
Constructive Approximation
https://doi.org/10.1007/s00365-022-09591-4

Analysis of a Stabilised Finite Element Method for
Power-Law Fluids

Gabriel R. Barrenechea1 · Endre Süli2

Received: 27 July 2021 / Revised: 26 August 2022 / Accepted: 28 August 2022
© The Author(s) 2022

Abstract
A low-order finite element method is constructed and analysed for an incompressible
non-Newtonian flow problem with power-law rheology. The method is based on a
continuous piecewise linear approximation of the velocity field and piecewise constant
approximation of the pressure. Stabilisation, in the form of pressure jumps, is added
to the formulation to compensate for the failure of the inf-sup condition, and using
an appropriate lifting of the pressure jumps a divergence-free approximation to the
velocity field is built and included in the discretisation of the convection term. This
construction allows us to prove the convergence of the resulting finite element method
for the entire range r > 2d

d+2 of the power-law index r for which weak solutions to the
model are known to exist in d space dimensions, d ∈ {2, 3}.
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Constructive Approximation

1 Introduction

The construction and mathematical analysis of finite element approximations of mod-
els of non-Newtonian fluids has been a subject of active research in recent years. Some
of the most general results in this direction concern the convergence of mixed finite
element approximations of models of incompressible fluids with implicit constitutive
laws relating the Cauchy stress tensor to the symmetric velocity gradient (cf. [16,
34] and [19]). Motivated by the groundbreaking contributions of Cohen, Dahmen and
DeVore [13, 14] and Binev, Dahmen and DeVore [8] concerning the convergence of
adaptive algorithms for linear elliptic problems, progress, albeit much more limited in
both scope and extent, has also been made on the analysis of adaptive finite element
approximations of implicitly constituted non-Newtonian fluid flow models (cf. [27]).

Upon decomposing the Cauchy stress tensor into its traceless part, called the devia-
toric stress tensor or shear-stress tensor, and its diagonal part, called the mean normal
stress, models of incompressible fluids typically involve the velocity of the fluid, u,
its pressure, p, and the shear-stress tensor, S. For Newtonian fluids the shear-stress
tensor is a scalar multiple of the symmetric velocity gradient. The finite element
approximation of Newtonian fluids is therefore usually performed in the velocity–
pressure formulation. For non-Newtonian fluids on the other hand the situation is
more involved, because the shear-stress tensor exhibits nonlinear dependence as a
function of the symmetric velocity gradient, and the functional relationship between
the shear-stress tensor and the symmetric velocity gradient may even be completely
implicit and multi-valued. For power-law fluids, such as the ones considered in this
work, the shear-stress tensor exhibits power-law type growth as a function of the sym-
metric velocity gradient, the simplest instance of which results in an r -Laplace type
operator in the balance of linear momentum equation, with a power-law exponent
r ∈ (1,∞); for r = 2, corresponding to a Newtonian fluid, the operator is linear, the
Laplace operator. From a mathematical point of view, in the presence of a convection
term in the balance of linear momentum equation in the model, the lower the value
of r the more difficult the problem is to analyse. The existence of solutions for small
values of r was first proved in [20], where an Acerbi–Fusco type Lipschitz truncation
was used in conjunction with Minty’s method from monotone operator theory; thus,
weak solutions were shown to exist for r > 2d

d+2 in d ≥ 2 space dimensions.
Finite element approximations of problems with power-law rheology have been

extensively studied, including stabilised (or variational-multiscale) methods (cf. [1,
11], for example) and local discontinuous Galerkin methods (see, [28], for example).
The relevant literature is vast and it is beyond the scope of this work to provide an
exhaustive survey of the various contributions; the interested reader may wish to con-
sult [30], for example. Concerning implicitly constituted models, in the recent papers
[16, 34] the convergence of generic inf-sup stable velocity/pressure-basedmixed finite
element methods was proved for r > 2d

d+1 , while convergence for the full range,

r > 2d
d+2 , was shown only in the case of finite element methods where the velocity

space consists of pointwise divergence-free functions. The reason for this dichotomy
is that in the case of velocity approximations that are discretely divergence-free only,
as is the case in generic inf-sup stable mixed finite element methods, the finite element
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approximation ∇ · (uh ⊗ uh) of the convection term ∇ · (u⊗ u) does not vanish when
testedwith uh , and it needs to be skew-symmetrized (cf. [35]) for this to happen.While
in the case of the Navier–Stokes equations (corresponding to r = 2) membership of
the velocity field to the natural function space for weak solutions, W 1,2

0 (�)d , ensures
that the convection term and its skew-symmetric modification can be bounded by the
same expression usingHölder’s inequality, this is not the case for the power-lawmodel
under consideration here for entire range r > 2d

d+2 for which weak solutions to the
problem are known to exist. In fact, in the case of non-Newtonian power-law models
the natural function space for the velocity field is W 1,r

0 (�)d , and while the original
convection term can be bounded in terms of the W 1,r (�)d norm for all r > 2d

d+2 ,
for the skew-symmetric modification of the convection term, whose use is essential
so as to be able to derive an energy inequality for discretely divergence-free velocity
fields, this can only be achieved for the limited range r > 2d

d+1 . This was precisely the
bottleneck encountered in [16] for discretely divergence-free velocity approximations,
resulting in the reduction of the range of r from the maximal range r > 2d

d+2 for which

weak solutions are known to exist, to r > 2d
d+1 .

The advantage of pointwise divergence-free finite element methods over discretely
divergence-free finite element methods is therefore that, besides the physical consis-
tency they provide, there is no need to rewrite the convection term in a skew-symmetric
form. The topic of divergence-free finite element spaces has been treated extensively
in the literature, most commonly presenting pairs of spaces for which the divergence
of the velocity space is a subspace of, or equal to, the pressure space. For example,
the early Scott–Vogelius element [33] (analysed recently in [25]) uses W 1,2(�)d -
conforming piecewise polynomials of degree k for the velocity, while discontinuous
piecewise polynomials of degree k − 1 are used for the pressure. The stability of this
pair requires either special meshes, or a high-enough degree k (for example, k ≥ 4 is
needed in [25], and k = 1 is only allowed in very special cases such as those described
in Remark 5). Another possibility is to relax the continuity requirements and consider
a discontinuous Galerkin method, as was done, for example, in [12], or to relax only
the tangential continuity of the approximate velocity on faces of elements while still
preserving its continuity in the direction of the normal to faces of elements, thus using
H(div;�)-conforming methods, as was the case in [32], for example. In this latter
case the viscous term (defined as the divergence of the shear-stress S) needs to be
modified, for stability reasons, by adding terms controlling the jumps and averages
of the velocity into the formulation, with, obviously undesirable, extra complications
if the viscous term in the balance of linear momentum equation has a more complex
structure, as is the case for the power-law model considered herein.

The recent works [2, 3] offer a way of preserving the advantages of a pointwise
divergence-free approximation to the velocity field while working with the, computa-
tionally simplest, lowest order W 1,2(�)d/L2(�)-conforming velocity/pressure pair,
namely P

d
1 × P

disc
0 . The key idea in those works can be summarised as follows: the

discrete continuity equation contains a stabilising term based on the jumps of the dis-
crete pressure. As the jumps of the pressure are constant along element faces, there
exists a unique Raviart–Thomas field such that its normal component is equal to the
jumps. This field can be built at no extra computational cost, and then the continuity
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equation can be rewritten as a standard continuity equation, but for a modified velocity
field, which is now solenoidal. The finite element method then involves replacing the
original discrete velocity field uh with the new, now solenoidal, modified velocity
field in the convection term. This facilitates the proofs of stability and convergence
of the resulting finite element method without the need to rewrite the convection term
in a skew-symmetric form. Our aim here is to apply this idea to a problem in non-
Newtonian fluid mechanics. As a first step in this direction, we have chosen an explicit
constitutive law with power-law rheology. Even though this is the simplest constitu-
tive law, it has been shown experimentally to faithfully reproduce many situations of
physical interest (see the discussion in [23], and the experimental results in, e.g., [26]);
we therefore believe that it is a representative model for exemplifying the applicability
of the proposed method in a mathematically nontrivial and physically relevant setting.
Since the convection term does not need to be rewritten in a skew-symmetric form, the
resulting method can now be proved to be stable and convergent to a weak solution
for the whole range r > 2d

d+2 of the power-law index for which weak solutions to the
model are known to exist. In addition, the sequence of numerical approximations is
shown to converge strongly, and this strong convergence result is, to the best of our
knowledge, a new contribution even in the, very special, Newtonian case (r = 2).

The rest of the manuscript is organised as follows. A section on preliminaries, con-
taining the necessary notational conventions, basic definitions and results, the finite
element spaces, the lifting operator, the definition of the stabilising form, and proper-
ties of the discrete Lipschitz truncation method that we use, are presented following
this Introduction. An important ingredient enabling the use of the discrete Lipschitz
truncation technique is a discrete inf-sup condition that is given inAppendix. The finite
element method is presented in Sect. 3, where we also show a uniform boundedness
result for the sequence of approximations. Based on this and results pertaining to the
discrete Lipschitz truncation, in Sect. 4 the convergence of the discrete solution to a
weak solution of the model problem is proved using a compactness argument. Finally,
some conclusions are drawn and potential future extensions are indicated.

2 Preliminaries

2.1 Notation and the Problem of Interest

We use standard notation for Sobolev spaces. In particular, for D ⊂ R
d , d = 2, 3

and s ∈ [1,+∞), we denote by Wk,s
0 (D) the closure of C∞

0 (D) with respect to

the Wk,s(D) norm, W 1,∞
0 (�) := W 1,1

0 (�) ∩ W 1,∞(�), and by Ls
0(D) the space of

functions in Ls(D) with zero integral mean-value. The norm in Ls(D) is denoted by
‖ · ‖0,s,D ; when s = 2 we shall use the simpler notation ‖ · ‖0,D , and the inner product
in L2(D) will be denoted by (·, ·)D . For k ≥ 0, the norm (seminorm) in Wk,s(D)

is denoted by ‖ · ‖k,s,D (| · |k,s,D). Moreover, for s ∈ (1,∞), the space W−1,s′(D)

is the dual of W 1,s
0 (D) with duality pairing denoted by 〈·, ·〉D . Here, s′ denotes the

Hölder conjugate of s, defined by 1
s + 1

s′ = 1. We also denote by Ws(div; D) the
space of functions in Ls(D)d whose distributional divergence belongs to Ls(D), and
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by Ws
0 (div; D) the set of elements in Ws(div; D) whose normal trace on ∂D is zero.

In the above inner products and norms we do not make a distinction between scalar-
and vector- or tensor-valued functions.

Let � ⊂ R
d , d = 2, 3, be an open, bounded, polyhedral domain with a Lipschitz

boundary. In this work we treat the problem with power-law rheology: given r ∈
(1,∞) and a right-hand side f ∈ W−1,r ′

(�)d , find the velocity u, the pressure p, and
the shear-stress tensor S satisfying

⎧
⎨

⎩

−divS + div (u ⊗ u) + ∇ p = f in �,

div u = 0 in �,

u = 0 on ∂�.

(2.1)

There aremanypossible choices for the constitutive law, linkingS and thevelocityu. In
thisworkwe have chosen the power-law descriptionwhereS = 2η |∇u|r−2∇u, where
η > 0 is a reference viscosity. In order to simplify matters we will suppose that η = 1

2 ,
but we should keep in mind that, to maintain physical consistency this reference value
should be kept. Similarly, in physically realistic models the gradient of the velocity
is usually replaced by the symmetric velocity gradient ε(u) := 1

2 (∇u + ∇ut ). The
results obtained in this paper can be extended, with minor modifications based on
Korn’s inequality, to that case as well, so for the sake of simplicity of the exposition
we shall proceed with the constitutive relation S = 2η |∇u|r−2∇u (with η = 1

2 )
instead of S = 2η |ε(u)|r−2ε(u).

In order to state the weak formulation of (2.1) we need to present a few additional
ingredients associated with the exponent in the constitutive law relating S and u. For
r ∈ (1,∞), let us define the associated critical exponent r̃ as follows:

r̃ := min

{

r ′, r
�

2

}

, where r� :=
⎧
⎨

⎩

∞ if r ≥ d,
dr

d − r
otherwise.

(2.2)

Remark 1 With the definition (2.2) of r̃ , the space W 1,r (�) is continuously embed-
ded in Lr�

(�) if r < d and in Ls(�), for every s < ∞, if r ≥ d (see, e.g., [10,
Corollary 9.14]). Then, in particular, W 1,r (�) is continuously embedded in L2r̃ (�)

and there exists a C > 0 such that

‖v‖0,2r̃ ,� ≤ C ‖v‖1,r ,� ∀ v ∈ W 1,r (�). (2.3)

Moreover, the value of r̃ exhibits two different regimes, as can be seen in Fig. 1,
where its range of values is depicted. We will distinguish between r̃ ≤ 2 and r̃ > 2.
The latter case occurs for r ∈ ( 4d

d+4 , 2
)
and the maximum value of r̃ is attained when

r ′ = r�

2 , at which point we have the following values:

r = 3d

d + 2
=

⎧
⎨

⎩

3
2 if d = 2,

9
5 if d = 3,

and r̃max = 3d

2d − 2
=

{
3 if d = 2,
9
4 if d = 3.
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Fig. 1 Values of r̃ (defined in (2.2)) and α(r) (defined in (2.23)) for the cases d = 2 (left) and d = 3 (right)

With this choice of the shear-stress tensor S, the weak formulation of (2.1) is as
follows: find u ∈ W 1,r

0 (�)d and p ∈ Lr̃
0(�) such that

(|∇u|r−2∇u,∇v)� − (u ⊗ u,∇v)�−(p, div v)� =〈 f , v〉� ∀ v ∈ W 1,r̃ ′
0 (�)d ,

(2.4)

(q, div u)� = 0 ∀ q ∈ Lr ′
0 (�).

(2.5)

Remark 2 In order for the variational formulation (2.4), (2.5) to be meaningful it is
necessary that u ⊗ u ∈ Lr̃ (�)d×d with r̃ > 1, which necessitates that r > 2d

d+2 , and
under this condition the existence of a solution to (2.4), (2.5) has been proved (see
[17]). Thus, for the rest of this work we will assume that r > 2d

d+2 .
Another fundamental ingredient in the proof of existence of solutions to (2.4), (2.5)

is the following inf-sup condition (for a proof, see [21]): for s, s′ ∈ (1,+∞) satisfying
1
s + 1

s′ = 1, there exists a constant βs > 0 such that

sup
v∈W 1,s′

0 (�)d\{0}

(q, div v)�

|v|1,s′,�
≥ βs‖q‖0,s,� ∀ q ∈ Ls

0(�).

2.2 Finite Element Spaces and Preliminary Results

Let {Th}h>0 be a shape-regular family of triangulations of� consisting of closed sim-
plices K of diameter hK ≤ h := max{hK : K ∈ Th}. To avoid technical difficulties
we will suppose that the family of triangulations is quasi-uniform. For reasons that
will become apparent later, in the proof of convergence of the finite element method
we will distinguish between the cases r ≥ 3d

d+2 and r ∈ ( 2d
d+2 ,

3d
d+2

)
. To cover the

latter case (and for that purpose only) we need to make the following assumption on
the mesh:
Assumption (A1). The triangulation Th is the result of performing one (for d = 2),
or two (for d = 3), red refinement(s) of a, coarser, shape-regular triangulation TH .
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Remark 3 We note that when d = 2 red refinement of a simplex (triangle) amounts to
dividing the triangle into four mutually congruent subtriangles, which are all similar
to the original triangle, using the midpoints of the edges of the original triangle. For
d = 3 red refinement of a simplex (tetrahedron) is performed in two stages. First, using
themidpoints of the edges the tetrahedron is divided into four congruent subtetrahedra,
which are all similar to the original tetrahedron, and an octahedron. Then in a second
step the octahedron is further divided into four subtetrahedra using one of its three
diagonals (see [9, Chapter 8] formore details and properties of simplicial refinements).

We will denote the (closed) elements contained in TH (referred to, in some
instances, as macro-elements) by M .

Remark 4 (i) By letting H := max{diam (M) : M ∈ TH }, clearly, H ≤ Ch, where
C does not depend on h. In fact, C = 2 for d = 2 and C = 4 for d = 3.

(ii) Under Assumption (A1), for every F̃ , a facet of M ∈ TH , there exists at least
one node of Th that belongs to the interior of F̃ . In fact, this last remark is the
main reason why Assumption (A1) has been made on the meshes. In particular,
Th could also result from first making a barycentric refinement of each facet of
TH and then building a conforming triangulation of �. For ease of exposition we
shall simply adopt Assumption (A1) in what follows.

In the triangulation Th we shall use the following notation:

• Fh : the set of all facets F (edges in 2D and faces in 3D) of the triangulation Th ,
with diameter hF := diam (F). The set of internal facets is denoted by FI and
those on the boundary of � are denoted by F∂ , soFh = FI ∪ F∂ ;• For every M ∈ TH we denote by FI (M) the set of facets of Th whose interior
lies in the interior of M ;

• For F ∈ Fh and K ∈ Th we define the neighbourhoods

ωF := {K ∈ Th : F ∈ FK }, ωK := {K ′ ∈ Th : K ∩ K ′ �= ∅}; (2.6)

• For each facet F ∈ FI and every piecewise regular function q, we denote by �q�F
the jump of q across F ;

• For 
 ≥ 0 we denote by P
(K ) the space of polynomials defined on K of total
degree smaller than, or equal to, 
, and introduce the following finite element
spaces:

V h := {vh ∈ C0(�)d : vh |K ∈ P1(K )d , ∀ K ∈ Th , vh |∂� = 0}, (2.7)

Qh := {qh ∈ L1
0(�) : qh |K ∈ P0(K ) , ∀ K ∈ Th}, (2.8)

QH := {qH ∈ L1
0(�) : qH |M ∈ P0(M) , ∀ M ∈ TH }. (2.9)

Remark 5 Assumption (A1) raises the question whether the space P
d
1 × P0 itself is

stable on carefully constructed meshes. Some results are known in this direction. For
example, in two space dimensions, this pair is inf-sup stable on Powell–Sabin meshes
[38] provided that the pressure space P0 is slightly modified: the resulting P

d
1 × P̃0

velocity–pressure pair, where P̃0 is a subset of P0, is inf-sup stable on Powell–Sabin
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meshes. In the recent work [24] local inf-sup stability is proved for this element in
barycentrically refined meshes (also known as the Alfeld split [29], and a Hsieh–
Clough–Tocher triangulation, see the references quoted in [38, p. 461]). This is then
used to build enriched elements that are divergence-free (although the velocity space
contains quadratic face bubbles with constant divergence). For three-dimensional
meshes, for the Alfeld split the lowest order inf-sup stable pair is P3

4 ×P
disc
3 (cf. [37]),

while for the Powell–Sabin split the lowest order inf-sup stable pair is P3
2 ×P

disc
1 [39].

However, for the case considered in this paper, that is, taking the P
d
1 × P0 pair on

general shape-regular meshes, stabilisation is a necessity. In addition, it is important
to note that the papers cited above concern the Newtonian case only and are mostly
focused on the Stokes equations. The analysis of some of those alternatives in the case
of non-Newtonian flow models treated in the present work has not been carried out so
far, and it will constitute a topic of future research.

Using the finite element spaces defined in (2.7)–(2.9), we denote by Sh :
W 1,r

0 (�)d → V h the Scott–Zhang interpolation operator and by �h : L1
0(�) → Qh ,

�H : L1
0(�) → QH the projections defined by (see, e.g., [18]):

�hq|K = (q, 1)K
|K | ∀ K ∈ Th,

�Hq|M = (q, 1)M
|M | ∀ M ∈ TH . (2.10)

�h and �H are simply linear projectors onto the linear subspaces of L1
0(�) con-

sisting of all piecewise constant functions defined on the triangulations Th and TH ,
respectively, with vanishing integral average on �. These operators satisfy ( [18]):

lim
h→0

Shv = v strongly in W 1,s
0 (�)d for all v∈W 1,s

0 (�)d and all s ∈ [1, ∞),

lim
H→0

�Hq = lim
h→0

�hq = q strongly in Ls0(�)d for all q∈ Ls0(�) and all s∈[1,∞).

(2.11)

The following result, whose proof can be carried out using the techniques presented
in [18, Lemma 2.23], will be fundamental in the derivation (and analysis) of the
proposed finite element method: for every s ∈ (1,∞) there exists a constant Cs > 0,
independent of h, such that

‖qh − �H (qh)‖0,s,M ≤ Cs

⎧
⎨

⎩

∑

F∈FI (M)

hF‖�qh�‖s0,s,F

⎫
⎬

⎭

1
s

, (2.12)

for all M ∈ TH , all qh ∈ Qh , and all h > 0.
We now recall three inequalities that will be useful in what follows. Let s ∈ (1,∞),

F ∈ Fh and K ∈ ωF . The following local trace inequality is a corollary of the
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multiplicative trace inequality proved in [18, Lemma 12.15]:

‖v‖0,s,F ≤ C (h
− 1

s
F ‖v‖0,s,K + h

1− 1
s

F ‖∇v‖0,s,K ). (2.13)

In addition,we recall the following local inverse inequality (see, e.g., [18,Lemma12.1]):
for all m, 
 ∈ N,m ≤ 
 and all t, s ∈ [1,+∞], there exists a constant C , independent
of h, such that

‖q‖
,t,K ≤ Ch
m−
+d

(
1
t − 1

s

)

K ‖q‖m,s,K , (2.14)

for every polynomial function q defined on K . A global version of this inequality can
also be derived using the quasi-uniformity of the mesh family. Finally, for 1 < s ≤
s̃ ≤ ∞, a set of indices I, and any vector (xi )i∈I ∈ 
s̃(I), the following inequality
holds (see [15, Proposition 3.4(a)] for its proof):

{
∑

i∈I
xs̃i

} 1
s̃

≤
{
∑

i∈I
xsi

} 1
s

. (2.15)

Finally, we note that under Assumption (A1) the spaces V h and QH satisfy the
following discrete inf-sup condition: for any s ∈ (1,∞) there exists a constant βs > 0,
independent of h, such that for all qH ∈ QH the following inequality holds:

sup
vh∈V h\{0}

(qH , div vh)�
|vh |1,s′,�

≥ βs‖qH‖0,s,�. (2.16)

The proof of this result, to the best of our knowledge, has not been given previously
and thus we report it in Appendix. It is based on the construction of a Fortin operator
I : W 1,s′

0 (�)d → V h satisfying

(
qH , div (v − I (v))

)

�
= 0 for all qH ∈ QH and all v ∈ W 1,s′

0 (�)d ,

(2.17)

I v → v strongly in W 1,s′
0 (�)d as h → 0. (2.18)

In addition, (2.16) guarantees the existence of a non-trivial subspace of discretely
divergence-free functions

V h,div := {vh ∈ V h : (qH , div vh)� = 0 for all qH ∈ QH }.

2.3 Results Related to the Discrete Lipschitz Truncation

In the convergence proof given below we will need the following two results. These
are known as discrete Lipschitz truncation and divergence-free discrete Lipschitz trun-
cation, respectively. Their proofs are omitted since they are essentially a rewriting of
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Corollary 17 and the proof on pages 1006–1007 in [16] (see also [36, Lemmas 2.29
and 2.30]). We begin by recalling that for v ∈ L1(Rd) the Hardy–Littlewood maximal
function is defined by

M(v)(x) := sup
R>0

1

|BR(x)|
∫

BR(x)

|v(x)| dx,

where BR(x) ⊂ R
d is a ball or radius R > 0 centred at x ∈ R

d . Forv ∈ W 1,1(Rd)d ,we
defineM(v) := M(|v|) andM(∇v) := M(|∇v|). Let v ∈ W 1,1

0 (�)d and extend v by 0
outside� to the whole ofRd , resulting in a function (still denoted by) v ∈ W 1,1(Rd)d .
For a fixed λ > 0, we then define

Uλ(v) := {x ∈ R
d : M(∇v)(x) > λ}.

Now, recall the definition of ωK given in (2.6). For vh ∈ V h and j ∈ N we define

�h
λ(v) := int

(⋃
{ωK : K ∈ Th with K ∩ Uλ(v) �= ∅}

)
.

Lemma 6 Let s ∈ (1,∞). Let us suppose that vh ∈ V h for all h > 0 and vh⇀0
weakly in W 1,s

0 (�)d as h → 0. Then, there exist

• A double sequence {λh, j }h>0, j∈N ⊆ R such that λh, j ∈ [22 j
, 22

j+1−1] for all
h > 0, j ∈ N;

• A double sequence of open setsBh, j := �h
λh, j

(vh) ⊆ �, for h > 0 and j ∈ N;

• A double sequence {vh, j }h>0, j∈N ⊆ W 1,∞
0 (�)d with vh, j ∈ V h for all j ∈ N and

all h > 0;

satisfying the following properties:

i. vh, j = vh in � \ Bh, j for all j ∈ N and all h > 0;
ii. There exists a c(s) > 0 such that

‖λh, j1Bh, j
‖0,s,� ≤ c(s) 2− j

s ∀ h > 0, j ∈ N; (2.19)

iii. There exists a c(s) > 0 such that

‖∇vh, j‖0,∞,� ≤ c(s)λh, j ∀ h > 0, j ∈ N; (2.20)

iv. For any fixed j ∈ N,

vh, j → 0 strongly in L∞(�)d and ∇vh, j⇀0 weakly-* in L∞(�)d×d ,

as h → 0.

Lemma 7 Let s ∈ (1,∞) and assume that Assumption (A1) is satisfied. Let {vh}h>0
be a sequence such that vh ∈ V h,div for all h > 0 and such that vh⇀0 weakly in
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W 1,s
0 (�)d as h → 0. Furthermore, let {vh, j }h>0, j∈N be the sequence of Lipschitz

truncations given by Lemma 6. Then, there exists a double sequence {wh, j }h>0, j∈N
such that

i. wh, j ∈ V h,div for all h > 0 and all j ∈ N;
ii. There exists a c(s) such that

‖vh, j − wh, j‖1,s,� ≤ c(s)2− j
s ∀ h > 0, ∀ j ∈ N; (2.21)

iii. For any fixed j ∈ N the following convergences hold (up to a subsequence, if
necessary):

wh, j → 0 strongly in Lt (�)d and ∇wh, j⇀0 weakly in W 1,t
0 (�)d×d ,

as h → 0, for all t < +∞.

2.4 The Stabilising Bilinear form and the Lifting Operator

The finite element method studied in this work is based on the pair V h × Qh . Since
this pair is not inf-sup stable some form of stabilisation is needed. In this work our
proposal is to use the following stabilising bilinear form

s(qh, th) =
∑

M∈TH

∑

F∈FI (M)

τF (�qh�, �th�)F , (2.22)

where the stabilisation parameter τF is defined as follows:

τF = hα(r)
F where α(r) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if r ≥ 2,

1 − d + 2d

r̃
if r ∈

[
3d
d+2 , 2

)
,

1 − d + 2d

r̃max
= d − 1

3
if r ∈

(
2d
d+2 ,

3d
d+2

)
.

(2.23)

The behaviour of α(r) is depicted in Fig. 1. It can be observed there that the
stabilisation gets stronger as r ↘ 2d

d+2 . The reason for this behaviour will become
clear when we perform the convergence analysis in Sect. 4.

Remark 8 Thanks to Assumption (A1) and the inf-sup condition (2.16) it can be
expected to have stability of�H (ph) (where ph is the finite element approximation of
the pressure). The stabilisation is then built with the aim of controlling ph −�H (ph).
More precisely, using (2.12), (2.15) (or the inverse inequality (2.14)), and the definition
of the bilinear form s(·, ·) we see that there exists a constant C > 0 such that

‖qh − �H (qh)‖0,
,� ≤ C hχ s(qh, qh)
1
2 , (2.24)
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for all qh ∈ Qh , where

χ =
{

1−α(r)
2 if 
 ≤ 2,

1−d+ 2d



−α(r)
2 if 
 > 2.

It will be useful in what follows to observe that for 
 = r̃ we have χ ≥ 0.

Another important ingredient in the definition of the method is a lifting of the pres-
sure jumps defined with the help of the lowest order Raviart–Thomas basis functions.
To define this, for each F ∈ Fh we choose a unique normal vector nF . Its orientation
is of no importance, but it needs to point outwards of� if F ⊂ ∂�. Moreover, for each
K ∈ Th such that F ∈ FK , we denote the node in K opposite F by xF . Using this
unique normal vector, we introduce the lowest order Raviart–Thomas basis function
ϕF defined as

ϕF (x)|K := ± |F |
d|K | (x − xF ), (2.25)

and extended by zero outsideωF . In this definition, the sign of the functionϕF depends
on whether the normal vector nF points in or out of K . Thanks to its definition, ϕF
satisfies the following: for every F ′ ∈ Fh the normal component of ϕF is given by
(with the obvious abuse of notation considering that nF ′ is not defined at the boundary
of F ′):

ϕF · nF ′ =
{
1 if F ′ = F,

0 otherwise.

With the help of these Raviart–Thomas basis functions, we define the following
operator, which will be fundamental in the definition of the finite element method:

L : W 1,r (�)d × Qh → Wr (div;�),

(v, qh) �→ L (v, qh) := v +
∑

M∈TH

∑

F∈FI (M)

τF�qh�ϕF . (2.26)

Since the velocity u is bounded in W 1,r
0 (�)d , then it is bounded in L2r̃ (�)d as well.

In the finite element method proposed in Sect. 3, we will consider a modified velocity
built with the help of the mappingL just defined. The following result states that the
stability just mentioned is preserved by the operator L .

Lemma 9 There exists a constant C > 0, independent of h, such that

‖L (v, qh)‖0,2r̃ ,� ≤ C
{
|v|1,r ,� + s(qh, qh)

1
2

}
,

for all (v, qh) ∈ W 1,r
0 (�)d × Qh.
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Proof Thanks to the embedding (2.3) and denoting

unc :=
∑

M∈TH

∑

F∈FI (M)

τF�qh�ϕF ,

the following bound follows

‖L (v, qh)‖0,2r̃ ,� ≤ C |v|1,r ,� + ‖unc‖0,2r̃ ,�.

To bound the second term on the right-hand side of this inequality we start by noticing
that the definition of ϕF (cf. (2.25)) gives ‖ϕF‖0,∞,K ≤ C for each K such that
F ∈ FK . So, let K ∈ Th and let M ∈ TH be the unique macro-element such that
K ⊂ M . Then, using the mesh regularity and the Cauchy–Schwarz inequality we get

‖unc‖0,K =
∥
∥
∥
∥
∥
∥

∑

F∈FK∩FI (M)

τF�ph�ϕF

∥
∥
∥
∥
∥
∥
0,K

≤
∑

F∈FK∩FI (M)

τF |�ph�| ‖ϕF‖0,K

≤ C
∑

F∈FK∩FI (M)

τFh
d
2
F |�ph�|

≤ C
∑

F∈FK∩FI (M)

τFh
1− d

2
F (1, |�ph�|)F

≤ C h
1
2
F

∑

F∈FK∩FI (M)

τF‖�ph�‖0,F .

Hence, squaring, summing over all the elements, and using the mesh regularity gives

‖unc‖0,� =
⎧
⎨

⎩

∑

K∈Th

‖unc‖20,K

⎫
⎬

⎭

1
2

≤ C h
1+α(r)

2

⎧
⎨

⎩

∑

M∈TH

∑

F∈FI (M)

τF‖�ph�‖20,F

⎫
⎬

⎭

1
2

.

Thus, using the inverse inequality (2.14) we arrive at

‖unc‖0,2r̃ ,� ≤ Ch
d(1−r̃)

2r̃ ‖unc‖0,� ≤ Ch
d(1−r̃)+r̃+α(r)r̃

2r̃ s(ph, ph)
1
2 . (2.27)

To complete the proof we only need to make sure that the exponent of h in (2.27) is
not negative. Let ξ := d(1 − r̃) + r̃ + α(r)r̃ . If r ≥ 2 then α(r) = 1 and r̃ ≤ 2. So,
ξ = d(1 − r̃) + 2r̃ = d + (2 − d)r̃ ≥ 4 − d ≥ 1. If r < 2 then α(r) ≥ d−1

3 and so

ξ ≥ d(1 − r̃) + r̃ + d − 1

3
r̃ = d + 2(1 − d)

3
r̃ ≥ d + 2(1 − d)

3
r̃max = 0.
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Since in the whole range of values for r we have ξ ≥ 0, the proof is complete. ��

3 The Finite Element Method

The finite element method studied in this work reads as follows: find (uh, ph) ∈
V h × Qh such that

(|∇uh |r−2∇uh,∇vh)� − (L (uh, ph) ⊗ uh,∇vh)� − (ph, div vh)� = 〈 f , vh〉�,

(3.1)

(qh, div uh)� + s(ph, qh) = 0, (3.2)

for all (vh, qh) ∈ V h ×Qh , whereL is defined by (2.26) and the stabilising bilinear
form s(·, ·) is defined in (2.22).

Remark 10 (i) The main differences between (3.1), (3.2) and a standard Galerkin
method are twofold: first, the stabilising term involving the jumps of the discrete
pressure is added to the formulation to compensate for the fact that the pairV h×Qh
does not satisfy the discrete inf-sup condition. Additionally, and perhaps more
significantly, the convection velocity uh has been replaced by the modified version
L (uh, ph). In Lemma 11 this modified velocity will be proved to be solenoidal,
which allows us to analyse the finite element method without the need to rewrite
the convection term in a skew-symmetric form. This will lead to a convergence
result valid in the whole range r > 2d

d+2 .
(ii) As can be expected, the power of h in the stabilisation parameter depends strongly

on the value of r . Two important remarks are in order:

• α(r) = 1 for all r ≥ 2;
• For all r < 2 we have d−1

3 ≤ α(r) < 1.

Thus, there is always a positive power of h multiplying the jump terms of the
pressure involved in the definition of s(·, ·) and L (uh, ph), but the stabilisation
becomes stronger as r ↘ 2d

d+2 .

3.1 Existence of a Solution and a priori Bounds

Before exploring the stability of the scheme, we present the following a priori result
concerning qualitative properties of uh and L (uh, ph), whenever (uh, ph) solves
(3.1), (3.2).

Lemma 11 Let (uh, ph) ∈ V h × Qh be any solution of (3.1), (3.2). Then,

(i) uh is discretely divergence-free with respect to the coarse spaceQH , that is,

(qH , div uh)� = 0 ∀ qH ∈ QH .
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(ii) L (uh, ph) · n = 0 on ∂�, and

divL (uh, ph) = 0 in �.

Proof The proof of (i) is a consequence of the fact that the stabilisation s(·, ·) vanishes
on the coarse space QH , that is, s(qh, qH ) = 0 for all qh ∈ Qh and all qH ∈ QH .
For (ii), we can follow similar arguments as those presented in [6, Lemma 3.8] and
[7, Lemma 3] (see also [2, Theorem 3] for a different proof). ��

The following result states the existence of a solution to the discrete problem (3.1),
(3.2). In addition, it provides uniform a priori bounds for the sequence of solutions as
h → 0.

Theorem 12 There exists a solution (uh, ph) ∈ V h × Qh of (3.1), (3.2). Moreover,
every solution satisfies the following a priori bound:

|uh |r1,r ,� + ‖L (uh, ph)‖0,2r̃ ,� + s(ph, ph) + ‖ph‖0,r̃ ,� ≤ M, (3.3)

where M does not depend on h.

Proof The existence of a solution is proved using the argument presented in [22] for
the Navier–Stokes equation. First, if f = 0, then uh = 0 and ph = 0 trivially solve
(3.1), (3.2). So, we suppose that f �= 0. We define on Qh the relation ∼ as follows:
given ph, qh ∈ Qh , we shall write ph ∼ qh whenever ph − qh ∈ QH . As ∼ is
reflexive, symmetric and transitive it is an equivalence relation. Let [ph] denote the
equivalence class consisting of all qh ∈ Qh such that qh ∼ ph . Clearly, if qh ∈ QH

then qh ∈ [0]. We denote by [Qh/QH ] the linear space of equivalence classes induced
by the relation ∼ where, for two equivalence classes [ph], [qh] in [Qh/QH ], and real
numbers α, β ∈ R, we define α[ph]+β[qh] := [α ph +βqh]. This definition is correct
as the value of [α ph + βqh] is independent of the choice of ph ∈ [ph] and qh ∈ [qh].
To prove the existence of a solution to the discrete problem (3.1), (3.2) we consider
the following reduced problem: find (uh, [ph]) ∈ V h,div × [Qh/QH ] such that

(|∇uh |r−2∇uh,∇vh)� − (L (uh, [ph]) ⊗ uh,∇vh)� − ([ph], div vh)� = 〈 f , vh〉�,

(3.4)

([qh], div uh)� + s([ph], [qh]) = 0,
(3.5)

for all (vh, [qh]) ∈ V h,div × [Qh/QH ], where, for uh, vh ∈ V h,div , we define
L (uh, [ph]) := L (uh, ph), ([ph], div vh)� := (ph, div vh)�, ([qh], div uh)� :=
(qh, div uh)�, and s([ph], [qh]) := s(ph, qh) for any ph ∈ [ph] and any qh ∈ [qh].
These definitions are correct in the sense that they do not depend on the specific choice
of ph ∈ [ph], qh ∈ [qh]. Now, let us suppose that (uh, [ph]) ∈ V h,div × [Qh/QH ]
satisfies (3.4), (3.5), and let ph be any representative of the equivalence class [ph].
Then, since s(pH , qh) = s(ph, qH ) = s(pH , qH ) = 0 for any pH , qH ∈ QH and
any ph, qh ∈ Qh , and since uh ∈ V h,div , we deduce that, for any qH ∈ QH , we have

(qH , div uh)� + s(ph, qH ) = (qH , div uh)� + 0 = 0,
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whereby the pair (uh, ph), with ph ∈ [ph], satisfies (3.2). In addition, thanks to the
inf-sup condition (2.16) there exists a pH ∈ QH such that

(pH , div vh)� = 〈 f , vh〉� − (|∇uh |r−2∇uh,∇vh)� + (L (uh, [ph]) ⊗ uh,∇vh)�

+ ([ph], div vh)�

= 〈 f , vh〉� − (|∇uh |r−2∇uh,∇vh)� + (L (uh, ph) ⊗ uh,∇vh)�

+ (ph, div vh)�

for all vh ∈ V h ; therefore (uh, ph − pH ) ∈ V h × Qh satisfies (3.1). Thus we have
shown that the existence of a solution to the problem (3.4), (3.5) implies the existence
of a solution to the problem (3.1), (3.2). Hence, it suffices to prove the existence of a
solution to problem (3.4), (3.5). We start by noticing that the mapping defined by

(vh, [qh]) ∈ V h,div × [Qh/QH ] �→ |vh |1,r ,� + [s([ph], [qh])]
1
2 ∈ R≥0

is a norm. The subspace of V h,div × [Qh/QH ] where solutions of (3.4), (3.5) are to
be sought is

Xh := {(vh, [qh]) ∈ V h,div × [Qh/QH ] : divL (vh, [qh]) = 0 in �}.

Let T : Xh → [Xh]′ be the mapping defined by

[T (vh, [qh]), (wh, [th])] := (|∇vh |r−2∇vh,∇wh)� − (L (vh, [qh]) ⊗ vh,∇wh)�

− ([qh], divwh)�

+ ([th], div vh)� + s([qh], [th]) − 〈 f ,wh〉�,

that is, the mapping associated with the residual of the problem (3.4), (3.5). For any
(vh, [qh]) ∈ Xh , integration by parts gives (L (vh, [qh]) ⊗ vh,∇vh)� = 0, and then,
for any (vh, [qh]) ∈ Xh , Young’s inequality yields

[T (vh, [qh]), (vh, [qh])] ≥ |vh |r1,r ,� + s([qh], [qh]) − ‖ f ‖−1,r ′,�|vh |1,r ,�
≥ 1

r ′ |vh |r1,r ,� + s([qh], [qh]) − 1

r ′ ‖ f ‖r ′
−1,r ′,�.

This implies that, for any (vh, [qh]) ∈ Xh such that

1

r ′ |vh |r1,r ,� + s([qh], [qh]) ≥ ‖ f ‖r ′
−1,r ′,�, (3.6)

we have [T (vh, [qh]), (vh, [qh])] > 0. By norm-equivalence in the finite-dimensional
linear space V h,div there exists a positive constantC∗ = C∗(h, r) such that |vh |1,r ,� ≥
C∗|vh |1,2,�. Hence, for any (vh, [qh]) ∈ Xh such that

Cr∗
r ′ |vh |r1,2,� + s([qh], [qh]) ≥ ‖ f ‖r ′

−1,r ′,�, (3.7)
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we have [T (vh, [qh]), (vh, [qh])] > 0. Thus, for any (vh, [qh]) ∈ Xh such that

(|vh |21,2,� + s([qh], [qh]))
1
2 = μ, where μ := max

(( c

K

) 1
r
, c

1
2

)

, (3.8)

with c := ‖ f ‖r ′
−1,r ′,� and K := min(1,Cr∗/r ′), we have [T (vh, [qh]), (vh, [qh])] > 0;

this follows by noting that (3.8) implies (3.7) (which then implies (3.6)). Now, Xh
is a (finite-dimensional) Hilbert space equipped with the norm ‖(vh, [qh])‖Xh :=
(|vh |21,2,� + s([qh], [qh]))

1
2 and associated inner product (·, ·)Xh

; thus, by the
Riesz representation theorem, there exists an element R(vh, [qh]) ∈ Xh such that
[T (vh, [qh]), (vh, [qh])] = (R(vh, [qh]), (vh, [qh]))Xh . Hence, by a consequence
of Brouwer’s fixed point theorem (see [22, Ch. IV, Corollary 1.1]) there exists a
(uh, [ph]) ∈ Xh such that R(uh, [ph]) = 0, and therefore also T (uh, [ph]) = 0,
i.e., (uh, [ph]) ∈ Xh solves (3.4), (3.5), which implies that (3.1), (3.2) has a solution
(uh, ph) ∈ V h × Qh .

In order to prove the a priori bound (3.3), we first take (vh, qh) = (uh, ph) in (3.1),
(3.2) and use the fact that L (uh, ph) is solenoidal to arrive at

|uh |r1,r ,� + s(ph, ph) ≤ C ‖ f ‖r ′
−1,r ′,�, (3.9)

where C > 0 depends only on r . Moreover, the bound on ‖L (uh, ph)‖0,2r̃ ,� follows
from Lemma 9 and (3.9).

To bound ‖ph‖0,r̃ ,� we consider the projection �H defined in Sect. 2.2 and write

‖ph‖0,r̃ ,� ≤ ‖ph − �H (ph)‖0,r̃ ,� + ‖�H (ph)‖0,r̃ ,�. (3.10)

First, using the result stated in Remark 8 (that is, (2.24) with 
 = r̃ ) we deduce that

‖�H (ph) − ph‖0,r̃ ,� ≤ C hχ s(ph, ph)
1
2 ≤ C, (3.11)

where χ ≥ 0. Next, since �H (ph) ∈ QH , thanks to (2.16) there exists a w̃h ∈ V h
such that |w̃h |1,r̃ ′,� = 1 and

βr‖�H (ph)‖0,r̃ ,� ≤ (�H (ph), div w̃h)�

= (�H (ph) − ph, div w̃h)� + (ph, div w̃h)�

= (�H (ph)− ph, div w̃h)�+(|∇uh |r−2∇uh,∇w̃h)�−(L (uh, ph) ⊗ uh,∇w̃h)�

− 〈 f , w̃h〉�
= I + I I + I I I + I V ,

where we have also used that (uh, ph) solves (3.1), (3.2). The bounds for the above
terms proceed using Hölder’s inequality, r̃ ≤ r ′ (and then r ≤ r̃ ′), |w̃h |1,r̃ ′,� = 1,
(3.11), (2.3), the bound for ‖L (uh, ph)‖0,2r̃ ,�, and (3.9) as follows:
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I ≤ ‖�H (ph) − ph‖0,r̃ ,�|w̃h |1,r̃ ′,� ≤ C,

I I ≤
(∫

�
|∇uh |(r−1)r̃ dx

) 1
r̃ |w̃h |1,r̃ ′,� ≤ C

(∫

�
|∇uh |(r−1)r ′

dx
) 1

r ′ = C |uh |r−1
1,r ,� ≤ C,

I I I ≤ ‖L (uh , ph)‖0,2r̃ ,�‖uh‖0,2r̃ ,�|w̃h |1,r̃ ′,� ≤ C ‖L (uh , ph)‖0,2r̃ ,�|uh |1,r ,� ≤ C,

I V ≤ ‖ f ‖−1,r ′,�|w̃h |1,r ,� ≤ C ‖ f ‖−1,r ′,� |w̃h |1,r̃ ′,� = C ‖ f ‖−1,r ′,�.

Thus, the proof follows by inserting the above bounds on I , . . . , I V and (3.11) in
(3.10). ��

4 Convergence to aWeak Solution

In this section we analyse the convergence of the finite element scheme (3.1), (3.2).
The convergence proof is divided into two cases in order to distinguish between the
situations when a solution u of (2.4), (2.5) can, and cannot, be used as a test function
in (2.4).

Theorem 13 Let r ∈ ( 2d
d+2 ,∞). Then, there exists a subsequence, still denoted by

(uh, ph), such that

uh⇀u weakly in W 1,r
0 (�)d; (4.1)

uh → u strongly in Ls(�)d for s ∈ [1, 2r̃); (4.2)

L (uh, ph) → u strongly in Ls(�)d , for s ∈ [1, 2r̃); (4.3)

ph⇀p weakly in Lr̃ (�); (4.4)

if r ≥ 3d

d + 2
, then s(ph, ph) → 0 as h → 0. (4.5)

In addition, p ∈ Lr̃
0(�), and (u, p) solves (2.4), (2.5).

Proof The proofs of (4.1) and (4.4) follow using (3.3) and the reflexivity of W 1,r
0 (�)

and Lr̃ (�) for r ∈ (1,∞). In addition, p has zero average since

(p, 1)� = lim
h→0

(ph, 1)� = 0.

The proof of (4.2) is a consequence of the Rellich–Kondrachov Theorem (see, e.g.
[10, Theorem 9.16]). Moreover, the bound (2.27) implies that for every s < 2r̃ there
exists a number ξ > 0 such that

‖unc‖0,s,� ≤ Chξ s(ph, ph)
1
2 ,

so (3.3) yields ‖unc‖0,s,� → 0 as h → 0 for all s < 2r̃ . Together with (4.2) this
proves (4.3).
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We now start the process of identifying the partial differential equation satisfied by
the limits u and p. Let v ∈ C∞

0 (�)d be arbitrary, and let vh ∈ V h be its Scott–Zhang
interpolant. Using (3.3) we first get that

‖ |∇uh |r−2∇uh‖r
′
0,r ′,� =

∫

�

|∇uh |
(r−1)r
(r−1) dx = ‖∇uh‖r0,r ,� ≤ C, (4.6)

and thus there exists a S ∈ Lr ′
(�)d×d such that (up to a subsequence)

|∇uh |r−2∇uh⇀S weakly in Lr ′
(�)d×d . (4.7)

So, since vh converges to v strongly in W 1,r
0 (�)d we have

(|∇uh |r−2∇uh,∇vh)� → (S,∇v)� as h → 0. (4.8)

Next, thanks to (4.4) and the strong convergence of vh to v inW 1,r̃ ′
0 (�)d (see (2.11))

the following holds:

(ph, div vh)� = (ph, div (vh − v))� + (ph, div v)� → 0 + (p, div v)� as h → 0.

(4.9)

To treat the convection term, (4.2) and (4.3) imply that

L (uh, ph) ⊗ uh → u ⊗ u strongly in Ls(�)d for all s < r̃ , (4.10)

which, together with the fact that vh → v strongly in W 1,s′
0 (�)d , prove that

(L (uh, ph) ⊗ uh,∇vh)� → (u ⊗ u,∇v)� as h → 0. (4.11)

Thus, (S, u, p) solves a problem related to (2.4). In fact, since (uh, ph) satisfies
(3.1), then applying (4.8), (4.9), and (4.11), we arrive at

(|∇uh |r−2∇uh,∇vh)� − (L (uh, ph) ⊗ uh,∇vh)� − (ph, div vh)� = 〈 f , vh〉�↓ ↓ ↓ ↓
(S,∇v)� − (u ⊗ u,∇v)� − (p, div v)� = 〈 f , v〉�,

as h → 0, and using the density of C∞
0 (�)d in W 1,r̃ ′

0 (�)d , (u, p, S) satisfies

(S,∇v)� − (u ⊗ u,∇v)� − (p, div v)� = 〈 f , v〉� ∀ v ∈ W 1,r̃ ′
0 (�)d .

(4.12)
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To show that u is solenoidal we consider q ∈ C∞
0 (�), integrate by parts, and use

(4.3) and the fact L (uh, ph) is solenoidal to obtain

(div u, q)� =−(u,∇q)� =− lim
h→0

(L (uh, ph),∇q)� = lim
h→0

(divL (uh, ph), q)� =0,

and then div u = 0 in the distributional sense.
To prove that that (u, p) solves (2.4), (2.5) it only remains to show that S =

|∇u|r−2∇u. The proof of this will be split into two cases, labelled (i) and (ii) below.

(i) r ≥ 3d
d+2 : In this case we use a classical result commonly referred to as the Minty

trick (see, e.g., [31, Lemma 2.13]). Let v ∈ W 1,r
0 (�)d , and let vh be its Scott–Zhang

interpolant. Since the r -Laplacian operator is monotone (see, e.g., [10]) we have

0 ≤ (|∇v|r−2∇v − |∇uh |r−2∇uh,∇(v − uh))�
= (|∇v|r−2∇v − |∇uh |r−2∇uh,∇(v − vh))�

+ (|∇v|r−2∇v,∇(vh − uh))� − (|∇uh |r−2∇uh,∇(vh − uh))�
= A + B + C. (4.13)

Using that vh converges strongly to v in W 1,r
0 (�)d and uh converges weakly to u in

W 1,r
0 (�)d , and (3.3) we easily get

A ≤ ‖|∇v|r−2∇v − |∇uh |r−2∇uh‖0,r ′,� |v − vh |1,r ,� → 0 as h → 0,

B = (|∇v|r−2∇v,∇(vh − uh))� → (|∇v|r−2∇v,∇(v − u))� as h → 0.

To treat C we use that (uh, ph) solves the discrete problem (3.1), (3.2), as follows:

C = −(|∇uh |r−2∇uh , ∇(vh − uh))�

= −(|∇uh |r−2∇uh , ∇vh)� + (|∇uh |r−2∇uh, ∇uh)�

= −(|∇uh |r−2∇uh , ∇vh)� + (L (uh , ph) ⊗ uh ,∇uh)�
︸ ︷︷ ︸

=0

+(ph , div uh)� + 〈 f , uh〉�

= −(|∇uh |r−2∇uh , ∇vh)� − s(ph , ph) + 〈 f , uh〉�
= D − E + F.

Thus, from (4.13) we get

0 ≤ E = A + B + D + F,

and, taking the limit when h → 0 on both sides of this inequality, using that vh → v

strongly in W 1,r
0 (�)d , uh⇀u weakly in W 1,r

0 (�)d , and |∇uh |r−2∇uh⇀S weakly in

Lr ′
(�)d×d , we obtain

0 ≤ lim
h→0

s(ph, ph) ≤ (|∇v|r−2∇v,∇(v − u))� − (S,∇v)� + 〈 f , u〉�.
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It only remains to show that 〈 f , u〉� = (S,∇u)� to prove that S and u satisfy

0 ≤ lim
h→0

s(ph, ph) ≤ (|∇v|r−2∇v − S,∇(v − u))� (4.14)

for all∀v ∈ W 1,r
0 (�)d , and then themonotonicity of the r -Laplacian and an application

of [31, Lemma 2.13] gives S = |∇u|r−2∇u. Since r ≥ 3d
d+2 then r = r̃ ′ and so

u ∈ W 1,r̃ ′
0 (�)d . Hence, by taking v = u as test function in (4.12) we obtain

〈 f , u〉� = (S,∇u)� − (u ⊗ u,∇u)�︸ ︷︷ ︸
=0

− (p, div u)�︸ ︷︷ ︸
=0

= (S,∇u)�,

thus proving that (S,∇u)� = 〈 f , u〉�. Hence (u, p) solves the continuous problem
(2.4), (2.5).
Finally, (4.5) follows by taking v = u in (4.14).

(ii) r ∈
(

2d
d+2 ,

3d
d+2

)
: For this case we are not able to use the fundamental step of

taking v = u as test function in (4.12) to conclude S = |∇u|r−2∇u. So, we need to
appeal to the results concerning discrete Lipschitz truncation described in Sect. 2.3
and use the Minty trick once again. To conclude that S = |∇u|r−2∇u in � we need
to show that

lim
h→0

(|∇uh |r−2∇uh − |∇u|r−2∇u,∇(uh − u)
)

�
= 0. (4.15)

Let us prove that (4.15) does indeed imply that S = |∇u|r−2∇u in �, as desired.
Having done so, we shall show that (4.15) holds. To this end, let Sh := |∇uh |r−2∇uh .
As it was done in (4.6) and (4.7), there exists a subsequence such that Sh⇀S in
Lr ′

(�)d×d . Using (4.15) it is simple to prove that

lim
h→0

(|∇uh |r−2∇uh,∇uh)� = (S,∇u)�. (4.16)

Indeed, by recalling the definition of Sh and expanding (4.15) we have that

lim
h→0

(|∇uh |r−2∇uh,∇uh)� = lim
h→0

(Sh,∇uh)�

= lim
h→0

(Sh,∇u)� + lim
h→0

(|∇u|r−2∇u,∇uh − ∇u)�

= (S,∇u)� + 0 = (S,∇u)�,

thanks to the weak convergence of Sh to S in Lr ′
(�)d×d and the weak convergence of

uh to u in W 1,r
0 (�)d (cf. (4.1)). Thus we have shown that (4.15) implies (4.16). Now

from (4.16) we have that

0 ≤ lim
h→0

(|∇uh |r−2∇uh − |∇v|r−2∇v,∇(uh − v)
)

�
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= (
S − |∇v|r−2∇v,∇(u − v)

)

�

for all v ∈ W 1,r
0 (�)d , and the application of theMinty trick gives that S = |∇u|r−2∇u.

To prove (4.15), let Hh := (|∇uh |r−2∇uh − |∇u|r−2∇u) : ∇(uh − u). Since the
r -Laplacian is monotone, it follows that Hh ≥ 0 almost everywhere in �, leading to

lim inf
h→0

∫

�

Hh(x) dx ≥ 0. (4.17)

To prove the converse to (4.17), let vh := uh−I (u), whereI is the Fortin operator

satisfying (2.17), (2.18). First, uh,I (u) ∈ V h,div and vh⇀0 weakly in W 1,r
0 (�)d

as h → 0. Let now {vh, j }h>0, j∈N and {wh, j }h>0, j∈N be the sequences defined in
Lemmas 6 and 7, respectively, and let {Bh, j }h>0, j∈N be the sets defined in Lemma 6.

First, thanks to (3.3), Hh is uniformly bounded in L1(�), and then using Hölder’s
inequality and (2.19) we get

∫

�

H
1
2
h dx =

∫

Bh, j

H
1
2
h dx +

∫

�\Bh, j

H
1
2
h dx

≤ |Bh, j |
1
2

{∫

Bh, j

Hh dx

} 1
2

+ |� \ Bh, j |
1
2

{∫

�\Bh, j

Hh dx

} 1
2

≤ C2− j
2 + |�| 12 A 1

2 ,

where

A :=
∫

�

Hh dx.

The goal will be to show that A is bounded by C2− j
r plus a term that tends to zero

with h, ultimately proving that

lim sup
h→0

∫

�

H
1
2
h dx ≤ C2− j

2r ,

for every j ∈ N, which combined with (4.17) will prove (4.15).
To boundAwe start by decomposing the error uh −u as uh −u = vh +I (u)−u,

define Gh := |∇uh |r−2∇uh − |∇u|r−2∇u, and thus write

A =
∫

�\Bh, j

Gh : ∇vh dx +
∫

�\Bh, j

Gh : ∇(I (u) − u) dx = B + C.
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Since I (u) → u strongly in W 1,r
0 (�)d and Gh is uniformly bounded in Lr ′

(�)d×d

(thanks to (3.3)), C → 0 as h → 0. Moreover, since vh, j = vh in � \ Bh, j , then

B =
∫

�\Bh, j

Gh : ∇vh, j dx

=
∫

�

Gh : ∇vh, j dx −
∫

�

Gh : ∇vh, j1Bh, j
dx

=
∫

�

Gh : ∇(vh, j − wh, j ) dx +
∫

�

Gh : ∇wh, j dx −
∫

�

Gh : ∇vh, j1Bh, j
dx

= D + E + F.

Hölder’s inequality, (2.21), (2.20), and (2.19) yield the bounds

|D| ≤ ‖Gh‖0,r ′,�‖∇(vh, j − wh, j )‖0,r ,� ≤ C2− j
r ,

|F| ≤ ‖Gh‖0,r ′,�‖∇vh, j1Bh, j
‖0,r ,� ≤ C2− j

r ,

for all h > 0. Moreover, E is decomposed as follows

E =
∫

�

|∇uh |r−2∇uh : ∇wh, j dx −
∫

�

|∇u|r−2∇u : ∇wh, j dx = G + H.

Since wh, j⇀0 weakly in W 1,r
0 (�)d then H → 0 as h → 0. The only remaining term

to deal with is G. We start by using that (uh, ph) solves (3.1), (3.2) to rewrite G as
follows

G = (L (uh, ph) ⊗ uh,∇wh, j )� + (ph, divwh, j )� − 〈 f ,wh, j 〉�.

The convective term above is treated as follows: using that for any fixed s < +∞,
∇wh, j is uniformly bounded in Ls(�)d×d , then (4.10) applied to ŝ = 1+r̃

2 < r̃ yields
the bound

(L (uh , ph) ⊗ uh−u ⊗ u, ∇wh, j )� ≤‖L (uh , ph) ⊗ uh−u ⊗ u‖0,ŝ,�‖∇wh, j‖0,ŝ′,� →0,
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as h → 0, and then

(L (uh , ph)⊗uh , ∇wh, j )� =(L (uh , ph)⊗uh−u⊗u,∇wh, j )�+(u ⊗ u,∇wh, j )� →0,

as h → 0. Moreover, 〈 f ,wh, j 〉� → 0 as h → 0. Finally, for the remaining term inG
we get, by applying that wh, j ∈ V h,div , the Cauchy–Schwarz inequality and (2.24):

(ph, divwh, j )� = (ph − �H (ph), divwh, j )�

≤ ‖ph − �H (ph)‖0,�‖divwh, j‖0,�
≤ Ch

1−α(r)
2 s(ph, ph)

1
2 ‖divwh, j‖0,� → 0,

as h → 0, since α(r) = d−1
3 < 1 for all r < 3d

d+2 , and s(ph, ph) and ‖divwh, j‖0,�
are uniformly bounded in h and j .

Collecting all the above bounds the following can be concluded

A = B + C = D + E + F + C ≤ C2− j
r + G + H + C,

and since G + H + C → 0 as h → 0 for every fixed j ∈ N, then, for every j ∈ N we

get lim suph→0

∫

�
H

1
2
h (x) dx ≤ C2− j

2r for every j ∈ N, and thus

lim sup
h→0

∫

�

H
1
2
h (x) dx ≤ 0.

So,
∫

�
H

1
2
h dx → 0, which means that, up to a subsequence if necessary, H

1
2
h → 0

almost everywhere in �, and thus Hh → 0 almost everywhere in �. This, together
with (4.17), proves (4.15) and thus S = |∇u|r−2∇u almost everywhere in �. Hence,
(u, p) solves the continuous problem (2.4), (2.5). ��

4.1 Strong Convergence

The convergence results proved in the last section can be strengthened. In fact, in
this section we prove that the velocity and pressure converge strongly, at least for an
appropriate range of values of r in the case of the pressure. We start with the proof of
the strong convergence of the velocity.

Theorem 14 For every r > 2d
d+2 the discrete velocity uh converges to u strongly in

W 1,r
0 (�)d .

Proof We start by considering the case when r ≥ 3d
d+2 . Using the discrete problem

(3.1), (3.2), (4.5), and (2.4) with v = u we get
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lim
h→0

(|∇uh |r−2∇uh,∇uh
)

�
= lim

h→0

{
(L (uh, ph)⊗uh,∇uh)�︸ ︷︷ ︸

=0

+(ph, div uh)�+〈 f , uh〉�
}

= − lim
h→0

s(ph, ph) + lim
h→0

〈 f , uh〉�
= 0 + 〈 f , u〉�
= (|∇u|r−2∇u,∇u

)

�
,

and the result follows by using that uh⇀u in W 1,r
0 (�)d , the fact that W 1,r

0 (�)d is
uniformly convex, and [10, Proposition 3.32]. For r < 3d

d+2 we realise that (4.16) in
fact states that limh→0 |uh |1,r ,� = |u|1,r ,�, and the strong convergence of uh to u in

W 1,r
0 (�)d follows using once again [10, Proposition 3.32]. ��
The strong convergence of the pressure is proved next. We begin by noticing that,

thanks to Theorem 14 and the continuous injection W 1,r
0 (�)d ↪→ L2r̃ (�)d we have

that uh converges strongly to u in L2r̃ (�)d . Moreover, if r ≥ 3d
d+2 then thanks to

(2.27) and (4.5), L (uh, ph) also converges strongly to u in L2r̃ (�).

Theorem 15 For r ≥ 3d
d+2 , the discrete pressure ph converges to p strongly in Lr̃

0(�).

Proof Let �H be the projection defined in (2.10). Using the triangle inequality we
get

‖p − ph‖0,r̃ ,� ≤ ‖p − �H (p)‖0,r̃ ,� + ‖�H (p − ph)‖0,r̃ ,�
+‖�H (ph) − ph‖0,r̃ ,� = 1 + 2 + 3 . (4.18)

First, thanks to (2.11)

1 → 0 as h → 0. (4.19)

Moreover, the combined use of (2.24) and (4.5) gives

3 ≤ C s(ph, ph)
1
2 → 0 as h → 0. (4.20)

It only remains to bound 2 . Thanks to the inf-sup condition (2.16) there exist
βr̃ > 0 and ṽh ∈ V h with |ṽh |1,r̃ ′,� = 1 such that

βr̃ 2 ≤ (�H (p − ph), div ṽh)�

= (�H (p) − p, div ṽh)� + (p − ph, div ṽh)� + (ph − �H (ph), div ṽh)�

= 4 + 5 + 6 .

Hölder’s inequality gives

| 4 | ≤ 1 ‖div ṽh‖0,r̃ ′,� ≤ C 1 → 0,
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| 6 | ≤ 3 ‖div ṽh‖0,r̃ ′,� ≤ C 3 → 0,

thanks to (4.19) and (4.20). It only remains to bound 5 . Using that (uh, ph) solves
(3.1), (3.2) we get

5 = (|∇uh |r−2∇uh − |∇u|r−2∇u,∇ṽh
)

�
− (

L (uh, ph) ⊗ uh − u ⊗ u,∇ṽh
)

�

= 7 + 8 .

Using that uh converges to u strongly in W 1,r
0 (�)d we get 7 → 0. Finally,

L (uh, ph) ⊗ uh → u ⊗ u in Lr̃ (�)d×d and |ṽh |1,r̃ ′,� = 1 giving 8 → 0 as

h → 0. So, 2 → 0, and the result follows from (4.18). ��

5 Concluding Remarks

In this work we have extended the applicability of a low-order divergence-free sta-
bilised finite elementmethod to incompressible non-Newtonian fluid flowmodels with
power-law rheology. The method is based on using a standard continuous piecewise
linear finite element approximation for the velocity and piecewise constant approxi-
mation for the pressure. Themain results of the paper are twofold: first, the method has
been shown to converge to a weak solution of the boundary-value problem in the entire
range r > 2d

d+2 of the power-law index r within which weak solutions to the model are
known to exist. Up to now thiswas only possible by using finite elementmethods based
on pointwise divergence-free continuous piecewise polynomials constructed by taking
the curl of C1 piecewise polynomials (an approach that is usually avoided because
of the complexity of its implementation and the excessive number of unknowns at
each node, particularly in three dimensions); by using Scott–Vogelius finite elements,
which are inf-sup stable on shape-regular meshes for piecewise quartic velocity fields
and higher [25]; or by using Guzmán–Neilan type pointwise divergence-free rational
basis functions (see [16] for the convergence proof in this case). With standard mixed
finite element methods, with a discretely divergence-free velocity field, the range of
r for which convergence was shown to hold is smaller, and is restricted to r > 2d

d+1 ;
it is not known whether such standard mixed finite element methods converge for
2d
d+2 < r ≤ 2d

d+1 (see [16]).
The second main result of this paper is the proof of strong convergence of both the

velocity and the pressure. To the best of our knowledge, this is the first workwhere such
a result has been shown for this type of stabilisation; in fact, this strong convergence
result is new even for r = 2 corresponding to the case of a Newtonian fluid. To
date, not many stabilised finite element methods have been proved to be convergent
under minimal regularity hypotheses, and for those for which this was achieved the
discussion was restricted to the simpler situation of a Newtonian fluid (r = 2). In
addition, the stabilising jump terms involved the complete Cauchy stress tensor rather
than the jump in the pressure alone (see, e.g., [4], where dG methods were analysed),
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or, in the case of continuous finite element pairs, residual-based stabilisation was used
(see, [5]).

As was noted earlier, the present work is seen as a proof-of-concept paper, whose
aim is to showcase the applicability of this type of stabilisation to problems that are
more complex than the Navier–Stokes model, and to highlight the fact that the use of
the ‘covert’ divergence-free velocity field L (uh, ph) in the convection term allows
one to prove the convergence in the whole range of values of the power-law index r
for which weak solutions to the model are known to exist. As such, several questions
remain open, including the following:

• Assumption (A1) was introduced so as to be able to define the discretely
divergence-free Lipschitz truncation in the present setting.Whether this is a neces-
sity or one may avoid the use of Lemma 7 altogether, and thereby dispense with
Assumption (A1), is an interesting open question;

• The discussion contained in Remark 5 hints at the possibility of applying lower-
order divergence-free finite elements on appropriately refined meshes without the
need of stabilisation. This would require the study of the inf-sup stability of such
pairs in the setting of the present paper; we note in this direction the recent paper
[19], where a Scott–Vogelius pair is used on barycentrically refined meshes.

• Most of the results presented in this work can be extended, without major diffi-
culties, to more sophisticated explicit constitutive laws (e.g. to Carreau–Yasuda
type models). In particular, power-law models such as the ones discussed in [17,
Section 3] can be analysed with the techniques developed in this work;

• Finally, the extension of the results of our work to steady and unsteady implicitly
constituted models, such as the ones considered in [16, 34], where the constitutive
relation can be identified with a maximal monotone r -graph, is the subject of
ongoing research and will be presented elsewhere.
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Appendix: The Proof of the Inf-Sup Condition (2.16)

We start by introducing notation that is only used in this appendix. We define the
standard finite element space P0

1(Th) = {vh : vh |K ∈ P1(K ) ∀ K ∈ Th} ∩ H1
0 (�).

The set of internal facets of TH is denoted by FH . For each F̃ ∈ FH we choose
one unit normal to it denoted by n

F̃
. Its orientation is of no importance. Finally, for

M ∈ TH we define the neighbourhood ωM = {M ′ ∈ TH : M ′ ∩ M �= ∅}.
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Let v ∈ W 1,s′
0 (�)d and let M ∈ TH . Let, for any internal facet F̃ of TH such that

F̃ ⊆ ∂M , x be a node of Th that belongs to the interior of F̃ (the existence of such
a node is guaranteed by Assumption (A1)). Associated with x, let b

F̃
be the basis

function of P0
1(Th) whose value at x is one, and zero at every other node ofTh . Then,

we define the mapping

ρM : W 1,s′(M)d → V h,

v �→ ρM (v) =
∑

F̃⊆∂M

1

(1, b
F̃
)
F̃

(
v · n

F̃
, 1

)

F̃
b
F̃
n
F̃
.

This mapping is well defined since s′ > 1 and thanks to [18, Proposition 16.1] the
integral of the normal component of v is finite on each F̃ . Let now qH ∈ QH and

let v ∈ W 1,s′
0 (�)d be arbitrary. Denoting by nM the unit normal outward to M and

integrating by parts we obtain

⎛

⎝div

⎛

⎝
∑

M∈TH

ρM (v)

⎞

⎠ , qH

⎞

⎠

�

=
∑

M∈TH

(ρM (v) · nM , qH )∂M

=
∑

F̃∈FH

1

(1, b
F̃
)
F̃

(1, b
F̃
)
F̃
(v · n

F̃
, 1)

F̃
�qH �

F̃

=
∑

F̃∈FH

(v · n
F̃
, 1)

F̃
�qH �

F̃

= (div v, qH )�. (5.1)

In addition, using Hölder’s inequality and the local trace inequality (2.13) we obtain,
for all M ∈ TH ,

‖ρM (v)‖0,s′,M ≤
∑

F⊆∂M

1

(1, b
F̃
)
F̃

∣
∣
∣(v · n

F̃
, 1)

F̃

∣
∣
∣ ‖b

F̃
‖0,s′,M

≤
∑

F̃⊆∂M

C

|F̃ | |M | 1
s′ |F̃ | 1s ‖v‖

0,s′,F̃

≤ C
∑

F̃⊆∂M

h
1−d+ d

s′ + d−1
s

F̃
‖v‖

0,s′,F̃

≤ C
∑

F̃⊆∂M

h
1
s′
F̃

(
h

− 1
s′

M ‖v‖0,s′,M + h
1− 1

s′
M |v|1,s′,M

)

≤ C
∑

F̃⊆∂M

(‖v‖0,s′,M + hM |v|1,s′,M
)
,
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which, using the inverse inequality (2.14) on M and hM ≤ ChK gives

|ρM (v)|1,s′,� ≤ C
∑

F̃⊆∂M

(
h−1
M ‖v‖0,s′,M + |v|1,s′,M

)
. (5.2)

Finally, we define the Fortin operator as follows:

I : W 1,s′
0 (�)d → V h,

v �→ I (v) = Sh(v) +
∑

M∈TH

ρM (v − Sh(v)).

For every qH ∈ QH and v ∈ W 1,s′
0 (�)d , (5.1) gives

(divI (v), qH )� = (div v, qH )�.

In addition, for every v ∈ W 1,s′
0 (�)d , using (5.2) and the stability and approximation

properties of Sh we arrive at

|I (v)|1,s′,� ≤ |Sh(v)|1,s′,� + C

⎧
⎨

⎩

∑

M∈TH

h−s′
M ‖v − Sh(v)‖s′0,s′,M + |v − Sh(v)|s′1,s′,M

⎫
⎬

⎭

1
s′

≤ C |v|1,s′,� + C

⎧
⎨

⎩

∑

M∈TH

|v|s′1,s′,ωM

⎫
⎬

⎭

1
s′

≤ C |v|1,s′,�. (5.3)

So,I satisfies the requirements of a Fortin operator, which proves the inf-sup condi-
tion (2.16).
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