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Abstract
Musculoskeletal and neurological disorders are the most common causes of walking problems among older people, and 
they often lead to diminished quality of life. Analyzing walking motion data manually requires trained professionals and 
the evaluations may not always be objective. To facilitate early diagnosis, recent deep learning-based methods have shown 
promising results for automated analysis, which can discover patterns that have not been found in traditional machine learn-
ing methods. We observe that existing work mostly applies deep learning on individual joint features such as the time series 
of joint positions. Due to the challenge of discovering inter-joint features such as the distance between feet (i.e. the stride 
width) from generally smaller-scale medical datasets, these methods usually perform sub-optimally. As a result, we propose 
a solution that explicitly takes both individual joint features and inter-joint features as input, relieving the system from the 
need of discovering more complicated features from small data. Due to the distinctive nature of the two types of features, 
we introduce a two-stream framework, with one stream learning from the time series of joint position and the other from 
the time series of relative joint displacement. We further develop a mid-layer fusion module to combine the discovered pat-
terns in these two streams for diagnosis, which results in a complementary representation of the data for better prediction 
performance. We validate our system with a benchmark dataset of 3D skeleton motion that involves 45 patients with muscu-
loskeletal and neurological disorders, and achieve a prediction accuracy of 95.56%, outperforming state-of-the-art methods.

Keywords  Musculoskeletal disorders · Neurological disorders · Deep learning · Convolutional neural network · Feature 
fusion

Introduction

Musculoskeletal and neurological disorders, such as joint 
problems, muscle weaknesses, and neurological defects 
(Table 1), are the most common causes of walking prob-
lems among older people, and they often lead to diminished 

quality of life. The prevalence of gait and balance abnor-
malities appears more than 60% in people aged over 80 
years [1]. Gait analysis is a popular method for diagnosing 
these disorders. However, analyzing walking data manually 
requires trained professionals, and the evaluations may not 
always be objective [2]. We focus on proposing a low-cost 
automated tool for the early prediction and effective therapy 
monitoring of musculoskeletal and neurological disorders. This article is part of the Topical Collection on Image & Signal 
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First, it allows early intervention clinical care before the 
disorders develop into bigger health issues. Second, it sup-
ports clinicians make a more robust diagnosis by providing 
a computer-aided indicator and helps them effectively in 
monitoring patients’ health conditions.

Machine learning (ML) and deep learning (DL) have 
been widely used for automatically identifying health issues 
[3–7]. For example, by using 3D motion analysis, support 
vector machines (SVM) were applied for Parkinson’s disease 
classification in [8] from gait signals. Begg et al. [9] also 
classified young-old gait types with SVM from joint angle 
features. However, in the medical domain, such conventional 
approaches have restricted ability to model complicated data 
due to their limited capacity. They require considerable 
understanding and expertise for feature representation, i.e., 
feature engineering, since they have limited capability in 
processing raw data [10]. While deep learning allow multi-
level abstractions of the raw data for decision making due 
to its deep architecture of non-linear hidden layers [11]. It 
facilitates the automatic diagnosis of disorders. While DL 
approaches are more advantageous with their deep hidden 
layer architectures. For instance, Davarzani et al. [12] used 
the long short-term memory (LSTM) network for human 
gait recognition from foot angle movements and achieved 
better performance than linear regression. McCay et al. 
[13] applied deep convolutional networks and achieved bet-
ter prediction performance in cerebral palsy diagnosis than 
SVM, decision tree, and k-nearest neighbors algorithms 
(KNN).

Among different DL architectures, convolutional neural 
networks are very popular and have achieved promising per-
formance on many diagnostic tasks [14–16]. However, these 
networks heavily rely on large datasets to avoid overfitting 
[17]. Unfortunately, large datasets are often not available 
in medical video/image analysis due to the restrictions on 
sharing data publicly in this domain. This makes it difficult 
to discover inter-joint correlations that are important for cap-
turing coordination among different joints of human gait 
from raw joint features. We also observed that the majority 
of existing work only applies DL on individual joint features 
such as the time series of joint positions [13, 18]. As a con-
sequence, these methods usually perform sub-optimally on 
smaller-scale medical datasets.

In this paper, we propose a two-stream CNN (2s-CNN) 
framework that explicitly takes both individual joint features 

and inter-joint features as input, allowing more effective dis-
covery of features for disorder prediction from small data. 
The two different sets of features reflect different patterns of 
human motion data, i.e., the joint position describes the geo-
metric location of an individual joint, and the relative joint 
displacement extracts the correlations of inter joints. To ana-
lyze the coordination and synchronization of different body 
part movements for better modelling walking motion, it is 
important to extract features from different joints simultane-
ously [7]. As such, we include the relative joint displacement 
feature which explicitly contains joint coordination patterns 
to guide the DL model to discover the essential inter-joint 
correlations for better diagnosis outcomes. To optimally 
model such distinctive feature, our network consists of two 
separate streams - a 3D joint position stream (3DJP-CNN) 
learning from the time series of joint position, and a 3D 
relative joint displacement stream (3DRJDP-CNN) learning 
from the time series of relative joint displacement. We fur-
ther introduce a mid-layer fusion module fusing two single 
streams, which facilitates capturing both the individual joint 
information and inter-joint correlations, resulting in a more 
complementary representation of the data.

An extensive evaluation of the proposed framework is 
performed on the 3D skeletal motion dataset [19]. Different 
from [19], which evaluated the performance of a single type 
of feature on different off-the-shelf ML-based classifiers, 
our DL framework takes two types of features as input to 
model different aspects of the skeletal motion to achieve 
state-of-the-art performance. We further report the per-class 
classification performance to show the feasibility of deploy-
ing the framework as a patient diversion system, rather than 
only the overall average classification accuracy as in [19]. 
We justify our two-stream framework design by demonstrat-
ing its superior performance to the individual streams’ as 
a baseline study. To stimulate the research in this area, we 
open-source this project by releasing the source code for 
further validation and development. Our processed dataset 
features a standardized format, the evaluation protocol, as 
well as the augmented data for minimizing data bias. They 
can be downloaded at https://​github.​com/​zhuma​nli/​2s-​CNN.

This paper is organized as follows. Data preparation is 
given in "Data Preparation" section. "Methodology" section 
presents the methodology. Experimental results and abla-
tion studies are provided in "Experimental Results" section. 
"Conclusion" section concludes the research.

Table 1   Class of disorders and 
examples

Class Joint Problem Muscle Weakness Neurological Defect

Sprains [29] Muscular dystrophy [30] Epilepsy [31]
Examples Tendinitis [32] Spinal muscular atrophy [33] Alzheimer’s disease [34]

Osteoarthritis [35] Muscle fatigue [36] Parkinson’s disease [37]
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Data preparation

Here, we explain the public benchmark dataset that we 
employ in this research ("The Dataset"), and our data aug-
mentation strategy to deal with the data bias problem com-
monly found in medical datasets ("Data Augmentation").

The Dataset

We employ the dataset created by Rueangsirarak et al. 
[19]. It consists of 4 classes and 45 walking motions, 
i.e., 10 healthy, 4 joint problems, 18 muscle weakness, 
and 13 neurological defect motions. They were per-
formed by 45 subjects, who were aged between 61 and 
91 years old. The subjects were diagnosed to be one of 
the 4 classes by three medical doctors. The standard 
clinical test was used by medical experts for voluntary 
applicants’ screening and approval, e.g., applicants 
could walk without any assistance and had no other 
medical disorder history that could affect walking, and 
the details can be found in [19]. By applying a randomly 
sampled and population-based study, 5 male subjects 
and 40 female subjects were selected from the appli-
cants’ approved list. The gender bias reflects the bias 
of the voluntary applicants in such a community. The 
data were captured using the Motion Analysis® opti-
cal motion capture system [20] with fourteen Raptor-E 
optoelectronic cameras sampling at 100 Hz. The subjects 
were required to wear a motion capture suit, attached 

with a markers set on their body based on the Helen 
Hayes marker set structure [21], as shown in Fig 1. They 
were asked to walk naturally at their normal walking 
speed for 10 meters. The output of the motion capture 
system is 3D markers’ time-series positions. This optical 
marker-based capture method is advantageous because 
the captured data are more accurate than the markerless 
method, thereby facilitating more accurate diagnosis. 
Finally, the 3D positions of the joints are estimated from 
the marker locations by fitting a virtual character with 
similar body proportions to each subject in the software 
Autodesk MotionBuilder.

We perform normalization in both temporal and spatial 
domains using Autodesk MotionBuilder. For the tempo-
ral dimension, we extract three entire walking cycles of 
each subject from the raw data, and the intermediate cycle 
(includes the complete stance and swing phases) among 

Fig. 1   The optical motion cap-
ture system used with the Helen 
Hayes marker set structure illus-
trated in: (a) female example, 
(b) male example

Fig. 2   The sample of a human walking cycle (progressing from left 
to right)

Journal of Medical Systems (2022) 46:76 Page 3 of 12    76
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three walking cycles is kept since it better represents the 
subjects’ normal walking motions. As the duration of 
each walking cycle is different, we temporally scale them 
using the linear interpolation [22] such that all motions 
will have the same duration. Fig. 2 illustrates a sample 
of a walking cycle. For the spatial dimension, the walk-
ing motion is normalized using rotation and translation 
operations such that the start positions and moving direc-
tions are the same among all motions and are comparable. 
Notice that end effectors such as end toes were removed 
as they are less informative and noisy. We then extracted 
20 main joints that formed the final skeleton structure as 
shown in Fig. 3.

A major advantage of this dataset is that it includes 
multiple disorders, it facilitates the patient diversion sys-
tem. Many existing computer-aided diagnostic systems of 
musculoskeletal and neurological disorders are limited to 
binary classification [23, 24], i.e., they simply differenti-
ate between healthy and unhealthy data without specific 
types of disorders for unhealthy patients. With a model 
developed based on this multi-class dataset, patients can 
be transferred to a specific department as early as pos-
sible thus human resources can be greatly reduced.

Data Augmentation

The used dataset in this study is challenging due to its 
multiple, small-scale, and biased classes of disorders. 
The number of training samples is a critical influenc-
ing factor on the generalization ability of DL models. 
To make the DL model generalize well, augmentation 

techniques such as random scaling, noise addition, sign 
inversion, and motion reverse were applied to generate 
more training samples in cerebral palsy prediction [25]. 
However, the aforementioned techniques only focus on 
intra-class variations. As a result, the augmented data 
may not be effective in alleviating the inter-class similar-
ity problem as multiple class labels have to be considered. 
Here, we apply the synthetic data augmentation method 
mixup [26], resulting in an unbiased, 4 times larger data-
set. This size is reasonable for our model learning, which 
prevents overfitting and generates good performance from 
our experiments.

Mixup [26] fits better to our dataset compared to data 
agumentation methods such as Gaussian noise [27] and 
SMOTE [28]. It generates synthetic data from real samples 
of different classes in an interpolation manner rather than 
adding random noise or generating within the same class. 
This facilitates the generation of reasonable synthetic data 
in scenarios when the data have specific structures (e.g., 
the hierarchical structure for body joint positions and 
angles on a human body) and limited samples are available.

The data augmentation operation is described as follows:

where Xv is a synthetic sample, Xa and Xb are two samples 
randomly selected from class a and b respectively, and λ ∈ 
[0, 1] represents how much contribution to the synthetic data 
from the two original ones. We empirically set λ = 0.9 based 
on the performance of our two-stream CNN framework, and 
the same label as Xa is assigned to the generated sample Xv. 
By doing this, small inter-class similarities will be intro-
duced which encourages the neural network to learn more 
discriminative deep representations to differentiate samples 
from different classes.

The augmentation is done for different cross-valida-
tions. Concretely, for each cross-validation, one fold is 
used for testing, and the remaining folds are firstly used 
to generate synthetic samples, then together with the gen-
erated synthetic samples are used for training. Besides 

(1)Xv = �Xa + (1 − �)Xb

Fig. 3   The overview of the skeleton structure

Table 2   The statistics of the original data and the augmented data

Class Original data With data 
augmentation

Healthy 10 45
Joint Problem 4 45
Muscle Weakness 18 45
Neurological Defect 13 45
Overall 45 180
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presenting the number of samples of the original data, 
the statistic of data with augmentation is also given in 
Table 2.

Methodology

We propose a two-stream convolutional neural network that 
explicitly takes two types of features as input, Fig. 4 illus-
trates its architecture. The 3DJP-CNN stream ("The Joint 
Position Stream") aims at modelling individual joint time 
series from joint positions, and the 3DRJDP-CNN stream 
("The Relative Joint Displacement Stream") aims at extract-
ing inter-joint correlations from relative joint displacements. 
The mid-layer fusion module ("The Two-stream Network 
and Feature Fusion") fuses the two single streams’ high-level 
output features to take advantage of both individual joint 
information and inter-joint correlations.

The Joint Position Stream

As the first stream, we propose 3DJP-CNN that models 
the time series of individual joint positional information 
as shown in Fig. 5. To achieve this, the 3D coordinates 
are modelled as channels and a 2D convolution is applied 
on both temporal frame and spatial joint dimensions. 

Modelling coordinate dimension as a channel guaran-
tees all three-dimensional coordinates can be covered at 
once by a filter rather than part of them to preserve the 
semantics.

More specifically, the input joint positions of this stream 
are represented as a feature tensor S ∈ RT ×J×C, in which T is 
the number of frames, J is the number of joints, and C = 3 
represents the 3 coordinate dimensions of a joint position. 
Then, a 2D CNN layer is applied to obtain the extracted joint 
position feature fjp = Conv2d(S). The filter in the convolu-
tional layer of this stream has the dimension of FT × FJ × C, 
where FT = 3 and FJ = 1, and the strides are both set as 1 in 
our experiment. With this setting, the filter covers all coor-
dinate dimensions at once and moves along the frame and 
joint dimensions. This ensures that the position information 
of every individual joint is encoded, and the local time-series 
information is modeled.

The Rrelative Joint Displacement Stream

As the second stream, we propose 3DRJDP-CNN that mod-
els the correlations among different joint pairs over time as 
shown in Fig. 6. Compared with the commonly used indi-
vidual joint position feature [38, 39], the joint-pair level fea-
ture 3DRJDP is more advantageous. Because it explicitly 
captures the inter-joint coordination patterns and provides 

Fig. 4   Overview of our pro-
posed two-stream framework

Fig. 5   Modelling the time series of individual joint positions Fig. 6   Modelling the inter-joint correlations over time
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more information to the network preventing overfitting of 
learning from a small dataset.

Concretely, given a skeleton sequence, the relative joint dis-
placement is defined by calculating the displacement between 
all the joint pairs except pairs that connect to the same joint 
(i.e., self-loops), and it is represented as the set Q = {Dt (i, j) | 
t = 1, 2, . . . , T ; i, j = 1, 2, . . . , J ; i ≠ j}, where Dt (i, j) denotes 
the relative displacement of joint i and j at time t:

where xi
t
 , yi

t
 , and zi

t
 are the coordinates of joint i. Note that 

Dt (i, j) =  − Dt (j, i).
We represent the input of this stream as the feature 

tensor S′ ∈ RT ×D×C, in which D is the number of J (J − 1) 
correlations since each joint has J − 1 correlations to 
all other joints. Then a 2D CNN layer is used to obtain 
the inter-joint feature frjdp = Conv2d(S′). The filter in 
this convolutional layer has the dimension of FT × FD × 
C, where FT = 3 and FD = J − 1, and the strides are set 
as 1 and J − 1 accordingly. Designing the spatial filter 
size as J −1 not only enables the network to extract the 
inter-joint correlations of each joint but also ensures it 
has the same output feature size as the first stream, which 
facilitates the mid-layer fusion of two single streams at 
the feature level.

The Two‑stream Network and Feature Fusion

We present a mid-layer fusion module that takes advantage 
of the 3DJP and 3DRJDP streams for better prediction per-
formance. Different types of features usually reflect different 
data patterns, and the fusion of them can generate a more 
complementary representation, facilitating better prediction 
performance.

There are two main advantages of mid-layer fusion 
architecture. Firstly, it contains much richer information 
on the original data [40] and does not need to train multi-
ple classifiers compared with the late-fusion. The follow-
on CNN layers further facilitate adaptively adjusting and 
balancing the importance of different feature sets, resulting 
in better prediction outcomes. Secondly, compared with 
an early-fusion scheme (i.e., fusing at the first layer), the 
CNN layers in individual schemes help to extract useful, 
higher-level information from the raw features before 
fusion. It also ensures that the feature sizes in the two 
streams are compatible for fusion, since different raw fea-
ture sets are often incompatible with diverse sizes, dif-
ferent representation spaces of features, etc. We fuse the 

(2)Dt(i, j) = xi
t
− x

j

t, y
i
t
− x

j

t, z
i
t
− z

j

t

outputs of individual streams in their channel dimensions 
as shown in our framework (Fig. 4). In the first stream, 
each value of its output tensor represents the time series 
of an individual joint, and in the second stream, each value 
represents an inter-joint correlation. The fused feature ten-
sor f = concat(fjp, frjdp) takes the advantage from the two 
streams and has the dimension of T2 × J × 2C, it is then 
fed into two CNN layers for further process. After that, 
an adaptive Max Pooling layer is applied to extract the 
salient spatial-temporal information. Finally, a fully con-
nected (FC) layer and a softmax layer are used to perform 
the classification.

The following cross-entropy loss function is applied for 
the evaluation of training and testing:

where p = [p0, . . . , pE−1] is a probability distribution, pi 
represents the probability that a sample belongs to class i. y 
= [y0, . . . , yE−1] is the one-hot representation of class labels, 
and E is the number of classes.

Experimental Results

In this section, we first compare our proposed two-stream 
approach 2s-CNN against ML-based methods. Then, we 
discuss the performance of the two-stream model based 
on every single stream. Finally, the ablation study is 
presented.

All the results are obtained from the proposed network 
implemented by PyTorch and trained in an end-to-end manner 
with Adam optimizer. The hyper-parameters epoch, learning 
rate, and batch size are set as 80, 0.003 and 57 respectively. 
Our evaluation is done by 5-fold cross-validation. The aver-
aged outcome for all cross-validations is presented as the final 
result.

Comparisons with the Other Methods

We compare our method with the start-of-the-art SVM 
approach with different kernels [19] and some other ML-
based methods, including Decision Tree [19, 41], Bayes 
[42], and Random Forest [41]. We also compare with the 
fully connected deep network architecture FCNet that 
was designed in [13] for cerebral palsy prediction. To 
make a fair comparison, both 3DJP and 3DRJDP features 

(3)L = −

E−1
∑

i=0

yilog (pi)
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are used in all these methods, and hyperparameters are 
turned to an optimal configuration in our experiment.

It can be seen in Table 3 that our proposed 2s-CNN 
achieves the best average accuracy of 95.56% on all classes, 
and the 3DRJDP-CNN outperforms 3DJP-CNN, FCNet, and 
ML-based methods. This demonstrates the power of convo-
lutional neural networks and the advantage of fusing 3DJP 
and 3DRJDP features.

Comparisons with Baselines

We build two single-stream networks as baselines. The 
classification accuracy of our two-stream network and 
baselines is shown in Table 3 (the last three lines). We 
observe that 2s-CNN outperforms baselines and achieves 
a significant accuracy improvement of 4.4%. This dem-
onstrates the two feature sets are complementary to each 

Fig. 7   Confusion matrices of 
single-stream and the two-
stream networks

Table 3   Comparisons with 
other methods in accuracy (%)

The bold values represent the best accuracy for each class

 Method  Healthy Joint Problem Muscle 
Weakness

Neurological Defect  Average

Naive Bayes [28] 100.00 75.00 94.44 53.85 82.22
Random Forest [38] 100.00 75.0 83.33 92.31 88.89
Decision Tree [19, 38] 100.00 75.00 77.78 84.62 84.44
SVM (RBF) [19] 100.00 100.00 0.00 23.08 37.78
SVM (Linear) [19] 100.00 75.00 83.33 92.31 88.89
SVM (Polynomial) [19] 100.00 75.00 83.33 92.31 88.89
FCNet [13] 100.00 75.00 77.78 92.31 86.67
3DJP-CNN 90.00 75.00 94.44 84.62 88.89
3DRJDP-CNN 100.00 75.00 94.44 84.62 91.11
2s-CNN 100.00 75.00 100.00 92.31 95.56

Journal of Medical Systems (2022) 46:76 Page 7 of 12    76
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other under our fusion design. In addition, 3DRJDP-
CNN performs on par with or better than 3DJP-CNN 
in all classes. We believe that this is because 3DRJDP 
carries explicit inter-joint correlations, which makes it 
more powerful in distinguishing healthy and unhealthy 
gaits.

To investigate the contributions of single networks 
and the improvement of the fusion module for different 
gait disorders and the healthy classes, Fig. 7 presents the 
confusion matrices. We observe that 3DJP-CNN fails to 

differentiate between healthy and unhealthy classes, and 
3DRJDP suffers for distinguishing three unhealthy classes. 
We argue that this is because 3DJP-CNN does not con-
tain explicit inter-joint correlations. More importantly, 
2s-CNN takes advantage of 3DJP-CNN and 3DRJDP-
CNN by only struggling in two unhealthy classes, i.e., 
joint problem and neurological defects. This indicates that 
the fusion module is having a positive impact on the over-
all classification performance.

Fig. 8   Receiver operating char-
acteristic curves for multi-class 
disorder classification

(a) (b)

(c)

Table 4   Comparison of results 
with baselines on precision, 
recall, f1-measure, and AUC​

The bold values represent the best performance on each metric for each class

 Metric  Network  Healthy Joint Problem Muscle-
Weakness

Neurological 
Defect

 Average

3DJP-CNN 1.00 0.60 0.89 0.92 0.85
Precision 3DRJDP-CNN 1.00 0.75 0.89 0.92 0.89

2s-CNN 1.00 0.75 0.95 1.00 0.92
3DJP-CNN 0.90 0.75 0.94 0.85 0.86

Recall 3DRJDP-CNN 1.00 0.75 0.94 0.85 0.89
2s-CNN 1.00 0.75 1.00 0.92 0.92
3DJP-CNN 0.95 0.67 0.92 0.88 0.85

F1-Measure 3DRJDP-CNN 1.00 0.75 0.92 0.88 0.89
2s-CNN 1.00 0.75 0.97 0.96 0.92
3DJP-CNN 0.95 0.85 0.94 0.91 0.91

AUC​ 3DRJDP-CNN 1.00 0.86 0.94 0.91 0.93
2s-CNN 1.00 0.86 0.98 0.96 0.95
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To make a comprehensive comparison between the 
proposed two-stream network and baselines, besides 
accuracy, precision, recall, f1-measure, receiver operat-
ing characteristic (ROC) curves, and AUC (area under 
the receiver operating characteristic) are also reported in 
Table 4 and Fig. 8. The results show that our proposed 
2s-CNN model achieves consistent superior performance 
on these measure metrics in both individual class and aver-
age evaluations.

To further demonstrate the robustness of the proposed 
methods, their training and testing loss curves are presented 
in Fig. 9. It is can be seen that 2s-CNN generates more con-
sistent and robust curves than 3DJP-CNN and 3DRJDP-
CNN, and 3DRJDP-CNN performs better than 3DJP-CNN. 

This aligns with the results of the abovementioned evalua-
tion results.

Ablation Study

To validate our network architecture, we compare our 
proposed fusion network architecture under different 
CNN and Max Pooling (MaxP) combinations as shown in 
Fig. 10. The number of parameters, averaged per-sample 
test time, and accuracy are reported in Table 5. We observe 
that the system only can achieve an accuracy of 91.11% 
without any CNN layers (No-CNN). The two-CNN archi-
tecture (No-MaxP) has no improvement compared with 
a single CNN layer (SinCNN), but it improves with the 
help of a Max Pooling layer (Ours). This is because two 
CNN layers have digested the majority of the features, and 
Max Pooling could further select the discriminative infor-
mation. Notice that although our two-CNN architecture 
contains more parameters, the test time only demonstrates 
a slight increase.

We further visualize the importance of joints and rela-
tive joint displacements across validations from 3DJP-CNN 
(with joint position features) and 3DRJDP-CNN (with rela-
tive joint displacement features) streams respectively using 
channel attention [43] as shown in Fig. 11. For single joint 
importance, we can see that the two streams mostly dem-
onstrate different importance on the same joints, indicat-
ing that they focus on different aspects of a joint. Notice 
that they both have higher importance on the foot joints, 
this may be because the subject’s balance is impaired by 
walking issues, e.g., the foot/ankle proprioceptive input 
is decreased [44]. More importantly, the 3DRDJP-CNN 
stream assists in identifying which joint pairs are highly 
involved in the body movements, i.e., the left upper body 
joints tend to have more interactions. This could be because 
the subject tries to avoid using the right body parts due to 
pain, resulting in imbalanced gaits [45]. In addition, the 
body parts’ importance of the two samples shares similar 
patterns, indicating our model is consistent across classes. 
This kind of human-understanding visualization can effec-
tively support clinicians for in-depth analysis, e.g., rapid 
lesion locating.

Fig. 9   Training and testing loss curves of single-stream and two-stream 
networks

(a) (b)

(c) (d)

Fig. 10   Proposed fusion network architecture with different CNN and 
MaxP combinations

Table 5   The number of parameters, averaged per-sample test time, 
and accuracy of proposed fusion network architecture with different 
CNN and Max Pooling combinations

The bold values represent the best indicator of each metric

Method #Params Test Time Accuracy

No CNN layers (No-CNN) 86,288 44.53 ms 91.11
No Max Pooling layer (No-MaxP) 238,864 44.36 ms 93.33
Single CNN layer (SinCNN) 86,032 46.94 ms 93.33
Ours (2s-CNN + MaxP) 233,488 47.29 ms 95.56
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Conclusion

In this paper, we have proposed a 2s-CNN framework that 
explicitly takes both individual joint features and inter-
joint features as input for musculoskeletal and neurologi-
cal disorders prediction. Our proposed mid-layer fusion 
module adaptively merges individual joint 3DJP and inter-
joint 3DRJDP features into the network to jointly learn 
and update with the model, relieving the system from the 
need of discovering more complicated features from small 
data. The experimental results have shown that the inter-
joint 3DRJDP features demonstrated more effectiveness 
for different disorders classification, which aligned with 
the intuition that movement is generated by body parts’ 
coordination. The method mixup [24] was used to deal 
with the data bias problem, resulting in a more robust sys-
tem. We demonstrated the effectiveness of the mid-layer 
fusion of fusing the two sets of features. Compared with 
ML-based methods and the fully connected deep network, 
our proposed model outperforms them with a better aver-
age prediction accuracy of 95.56%. The accuracy of every 
individual class is also reported for the first time.

Interpreting DL models is critical in the medical area 
because it can provide us with more insights into these 
advanced automatic tools, thus gaining the trust of cli-
nicians and patients. Our interpretable visualization of 
spatial attention facilitates a user to focus the analysis 
on the body parts with high attention. For future study, 
we intend to interpret the proposed framework from 
both spatial and temporal domains for frame-to-frame 
interpretation, to generate a more solid automatic mus-
culoskeletal and neurological disorders prediction sys-
tem. As the current dataset is relatively small, we will 
consider enlarging it in future works, e.g., increasing the 
number of subjects and the video length including walk-
ing cycles, such that other important factors (e.g., step-
to-step variability) could be better included for a more 
robust diagnostic system.
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Fig. 11   Visualization of the 
importance of different joints 
and relative joint displacements 
with a healthy sample (upper 
row) and a muscle weakness 
sample (lower row). The larger 
size of black joints represent 
higher importance. The relative 
joint displacements attention 
values are aggregated to each 
joint to show which joints 
have more interactions with 
other joints. The importance 
of relative joint displacements 
is visualized from a yellow to 
emerald green scale, with the 
yellow color representing higher 
importance

(a) (b) (c)
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