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Abstract— The move to decarbonize heating through the 
adoption of heat pumps, will alter network load magnitudes and 
shapes at the low voltage (LV) distribution level. Due to the lack of 
monitoring at the distribution level, it is of interest to develop 
methods to infer LV network conditions in the absence of complete 
data. Limited uptake of domestic heat pumps in the UK limits 
presently available data to use for localized predictions sensitive to 
household specific time of use and magnitude variability. This work 
demonstrates a methodology for inferring potential future electrical 
heat load from existing household electrical and gas demand data, 
facilitating the prediction of future electrical heat load from limited 
data. Historical recurring load profiles from gas and electrical data 
are identified and generalized using a k-means clustering approach. 
The relation of these recurring load profiles with respect to each 
other is mapped using a through the construction of a Markov model 
with transition probabilities trained from household electrical and 
gas demand data. The use of this approach to infer future electrical 
heat load from implied premises occupancy and utilization is then 
demonstrated in a simple case study.  

Keywords—load  modelling, low carbon heat, distribution 
networks 

I. INTRODUCTION 

The decarbonization of residential heating through the 
adoption of low-carbon heating solutions, such as heat pumps 
and increased building efficiency, is a major strategic priority 
for Europe [1] [2] , North America [3] and in general for 
developed nations with cold seasonal minimum temperatures 
and a high dependency on fossil fuels for heating. In both the 
UK and US, air-source heat pumps present a least-regrets 
option for typical residential buildings currently dependent 
on fossil fuels [1] [4]. Furthermore, steep increases in 
wholesale natural gas prices throughout 2021 [5] and ongoing 
at the time of writing are driving an immediate need to rapidly 
identify and implement heating solutions not dependent on 
natural gas as a matter of international energy security. 

Against this backdrop, there are the specific technical 
challenges associated with high levels of heat pump uptake at 
the distribution level. Residential heat pumps are 
fundamentally a LV connected load and therefore 
characteristically have poor visibility and zero direct control 
by the distribution network operator [6]. Each heat pump 
connected to a distribution network is roughly equivalent to 
the addition of another household in terms of winter peak 
energy consumption and peak power [7]. The widespread 
connection of domestic heat pumps at the distribution level 
therefore stands to significantly alter existing distribution 
network load profiles, with corresponding risks to asset 
voltage and thermal ratings [8]. 

Fig. 1. Concept overview; electrical – gas interdepdency from metered 
households is exploited to construct heat demand predictions for future 
electrical heat load 

To date the task of sufficiently characterizing potential 
network impacts has been addressed in part by academic 
studies, supported by industry and government driven 
projects [9] [10] that provide the bulk of the load data drawn 
from customer trials.  

Previous research has examined transmission level 
impacts, and further work has been performed to develop LV 
network impacts based on insights derived from trial data 
[11].  An ongoing source of difficulty for forecasting future 
electrical heat load is localization of existing models or 
datasets to distribution network level scales. Protopapadaki et 
al. addressed this through the development of a parameter-
based approach that correlated high-fidelity building 
parameters with building heat demand in order to predict 
local electrical heat load, sensitive to local geospatial 
dependencies [12]. Similarly, Flower et al. examined the 
heterogeneity of residential heat demand based on metadata 
available from census records and other local datasets [13]. 

Within the UK, various industry projects have been 
undertaken to support the examination of potential electrical 
heat demand outputs versus existing distribution network 
asset ratings. Most recently, HEAT-up, led by SP 
Distribution [14] developed a methodology for identifying 
potential heat pump uptake sensitive to local influences such 
as physical property parameters and household 
demographics. Whilst providing a view of neighborhoods 
more or less likely to adopt electrical heat pump technology, 
this work did not examine the potential local variability in 
electrical heat load driven by variable physical and behavioral 
parameters such as building construction and demographics. 
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A. Aims
This work will examine the possibility of using existing

household electrical meter data paired with gas meter data to 
infer household-specific heating activity, and therefore 
inform potential future electrical heat load and corresponding 
distribution network impact. By making the assumption that 
existing household gas demand data informs household-
specific heating time of use and magnitude characteristics, 
this work seeks to explore whether these characteristics can 
be inferred through more commonly available household 
electrical meter demand data.     

II. METHODOLOGY

Fig. 2. Methodology for overall process for inferring future electricla heat 
load from historic household gas and electrical datasets 

     This work describes an approach for generating electrical 
heat load from existing household electrical meter data. Fig.1 
demonstrates the relationships between the model 
construction, data and test components.  
     Firstly, paired sets of electrical and gas data for 
aggregations of households ranging  are randomly selected 
from the training dataset. K-means clustering is applied to 
each customer  aggregation in order to identify the three best 
fitting recurring gas and electrical load shapes. Each load 
shape consists of 48 half-hourly magnitudes that correspond 
to a 24-hour period.  
     In order to link the extracted load shapes to probability of 
occurrence, the occurrence of these load shape clusters with 
respect to time is quantified, and a corresponding probability 
transition matrix defined in order to construct a simple 
Markov chain that defines the probability a customer group 

will be in a specific gas-type cluster for a given electrical-
type cluster.  
     The constructed model is then tested using electrical meter 
data as an input combined with the fitted shape and 
probability model in order to test how well existing gas 
demand can be inferred from electrical data. Further to this, 
the model is then applied to demonstrate future electrical heat 
load. 

A. Datasets
The Energy Demand Research Project (EDRP) dataset

[15] was used in order to provide the electrical and gas meter
data for this study. This project monitored 18,000 households
in the UK with smart meters in order to collect energy usage
data. This data is anonymized and has no direct geographic
metadata but the households involved capture the breadth of
UK housing stock and demographics. The trials began in
2007 and finished towards the end of 2010. ACORN
demographic information is available in order to categorize
demand behavior by demographics.
     This work used a subset of 1,117 pairs of data which 
featured concurrent gas and electrical data for single 
households. 

III. RECURRING LOAD PROFILE IDENTIFICATION

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 3. Recurring Electrical Shape Clusters and recurring Gas Shape 
Clusters identified via k-means for a single household (a), five (b), ten (c), 
fifteen (d) and twenty (e) customer aggregations 

      In order to reduce the continuous time series data into 
recurring shape profiles, a simple k-means is applied to each 
customer set of electrical and gas demand data in order to 
group daily load profiles to the nearest defined clusters. 
Typically gas and electrical profiles retain the same basic 
shape but differ in magnitude depending on the season. In 
order to replicate this with an appropriate level of fidelity, 
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three clusters were selected for each gas and electrical set for 
this particular study. Fig. 3fig demonstrates a set of obtained 
high, medium and low gas clusters ( 𝐶𝐻

𝐺 , 𝐶𝑀
𝐺 , 𝐶𝐿

𝐺)  and 
corresponding electrical clusters (𝐶𝐻

𝐸, 𝐶𝑀
𝐸 , 𝐶𝐿

𝐸)for randomized 
aggregations of 1, 5, 10, 15 and 20 customers, where each 
defined cluster C,  consists of a set of 48 half hourly shapes. 
The convergence on a smoother cluster set versus number of 
customer is observable; this indicates that selected cluster sets 
have decreasing general applicability versus reduced number 
of customers. Similarly, for the customer groups illustrated, 
there is a broad correlation between time of day activity from 
low to high activity clusters for specific customer sets. 

IV. MARKOV MODEL CONSTRUCTION 

A. Definition of Transition Probability Matrix 
     Each customer group has been simplified from continuous 
time series data to three electrical and three gas clusters 
consisting of 48 half-hourly segments. The relationship of 
these clusters with respect to time for a randomized group of 
five customers over a two-year period is shown in Fig. 4.  

 

Fig. 4. Demonstratation of Gas cluster state (top) and Electrical cluster state 
(middle) and daily average temperature (bottom) with respect to time, for a 
five-household aggregation 

 
Fig. 5. Generic three-state Markov chain element for model; for each 
known electrical state 𝑆𝑛

𝐸  there are three possible gas states 𝑆0
𝐺 , 𝑆1

𝐺  and 
𝑆2

𝐺with corresponding transition proabilities 

For this application the electrical cluster state is known, and 

therefore the probabilities of the gas cluster state given the 
known electrical state is of interest. For each electrical state 
𝑆𝑛

𝐸, there is a corresponding transition probability matrix for 
the gas transition states.   This is then represented generically 
as a 3x3 transition probability matrix as shown in (1), where 
each row sum is equal to 1, as per (2). 

 

𝑃(𝑆𝑛
𝐸) =  [

𝑃0,0
𝐺 𝑃0,0

𝐺 𝑃2,0
𝐺

𝑃0,1
𝐺 𝑃1,1

𝐺 𝑃2,1
𝐺

𝑃0,2
𝐺 𝑃1,2

𝐺 𝑃2,2
𝐺

] 
 

(1) 

∀𝑥 ∑ 𝑃𝑥,𝑖 = 1
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𝑖=0

 
 

(2) 

B. Extraction of Customer Specific Transition Probabilities 
For each state Sn, the number of occurrences in the paired 
demand data was computed and then scaled by the total 
length of the paired demand data L.  For each discrete 
electrical state 𝑆0

𝐸, 𝑆1
𝐸, and 𝑆2

𝐸, the corresponding probability 
of the gas states, 𝑆0

𝐺 , 𝑆0
𝐺  and 𝑆0

𝐺  was determined as per (3). 
The output of this process is to provide a probabilistic 
prediction of gas state based on electrical state. 

 

𝑃𝑛,𝑚
𝐺 =  

∑ 𝑆𝑛,𝑚
𝐺

𝐿
 

 
(3) 

V. MODEL TESTING 

 
Fig. 6. Workflow for extracting cluster shapes and transition matrices from 
training datasets, application of global shapes and matrices to raw test 
electrical demand data in order to construct a quantifiable prediction 

     Using the transition probability defined in (1) combined 
with the cluster shapes derived in Section III, it is now 
possible to generate a predicted gas state and demand shape 
based on electrical state. In order to incorporate sensitivity to 
local temperature, this is further modified as per (4) by using 
the temperature versus daily demand relationship provided in 
[16]. 
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𝐷𝑛,𝑚
𝐺 =  𝑃(𝑆𝑛

𝐸) ∗ 𝑚 ∗ 𝑇°𝐶 + 𝑐  (4) 

In order to test the performance of the model the workflow 
shown in Fig. 6 is applied. Randomized sets of customers 
from 1 to 30 are drawn from the training dataset, with the 
corresponding cluster shapes and transition matrices derived 
for each set. The defined clusters and transition probabilities, 
coupled with UK daily average temperature data [17], are 
then applied to the raw electrical demand data for the specific 
customer set in order to construct a prediction for gas 
demand.  
     The output of this process is to generate a half-hourly 
predicted gas demand generated using the shapes from the 
training data, which can be compared versus the half-hourly 
real demand of the randomized test dataset. Fig. 7 
demonstrates the known electrical demand, the real gas 
demand and the inferred gas demand from the developed 
model for a one-month winter period for an aggregation of 
fifteen customers. The half-hourly prediction combined with 
12-hourly rolling average is displayed for each demand type. 
Fig. 8 illustrates the mean percentage error for customer 
group sizes from 1 to 30, with corresponding standard 
deviation. 

A.  Results 

 
Fig. 7. Predicted Gas demand (top), actual Gas demand (middle) and actual 
Electrical Demand (bottom) for single group of fifteen customers over a one-
month winter period 

 
Fig. 8. Mean percentage error for seasonal peak daily demand versus 
number of customers 

VI. INFERENCE OF FUTURE ELECTRICAL HEAT LOAD FROM 
ELECTRICAL HEAT 

A simple multiplier is applied to transform the inferred gas 
demand into an equivalent electrical heat load via the 
coefficient of performance (COP). A static coefficient of 
performance is used but for specific studies a COP sensitive 
to temperature conditions and specific manufacturer heat 
pump ratings could be applied. Fig. 9 demonstrates electrical 
heat load derived from electrical meter state for a customer 
group size of 15, with penetrations ranging from 25% to 
100%. 
 

𝐷𝑚,𝑛
𝐸 =  

𝐷𝑚,𝑛
𝐺

𝐶𝑂𝑃
 

 

(4) 

 

 
Fig. 9. Daily electrical heat load inferred from electrical meter state for 15 
customer aggregation 

VII. DISCUSSION 
     In order to facilitate penetrations of LV-connected 
domestic electrical heat pumps to target levels [18], 
appropriate tools must be developed in order to better 
characterize the local LV network impacts incurred by high 
penetrations. The proposed model in this study outlines an 
approach for generating half-hourly electrical heat load 
profiles on the basis of existing household electrical and gas 
meter data. This provides a demonstration of how limited 
available datasets can be used to derive improved insights for 
future electrical heat load in a power distribution network 
context, traditionally constrained by limited data availability. 
It is envisioned that this model could be coupled with a 
networks type study paired with existing smart meter data in 
order to forecast potential electrical heat load with respect to 
local asset ratings. 
        The developed approach simplifies existing customer 
demand data into three cluster shapes, with further magnitude 
refinement sensitive to local daily average temperature.  Due 
to the exploitation of electrical household meter demand, this 
approach could be used to infer future electrical heat load for 
off-gas households which are considered a high priority in the 
UK strategy for electrical heat pump installation [1]. 
     Fig. 7 demonstrates that the simplified shapes obtained via 
k-means are able to generally follow the time of use 
characteristics of household gas demand. Coupled with 
historical temperature data, these template shapes are then 
scaled sensitive to local daily temperature at the time of 
measurement. However, this methodology is reliant on 
appropriate source electrical meter data. The training dataset 
offers only a limited representation of potential UK 
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household heating routine diversity, and therefore presents a 
limited view of household electrical to gas dependency. 
Further testing and cross-examination versus present and 
future household meter datasets [19] is desirable in order to 
more thoroughly quantify this relationship. 
     Similarly, this methodology is reliant upon the assumption 
that the majority proportion of household gas demand is due 
to heat load as opposed to cooking or other auxiliary non-
temperature dependent functions. Therefore, when 
translating this approach to examine specific distribution 
network impacts, the local context for non-heat type gas 
demand should be incorporated.  

VIII. CONCLUSION 
Decarbonisation of heating poses a threat to distribution 
networks that could stall its widespread adoption. Better 
models of uptake and consequence are required to quantify 
these risks to distribution feeders posed by residential 
premises with heat pumps. This work has demonstrated a 
concept for inferring future electrical heat load at a half-
hourly resolution, using monitored electrical demand data, 
local temperature data and relational probabilities extracted 
from historic gas demand data as inputs. This facilitates the 
prediction of future electrical heat load for distribution 
networks in the absence of evidence from large scale 
installations [18]. The developed methodology complements 
existing works as this offers a household specific magnitude 
and time of use prediction, from the associated metered 
electrical load, as opposed to the highly averaged results of 
previous works [11]. 
     This methodology represents a broad approach to 
developing household specific predictions based on inferred 
premises utilization and further work could be applied in 
order to develop more refined time of use estimations rather 
than fitting data to 24-hour shape patterns. Further 
development to more completely quantify the relationship 
between existing electrical demand and household heat 
demand could be performed, particularly developing further 
sensitivity to time of use dependencies between electrical and 
gas load. 
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