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Abstract. We study order reconstruction (OR) solutions in the Beris-Edwards framework for
nematodynamics, for both passive and active nematic flows in a microfluidic channel. OR solutions
exhibit polydomains and domain walls, and as such, are of physical interest. We show that OR
solutions exist for passive flows with constant velocity and pressure, but only for specific boundary
conditions. We prove the existence of unique, symmetric and non-singular nematic profiles, for
boundary conditions that do not allow for OR solutions. We compute asymptotic expansions for OR-
type solutions for passive flows with non-constant velocity and pressure, and active flows, which shed
light into the internal structure of domain walls. The asymptotics are complemented by extensive
numerical studies that demonstrate the universality of OR-type structures in static and dynamic
scenarios.
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1. Introduction. Nematic liquid crystals (NLCs) are mesophases that combine
fluidity with the directionality of solids [14]. The molecules of NLCs tend to align along
certain locally preferred directions, leading to a degree of long-range orientational
order. This partial ordering results in direction-dependent physical properties that
render them suitable for a range of industrial applications, including their widespread
use in optical displays. When confined to thin planar cells or channels and in the
presence of fluid flow, applications of nematics are further extended, for example, to
optofluidic devices and guided micro-cargo transport through microfluidic networks
[12, 31]. These hydrodynamic applications are facilitated by the intrinsic coupling
between the fluidity and the NLC orientational ordering, leading to unusual and
exceptional mechanical and rheological properties [28].

Flow-induced deformation of nematic textures in confinement are ubiquitous, both
in passive systems where the hydrodynamics are driven by external agents, and also
in active systems. Active matter systems, composed of self-driven units, also ex-
hibit orientational ordering and collective motion, resulting in a wealth of intriguing
non-equilibrium properties [27]. We focus on passive and active nematodynamics
in microfluidic channels, with a view to model and analyse spatio-temporal pattern
formation and the stability of singular lines or domain walls in such channels.

We work with long, shallow three-dimensional microfluidic channels of width L,
in a reduced Beris-Edwards framework [4]. Our domain is effectively one-dimensional,
since we assume that structural details are invariant across the length and height of
the channel, and we work with a reduced Landau-de Gennes Q-tensor for the nematic
ordering. This reduced Q-tensor incorporates information about the nematic director,
n, and the degree of nematic ordering. The director n is parameterised by an angle,
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6, which describes the in-plane alignment of the nematic molecules, and a scalar order
parameter, s, which measures the degree of orientational order about the director n.
We consider steady unidirectional flows, which, within the Beris-Edwards framework,
result in a system of non-linear, coupled differential equations for s, 8, and the fluid
velocity u. There are three dimensionless variables, two of which are related to the
nematic fluidity, and the third dimensionless parameter, L*, is inversely proportional
to L? and plays a key role in the stability of singular structures.

Our work is largely devoted to Order Reconstruction (OR) solutions (defined pre-
cisely in section 3). OR solutions are nematic profiles with distinct director polydo-
mains, separated by singular lines or singular surfaces, referred to as domain walls. OR
solutions are relevant for modelling chevron or zigzag patterns observed in pressure-
driven flows [1, 11], as well as in active nematics where aligned fibers confined in
narrow channels can be controlled to display a laminar flow [20]. OR solutions have
been studied in purely nematic systems, for example [23], [9] and [8]. Additionally, OR
solutions are not limited to purely nematic systems e.g. OR solutions exist in ferrone-
matic systems comprising magnetic nanoparticles in NLC media [13]. Generalized OR
solutions or OR-type solutions/instabilities (defined in section 4) are also observed
in smectics and cholesterics. For example, when a cell filled with a smectic-A liquid
crystal is cooled to the smectic-C phase, a similar chevron texture is observed and has
been the impetus of considerable experimental and theoretical interest [30, 25, 29].

We thus speculate that OR solutions are a universal property of partially ordered
systems, specifically systems with free energies that employ a Dirichlet energy density
and conflicting Dirichlet boundary conditions. For systems with constant velocity
and constant pressure in confined channels of any width, we prove that OR solutions
only exist for mutually orthogonal boundary conditions imposed on #. This fact is
known, but we rediscover this fact with new arguments. For all other choices of
Dirichlet boundary conditions for #, OR solutions do not exist and using geometric
and comparison principles, we prove the existence of a unique, symmetric and non-
singular (s, 8)-profile in these cases. For general flows with non-constant velocity and
pressure, in section 4, we work with large domains (L* — 0) and compute asymptotic
approximations for OR-type solutions, that exhibit a singular line or domain wall in
the channel centre, for both passive and active scenarios. Our asymptotic methods
are adapted from [7], where the authors investigate a chevron texture characterised
specifically by a +7/4 jump in 6, using an Ericksen model for uniaxial NLCs with
variable degree of orientation. These asymptotic methods, now placed within the
Beris-Edwards framework, allow us to explicitly construct solutions characterised by
an isotropic line, with a jump discontinuity in the nematic director, which we refer to
as an OR-type solution. Though the director is not constant away from the isotropic
line, as in OR solutions, the isotropic or singular line captures OR-type behavior that
survives in nematodynamics. These OR-type solutions are also constructed for active
nematodynamics, by working in the reduced Beris-Edwards framework with additional
non-equilibrium active stresses [17], illustrating the universality of OR-type situations
in equilibrium and non-equilibrium scenarios.

We validate our asymptotics and confirm the existence of OR-type solutions for
passive and active nematodynamics (with non-constant pressure and flow), with ex-
tensive numerical experiments, for large and small values of L*. In both settings,
we find OR-type solutions for all values of L*, with mutually orthogonal Dirichlet
conditions for 6 on the channel surfaces. OR-type solutions are stable for large L*,
and unstable for small L*. In fact, we observe multiple unstable OR-type solutions
for small values of L*, highlighting the ubiquity of these singular solutions. Our
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asymptotic expansions serve as excellent initial conditions for numerically computing
different branches of OR-type solutions, characterised by different jumps in 6 across
the singular lines, and the asymptotics agree well with the numerics. We conclude
that OR-type solutions are generic for certain classes of phenomenological models,
and whilst they are only observed for specific boundary conditions and they are only
stable in certain geometries, unstable OR-type solutions can be stabilised by external
controls and can certainly play a key role in switching and dynamical phenomena.

The paper is organised as follows. In section 2, we describe the Beris-Edwards
model, our geometry and the boundary conditions. In section 3, we study flows with
constant velocity and pressure, and identify conditions which allow and disallow OR
solutions, in terms of the boundary conditions. In section 4, we compute asymptotic
expansions for OR-type solutions with passive and active nematic flows for small
L* /large channel widths, providing explicit limiting profiles in these cases. We then
supplement our analysis with detailed numerical experiments, to assess the accuracy
of the asymptotics, as well as illustrate the plethora of OR-type solutions in non-
equilibrium scenarios along with their non-OR counterparts. Some brief conclusions
and future perspectives are given in section 5.

2. Theory. We consider NLCs sandwiched inside a three dimensional channel,
Q={(z,y,2) eR®: =D <2< D,-L<y<L0<z< H} where L, D, and H
are the width, length and height of the channel, respectively, and we assume that
D > L. For a shallow channel as considered in this manuscript, structural properties
are invariant across the channel height and we therefore ignore the z-component and
restrict ourselves to a two-dimensional system in the xy-plane. Furthermore, since
D > L, it is reasonable to assume that the system is invariant in x, and structural
properties vary in the y-direction only, leaving us with an effectively one-dimensional
problem, for y € [-L, L].

There are two macroscopic variables - the fluid velocity u, and a reduced Landau-
de Gennes (LdG) Q-tensor order parameter that measures the orientational ordering
of the NLC in the zy-plane (see [19, 32] for justification of reduced models). More
precisely, the reduced Q-tensor is a symmetric traceless 2 x 2 matrix i.e., Q € Sy ==
{Q € M?*? : Q;; = Qji, Qi; = 0}, which can be written as:

(2.1) Q:s(n@n—é).

Here, s is a scalar order parameter, n is the nematic director (a unit vector describing
the average direction of orientational ordering in the zy-plane), and I is the 2 x 2
identity matrix. Moreover, s can be interpreted as a measure of the degree of the
orientational order about n, so that the nodal sets of s (i.e., where s = 0) define
nematic defects in the zy-plane. As a consequence of (2.1), the two independent
components of Q are given by

(2.2) Q1 = gcos 20, Q2= gsin 20,

when n = (cos 4, sin ), and 6 denotes the angle between n and the z-axis. Conversely,
applying basic trigonometric identities, we have the following relationships,

1
(2.3) 5s=2,/Q% +Q3, and 6= 3 tan ! (gi) .

We work within the Beris-Edwards framework for nematodynamics [4]. There
are three governing equations: an incompressibility constraint for u, an evolution
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equation for u (essentially the Navier—Stokes equation with an additional stress due
to the nematic ordering o), and an evolution equation for Q which has an additional
stress induced by the fluid vorticity [28]. These equations are given below,

V-u=0, p%ltl=—Vp+V~(/~L(VU+(VU)T)+U)v
Q- QCeoH

Here p and p are the fluid dens1ty and viscosity respectively, p is the hydrodynamic
pressure, (¢ is the anti-symmetric part of the velocity gradient tensor and < is the
rotational diffusion constant. The nematic stress is defined to be

U:QH—HQ and H:KZV2Q—AQ_C|Q|2Qa

where H is the molecular field related to the LdG free energy, & is the nematic elasticity
constant, A < 0 is a temperature dependent constant, C' > 0 is a material dependent
constant, and |Q| = 1/Tr(QTQ), is the Frobenius norm. Finally, we assume that all
quantities depend on y alone and work with a unidirectional channel flow, so that
u = (u(y),0). The incompressibility constraint is automatically satisfied. To render
the equations nondimensional, we use the following scalings, as in [28],

- L2 —2A —2A - Ko
y=1Lj t= "4, *U Q11 =/ Qn, Q2 = Q127 o= — 5Dz,
K ~L
and then drop the tilde for simplicity. Our rescaled domain is Q = [—1,1] and the
evolution equations become
oQ 1
(2.4a) 8t11 = uyQi2 + Qu1,yy + ﬁ@ll(l —4(Q3, + Q12)).
oQ 1
(2.4Db) 8t12 = —uyQu1 + Qi2,yy + ;Qm(l —4(Q7, + Q12)),
ou
(2.4c) Lla = =Py + Uyy + 2L2(Q11Q12,yy — Q12Q11,4y)y>
where L, = Z :’ L* = 4f5, and Ly = 75,‘37 = *QCA;;T* are dimensionless parameters.

Here, Er is the Ericksen number and Er* = ugLvy/k is analogous to the Ericksen
number in terms of the rotational diffusion constant -y, rather than viscosity u. We
interpret L* as a measure of the domain size i.e. it is the square of the ratio of two
length scales: the nematic correlation length, £ = /—k/A for A < 0 and the domain
size L, so that the L* — 0 limit is relevant for large channels or macroscopic domains.
The parameter, Lo is the product of the ratio of material and temperature-dependent
constants and the ratio of rotational to momentum diffusion [28]. Analytically, we
focus on the static problem. However, we use gradient flow methods to numerically
solve (2.4) in order to compute solutions of the static problem. We therefore fix
L1 =1, and as such do not comment on its physical significance. The static governing
equations for (s, ), can be obtained from (2.4) using (2.2):

1
(2.5a) Syy = 489; + FS(SQ -1,
1
(2.5b) 50yy = 35Uy ~ 25,0y,

(2.5¢) Uyy = Pz — L2(529y)yy-
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The formulation in terms of (s,6) gives informative insight into the solution profiles
and avoids some of the degeneracy conditions coded in the Q-formulation.
We work with Dirichlet conditions for (s,8) as given below:

(2.6a) s(=1) =s(1) =1,
(2.6b) 0(-1) = —wm, 0(1) = wm,

where w € [—%, %} , is the winding number. This translates to the following boundary
conditions for Q:

(2.7) Q11(£1) = %COS(ZWT{'), Q12(-1) = —%sin(Zwﬂ'), Q12(1) = %sin@wﬂ').

The boundary conditions in (2.6a) imply that the nematic molecules are perfectly
ordered on the bounding plates. We consider asymmetric Dirichlet boundary condi-
tions in (2.6b) for the angle 6. A potential issue follows from (2.3): the range of 6 is
(—%, %), but our boundary conditions extend to £%. However, we circumvent this
issue by using the function atan2(y,x) € (—m, 7], which returns the angle between
the line connecting the point (z,y) to the origin and the positive z axis.

0 =wr s=1 y=1
Yy

L»CL‘

0=—wr s=1 y=—1

Fic. 1. Boundary conditions for s and 0.

For the flow field, we consider the typical no-slip boundary conditions, namely
(2.8) u(=1) = u(1) =0,

and assume that the pressure p is uniform in the y-direction, hence it depends on x
only.

3. Passive flows with constant velocity and pressure. In this section, we
study nematic flows with constant velocity and pressure without additional activity.
This framework, though somewhat artificial, allows for OR solutions, although OR-
type solutions exist in more generic situations with non-constant flows (as we show in
subsequent sections). We work with both the Q- and (s, #)-frameworks in this section.

We interpret OR solutions as solutions of (2.4) with polydomain structures: a
polydomain is a sub-domain with constant nematic director profiles, separated by
domain walls to account for jumps in the nematic director across polydomain bound-
aries. In the (s,0)-formulation and our one-dimensional framework, OR solutions
correspond to a partition of the domain Q = [~1, 1] into sub-domains, Q = 377, Q;,
where each €; is a polydomain. The polydomains correspond to intervals with con-
stant 6 (recall that @ is the orientation of n), and the domain wall is described by
a point with s = 0, to regularise the jump in 6 between polydomains. In three-
dimensions (3D), the polydomains correspond to 3D cuboidal regions and the domain
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6 J. DALBY, Y. HAN, A. MAJUMDAR, L. MRAD

walls are singular surfaces in 6. OR-type solutions are simply interpreted as solutions
of (2.4) that have a non-empty nodal set for s or exhibit domain walls, without the
constraint of constant 6 or the existence of polydomains. In the Q-framework, OR
solutions have a distinct but less obvious signatures. The domain walls correspond to
the nodal set of the Q-tensor order parameter, but polydomains are only compatible
with specific boundary conditions, as we show in the following results.

OR solutions are characterised by sub-intervals with constant 6, separated by
nodal points with s = 0. From (2.5b), constant € implies constant fluid velocity u
and from (2.5¢), constant pressure, p. Therefore, in order to study OR solutions,
we assume constant velocity and pressure to start with. As such, we let / denote
differentiation with respect to y in this section.

In this scenario the static version of (2.4a)-(2.4b) is

(3.1a) = S QuA@Qh +4Q%) 1),
(3.1b) 1= é@m(‘l(Q% +4Q7%,) — 1).

From these equations it follows that (2.4c) is satisfied. The equations (3.1a)-(3.1b)
are the Euler-Lagrange equations associated with the energy

(3.2)

FuolQu.Qul = [ (@) + @) + 7

F( 11+ Q%) (2(QF + Q1) — 1) dy.
The admissible Q-tensors belong to the Sobolev space, W2 ([—1,1]; S3), where S is
the space of symmetric and traceless 2 x 2 matrices, subject to appropriately defined
boundary conditions (see (2.7)). The stable and physically observable configurations
correspond to local or global minimizers of (3.2), in the prescribed admissible space.

In the static case, with constant u and p, the corresponding equations for (s, 0)
can be deduced from (2.5a), (2.5b) :

(3.3a) s" = 4s(0")? + %3(52 —1),
(3.3b) (s%0) =0, = s°0' = B,

whilst (2.5¢) is automatically satisfied. In the above, B is a fixed constant of integra-
tion; in fact

(3.4) B=0(-1)=0().

When w > 0 and recalling the boundary conditions for 6, there exists a point yg
such that 6'(yo) > 0, hence B > 0, and 6’ > 0 for all y € [—1,1]. Thus, we have

(3.5) —wr <0 <wm Yy e€[-1,1] and Yw € {0, ;] .

Similar comments apply when w < 0, for which B < 0, and 6 < 0 for all y €
[-1,1]. If B =0, we either have s = 0 or f#=constant almost everywhere, compatible
with the definition of an OR solution (unless w = 0, and (s,0) = (1,0), which is
not an OR solution). Conversely, an OR solution, by definition, has B = 0 since
polydomain structures correspond to piecewise constant @-profiles. In other words,
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if w # 0, OR solutions exist if and only if B = 0. If B # 0, then OR solutions are
necessarily disallowed because a non-zero value of B implies that s # 0 on 2. The
following results show that the choice of B is in turn dictated by w, or the Dirichlet
boundary conditions, and this sheds beautiful insight into the how the boundary
datum manifests in the multiplicity and regularity of solutions. In what follows, we
let € := %, so that € o« L? where L is the physical channel width.

Note that (3.3a) and (3.3b) are the Euler-Lagrange equations of the following
energy,

(3.6) Frels, 0] = /Q <(822 +32(9’)2) + % (822 - 1) dy,

but we only consider (s,8) € W2 (Q;R) and focus on smooth, classical solutions
of (3.3a) and (3.3b), subject to the boundary conditions in (2.6a)-(2.6b), and not
OR solutions. We first prove that OR solutions only exist for the special values,
w = :I:i, in the Q-framework. If w = :I:%, then B can be either zero or non-zero for
different solution branches, especially for small values of € that admit multiple solution
branches. Once the correspondence between w, B and OR solutions is established,
we proceed to prove several qualitative properties of the corresponding (s, 8)-profiles
which are of independent interest, followed by some asymptotic analysis and numerical
experiments (see supplementary material).

THEOREM 3.1. For all € > 0, there exists a minimiser of the energy (3.2), in the
admissible space

(37 A= {Q e W2 ([-1,1];82) ; Qu (1) = COS(QM,
Q12(_1) = _%,Qu(l) = Sinswﬂ—} .

Moreover, the system (3.1) admits an analytic solution for all ¢ > 0, in A. OR
solutions only exist for w = 1 in (2.7).

Proof. The existence of an energy minimizer for (3.2) in A, is immediate from the
direct methods in the calculus of variations, for all ¢ and w, and the minimizer is a
classical solution of the associated Euler-Lagrange equations (3.1), for all ¢ and w. In
fact, using standard arguments in elliptic regularity, one can show that all solutions
of the system (3.1) are analytic [5].

The key observation is

(Q12Qu1 — Q11Q12)" = Q12Qu + Q12Q1 — Q1Q41 — Q12Qf; =0,
and hence, Q],Q11 — @}, Q12 is a constant. In fact, using (2.3), we see that
(s°0") = 2(Q1,Qu — Q11Q12) =0 = 5°0' = 2(Q1,Qu1 — Q1,Q12) = B,
where B is as in (2.5b). Now let B = 0 (so that OR solutions are possible), then

(3.8) Q15Q11 = Q1,Q12 for all y € [—1,1].

There are two obvious solutions of (3.8) i.e. Q11 =0 (i.e., w = £1), or Q12 =0 (i.e.,
w =0, :I:%), everywhere on ).
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8 J. DALBY, Y. HAN, A. MAJUMDAR, L. MRAD

For the case @12 =0 and w = j:%, the Q Euler-Lagrange equations reduce to

Q1 = 6@11(4Q%1 - 1),
(3.9) { Quu(—1)=—3, Qu(1) = —3.

This is essentially the ODE considered in equation (20) of [23]. Applying the argu-
ments in Lemma 5.4 of [23], the solution Q11 of (3.9) must satisfy Q};(—1) =0, or
Q' is always positive. However, the latter is not possible since we have symmet-
ric boundary conditions. Hence, when w = i%, the unique solution to (3.9) is the
constant solution (Q11,@Q12) = (—3,0). This corresponds to s = 1 everywhere in 2,
inconsistent with an OR solution. The same arguments apply to the case Q12 = 0 and
w = 0. In this case the boundary conditions are Q11(£1) = %, and the corresponding
(s,0) solution is simply, (s,60) = (1,0). Again, this is not an OR solution.
When Q11 =0 (w = +1), the Q system becomes

Qlll2 = 5@12(462%2 - l)a
Qu2(—1) = -3, Qu2(1) = 3.

Applying the arguments in Lemma 5.4 of [23], we see (3.10) has a unique solution
which is odd and increasing, with a single zero at y = 0 - the centre of the channel.
This is an OR solution, since 11 = 0 implies that 6 is necessarily constant on either
side of y =0 .

It remains to show that there are no solutions (Q11,@Q12) of (3.1), which satisfy
(3.8), other than the possibilities considered above. To this end, we assume that
we have non-trivial solutions, Q11 and @12 such that (3.8) holds. We recall that all
solution pairs, (Q11,Q12) of (3.1) are analytic and hence, can only have zeroes at
isolated interior points of = [—1,1]. This means that there exists a finite number
of intervals (—1,y1),..., (yn, 1), such that Q11 # 0 and Q12 # 0 in the interior of
these intervals, whilst either Q11(y;), Q12(yi), or both, equal zero at each intervals
end-points. We then have that

(3.10)

/ /
12 _ %11 |Q11] = ¢|Q12] for y € (yi—1,v:)
Q2 Qn
for constants ¢; > 0 and i = 1,...,n. Therefore, there exists an interval, (yi-1,:),

for which @1; and Q12 have the same, or opposite signs. Assume without loss of
generality (W.L.O.G.) @11 and Q12 have the same sign, then the analytic function

f(y) == Qui(y) — ciQi2(y) =0, for y € (yi—1,9:).
Therefore, f(y) =0 for all y € [—1,1]. Evaluating at y = 41, we have

cos(2wm) = —sin(2wm)c; and cos(2wm) = sin(2wm)c;,

and this is only possible if cos(2wr) = 0 and sin(2wr)c; = 0, which implies w = +7
and ¢; = 0. Hence, there are only three possibilities for w = 0,+,+% that are
consistent with (3.8), of which OR solutions are only compatible with w = j:i. d

In what follows, we consider the solution profiles, (s, 6) of (3.3a) and (3.3b), from
which we can construct a solution of the system (3.1), using the definitions (2.2). The
first proposition below is adapted from results in [26], although some additional work
is needed to deal with the positivity of s. The proof is given in the supplementary
material.
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THEOREM 3.2. (Mazimum Principle) Let s and 0 be solutions of (3.3a) and
(3.3b), where s is at least C, then

(3.11) 0<s<1 Vyel-1,1].

Proof. See supplementary material. ]

For the next batch of results, we omit the case B = 0 and focus on the (s,6)-
profiles of non OR-solutions, which are necessarily smooth. We exploit this fact
to prove that there exists a unique solution pair, (s,80) of (3.3), such that s has a
symmetric even profile about y = 0, for every B # 0.

THEOREM 3.3. Any non-constant and non-OR solution, s, of the Euler-Lagrange
equations (3.3), has a single critical point which is necessarily a non-trivial global
minimum at some y* € (—1,1).

Proof. For clarity, we denote a specific solution of (3.3a) and (3.3b), by (Sso1, Oso1)
in this proof. Recall that for non-OR solutions, we necessarily have B = 6'(+1) # 0
and s # 0 anywhere. Using the definition of B in (3.3), we have

4B?
(3.12) s = T e(s® —s).

The right hand side of (3.12) is well defined and continuous for s € (0, 1], and as such,
a solution, s, will be C2. In fact, the right hand side of (3.12) is smooth, hence any
solution, s, will be smooth.

The boundary conditions, s(+1) = 1, imply that a non-trivial solution has

' 1) =0 for some y* € [—1,1], where s is defined as,

sol

(3.13) s = j:\/(—43232 +e (824 - 52) + A).

Here, A is a constant of integration and A = 4B? + £ 4 s'(£1)?, hence, we must have

S

(3.14) A>4B%+ %

Since s’ is defined in terms of s and not ¥, solutions of s’ = 0 give us the extrema
of a solution s, (i.e., maxima or minima), rather than the location of the critical
points on the y-axis. The condition s’ = 0 is equivalent to

4
(3.15) A=4B%"2 ¢ <82 - s2> .

. 2 . . .
Clearly if € = 0, we can only have one extremum, namely s = 1/%, which in view

of the boundary conditions and maximum principle, must be a minimum. For € > 0,
solving (3.15) is equivalent to computing the roots of f(s) = 0 where

24 8B?
(3.16) f(s) =80 —2s* + Tos? — —.
€

Firstly, note that f has a root for s € (0,1], since f(0) = _8632 < 0and f(1) =
—1+ 24 _ 8B% > }y (3.14). Differentiating (3.16), we obtain

af

4A
=65 — 8s% + —
dS(s) s 0+ =5
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10 J. DALBY, Y. HAN, A. MAJUMDAR, L. MRAD

and the critical points of f are given by

(3.17)

provided that A < 2¢. There are now three cases to consider.

Case 1: If A > Z¢, f(s) has one critical point at s = 0, which is a negative global
minimum. Hence, f has one root in the range, s € (0, 1].

Case 2: Let A = %e, so that the two critical points s+ coincide. The point s = 0
is still a minimum of f(s) and the coefficient of s° is positive (so f — oo as s — 00),
so we deduce that sy is a stationary point of inflection (this can be checked via direct
computation). So again, f has one root for s € (0, 1].

Case 3: Finally, let A < %e, so that s4 are distinct critical points of f. The point,
s = 0, is still a minimum of f(s) and the coefficient of s% is positive, so that there
are two possibilities: (a) s+ are distinct saddle points, and since f is increasing for
s > 0, we see f has a single root for s € (0,1], or (b) s_ is a local maximum and s
is a local minimum of f(s). In the latter case, s = 0 is still a global minimum for
f(s), because f(s4) > f(0). Using this information, we can produce a sketch of f(s)
(shown in Figure 2), and there are 5 cases to consider for the number of roots of f.

In cases (i) and (v) of Figure 2, f has only one root for s € (0, 1]. Next, in order
for the derivative s/, to be real, the term under the square root in (3.13), has to be
non-negative. This requires that f(s) > 0 for all s € [¢, 1], for some ¢ > 0. Applying
this argument to cases (ii) and (iii) in Figure 2 by omitting regions with f(s) < 0, we
deduce that f has a single non-trivial root for s € (0, 1].

For case (iv), we have two distinct roots in an interval such that f(s) > 0, one of
which is sy, and the other root is labelled as s;. Recalling that s is also a solution
of f'(s) = 0, we deduce that s, is a repeated root of f. Then, f can be factorised as:

F(s) = (s = 54)%(s +54)%(s = 1) (s + 51)
(3.18) =50 — (287 + s7)s? + (s + 257 )s? — sist.

Comparing the coefficient of s* and s in (3.16), with (3.18), we have s = 2(1 — s2)
882

and s? = et which implies

(3.19) 4B + st (s —1) =0.

Comparing (3.12) with (3.19), we deduce that, s”(s;) = 0. By the uniqueness theory
for Cauchy problems, this implies that ss,; = 54, which is inadmissible and this case
is excluded.

In cases 1, 2 and 3 we have demonstrated that s, has a unique positive critical
value, which must be the minimum value, and in case 3, we have a lower bound for the
minimum value i.e. S, > S+. The unique minimum value is attained at a unique
interior point (if there were two interior minima at say y* and y**, a non-constant
solution would exhibit a local maximum between the two minima, which is excluded
by a unique critical value for sg,;). This completes the proof. ]

THEOREM 3.4. For a given B = 0'(£1) # 0, the system (3.3), subject to the
boundary conditions (2.6), has a unique solution for a fized € and w. Hence, for any
value of w that does not permit OR solutions, the system (3.3) always has a unique
solution.
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Case 1 Case 2

F1G. 2. The horizontal lines represent f(s) = 0.

Proof. Recall, for w # 0, OR solutions exist if and only if B = 0. When w = 0,
(3.3b) implies we must have B = 0, the proof of Theorem 3.2 (see supplementary
material) then shows the unique solution in W12 is (s,8) = (1,0). Hence, for w = 0,
we can only have non-uniqueness if an OR solution exists.

For B # 0, the system (3.3) can be written as

4B?

(3.20a) s = - T es(s® — 1),
. S = .
(3.20b) 0 =B

Throughout this proof we take B > 0, so that s # 0 and hence, the right hand side
of (3.20a) is analytic. The case B < 0 can be tackled in the same manner.

In the first step, we show that (3.20) has a unique solution for fixed B, e and
w. Assume for contradiction that (s1,61) and (s2,63) are distinct solutions pairs of
(3.20), which satisfy (2.6). As such, they must have distinct derivatives at y = —1
(otherwise they would satisfy the same Cauchy problem). Suppose W.L.O.G.

(3.21) sh(—1) < s4(—1) < 0.

Since s1(1) = s2(1) = 1, there exists yo = min{y > —1 : s1(yo) = s2(v0) = S0}
Therefore, s1 < s for all y € (—1,y0). Further, since s; and so have one non-trivial
global minimum (Theorem 3.3), there are four possibilities for the location of yo: (i)
Case I: yo = 1; (ii) Case II: yg < min {a, 8} where s; attains its unique minimum at
y = « and sy attains its unique minimum at y = §; (iii) Case III: a < yo < S, or
B <yo < a; and (iv) Case IV: yo > max{«, 8}. In case I, s1 < so implies 6] > 6}
for all y € (—1,1), since both solution pairs satisfy (3.20b). Hence, 61 (y) — 02(y)
is increasing, and cannot vanish at y = 1, contradicting the boundary condition at
y=1.
For Case II, we have

$5(y0) < 51(yo) <0

so that
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Using (3.13), this is equivalent to

9 € 4B2 T
— 4B —2+A2—(—3(2)+680<2— +A2 <

€ 4B? s2
—4B? — — 4+ A - [ tesE (2 1)+ A,
5 + A1 < 5% + €55 ( B + A1
where A; and As are constants of integration associated with s; and sy respectively,
and may not be equal. However, the left and right hand sides are in fact equal,
yielding the desired contradiction.

For Cases III and IV, there must exist another point of intersection, y = y; €
(max {a, 8}, 1], such that

(s1—52) (y1) =0; (51— s2) (1) <O
and

0 < s1(y1) < s5(y1).

In this case, we can use

(s5(=1))* = (s3(y1))* < (s1(=1))* = (51 (11))?

to get the desired contradiction. We therefore conclude that for fixed B, € and w, the
solution of (3.3) is unique.

Next, we show the constant B, is unique for fixed € and w. We assume that there
exist two distinct solution pairs, (s1,601) and (sz2,63), which by the first part of the
proof, are the unique solutions of

4B? 4B2
s = 7531 +esi(s?—1), sy = 7332 +esy(s2 — 1)
1 2

and
2/ 2/
8191 = Bl, 5292 = BQ,

respectively, subject to (2.6), for the same value of w. Let 0 < B; < By. Using a
change of variable uy = 1 — s € [0,1), for k = 1,2 so that ux(£1) = 0, we can use
the method of sub- and supersolutions to deduce that

(3.22) sg < sp for all y € [-1,1].
This implies

B
(3.23) b=~ <
51

B
2 =0, Yyel[-1,1].
52

If 0] < 6, anywhere, then 6;(1) = wm does not hold, hence we must have equality
ie., 0) = 0. It therefore follows that Bis3 = Bas?, but the boundary conditions
necessitate that By = By := B and hence, s; = sy := s. Finally, integrating 6] =
B/s?, it follows that 6, is unique and is given by

~1

1 B 1 1
(3.24) 01(y) = wm —/ = dy, where B = 2w (/ = dy)
y

-1

The preceding arguments show that #; = 6> and the proof is complete. 0
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THEOREM 3.5. For B = 0'(£1) # 0, the unique solution, (s,0) of (3.3), has the
following symmetry properties:

for ally € [-1,1]. Then s has a unique non-trivial minimum at y = 0.

Proof. Tt can be readily checked that for B # 0 , the system of equations (3.3)
admits a solution pair, (s, ) such that s is even, and 6 is odd for y € [—1, 1], compatible
with the boundary conditions. Combining this observation with the uniqueness result
for B # 0, the conclusion of the theorem follows. 0

The preceding results apply to non OR-solutions. OR solution-branches have been
studied in detail, in a one-dimensional setting, in the Q-framework [23]. Using the
arguments in [23], one can prove that for w = +%, OR solutions exist for all € > 0 and
are globally stable as ¢ — 0, but lose stability as € increases. In particular, non-OR
solutions emerge as € increases, for w = :I:i, and these non-OR solutions do not have
polydomain structures. More precisely, we can explicitly compute limiting profiles in
the € — 0 an € — oo limits. In the ¢ — 0 limit, relevant for nano-scale channels
(also see [21]), the limiting problem can be solved explicitly in the Q-framework and
the associated (s,6) profiles are extracted using (2.3). Recall the system (3.1). From
the maximum principle, ||Q||L« is bounded independently of €, and the system (3.1)
reduces to the Laplace equations in the e — 0 limit [15]:

Qll/l =0, ,1l2 = 0.
This limiting system, subject to (2.7), admits the unique solution
1 .
(3.25) Qui(y) = 5 cos(2wm), Qua(y) = 3 sin(2wm).

Substituting (3.25) into (2.3), we obtain the following limiting profiles for s and 6, in
the € — 0 limit:

(3.26a) S0.w = \/COSQ(QUJ’]T) + y2 sin? (2wrr),
1
(3.26b) B0 = §atan2(y sin(2wm), cos(2wm)).

Using the explicit expressions above, one can easily verify that sg, has exactly one
critical point at y = 0, which is a global minimum. Further, 50,41 (0) = 0 and
50,w(0) > 0 for w # +1.

In the € = oo limit (relevant for micron-scale channels), the system (3.3) reduces
to (see [6] for rigorous arguments)

(3.27) s(s*—1)=0, s%0, =D,

which, subject to the boundary conditions (2.6b), has the solution

1
(3.28) s(y) =1, O(y) =wnry for all w, including w = iz.

This asymptotic analysis is complemented by additional calculations, as well as
numerical solutions of the Q-Euler-Lagrange equations (3.1a) and (3.1b) (along with
the corresponding (s, ) profiles), in the supplementary material.
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4. Passive and Active flows. In this section, we compute asymptotic expan-
sions for OR-type solutions of the system (2.5), in the L* — 0 limit (¢ — oo limit)
relevant to micron-scale channels. We consider conventional passive nematodynam-
ics and active nematodynamics (with additional active stresses generated by internal
activity), and generic scenarios with non-constant velocity and pressure. We follow
the asymptotic methods in [7], to construct OR-type solutions, strongly reminiscent
of chevron patterns seen in experiments [1, 11]. Recall an OR-type solution is simply
a solution of (2.5) with a non-empty nodal set for the scalar order parameter, such
that 6 has a jump discontinuity at the zeroes of s. Unlike OR solutions, OR-type
solutions need not have polydomains with constant 6-profiles.

4.1. Asymptotics for OR-type solutions in passive nematodynamics, in
the L* — 0 limit. Consider the system of coupled equations, (2.5), in the L* — 0
limit. Motivated by the results of section 3, and for simplicity, we assume s attains a
single minimum at y = 0, s is even and # is odd, throughout this section. The first
step is to calculate the flow gradient u,. We multiply (2.5b) by s* so that

2

s
(4.1) (5%0y)y = 3 Uy
Substituting (s%6,), from (4.1) into (2.5¢), we obtain
L
(42) (1 +225) =
y

Both sides of (4.2) equal a constant, since the left hand side is independent of z, and
p. is independent of y. Integrating (4.2), we find

_ Py Bo
(4:3) =gt Tl

where By is another constant and
L
(4.4) g(s) =1+ 7232 >0, Vs € R.

Integrating (4.3), we have
y
pr BO
(45) uty) = [ T ay,
—19(s(Y))  g(s(Y))
since u(—1) = 0 from (2.8). Using the no-slip condition, (1) = 0 and the fact that
f_ll m dY =0, we see By = 0 so that the flow velocity is given by

and the corresponding velocity gradient is

_ b2y

Following the method in [7], we seek the following asymptotic expansions for
(s,0):
(4.8a) s(y) = S(y) + IS(A\) + O(L"),
(4.8b) 0(y) = O(y) + I6(N) + O(L"),

This manuscript is for review purposes only.



ORDER RECONSTRUCTION IN MICROFLUIDIC CHANNELS 15

where S, © represent the outer solutions away from the jump point at y = 0, 1.5, 1©
represent the inner solutions around y = 0, and A is our inner variable. Substituting
these expansions into (2.5a) and (2.5b) yields

(4.92)  L*S,, + L*IS,, = AL*(S + IS)(0, + 10,) + (S + IS)((S + IS)2 — 1),
1
(4.9b) (S +I9)(Oyy +16y,) = 5 (S + IS)uy (y) = 2(S, +15,)(O, + I6,).

It is clear that (4.9a) is a singular problem in the L* — 0 limit, and as such we rescale
y and set

(4.10) A= 2

to be our inner variable.

The outer solution is simply the solution of (4.9a) and (4.9b), away from y = 0,
for L* = 0 and when internal contributions are ignored. In this case, (4.9a) reduces
to

(4.11) S(S? —1) =0,

which implies

(4.12) S(y) =1, forye[-1,0)N(0,1]

is the outer solution. Here we have ignored the trivial solution S = 0, and S = —1,

as these solutions do not satisfy the boundary conditions.
Ignoring internal contributions, (4.9b) reduces to
1
§uy(y) for y € [-1,0) N (0, 1].
From the above, s = 1 for y € [—-1,0) N (0, 1], so integrating (4.7) and imposing the
no-slip boundary conditions (2.8), we obtain

(4.14) uly) = 5 0 =)

(4.13) O, (y) =

We take u(0) = —Z.J’;—””LQ, consistent with the above expression. Solving for 0 <y <1,
we integrate (4.13) to obtain

0,(y) = /Oy WY gy 4oy (04)

2
u(y) — u(0
(4.15) = O,(y) = M + 0,(0+)
Similarly, for —1 < y < 0, integrating (4.13) yields
u(y) — u(0
(4.16) O,(y) = uy) —u0) | 0,(0-).

2

Since ©,(0+) is unknown, we enforce the following boundary conditions at y = 0
to give us an explicitly computable expression

(4.17a) O0(0+) = wr — %7 keZ,

(4.17b) 0(0-) = —wr + %T, ke Z.
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We now justify this jump condition. In the case of constant flow and pressure, OR
solutions jump by £2wm, but OR-type solutions could have different jump conditions
across the domain walls, hence the inclusion of the %’r term.

Substituting (4.14) into (4.15), integrating, and imposing the boundary condi-
tions, we have that

3
Y A S
(4.18) O(y) = G+ Ly) <6 6)+ 5 (y—1)+wr forye (0,1].
Analogously, (4.16) yields

3 s
(4.19) o(y) = @j]iing) (yG - Z) + %(y +1)—wr forye[-1,0).

We now compute the inner solution. Substituting the inner variable (4.10), into
(4.9a) and (4.9b), they become
10

L*S,, + IS =4L*(S +15) (@y e

) +(S+19)((S+18)?—1),

(S +1I8)(L*Oyy + 10) = —-(S +15) ,OWL*) —2L <5y+\/§> <ey+\/ﬁ>,

where () denotes differentiation w.r.t A. Letting L* — 0, we have that the leading
order equations are
(4.20a) IS =4(S+IS)(I0)* + (S +IS)((S+15)* - 1),
(4.20b) (S+18)I6 = —2IS510,
or equivalently, after recalling S =1,
IS =2IS +qi(I8,10),
16 = ¢,(IS,185,10,10),
where ¢1, g2 represent the nonlinear terms of the equation. The linearised system is
(4.21a) IS =2IS,
(4.21b) 10 =0,

subject to the boundary and matching conditions

(4.22a) lim IS(A) =0, IS(0) = Spin — 1,
A—+oo
(4.22D) lim 1O(\) =0,

where $,,i, € [0, 1], is the minimum value of s. We note that the second condition in
(4.22a) ensures s(0) = Spin.-
Using the conditions (4.22a), the general solution of (4.21a) is

-2
14 (Spmin — 1)e VL* for0<y<1
(4.23) s(y) = { ( )

L+ (Smin — 1)6\@\/% for -1 <y <0.
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With IS determined, we calculate 0. Solving (4.21b) subject to the limiting condi-
tions (4.22b), it is clear that 160 = 0. Hence,

Da y3 Yy km

e (L YY) R ) pwr for0<y<1
(429) ey =4 CIRILG 80T 2

i (5~ #) + S0+ —ur 1<y <0

The expressions, (4.23) and (4.24), are consistent with our definition of an OR-type
solution.

4.2. OR-type solutions for active nematodynamics, in the L* — 0 limit.
Next, we consider a system of uniaxial active nematics in a channel geometry i.e., a
system that is constantly driven out of equilibrium by internal stresses and activity
[18]. There are three dependent variables to solve for - the concentration, ¢, of active
particles; the fluid velocity u, and the nematic order parameter, Q. The corresponding
evolution equations are taken from [17, 16], with additional stresses from the self-
propelled motion of the active particles and the non-equilibrium intrinsic activity,
referred to as active stresses:

(4.252) %;f =V (DVe+ (V- Q)),
(4.25Db) V-u=0, p% = —Vp+ V- (u(Vu+ (Vu)T) +5),
DQ 1

where W is the symmetric part of the velocity gradient tensor, «; is an activity
parameter, and A is the nematic alignment parameter. The stress tensor, ¢ = o +0%,
is the sum of an elastic stress due to nematic elasticity

(4.26) c¢=-xsH+ QH — HQ,
and an active stress defined by
(4.27) 0% = ax?Q.

Here as is a second activity parameter, which describes extensile (contractile) stresses
exerted by the active particles when as < 0 (a2 > 0).

We again consider a one-dimensional static problem, with a unidirectional flow
in the z direction and take A = 0. Then the evolution equations for Q are the
same as those considered in the passive case, hence, making it easier to adapt the
calculations in section 4.1 and draw comparisons between the passive and active cases.
The isotropic to nematic phase transition is driven by the concentration of active
particles and as such, we take A = k(c* — ¢)/2 and C = ke, where ¢* = /37/2L? is
the critical concentration at which this transition occurs [18, 17]. As in the passive
case, we work with A < 0 i.e. with concentrations that favour nematic ordering.

The continuity equation (4.25a), follows from the fact that the total number of
active particles must remain constant [18]. This is compatible with constant concen-
tration, ¢, although solutions with constant concentration do not exist for a; # 0. As
in [10], we consider the case of constant concentration ¢, which is not unreasonable
for small values of r; (see (4.25a), which can admit approximately constant solutions,
¢(y) in the ag — 0 limit), and do not consider the concentration equation, (4.25a),
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in this work. We nondimensionalise the system as before, but additionally scale ¢ by
L~1. In terms of Q, the evolution equations are given by

0 1
(4.28a) gtu =uyQi2 + Qr1,yy + FQll(l —4(Q11 + Q1))
0 1
(4.28Db) gtm = —uyQu1 + Qi2,yy + Fle(l —4(Q3, + Q1,)).
0
(4.28c) Llai: = —pu + Uyy + 2L2(Q11Q12,4y — Q12Q11,4y)y + L(Q126%)y,

o
(s,0), the system (4.28) reduces to

where I' = 21, / f% is a measure of activity. In the steady case, and in terms of

(4.292) Syy = 405+ = (s 1),
1
(4.29b) 50y, = 55Uy ~ 25,0y,
2
(4.29¢) Uyy = Do — La(5°0y)yy — T (028 sin(29)> .
y

Regarding boundary conditions, we impose the same boundary conditions on s, 6 and
u, as in the passive case.

The equations, (4.29a) and (4.29b), are identical to the equations, (2.5a) and
(2.5b), respectively. Hence, the asymptotics in subsection 4.1 remain largely un-
changed, with differences coming from (4.29¢), due to the additional active stress.
Substituting (4.1) into (4.29¢), we obtain

L T
(4.30) <uy + ?252113, + 5023 sin(20)) = pgs.
y

Following the same steps as in subsection 4.1 to obtain equation (4.5), we compute

dy,

[V 2p,Y + 2By — I'?s(Y)sin(260(Y))
= 24(5(V))

where By is a constant and g is given by (4.4). Using u(1) = 0 and rearranging, we
see that

1 2p,Y-Tc*s(Y)sin(20(Y))
s 29(s(7)) dy

Jhg(s(v))tay

By =

From our assumption that s is even and @ is odd, it follows that ﬁ and Ssé?go) are

odd, and consequently, By = 0. Therefore, the flow velocity is given by

[V 2p,Y —Tc?s(Y)sin(20(Y))
=/ 24(s(V)

(4.31) dy,

and the velocity gradient by

pzy  Tc?s(y)sin(20(y))

(4.32) W) = i) 29(s(y))
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Here, the active contribution is captured by the second term, assuming a constant
concentration c.

As (4.29a) and (4.29b) are identical to equations (2.5a) and (2.5b) respectively,
much of the calculations are the same as in subsection 4.1. In particular, we pose
asymptotic expansions as in (4.8a) and (4.8b), for s and 0 respectively in the L* — 0
limit, which yields (4.9a) and (4.9b). In fact, the expression for s is given by (4.23), in
the active case too. We highlight the differences for the outer solution © as a result of
the velocity gradient (4.32). We again solve (4.13) and find an implicit representation
for © as given below:

(4.33)

1 w(0)—u T 1w —u
Jy MOS0 gy (b — [ OO Gy ) (y— 1) +wm, 0 <y <1

© =
) fflwdif—i—(k{— _Olde) (y+1)—wm —1<y<0
where u(y) is given by (4.31). Moving to the inner solution IO, we need to solve
(4.21b), subject to the matching condition (4.22b). As before, we find IO = 0, and
our composite expansion for # is just the outer solution presented above. We deduce
that OR-type solutions are still possible in an active setting, for the case A = 0.

We now consider a simple case for which (4.33) can be solved explicitly. In (4.31),
we assume s = 1 and sin20 = 1 for —1 < y < 0, and sin(20) = -1 for 0 <y <1
i.e., we assume an OR solution with § = F7 and w = *i' Under these assumptions,
integrating (4.32) yields

(431  uly) =

0 - D -y +1), for —1<y<0.

2
{ szz(yQ—l)—i—ziC%z(y—l), for0<y <1

Substituting the above into (4.33), we find

(4.35)
3 2 2
e(y)_ 2_1?22 %7% +2icL2(yT,%)+k7”(yfl)+w7T, for0<y <1,
- 3 2 2
5 — % —i&g(%—k%)—%—%(y—kl)—ww for -1 <y < 0.

We expect (4.34) and (4.35) to be good approximations to OR-type solutions with
w = —i, in the limit of small ' (small activity) and small pressure gradient, when
the outer solution is well approximated by an OR solution.

4.3. Numerical results. We solve the dynamical systems (2.4) and (4.28) with
finite element methods, and all simulations are performed using the open-source pack-
age FEniCS [24]. The details of the numerical methods are given in the supplementary
material. In the numerical results that follow, we extract the s profile from Q, using
(2.3). We also plot s/2 instead of s. We do this so that the Q and s-profiles fit nicely
on the same axis and in our error plots, we compare (4.23)x1/2 to s/2. Henceforth,
we will not make this distinction, and regard the plotted profiles as s.

4.3.1. Passive flows. We begin by investigating whether OR-type solutions
exist for the passive system (2.4) when L* is large (small €), that is, for small nano-
scale channel domains. When w = :I:i and p, = —1, we find profiles which are small
perturbations of the OR solutions found in section 3, for large L* with p, = 0, i.e.,
the profile in (3.26) when w = +1 (see Fig. 3). We regard these profiles as being
OR-type solutions although s(0) # 0 but s(0) < 1, as the director profile resembles a
polydomain structure and 6 jumps around y = 0, to satisfy its boundary conditions.
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As |p,| increases, we lose this approximate zero in s i.e., we lose the domain wall and
s — 1 almost everywhere. It is also worth noting, that the director represents a splay
deformation when w = —i, and a bend deformation when w = i, which becomes
more pronounced as |p,| increases.

@w=-1/4 Pzt pe=-10 pe=-20

: - -

S
NVT11777

(b)w=1/a

Fi1G. 3. The stable solutions of (2.4) for L* = oo (i.e., we remove the bulk contributions) and
Ly = 1le — 3. The values of pz and w, are indicated in the plots (the same comments apply to all
other figures where values are included in the plots).

We now proceed to study solutions of (2.4) in the L* — 0 limit, relevant for
micron-scale channel domains. We are interested in the stable equilibrium solutions
and the existence of OR-type solutions in this limit, and how well the OR-type so-
lutions are approximated by the asymptotic expansions in Section 4.1. As expected,
in Fig. 4 we find stable equilibria which satisfy s = 1 almost everywhere. We also
report unstable OR-type solutions in Fig. 5, when w = f%. We again consider these
to be OR-type solutions despite s(0) # 0, since their behaviour is consistent with the
asymptotic expressions (4.23) and (4.24), and we also have approximate polydomain
structures. We also find these OR-type solutions for w = i, but do not report them
as they are similar to the w = —7 case (the same is true in the next subsection).
In fact, w = :i:i are the only boundary conditions for which we have been able to
identify OR-type solutions (identical comments apply to the active case).

In Fig. 5, we present three distinct OR-type solutions which vary in their Q11
and @12 profiles, or equivalently the rotation of € between the bounding plates at
y = £1. These numerical solutions are found by taking (4.23) (with $m = 0)
and (4.24) with different values of k (k = 0,1,2), as the initial condition in our
Newton solver. We conjecture that one could build a hierarchy of OR-type solutions
corresponding to arbitrary integer values of k in (4.17), or different jumps in 0 at
y=0in (4.17), when w = :l:i. OR-type solutions are unstable, and we speculate that
the solutions corresponding to different values of k in (4.17) are unstable equilibria
with different Morse indices, where the Morse index is a measure of the instability of
an equilibrium point [22]. A higher value of k could correspond to a higher Morse
index or informally speaking, a more unstable equilibrium point with more directions
of instability. A further relevant observation is that according to the asymptotic
expansion (4.24), Q11(0+) = 0 and Q12(0+) = +3, and hence the energy of the
domain wall does not depend strongly on k. The far-field behavior does depend on k in
(4.24), and we conjecture that this k-dependence generates the family of k-dependent
OR-type equilibrium solutions. We note that OR-type solutions generally do not
satisfy s(0) = 0, but typically exhibit polydomain structures in 6, or equivalently the
director n = (cosf,sinf). However, as L* decreases, we find s(0) — 0 for OR-type
solutions, for a fixed p, (see Fig. 6).

To conclude this section on passive flows, we assess the accuracy of our asymptotic
expansions in section 4.1. In Fig. 7, we plot the error between the asymptotic
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F1G. 4. Some example stable solutions of (2.4) for L* = le — 3 and Lo = le — 3.

expressions ((4.23) and (4.24)) and the corresponding numerical solutions of (2.4),
for the parameter values L* = le — 4, Ly = le — 3, p, = —20 and w = —%. More
precisely, we use these parameter values along with k¥ = 1,2,3 in (4.24), and (4.23)
with s, = 0, to construct the asymptotic profiles. We then use these asymptotic
profiles as initial conditions to find the corresponding numerical solutions. Hence, we
have three comparison plots in Fig. 7, corresponding to k = 1,2, 3 respectively. By
error, we refer to the difference between the asymptotic profile and the corresponding
numerical solution. We label the asymptotic profiles using the superscript 0, in the
L* — 0 limit, whilst a nonzero superscript identifies the numerical solution along with
the the value of L* used in the numerics (these comments also apply to the active
case in the next section). We find good agreement between the asymptotics and
numerics, especially for the s profiles, where any error is confined to a narrow interval
around y = 0 and does not exceed 0.07 in magnitude. Using (2.2), (4.23), and (4.24),
we construct the corresponding asymptotic profile Q°. Looking at the differences
between QY and the numerical solutions Q'¢~* (for k = 1,2,3), the error does not
exceed 0.06 in magnitude. This implies good agreement between the asymptotic and
numerically computed @-profiles, at least for the parameter values under consideration.
While the fluid velocity w is not the focus of this work, we note that our asymptotic
profile (4.14), gives almost perfect agreement with the numerical solution for w.
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Fia. 5. Three unstable OR-type solutions of (2.4) for L* =1le —3, Lo = le — 3, p = —1 and
w = —i. The initial conditions used are (4.23) (with smin = 0) and (4.24) with k = 0,1,2 (from
left to right), along with the parameter values just stated.
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Fic. 6. Plot of an OR-type solution for L* = 5e — 4, 3e — 4, le — 4 (from left to right). The
remaining parameter values are Loy = le — 3, py = —20 and w = —%. The initial conditions used
are (4.23) (with smin = 0) and (4.24) with k = 2, along with the parameter values just stated.
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FIG. 7. Plot of Q'¢=* — QO, s'¢=% — s, and u'®=* — u0. Here, Q0 is the asymptotic profile
given by (4.23) and (4.24) with, Smin = 0, k = 1,2,3 (from left to right), L* = le—4, Ly = le — 3,
pz = —20 and w = —1/4, whilst Q'*~* denotes the corresponding numerical solution of (2.4). s°
is given by (4.23) and s'°~* is extracted from Q'¢~*. The numerical solutions are found by using

QO as the initial condition. Identical comments apply to u® — w4, where u® is given by (4.14)
and u'®=* is the numerical solution of (2.4).
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F1G. 8. The stable solutions of (4.28) for L* = oo , Ly = le — 3, ¢ = V27 and p, = —1.

4.3.2. Active flows. As explained previously, we consider active flows with
constant concentration ¢, and take ¢ > ¢*. To this end, we fix ¢ = V27 in the
following numerical experiments. For L* large (small nano-scale channel domains),
we find OR-type solutions when w = :i:i, and these are stable. In Fig. 8, we plot
these solutions when p, = —1 and for three different values of I', which we recall is
proportional to the activity parameter as. We only have s(0) ~ 0 when I' = 1, in
which case the director profile exhibits polydomain structures. As I' increases, s(0)
increases and s — 1 almost everywhere, so that OR-type solutions are only possible
for small values of p,, and I". Increasing |p,| for a fixed value of T, also drives s — 1
everywhere. Looking at Fig. 3 and 8 together, we notice that if Q)11 is positive in the
interior, the nematic director has a splay deformation and if Q11 is negative in the
interior, the director has a bend deformation.

As in the passive case, we also find unstable OR-type solutions consistent with
the limiting asymptotic expression (4.23), along with a discontinuous 6 profile as in
(4.33), for small values of L* that correspond to micron-scale channels. The stable
solutions have s ~ 1 almost everywhere (see Fig. 9). In Fig. 10, we find unstable
OR-type solutions when L* = 1le — 3, Ly = le — 3 and w = —i for a range of values
of p, and I". To numerically compute these solutions, we use the stated parameter
values in (4.23) (with s,,;, = 0) and (4.35), along with k = 0, as our initial condition.
We only have s(0) = 0 provided |p.| and T" are not too large, however, s(0) — 0 in the
L* — 0 limit for fixed values of p, and I'. This illustrates the robustness of OR-type
solutions in an active setting. In Fig. 11, we plot three further distinct OR-type
solutions, obtained by taking (4.23) (with $,;, = 0) and (4.35) with k = 1,2,3, as
our initial condition. Hence, for the same reasons as in the passive case, we believe
there may be multiple unstable OR-type solutions, corresponding to different values
of k in (4.17).
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Fic. 10. Unstable OR-type solutions of (4.28), for L* = 1le — 3, L2 = le — 3, ¢ = V27w and

w = —%. The initial conditions used are (4.23) (with Smin = 0) and (4.35) with k = 0.

By analogy with the passive case, we now compare the asymptotic expressions
(4.23), (4.34) and (4.35), with the numerical solutions. The error plots are given in
Fig. 12. Once again, there is good agreement between the limiting s-profile (4.23) and
the numerical solutions, where any error is confined to a small interval around y = 0.
There is also good agreement between the asymptotic and numerically computed 6-
profiles (coded in terms of @11 and @Q12) and flow profile u, provided |p,|, T', or both,
are not too large. When |p,| and T are large (say much greater than 1), the accuracy of
the asymptotics breaks down, especially for the u-profile. However, OR-type solutions
are still possible for large values of |p,| and T, as elucidated by Fig. 10.

5. Conclusions. In this article, we have demonstrated the universality of OR-
type solutions in NLC-filled microfluidic channels. Section 3 focuses on the simple
and idealised case of constant flow and pressure to give some preliminary insight into
the more complex systems considered in section 4. We prove a series of results that
lead to the interesting and non-obvious conclusion, that the multiplicity of observable
equilibria depend on the boundary conditions. We employ a (s, 8)-formalism for the
NLC state, and impose Dirichlet conditions for (s, ) coded in terms of w, where w is
a measure of the director rotation between the bounding plates y = £1. We always
have a unique smooth solution in this framework provided an OR solution does not
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Fi1G. 11. Three unstable OR-type solutions of (4.28) for L* = le — 3, Lo = le — 3, py = —1,
I'=0.7 and w = fi

FiG. 12. Plot of Q¢4 — QO, s'¢=4 — 50 and u'®=* —u0. Here, QO is given by (4.23) and
(4.35) with, Smin =0, k=0, c=+V2m, L* =1le —4, Lo = le — 3, px and ' as stated in the figure,
and w = —1/4, whilst Q=4 is the numerical solution of (4.28), with the same parameter values.

exist (Theorem 3.4). Additionally, in the Q-framework for w = j:% i.e., when the
boundary conditions are orthogonal to each other, OR solutions with polydomain
structures exist for all values of L* or €, they are globally stable for large L* (small
€), and there are multiple solutions for small values of L* (large ¢) or large channel
geometries. In fact, for all three scenarios considered in this paper, we have found OR
and OR-type solutions to be compatible with w = j:i only, or orthogonal boundary
conditions. We note that in Theorem 7 of [3], the author proves that minimizers of
an Oseen-Frank energy in three dimensions are unique for non-orthogonal boundary
conditions. This result is clearly different from ours, based on different arguments, but
has a similar physical flavour. As has been noted in [2] amongst others, orthogonal
boundary conditions allow for solutions in the Q-formalism (solutions of (3.1)) that
have a constant set of eigenvectors in space. These solutions, with a constant set of
eigenvectors, are precisely the OR solutions, which are disallowed for non-orthogonal
boundary conditions. Thus, whilst the conclusion of Theorem 3.1 is not surprising
on physical grounds, or by comparison with previous work for other continuum NLC
models, we recover the same result with a different set of arguments in the (s,8)-
framework, which is of independent interest.

In section 4, we calculate useful asymptotic expansions for OR-type solutions in
the limit of large domains, for both passive and active nematics. The asymptotics are
validated by numerically computed OR-type solutions for small and large values of
L*, using the asymptotic expansions as initial conditions. There is good agreement
between the asymptotics and the numerical solutions, and the asymptotics give good
insight into the internal structure of domain walls of OR-type solutions and the outer
far-field solutions. These techniques can be further embellished to include external
fields, other types of boundary conditions and more complex geometries too.

In section 4.3, the OR-type solutions are unstable for small L* or large channels.
However, they may still be observable and hence, physically relevant. Referring to the
experimental results in [1] for passive NLC-filled microfluidic channels, the authors
find disclination lines at the centre of a microfluidic channel filled with the liquid
crystal 5CB, with flow, and with and without an applied electric field. Moreover,
the authors are able to stabilise these disinclination lines by applying an electric
field. So, while the OR-type solutions are unstable mathematically, they can be
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stabilised or controlled/exploited for transport phenomena and cargo transport in
experiments. In the active case, there are similar experimental results in [20]. Here
the authors use an applied magnetic field to control an active nematic system (8CB
with a water based active gel), and find lanes of defect cores running parallel to the
channel walls. These defect cores and disclination lines can be modelled by OR-
type solutions, as we have studied in this paper. In general, we argue that unstable
solutions are of independent interest since they play crucial roles in the connectivity
of solution landscapes of complex systems [22]. Unstable solutions steer the dynamics
of a system and ultimately, dictate the selection of the steady state for multistable
systems (with multiple stable states). Hence, OR-type solutions are unstable for
large domains, but can influence non-equilibrium properties and can be stabilised for
tailor-made applications.

To conclude this article, we argue why OR-type solutions maybe universal in
variational theories, with free energies that employ a Dirichlet elastic energy for the
unknowns, e.g. yi ...y, for n € N. Working in a one-dimensional setting, consider an
energy of the form

(1) [ @R+ v@ + o) (@) da

subject to Dirichlet boundary conditions, for a material-dependent positive elastic
constant L*. The function, h, models a bulk energy that only depends on y1,...,yn.
As L* — oo, the limiting Euler-Lagrange equations admit unique solutions of the
form y; = ax + b, for constants a and b. For specific choices of {2 and asymmetric
boundary conditions, we can have domain walls at « = 2* such that y;(2*) = 0 for
j =1,...,n. Writing each y; = |y;|sgn(y;), the domain wall separates polydomains
with phases differentiated by different values of sgn(y;). Moreover, we believe this
argument can be extended to systems in two and three-dimensions.
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Supplementary materials. A Multi-Faceted Study of Nematic Order
Reconstruction in Microfluidic Channels.

1. Supplementary material for section 3 - Passive flows with constant
velocity and pressure. Here we present supplementary material for section 3 of the
main text. Any references to equations and Theorems not appearing in this document,
refer to equations and Theorems in the main text.

THEOREM 1.1. (Mazimum Principle) Let s and 6 be solutions of (3.3a) and
(3.3b), where s is at least C*, then

(1.1) 0<s<1 Vyel-1,1].

Proof. Let (s,0) denote a solution pair of (3.3a) and (3.3b), and assume for
contradiction that s has a local minimum at ¢, such that s(j) < 0. This implies
that B = 0 using (3.3b). If B = 0, then we must have either s = 0 everywhere or
a piecewise constant #-profile. The first case is inadmissible and the second case is
simply an OR solution, determined by the ordinary differential equation:

(1.2) s =es(s® — 1),

which can be integrated to obtain the scalar order parameter. Doing this, we find

(1.3) s = j:\/(e (S; - 32) + A).

Evaluating at s = 1, we see A > §. At the minimum, s'(j) = 0, hence

(1.4) 52(37):11,/&%,

which requires A < 5. Combining these inequalities yields A = §. We then have

==+ %(32 —1)2.

Fixing the sign in the above to be either positive or negative, we have a first order
ODE subject to the boundary condition s(—1) = 1, or s(1) = 1. In any case, s = 1
is a solution, hence, by the Picard-Lindel6f Theorem, this is the unique solution and
this is clearly positive everywhere.

We prove that s < 1 by a direct application of the maximum principle. Assume
that there exists a point y* € [—1,1] where s attains its maximum, and s(y*) > 1
so that y* € (—1,1). The function s> must also attain its maximum at the point
y* € (—1,1), so that

(s")" ) <o

Next, note that (32)” = 2(s")% + 2ss"”. We now multiply (3.3a) by s, and substitute
for s”s in the resulting expression to obtain

(1.5) (s2)" = ()2 + 4s%(0)? + es?(s> — 1).

N

"

Using s(y*) > 1, (1.5) implies that (s?)” (y*) > 0, which is a contradiction. Hence,
we conclude that s < 1Vy € [—1,1]. O
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1.1. The ¢ — 0 and ¢ — oo limits.

PROPOSITION 1.2. For w # +1,

which is a non-trivial global minimum i.e. s, (0) > 0. For w = £
one minimum at y =0 such that s, 11 (0) = 0.

50w has exactly one critical point at y = 0,

i, s has exactly

Proof. Tt is clear from (3.26a) that so.(—y) = sow(y) and as such sg, is sym-
metric. We quickly note from (3.26a), that s = 1 when w = 0, i%. Next, we consider
the cases w # 0, +1, +1. Differentiating (3.26a), we have
y sin® (2w)

\/cosz(Qanr) + 2 sin® (2wn)

. 1
=0 = y=0since w #0,+=.

/
==+
SO,w (y) 2

Hence, the solution has one critical point at y = 0, which is a global minimum. Since
5(0) = cos(2w), this minimum is non-trivial for w # +1.

Next, we briefly consider the case when w = :I:i. From (3.26a) we see that the
solution is given by

. ) —y forye[-1,0]
1 (y) =
051 y fory €]0,1],

which clearly has a unique minimum value y = 0, and s, 1 (0) = 0. We have a domain
wall at s = 0, and 907% = —7% for y <0 and 90’% = 7 for y > 0. Analogous remarks

apply to w = —i. In other words, there are polydomain structures with distinct
nematic directors, separated by a domain wall i.e. the unique limiting profile is an

OR solution, and hence globally stable in the ¢ — 0 limit, for w = :I:i. ]

OR solutions are unstable in the € — oo limit, for w = 4 [23]. However, we can
deduce the asymptotic profiles of OR solutions in this limit, since OR solutions exist
for all €, when w = j:%. To this end, we introduce the OR energy for w = :I:% and
Qu1(y) =0forall y € [-1,1]:

1
(16) E(Qu) = / (@) +€Q%(2Q2, — 1), dy,

-1

subject to the boundary conditions in (2.7). As € — oo, the minimizers of the OR
energy converge to the set BY® where

BOR — {(QH,Qu) _ <0,ﬁ:;> }
1

Focusing on w = 7 and replicating arguments from [13], we deduce that OR solu-

tions, interpreted as minimizers of (1.6), converge in L' ([—1,1]), almost everywhere
to a map of the form

(17) @ = (0.-5) xm + (0.3) v,

where x is the characteristic function of an interval, Fy = [-1,0) and Ey = (0, 1], in
the € — oo limit.

This manuscript is for review purposes only.



ORDER RECONSTRUCTION IN MICROFLUIDIC CHANNELS 29

1.2. Numerical results. We solve the time-dependent equations (2.4) with con-
stant u, using gradient flow methods in Matlab. We use finite difference methods in
the spatial direction, with a step size of 1/50, and Euler’s method in the time direc-
tion. The solution is deemed to have converged when the norm of the gradient has
fallen below 1076.

In Fig. 13, we fix w = i and ¢ = 10, and demonstrate multiple solutions for
different initial conditions. The black curves label the OR solution, since s = 0 at
y = 0, and 6 is discontinuous at y = 0. The red curves label smooth solutions with no
domain walls. However, for e < 3 (approximately) we only observe the OR solution.
In Fig. 14, we plot the (s,0) profiles for w = %, and for three different values of e.
Using different initial conditions, we only find one solution profile for each value of e,
consistent with Theorems 3.1 and 3.4. Finally, in Fig. 15, we take ¢ = 100 and see
if OR solutions do indeed converge to the limiting profile in (1.7), and the numerics
are indeed consistent with an almost piecewise constant profile for 12, except for a

transition layer localised around y = 0.

s (t=0)=0.5c0s(2wrm)|
s (t=0)=0.5(y+1

—— 6 (t=0)=0.5cos(2um)
= 6 (t=0)=0.5(y*+1)

-1 0.5 -1 0.5 0 0.5 1

Fi1G. 13. Different types of (s,0) profiles obtained by using different initial conditions. The

black curves are found by taking Q11 = %COS(QWﬂ') and Q12 = %sin(2w7‘r)y as the initial condition,
whilst the red curves are found by taking Q11 = %(y2 + 1) and Q12 = %sin(Zuﬂr)y as the initial

condition. The parameter values are w = i and € = 10.
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05 1 “a 0.5

<o

0
y

Fic. 14. (s,0) profiles obtained for different values of €. For these values of €, the initial
conditions Q11 = %COS(QUJW) and Q12 = %sin(?wﬂ)y, and Q11 = %(y2 +1) and Q12 = %sin(2w7r)y,

converge to the same solution. The parameter values are w = * and ¢ := ﬁ as indicated in the

8
plot.

2. Numerical methods. Here we explain the numerical methods used in sec-
tion 4.3 of the main text. We write the dynamical systems in their weak formulation.
For example, the weak formulation of the complicated active system (4.28), is the
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Fic. 15. The only OR solution for w = i and € = 100. The corresponding director profile is

plotted on the right.
following:
(2.1a)

1 1

9 1

/ Cagtllvldy - / Uy Q1201 — Quiyviy + 7y @u(l -~ 4(Q1, + Q1)) dy,
1 _1

@) 1
0 1
/ 2 vady = / —Uy Q1102 — Q12,4yV2y + FQIZ(I —4(Q} + Q12))v2 dy,
—1

1 1
0
*81;0361?! = / —pav3 — (uy + 2L2(Q11Q12,4y — Q12Q11,4y) + T'(Q12¢%)) v3y dy,
—1 —1

for all vy,vs,v3 € Wy?([~1,1]) with Dirichlet boundary conditions for (Q11,Q12)
and u, given in (2.7) and (2.8), respectively. We partition the domain [—1,1] into a
uniform mesh with mesh size h = 1/256. Due to the third order partial derivatives
with respect to y in (4.28), Lagrange elements of order 2 are used for the spatial
discretization.

We also study the linear stability of the equilibrium solutions in (2.4) and (4.28).
The systems can be written as 25 = F(x(t)). Let xo denote an equilibrium point
ie. F(x¢) = 0, and let J(x9) = VF(x¢) be the Jacobian matrix of F' at xo. We
can then determine the stability of xo by checking the sign of the largest real part
amongst all eigenvalues of J(xg). If the largest real part is negative (positive), then
the equilibrium point is stable (unstable).

For stable states of the system (2.4), we use the semi-implicit Euler method for

time discretization and the initial conditions

(2.2) Q11 = cos(2wmy)/2, Qi = sin(2wry)/2, u = —p,(1 —y?)/2.

For the unstable OR-type solutions, we assume that the partial derivatives with re-
spect to t are zero, and solve the passive or active flow systems using a Newton solver
with a linear LU solver at each iteration. Newton’s method strongly depends on the
initial condition, so we use the asymptotic expressions (4.23) and (4.24) as initial
conditions for the passive flow system, and (4.23) and (4.35) as initial conditions for
the active flow system with small I'. In the active case, we perform an increasing I"
sweep for the OR branch to obtain OR-type solutions for large I'.
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