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ABSTRACT

In this paper we study the benefits of using multi-static radar for manoeuvre detection in satellites. We present the
conditions in which a multi-static radar is advantageous for this purpose, and show concrete results. Moreover, multiple
manoeuvre detection methods from the literature are applied to this problem, and their accuracy is compared. These
include optimal control based methods, and statistical methods.

1. INTRODUCTION

Since their inception, ground based space situational awareness (SSA) systems, also known as Space Surveillance
and Tracking (SST), primarily have utilised radar sensors due to their ability to operate in very long ranges and under
various atmospheric conditions while also providing very accurate range measurements. Initially used for early missile
warning, modern SST radars are designed to monitor targets in Low Earth Orbit (LEO) up to deep space. Having very
high power transmissions, in order to improve their efficiency, radar can also operate in tandem with a nearby radio
telescope, forming what is known as a bistatic configuration. In this configuration, the reflected signal is received not
only by the primary emitter station, but also by distant RF telescopes.

A prime example of such bistatic system is the Tracking and Imaging Radar (TIRA) located at Fraunhofer Institute
for High Frequency Physics and Radar Techniques (FHR), Germany and the Effelsberg radio telescope which when
paired can improve the minimum detectable target size from 2cm at 1000 km down to 1cm due to the higher sensitivity
of Effelsberg. While being technically bistatic, it acts more as a quasi-monostatic radar due to the very high target
altitudes. The experienced bistatic angles, βBS, are generally small and the perceived radar cross section (RCS) of the
target will be very similar to that of a monostatic radar. Recently, the use of long baseline bistatic radar systems for SST
has been investigated within the NATO SET-293 RTG 1. The difference with existing bistatic systems is that the RF
telescopes are remotely located from the radar allowing larger bistatic angles and essentially viewing the target from
different aspect angles. Specifically, capturing the target reflection in different bistatic angles can result in a higher
RCS than the monostatic depending on its shape. In addition, the radar system could integrate multiple receiving
signals, i.e from multiple transmitters or using multiple receivers, resulting in a higher signal to noise ratio (SNR).
Moreover, combining location and velocity estimates of a target from distributed sensors can significantly improve the
parameter estimation accuracy.

While preliminary analysis on captures of GEO satellites has shown that spaceborne targets can be detected in these
bistatic configurations, covered research lacks from a more extensive investigation of the bespoke processing frame-
work and performance analysis aimed at fully unlocking the benefits of such a system.

The use of tracking data from radar systems allows the reconstruction of the motion of space objects beyond the
simple orbit determination. If one assumes that the object in view has a behaviour dictated by an unknown part of the

1https://www.sto.nato.int/Lists/test1/activitydetails.aspx?ID=16824
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dynamics, it is possible to use modern machine learning techniques to reconstruct the missing part of the dynamics
and recognise patterns or intentions. This process is called behaviour analysis.

In this work we assess the benefits and trade-offs of multiple behaviour analysis methods proposed in the literature,
which we apply to this use-case of spacecraft being observed by bistatic or multistatic radar. We then investigate to
what extent the increased data quality coming from bistatic radar observations improves the accuracy of the results of
the behaviour analysis process when compared to the monostatic case. The optimal control based analyses proposed
by Serra et al [9], and statistical methods such as [8] are among those tested, as well as some methods proposed by us.
In general, they provide a metric that measures the likelihood that a manoeuvre was performed, and/or a mathematical
description of this manoeuvre.

We consider in particular two possible scenarios: repositioning to modify its ground track, and an orbit re-positioning
to shadow another satellite. For the latter, we consider the specific case of the Kosmos 2542 and 2543 satellites, which,
flying in formation, approached the American KH-11 satellite in January 2020.

To summarize, we expect to obtain concrete information on the benefits of using a bistatic setup compared to a
monostatic one for the purposes of behavioural analysis when applied to realistic scenarios, and investigate the quality
of each method for detecting manoeuvres.

2. MANOEUVRE DETECTION

The process of manoeuvre detection consists in determining, based on observations of the state at multiple different
times, if there was a manoeuvre in between. Knowledge of the state at one instant in time along with the dynamics
allows predicting the state for all time, apart from deviations that can be due to manoeuvres but also sensor error and
imperfect knowledge of the dynamics (often modelled as process noise). For this reason, a state observation never
exactly corresponds to the expected value. To determine whether this mismatch is due to a manoeuvre or only the
other two factors is the task of manoeuvre detection. All of the methods considered here produce a metric which is
higher the more likely it is that a manoeuvre occurred. This is then used to obtain Receiver Operator Characteristic
(ROC) curves in Section 5.

This Section describes the manoeuvre detection methods used. We will be considering cases where we have two state
observations.

2.1 Optimal control based
One can safely assume that any trajectory performed by a spacecraft will be minimizing fuel consumption, as that is
a critical resource for any mission. Therefore, a sensible approach is to solve the optimal control problem linking the
observed states, and use as metric G,

G(x0,x f ) = min
u

∫ t f

t0
∥u(t)∥dt

s.t. x(t0) = x0

x(t f ) = x f ,

(1)

where u(t) is the acceleration over time, and x is the state as the Cartesian position and velocity. The following
subsections contain some examples of such methods from the literature.

2.2 Sequence of Impulses

A common simplification is to describe the manoeuvre as a sequence of impulses ∆v(i), optimizing the sum of their
magnitudes G∆v = ∑i ∆v(i). We optimize this using Matlab’s implementation of the interior point algorithm [1], having
as control parameters the Cartesian components of each ∆v(i) as well as the ∆ti between consecutive manoeuvres, with
i = 1, . . . ,5. The process of majorization-minimization [10] is also used to deal with the undefined gradient when
∆v(i) = 0.

G∆v(x0,x f ) = ∑
i
∥∆v(i)∥

s.t. x(t0) = x0

x(t f ) = x f ,

(2)
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2.3 Continuous thrust

Alternatively, a manoeuvre can be approximated as being composed of thrust arcs with constant thrust pointing in
a constant direction in the radial-trasverse-normal frame. The tool FABLE [3] efficiently produces propellant cost
estimations for these types of trajectories. The references [3, 2, 6] fully describe the transcription and the algorithm
used. A difference in our case is that we do not consider a departure from an hyperbolic orbit around the Earth, so the
parameters describing the hyperbolic excess velocity are not used. The cost function GFABLE(x0,x f ) is the propellant
mass consumption given by FABLE.

2.4 Smooth Cost Function

In the work by Serra et al. [9], instead of minimizing G, they minimize the easier to work with G2 given as

G2(x0,x f ) = min
u

∫ t f

t0
∥u(t)∥2dt

s.t. x(t0) = x0

x(t f ) = x f ,

(3)

which can be minimized using an indirect method. Even though this quantity does not correspond to the exact delta-v,
the following inequality can be used to estimate it,

G ≤
√
(t f − t0)G2 . (4)

A disadvantage is that the resulting control law will not be realistic, so while this method is useful for manoeuvre
detection and quantification, it is not as useful for manoeuvre reconstruction.

Since in [9], the authors consider a case where only angle measurements are available, they replace the constraint on
the final position in Eq. (3) by

x(t f ) ∈ Ω , (5)

where Ω is the “Admissible Region”, defined as the set of states that could produce the measurements observed.
Because in our work we do have both range and angle measurements, affected by error, we define the Ω as confidence
sets around the measurements y, where the expected observation vector for a given state x is given by the observation
function h(x). Therefore, Ω is defined using the Mahalanobis distance:

Ω(y) =
{

x : (y−h(x))T R−1 (y−h(x))< F(−1)
χ2

k
(p)

}
, (6)

where R is the covariance matrix of the observations, F(−1)
χ2

k
is the inverse of the cumulative distribution function (CDF)

of the chi-squared χ2
k distribution, k is the number of individual observations in y, and p was chosen to be 0.9, such

that there is a 90% likelihood of the observations lying inside the confidence interval thus defined. In this work, we
define both the initial state and final state as being in a set Ω, as opposed to Serra et al. [9] who only uses an admissible
region in the final state. We then obtain

G2(x0,x f ) = min
u

∫ t f

t0
∥u(t)∥2dt

s.t. x(t0) ∈ Ω(y0)

x(t f ) ∈ Ω(y f ) .

(7)

The metric G2 allows explicitly accounting for the uncertainty in the measurements, which will be shown in Section 5
to improve the manoeuvre detection accuracy.

2.5 Null hypothesis testing

Our current problem of manoeuvre detection can be viewed as one of null hypothesis testing. The null hypothesis is
that no manoeuvre took place and the deviation in the measurement is due to the uncertainty in the state estimation
only. Therefore, a suitable metric is the negative log likelihood of the observations assuming the null hypothesis,

−log
(

p(y f |H0,y0)
)
, (8)
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which, if we assume the distribution of the state to be Gaussian, grows monotonically with the Mahalanobis distance

GMD = (x f − x̂ f )
T (Σp +Σy)

−1(x f − x̂ f ) , (9)

where x̂ f is the predicted final state by propagating from the observation y0, x̂ f is the estimate of the final state from
the observation y f , and Σp and Σy are the respective covariance matrices. This procedure is described in [8], where
it’s referred to as “reachability analysis”. Reachability analysis refers to any set of metrics that are based on a distance
between the observed final states and the predicted states in the absence of a manoeuvre, and in fact includes the
optimal control methods, where the control cost is the aforementioned distance.

In Section 5 we show that this metric produces good results, and for a test case without uncertainty in the observation
of x0, this metric was by far the best, producing perfect results. The addition of uncertainty in x0 presumably leads to
a departure from the Gaussian assumption due to the effect of state propagation, which could be why the metric is no
longer as good for those test cases.

Even when this metric is producing perfect results, this does not mean that the other methods are useless. This method,
unlike other methods, does not produce a reconstruction of the manoeuvre, whereas for instance G∆v and GFABLE do.

We propose also an additional approach, based on combining the idea of minimizing within the confidence interval,
used to define the G2, with null hypothesis testing. It consists in finding:

GMD(y0,y f ) = min
x0

(y0 −h(x0))
T R−1(y0 −h(x0))+(y f −h(x f ))

T R−1(y f −h(x f ))

s.t. x f = F(x0) .
(10)

where F(x f ) is the state transition function. This method has the advantage over GMD that it does not require making
a Gaussian approximation to the distribution of x f , and doesn’t require any method for propagating uncertainty. An
advantage it has to G2 is that it does not require the arbitrary choice of confidence interval, which sometimes leads to
no solution being found.

3. MANOEUVRE DETECTION WITH BISTATIC RADAR

In monostatic radar, an electromagnetic wave or signal is emitted in a certain direction. If the signal intercepts a
target, its reflection is received in the same location where it was transmitted from. We denote the range, azimuth and
elevation as observed from the transmitter station as ρ1, α1, β1, and their respective rates as ρ̇1, α̇1, β̇1. Furthermore,
ρ1 is the position vector from the transmitter to the target.

With bistatic radar, the receiver is located far away from the transmitter, at a distance L. In this case, the bistatic range
and its rate are observed, defined as ρBS ≜ ρ1 +ρ2 −L, with ρ1 and ρ2 being the distance from the transmitter to the
target; and the distance from the target to the receiver, respectively. We also have the observation angles and their rates
as observed from the receiver station, α2, β2, α̇2 and β̇2.

One disadvantage of bistatic radar is that both stations must observe the target simultaneously. This means that the
transmitter and receiver antenna beams must overlap in order to generate a composite antenna beam in which the
target is visible by the bistatic system. This constraint reduces the number of observation opportunities. This can
be ameliorated by the addition of multiple receivers, in a multi-static configuration. Such a configuration would also
provide higher quality data when multiple receivers are in line of sight of the target simultaneously.

The accuracy of the manoeuvre detection process depends not only on the metric being used, but also on the quality of
the measurements, and in particular for this discussion, on the geometry of the radar transmitter, receiver, and target
configuration.

Suppose we have an array of observations h(x) that allow determining the state perfectly. The variance of the state
observed in this way can be approximated as

P = (HT R−1H)−1 , (11)

where R is the variance of our observations, which we consider to be a diagonal matrix with the variance of each
measurement. A criterion for a measurement being good at detecting a manoeuvre is the variance along the direction
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Fig. 1: Configuration of receiver and transmitter, showing the gradients of the range measurements and the direction
of the state deviation.

∆x being small, which occurs when ∆x is aligned with the eigenvectors with the smallest eigenvalues (variances).
These will be close to the direction of the measurement with the lowest variance, coincident if H is orthogonal as is
the case for monostatic observations. In our scenarios, the measurements with the lowest variance will be the range
and range rate for the position and velocity respectively.

The position and velocity vectors of the target in an inertial reference frame are r and v respectively. The bistatic range
is given as ρBS = ρ1 +ρ2 −L, L being the distance between the stations. The gradient of ρBS with respect to r is

∇rρBS =
ρ1
ρ1

+
ρ2
ρ2

. (12)

while the gradient ∇vρ̇ is defined similarly.

This provides an intuition for determining when will bistatic radar provide the greatest advantage to the results. We
illustrate this with a scenario, described henceforth, and with results in Section 5.1. Consider a case where the trans-
mitter is at latitude 30ºN and the receiver, in the same meridian, is initially in the same position. Suppose a target in an
equatorial orbit then performs an in-plane manoeuvre, and is observed along its orbit, such that the ∆r and ∆v caused
by this manoeuvre are in the orbital plane, i.e. the equatorial plane. As the receiver station is brought closer to the
equator, the gradient ∇ρ will have a larger projection onto the orbital plane, and thus the manoeuvre will have a larger
effect on the measured range. This is illustrated for ∇xρ = ∇vρ̇ in Fig. 1. In the latter scenario, ∇xρBS can have a
larger in-plane component than ∇xρ1 does, which implies a lower variance for an in-plane direction. So we should
expect that in these conditions, the bistatic radar measurements on their own will lead to better manoeuvre detection
capabilities than monostatic, and indeed in Section 5.1 this is shown to be the case.

On the other hand, for a bistatic system, if the baseline is small, the gradient of the bistatic range measurement ∇ρBS
will have similar direction to the gradient of the monostatic range ∇ρ1, and as such, will contribute mostly to lowering
the variance in the direction of ∇ρ1. When the baseline is higher, ∇ρBS becomes more different to ∇ρ1, leading to
lower variances along directions perpendicular to ∇ρ1. Therefore, we can expect an increase in baseline to improve
manoeuvre detection results, in the general case where ∆x does not align exactly with ∇ρ1.

As an illustration, if θ is the angle between ∇ρ1 and ρBS, and these observations have standard deviations of σ and 2σ

(because ρBS is a sum of ranges) respectively, then the eigenvalues of P will be σ2/(1−cos(θ)) and σ2/(1+cos(θ)).
Clearly, when θ = 0, when the transmitter and second receiver are in the same location, one of the eigenvectors goes
to infinity, as we have no information along that direction. From there, as cos(θ) increases, the eigenvalues, which
again represent variances along orthogonal directions, the largest eigenvalue decreases significantly.

It can be shown2 that if ρ1 ≈ ρ2 ≈ ρ , cos(θ)≈
√

1−L2/(4ρ2) , which shows how an increase in baseline L leads to
an improvement of the state estimation.

2by applying the law of cosines, followed by the half angle formula
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4. QUALITY OF A METRIC

Given that we are considering a binary classifier, an ideal tool to assess a manoeuvre detection metric, is a receiver
operator characteristic (ROC) curve [4]. To quantify the quality of a metric with a single value, we have the area under
the ROC curve (AUC). Let Gm be the random variable for the value of a metric when a manoeuvre occurs, and G0
when it does not. The AUC equals P(Gm > G0) [4].

To approximate the AUC for analytical purposes, we assume that the metric in consideration can be approximated as
a quadratic:

G(δx0,δx f )≈
1
2

[
δx0
δx f

]T

A
[

δx0
δx f

]
, (13)

where A is the hessian matrix of G, and δx0 and δx f are the deviation between the observed state and a pair of
reference states consistent with a no manoeuvre scenario. We will now write the vector of observed states as

δx =

[
δx0
δx f

]
(14)

Further, we assume that δx0 and δx f are observed with noise that follows a Gaussian distribution with covariance
matrix R and that zero mean. From these assumptions, both G0 and Gm follow generalized chi-squared distributions,
with known mean and variance [7].

To make the analysis easier, consider the following change of coordinates:

f∆ (δx) =
[

δx0
δx f −F(δx0)

]
≈ Φδx , (15)

where ∆x = δx f −F(δx0) represents the deviation in the final state that is due to the manoeuvre, and

Φ =

[
I 0

−φ I

]
, (16)

where φ is the state transition matrix [11].

The hessian matrix can now be transformed into these coordinates

Â =

[
I 0
φ I

]T

A
[

I 0
φ I

]
(17)

By taking the bottom six rows and rightmost six columns of matrix Â, we get Â∆, the component of the Hessian that
depends on ∆x, leading to the following approximation of G:

G(∆x)≈ ∆xT Â∆∆x , (18)

By making a Gaussian approximation to Gm −G0, results that the AUC grows monotonically with the mean of this
difference divided by its standard deviation:

q{G}= ∆xT Â∆√
tr(APAP)+δxT APAδx

∆x . (19)

This shows that the quality of a metric depends on the particular manoeuvre being applied and when is it observed
(through δx f ), on the observation uncertainty (through P), and on the metric itself (through A).

In simple terms, a metric is better the more it is influenced by deviations in the estimated state caused by manoeuvres
than those caused by noise. The GMD metric, by weighing deviations according to their noise, achieves the second part,
as the first would require knowing the manoeuvre a-priori. However, if we find the δx f that minimizes q{GMD}−
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q{G2}, one might find a δx f that describes a manoeuvre for which G2 has better AUC than GMD. To make the
optimization simpler, we can assume that δx f is small compared to P, so that

q{G} ≈ q̃{G}= ∆xT Â∆x√
tr(APAP)

= δxT
f Aq{G}δx f . (20)

If we wish to see for which values of δx f is q̃{GMD}− q̃{G2} negative, corresponding to when we expect G2 to
be better than GMD, we can look at the eigenvectors associated to the negative eigenvalues of Aq{GMD}−Aq{G2}.
Section 5.3 has results pertaining to this.

5. RESULTS

For these tests, we assume that the observations are affected by Gaussian noise. The standard deviations for the angle
measurements are given, similarly to [9], by assuming the values of α , β and ρ are observed with n = 3 independent
observations, separated by an interval of time of ∆t = 20s. We assume these observations are affected by independent
Gaussian noise with standard deviations σ̂α = σ̂β = 1 arcminute and σ̂ρ = 100 m. This information is turned into a

tracklet
(

α,β ,ρ, α̇, β̇ , ρ̇
)

by performing a least squares fit to the data. From this process the standard deviations on
the rates are also obtained. For the bistatic range, we have σρBS = 2σρ and σρ̇BS = 2σρ̇ . Note that with these values,
when the range is above approximately 344 km, the variance in the state estimation along the range direction will be
lower than in the orthogonal directions.

An orbit without and with a manoeuvre is simulated, and observations y0 and y f are sampled with N = 100 samples
for each case. These observations are simulated as having independent Gaussian noise with the standard deviations
mentioned before. From these noisy observations, the states x0 and x f are calculated, using maximum likelihood
estimates when this problem is over-determined.

5.1 Comparison of Monostatic with Bistatic Radar - Test Case 1
Following the discussion in Section 3, we present here the results where a spacecraft in equatorial orbit is observed as
it crosses a meridian where two ground stations lie, the transmitter at 30º North, and the receiver on the equator. In this
case, for simplicity, we assume that the initial state is known perfectly, and there is only uncertainty in the measurement
of x f . Figure 2 shows the Receiver Operator Characteristic (ROC) curves for the G2 metric, for monostatic, bistatic
only, and the combination of the two. These curves show that using bistatic radar, in this configuration, leads to a
significant improvement compared to monostatic, since the geometry of the bistatic radar in this case is such that it
allows better discrimination along the direction in which the state is varying due to the manoeuvre, as explained in
Section 3.

5.2 Manoeuvre Detection Methods Comparison - Test Case 2
We now present a more realistic test case. The orbit is a circular orbit with 5000 km altitude and 80 degrees incli-
nation. The transmitter is the Millstone Hill Steerable Antenna (MISA), located at the MIT Haystack Observatory,
Massachusetts, USA, and the receiver is the Westerbork Synthesis Radio Telescope (WSRT) located in Westerbork,
Netherlands. The measurements are separated by approximately 7 hours, taking place approximately two orbits apart.
The manoeuvre in question is an inclination change of 1 degree. This scenario is illustrated in Figure 3.

The ROC curves are shown for the monostatic observations in Fig 4 and for combined bistatic and monostatic obser-
vations in Fig 5. As expected, Gsymb is unsuitable for this test case, since this manoeuvre is not an in-plane one. Figure
4 also shows that G∆v, being closer to measuring the actual cost of a manoeuvre, leads to better accuracy than using
G2, although this advantage is less noticeable in Fig. 5. Even though G2 and GFABLE are both simulating continuous
trajectories, they are optimizing different quantities, so it’s interesting that their results are quite close. But in both
cases, the best method for higher values of the true positive rate was G2, which can be understood as a consequence
of it taking into account the uncertainty as well as applying a control distance metric. The addition of uncertainty in
x0 could explain why the GMD metric is no longer as good for these test cases, since the propagation of the state is a
nonlinear process which makes the distribution of state deviation no longer Gaussian. In the definition of G2 it is only
assumed that the observations have Gaussian error, which is still valid in this case.

Figures 6 and 7 show histograms with the predicted delta-v cost of the maneuver in question, compared to its real
value, showing that the addition of bistatic radar leads to much closer results not just in maneuver detection, but also
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Fig. 2: ROC curve for different observation conditions
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Fig. 4: ROC curves for some manoeuvre detection methods, for monostatic observation data, test case 2
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Fig. 5: ROC curves for some manoeuvre detection methods, for bistatic+monostatic observation data, test case 2
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Fig. 6: Histograms of delta-v control cost as estimated using G∆v, for the monostatic case.

Fig. 7: Histograms of delta-v control cost as estimated using G∆v, for the monostatic+bistatic case.

in its reconstruction. Numerically, the root mean squared error for the case with manoeuvre goes from 73.8m/s to 24.7
m/s by the addition of bistatic observations.

5.3 Quality of a Metric Results

We apply the theory in Section 4 to obtain, for test case 2 where typical manoeuvres produce a better result with GMD,
a manoeuvre for which G2 is the better, thus demonstrating the accuracy of that theory.

For this demonstration, we use the same conditions as in test case 2, except there is only uncertainty in the second
observation so as to align with the assumptions made in Section 4, and the value of the standard deviations for the
measurement errors were reduced by 20, so that the small δx f approximation can be valid. The eigenvalues of
Aq{GMD}−Aq{G2} are 

4.98×109

1.36×108

8.43×106

1.12×107

1.80×103

−6.16×103

 . (21)

The only negative eigenvalue is orders of magnitude smaller than the larger positive ones. This too supports the idea
that GMD is the more robust metric of the two. However, by choosing a δx f aligned with the eigenvector corresponding
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Fig. 8: ROC curves for test cases 2a and 2b.

to that negative eigenvalue, chosen such that
√

(t f − t0)G2 is 13.9m/s, it is possible to find a manoeuvre for which G2
is better, resulting in test case 2a, as shown in Fig. 8. That figure also includes the manoeuvre from test case 2, scaled
in the same way, labeled test case 2b.

5.4 Cosmos 2542 Satellite Shadowing - Test Case 3

As realistic test case, we consider the Russian satellites Cosmos 2542 and Cosmos 2543, which in January 2020
manoeuvred so as to shadow the American satellite KH-11, also known as USA 245 [5]. By consulting the website
“in-the-sky” 3, while the historical ephemerids are not available, it is possible to see graphs of the mean altitude,
eccentricity, and inclination. The values around 19th January suggest an inclination change manoeuvre from around
97.9º to 97.6º, and a decrease in the apoapsis of about 58km, costing around 33m/s and 15.7m/s of delta v if they were
performed by a high thrust engine.

Using this information, we model this spacecraft performing these two manoeuvres, and being observed before and
after the manoeuvres, by the TIRA system located at Fraunhofer Institute.

The results are in Figure 9 for monostatic observations. Clearly, the statistical based methods GMD, GMD and G2 are
far superior, showing perfect results. To better compare these methods, and get a better overview of the effect of having
additional stations, we repeat the experiments considering two receivers, the Effelsberg 100-m Radio Telescope and the
Chilbolton Observatory, see Fig. 10. The baselines of the resulting bistatic pairs are of 20km and 600km respectively.
The noise on the angular measurements is also increased from one arcminute to 0.5 degrees. Figures 11 and 12 show
the results for GMD and GMD for different combinations of receivers. The metric G2 is not included due to the very
long convergence times when the noise level is this high.

Two conclusions can be reached from these results. First is that GMD is superior. We note that the MC estimate of the
covariance matrix used to estimate GMD was obtained with 1000 sample points, which was a higher number of state
propagation functions that the optimization in GMD ever required for this case. Secondly, the longer baseline system
improves the results significantly more than the shorter one, as expected from the discussion in Section 3.

In addition, for this test case, the eigenvalues of q{GMD} were found to always be greater than q{G2}, indicating
that there is no maneouvre, in this observation conditions, for which G2 is better at detecting manoeuvres than GMD.
Furthermore, the hessian of GMD was found to be identical to that of GMD with relative difference in the order of 10−8,
suggesting that they have the same Hessian, although a theoretical proof of this is outside the scope of this work. The
fact that despite this, the metrics have very different performances, shows the limitations of this method of estimating
the quality of a metric, limitations which we speculate are related to the small ∆x approximations taken when obtaining
it.

3https://in-the-sky.org//spacecraft.php?id=44797
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Fig. 9: ROC curves for test case 3
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Fig. 10: Ground track and locations of transmitters and receivers for test case 3.
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Fig. 11: ROC curves for test case 3 with angular observation noise with standard deviation of 0.5º, for metric GMD
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Fig. 12: ROC curves for test case 3 with angular observation noise with standard deviation of 0.5º, for metric GMD
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6. CONCLUSIONS AND FUTURE WORK

Multi-static radar, by adding extra measurement data, naturally allows improvements to the accuracy of manoeuvre
detection. In this paper we showed how, for some geometries, even the data from bistatic only observations can
produce better results than the monostatic radar.

We introduced a method for analytically assessing the quality of a metric for the purposes of manoeuvre detection,
which depends on the response of the metric to deviations in the state, on the manoeuvre being performed, and on the
measurement uncertainty. This was complemented with a literature review of manoeuvre detection methods, and their
comparison based on simulated data.

In the future, we intend to investigate the use of Kalman filters, in particular those based on particle filters.
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