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Introduction 
Optimal field development and management process operates on critical decision variables, such as 
well locations and control settings, to maximize an economic objective function. However, 
mathematically this results in a high-dimensional, constrained optimization problem with 
computationally demanding and uncertain objective function (i.e. the production forecast model and 
field performance estimates based on it). The control variables in this optimization problem can be 
grouped based on their type (e.g. integer well locations, continuous well production or injection control 
settings). Each such group is referred to as an optimization level in this paper.  
 
Single-level optimization frameworks have been developed, and optimize only one type of decision 
variables (a.k.a. ‘control variables’), such as well locations (Al-Ismael et al. 2018, Wang et al. 2012, Li 
and Jafarpour 2012), drilling order (Tavallali et al. 2018), or well production/injection control settings 
(a.k.a. ‘well control settings’) like flow rate or pressure (Jiang et al. 2019, Haghighat Sefat 2016). These 
methods may not be appropriate where the optimization problem involves multiple levels, because these 
methods do not capture the potential correlations or interference among control variables at different 
levels. In contrast, multi-level frameworks aim to simultaneously optimize multiple types of variables 
at different levels to account for the correlation among control variables. Current multi-level approaches 
can be classified into two groups: (1) Joint optimization (Isebor et al. 2014, Shirangi et al. 2018, Lu and 
Reynolds 2019): a single augmented vector containing all control variables at different levels is 
optimized. A sub-optimal solution is expected when using this approach in reasonable-scale full-field 
applications due to the optimization algorithm’s high demand for computational resources because of 
the large number of simultaneous control variables. (2) sequential optimization (Li et al. 2013, 
Forouzanfar et al. 2016, Lu et al. 2017a): in this approach the main problem is divided into sub-problems 
with reduced number of control variables. Each sub-problem is a single-level optimization (with a single 
type of control variable); an iterative approach is then employed to account for the correlations among 
control variables at different levels. 
 
Current field development/control optimization frameworks can further be classified into three main 
groups based on the employed optimization algorithm: (1) stochastic derivative-free and metaheuristic 
[e.g. using genetic algorithm (Güyagüler et al. 2002, Almeida et al. 2010) or particle swarm 
optimization algorithm (Harb et al. 2019)], (2) adjoint gradient-based (Sarma et al. 2005, Van Essen et 
al. 2011), and (3) stochastic approximated gradient-based [e.g. using Simultaneous Perturbation 
Stochastic Approximation (SPSA) (Li et al. 2013) or Stochastic Simplex Approximate Gradient 
(StoSAG) method (Fonseca et al. 2017)]. Stochastic derivative-free and metaheuristic algorithms can 
globally search for the optimal solution of all types of control variables (e.g. categorical, integer, 
continuous), however they typically have a slower convergence rate than gradient-based algorithms and 
their performance decreases rapidly with increasing number of control variables (Zingg et al. 2008). 
Adjoint gradient-based methods are computationally efficient, however access to the reservoir 
simulation source code is required for efficient calculation of the gradient which makes them 
impractical for use with commercial reservoir simulators. Approximate gradient-based algorithms are 
developed to address this issue by stochastically estimating the gradient of a black-box objective 
function using an ensemble of simultaneous perturbation of all control variables. The approximate 
gradient-based algorithms have been successfully employed to solve large-scale well placement [e.g. 
(Jesmani et al. 2016) using SPSA] and well control problems [e.g. (Sefat et al. 2016) using SPSA and 
(Lu et al. 2017b) using StoSAG]. 
 
The reservoir model is never perfect, nor the production forecast based on it. Hundreds of reservoir 
model realizations are generally developed to quantify the underlying uncertainty due to limited 
reservoir description knowledge. A robust, optimal well placement/control solution can then be 
achieved by optimising the expected value of the objective function over the ensemble of model 
realizations. A variety of techniques have been developed to select a relatively small ensemble of model 
realizations, as the sufficient representative of all possible realizations for the problem at hand, to reduce 
the computation time associated with the robust optimization process. Note that the random sampling 
techniques (e.g. Chen et al. (2012)) cannot guarantee capturing the underlying uncertainty. Iteratively 
updating the randomly selected samples during the optimisation process (e.g. Lu et al. (2017a))  can 
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potentially improve the performance especially with a large number of iterations. A systematic selection 
technique (Wang et al. 2012, Sefat et al. 2016) is preferred to select a subset of realizations as the 
representative of all realizations, tailored to the objective of the subsequent optimization.  
 
Current single/multi-level optimization frameworks provide a single solution as the output, while in 
practice, operational problems often impose unexpected constraints that result in operators having to 
adjust the optimal solution degrading its value. For instance, the provided optimal well location solution 
could be impractical (or difficult) to drill, due to the deviation of the well trajectory from the planned 
trajectory, caused by operational/tool errors. Hence operational flexibility is an outstanding challenge 
to be addressed for practical application of the optimization frameworks. 
 
This paper presents a multi-solution optimization framework (MSOF) to solve well placement and 
control problems under geological uncertainty, based on a multi-level sequential (iterative) approach. 
SPSA is used as the optimizer, while gradients at each iteration are estimated using a 1:1 ratio between 
the ensemble of control variables perturbations and the ensemble of selected model realizations. An 
ensemble of close-to-optimum solutions is then chosen from each level (e.g. from the well placement 
optimization level), transferred to the next level of optimization (e.g. where the well controls are 
optimized), and this loop continues until no significant improvement is observed in the expected 
objective value. Fit-for-purpose clustering procedures are developed to systematically select an 
ensemble of realizations to capture the underlying model uncertainties, as well as an ensemble of 
solutions with adequate differences in control variables but close-to-optimum objective values, at each 
optimization level. 
 
This paper is organized as follows: First, problem formulation for robust well placement/control 
optimization, with an uncertain reservoir model, is presented; followed by a brief description of the 
SPSA algorithm. Next, the developed techniques for reservoir model realization selection as well as 
multi-solution selection at each optimization level are presented. The MSOF is then presented and 
applied to a benchmark case study (Brugge oil field model) followed by discussion of the results and 
conclusions. 
 
Problem statement 
In this work, the objective is to find optimal set(s) of control variables (i.e. well locations and control 
settings) to maximize an objective function 𝐽𝐽. Net Present Value (NPV), considering only oil and water 
production/injection over the presumed life of the reservoir, is the selected objective function, defined 
as:  

𝐽𝐽(𝑥𝑥,𝑚𝑚) = �����𝑟𝑟𝑜𝑜𝑞𝑞𝑜𝑜,𝑗𝑗
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where 𝑥𝑥 is the 𝑁𝑁𝑥𝑥 dimensional vector of the control variables, 𝑚𝑚 is the 𝑁𝑁𝑚𝑚 dimensional vector of the 
uncertain reservoir description properties (e.g. porosity and permeability fields, fault transmissibility, 
oil-water contacts) quantified as the reservoir model realizations, 𝑛𝑛 is the 𝑛𝑛th time step of the reservoir 
simulation, 𝑆𝑆 is the total number of simulation steps, 𝛿𝛿𝑡𝑡𝑛𝑛 is the length of 𝑛𝑛th simulation step, 𝑡𝑡𝑛𝑛 is the 
simulation time at the end of the 𝑛𝑛th time step, 𝑏𝑏 is the annual discount rate  in decimal, and 𝑁𝑁𝑃𝑃 and 𝑁𝑁𝐼𝐼 
are the number of producers and injectors, respectively. The cost coefficients 𝑟𝑟𝑜𝑜, 𝑟𝑟𝑝𝑝𝑝𝑝, and 𝑐𝑐𝑤𝑤𝑤𝑤 denote 
the oil price, the water handling cost, and the water injection cost respectively; all in (USD/STB). 𝑞𝑞𝑜𝑜,𝑗𝑗

𝑛𝑛  
and 𝑞𝑞𝑤𝑤,𝑗𝑗

𝑛𝑛  are the oil and water production rates of well 𝑗𝑗 at time step 𝑛𝑛 in STB/day. 𝑞𝑞𝑤𝑤𝑤𝑤,𝑘𝑘𝑛𝑛  is the water 
injection rate of well 𝑘𝑘 at time step 𝑛𝑛 in STB/day. Simulation runs are conducted using a commercial 
reservoir simulator (ECLIPSE-100) (Schlumberger 2017) to calculate the objective function for the 
specified set of control variables and model realizations. In this study, control variables 𝑥𝑥 are scaled 
from the original domain [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] to [0,1] (Eq. (2)) to eliminate the impact of different ranges of 
control variables at different optimization levels. 

𝑢𝑢𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖
 (2) 
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Optimization methodology 
SPSA is a stochastic optimization algorithm based on steepest ascent (or descent) while gradient is 
approximated using a randomly selected stencil (Spall 1992). Consider 𝐽𝐽(𝑥𝑥𝑘𝑘) to be the objective value, 
where  𝑥𝑥𝑘𝑘 is the 𝑁𝑁𝑥𝑥 dimensional vector of the control variables at iteration 𝑘𝑘. The gradient 𝑔𝑔𝑘𝑘(𝑥𝑥) is 

defined as the partial derivatives of the objective function 𝑔𝑔𝑘𝑘(𝑥𝑥) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= � 𝜕𝜕𝜕𝜕
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, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑁𝑁𝑥𝑥

�
𝑇𝑇

, where 

[. ]𝑇𝑇 represents a column vector. SPSA iteratively maximizes the objective function 𝐽𝐽(𝑥𝑥) using: 
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘) (3) 

where 𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘) is the stochastically estimated gradient of the objective function and 𝛼𝛼𝑘𝑘 > 0 is the step 
size at iteration 𝑘𝑘. To calculate 𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘), ∆𝑘𝑘 is defined as a vector of mutually independent, mean-zero 
random variables �∆𝑘𝑘1 ,∆𝑘𝑘2 , . . . ,∆𝑘𝑘𝑁𝑁𝑥𝑥� using Bernoulli ±1 symmetric distribution, satisfying the 
following conditions (Spall 1992): 

∆𝑘𝑘𝑖𝑖
−1= ∆𝑘𝑘𝑖𝑖 (4) 

𝐸𝐸�∆𝑘𝑘𝑖𝑖
−1� = 𝐸𝐸�∆𝑘𝑘𝑖𝑖� = 0 (5) 

where 𝐸𝐸 represents the expected value. The stochastic gradient 𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘) is then calculated using ∆𝑘𝑘 and 
a positive scalar 𝑐𝑐𝑘𝑘: 

𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘) =
𝐽𝐽(𝑥𝑥𝑘𝑘 + 𝑐𝑐𝑘𝑘∆𝑘𝑘)− 𝐽𝐽(𝑥𝑥𝑘𝑘 − 𝑐𝑐𝑘𝑘∆𝑘𝑘)

2𝑐𝑐𝑘𝑘  
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1
∆𝑘𝑘1

,
1
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, … ,
1

∆𝑘𝑘𝑁𝑁𝑥𝑥
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𝑇𝑇

 (6) 

The convergence of the SPSA algorithm depends on the tuning parameters 𝛼𝛼𝑘𝑘 and 𝑐𝑐𝑘𝑘. Spall (1998) 
suggested the following decaying sequences to calculate 𝛼𝛼𝑘𝑘 and 𝑐𝑐𝑘𝑘 to ensure a gradually refining search: 

𝛼𝛼𝑘𝑘 =
𝑎𝑎

(𝔸𝔸 + 𝑘𝑘 + 1)𝜗𝜗 (7) 

𝑐𝑐𝑘𝑘 =
𝑐𝑐

(𝑘𝑘 + 1)𝛾𝛾 (8) 

where 𝑎𝑎, 𝑐𝑐, 𝔸𝔸, 𝜗𝜗, and 𝛾𝛾 are positive, real numbers. The values of 𝜗𝜗 and 𝛾𝛾 are recommended to be 0.602 
and 0.101 (Spall 1992). The stability constant 𝔸𝔸 is recommended to be 5-10% of the expected, or 
allowed, number of iterations when optimizing continuous variables (Spall 2005). Jesmani et al. (2020) 
recommended using a larger 𝔸𝔸 (e.g. 𝔸𝔸 was set to 100 that is 33.3% of the 300 iterations) to achieve a 
more refined search in order to enhance the convergence of the algorithm in well placement 
optimization problems with discrete control variables. In this work, 𝔸𝔸 = 100 and 𝔸𝔸 = 10 is used for 
well placement and well control optimization levels, respectively. Sefat et al. (2016) recommended 
defining  0.1 ≤ 𝛼𝛼0 ≤ 0.5 and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 (i.e. when 𝑘𝑘 = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚)  between 0.025 and 0.1 based on the  
complexity/noise of the search space. Initial sensitivity analysis in this work showed that faster 
convergence and more stable search process is achieved when 𝛼𝛼0 = 0.5 and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 0.08 for both well 
location and control optimization. 
 
The expectation of the stochastically estimated gradient (𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘)) is the true gradient due to the random 
nature of ∆𝑘𝑘 (Spall 1992). Wang et al. (2009), therefore, suggested using an averaged stochastic gradient 
calculated by use of an ensemble of perturbation vectors to improve the estimation of the search 
direction. Using the central difference formulation for gradient estimation, 𝑛𝑛𝑒𝑒 independent samples of 
∆𝑘𝑘 are generated at each iteration, which results in 2 × 𝑛𝑛𝑒𝑒 objective function evaluations (Eq.(6)). The 
average stochastic gradient is then calculated by arithmetic averaging of the ensemble of 𝑛𝑛𝑒𝑒 estimated 
gradients using the following equation: 

𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘)��������� = 1
𝑛𝑛𝑒𝑒
∑ 𝑔𝑔�𝑖𝑖(𝑥𝑥𝑘𝑘)𝑛𝑛𝑒𝑒
𝑖𝑖=1   (9) 

where 𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘)��������� is the average stochastic gradient substituted for 𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘) in Eq. (3). We observed that 
setting 𝑛𝑛𝑒𝑒 between 3 to 5 provided a good quality of the estimated gradient for both well placement and 
control levels.  
Uncertainty in reservoir description is generally captured by creating an ensemble (usually hundreds) 
of equally probable model realizations (Wang et al. 2012, Peters et al. 2010). Therefore, a fixed control 
vector (𝑥𝑥) will produce different objective function values (𝐽𝐽) when applied to different model 
realizations. Assuming 𝑛𝑛𝑐𝑐 is a small subset of model realizations, selected as the representative of all 

Khafiz Muradov
A comment merely fyi: You mentioned that the original realizations were equiprobable. But are the ensemble members equiprobable (e.g. due to some clusters being bigger than others)? E.g. some ‘extremely different but small cluster’ ensemble members are overrepresented/over-weighted hence drag the solution from the robust one?

Mohammad Salehian
Actually, that’s a good point that neither us nor other researchers have thought about yet! 
It could improve the robustness if each cluster representative is weighted based on the size of that cluster. I will search about this and discuss further to see if it really helps to better catch the representative realization. 
It’s an interesting idea, thank you!
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available realizations, 2 × 𝑛𝑛𝑒𝑒 × 𝑛𝑛𝑐𝑐 function evaluations are generally required at each iteration to 
estimate 𝑔𝑔�𝑘𝑘(𝑥𝑥𝑘𝑘)��������� using 𝑛𝑛𝑒𝑒 estimated gradients (Eq. (9)) . Following Chen et al. (2009) and Fonseca et 
al. (2014) and considering mean of the selected realizations is the objective function, a 1:1 ratio can be 
used mapping one member of the ensemble of control variables perturbations to one member of the 
ensemble of selected model realizations. Assuming both ensembles have an equal number of members 
(𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑐𝑐), a 1:1 ratio reduces the number of function evaluations to 2 × 𝑛𝑛𝑒𝑒 while preserving the 
accuracy of the estimated gradient. In this study, a 1:1 ratio is employed during both well placement 
and control optimization levels. 
 
Realization selection and clustering 
Selecting a small ensemble of model realizations as the representative of all available realizations can 
significantly reduce the computation time of robust optimization. A systematic approach is to tailor the 
realization selection process to the objective of the subsequent optimization stage. Wang et al. (2012) 
proposed projecting all model realizations to 2-D space while each dimension attributes to a temporal 
(e.g. cumulative oil production) or static (e.g. permeability, oil-water contact, original oil in place) 
property of the model, followed by clustering and selecting representative realizations from each 
cluster. They used normalized oil-water contact and cumulative oil production as model attributes when 
selecting representative realizations for well location optimization with the objective of maximizing 
NPV by enhancing reservoir sweep efficiency. Sefat et al. (2016) proposed using pairwise distance 
between water cut curves of all model realizations as similarity/dissimilarity measure when selecting 
realizations for well production optimization with the objective of increasing oil production by delaying 
water-breakthrough. Shirangi and Durlofsky (2016) also proposed to measure similarity/dissimilarity 
between model realizations using a low-dimensional feature vector containing a combination of static 
and dynamic (time-varying) model properties, tailored to the optimization objectives. They found that 
both static and dynamic model properties need to be considered when selecting realizations for well 
location optimization while dynamic properties become especially important in realization selection for 
well control optimization.  
 
Optimal well locations are often functions of both static (geological) and dynamic (flow properties) 
features of the reservoir, hence at the well placement optimization level the realization selection is 
performed by creating a two-dimensional map where each model realization is characterized by its 
normalized permeability distance and the area under the field cumulative oil production curve. The 
permeability distance is defined as the Euclidean distance between the permeability field of a particular 
realization (𝑚𝑚𝑖𝑖) and the average permeability field over all available realizations (𝑚𝑚�) (i.e., 𝑑𝑑𝑖𝑖 =
 ‖𝑚𝑚𝑖𝑖 − 𝑚𝑚�‖2 where ‖. ‖ represents the l2-norm). K-means clustering (Seber 2009) is then performed to 
group all available realizations (𝑛𝑛𝑟𝑟) into a small number of clusters (𝑛𝑛𝑐𝑐) by iteratively finding the 
optimal cluster centers, i.e. 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 = �𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛𝑐𝑐�, such that the summation of the distances of all 𝑛𝑛𝑟𝑟 
realizations from the nearest cluster center is minimized. 

𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 = � min
𝑗𝑗=1,2,…,𝑛𝑛𝑐𝑐

�𝑢𝑢𝑖𝑖 − 𝜏𝜏𝑗𝑗�
2

𝑛𝑛𝑟𝑟

𝑖𝑖=1

 (10) 

where 𝜏𝜏𝑗𝑗 is the center for cluster 𝑗𝑗, and 𝑢𝑢𝑖𝑖 denotes the mapped realization. Each realization is then 
assigned to the nearest cluster center. Determining the optimum number of clusters is an ill-posed 
problem and mostly includes some form of intuition supported by a performance measure. The 
Silhouette value (Rousseeuw 1987)  evaluates how well a data point is assigned to a particular cluster 
and is used as the clustering performance measure in this work. Assuming 𝑛𝑛𝑐𝑐 clusters:   

  

𝑆𝑆𝑆𝑆𝑙𝑙𝑖𝑖 =
𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖

max(𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖)
  (11) 

𝑎𝑎𝑖𝑖 = 𝑑𝑑𝑖𝑖,𝐶𝐶(𝑖𝑖) and 𝑏𝑏𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐶𝐶≠𝐶𝐶(𝑖𝑖)

 𝑑𝑑𝑖𝑖,𝐶𝐶 (12) 

Khafiz Muradov
This is new to me, and therefore somewhat shocking and doubtful. If you could expand in a few more sentences here either now or in the future, journal version of this paper how these references proved this approach to work and to statistically make sense (i.e. expectation of random vector evaluation on a random realization/state still results in optimum) that would be helpful.

Mohammad Salehian
This technique is basically proved by comparing its performance to the conventional approach (all-to-all) i.e. showing similar results while reducing the computation demand. It seems that calculating each perturbation over only one realization rather than multiple ones, doesn’t significantly impact the estimated gradient. But this is still one of our focused points. I am currently comparing different realization selection techniques in the literature, and it will be added to the journal version. The here-presented method is going to be compared with some other ones (e.g. using full ensemble, or random selection of some realizations at each iteration to gradually cover all of them during the optimization procedure).
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𝑑𝑑𝑖𝑖,𝐶𝐶 =
1

# 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶
�𝐷𝐷(𝑢𝑢𝑖𝑖,𝑢𝑢𝑙𝑙)
𝑙𝑙𝑙𝑙𝑙𝑙

 (13) 

𝑆𝑆𝑆𝑆𝑆𝑆����(𝑛𝑛𝑐𝑐) =
1
𝑛𝑛𝑟𝑟

� 𝑆𝑆𝑆𝑆𝑙𝑙𝑖𝑖
𝑖𝑖=1,…,𝑛𝑛𝑟𝑟

 (14) 

where 𝑆𝑆𝑆𝑆𝑙𝑙𝑖𝑖 is the Silhouette value for data point 𝑖𝑖, 𝐷𝐷(𝑢𝑢𝑖𝑖,𝑢𝑢𝑙𝑙) is the Euclidean distance between data point 
𝑖𝑖 and data point 𝑙𝑙, 𝑑𝑑𝑖𝑖,𝐶𝐶 shows the average dissimilarity of data point 𝑖𝑖 with all other data points in cluster 
𝐶𝐶. Hence 𝑎𝑎𝑖𝑖 indicates the average dissimilarity of data point 𝑖𝑖 with all other data points within the same 
cluster while 𝑏𝑏𝑖𝑖 shows the lowest average dissimilarity of point 𝑖𝑖 with any point in any other cluster (i.e. 
the neighboring cluster which is the next best fit for point 𝑖𝑖). The optimum number of clusters (𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜) 
is then determined by comparing the average silhouette value (𝑆𝑆𝑆𝑆𝑆𝑆����(𝑛𝑛𝑐𝑐)) for different number of clusters 
(𝑛𝑛𝑐𝑐), where the maximum silhouette value indicates the best quality of clustering.  

The objective of well control optimization level in this study is to improve oil recovery by delaying 
early water breakthrough in some wells. Hence, following Sefat et al. (2016), the realization selection 
at well control optimization level is started by calculating a pairwise distance between the well water 
cut curves of all model realizations, given by: 

𝐷𝐷�𝑚𝑚𝑖𝑖,𝑚𝑚𝑗𝑗� = �� �𝑓𝑓𝑤𝑤𝑐𝑐𝑔𝑔(𝑚𝑚𝑖𝑖, 𝑡𝑡) − 𝑓𝑓𝑤𝑤𝑐𝑐𝑔𝑔�𝑚𝑚𝑗𝑗, 𝑡𝑡�� 𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓

𝑡𝑡=0

𝑛𝑛𝑝𝑝

𝑔𝑔=1

 (15) 

where 𝑓𝑓𝑤𝑤𝑐𝑐𝑔𝑔(𝑚𝑚𝑖𝑖, 𝑡𝑡) is the water cut in the 𝑔𝑔th production well as a response of model 𝑖𝑖 (𝑚𝑚𝑖𝑖) at time 𝑡𝑡, 𝑛𝑛𝑝𝑝 
is the total number of production wells, and 𝑡𝑡𝑓𝑓 is the final production time. The 𝑛𝑛𝑟𝑟 × 𝑛𝑛𝑟𝑟 dissimilarity 
matrix is then projected into two-dimensional space using multidimensional scaling (MDS) (Borg and 
Groenen 2003), preserving the Euclidean distance between data points in 2D as close as possible to the 
distance measured in the original space (Eq. (15)). K-means clustering followed by average silhouette 
value analysis is performed to group model realizations into 𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 clusters, similar to well placement 
optimization level. At both optimization levels, the realization closest to the center of each cluster is 
selected as the representative of that cluster (following Scheidt and Caers (2009) and Sefat et al. (2016)).  
 
Multi-Solution Optimization Framework (MSOF) for well placement and control 
Fonseca et al. (2014) and Haghighat Sefat (2016) showed that in optimization problems with a large 
number of control variables, the search space is characterized by several local optima with objective 
values close to each other. Therefore, the developed MSOF explores the search space to identify 
multiple sets of solutions with distinctly different control variables but close-to-optimum objective 
values. The multiple sets of solutions can be considered as realizations of the (uncertain) control 
variables. A similar realization selection approach, as the one explained in the previous section, can 
then be employed to select an ensemble of representative optimal solutions from each optimization 
level. 
Solutions with low objective function values (𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁)) or with control variables values close to the 
optimal solution already selected are not good for the representative ensemble of optimal solutions from 
each optimization level. Hence, only the representative solutions with distinct differences in decision 
variables are selected from the top cases with objective values greater than a specified threshold, defined 
as 𝑝𝑝% of the maximum objective value (𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚) achieved. The optimal value of 𝑝𝑝 (𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜%) depends on 
two competing criteria: distinct dissimilarity of the selected solutions, and proximity of the objective 
value of the selected cases to the maximum objective value. Selecting a large percentage of cases at 
each level (e.g. the extreme case of all cases) captures the maximum diversity between optimization 
scenarios. However, the selected cases do not all have the potential to achieve a close-to-optimum 
objective value after the next level of optimization and therefore do not qualify as an acceptable final 
solution. In this study, a sensitivity analysis showed that selecting 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 = 0.8 at each optimization level 
(i.e. all cases with objective values in the range of  [𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚
 , 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚] are selected, where 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 denotes 
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the maximum objective value achieved) provides the best performance in both sufficiently capturing 
the ensemble diversity and providing close-to-optimum objective values. 
The similarity/dissimilarity of the selected solutions are measured as a pairwise distance between their 
corresponding control variable vectors, normalized into [0,1] using Eq. (2). At well placement 
optimization level, the employed approach calculates distances between reservoir grids with active 
wells irrespective of well names (Salehian et al. 2020) while conventional Euclidean distance is used at 
the well control optimization level. The selected solutions are then projected onto two-dimensional 
space using MDS followed by k-means clustering, accompanied by average Silhouette analysis to 
identify optimum number of clusters. One representative solution is then selected from each cluster, 
resulting in 𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 representative solutions, to be transferred to the next optimization level. 
 
Case study – Brugge model 
Brugge (model) is a benchmark reservoir model based on a North Sea field (Peters et al. 2010). The 
model consists of 139 × 48 × 9 (total of 60,048) grid blocks of which approximately 45,000 are active. 
The reservoir permeability is moderately heterogeneous. In this example, the field is developed with 
five vertical producers and five vertical injectors all of which are fully perforated in all layers. The total 
production time is 30 years. Figure 1 shows the top structure of the model with the base case well 
locations. The uncertainty in the model description is quantified by 104 equiprobable realizations of the 
permeability, porosity, and net-to-gross (NTG) value distribution (Peters et al. 2013). 
 

 
Figure 1-Top structure of the Brugge model. 

 
The objective function, NPV (Eq. (1)), is calculated using the economic parameters provided in Table 
1. 150 and 300 iterations are performed at well placement and control optimization levels, respectively. 
Top (𝑖𝑖, 𝑗𝑗) locations of the wells are optimized during well location optimization level, which results in 
10 × 2 = 20 control variables. A minimum inter-well distance constraint of 200 𝑚𝑚 (equivalent to 2 
grid blocks) is imposed during well placement optimization level using a penalty method following Lu 
et al. (2017a). The producers are all controlled by Bottom Hole Pressure (BHP) varying between 725 
and 1595 𝑝𝑝𝑝𝑝𝑝𝑝, while the injectors are each controlled by water injection rate varying between 0 and 
6289 𝑆𝑆𝑆𝑆𝑆𝑆/𝑑𝑑𝑑𝑑𝑑𝑑. The producers are shut when their water cut exceeds the economic value of 90% 
calculated using Table 1 economic parameters. 30 control steps (of 1 year each) is considered during 
well production/injection control resulting in total of 30 × 10 = 300 control variables.  
 

Table 1-Economic parameters for calculating NPV 
Parameter Value 
Oil price 50 USD/STB 
Water production cost 6 USD/STB 
Water injection cost 3 USD/STB 
Yearly discount rate 10% 
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Figure 2 shows the two-dimensional map of model realizations based on the normalized permeability 
distance and cumulative oil production. The optimum number of clusters is identified to be 4 (𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜𝑡𝑡 =
4) based on the average Silhouette analysis (Figure 3) as the max value is achieved with four clusters.  
The realization closest to the center of each cluster is selected as the cluster representative (Figure 4) 
and the selected realizations are employed during the robust, well location optimization level. 
 

 
Figure 2-Two-dimensional map of all realizations based on permeability distance and cumulative oil 

production. 
 

 
Figure 3-Average Silhouette value of all data points for different number of clusters in k-means. 

 

 
Figure 4-K-means clustering of reservoir model realizations considering four clusters, at well 

placement optimization level. Red points show the cluster representatives. 
 
Figure 5 shows the improvement in mean NPV of the selected realizations during well placement 
optimization iterations. The dissimilarities between the top selected well location solutions, within an 
E(NPV)  shortfall of 20% as compared to the max case, are measured followed by projection on 2D 
using MDS (Figure 6). Each data point in Figure 6 represents a well location solution with the color 
showing E(NPV) over selected realizations confirming that a close to maximum objective value can be 
achieved by different well location solutions. The optimum number of clusters is identified to be 4 
(Figure 7-left). The solution with the maximum NPV is selected as the representative of each cluster 
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(shown by red points in Figure 7-right), considering the objective of choosing solutions with high 
objective values.  
 

 
Figure 5-Expected objective value of the selected ensemble of realizations during well placement 

optimization. 

 
Figure 6-Projection of selected well placement solutions into a two-dimensional space using MDS 

(color shows objective value of each solution). 
 

 
Figure 7- (Left)Mean Silhouette value analysis for the selected well placement solutions (Right) K-

means clustering of the selected well placement solutions considering four clusters. Red points show 
the cluster representatives. 

 
Figure 8 shows the representative well placement solutions, named as 𝐿𝐿1, 𝐿𝐿3, 𝐿𝐿4, and 𝐿𝐿64, where 
subscripts denote the ranking of the solutions based on their 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁) over the selected ensemble of 
realizations. Note that the case with the maximum objective value (𝐿𝐿1), i.e. the optimal solution of the 
classic single-solution approach, is automatically selected as a representative solution. Figure 9 shows 
the Probability Density Function (PDF) and Cumulative Density Function (CDF) when the selected 
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well placement solutions are applied to all model realizations as compared to the base case, while Table 
2 shows the corresponding mean and standard deviations. The bi-modal shape of PDF in Figure 9 stems 
from the relationship between the porosity and permeability of realizations derived from the well logs 
from the truth models (Peters et al. 2013). A very similar global performance is observed by the selected 
ensemble of solutions (Table 2) while they provide a reasonable degree of flexibility in the well 
locations (Figure 8). It should be noted that a suboptimal member of the selected ensemble of solutions 
(e.g. 𝐿𝐿4 here) can potentially provide a better global performance over all realizations, showing the 
robustness of the developed multi-solution framework. 
 

 
Figure 8-Four optimal well locations obtained by MSOF 

. 

   
Figure 9-(left) PDF (right) CDF for the optimal well placement solutions obtained by MSOF as 

compared to the base case  
 

Table 2-Mean and standard deviation of the optimal well placement solutions over all realizations 
Solution 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁) × 109 𝜎𝜎(𝑁𝑁𝑁𝑁𝑁𝑁) × 108 
Base Case 1.93 2.55 
L1 2.30 3.64 
L3 2.26 3.66 
L4 2.31 3.42 
L64 2.15 3.45 

 
A new set of reservoir model realizations are selected, based on the distance measure described before 
(Eq. (15)), for each member of the ensemble of optimal well location solutions prior to well control 
optimization. Figure 10 shows the clustering performance, where the optimal number of clusters are 
determined using average Silhouette value analysis for each case. The control settings for each optimal 
well location solutions are then individually optimized at the next optimization level. Figure 11 shows 
improvement in the E(NPV) of the corresponding ensemble of reservoir model realizations during 300 
iterations of well control optimization for each optimal well location solutions.  
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Figure 10- K-means clustering for reservoir model realization selection for each member of the 

ensemble of optimal well location solutions prior to well control optimization. Red points show the 
cluster representatives. 

 
Figure 11- E(NPV) of the corresponding ensemble of reservoir model realizations during well control 

optimization for each optimal well placement scenario. 
 
A similar clustering approach is applied to the control solutions where an ensemble of representative 
solutions is selected from the top cases within an E(NPV) shortfall of less than 20% w.r.t. the max case. 
Conventional Euclidean distance is used to measure the dissimilarity between control scenarios 
followed by MDS to map them into two-dimensional space (Figure 12). Figure 13 shows the k-means 
clustering where the optimum number of clusters is determined by average Silhouette value analysis. 
The control scenario with the maximum NPV is then selected from each cluster as the representative of 
that cluster, resulting in a total of twelve optimal well control scenarios for all four well placement 
strategies.  
 
The optimization trajectory as a result of using a gradient-based algorithm for optimizing well control 
(i.e. a continuous variable) is clearly shown in Figure 12 while a more scattered search is performed 
during well location optimization level with discrete variables (Figure 6). This characteristic of the 
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optimization algorithm limits the exploration of the search space. Further research is currently ongoing 
to achieve the maximum level of diversity in close-to-optimum solutions by enhancing the exploration 
of the search space, especially at the well location optimization level unlike at the well control one 
where lower diversity of selectable solutions is generally accepted due to the flexible nature of the well 
control operations. 

 
Figure 12- Projection of selected well control solutions corresponding to four optimal well locations 

into a two-dimensional space using MDS. 

 
Figure 13 - K-means clustering followed by selection of the representative well control solutions, for 
each optimal well location. The optimal number of clusters for each ensemble is identified by average 

Silhouette value analysis. 
 
Table 3 shows the mean and standard deviation of the final ensemble of close-to-optimum scenarios 
over all realizations, where e.g. 𝐿𝐿3.𝐶𝐶268 denotes the 268th control scenario, ranked based on 𝐸𝐸(𝑁𝑁𝑃𝑃𝑉𝑉) 
during the well control optimization, using well location solution 𝐿𝐿3. It can be seen that 𝐿𝐿4.𝐶𝐶231 
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delivers the greatest global performance (over all reservoir model realizations) while only 𝐿𝐿1.𝐶𝐶1 would 
be obtained as the single optimal solution using traditional, single-solution-transfer optimization 
frameworks. Moreover, a sub-optimal control scenario (i.e. with lower expected objective function 
value over the selected ensemble of realizations) could deliver higher global performance (over the full 
ensemble of realizations)(e.g. 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁)𝐿𝐿1.𝐶𝐶154 > 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁)𝐿𝐿1.𝐶𝐶1 and 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁)𝐿𝐿4.𝐶𝐶231 > 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁)𝐿𝐿4.𝐶𝐶1 ), 
demonstrating the robustness of the developed MSOF and it efficiency in exploration of the search 
space . 
The sequential optimization loop was terminated since no further improvements in the expected 
objective value was achieved at the second loop. 𝐿𝐿1.𝐶𝐶154, 𝐿𝐿3.𝐶𝐶150, 𝐿𝐿4.𝐶𝐶231, and 𝐿𝐿64.𝐶𝐶1 are 
selected as the optimal control scenarios with the highest 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁) for each well location solution. 
Figure 14 shows the CDF of selected solutions compared to the base case while Figure 15 and Figure 
16 show the injection rate and BHP for these scenarios, respectively. A realistic level of variability in 
the optimal location and control is observed while the objective value varies in a relatively small range 
[2.80×109 - 3.08×109 USD], indicating the possibility of achieving a close-to-optimum objective value 
via different field development/control scenarios.  

Table 3- Mean and standard deviation of the optimal solutions over 104 realizations. 
Solution 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁) × 109 𝜎𝜎(𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁) × 108) Solution 𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁) × 109 𝜎𝜎(𝐸𝐸(𝑁𝑁𝑁𝑁𝑁𝑁) × 108) 
𝐿𝐿1.𝐶𝐶1 2.85 4.60 𝐿𝐿4.𝐶𝐶1 2.88 4.71 
𝐿𝐿1.𝐶𝐶154 3.00 4.59 𝐿𝐿4.𝐶𝐶231 3.08 4.76 
𝐿𝐿1.𝐶𝐶265 2.78 4.42 𝐿𝐿4.𝐶𝐶246 2.85 4.45 
𝐿𝐿3.𝐶𝐶1 2.84 4.56 𝐿𝐿64.𝐶𝐶1 2.80 4.61 
𝐿𝐿3.𝐶𝐶150 2.93 4.71 𝐿𝐿64.𝐶𝐶126 2.76 4.57 
𝐿𝐿3.𝐶𝐶268 2.70 4.39 𝐿𝐿64.𝐶𝐶263 2.58 4.32 

 

  

  
Figure 14 – CDF of the representative control solutions based on four optimal well locations. 
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Figure 15-Optimal water injection rates based on four optimal well locations, obtained by MSOF.  

 

 
Figure 16-Optimal BHP values based on four optimal well locations, obtained by MSOF. 

 
Conclusions 
A robust multi-solution optimization framework is developed to provide the operational flexibility by 
offering multiple robust field development and control scenarios by efficient exploration of the search 
space. Systematic clustering techniques were developed to select an ensemble of realizations to capture 
the underlying model uncertainties, as well as an ensemble of solutions with enough differences in 
control variables but close-to-optimum objective values, at each optimization level. SPSA was 
employed in a multi-level, sequential, iterative approach to find optimal well placement and control 
scenarios. The proposed framework was applied to a benchmark case study. 

• The systematic realization selection process, tailored to the objective of the subsequent 
optimization stage, efficiently represented the characteristics of full ensemble of realizations 
while significantly reducing the computation time of robust optimization. 
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• Estimation of the stochastic gradients at each iteration using a 1:1 ratio between the ensemble of 
control variables perturbations and the ensemble of selected model realizations substantially 
reduced the computation time while preserving the accuracy of approximated gradient.  

• Using a gradient-based algorithm for optimizing well control with continuous variables resulted 
in a specific optimization trajectory, while a more scattered search was performed during well 
location optimization level with discrete variables. 

• Multiple optimal well placement and control solutions with close-to-optimum objective values 
but different decision variables were obtained.  

• Selected suboptimal location/control solutions over the small subset of realizations can outdo the 
optimal one when applied to all realizations, highlighting the advantage of here-developed 
MSOF in order to provide a more robust solution and the much-needed operational flexibility 
in field optimization problems. 
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