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Abstract. Spiking neural networks (SNNs) are largely inspired by biology and

neuroscience and leverage ideas and theories to create fast and efficient learning

systems. Spiking neuron models are adopted as core processing units in neuromorphic

systems because they enable event-based processing. Among many neuron models,

the integrate-and-fire (I&F) models are often adopted, with the simple Leaky I&F

(LIF) being the most used. The reason for adopting such models is their efficiency

and/or biological plausibility. Nevertheless, rigorous justification for adopting LIF

over other neuron models for use in artificial learning systems has not yet been

studied. This work considers various neuron models in the literature and then selects

computational neuron models that are single-variable, efficient, and display different

types of complexities. From this selection, we make a comparative study of three simple

I&F neuron models, namely the LIF, the Quadratic I&F (QIF) and the Exponential

I&F (EIF), to understand whether the use of more complex models increases the

performance of the system and whether the choice of a neuron model can be directed

by the task to be completed. Neuron models are tested within an SNN trained with

Spike-Timing Dependent Plasticity (STDP) on a classification task on the N-MNIST

and DVS Gestures datasets. Experimental results reveal that more complex neurons

manifest the same ability as simpler ones to achieve high levels of accuracy on a

simple dataset (N-MNIST), albeit requiring comparably more hyper-parameter tuning.

However, when the data possess richer Spatio-temporal features, the QIF and EIF

neuron models steadily achieve better results. This suggests that accurately selecting

the model based on the richness of the feature spectrum of the data could improve the

whole system’s performance. Finally, the code implementing the spiking neurons in

the SpykeTorch framework is made publicly available.

Spiking Neural Networks, STDP, Unsupervised Learning, Spiking Neurons, Temporal

Features
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1. Introduction

As technology in the Neuromorphic (NM) computing field keeps on advancing, so are

the software methodologies and algorithms that can leverage the low-power, low-latency

and event-driven properties that characterize NM [1]. Often, inspired by the success of

conventional deep learning, this results in the development of Spiking Neural Networks

(SNNs). When it comes to designing an SNN learning system for some machine learning

task, researchers are faced with many decisions to make. Among these comes the choice

of a particular neuron model. This specific aspect of the development of an SNN is

an extremely sensitive one as spiking neurons are the core processing units of an NM

system. To draw a parallel with the conventional Deep Learning (DL) research, spiking

neurons can be thought of as being activation functions (such as the ReLU, ATAN etc),

but holding an internal state. The dynamics of this state through time are governed by

the differential equations that constitute the spiking neuron model.

Different neuron models exhibit different state dynamics. From a neuroscience point

of view, these differences are immediately clear [2]. Some models are able to capture

certain intrinsic behaviours of neurons, e.g. they can burst, chatter or fast-spike, while

others cannot. Some models are also better at approximating subthreshold dynamics,

thus possibly being more accurate representations of real neurons. However, it is still

unclear how this ability translates into applicability in SNNs. There is in fact no definite

answer onto whether certain types of neural dynamics can be beneficial to particular

SNN applications, nor any common knowledge on the criteria that should drive the

choice of such neurons in relation to such dynamics.

Within some specific contexts, the choice is constrained by the available hardware.

As a matter of fact, several neuromorphic chips allow to only adopt the specific neuron

model that the chip is able to emulate. BrainScaleS [3] for instance allows to only

adopt the Adaptive Exponential Integrate-and-Fire neuron model; NeuroGrid [4] allows

only an Adaptive Quadratic Integrate-and-Fire model ; Loihi [5], SyNAPSE [6, 7] and

TrueNorth [8] allow only Leaky Integrate-and-Fire (LIF) based models; BiCoSS [9]

allows using different models, including the LIF, Izhikevich’s, and Hodgkin-Huxley’s

models, for large-scale SNNs and brain simulations. Until recently, the only chip allowing

the implementation of any type of neuron model was SpiNNaker [10]. However, the

recently released Loihi 2 adds to the list of chips with programmable neuron models [11],

hence highlighting the importance of an accurate investigation on this matter.

It is thus interesting to look at what are the most suitable neurons models for SNN

development. This can help to understand if the dynamics of the neurons relate, in

some way, to the dynamics of the spatio-temporal features of the data.

Simple LIF neurons are the de-facto standard choice when it comes to SNN design

[12–24]. When a rationale for this is provided, this choice is often attributed to the

simplicity and, consequently, to the efficiency of the LIF neuron model. Whatever the

case, such reasons hardly account for the accuracy performance of the task at hand,
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neither for the temporal feature representation capability of the model. Other works

rely on more complex neuron models [25–28], attributing the choice to the biological

plausibility or, once again, to efficiency. Neurons with different dynamics are present in

areas of the brain with different functionalities [29–31]; however, the same does not ap-

ply to spiking neuron models in ML, where often the simplest neurons are used, leaving

it unclear whether there are advantages or disadvantages relative to different types of

NM data.

This work aims to answer the following research questions:

• Does the chosen neuron model influence the performance of an SNN?

• Should the choice of the neuron model be related with the data it will have to

process?

Specifically, we are interested in understanding whether neuron models with different

and more complex neuronal dynamics display any advantages over simpler (LIF) ones in

an unsupervised learning context. Furthermore, we investigate whether such differences

might exist depending on the task set to the network; hence we perform experiments

using two different datasets. To do this, we first develop a basic experiment, which

represents a simple yet efficient way to start a comparison between neuron models. We

select neuron models so that they scale up in terms of complexity and spiking patterns,

and evaluate their performance within the same neural network architectures on the N-

MNIST dataset [32]. Then, we use the same neural network and train it on classification

tasks taken from the DVS Gestures dataset [33], which displays a richer distribution of

events. In order to perform the aforementioned experiments, we further contribute by

enriching the SpykeTorch [34] framework with a new set of spiking neurons‡.

The rest of this paper is organized as follows: in Section 2 we provide some background

information regarding the multitude of neuron models found in the literature and high-

light some relevant related works; in Section 3 we present our experimentation pipeline

in detail, focusing on the datasets, neural network design and learning paradigms; Sec-

tions 4 and 5 contain respectively the results obtained through our experiments and

initiate an in-depth discussion on such results; Section 6 concludes the paper.

2. Background and Related Works

Spiking neuron models were first born in the field of neuroscience and neurophysiology,

where mathematical models were developed to reproduce what was found by recording

the activity of real neurons [35–37]. Early spiking neural networks resulted from studies

aimed at understanding biological dynamics [38], or simulating areas of the brain and

neuronal interactions [39–41]. The shift towards their use for computational tasks was

gradual and was formalised afterwards [42, 43], with the focus generally being on the

‡ Code available at https://www.github.com/daevem/SpykeTorch-Extended
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overall computational abilities of the network. When it comes to developing SNNs for

ML applications, spiking neurons can be thought of as stateful activation functions.

This means they retain a state of their value (the membrane potential) reached through

previous inputs. They are thresholding functions, therefore allowing to only forward

information upon the reaching of a set threshold .

In conventional DL, activation functions have been extensively studied due to their

importance in the propagation of the information. Nonlinear functions such as the

sigmoid and Tanh were introduced to break the linearity of multilayer Perceptrons

[44,45]. Rectified Linear Units (ReLUs) substituted them to solve the vanishing gradient

problem and allow deeper networks. Further variants [46–49] addressed other issues like

the dying ReLU problem and helped to improve the performance of the networks [50–55].

Instead, in the context of SNNs and spiking neurons, it is hard to find works in the

literature relative to the differences in the use of different neuron models in SNNs for

NM and DL applications. To the best of our knowledge, the only work considering

the role of spiking neurons in learning from a DL point of view is the one by Traub et

al. [56]; however, they focus on the qualitative properties of Spike-Timing-Dependent

Plasticity (STDP) and the mean firing rate of the system after training. Furthermore,

they consider a non-NM dataset and a different set of neurons.

Most of the works on spiking neurons concentrate on the neurobiological aspects

they expose. One of the most influential works in this matter is the one by Izhikevich

[57], which compared several models of spiking neurons (LIF, LIF with adaptation,

LIF-or-burst, resonate-and-fire, QIF, Izhikevich’s, FitzHugh-Nagumo, Hindmarsh-Rose,

Morris-Lecar, Wilson, Hodgkin-Huxley), outlining their ability to reproduce observed

neuronal behaviours and the cost (in terms of floating-point operations) of implementing

such neurons in software applications. Similar work was conducted in [58], but focusing

on a smaller subset of neurons (LIF, Izhikevich’s, FitzHugh-Nagumo, Wilson, Hodgkin-

Huxley) and analysing their numerical stability. Although they closely study spiking

neuron models, the two studies above concentrate on their computational costs and the

intrinsic biological mechanics that each model can reproduce. However, they do not

consider the effect of using spiking neurons with different dynamics in a DL system.

A number of other works concentrate on the efficacy of neuron models in representing

observed cortical neurons firing patterns. One example is given by [59], where the

authors make an exploratory analysis of how parameters influence Izhikevich’s neurons

in showing different spiking patters. Still regarding Izhikevich’s neurons, Kumar et

al. [60] estimate parameters that allow the neuron model to optimally reproduce a given

spike train. Teeter et al. [61] use a generalized version of the LIF neuron model (GLIF)

to understand whether more complex models allow to predict spike timing behaviors

more closely; they conclude that this ability does not increase monotonically with the

complexity, nor with the ability to reproduce sub-threshold dynamics. In [62] it is

argued that integrate-and-fire (I&F) neuron models are good enough estimators of input

spike trains when coupled with an adaptation variable. This is both quantitatively and

qualitatively shown by the authors and provides a good ground to the adoption of this
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Figure 1: Venn Diagram of Some Spiking Neurons.

family of neuron models.

Finally, in [63] the authors compare different neuron models embedded in a liquid

state machine (LSM), a particular type of reservoir computing network. They evaluate

their model with two different input patterns and use Euclidean distance and entropy

to estimate the ”separation” ability of the LSM, i.e. its ability to generate different

response patterns for different stimuli. They test their LSM using six spiking neuron

models (I&F, resonate-and-fire, FitzHugh-Nagumo, Hindmarsh-Rose, Morris-Lecar, and

Izhikevich’s) and perform experiments varying the density of the connections between

the neurons. They found that the LSM failed to achieve satisfactory levels of separation

only when using Izhikevich’s neurons. Other models allowed better separation levels

depending on the density of the connections. They conclude by postulating that, for

LSM implementations, Morris-Lecar, resonate-and-fire, and Hindmarsh-Rose models are

most suitable.

2.1. Neuron Models in the Literature

Neurons in the human brain differ by several characteristics, ranging from the type of

neurotransmitters used, to the shape they have and the spiking patterns they expose. As

a common ground, however, they all share a basic structure composed of a dendritic tree
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(input channels), an axon (output mean), and a soma (core) [2]. Dendrites (and Axons)

can be further broken down into several blocks through which signals travel. In the

literature, the neurons have been modelled with different levels of abstraction and detail.

Works such as [64–68] focus on the definition and use of so-called multi-compartment

neuron models. These kind of models try to account for each compartment of a neuron

(dendrites, axon and soma) individually to more closely replicate biological evidence.

However, a large number of models considers the neurons as dimensionless entities (point

neurons), hence focussing on the modelization of the soma only. They can be roughly

subdivided in two larger groups (see Figure 1), the bio-physical or conductance-based

models and the event-based or integrate-and-fire models. In this work, we concentrate

on the study of point neurons as they are largely used in SNNs for ML applications.

2.1.1. Conductance-based Models This class of neuron models is characterized by the

fact that all the variables and parameters present in the model have a biophysical

correspondence and are therefore measurable through experiments [69]. Among them,

the Hodgkin-Huxley (HH) model is considered to be one of the most important in

computational neuroscience and defines a system of 4 non-linear differential equation

with four variables and a number of parameters. While further levels of complexity

can be attained by including further variables in the model, this is not amenable to

mathematical analysis. In fact, other simpler conductance-based models have been

derived in the literature in order to ease the analysis, while still retaining biophysical

plausibility. Some examples are the FitzHugh-Nagumo model [70, 71], the Hindmarsh-

Rose [72] and the Morris-Lecar model [73]. Nevertheless, they still remain rather

complex for what concerns analysis and computation, therefore this family of neuron

models is often used only when studying single-cell or small population dynamics [57].

2.1.2. Phenomenological Models The family of Integrate-and-Fire or phenomenological

neuron models comprises all those models that treat spikes as stereotypical events in

time [2]. Therefore, each spike is completely described by the time at which it occurred,

or was emitted. Integrate-and-fire models require at least two equations, one describing

the dynamics of the membrane potential and the other one defining the action potential

generation. Events are integrated over time and convey electrical charges that can cause

excitation or inhibition of the membrane potential of the receiving neuron. Differently

from the conductance-based models, the phenomenological ones are more indicated for

the development of neural networks [57,74,75], thanks to their overall lower complexity

and the lower number of parameters, which enable easier fitting.

The simplest model, apart from the perfect integrator, is the LIF [35]. The dynam-

ics of the membrane potential are here described by the following linear differential

equation:

τm
du

dt
= −(u(t)− urest) + R · I (1)
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where τm is the membrane time constant, u(t) is the membrane potential as a function

of time, urest is the resting potential of the membrane, R is a resistance and I is

the incoming current. Here, the term −(u(t) − urest) accounts for the leakage of the

membrane potential.

Although this model lacks the ability to describe most of the neuronal dynamics, it

is the most common choice for the development of large scale neural networks, mostly

because of its efficiency.

More complex I&F models attempt to account for some non-linear dynamics of

neurons as a function of the value of their membrane potential in a certain moment in

time. Two examples are given by the Exponential Integrate-and-Fire (EIF) model [76]

and by the Quadratic Integrate-and-Fire neuron (QIF) or Theta neuron [69, 77]. As

shown in Eq.(2), EIF model expands on the LIF model by including an exponential

dependency on the current state of the membrane potential:

τm
du

dt
= −(u(t)− urest) + ∆T exp

(
u(t)−Θrh

∆T

)
+R · I, (2)

where ∆T is a parameter determining the sharpness of the exponential curve and Θrh is

the rheobase threshold. When u > Θrh, the exponential term becomes prominent over

the linear one, leading to an upswing of the curve that takes the membrane potential to

infinity in finite time.

The QIF model, given by Eq.(3), employs a quadratic dependency from the

membrane potential:

τm
du

dt
= a0(u(t)− uc)(u(t)− urest) + R · I, (3)

where a0 is a parameter of the model that regulates the magnitude of the dependency

from the membrane potential and uc is a cut-off threshold such that, when I = 0 and

u > uc, the membrane potential grows until the emission of a spike.

Both the QIF and the EIF bring in a further level of complexity with the inclusion

of non-linear dependencies that affect both the computational costs and the ease of

analysis, but allow for a more precise generation of spikes [2]. Additionally, a hidden

cost lies in the use of two extra parameters in each of them.

2.1.3. Other Multi-Variable I&F Models With the inclusion of adaptation variables

within the neuron model, it is possible to account for a larger number of spiking patterns

and to render possible the manifestation of spike bursts, spike-adaptation responses and

irregular spiking [2]. This comes at the cost of more differential equations in the model

(one per variable) and two relevant examples are given by the Adaptive Exponential

Integrate-and-Fire (AdEx) [78] neuron model, which builds on top of the EIF, and by

Izhikevich’s neuron model [79] which builds on top of the QIF.

A number of neuron models have been theorized in the literature, all answering

to different modelling needs or considering different aspects of the observed neuronal
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(a) (b)

(c)

Figure 2: Visualization of the number of events over time. Figure 2a and 2b for

classes ”0” and ”3” are reported as representative. They depict the count of events

for each time-step among samples of one class. Figure 2c reports the collective mean

and variation of events throughout all the classes. As can be seen, events tend to appear

always within the same time ranges for all the samples of all the classes in the dataset,

thus highlighting the lack of temporal significance. Values on the y-axis are scaled by a

factor of 105.

behaviours. The ones cited above are amongst the most relevant for what concerns this

study and NM computing. In fact, as reported above, the LIF model is the most widely

used in the development of SNN for NM applications, but at the same time, models

like the AdEx and Izhikevich’s have received a lot of attention in the literature. The

EIF and the QIF are on one hand the baseline of the AdEx and Izhikevich’s models

respectively, and, on the other hand, a slightly more complex single-variable alternative

to the LIF neuron model. As such, in this study, we will focus on these single-variable

models.
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3. Methods

We are interested in assessing the performance of different neuron models within the

context of a Spiking Convolutional Neural Network (SCNN) trained with STDP. Since

many factors could determine the outcome of the training, we begin by designing a

simple experiment which involves the minor number of structural elements possible.

This is done in order to limit the number of components that might impact the overall

system performance. Therefore, we use a single-layer convolutional network in which

spiking neurons are embedded right after the convolution operation on the input. The

task set to the SCNN is a binary classification task, with the pairs of classes taken from

the Neuromorphic MNIST dataset [32] and the DVS Gestures dataset [33], which contain

event-based data samples. To develop the learning pipeline, we utilize SpykeTorch [34]

as a base framework and build on top of it to include the elements required by this

study, such as the diverse spiking neuron models.

3.1. Event-based Data

To assess the performance of our simple network, we select the two natively neuromor-

phic datasets mentioned above. We purposely discard other non-native NM datasets as

they do not possess a temporal domain, nor data is originally event-based.

Data in the N-MNIST dataset is collected by recording MNIST digits shown on a

screen using a moving DVS camera. Specifically, the camera makes the same 3 pre-

defined movements for every sample, each lasting roughly 100 ms. In this way, although

the dataset is built on top of a non-neuromorphic one, data samples in the dataset are

natively event-based, rather than being converted from a static image. Figure 2 reports

the count of events per time for two example classes and throughout all the classes of

the dataset. By contrast, data samples in the DVS Gestures dataset (see Figure 3 for

the inter-class distribution of events over time) are recorded using a fixed DVS camera

in front of which participants move their arms according to instructions. Thus, 11 dif-

ferent classes of gestures are obtained, including for example arm rotation, waving or

performing air guitar. The 11th class encodes ”Other” random movements and is not

considered in this work for simplicity.

Event data comes in the form of Address Event Representation (AER)-encoded files

in which every sample is constituted by a sequence of events. Events are characterized

by the specific time at which they occurred, by the location on the 2D plane and by

the polarity (negative or positive light change). Similarly to [80], to make data usable

by a 2D Convolutional Neural Network (CNN) we populate a 2D image using all the

events that took place between time t and t + dt, allowing at most 1 event per (x, y)

coordinates. For simplicity, we consider all events as being positive and use a batch size

of 1. As a result, the network processes only 1 event map with a time resolution dt

belonging to only 1 sample at a time. Finally, we characterize each event with a value

of 1
ts

in line with [2]. This is done in order to preserve the amount of charge that a spike
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Table 1. Table of hand-tuned parameters used for neurons. Each column represents a

different parameter, as outlined in Section 2.1. The capacitance C is used instead of the

resistance R by leveraging the equality R = τrc
C

. For every neuron, the time-step size

used was 0.02, and the voltage threshold was recalculated every 100 samples.

Neurons τm urest C ∆T Θrh a uc

LIF 0.2 0 0.1 - - - -

EIF 0.2 0 0.1 1352 216 - -

QIF 0.2 0 0.1 - - 0.01 216

carries regardless of the time-step (ts) size. No further pre-processing is applied to the

data.

3.2. Spiking Neurons Implementation

The phenomenological family of neuron models is the best option when developing

spiking neural networks, as outlined in Section 2.1. We specifically concentrate on three

integrate and fire neurons, namely the LIF, the QIF and the EIF. The parameters

used for these models in the same-parameter setting of experiments (see Section 4) are

reported in Table 1. The LIF is the most widely used neuron that embeds a time

dependency through the membrane potential leakage. The QIF and the EIF represent

valid alternatives given their ability to best fit observed cortical neurons [2, 69]. Since

they are single-variable models, they stand for a fairer comparison with the LIF, which

is single-variable too. Indeed they all depend on the value of the membrane potential,

but they all employ different types of dependencies from it. Furthermore, they are the

base on which other more complex and popular neuron models are built on, respectively

Izhikevich’s neuron and the AdEx neuron model.

The SpykeTorch framework comes with a simple version of a I&F neuron model. To

enable the use of these neuron models for our experiments, we expand on the framework

and implement the above models by adapting the equations provided in [2]. State

updates in the neurons are thus calculated on a per time-step basis, where each call to

the neuron layer corresponds to an advancement of ts time from the previously calculated

update. Each neuron layer generates a number of neurons that reflects the size of the

incoming post-synaptic currents, multiplied by the number of neuron populations that

was specified at creation time. This allows for a more seamless inclusion in any point of

an SNN. When a neuron in a population emits a spike, all the other neurons belonging

to the same population are inhibited and put in a refractory state to promote learning

in other populations. Each neuron model is implemented as a class inheriting from

a parent Neuron class, in an object-oriented programming style. This differs from

the original SpykeTorch implementation style, however, this approach was required

for neurons that maintain an internal state. Besides, compatibility with the modules
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Figure 3: Visualization of the number of events over time in the DVS Gestures dataset.

The events span across the whole time domain and are highly dense for about the first 7

seconds. At that point, they start to decrease in number, however, the tail of the curve

continues for a long time. This is due to some of the gestures lasting longer than others.

and neurons in SpykeTorch is maintained. Further features and details are present in

the actual implementation, however, these are not relevant to the current study and

the authors point the reader to [81] and to the dedicated repository page for in-depth

descriptions.

3.3. SCNN and Learning

We develop a simple feedforward convolutional network for our experiments, with a

single convolutional layer that parses the input and connects it to the spiking neurons.

Figure 4 illustrates the pipeline for a better understanding. The weights of the kernel

can be thought of as being synapse strengths and the resulting feature map is the in-

put to a set of spiking neurons arranged accordingly. In other words, the convolution

represents the connectivity scheme for the spiking neurons. The use of a convolutional

layer to connect inputs with the spiking neurons allows them to more easily learn spatial

features. The weights of the convolutional layer are the only parameters being learnt

by the network and no pooling nor normalization is applied.

We use the STDP presented and used in [82–84] as an unsupervised learning rule.

By employing this kind of learning rule and, therefore, using it to evaluate neurons, we

want to take a step closer to local feedforward learning, which is believed to be the key

to exploit the potentials of neuromorphic engineering at its best [1,85]. The mentioned
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Figure 4: Diagram of the Learning Pipeline. A 2D convolution layer parses the input

spike map and produces N feature maps width size WxH. Each value in each feature

map is fed to a distinct neuron and the one spiking earliest is chosen as a winner by

the WTA mechanism. STDP weight updates are then applied to the convolution kernel

corresponding to that neuron. For ease of visualization, neuron populations are here

represented as individual neurons, but each of them actually contains WxH neurons,

i.e. like one feature map.

STDP rule applies the following weight updates:

∆Wi,j =

{
A+ × (Wi,j − LB)× (UB −Wi,j) if Tj ≤ Ti,

A− × (Wi,j − LB)× (UB −Wi,j) if Tj > Ti,
(4)

where Wi,j is the weight of the synapse connecting neuron j (pre-synaptic) to neu-

ron i (post-synaptic), LB and UB are a lower and an upper bound value respectively,

Tj is the timing of the spike emitted by neuron j, Ti the timing of the spike emitted by

neuron i, and A+ and A− are two parameters used to scale the weight update.

It is thus a system of two parabolic equations that are applied depending on whether

Long Term Potentiation (LTP) or Long Term Depression (LTD) needs to take place.
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One of the consequences of using this learning rule is that weight updates are self-

regularized. In fact, the closer the weights get to the boundary values, the smaller

the updates will be, allowing the weights to be refined more granularly as the learning

proceeds. Another aspect that is important to highlight is in how this learning rule is

applied. While the original theorization of Hebbian rules such as STDP states that the

weight update should be proportional in value and sign on the time-difference between

the post- and the pre-synaptic spikes, in a software implementation some approxima-

tions are required. Therefore, for each time-step of the execution, we apply LTP on

weights connected to input locations where there has been a spike, and LTD in all the

others. In order to promote competitive and differentiated feature learning, we also em-

ploy a k-Winners Take All (WTA) (with k=1) learning paradigm. WTA allows only k

neurons per time-step to be eligible for STDP updates, specifically the ones firing sooner.

Finally, as an homeostatic mechanism to allow neurons to keep on firing despite the

changes in their synaptic weights, we re-calculate individual neurons’ thresholds accord-

ing to Eq.(5). This for of adaptive thresholding is often required when employing STDP,

and a common practice for SNNs [83].

Vthresh = λ ·R · A · ts
τm
·W · (Wk ·Hk) · nc, (5)

and since τm = R · C, we can equivalently re-write:

Vthresh = λ · A · ts
C
·W · (Wk ·Hk ·Nc), (6)

where A is the amplitude of the spike, in our case assigned to be A = 1
ts

, R is the

resistance, C is the capacity, τm is the membrane time constant, W is the average value

of the synaptic weights, Wk, Hk and Nc are the width, height and depth (number of

channels) of the synaptic kernel, and λ is a regulation parameter that takes values in the

range [0, 1]. In Eq.(6), the term A · ts
C
·W , can be explained as being the average effect

perceived on the membrane potential as a result of a single spike, whereas the second

term, (Wk ·Hk) ·nc, scales this effect to the size of the synaptic kernel. Therefore, Eq.(6)

calculates what would be the average post-synaptic potential perceived in the case the

input was dense with spikes. The parameter λ serves as a regulation of what percentage

of this amount would be necessary to reach before emitting a spike.

3.4. Classification

Because we employ an unsupervised learning rule, labels are not used at any point

during the learning of the weights. However, labels are needed to classify data samples,

therefore we adopt a system similar to [86, 87] and count, for each neuron, the number

of times it spiked in response to samples having a given label. At the end of the training

phase, each neuron is assigned the label for which it spiked the most during training.

During the inference phase, for each data sample, a sequence of spikes is collected and
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Table 2. Table of optimized parameters used for neurons. Each column represents a

different parameter, as outlined in Section 2.1. The capacitance C is used instead of

the resistance R by leveraging the equality R = τrc
C

. For every neuron, the time-step

size used was 0.02, and the voltage threshold was recalculated every 100 samples. HC

stands for Hand Clapping, while RHW stands for Right Hand Wave.

Neurons 0 vs 1 HC vs RHW

τm urest C ∆T Θrh a uc τm urest C ∆T Θrh a uc

LIF 0.0602 0 0.2983 - - - - 0.1435 0 0.3020 - - - -

EIF 0.2578 0 0.2178 32 91.14 - - 0.2389 0 0.2086 32 69.42 - -

QIF 0.2804 0 0.2178 - - 0.001 69.72 0.0621 0 0.1026 - - 0.0393 275.95

weighted depending on the order they arrived. These are then summed and the label

corresponding to the highest value is selected as the classification outcome.

3.5. Hyper-parameter Optimization

Defining a good set of parameters for a machine learning system is a non-trivial task.

This often requires a lot of expertise and hand tuning and is greatly error-prone. To

reduce the possibility of selecting sub-optimal parameters for neurons which would result

in poor performance, we thus make use of an optimization system to find reasonably good

parameters for our experiments. To this extent, we employ the BOHB optimization [88]

using the HpBandSter library. This technique combines Bayesian Optimization (BO)

and Hyperband (HB), a resource allocation and early stopping strategy. To use BOHB,

we adapted our implementation so that it could be optimized using the HpBandSter

library. More importantly, we defined the domains in which every parameter was

allowed to vary. For example, the time-constant τm could be drawn from the interval

[0.06, 0.26]. Moreover, because the optimization process could be task-specific, we

performed separate optimizations for each different task. We summarize the final

parameters in Table 2. As a result of this process, we can draw more robust conclusions

about the performance of the neurons.

4. Results

We train the SCNN outlined in Section 3 using a subset of the N-MNIST and the DVS

Gestures datasets. We randomly select 4 distinct couples of classes from each dataset

and define, for each, a separate binary classification task. In this way, we aim to obtain

more generalizable results and to reduce the dependency of the results on a particular

coupling. Furthermore, the order in which data is presented to the SCNN might be

influential in a system employing STDP as a learning rule. This is due to the fact that

STDP rewards and builds on the inputs that are presented earlier. Therefore, to ensure

independence from this behaviour of STDP, we repeat every experiment a total of 11

times per task.

Page 14 of 29AUTHOR SUBMITTED MANUSCRIPT - NCE-100138.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



15

Table 3. Table of results on the N-MNIST dataset. In each cell, the mean accuracy

± the standard deviation values are followed by the best accuracy found (after the

comma). Values are rounded up to the closest second decimal value.

Neuron Model 0 vs 1 2 vs 9 3 vs 7 4 vs 8

LIF
0.77±0.11,

0.93

0.74±0.06,

0.79

0.73±0.04,

0.78

0.57±0.02,

0.59

EIF
0.80±0.12,

0.94

0.64±0.07,

0.71

0.65±0.04,

0.71

0.55±0.04,

0.61

QIF
0.57±0.03,

0.61

0.54±0.03,

0.58

0.51±0.02,

0.55

0.52±0.02,

0.55

4.1. Same Hyper-Parameters Training

We first conduct our experiments using hand-tuned hyper-parameters. These were found

by a trial-and-error practice and represent a set of parameters that enabled learning

for the task at hand. This means that neurons using these parameters were able to

emit spikes and to have the weights adjusted in a way that enabled the learning of

representations of the inputs. Where possible, we adopt the same hyper-parameters

for all the neurons in all the experiments on each dataset. Since the QIF and the EIF

models introduce 2 different hyper-parameters each, each of them undergoes a further

hand-tuning. Results of the training sessions are shown in Table 3 for the N-MNIST-

based tasks and in Table 4 for the DVS Gesture-based tasks. Here, for every task and

neuron model, are reported the average and best test accuracies achieved, calculated

according to Eq.(7):

accuracy =
TP + TN

TP + TN + FT + FN
, (7)

where TP stands for true positive, TN for true negative, FT for false true and FN for

false negative. On each column (task), the best average score and the absolute best

score are highlighted in bold.

By examining the results on the N-MNIST-based tasks in Table 3, the LIF neuron

model is found to perform better than the other two on average. Indeed, the EIF has

higher average accuracy only on the 0 vs 1 task, whereas the QIF model fails to achieve

accuracy levels high enough to match any of the other two counterparts.

Considering the results reported in Table 4, the situation differs slightly. The

performance of both the LIF and the EIF neuron models, on average, decreases

drastically, whereas the QIF maintains similar levels of accuracy as in the N-MNIST

case. Nevertheless, both the EIF and QIF demonstrate superior classification abilities
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Table 4. Table of results on the DVS Gestures dataset. In each cell, the mean accuracy

± the standard deviation values are followed by the best accuracy found (after the

comma). Values are rounded up to the closest second decimal value. In the table,

HC stands for Hand Clapping, RHW for Right Hand Wave, RACW for Right Arm

Clockwise, AG for Air Guitar, RACCW for Right Arm Counter Clockwise, AR for Arm

Roll, LACW for Left Arm Clockwise and AD for Air Drums.

Neuron Model HC vs RHW RACW vs AG RHCW vs AR LACW vs AD

LIF
0.53±0.06,

0.60

0.50±0.05,

0.56

0.54±0.13,

0.66

0.52±0.09,

0.69

EIF
0.58±0.12,

0.77

0.50±0.04,
0.58

0.53±0.11,

0.66

0.46±0.05,

0.52

QIF
0.57±0.10,

0.71

0.48±0.04,

0.52

0.62±0.06,
0.67

0.53±0.09,
0.75

throughout and their top accuracy levels often surpass those of the LIF model. These

trends in the accuracy levels highlight two main aspects. Firstly, the complexity of

the N-MNIST data is lower than that of the DVS Gestures dataset. Indeed, in both

cases, the same neural network architecture and neuron models were employed, yet

the accuracy in the DVS Gestures is on average considerably lower, hence highlighting

the greater difficulty of the task. Data samples in the DVS Gestures dataset arguably

have richer visual and temporal features which render the learning more difficult when

compared to the N-MNIST. Secondly, the richer temporal diversity of the features might

be better represented by means of neurons with richer voltage dynamics, such as the

QIF and EIF. As reported by the experiments, in fact, these two are steadily better than

the LIF models and even though in some instances one performs more poorly, the other

still attains higher accuracy, possibly as a result of a better affinity to the temporal

dynamics found in that particular task.

4.2. Optimized Hyper-Parameters Training

As a second set of experiments, we employ the optimization system outlined in Section

3.5 to obtain a set of hyper-parameters that is heuristically optimal for a specific sce-

nario. The optimization is carried out on the ”0 vs 1” and on the ”HC vs RHW” tasks

for each neuron model individually. We allow a total of 24 optimization iterations for

each neuron and task, to not favor any experiment over the others. Results are reported

in Table 5. Once again, after obtaining the optimized hyper-parameters, we train and

evaluate each model a total of 11 times to increase the robustness of the results.
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Table 5. Table of results using optimized hyper-parameters. In each cell, the mean

accuracy ± the standard deviation values are followed by the best accuracy found (after

the comma). Values are rounded up to the closest second decimal value. Optimization

and evaluation is performed on one representative task per dataset only.

Neuron Model 0 vs 1 HC vs RHW

LIF
0.95±0.02,

0.982

0.53±0.05,

0.625

EIF
0.74±0.15,

0.93

0.57±0.11,
0.67

QIF
0.90±0.05,

0.985

0.55±0.05,

0.625

Since the optimization is task-specific, we only evaluate our models on the two rep-

resentative tasks they were optimized on. In the case of the ”0 vs 1” task based on the

N-MNIST, overall, the accuracy levels drastically increase. The LIF model accuracy

grows by nearly 20 percentage points on average; however, the most striking increase is

the accuracy of the QIF model, which gains 33 percentage points on average and 37.5 in

the best case. This not only highlights the sensitivity of neuron models to their hyper-

parameters, but also confirms that neurons with more complex dynamics can perform

just as well as simpler ones.

In the case of the ”HC vs RHW” task, instead, we see a slightly different trend. In the

first place, the results are surprisingly worse than those obtained through hand-picked

parameters. We hypothesize that this is because the optimization system required more

iterations to find a good set of hyper-parameters. As stated above, we allowed the same

number of optimization iterations as in the case of the N-MNIST dataset. However,

given the higher complexity of the features present in the DVS Gestures dataset, it

might have been necessary to allow more. Secondly, although still struggling to achieve

higher accuracy levels, the SNNs employing QIF and EIF averagely outperform those

with the LIF. This confirms the results obtained using the same hyper-parameters and

strengthen the hypothesis that richer dynamics can be beneficial when employed on

data with a richer set of temporal features.

Another point worth considering is the variability of the results obtained. Spanning

from the N-MNIST-based tasks to the Gestures-based ones, the different neuron models

demonstrate accuracy levels with a standard deviation of up to 15 percentage points.

We hypothesize that this effect is caused by the order in which data is presented to the

system in relation to the STDP learning rule which, as reported at the beginning of

this section, is sensitive to such order. We also observe that the EIF model has higher

fluctuations on average, which could possibly reflect a higher sensitivity to this effect.
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4.3. Sensitivity to data presentation order

In the previous paragraph, we hinted at the possibility of EIF neuron model being

particularly sensitive to the presentation order of the data as a result of being trained

through STDP. Driven by this, in this section we perform a series of controlled

experiments aimed at studying this possibility.

In order to assess whether any neuron is more sensitive to the order of the data,

we must constrain some parameters of the experiment to ensure the final results do not

depend on these. Since we use a homogeneous set of neurons (they all share the same

parameterization), the only varying elements are the convolutional weights (randomly

initialized), and the order of the data itself. Hence, consistently with our previous

methodology, we design a set of 11 experiments per task and neuron model in which

the initialization of weights was fixed using a seed for the random number generator.

Further to this, we allow each neuron model to process data presented in the same

order. In other words, we evaluate each neuron model using the same order of data

before changing to an other order for a total of 11 times per task. By doing so, we

rule out the possibility of any neuron model displaying certain sensitivity levels as a

result of fortunate/unfortunate randomization of the data. As a measure of the network

sensitivity to the presentation order of the data we utilize the standard deviation of the

accuracy across all the experiments per each neuron and task. These are reported in

Table 6 and Table 7. We report the average sensitivity with 95% confidence intervals

for each neuron model in Figure 5.

We perform a one-way analysis of variance (ANOVA) to verify whether any neuron

is significantly more sensitive than others. The test assumptions were checked. Levene’s

test was non-significant (p = 0.256), indicating that the assumption of homogeneity of

variance was not violated. Normality was checked with a Q-Q Plot. No deviations were

noted. We found no significant difference among the three neuron models in sensitivity

to the order of the data, F (2, 21) = 0.514, p = 0.605, η2p = 0.047. In the context of our

experiments, these findings indicate that using either neuron model does not increase nor

decrease the sensitivity to the presentation order of the data. Instead, such sensitivity

is probably only due to the use of STDP as a learning rule.

5. Discussion

5.1. Implications of Using Different Neuron Models

The usage of spiking neuron models has some inherent implications on the machine

learning pipeline from the implementation and the theoretical points of view.

Concerning the implementation, spiking neuron come with a whole set of hyper-

parameters to tune. Considering the LIF, the simplest version requires a single

parameter (the time constant or a leakage term), but other implementations might

include up to 5 different parameters, such as the refractory period or the time-step

size. If we switch to the QIF or the EIF, there are at least two new and non-optional
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Table 6. Table of standard deviations on the N-MNIST dataset. Each cell reports the

standard deviation calculated across all the experiments per each neuron and each task.

Values are rounded to the closest third decimal. For each task, we highlighted in bold

the highest values.

Neuron Model 0 vs 1 2 vs 9 3 vs 7 4 vs 8

LIF 0.092 0.063 0.068 0.061

EIF 0.054 0.074 0.056 0.024

QIF 0.076 0.069 0.065 0.021

Table 7. Table of standard deviations on the DVS Gestures dataset. Each cell reports

the standard deviation calculated across all the experiments per each neuron and each

task. Values are rounded to the closest third decimal. For each task, we highlighted in

bold the highest values.

Neuron Model HC vs RHW RACW vs AG RHCW vs AR LACW vs AD

LIF 0.086 0.051 0.122 0.028

EIF 0.049 0.049 0.114 0.032

QIF 0.088 0.079 0.101 0.074
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Figure 5: Plot of average standard deviations with 95% confidence intervals. The average

was computed across all tasks per each neuron.

parameters to consider (see 2.1).

Determining a good set of hyper-parameters is a non-trivial task [75]. Although in the
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(a)

(b)

Figure 6: Example of membrane potential dynamics of the spiking neuron models. In

both figures, the y-axis represents the variation of the membrane potential du, while the

x-axis represents the value of the membrane potential itself u. Figure 6a compares the

three spiking neurons, whereas Figure 6b is an example of how varying the sharpness

parameter ∆T can affect the dynamics of the EIF.

NM field a lot of inspiration is taken from the human brain, it is not possible to simply

assume that the same parameters that work in such a complex system would still be

applicable in a simplification such as an SNN. We hence need to tweak parameters for

our need or, alternatively, to define a parameter optimization strategy that does that

heuristically in an automated way. However, also the latter solution often requires to

make guesses about the domain in which parameters can vary and it requires a long

time to compute. Furthermore, hyper-parameters can be correlated in some way, thus

making both the hand-tuning and the automated optimization process more difficult.

As a result, from an implementation point of view, using neuron models that require

more hyper-parameters can significantly increase the usage complexity.
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(a)

(b)

(c)

Figure 7: Example of Changing Hyper-Parameters in a LIF Neuron. The “Fast

forgetting” neuron (smaller time constant τm) (Figure 7b) can only spike twice in

response to the input (Figure 7a). The “Slow forgetting” one (Figure 7c) can fire

three times and maintains a higher membrane potential throughout. Note that the

“Slow forgetting” neuron also fires earlier, i.e. it requires less (close) spikes to reach the

threshold. Both the neurons have a refractory period of 2 ms.

From a theoretical point of view, using different neurons or varying the parame-

ters means to open to different non-linear dynamics and excitability patterns. Figure

6 and Figure 7 provide a visual understanding of these differences. In the LIF, the

membrane potential updates depend linearly on the previous state of the membrane po-

tential itself. The EIF manifests a similar relationship up to certain values of membrane
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potential (Θrh), after which the relationship assumes a more non-linear (exponential)

aspect. The QIF loses any linear relationship in favor of a quadratic one. These dy-

namics play a role on the excitability (regions) of a neuron [2]. For instance, an EIF

with a smooth exponential term (blue line in Figure 6b) will receive more mitigated

updates throughout (slow-forgetting neuron), whereas an EIF with a sharp exponential

term (orange line) will receive more negative updates up to the cutoff threshold Θrh

and then highly positive (+∞) ones, thus immediately reaching the firing threshold Vth.

Hence, the second example would be a fast-forgetting neuron, but the cut-off threshold

will act as an early firing threshold, as any subsequent update would bring the mem-

brane potential up and above the actual firing threshold. A similar example is reported

in Figure 7, where a change in the time-constant τm makes a LIF neuron forget faster

or slower. This in turn has effects on the excitability of the neuron and its firing pattern.

The different firing abilities discussed above need to be considered within the context

where the neurons are placed. If we consider the case of a homogeneous SCNN that is

trained on a dataset in which the temporal distribution of events is similar for every

sample, it might be pointless to consider having a wide range of excitability patters as

more complex neurons have. Indeed, the increased amount of parameters would make it

more difficult to find the right excitability that works well with that data. At the same

time, they would likely come at a higher computational and power cost. Conversely, if

the dataset is considerably diverse in terms of temporal distribution of events, it would

arguably prove useful to have a broad range of excitability patterns to choose from.

Therefore, an heterogeneous network of spiking neurons would likely be able to learn

better or simply more features. In this context, employing more complex neurons with

variable parameters can be significantly beneficial.

5.2. Temporal Features and Neuron Performance

In our experiments, we used a extremely simple homogeneous SCNN to perform a simple

classification task on a simple subset of the N-MNIST and DVS Gesture datasets. The

N-MNIST dataset, although natively event-based, is not a naturally dynamic dataset.

The original data, the MNIST handwritten digits, are static images that do not contain

temporal dynamical features. As such, the temporal features that are instead present

in the N-MNIST are crafted. Furthermore, these dynamics are obtained by moving a

DVS camera using the same sequence of movements with the same timing. Figure 2c

shows that, as a result, the distribution of events throughout each sample present in the

dataset is roughly the same. This means that the temporal features are not different from

one another and are hence not discriminative of different classes of samples. Indeed,

as discussed in the previous paragraph, using a homogeneous SCNN was enough to

achieve reasonably high accuracy levels, despite the lack of diversity in the dynamics of

the embedded neurons.

Concerning the performance in such a homogeneous settings, in our consideration
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of three single-variable neuron models we found that all of them have the ability to

perform well. The difference however is in the cost of using one neuron rather than the

other. From our experiments, we found that when hand-tuning parameters, the LIF

neuron achieved averagely high accuracy levels, with EIF neuron being better at times.

Using a set of optimized hyper-parameters, we observed a considerable improvement in

the overall classification accuracy with the QIF achieving a 98.5% accuracy in the best

case, thus surpassing its counterparts. The same QIF model performed rather poorly

when using non-optimized parameters. As mentioned in Section 4.2, this highlights the

fact that, despite the data displaying simple spatio-temporal features, more complex

neurons are still able to perform well. The cost for achieving such results can, however,

become rather high.

When employing Gestures data, the situations is slightly different. In this case, as

depicted in Figure 3, there is no recurring distribution of events across different classes.

Instead, events are distributed throughout the whole time domain. Each class of ges-

tures has a distribution of events that varies with respect to the others, even more

because of the fact that different actions require a different time to be executed. Thus,

the temporal features in this dataset are more important and diverse. As a matter of

fact, this is also shown by the results obtained using the same network as in the previous

case. Here, although the performance gain is still modest, the EIF and QIF neurons

steadily attain better classification accuracies than the LIF model. Since we used the

same setting for all the experiments, this is likely traceable to the aforementioned dif-

ferences in temporal features, which are now more diverse and complex than those in

the N-MNIST dataset.

5.3. Temporal Features and Depth of the Network

The matter of temporal variety in the features being better represented by more complex

dynamics opens up further questions as to their use in SNNs. Indeed, if we consider

a hierarchical NN, the deepest layers normally learn more abstract representations,

whereas the early layers typically learn to distinguish simple patterns, such as edges

or corners [44]. This is easily conceivable when thinking about spatial features. For

example, when a set of lines is recognized in the early layers of a CNN, these could later

be understood to be a square, and further down the network as a house. Although it can

be more difficult to imagine, when we include the time dimension, similar scenarios can

arise where features relate temporally other than spatially. It thus seems straightforward

that the temporal relationships might vary in complexity in different stages of the

network depending on the task at hand.

We showed that the use of more complex neuron models improves the performance on

more complex tasks at the level of one layer. When combining several of these layers

in a hierarchical network more uses of their non-linear dynamics could arise, as they
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would combine several spatio-temporal features built up in previous stages to understand

compound featural patterns.

6. Conclusion

In this work, we have considered a simple unsupervised SCNN and analyzed the effect

on the overall performance of changing the underlying neuron models. Because they

were not previously present in the SpykeTorch framework, we implement the spiking

neurons and make the code available. We firstly draw a set of 4 binary classification

tasks using 4 couples of classes from the N-MNIST dataset on which we repeatedly

train and evaluate our SCNN. Experimental results on these tasks show that all three

neuron models can achieve top-level accuracies, albeit the more complex ones require

more fine-tuning. In a second instance, we consider the DVS Gestures dataset, which

exposes a richer set of features from both the visual and temporal points of view. In

this case, the EIF and QIF steadily outperform the LIF on all 4 tasks drawn from this

dataset. Further to this, we analyzed the sensitivity of the SCNN using each neuron

model to the order of presentation of the data. Our analysis shows that none of them

implies a statistically relevant difference in terms of sensitivity, and that such sensitivity

is probably only relatable to the use of STDP, in our experiments. Collectively, our

results show that accurately selecting the neuron model employed in an NM pipeline

improves its performance, and that this selection should be driven by considering the

complexity of the spatio-temporal features that the layer in the network will have to

understand. Furthermore, it highlights that further research aimed at unveiling the role

of the dynamics of neuron models in deep hierarchical learning would be highly beneficial

to close the gap between conventional DL approaches and SNNs. Other future studies

could consist of analysing further relationships between the neuron models and other

components of the learning pipeline, such as the neural network architecture, and the

learning rule. Furthermore, it would be interesting to investigate the result of using

different spiking neurons on the synaptic efficacies when using STDP as a learning rule.
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