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The backward Euler-Maruyama (BEM) method is employed to approximate the invariant 
measure of stochastic differential equations, where both the drift and the diffusion 
coefficient are allowed to grow super-linearly. The existence and uniqueness of the 
invariant measure of the numerical solution generated by the BEM method are proved 
and the convergence of the numerical invariant measure to the underlying one is 
shown. Simulations are provided to illustrate the theoretical results and demonstrate the 
application of our results in the area of system control.
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1. Introduction

Invariant measure is one of essential properties of stochastic differential equations (SDEs), when long time behaviours of 
SDEs are investigated, such as the persistence for biology and epidemic SDE models in [1,17]. However, the explicit forms 
of neither the true solutions nor the invariant measures to SDEs are easily found. Therefore, numerical methods become 
extremely important when SDE models are applied in practice.

For SDEs of the Itô form{
dXt = μ(Xt)dt + σ(Xt)dWt , for t > 0,

X0 = x ∈Rd,
(1)

Yuan and Mao [30] studied the numerical invariant measure generated by the Euler-Maruyama (EM) method when both 
the coefficients μ(·) and σ(·) obey the global Lipschitz condition. Under the same condition on the coefficients, Weng and 
Liu [25] investigated the numerical approximation to invariant measures of SDEs by the Milstein method. When some non-
global Lipschitz terms appear in the coefficients, the backward Euler-Maruyama (BEM) method (also called the semi-implicit 
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Euler method) and the truncated EM method were employed to handle the super-linearity. Liu and Mao [16] discussed the 
BEM method for numerically approximating the invariant measure when the one-sided Lipschitz condition was imposed 
on the draft coefficient μ(·) but the global Lipschitz condition was still required for the diffusion coefficient σ(·). Jiang 
et al. [11] further studied the stochastic θ -method for this problem and discussed the effects of the different choices of 
θ on the requirements on the coefficients. When the constraints on the coefficients were further released, Li et al. [15]
proposed the truncated EM method to approximate the invariant measure of the underlying SDEs. For SDEs with Markov 
switching, Bao et al. [3] investigated the numerical approximations to the invariant measures by the EM method and Li 
et al. [14] studied the similar problem with less constrains on the coefficients by the BEM method, in both of which the 
r-Wasserstein distance was employed for the discussion on the convergence of numerical invariant measures to underlying 
ones.

In this paper, we revisit the BEM method and study the numerical approximation to invariant measures of SDEs with both 
the drift and diffusion coefficients containing super-linear terms. Compared with the existing work by Liu and Mao [16], 
where only the drift coefficient was allowed to grow super-linearly, our work releases the condition on the diffusion coef-
ficient such that the super-linear terms are also allowed. To achieve such a better result, a different technique is employed 
in this paper. Briefly speaking, instead of directly forming an iteration for the numerical solution of Xt , we construct an 
iteration for the numerical approximation of some linear combination of Xt and σ(Xt). It should be mentioned that this 
technique is inspired by Andersson and Kruse [2]. Similar techniques were employed for the studies on the finite time con-
vergence and the stability of the trivial solution of the BEM method in [5] and the stochastic θ method in [23], and for the 
study on the infinite time convergence of BEM method to the random periodic solution of the SDEs with additive noise in 
[26]. But, to our best knowledge, there is no existing work on the numerical approximation to invariant measures of SDEs 
with the super-linear drift and diffusion coefficients by using the BEM method.

Therefore, the result obtained in this paper can be regarded as an extension to [16] and a complement to the study 
on BEM method in the aspect of numerical invariant measures. In addition, our results can support the application of 
theorems on stabilisation of SDEs in the distribution sense that were recently developed in [13,29] (see Example 5.2 for the 
illustration). It should be mentioned that the numerical invariant measure of SDEs obtained in this paper could also assist in 
approximating the corresponding high-dimensional partial differential equation such as the high-dimensional Fokker–Planck 
equation. With the help of the neural network architecture, such an approach through a probabilistic representation to learn 
the solution of some partial differential equation could be quite efficient shown in [8].

Other approaches were also proposed and investigated for approximating invariant measures of SDEs. An incomplete list 
includes [6,20,22], among many others. The BEM method, as the simplest version of implicit methods, was widely studied 
for many different types of stochastic equations in [7,19,27,31,32]. We just mention some of them here and refer the readers 
to the reference therein for more works.

We end this introduction with some discussions on the competition between explicit and implicit methods. For stiff 
ordinary differential equations, implicit methods are preferred due to its good performance even on a time grid with a 
large step size as discussed in [24]. But for its stochastic counterpart, explicit methods are also popular as shown in [10,18]. 
Since many sample paths are usually needed to be simulated in practice, explicit methods have their advantages like simple 
algorithm structure, easy to implement and no need to solve nonlinear equation systems in each iteration, if simulations are 
conducted in some finite short intervals. For simulations of long time behaviours of SDEs, implicit methods that pose better 
stability properties allow large step-sizes and have low total computational costs. More interesting and detailed discussions 
on this topic can be found in, for example [9,21].

2. Mathematical preliminaries

Let W : [0, ∞) ×� → Rn be a standard Wiener process on the probability space (�, F , P ), with the filtration defined by 
F t

s := σ {Wu −Wv : s < v ≤ u < t} and F t =F t
0 = ∨0≤s≤tF t

s . Throughout this paper, we shall use | · | for the Euclidean norm 
and 〈·, ·〉 for the inner product in the Euclidean space. For a vector u, we define ‖u‖ := √

E[|u|2] and ‖u‖p := p
√
E[|u|p]. 

For a matrix B , ‖B‖HS means its Hilbert-Schmidt norm. In addition, we define ‖B‖ :=
√
E[‖B‖2HS] and ‖B‖p := p

√
E[‖B‖p

HS]. 
Denote a ∨ b the larger one between scalars a and b, and a ∧ b the smaller one. The family of all probability measures on 
Rd is denoted by P(Rd). Let B(Rd) denote the family of all Borel sets in Rd .

Before we introduce the r-Wasserstein distance, we give a brief introduction to the coupling of probability measures on 
the same measurable space and refer the readers to Chapter 5 in [12] for detailed discussion on the coupling.

Let μ1 and μ2 be probability measures on the same measurable space (S, S). A coupling of μ1 and μ2 is a probability
measure ν on the product space (S × S, S×S) such that the marginals of ν coincide with μ1 and μ2, i.e. ν(A × S) = μ1(A)

and ν(S × A) = μ2(A), for any A ∈ S .
The r-Wasserstein distance between μ1, μ2 ∈P(Rd) for any r ∈ (0, 1] is defined by

Wr(μ1,μ2) = inf
ν∈C(μ1,μ2)

∫
Rd×Rd

|Y1 − Y2|rν(dY1,dY2),

where C(μ1, μ2) denotes the set of all couplings of μ1 and μ2.
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Given a stochastic process Xt on (�, F , P ), denote the transition probability kernel of Xt by Pt(x, B) for any t > 0
and any B ∈ B. Sometimes we use δx to emphasise the initial value x and denote Pt(x, ·) by δxPt . A probability measure 
π(·) ∈P(Rd) is called an invariant measure of Xt , if

π(B) =
∫
Rd

Pt(x, B)π(dx)

holds for any t > 0 and any B ∈ B(Rd).
In this paper, we are interested in the stationary measure of the solution to the Rd-valued SDE of the form{

dXt = [ − AXt + f (Xt)
]
dt + g(Xt)dWt , for t > 0,

X0 = x ∈Rd.
(2)

We separate the drift coefficient into two parts with the emphasis on the negative linear term −AXt , as it could be regarded 
as stabiliser term following [28]. We impose several assumptions on A, f and g as follows.

Assumption 2.1. The linear operator A : Rd → Rd is self-adjoint and positive definite.

Assumption 2.1 implies the existence of a positive, increasing sequence (λi)i∈[d] ⊂ R such that 0 < λ1 ≤ λ2 ≤ . . . λd , and 
of an orthonormal basis (ei)i∈[d] of Rd such that Aei = λiei for every i ∈ [d], where [d] := {1, . . . , d}.

Assumption 2.2. The mappings f : Rd → Rd and g : Rd → Rd×n are continuous. Moreover, there exists a constant q ∈
[1, ∞) and a positive L such that

| f (u1) − f (u2)| ∨ ‖g(u1) − g(u2)‖HS � L(1 + |u1|q−1 + |u2|q−1)|u1 − u2|,
for u1, u2 ∈ Rd .

It is straightforward to derive from Assumption 2.2 that

| f (u)| ∨ ‖g(u)‖HS � (2L + (| f (0)| ∨ ‖g(0)‖HS))(1 + |u|q)
for u ∈Rd .

Assumption 2.3. There exist c, c1, c2 ∈ (0, ∞) and l1 � 2, l2 � 4q − 3 such that

2〈u1 − u2, f (u1) − f (u2)〉 + l1‖g(u1) − g(u2)‖2HS � c|u1 − u2|2
and

2〈u, f (u)〉 + l2‖g(u)‖2HS ≤ c1 + c2|u|2

for all u, u1, u2 ∈ Rd .

It is well known that under these assumptions the solution Xt : [0, ∞) × � → Rd to (2) is uniquely determined in [17]. 
To show the solution to SDE (2) is uniformly bounded in Lp sense, i.e.,

sup
t�0

‖Xt‖p
p < ∞,

and is Hölder-continuous in the temporal variable (see Proposition 3.1 and Proposition 3.2 in Section 3), which are two 
sufficient conditions to guarantee the existence and uniqueness of invariant measure of SDE (2), we need an additional 
assumption as imposed below.

Assumption 2.4. Recall that λ1 is the smallest eigenvalue of A. The constants c and c2 from Assumption 2.3 satisfy that

c ∨ c2 < λ1.

Now, we give a brief revisit to the well-known BEM method.
Let us fix an equidistant partition T h := { jh, j ∈N} with stepsize h ∈ (0, 1). Note that T h stretch along the positive real 

line because we are dealing with an infinite time horizon problem. Then to simulate the solution to (2) starting at 0, the 
backward Euler-Maruyama method on T h is given by the recursion
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X̂( j+1)h = X̂ jh − AhX̂( j+1)h + hf
(
X̂( j+1)h

) + g( X̂ jh)	W jh (3)

for all j ∈N , where the initial value X̂0 = x, and 	W jh := W ( j+1)h − W jh .
The implementation of (3) requires solving a nonlinear equation at each iteration. The well-posedness of the difference 

equation (3) is proved in the next lemma.

Lemma 2.1. Let Assumptions 2.3 and 2.4 hold. Then the BEM method is well defined.

Proof. For any N ∈ N , rewrite the BEM method (3) into

X̂(N+1)h + AhX̂(N+1)h − hf
(
X̂(N+1)h

) = X̂Nh + g( X̂Nh)	WNh.

Define G(u) = u + Ahu − hf (u) for u ∈Rd . By Assumption 2.3, we have

2〈u1 − u2, f (u1) − f (u2)〉 � c|u1 − u2|2
for all u1, u2 ∈ Rd . Then, it is straightforward to see

〈u1 − u2,G(u1) − G(u2)〉 �
(
1+ λ1h − ch

2

)|u1 − u2|2.
Due to Assumption 2.4, 1 + λ1h − ch/2 > 0 holds for all h > 0, which means that G(·) is monotonic. So G(·) has its inverse 
function G−1(·) : Rd → Rd such that for any N ∈ N

X̂(N+1)h = G−1( X̂Nh + g( X̂Nh)	WNh
)
.

That is to say, for any N ∈ N the unique X̂(N+1)h can always be found for the given X̂Nh + g( X̂Nh)	WNh , which completes 
the proof. �

To explore the invariant measure of the numerical solution, we introduce some more notations. For any j ∈ N and 
any B ∈ B(Rd), let P̂ jh(x, B) be the transition probability kernel of X̂ jh . A probability measure π̂ (·) ∈ P(Rd) is called an 
invariant measure of X̂ jh , if

π̂ (B) =
∫
Rd

P̂ jh(x, B)π̂ (dx)

holds for any integer j ∈ N and any B ∈ B(Rd).
We end up this section by pointing out the crucial equality for analysis of the backward Euler-Maruyama in our paper. 

For any a, b ∈Rd , the equality

|b|2 − |a|2 + |b − a|2 = 2〈b − a,b〉 (4)

holds.

3. Some properties of the underlying solution

In this section, we mainly explore properties of the solution to (2) for analysis later.
The first property we will show is the uniform boundedness for the p-th moment of the SDE solution.

Proposition 3.1. Suppose that Assumptions 2.1 to 2.4 hold. Then, for any p ∈ [2, l2 + 1] the solution to (2) satisfies

sup
t�0

‖Xt‖p
p < ∞. (5)

Proof. Due to Assumption 2.4, we have c2 < 2λ1. Then, let ε be a sufficiently small positive number such that pλ1 −
0.5pc2 − ε > 0. By the Itô formula,

E[eεt |Xt |p]� |x|p +E

t∫
0

eεs
[
−(pλ1 − ε)|Xs|p + 0.5p|Xs|p−2

(
2〈Xs, f (Xs)〉 + (p − 1)‖g(Xs)‖2HS

)]
ds.

As p − 1 � l2, Assumption 2.3 indicates
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E[eεt |Xt |p] ≤ |x|p +E

t∫
0

eεs
[
− (pλ1 − ε)|Xs|p + 0.5p|Xs|p−2(c1 + c2|Xs|2)

]
ds

= |x|p +E

t∫
0

eεs
[
− (pλ1 − 0.5pc2 − ε)|Xs|p + 0.5pc1|Xs|p−2

]
ds

Since pλ1 − 0.5pc2 − ε > 0, we know that the polynomial −(pλ1 − 0.5pc2 − ε)|Xs|p + 0.5pc1|Xs|p−2 is always bounded by 
a positive number almost surely for any |Xs| ∈R. Denote the upper bound by K . Hence

E[eεt |Xt |p] ≤ |x|p +
t∫

0

eεs Kds ≤ |x|p + (K/ε)eεt ,

which implies

E[|Xt |p] ≤ |x|p + (K/ε), ∀t ≥ 0.

Therefore, the proof is completed. �
Following a similar argument as in Proposition 5.4 and 5.5 in [4], we can easily get the following bounds.

Proposition 3.2. Suppose that Assumptions 2.1 to 2.4 hold, then there exists a positive constant Cq,A, f ,g which depends on q, d, A, f
and g only, such that

‖Xt1 − Xt2‖� Cq,A, f ,g
(
1+ sup

t�0
‖Xt‖q2q

)|t2 − t1| 12 , (6)

for all t1, t2 � 0. Moreover,

t2∫
t1

∥∥A(
Xs − Xt3

) + f (Xs) − f (Xt3)
∥∥ds� Cq,A, f ,g

(
1+ sup

t�0
‖Xt‖2q−1

4q−2

)|t2 − t1| 32 , (7)

for all t3 ∈ [t1, t2].

The next theorem states that the underlying solution admits a unique invariant measure. With the help of Proposi-
tions 3.1 and 3.2, the following theorem can be proved by following the same approach as the proof of Theorem 2.3 in [3]
or Theorem 7.4 in [15]. So we omit the proof here.

Theorem 3.1. Suppose that Assumptions 2.1 to 2.4 hold. Then the solution to (2) converges in the r-Wasserstein distance to a unique 
invariant measure π ∈P(Rd) with some exponential rate ξ2 > 0 for any r ∈ (0, 1], i.e. for any initial value x

Wr (δxPt,π) � Ce−rξ2t,

where C is a constant independent of t.

4. Main results

In this section we will prove that the BEM method (3) uniquely admits an invariant measure with the help of two 
lemmas, and show the order of convergence of the invariant measure of the BEM to the invariant measure of our target 
SDE (2). We present our three main theorems as follows. Proofs of them are postponed, after some more preparations being 
given.

The first main result in our paper states the existence and uniqueness of the invariant measure of the numerical solution 
generated by the BEM method.

Theorem 4.1. Under Assumptions 2.1, 2.3 and 2.4, for any h ∈ (0, 1) satisfying

h < h∗ := l2 − 1

2λ1 − 2c2
∧ l1 − 1

2λ1 − 2c
,

the backward Euler-Maruyama method (3) converges in the r-Wasserstein distance to a unique invariant measure π̂ ∈ P(Rd) with 
some exponential rate ξ1 > 0 on T h for any r ∈ (0, 1].
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The next theorem states the strong convergence of the BEM method with the rate of 1/2. This result looks similar to 
that in [23] by setting θ = 1 there. But, it should be noted that our assumptions are stronger than those in [23]. So the 
strong convergence is uniform in our case, i.e. the constant C in (8) is independent of t .

Theorem 4.2. Under Assumption 2.1 to Assumption 2.4 and for h satisfying

h < h∗∗ := l2 − 1

2(λ1 − c2)
∧ l1 − 2

4(λ1 − c)
,

there exists a constant C that depends on q, A, f , g and d such that the backward Euler-Maruyama method (3) approximates the true 
solution of (2) on T h with

sup
N

∥∥XNh − X̂Nh
∥∥� Ch1/2. (8)

The final main theorem states the convergence of the numerical invariant measure to the underlying one with the rate 
of 1/2.

Theorem 4.3. Suppose that all the assumptions in Theorems 4.1 and 4.2 hold, then the numerical invariant measure π̂ converges to 
the underlying invariant measure π in the r-Wasserstein distance, that is for any h ∈ (0, h∗ ∧ h∗∗)

Wr (π̂ ,π) = O
(
hr/2

)
holds for any r ∈ (0, 1].

4.1. Two properties of the numerical solution

The next Lemma claims that there is a uniform bound for the second moment of the numerical solution under necessary 
assumptions.

Lemma 4.1. Under Assumptions 2.1, 2.3 and 2.4, for any h ∈ (0, 1) satisfying

h� l2 − 1

2(λ1 − c2)
,

it holds for the BEM method (3) on T h that

‖ X̂Nh‖2 < |x|2 + ‖g(x)‖2HS + c1
λ1 − c2

(9)

for all N ∈ N , where x is the initial data.

Proof. First note that from (4) for any N ∈ N we have that

| X̂Nh|2 − | X̂(N−1)h|2 + | X̂Nh − X̂(N−1)h|2 = 2〈 X̂Nh − X̂(N−1)h, X̂Nh〉. (10)

From (3) we have that

2〈 X̂Nh − X̂(N−1)h, X̂Nh〉 = −2h〈A X̂Nh, X̂Nh〉 + 2h〈 f ( X̂Nh
)
, X̂Nh〉 + 2〈g( X̂(N−1)h

)
	W (N−1)h, X̂Nh〉. (11)

Note that E〈g( X̂(N−1)h
)
	W (N−1)h, ̂X(N−1)h〉 = 0.

Taking the expectation of both sides of (11) and making use of Assumption 2.3 give

‖ X̂Nh‖2 − ‖ X̂(N−1)h‖2 + ‖ X̂Nh − X̂(N−1)h‖2 = 2E〈 X̂Nh − X̂(N−1)h, X̂Nh〉
� −2hE〈(A − c2 I) X̂Nh, X̂Nh〉 − l2h‖g( X̂Nh

)‖2 + 2hc1 + h‖g( X̂(N−1)h
)‖2 + ‖ X̂Nh − X̂(N−1)h‖2.

Then cancelling the same term on both sides gives

(1 + 2h(λ1 − c2))‖ X̂Nh‖2 + l2h‖g( X̂Nh
)∥∥2 � 2hc1 + h

∥∥g( X̂(N−1)h
)∥∥2 + ‖ X̂(N−1)h‖2.

Choose h such that (1 + 2h(λ1 − c2)) � l2 and let α := c1
λ1−c2

. Rearranging the terms above gives(
1+ 2h(λ1 − c2)

)(‖ X̂Nh‖2 + h‖g( X̂Nh
)∥∥2 − α

)
� ‖ X̂(N−1)h‖2 + h‖g( X̂(N−1)h

)∥∥2 − α. (12)

By iteration, this leads to
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‖ X̂Nh‖2 � 1(
1+ 2h(λ1 − c2)

)N (|x|2 + h‖g(x)‖2HS − α
) + α. (13)

Because of Assumption 2.4, the term on the right hand side above can be bounded by |x|2 + ‖g(x)‖2HS + α, which is inde-
pendent of k and h. �

The next result shows two numerical solutions starting from different initial conditions can be arbitrarily close after 
sufficiently many iterations.

Lemma 4.2. Under Assumptions 2.1, 2.3 and 2.4, and let h � (l1 − 1)/(2λ1 − 2c), define X̂Nh and ŶNh solutions of the backward 
Euler-Maruyama scheme on T h with different initial values x, y ∈Rd, respectively. Then

‖ X̂Nh − Ŷ Nh‖�
√
1+ c|x− y|e−ξ1Nh,

where ξ1 = λ1−c
1+2(λ1−c) .

Proof. Define DN := X̂Nh − ŶNh . Let us use (4) again, which allows us to examine the following term:

2E〈DN − DN−1, DN〉
= −2hE〈ADN , DN〉 + 2hE〈 f ( X̂Nh

) − f
(
Ŷ Nh

)
, DN〉

+ 2E〈(g( X̂(N−1)h
) − g

(
Ŷ(N−1)h

)
)	W (N−1)h, DN〉

� 2hE〈(−A + cI)DN , DN〉 − l1h‖g( X̂Nh
) − g

(
Ŷ Nh

)‖2
+ 2E〈(g( X̂(N−1)h

) − g
(
Ŷ(N−1)h

)
)	W (N−1)h, DN − DN−1〉,

where we use Assumption 2.3 to deduce the last inequality and the last term is due to

E〈(g( X̂(N−1)h
) − g

(
Ŷ(N−1)h

)
)	W (N−1)h, DN−1〉 = 0.

This leads to

(1 + 2h(λ1 − c))‖DN‖2 + l1h
∥∥g( X̂Nh

) − g
(
Ŷ Nh

)∥∥2 � ‖DN−1‖2 + h
∥∥g( X̂(N−1)h

) − g
(
Ŷ(N−1)h

)∥∥2
.

Choose h such that (1 + 2h(λ1 − c)) � l1, then by iteration we have

‖DN‖2 + h
∥∥g( X̂Nh

) − g
(
Ŷ Nh

)∥∥2 � 1

(1+ 2h(λ1 − c))N
(‖D0‖2 + h

∥∥g( X̂0
) − g

(
Ŷ0

)∥∥2
HS

)
� 1+ c

(1+ 2h(λ1 − c))N
|x− y|2,

where we make use of Assumption 2.3 and h � 1 to deduce the last line. Since the fact that aN < e−(1−a)N for any a ∈ (0, 1)
and λ1 > c in Assumption 2.4, the assertion follows. �
4.2. The existence and uniqueness of the numerical invariant measure

Now, we are ready to give the proof of Theorem 4.1.

The proof of Theorem 4.1. Due to the Chebyshev inequality, for any initial value x ∈ Rd we obtain that 
{
δxP̂ jh

}
is tight, 

where δx is used to emphasise the initial value x, i.e. δxP̂ jh = P̂ jh(x, ·). Then, a subsequence that converges weakly to an 
invariant measure π̂ ∈P(Rd) can be extracted. By the Hölder inequality and Lemma 4.2, we can see that for any r ∈ (0, 1]

Wr
(
δxP̂ jh, δyP̂ jh

)
� ‖ X̂ jh − Ŷ jh‖rr � ‖ X̂ jh − Ŷ jh‖r � (1+ c)r/2|x− y|re−rξ1 jh. (14)

Then, thanks to Lemma 4.1 and the Kolmogorov-Chapman equation, for any j, l > 0 and r ∈ (0, 2] we have
143



W. Liu, X. Mao and Y. Wu Applied Numerical Mathematics 184 (2023) 137–150
Wr
(
δxP̂ jh, δxP̂( j+l)h

) = Wr
(
δxP̂ jh, δxP̂ jhP̂lh

)
�

∫
Rd

Wr
(
δxP̂ jh, δyP̂ jh

)
P̂lh(x,dy)

�
∫
Rd

(1 + c)r/2|x− y|re−rξ1 jhP̂lh(x,dy)

� 2(1+ c)r/2
(|x|r + ‖ X̂lh‖r

)
e−rξ1 jh

� K2(r)e
−rξ1 jh,

(15)

where

K2(r) := 2(1+ c)r/2
(

|x|r +
(

|x|2 + ‖g(x)‖2HS + c1
λ1 − c2

)r/2
)

.

Now, letting l → ∞ in (15), we have

Wr
(
δxP̂ jh, π̂

)
� K2(r)e

−rξ1 jh.

Moreover, we have

Wr
(
δxP̂ jh, π̂

) → 0, as j → ∞,

which guarantees that π̂ is the unique invariant measure of 
{
δxP̂ jh

}
. Now, assume that π̂1 ∈P(Rd) is the invariant measure 

of X̂ jh with the initial value x and π̂2 ∈P(Rd) is the invariant measure of X̂ jh with the initial value y, we can see

Wr (π̂1, π̂2) �
∫

Rd×Rd

Wr
(
δxP̂ jh, δyP̂ jh

)
ν(dx,dy),

for any x, y ∈Rd with x �= y. Therefore, by (14) the BEM method has a unique invariant measure. �
4.3. The uniform strong convergence of the BEM method

The proof of Theorem 4.2 is presented as follows.

The proof of Theorem 4.2. First note that

XNh = X(N−1)h −
Nh∫

(N−1)h

AXsds +
Nh∫

(N−1)h

f (Xs)ds +
Nh∫

(N−1)h

g(Xs)dWs

= X(N−1)h −
Nh∫

(N−1)h

A
(
Xs − XNh

)
ds − hAXNh

+
Nh∫

(N−1)h

( f (Xs) − f (XNh))ds + hf (XNh)

+
Nh∫

(N−1)h

(
g(Xs) − g(X(N−1)h)

)
dWs + g

(
X(N−1)h

)
	W (N−1)h.

(16)

Define eN := XNh − X̂Nh . Then

2E〈eN − eN−1, eN〉 = −2hE〈AeN , eN〉 + 2hE〈 f (XNh) − f ( X̂Nh), eN〉

+ 2E
〈
−

Nh∫
A(Xs − XNh)ds, eN

〉

(N−1)h
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+ 2E
〈 Nh∫
(N−1)h

( f (Xs) − f (XNh))ds, eN
〉

+ 2E
〈 Nh∫
(N−1)h

(g(Xs) − g
(
X(N−1)h))dWs, eN

〉
+ 2E〈(g(X(N−1)h) − g( X̂(N−1)h))	W (N−1)h, eN〉.

Note that for t ∈ [(N −1)h, Nh], ∫ t
(N−1)h e

T
N−1(g(Xs) − g

(
X(N−1)h))dWs gives a martingale, where aT represents the transpose 

of a vector or matrix a. To see it, define the stopping time τN,K := inf{s : |Xs| > K + |X(N−1)h|}. Note that {τN,K }K∈N is non-
descreasing and limK→∞ τN,K = ∞. Then one can check that 

∫ t∧τN,K
(N−1)h e

T
N−1(g(Xs) − g

(
X(N−1)h))dWs is indeed a martingale. 

Then we have

E
〈 Nh∫
(N−1)h

(
g(Xs) − g(X(N−1)h)

)
dWs, eN

〉
=E

〈 Nh∫
(N−1)h

(
g(Xs) − g(X(N−1)h)

)
dWs, eN − eN−1

〉
.

By Young’s inequality

2ab� ε2a2 + b2

ε2
, ∀a,b > 0,

and Assumption 2.3, we are able to choose ε2
0 := h(λ1 − c)/2 such that

2E〈eN − eN−1, eN〉� 2hE〈(−A + cI)eN , eN〉 − hl1‖g(XNh) − g( X̂Nh)‖2

+ 2ε2
0‖eN‖2 + 1

ε2
0

∥∥∥ −
Nh∫

(N−1)h

A(Xs − XNh)ds
∥∥∥2

+ 1

ε2
0

∥∥∥ Nh∫
(N−1)h

( f (Xs) − f (XNh))ds
∥∥∥2

+ 2
∥∥∥ Nh∫
(N−1)h

(g(Xs) − g(X(N−1)h))dWs

∥∥∥2

+ 2h‖g(X(N−1)h) − g( X̂(N−1)h)‖2 + ‖eN − eN−1‖2.
By Proposition 3.2, we know there exists a constant C depending on q, A, f and g such that

∥∥∥ −
Nh∫

(N−1)h

A
(
Xs − XNh

)
ds

∥∥∥2 +
∥∥∥ Nh∫
(N−1)h

(
f (Xs) − f (XNh)

)
ds

∥∥∥2

� Ch3
(
1+ sup

s�0
‖Xs‖2q−1

4q−2

)
:= βh3.

Besides, by the Itô isometry and the Hölder continuity of X in temporal variable as shown in Proposition 3.2 (reusing C
above),

2
∥∥∥ Nh∫
(N−1)h

(g(Xs) − g(X(N−1)h))dWs

∥∥∥2
�

2cC
(
1+ sups�0 ‖Xs‖q2q

)
l1

h2 := ĉh2.

Note that β is bounded because of Proposition 3.2. Define GN =: g(XNh) − g( X̂Nh). Then from (4) and the estimate above 
we have that

‖eN‖2 − ‖eN−1‖2 + hl1‖GN‖2 = 2E〈eN − eN−1, eN〉 − ‖eN − eN−1‖2 + hl1‖GN‖2

� 2hE〈(−A + cI)eN , eN〉 + 2ε2
0‖eN‖2 + βh3

ε2
0

+ ĉh2 + 2h‖GN−1‖2.
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Define α̂ := 2β+c(λ1−c)
(λ1−c)2

h. Since that 1 + h(λ1 − c) � l1/2, then the inequality above can be rearranged to(
1+ h(λ1 − c)

)(‖eN‖2 + 2h‖GN‖2 − α̂
)
� ‖eN−1‖2 + 2h‖GN−1‖2 − α̂.

By iteration we have

‖eN‖2 + 2h‖GN‖2 �
(
1− 1

1+ h(λ1 − c)N

)2β + c(λ1 − c)

(λ1 − c)2
h,

because X0 = X̂0. Finally due to Assumption 2.4, we have ‖eN‖2 � 2β+c(λ1−c)
(λ1−c)2

h. Then the assertion follows. �
4.4. Convergence of the numerical invariant measure to the underlying counterpart

Now we are ready to show the last main theorem.

The proof of Theorem 4.3. It is clear to see that

Wr (π̂ ,π) �Wr
(
π̂ , δxP̂ jh

) +Wr
(
δxP jh,π

) +Wr
(
δxP jh, δxP̂ jh

)
.

Thanks to Theorems 4.1 and 3.1, the convergences of P̂ jh to π̂ and P jh to π yield

Wr
(
π̂ , δxP̂ jh

)
� K2(r)e

−rξ1 jh and Wr
(
δxP jh,π

)
� Ce−rξ2 jh,

where C is a genetic constant in this proof that may be different from line to line. Then applying Theorem 4.2 gives the 
final assertion. �
5. Numerical examples

In this section, two numerical examples are presented. Example 5.1 is used to illustrate that the BEM method admits a 
unique invariant measure, which then converges to the underlying one. In Example 5.2, we discuss the application of our 
numerical method in the stabilisation of SDEs in the distribution sense.

Example 5.1. Consider a scalar mean-reverting type model with super-linear coefficients

dXt =
(
b − αXt − βX3

t

)
dt + σ X2

t dWt, X0 = x.

By setting b = 1, α = 1, β = 2 and σ = 1, it is not hard to see that all the assumptions are satisfied. Therefore, according 
to our theorems there exists a unique invariant measure for the BEM method. One thousand sample paths are simulated 
with X0 = 5 and h = 0.01, which are then used to construct empirical density functions at different time points. It is clear 
to see from the left plot in Fig. 1 that the shapes of empirical density functions at t = 0.1, t = 0.3 and t = 0.5 are quite 
different but the ones at t = 4 and t = 10 are much more similar, which indicates the existence of the invariant measure. 
From the right plot in Fig. 1, we can see the empirical density functions at the same time point t = 90 but with different 
initial values −5, 5, 15 are quite close to each other, which indicates uniqueness of the invariant measure. To measure 
the difference between empirical density functions at consecutive time points t = ih and t = (i + 1)h for i = 0, 1, ..., the 
Kolmogorov–Smirnov (K-S) test is employed to test a sequence of hypotheses that

H0 : Two samples at t = ih and t = (i + 1)h are from the same distribution,

H1 : Two samples at t = ih and t = (i + 1)h are from different distributions,

for i = 0, 1, ...200. It can be observed from the upper plot in Fig. 2 that as time gets large the differences between empirical 
density functions at consecutive time points vanish, which indicates the existence of the invariant measure for the numerical 
solution. The lower plot in Fig. 2 also confirms this conclusion as the p values are quite close to 1 as time advances.

Now we turn to our second example, which could be regarded as an illustration of the application of our results in the 
system control problem. To make it clear, we brief the problem as follows.

In the very recent works [13,29], the authors discussed the design of some controllers to stabilise some SDEs that 
originally are not stable in distribution. To be more precise, for some unstable SDE (i.e. not stable in the distribution sense){

dXt = f (Xt)dt + g(Xt)dWt , for t > 0,

X0 = x ∈Rd,
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Fig. 1. Left: Empirical density functions at different time points. Right: Empirical density functions at t=90 with different initial values. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. K-S tests for samples at consecutive time points for Example 5.1.

the authors in those two works used some past state Xt−τ , where the small enough constant τ > 0 represents the time 
delay, to design a controller AXt−τ such that the controlled system{

dXt = [
f (Xt) − AXt−τ

]
dt + g(Xt)dWt , for t > 0,

X0 = x ∈Rd (17)

is stable in distribution. In their works, the authors proposed the method to design the controller and proved theoretically 
that the controlled system is indeed stable in distribution. But in practice, numerical methods are always required for the 
applications of those theorems, as the explicit forms of the true solutions of stochastic systems can hardly be found, not to 
mention the explicit forms of the invariant distributions. Therefore, trusted numerical methods are essential for demonstrat-
ing those theorems in [13,29] and displaying the shapes of the invariant distributions. By saying trusted numerical methods, 
we mean those methods that have been proved to be able to approximate the underlying true invariant distributions. And 
this is what we proved in this paper for the BEM method.

It is clear that if the AXt−τ is replaced by AXt in the controlled system (17), then it looks exactly like the SDE (2)
studied in this paper. Since our results obtained in this paper do not include delay terms in the equations, we use AXt as 
the controller in our Example 5.2. In future, we are going to work out the numerical invariant measures for some stochastic 
delay differential equations.
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Fig. 3. K-S tests for samples at consecutive time points for Example 5.2.

Example 5.2. Consider a two dimensional SDE⎧⎪⎨⎪⎩
dXt,1 = [

10+ 2Xt,1 − Xt,2
]
dt + [

0.5+ 0.1Xt,2
]
dWt,1,

dXt,2 = [
5+ Xt,1 + 3Xt,2 − X3

t,2

]
dt + [

0.3+ 0.1
(
Xt,1 + X2

t,2

)]
dWt,2,

X0 = (
5,5

)
which is unstable in distribution for any initial data. According to theorems in [13,29], one can design a controller

A =
(−5 0

−2 −4

)
such that the controlled system{

dXt,1 = [
10− 3Xt,1 − Xt,2

]
dt + [

0.5+ 0.1Xt,2
]
dWt,1

dXt,2 = [
5 − Xt,1 − 3Xt,2 − X3

t,2

]
dt + [

0.3+ 0.1
(
Xt,1 + X2

t,2

)]
dWt,2

(18)

is stable in the distribution sense. But, in practice one may further ask the question: what does the unique distribution look 
like?

To answer the question, one may turn to our results in this paper. Since it is not hard to check that coefficients of (18)
satisfy the requirements, we can regard the numerical invariant distribution generated by the BEM method as a trusted ap-
proximate to the underlying one. 1000 sample paths generated by the BEM method with the step size of 0.05 are simulated. 
Similar to Example 5.1, the K-S test is applied to illustrate that the distributions generated by the BEM method indeed tend 
to a unique one as the time advances. The asymptotic behaviour of the K-S statistics in Fig. 3 confirms it. More importantly, 
Fig. 3 also indicates that one does not have to simulate sample paths for long time to see the invariant distribution, as 
the differences between empirical distributions decay to zero in a quite fast way. Therefore, to see the shape of the unique 
distribution of (18), it is sufficient to use the empirical distribution of the numerical solutions generated by the BEM method 
at relatively small time point. Fig. 4 displays the empirical density function of the solution (Xt,1, Xt,2) at t = 4, which could 
be used to answer the question raised in Example 5.2. In practice, one can further use some non-parametric and parametric 
approaches to find out what the distribution is and the estimated values of parameters of it.

To end up this section, we give a short informal discussion on the potential application of our results in numerical 
approximates to stationary Fokker-Planck equations. It is well known that if there exists a unique invariant measure π for 
the SDE

dXt = μ(Xt)dt + σ(Xt)dWt,

then the true π can be found by solving the following partial differential equation (PDE)

1

2

∂2

∂x2
(
σ 2π

) − ∂

∂x

(
μπ

) = 0 with the condition
∫

x∈Rd

π(x)dx = 1. (19)

The numerical invariant measure π̂ obtained in this paper can be regarded as a good estimator for the solution of (19), 
as the convergence of π̂ to π actually has been proved in this paper. For example, Fig. 4 indeed display the solution to 
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Fig. 4. Empirical density function at t = 4.

the stationary Fokker-Planck equation that is corresponding to the SDE (18). Fokker-Planck equations and their stationary 
forms are of importance on their own rights in various problems arising in chemical reactions, statistical physics, and 
fluid mechanics, however, their practical use is hindered by the curse of dimensionality. Based on the success of [8], it is 
expected that under some smart design of neural network architecture through the probabilistic representation and the 
numerical simulation, one may establish an effective stochastic framework for the PDE (19), which could avoid the curse of 
dimensionality.

6. Conclusion and future research

In this paper, we revisited the classical BEM method and showed the existence and uniqueness of its invariant measure 
when both the drift and the diffusion coefficients are allowed to contain some super-linear terms. In addition, the con-
vergence of the numerical invariant measure to its underlying counterpart was also proved. Numerical simulations were 
provided to demonstration our theorems and their potential applications in system controls.

As we mentioned occasionally in this paper, there are many works that have not been done in this area. One definitely 
interesting work is to extend the results in this paper to stochastic delay differential equations, for which the concept of 
invariant measure is quite different from the case of SDEs. Another question that is worth to be considered is the numerical 
invariant measure of hybrid SDEs with super-linear drift and diffusion coefficients, in which the switches among different 
modes would play important roles in the stability in distribution of the whole system.
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