BIODEGRADATION OF THE PYRETHROID PESTICIDE CYFLUTRIN BY THE HALOPHILIC BACTERIUM

PHOTOBACTERIUM GANGHWENSE ISOLATED FROM CORAL REEF ECOSYSTEM

V. S. Jayasree^{1,2*}, K. S. Sobhana¹, Keerthi R. Babu^{1,2}, Priyanka Poulose^{1,2}, S. Jasmine¹, L. Ranjith¹, H. Jose Kingsly¹ and K. K. Joshi¹

ICAR-Central Marine Fisheries Research Institute, Ernakulam North P. O., Kochi-682 018, Kerala, India

सी एम एफ आर आइ CMFRI

MBTEP-08

²Cochin University of Science and Technology, Cochin University P. O., Kochi-682 022, Kerala, India *jayasreevs21@gmail.com

Introduction

Cyfluthrin is a commonly used cheap and effective pyrethroid pesticide. *Photobacterium ganghwense* (PG) is a halophilic Gram negative bacterium in the family Vibrionaceae.

Materials & Methods

ICAR

1. SAMPLING

LOCATION: Coral reef ecosystem off Tuticorin, Tamil Nadu.

SAMPLE: Coral Mucus of Acropora sp.

2. CYFLUTHRIN-DEGRADING BACTERIA ISOLATION AND IDENTIFICATION

ISOLATION MEDIUM: Nutrient agar

BIOCHEMICAL -TESTS: As per Bergey's Manual of Systematic Bacteriology

MOLECULAR IDENTIFICATION: 16 S rRNA sequencing

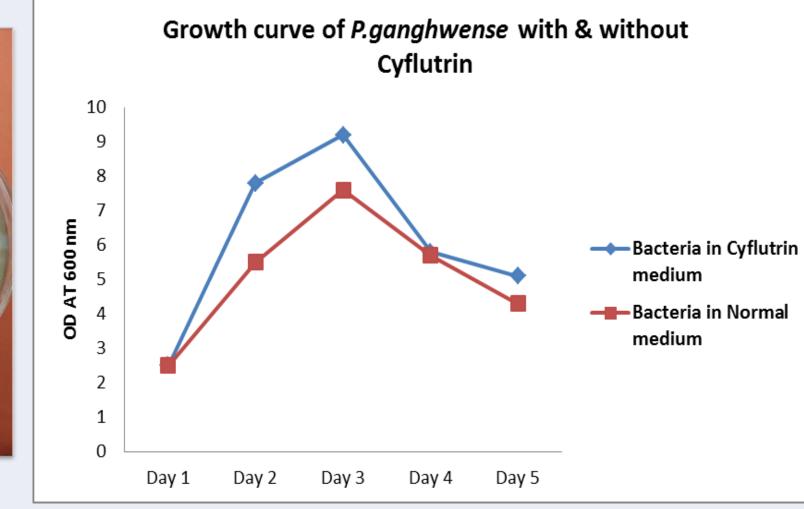
3.TEST FOR DEGRADATION OF CYFLUTHRIN BY P.GANGHWENSE

MEDIUM: Peptone, FePO, NaCland Yeast extract in Sea water

CYFLUTHRIN PESTICIDE USED : Solfac WP 10 (100mg/L)

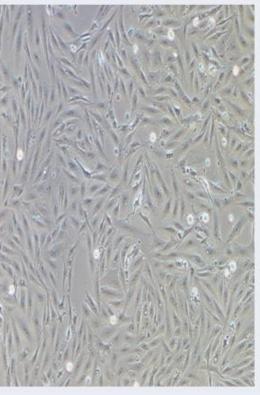
CULTURE CONDITIONS: 7 days, 30°C pH 8 at 180 rpm

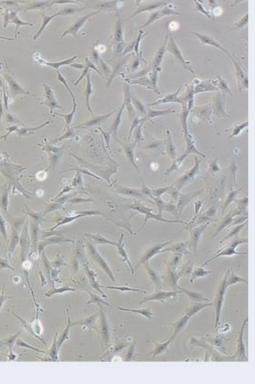
Biomass monitored on daily basis at OD 600


Post treatment : Centrifuged and filtered in 0.45 and 0.2 μm membrane filters.

Pesticide analysis : GC/MS-MS technique

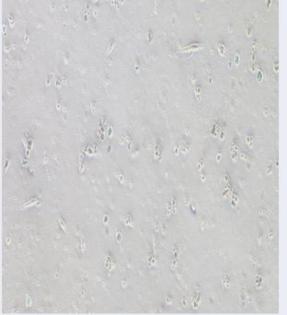
4. CYTOTOXICITY ANALYSIS ON FISH CELL LINE EM4SPEX DERIVED FROM EPINEPHELUS MALABARICUS.


Results


P.ganghwense on NA

CYTOTOXICITY ANALYSIS IN FISH CELL LINE

a) Control EM4SpEX



b) EM4SpEx on 2 days postinoculation with 0.2 μ filtrate (PG+Medium)

c) EM4SpEx on 2 days postinoculation with 0.2 μ filtrate (PG+Cyflutrin+Medium)

d) EM4SpEx on 2 days postinoculation with 0.2 μ filtrate (Cyflutrin+Medium)

GC/MS-MS results:

40% reduction in cyfluthrin concentration.

Discussion

- 1. Presence of Cyfluthrin was found to enhance bacterial growth as evidenced by increase in OD (600 nm).
- 2. Cytotoxicity was lower in bacterial treated pesticide suspension.

Conclusion

P. ganghwense, was found to have bio-degradative ability to utilize the pyrethroid pesticide, Cyfluthrin at optimal growth conditions.

References

- 1. Wang, T., Hu, C., Zhang, R. et al. Mechanism study of cyfluthrin biodegradation by Photobacterium ganghwense with comparative metabolomics. Appl Microbiol Biotechnol 103, 473–488 (2019) doi:10.1007/s00253-018-9458-7.
- 2. Grant,R.J.,Daniell,T.J.,andBetts,W.B.(2002).I solationand identificationof syntheticpyrethroid-degradingbacteria. J.Appl.Microbiol. 92,534–540.doi: 10.1046/j.1365-2672.2002.01558.x

Acknowledgements

- 1. Cochin University of Science and Technology, Kochi.
- 2. Central Marine Fisheries Research Institute Kochi
- Dept. of Science and Technology Delhi.