considered, while those with similarly low support in
underrepresented samples/tissue types would correctly not be considered in
the consensus clustering approach. It also makes it more difficult to extend
any analysis to samples/tissues that were not included in the original analyses,
as the entire calling process would have to be repeated to allow for a fair
comparison.

Initially, we attempted to re-run the DPI approach published with FANTOMS,
but found the implementation was specific to the original authors' compute system.
We re-implemented the pipeline in a compute-system-independent framework
with integrated version management (Snakemake!!3), allowing for the analysis to
run on any high-performance compute cluster or on any local computer. The re-
implementation can be found here: https://github.com/meyer-lab-cshl/dpil.
However, after careful consideration of the drawbacks outlined above, we decided
to conduct the comparison between FANTOMS5 and mTEC samples by first re-
analyzing the FANTOMS5 aligned HeliScope reads with our pipeline for TSR
calling. In the future, this makes the TSRs for FANTOMS5 usable for comparisons
with other, previously not investigated tissue or cell types and makes it
independent of the subset of tissues analyzed.

Transcriptome diversity application. The data from this study is displayed via the
Transcriptome Diversity application at http://transcriptomediversity.cshl.edu/. The
interactive plots displaying the TSR, 5’Cap sequencing, and RNA-seq data were
generated with Gviz (v1.34.1 114). The interactive heatmaps were generated with
InteractiveComplexHeatmap (v2.9.4 11%). The Gviz plots and the interactive heat-
maps were deployed as an RShiny application using the ShinyDashboard (v0.7.1).
Individual aligned and qc-ed read files from different samples were combined via
samtools merge to generate one track each for the mTECM and mTEC! popula-
tions. The code for the browser application can be found at https://github.com/
meyer-lab-cshl/transcriptomic-diversity-human-mTECs-shiny.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The 5 cap and RNA sequencing data generated in this study have been deposited in the
GEO database under accession code GSE201720. The processed sequencing data are
available at https://github.com/meyer-lab-cshl/transcriptomic-diversity-human-mTECs
with corresponding python notebooks to reproduce the figures. The data used to generate
figures in this manuscript are provided in the Supplementary information/Source Data file.
An interactive interface to explore the data is available at http:/transcriptomediversity.cshl.
edu/. Additional data used in this study are available at the following sources: ChIP-seq data
for H3K4me3 and H3K27me3 in mTECh cells derived from 4-week-old C57BL/6 mice at
SRA: SRP033578 [https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/Traces/study/?acc=
PRJNA230856&0=acc_s%3Aa] (runs SRR1045003-SRR1045008)?% embryonic stem cell
RNA-seq data at SRA: SRR488684 and SRR488685!0%; raw gene expression bam files for 25
tissues (Adipose Subcutaneous, Adrenal Gland, Brain Basal Ganglia, Brain Cerebellum,
Brain Frontal Cortex (BA9), Brain Spinal cord (cervical c1), Breast Mammary Tissue, Colon
Transverse, Esophagus Mucosa, Heart Left Ventricle, Kidney Cortex, Liver, Lung, Muscle
Skeletal, Ovary, Pancreas, Prostate, Skin Sun Exposed, Skin Not Sun Exposed (Suprapubic),
Small Intestine Terminal Ileum, Spleen, Stomach, Substantia Nigra, Testis, Thyroid) were
obtained from the GTEx consortium through dbGap (accession: phs000424). Source Data
are provided with this paper.

Code availability

Custom analysis code was written in either R (version >4.0.3) or python (version >3.8).
The analysis code is freely available on GitHub: https://github.com/meyer-lab-cshl/
transcriptomic-diversity-human-mTECs (https://doi.org/10.5281/zenodo.6648501).The
code for the browser application can be found at https://github.com/meyer-lab-cshl/
transcriptomic-diversity-human-mTECs-shiny.
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