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Abstract—Though the existing generative adversarial 
networks (GAN) have the potential for data augmentation and 
intelligent fault diagnosis of planetary gearbox, it remains 
difficult to deal with extremely limited training samples and 
effectively fuse the representative and diverse information. To 
tackle the above challenges, an improved local fusion 
generative adversarial network (ILoFGAN) is proposed. 
Time-domain waveforms are firstly transformed into the 
time-frequency diagrams to highlight the fault characteristics. 
Subsequently, a local fusion module is used to fully utilize 
extremely limited samples and fuse the local features. Finally, a 
new generator embedded with multi-head attention modules is 
constructed to effectively improve the accuracy and flexibility of 
the feature fusion process. The proposed method is applied to 
the analysis of planetary gearbox vibration signals. The results 
show that the proposed method can generate a large number of 
samples with higher similarity and better diversity compared 
with the existing mainstream GANs using 6 training samples in 
each type. The generated samples are used to augment the 
limited dataset, prominently improving the accuracy of the fault 
diagnosis task. 

Index Terms—intelligent fault diagnosis, extremely few 
samples, multi-head attention mechanism, ILoFGAN, 
planetary gearbox. 

I. INTRODUCTION

lanetary gearbox has been widely used in various 
machinery, including automobile, shield machine, and 
aircraft carrier. However, its performance will degrade 

during the long-term operation process. Distinguishing 
different fault modes is of great significance for failure 
prediction and maintenance decision-making [1-4]. Thanks to 
the rapid development of data-driven technology, many 
researchers have investigated intelligent fault diagnosis of 
planetary gearbox by mining the rich information provided by 
the collected vibration signals. Particularly, fault diagnosis 
based on deep learning has attracted more attention than 
traditional data-driven technology, due to its end-to-end 
feature learning ability [5-7]. However, the success of deep 
learning largely depends on the sufficiency of training 
samples. Unfortunately, with the increasing improvement of 
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reliability and quality, the machinery works under healthy 
states most of time in the real industrial scenarios, which 
means that acquiring sufficient fault samples is difficult 
[8-10]. 

To address this challenge, researchers have successively 
developed data augmentation methods such as data sampling 
and data generation [11]. Data sampling techniques mainly 
include random over-sampling (RO-Sampling) [12], synthetic 
minority oversampling technique (SMOTE) [13], and adaptive 
synthetic (ADASYN) [14]. Although these methods can 
synthesize new fault samples, they focus on replication or 
interpolation techniques while failing to consider the effect of 
data distribution, which will lead to the lack of diversity. 

Data generation technology aims to capture features from 
original data and generate new samples with a similar 
distribution. Typical representative algorithms include GAN 
[15], Wasserstein GAN (WGAN) [16], Wasserstein GAN with 
gradient penalty (WGAN-GP) [17], deep convolutional GAN 
(DCGAN) [18], auxiliary classier GAN (ACGAN) [19] and 
variational autoencoding GAN (VAEGAN) [20], which are 
gradually used in the field of machinery fault diagnosis 
[21-23]. Wang et al. [24] used the analog signals generated by 
WGAN to expand the unbalanced dataset and train stacked 
autoencoders to detect the health status of mechanical 
equipment. Wang et al. [25] used enhanced deep 
convolutional GAN to generate more fault samples and figure 
out the problem of imbalanced data, thus improving fault 
classification accuracy. Peng et al. [26] proposed the 
reinforcement auxiliary classification GAN, which stabilized 
the training process by using boundary-seeking loss and 
introduced cost-sensitive learning to alleviate data imbalance 
in the Tennessee Eastman dataset. Li et al. [27] proposed an 
auxiliary classier Wasserstein GAN with a gradient penalty to 
generate high-quality frequency samples. Dixit et al. [28] 
proposed a novel conditional auxiliary classifier ACGAN 
framework combined with model agnostic meta-learning, 
which is validated by bearing and air compressor datasets. 
Miao et al. [29] proposed an improved VAEGAN to complete 
the data augmentation task under the background of a few 
samples. 

It can be witnessed from the literature that various GANs 
mentioned above have been studied successively in 
mechanical fault diagnosis. However, in the presence of 
extremely limited fault samples, the following problems still 
need to be addressed to further improve the diagnosis 
performance. (1) The inputs of generators applied in the 
GANs, as mentioned above, are mostly random noise or 
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random noise with some labels, which fails to fully capture 
each training sample's information and make it hard to extract 
diverse and representative feature representation [24, 27, 29]. 
(2) The above GANs mostly generate the original
time-domain vibration signals or the spectral signals while
failing to involve extracting the correlation features of
time-frequency spectrum of vibration signals. (3) In the above
researches, the number of existing fault samples used to train
GAN is generally more than 20 per category. Due to the
increasingly expensive cost of labeled samples and the
long-term accumulation of massive monitoring data,
availability of fault samples will be limited in the practical
engineering field. Therefore, we focus on the intelligent fault
diagnosis method for planetary gearbox under extremely few
samples.

To settle these problems, an improved local fusion GAN 
(ILoFGAN) is proposed for data augmentation of planetary 
gearbox under extremely limited samples. The comparison 
results from the experiments demonstrate that ILoFGAN can 
produce high-quality fault samples of the planetary gearbox by 
utilizing only a few time-frequency diagrams and remarkably 
improve diagnosis accuracy. Two quality evaluation indexes 
confirm the efficiency and superiority of the proposed method 
compared with mainstream GANs. The main contributions of 
this study are as follows: 
1) To generate sufficient time-frequency diagrams of the

planetary gearbox with high quality and diversity,
ILoFGAN is used to fully extract value from the limited
information and fuse the local feature of extremely few
samples.

2) To assist the local fusion module to improve the
precision and flexibility of local feature match, a novel
generator embedded with multi-head attention modules is
constructed for mining various key local features in the
time-frequency diagrams.

The remainder of this article is organized as follows. The 
theoretical background of LoFGAN is provided in Section Ⅱ. 
Section Ⅲ demonstrates the details of the novel generator and 
the overall framework. Experimental study and evaluation of 
the proposed method are presented in Section Ⅳ. Conclusions 
are summarized in Section Ⅴ. 

II.BRIEF INTRODUCTION TO LOFGAN

LoFGAN [30] was proposed in 2021, which added local 
fusion techniques into GAN to extract features. The basic 
structure is shown in Fig. 1. Dissimilar to traditional GANs, 
the generator G is composed of encoder E, decoder H, a local 
fusion module (LFM). Its input contains k images 

 1, , kX x x  in each batch. After images X through 

encoder E, k feature vectors ( )X E are obtained. Then, 

LFM generates fusion feature vector ( , ) LFM by 

utilize and random coefficient  , and is fed into

the decoder H to obtain the generated image ˆ( )z F H . 

Finally, the input images X and the generated image z are 
channeled into the discriminator D. 

Input
Images(X)

Encoder

E H

Decoder

Generated
Image(z) D

Discriminator(D)

LFM

local 

adv

cls

Generator(G)



Fig. 1.  Basic structure of LoFGAN. 

Local fusion module (LFM): One of the feature vectors 
( )X E will be randomly selected as the base feature 

w h c
basef   , where w, h and c represent the dimension of 

features in width, height and number of channels, respectively. 
The remaining (k-1) feature vectors will be used as the 
reference features ref . Their purpose is to provide more 

relevant features for the base feature basef to fusion features. 

Then m r w h    local representations are randomly 
selected in basef  to obtain a local representation base , 
where (0,1]r  is a selection ratio to decide the number of 
fused local representations. After that, the similarity map M of 

reff in ref and base is established as follows: 
( ) ( )( , ) ( , )i ji j
base refM s f (1) 

where ( )s   is the cosine similarity function, {1, , }i m  , 
{1, , }j w h   . Using the similarity map M, the 

corresponding local feature representation ref  in reff  that

is most similar to base  can be found for each position. Then, 
a random coefficient vector 1,..., ][ k   is used to fuse 

the selected local feature representation ref with the local

representation base . The local fusion representation fuse is

obtained as: 
( ) ( ) ( )

1,..., ,

 ( )n n n
base jfuse base ref

j k j base

j    
 

    (2) 

where 
1

1
k

j j


 , 0j  and 1,...,n m . Finally, the 

local fusion representation fuse is replaced at the

corresponding positions of basef , so as to obtain a fusion 

feature vector , which is the outcome of LFM. The 
algorithm process is sketched in Fig. 2. 

Local reconstruction loss: Its concept is to duplicate the 
feature replacement process at the image level, which aim to 
constrain the generated image. Specifically, the positions 
where basef  and reff  select base  and ref  respectively

is adopted to map each position of the selected features back 
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to the original image size, and receive a roughly fused image 
( , )X LFM . Then the generated image z is optimized with:

 1( , ) local z X   LFM‖ ‖ (3) 
where 1‖‖ is the first norm. By replacing the selected patches
of the original image with the most similar patches in the 
reference images, the fusion image can be obtained to guide 
the network to generate more vivid images. 
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Fig. 2.  Main feature fusion process of LFM. 

III. THE PROPOSED METHOD

A. Construction of novel generator imbedded with multi-head
attention module

Compared with the shortcoming of the local receptive 
domain in convolution operation, the attention mechanism [31] 
can globally extract mutual information between any two 
locations in the input features. Generally, the query-key-value 
(QKV) mode is adopted to obtain the attention weight of the 
feature to effectively capture the global information, expressed 
in the following function: 

Attention( , , ) SoftMax
T

k

QKQ K V V
d

 
 
 
 

(5) 

Instead of using d dimension queries, keys and values in 
single attention function, the multi-head attention (MHA) 
mechanism carries out linear learnable mapping of queries, 
keys and values for e times respectively to get the vectors of 
the corresponding kd , kd and vd dimensions. Then, the 
attention function of each linear mapping result is calculated 
in parallel to obtain the output of kd dimension. Finally,
these values are concatenated together and linear mapping 
once again to obtain the final result: 

 1MultiHead( , , ) Concat head , ,head O
eQ K V W    (6) 

with 
head Attention( , , )Q K V

i i i iQW KW VW (7) 

where model kd dQ
iW 
 , model kd dK

iW 
 , model vd dV

iW 


and model vhd dOW 
 represent the parameter matrix of 

linear projection of queries, keys, values and global vector, 
respectively. Thus, the generator imbedded MHA module can 
focus on different subspace information from different 
locations simultaneously. Fig. 3 display the structure of the 
MHA module. 

Q K V

MatMul

SoftMax

MatMul

Concat

Linear

Linear

Fig. 3.  Structure of MHA module 

The generator of the proposed model mainly includes local 
fusion module, encoder and decoder. The encoder is 
composed of an MHA module and six convolution blocks. 
Each of these convolution blocks contains a convolution layer, 
leaky rectified linear unit (leaky-ReLU) activation function 
and batch normalization layer (BN). The encoder can quickly 
obtain the global information of the fault sample and pay more 
attention to the key local feature of the energy distribution in 
the time-frequency diagram, which facilitates LFM to find the 
local feature corresponding position between the basic image 
and the reference images more accurately. In addition, the 
multi-head mode assists the generator in mining various local 
features so that the feature vectors  contain more mutual 
information, which facilitates LFM to fuse local features in 
multiple ways and improve the diversity of the generated 
samples. The structure of the decoder is symmetric with the 
encoder, which includes an MHA module, two convolution 
blocks and four up sample convolution blocks. Therefore, the 
MHA module enables the decoder to focus more on the 
critical details of generated images to improve the quality of 
similarity. 

B. Training process of ILoFGAN
The structure of the constructed ILoFGAN is displayed in

Fig. 4, mainly composed of a generator and a discriminator. 
The discriminator uses four residual blocks as feature 
extractors, which contains two convolution layers, one average 
pooling layer, and a residual link. Finally, two full connection 
layers are used to evaluate the authenticity and classification 
of images respectively. 

The following objective function along with the local 
reconstruction loss are utilized to guide the training process of 
generator G and discriminator D: 

 
G G G G

G adv cls cls local local    (7) 
D D D

cls cD v sad l  (8) 

max(0,1 ( )) max(0,1 ( ))D
adv X z   D D (9) 

( )G
adv z D (10) 

log ( ( ) | )D
cls P c X X  (11) 

log ( ( ) | )G
cls P c X z  (12) 
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Fig. 4.  Structure of ILoFGAN 

 
where X represents the input images, ( )c X  represents the 
category of the image, ( , )z X G  represents the generated 

image, D
adv  represents adversarial loss of discriminator, 

G
adv  represents adversarial loss of generator, D

cls  

represents classification loss of discriminator, G
cls  represents 

classification loss of generator, cls
D , cls

G , local  are the 
regularization parameters of the corresponding discriminator's 
classification loss, generator's classification loss and 
generator's local reconstruction loss, respectively. Algorithm 
1 list the main training process of the ILoFGAN. 

C. Framework of the proposed fault diagnosis method 
The framework of the proposed method is shown in Fig. 5, 

which mainly consists of the following steps: 
 Step 1: Obtain the vibration signals of the planetary 

gearbox under various working conditions, and vibration 
signals of fault types are extremely few. Then transform 
them into corresponding time-frequency diagrams 
samples by continuous wavelet transform. 

 Step 2: Establish ILoFGAN model with the MHA 
module embedded into the generator to improve the 
generation quality. Then train ILoFGAN with extremely 
few time-frequency diagrams. 

 Step 3: Use the trained generator of ILoFGAN to 
produce a large number of generated samples for each 
fault type. Two evaluation indexes are adopted to assess 
the similarity and diversity of the generated samples. 

 Step 4: The generated samples and the original samples 
are mixed and input into the convolutional neural 
network (CNN) for feature extraction and fault diagnosis. 

IV.EXPERIMENTAL VERIFICATION 

A. Fault data description of planetary gearbox 
Two cases of planetary gearboxes are employed to verify 

the effectiveness of the proposed method. 
Case 1: The experiment adopts vibration signals data from 

gearbox measurements from the University of Connecticut 
[32]. As shown in Fig. 6, the experimental equipment mainly 
includes the motor, motor controller, two-stage planetary 
gearbox and brake. The speed of the input shaft is measured 

by a tachometer, and the vibration signals of the gear are 
measured by a dSPACE system, whose sampling frequency is 
set to 20 kHz. The vibration signals dataset of various faults is 
collected by introducing 9 different working conditions on the 
input shaft, including healthy, missing tooth, root crack, 
spalling, and chipping tip with five different levels of severity. 
Each type has 104 samples, and each sample is a time-domain 
vibration signals containing 3600 sampling points. 
 
Algorithm 1 Training process of the ILoFGAN 
Inputs: the iteration number K, the steps to train the 
discriminator is T, the number of images in single set is k, the 
batch size is b, a random coefficient vector 1,..., ][ k   , 

hyperparameters cls
D , cls

G , local , and the optimizer Adam. 
Initialization: Initial discriminator parameter D , generator 
parameter G . 
For K iterations do: 
1. Sample a batch of sets (1) ( ){ ,..., }bX X  from real data 

distribution ( )rp X  
For T steps do: 

 Sample a batch of examples (1) ( ){ ,..., }bz z  from 
generated data distribution ( )gp z  

 Freeze generator, only update discriminator by 
ascending its stochastic gradient: 

adv max(0,1 ( )) max(0,1 ( ))D X z   D D  

cls log ( ( ) | )D P c X X   

( )) (
D

D D D
D adv cls clsAdam     

    End for 
2. Freeze discriminator, only update generator by ascending 

its stochastic gradient: 
( )G

adv z D  

log ( ( ) | )G
cls P c X z   

1( , ) G
local z X   LFM‖ ‖  

( ( ))
G

G G G G
adv cls cls local locaG lAdam        

End for 
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Fig. 5.  Overall framework of the proposed fault diagnosis method 

 
 
Case 2: The planetary gearbox dataset of this case was 

collected from the drivetrain dynamic simulator from 
Southeast University, China [33], as shown in Fig. 7. Two 
different working conditions are investigated with the rotating 
speed system load set to be either 20 HZ-0V or 30 HZ-2V. 
The sampling frequency is set to 2 kHz. In each condition, 
there are 5 different fault types of the gearbox, including 
chipping tip, missing tooth, root crack, surface wear and 
healthy. The experiment adopts the vibration signals of the 
motor vibration in the condition of 30 HZ-2V. There are 106 
samples in each fault type, and each sample is a time-domain 
vibration signals containing 2000 sampling points. 

Because the time-frequency diagrams can clearly describe 
the fluctuation of signal frequency with time and can also 
express the energy distribution, the continuous wavelet 
transform is adopted to transform each time-domain waveform 
into the corresponding time-frequency spectrum. Then, the 
time-frequency spectrums are visualized into an RGB 
three-channel time-frequency diagram with pixels of 64*64 in 
the form of a thermal diagram. 

Finally, the original dataset of case 1 is transformed into an 
image dataset of 9 categories with 104 images in each 
category. The original dataset of case 2 is transformed into an 
image dataset of 5 categories with 106 images in each 
category. In order to verify the effectiveness of ILoFGAN in 
data augmentation under extremely few samples, only 6 
images in each fault type are adopted to train the proposed 
model, as listed in Table Ⅰ. 

 

 
Fig. 6.  Planetary gearbox fault simulation platform of case 1 

 

 
Fig. 7.  Planetary gearbox fault simulation platform of case 2 
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TABLE Ⅰ 
DETAILS OF THE TIME-FREQUENCY DIAGRAM DATASETS OF 

GEARBOX 
Diagnosis 
cases Types of working condition Data 

dimensions 
Sample numbers 
Training Testing 

Case 1 

healthy  [3,64,64] None 100 
missing tooth (missing) [3,64,64] 6 100 
root crack (crack) [3,64,64] 6 100 
spalling (spall) [3,64,64] 6 100 
chipping tip with severe 1 
(chip1a) [3,64,64] 6 100 

chipping tip with severe 2 
(chip2a) [3,64,64] 6 100 

chipping tip with severe 3 
(chip3a) [3,64,64] 6 100 

chipping tip with severe 4 
(chip4a) [3,64,64] 6 100 

chipping tip with severe 5 
(chip5a) [3,64,64] 6 100 

Case 2 

healthy [3,64,64] None 100 
chipping tip(chipped) [3,64,64] 6 100 
missing tooth(miss) [3,64,64] 6 100 
root crack(root) [3,64,64] 6 100 
surface wear(surface) [3,64,64] 6 100 

 

B. Quantitative assessment of quality in generated samples 
The main parameters of the proposed ILoFGAN are 

described as follows. The iteration number K is 100000, the 
steps to train the discriminator d is 1, the number of images in 
single set k is 3, the batch size b is 6, the selection ratio r is 0.4, 
and hyperparameters of loss functions are given as cls

D  = 1, 

cls
G  = 1, local  = 0.7. The fixed learning rate of 0.0001 is 

used for 50000 iterative training at first, and the linear decayed 
learning rate is used for 50000 iterative training. The gradient 
penalty regularization is used to enhance the stability of the 
training process. Finally, 50 generated samples are obtained 
for each type. The specific parameters of the model structure 
are listed in Table Ⅱ. 
 

TABLE Ⅱ 
MAIN PARAMETERS OF ILOFGAN 

Modules Descriptions Operations Activation 
functions 

Encoder 

Conv2D (5,3,16) BN Leaky-ReLU  
Conv2D (3,16,32) BN Leaky-ReLU 
Conv2D (3,32,64) BN Leaky-ReLU 
Conv2D (3,64,128) BN Leaky-ReLU 
MHA (channel=128, 
heads=8) BN, dropout —— 

Conv2D (3,128,128) BN Leaky-ReLU 
Conv2D (3,128,128) BN Leaky-ReLU 

Decoder 

Conv2D (3,128,128) BN, up sample  Leaky-ReLU 
Conv2D (3,128,128) BN, up sample Leaky-ReLU 
MHA (channel=128, 
heads=8) 

BN, dropout, up 
sample —— 

Conv2D (3,64,128) BN, up sample Leaky-ReLU 
Conv2D (3,32,64) BN, up sample Leaky-ReLU 
Conv2D (3,16,32) BN Leaky-ReLU 
Conv2D (5,3,16) BN Tanh 

Discriminator 

Conv2D (5,3,64) BN, up sample Leaky-ReLU 
Res block (3,64,128) BN, Avg Pool Leaky-ReLU 
Res block (3,128,256) BN, Avg Pool Leaky-ReLU 
Res block (3,256,512) BN, Avg Pool Leaky-ReLU 
Res block (3,512,1024) BN, Avg Pool Leaky-ReLU 
Conv2D (1,1,1) Avg Pool —— 
Conv2D (1,1,8) Avg Pool —— 

In addition, the performance of ILoFGAN is compared with 
some mainstream GANs, including LoFGAN, VAEGAN, 
WGAN_GP, ACGAN and DCGAN, respectively. All of these 
GANs are trained with 6 fault samples in each type and 
generate fault samples on the gearbox datasets of the 2 cases, 
as shown in Fig. 8. It can be clearly observed that the 
generated samples of ILoFGAN have the highest similarity 
with the original samples, which can generate fault samples 
with high quality. The generated samples of VAEGAN and 
WGAN_GP are similar to the real samples to some extent, 
which show transverse periodic repetition with low definition. 
ACGAN and DCGAN fail to generate samples due to their 
low model fitting ability. It is worth mentioning that compared 
with LoFGAN, ILoFGAN solves the generation defect in the 
local region of samples because the global attention weight 
imposed by the MHA module helps the LFM to accurately 
match local features between input samples, which improves 
the generation quality. 

 

CASE 1

chip1a

chip2a

chip3a

chip4a

chip5a

crack

missing

spall

ILoFGAN VAEGAN WGAN_GPReal LoFGAN ACGAN DCGAN

chipped

miss

root

surface

CASE 2

 
Fig. 8.  Time-frequency diagrams generated by ILoFGAN 

and other GANs. 
 

To fully prove the superiority of the proposed method, two 
quantitative indexes are calculated to evaluate the generation 
quality of the time-frequency diagrams given by the different 
GANs, including FID and SSIM. FID index [34] is used to 
evaluate the diversity and similarity of the generated samples, 
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and lower FID means better diversity and similarity. SSIM 
index [35, 36] can describe the similarity of two images in 
brightness, contrast and structure aspects with the range of [-1, 
1]. When two samples are entirely identical, the value of 
SSIM is 1. The evaluation results of each GAN are presented 
in Table Ⅲ. 
 

TABLE Ⅲ 
THE TWO EVALUATION INDEXES OF THE GENERATED 

TIME-FREQUENCY DIAGRAMS OF THE DIFFERENT GANS 

Different GANs FID SSIM (mean of all types) 
Case 1 Case 2 Case 1 Case 2 

ILoFGAN 78.00↓ 123.01↓ 0.37↑ 0.3098↑ 
LoFGAN 140.98 164.36 0.35 0.3086 
VAEGAN 152.79 266.14 0.19 0.11 
WGAN_GP 104.96 170.22 0.34 0.24 
DCGAN 190.42 398.55 0.23 0.26 
ACGAN 208.75 319.96 0.15 0.24 

 
From the FID index, we can observe that the FID of 

ILoFGAN are 78.00 and 123.01 respectively, which is far less 
than other GANs. For the SSIM index shown in Fig. 9, 
ILoFGAN also reports the best performance in most types in 
both cases, including chip2a, chip4a, chip5a, crack, spall, 
chipped, root and surface, and finally its mean SSIM values 
are also higher than the others in both cases. Comparing 
ILoFGAN and LoFGAN in particular, we can find that they 
almost have the same evaluation results in SSIM (mean of all 
types), but the FID of ILoFGAN is obviously better than 
LoFGAN. The result indicates that the LFM assists GANs to 
generate more vivid samples under the extremely limited 
dataset, and the multi-head attention modules increase the 
matching strategies of LFM in the process of local feature 
fusion by precisely mining more potential local features, 
which significantly improve the diversity of the generated 
samples. Therefore, it can be concluded that the proposed 
method is superior to other GANs in terms of generation 
diversity and similarity, and also in the generalibility for 
few-shot sample generation. 

 

 
(a) 

 
(b) 

Fig.9.  SSIM evaluation results of the different GANs of (a) 
case 1 (b) case 2 

In order to further discuss the influence of the 
hyper-parameter setting in the ILoFGAN on the generation 
quality, several comparative experiments are conducted. We 
study the influence of the selection ratio r on the FID index of 
the generated samples of case 1. The selection ratio r decides 
the number of fused local representations in basef . As shown 
in Fig. 10(a), the FID will rise when r is either low or high. If 
r is low, only few local representations will be selected in 
LFM, and the generator will output a large number of copies 
of the original samples, which results in a decreased 
generation diversity. On the contrary, when all local 
representations in basef  are selected to fuse with ref , it will 
aggravate the uncertainty and instability of the fusion process, 
thus weakening the similarity of the generated samples. We 
discuss the regularization parameters of the local 
reconstruction loss local  in the same way, as shown in Fig. 
10(b). The local reconstruction loss utilizes the roughly fused 
image ( , )X LFM  to constrain the similarity of the 
generated samples. In addition, it can effectively improve the 
quality of the image generation, and the generated samples 
achieve the best quality when local  is close to 0.8. When 

local  is high, the dynamic balance of adversarial training will 
be affected and weaken the influence of other losses on the 
training process, which will reduce the generation quality. 
 

 
（a）                      (b) 

Fig.10.  FID of samples generated by ILoFGAN change with 
(a) selection ratio r (b) local  

C. Fault diagnosis of planetary gearbox based on data 
augmentation 

In this part, the generated samples of ILoFGAN mentioned 
above are used to augment limited datasets, aiming to improve 
the classification accuracy of fault diagnosis. Six comparative 
experiments of each case are conducted to prove the impact of the 
generated samples on fault diagnosis accuracy. The specific 
details of the dataset used for fault classification network are 
shown in Table Ⅳ. There are 70 healthy samples and 20 real 
samples of fault type in each sub-case, and the generated samples 
of fault type increase from 0 to 50 gradually. In addition, 30 
samples are allocated in each type as the test set of the 
classification network. 

For the sake of verifying the effectiveness of the ILoFGAN, 
Resnet50 [37], Mobilenet [38] and Googlenet [39] are used for 
fault diagnosis, respectively. The diagnosis accuracies of the 
two cases are displayed in Fig. 11, where the x-coordinate 
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represents the number of generated samples. They both show 
that when there is no generated sample, the accuracy of each 
classifier is low due to the limited samples in the dataset. With 
the increase of the generated samples, the accuracy of all 
classifiers increases, especially when the dataset is augmented 
with 10 or 20 generated images. It proves that the generated 
samples of ILoFGAN can assist feature extraction of CNN 
when the limited dataset is augmented, thus improving the 
accuracy of fault classification, which has the potential to 
solve the problem of few samples to some extent. 

TABLE Ⅳ 
CASES FOR FAULT DIAGNOSIS OF AUGMENTED PLANETARY 

GEARBOX DATASET 

Experiment 
sub-cases 

Generated sample 
number of each 
fault type 

Real sample 
number of each 
fault type 

Sample number of 
healthy type 

sub-case 1 0 20 70 
sub-case 2 10 20 70 
sub-case 3 20 20 70 
sub-case 4 30 20 70 
sub-case 5 40 20 70 
sub-case 6 50 20 70 
 

  
(a)                        (b) 

Fig. 11.  Diagnosis accuracies of different classifiers based 
on data augmentation of (a) case 1 (b) case 2 

 
Finally, the generated samples and real samples of case 1 are 

mixed at a ratio of 1:1, which are input into the same CNN to 
extract high-dimensional features. T-SNE algorithm is adopted 
for dimensionality reduction and visualization, as shown in 
Fig.12. We can see that the generated samples of ILoFGAN and 
the real samples are basically clustered together in each type, and 
the distribution of a single type is concentrated. As to LoFGAN, 
only part of generated samples and real samples show a good 
clustering effect, and other generated samples of different types 
are mixed together. VAEGAN, WGAN_GP, DCGAN and 
ACGAN hardly learn the distribution characteristics of the 
original dataset under extremely limited samples. It can be 
concluded that the generated samples of the proposed method 
have a more similar distribution to the real samples at the feature 
level. 

V. CONCLUSION 
To improve the accuracy of fault diagnosis for the planetary 

gearbox under extremely limited samples, ILoFGAN is proposed 
for the data augmentation task. The local fusion module is used to 
fully utilize extremely limited samples and fuse the local feature. 
Subsequently, the generator embedded with the MHA module is 
constructed, which can effectively improve the accuracy and 

flexibility of the feature fusion process. 
Performance of the proposed method is illustrated by two cases 

of fault vibration signals of the planetary gearbox. The results 
show that ILoFGAN can generate sufficient fault samples of the 
planetary gearbox with higher quality and diversity, and 
effectively enhance the recognition accuracy of the classification 
network, which presents superior performance to most current 
GANs. The fault diagnosis research under few samples is more 
adaptive to the current industrial real scene. It has the potential to 
significantly reduce the cost of diagnosis, which is worth further 
exploration. In the future, we will further optimize the model to 
improve efficiency and combine fault diagnosis with the 
meta-learning strategy in limited samples of unknown types for 
further research. 

 

ACGAN

VAEGAN WGAN_GP

DCGAN

ILoFGAN LoFGAN

 
Fig. 12.  T-SNE visualization results of real and generated 

samples. 
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