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Consensus tracking and containment in multiagent
networks with state constraints

Yilun Shang

Abstract—The ability of tracking is an important prerequisite
for multiagent networks to perform collective activities. This
paper investigates the problem of containment for a weighted
multiagent network with continuous-time agents under state
constraints. The network is composed of uninformed and in-
formed agents, where the latter receive external inputs. A new
general class of distributed nonlinear controllers is designed for
accomplishing both containment and consensus tracking, where
the state of each agent is required to stay in its desired convex
constraint set. We show that, by using matrix analysis, convex
analysis and Lyapunov theory, all agents eventually converge
to the convex hull formed by the external inputs while they
obey their constraints during the transience. No relationship
is assumed between the convex hull and the intersection of all
constraint sets. The consensus tracking problem with a single
external input is also solved under this framework. As a gen-
eralization, we tackle the multi-scaled constrained containment
problem, where agents can specify their desired buffer zones by
either zooming in or zooming out the convex hull. Numerical
examples are provided to illustrate the theoretical results.

Index Terms—consensus problem; tracking; containment con-
trol; state constraint; networks.

I. INTRODUCTION

IN recent years, distributed cooperative control has attracted
a considerable attention in theoretical and applicable fields

involving multiagent networks, where a group of agents in-
teract with their local neighbors following some simple rules
[1]. In a system of interacting agents, consensus corresponds to
the convergence to a common value among all agents [2], [3],
which appears to be a critical prerequisite across disciplines
like distribution estimation in sensor networks, networked con-
trol systems, and robot formation control. Consensus problems
can be classed as leaderless consensus and leader-follower
consensus (or tracking), where the latter problem consists of
one leader agent and all other agents are expected to follow the
leader by updating their states based on the information from
their nearest neighbors [4], [5]. In the presence of multiple
leaders, the tracking problem is referred to as containment
control, where followers are to be driven to the convex hull
spanned by these leaders. Strategies for designing the control
protocol so that containment can be realized over a variety of
topologies and system dynamics have been intensively studied
[6]–[11].

It is widely known that the cooperative agents can not
deviate arbitrarily from their initial states in realistic systems.
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Examples include speed limitation of vehicles, position con-
straint due to safety requirement, and opinion bound influenced
by social norms. A discrete-time constrained consensus algo-
rithm is proposed in [12] over balanced switching networks.
A generalization to the unbalanced topology and systems with
communication delay is considered in [13]. For continuous-
time consensus problems, various design strategies such as
barrier functions [14], [15], projection [16]–[18], and satura-
tion functions [19]–[21] have been used to achieve constrained
consensus for both leaderless and tracking situations. However,
constrained consensus protocols are not applicable to the
containment control problems due to the complexity of set
convergence and set tracking involving multiple leaders. The
constrained containment problem is motivated by many real
applications. For example, a group of robots moving from
one location to another with a small set of them equipped
with a map of the destination. To reach the destination safely,
the maximum velocity has constraints when the robots are
trains on track, the position has constraints if they are cars
in road, and the altitude has constraints if they are satellites
in orbit. Employing a low-gain algebraic Riccati equation
method, distributed containment control with input satura-
tion has been studied in [22] for single-integrator multiagent
systems. The work [23] addresses the containment control
problem for double-integrators with both velocity and acceler-
ation saturations. An anti-windup approach is incorporated to
design linear controllers in [24] to facilitate containment under
actuator saturation. Based on model transformation techniques,
containment control with non-convex velocity constraints has
also been recently dealt with for second-order discrete-time
[25] and continuous-time [26] systems. An application to the
control of high-speed trains is also presented in [27].

All the aforementioned studies in constrained containment
control have been focused on velocity constraints and input
saturation. Much less has been done regarding the highly
relevant question of position or state constraints, where the
position of each agent is constrained in a convex set. As
discussed in [28], the analysis approach for constrained con-
sensus or containment with input saturations can not be applied
in the case of position constraint. In [28], a projection-
based distributed control protocol is proposed to accomplish
containment for discrete-time agents. A strong assumption
made is that the intersection of the convex constraint sets for
all agents contains the convex hull formed by all leaders as a
subgraph. To the best of our knowledge, containment problem
with state constraints has yet to be studied in continuous-time
multi-agent systems.

Motivated by the above considerations, we in this paper
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investigate distributed containment for continuous-time agents
under state constraints, where each agent stays in a closed
convex set only known by itself. Employing matrix analysis,
convex analysis and the Lyapunov theory, we show that the
state of all agents will be driven to the convex hull formed
by the leaders when the underlying communication network
is connected. The approach is totally different from [28] and
no assumption on the relationship between the intersection of
all convex constraint sets and the convex hull is made. A non-
empty intersection of each individual constraint set and the
convex hull turns out to be both sufficient and necessary for
reaching constrained containment (c.f. Remark 6). In the case
of only one leader, we readily solves a constrained consensus
tracking problem as a further contribution. Moreover, the
framework is also extended to solve multi-scaled constrained
containment, where each agent is able to converge to a spec-
ified scaled region. This is potentially useful in applications
in that each agent is capable of specifying (i) its individual
buffer/safety zone, which may be a zoom-out area of the
convex hull or (ii) its individual core zone, which may be
a zoom-in area of the convex hull.

We mention that the containment control of multiagent
systems with input saturations is often tackled by establishing
a closed-loop error dynamics at the low level of system
dynamics and solved by noting different system specification
and some coordinate rotation-free properties of the control
laws [22]–[26]. In the case of switching networks, for instance,
an input saturated closed-loop system can be transformed into
an equivalent time-varying system under strict assumptions
of switching patterns and dwell-times [23], [24]. In the state
constrained problem however, this is often difficult even in the
case of fixed networks due to the general format of constrained
sets. A more geometric approach is a natural choice. Taking
this into account, we will rely on a class of distributed
gradient-based controllers (Section III) to drive all agents to
the convex hull while remain in their respective constraint sets.

The rest of the paper is organized as follows. Section II
provides graph theory notions and formulates the model. Sec-
tion III focuses on the containment analysis of the multiagent
system with state constraints. Section IV presents several
numerical simulation examples and finally the conclusion is
drawn in Section V.

II. PRELIMINARIES

A. Graph theory and notations

For a positive integer n, define the set [n] = {1, 2, · · · , n}.
A multiagent network can be modeled as a weighted graph
G = (V, E , A) with the node set V = [n] and the edge set
E ⊆ V × V . The interconnection between the agents or nodes
is characterized by the adjacency matrix A = (aij) ∈ Rn×n,
where aij > 0 if (i, j) ∈ E and aij = 0 otherwise. We assume
the graph is undirected and hence aij = aji. For each node i ∈
V , let Ni = {j ∈ V : (i, j) ∈ E} be the set of neighbors of i.
A path between two nodes i and j is a sequence of consecutive
edges connecting i to j by tracing along the neighborhoods.
A graph is called connected if there is a path linking any two
different nodes. The graph Laplacian matrix of G is defined

as L = (lij) ∈ Rn×n, where lij =
∑n

j=1 aij for i = j and
lij = −aij for i 6= j.

A matrix is called nonnegative or positive if all its elements
are nonnegative or positive, respectively. Clearly, the adjacency
matrix A is nonnegative and AT = A for an undirected graph,
where T means the matrix transpose. A matrix P ∈ Rn×n is
called an M -matrix if there is s > 0 satisfying P = sIn −
S, where In ∈ Rn×n is the identity matrix and S ∈ Rn×n

is nonnegative such that the spectral radius (i.e., maximum-
modulus eigenvalue) of S is not larger than s [29].

B. Problem formulation

Consider the multiagent network G of n agents with single-
integrator dynamics given by

ẋi(t) = ξi(t), i ∈ [n], t ≥ 0, (1)

where d ≥ 1, xi(t) ∈ Rd and ξi(t) ∈ Rd are the state and
the control input of agent i, respectively. A node in V can be
either uninformed or informed, where an informed node will
receive external control signal to steer the network towards a
desired state. Let U = {u1, u2, · · · , um} be the set of external
inputs, where ul ∈ Rd is a constant vector for l ∈ [m]. We
will design the control input ξi in the system (1) in Section
III, which is a function of the following

yi(t) = −
∑
j∈Ni

aij(xi(t) − xj(t)) −
m∑

l=1

bil(xi(t) − ul),

i ∈ [n], t ≥ 0. (2)

Here, if the agent i is informed, then bil > 0 for some l; if
the agent i is uninformed, then bil = 0 for all l ∈ [m]. Let
co(U) = {

∑m
l=1 αlul :

∑m
l=1 αl = 1, αl ≥ 0} be the convex

hull formed by the external inputs.
Remark 1. Taking ξi = yi in (1) gives us a general
framework of containment control without constraints. By
using the coefficients {bil}l∈[m], the equation (2) flexibly
combines the traditional separate representation of leader
and follower agents [4], [9], where a typical leader follows
ẋl(t) = ξl(t) (l ∈ [m]) and a typical follower behaves
like ẋi(t) = −

∑
j∈Ni

aij(xi(t) − xj(t)) − (xi(t) − xl(t))
(i ∈ V). In traditional tracking consensus protocols, leaders
are only influenced by external signals. Technically, we call
these nodes with external inputs as ‘informed’ nodes instead
of ‘leaders’ because they can be influenced by other nodes
according to (2). The external inputs {ul}l∈[m] themselves can
be viewed as static leaders, namely, xl(t) = ul for l ∈ [m].
Moreover, an informed node is allowed to be associated with
multiple external inputs in the current framework, which can
be conveniently implemented by adjusting the coefficients
{bil}l∈[m].

Suppose that each node i ∈ V has a convex state constraint
set Xi ∈ Rd and the intersection of all sets is given by X =
∩n

i=1Xi.
Assumption 1. The constraint set Xi is expressed as Xi =
{xi ∈ Rd : pi(xi) ≤ 1} with its boundary ∂Xi = {xi ∈ Rd :
pi(xi) = 1}. Assume pi : Rd → R is a twice differentiable
convex function, X 6= ∅, and Xi\∂Xi 6= ∅.
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Remark 2. The assumption is mild. A general convex function
pi can be approximated by a twice differentiable convex
function in the sense of Hausdorff metric [30]. For example,
a cone variant represented by pi(xi) ≤ 1 will be needed
to approximate a pyramid in R3. In fact, approximating
polygons by using conic sections in a Hausdorff space has
been intensively studied in computational geometry. Some
iterative numerical algorithms have been proposed; see e.g.
[31], [32]. Also note that the constraint set Xi is non-trivial
since its interior is not empty.
Assumption 2. For any i ∈ [n], if bil > 0 then ul ∈ Xi.
Moreover, Xi ∩ co(U) 6= ∅ for i ∈ [n].
Remark 3. The first part of the assumption says that an agent
can only be informed by the external signal inside its constraint
set. This is natural in many applications since the constraint
set is often viewed as the detectable or admissible variable
range [33]. We also assume that each individual constraint set
intersects the convex hull, which is weaker than the assumption
Xi ∩ co(U) = co(U) proposed in [28]. See also Remark 6.
Assumption 3. xi(0) ∈ Xi for i ∈ [n].

The objective of the paper is to design distributed con-
strained containment controllers for all agents to converge to
the convex hull spanned by the external inputs. Namely, for
any initial condition xi(0) ∈ Xi, constrained containment is
said to be achieved if limt→∞ xi(t) ∈ Xi ∩ co(U) for every
i ∈ V .

III. MAIN RESULT

This section proposes a class of distributed gradient-based
nonlinear controllers to solve the constrained containment and
tracking problems.

Specifically, for each constraint set Xi expressed in As-
sumption 1, we define a function qi : Rd → R by qi(xi) =
(pi(xi) − εi)/(1 − εi), where minxi∈Xi pi(xi) < εi < 1.
The constraint set Xi can be divided into two parts: an
internal part X int

i = {xi ∈ Rd : qi(xi) ∈ (−∞, 0]} and a
peripheral part Xper

i = {xi ∈ Rd : qi(xi) ∈ (0, 1]}. Clearly,
Xi = X int

i ∪ Xper
i . For each node i ∈ [n], the distributed

controller of (1) is designed as

ξi(t) =


yi(t), if xi(t) ∈ X int

i ,
yi(t),

if xi(t) ∈ Xper
i ,∇qi(xi(t))Tyi(t) ≤ 0,

[Id − qi(xi(t))Qi(xi(t))] yi(t),
if xi(t) ∈ Xper

i ,∇qi(xi(t))Tyi(t) > 0,

(3)

where yi(t) ∈ Rd is defined by (2) and Qi ∈ Rd×d is a
positive semidefinite matrix defined by

Qi(xi) =
∇qi(xi)∇qi(xi)T

‖∇qi(xi)‖2
, ∇qi(xi) 6= 0d, (4)

where 0d ∈ Rd is the vector of all zeros,
∇qi(xi) =

(∂qi(xi)
∂xi1

, ∂qi(xi)
∂xi2

, · · · , ∂qi(xi)
∂xid

)T ∈ Rd and
xi = (xi1, xi2, · · · , xid)T ∈ Rd. Note that when
∇qi(xi) = 0d, the matrix Qi(xi) is not required in
light of (3).
Remark 4. Note that εi can be selected by each agent i
individually, which regulates the relative sizes of X int

i and

Xper
i . For instance, a large εi i.e., εi close to 1, leads to a

small peripheral part Xper
i and a large internal part X int

i . This
indicates the matrix Qi will act at a later stage; see Example
2 below for an illustration. Clearly, the proposed strategy is
purely distributed.
Remark 5. Note that the time derivative q̇i(xi(t)) =
∇qi(xi(t))Tẋi(t). The control input for the multiagent
system (1) is yi(t) when xi is inside X int

i or moves
into Xper

i but pointing towards X int
i . When xi stays in

Xper
i pointing outwards, the control input is modified as

[Id − qi(xi(t))Qi(xi(t))] yi(t). This amounts to a projection
which pushes the state back into the constraint set; see Lemma
1 below. The gradient-based approaches have been widely
applied in signal processing and adaptive control problems;
see e.g. [16], [17], [25], [28], [34].

Theorem 1 gives the main result on the constrained con-
tainment and tracking of multiagent system (1).
Theorem 1. Consider the system modeled by (1) with (2)
and (3) over the multiagent network G = (V, E , A). With
Assumptions 1, 2 and 3 satisfied, if G is connected, then
the constrained containment is achieved, namely, xi(t) →
Xi ∩ co(U) for every i ∈ V as t → ∞.

Moreover, if ul ≡ ū for all l ∈ [m], then the constrained
consensus tracking is achieved, namely, xi(t) → ū for every
i ∈ V as t → ∞.

The theorem is proved through a series of lemmas (see Fig.
1 for a diagram of the relationship of them). All technical
details are given in the Appendix.

Fig. 1. Schematic illustration of proof structure.

Lemma 1. Consider the system modeled by (1) with (2) and (3)
over the multiagent network G = (V, E , A). With Assumptions
1 and 3 satisfied, xi(t) ∈ Xi for any i ∈ V and t ≥ 0.

Lemma 1 implies that the constraint sets {Xi}i∈[n] are
invariant sets relevant to the state trajectories.

Let x∗ = (x∗T
1 , x∗T

2 , · · · , x∗T
n )T ∈ Rnd. Define a set Y ∈

Rnd as follows

Y :=
{

x∗ :
∑
i∈Q

y∗T
i [Id − qi(x∗

i )Qi(x∗
i )] y

∗
i

+
∑

i∈V\Q

y∗T
i y∗

i = 0
}

, (5)

where

Q := {i ∈ V : qi(x∗
i ) ∈ (0, 1],∇qi(x∗

i )
Ty∗

i > 0} (6)
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and

y∗
i := −

∑
j∈Ni

aij(x∗
i − x∗

j )

−
m∑

l=1

bil(x∗
i − ul), i ∈ V. (7)

We will reserve the notation x∗ for points in the set Y as
determined above.
Lemma 2. Let x(t) = (x1(t)T, x2(t)T, · · · , xn(t)T)T ∈ Rnd

be a solution of the system (1) with (2) and (3) over the
multiagent network G = (V, E , A). With Assumptions 1 and
3 satisfied, the set of limit points of x(t) is contained in Y .

Lemma 2 presents a geometric characterization of the set
Y , which contains all limit points of the solution of the
multiagent system (1). A useful property of points in the set
Y is established below.
Lemma 3. Consider the system modeled by (1) with (2) and (3)
over the multiagent network G = (V, E , A). With Assumptions
1, 2 and 3 satisfied, if x∗

i ∈ X for every i ∈ V , then y∗
i = 0d

for every i ∈ V , where 0d ∈ Rd is the vector of all elements
being zero.

With the aid of Lemma 3, we can characterize the invariant
set Y as follows.
Lemma 4. Consider the system modeled by (1) with (2)
and (3) over the multiagent network G = (V, E , A). Under
Assumptions 1, 2 and 3, if G is connected, then Y =

{
x∗ :∑n

i=1 y∗T
i y∗

i = 0
}

=
{
x∗ : y∗

i = 0d

}
, where y∗

i is determined
by (7).

To prove Theorem 1, the final trick up our sleeves is
the following lemma regarding an equivalent condition of
invertible M -matrices.
Lemma 5. ( [36]) Let A ∈ Rn×n be a matrix with all off-
diagonal elements nonpositive. A is an invertible M -matrix if
and only if A−1 exists and is nonnegative.
Remark 6. When G is connected, under some system assump-
tions (Assumptions 1, 2, and 3), Xi ∩ co(U) for i ∈ [n] is a
sufficient condition for constrained containment. On the other
hand, if constrained containment is achieved, it is obvious that
Xi ∩ co(U) must hold for every i ∈ [n].
Remark 7. The gradient-based control scheme considered here
is for undirected communication topology. The symmetry of
the system Laplacian L is essential to construct the Lyapunov
candidate V (x), where the LaSalle invariance principle can
be leveraged (see the proof of Lemma 2 in Appendix).
To consider directed networks or bidirectional networks, a
symmetrized version of Laplacian such as L + LT should
be proposed, which seems to be challenging in the current
framework. The main difficulty in the system analysis comes
from the vector analysis of the limit points in the invariant set
Y concerning their distance to the common constraint set X
(see the proof of Lemma 4 in Appendix). This differentiates
the current work from the input saturation scenarios [22]–[26],
where we literally have X = Rd.
Remark 8. We have only considered the single integrator
dynamics, where nonlinear constraints are designed in the
control input to the agents’ states. In some complicated real-
world applications, higher-order dynamics may be desirable.

In those scenarios, it may be possible to adopt the projector
design similar to [28] and apply them on, for instance, velocity
and position. However, new analysis will be needed to recover
the properties parallel to Lemmas 3 and 4 for the invariant set
Y .

As an extension of our main result Theorem 1, we here
consider a multi-scaled version of containment problems. To
be specific, let (θ1, θ2, · · · , θn) ∈ Rn be a list of non-zero
numbers. Given this list, for any initial condition xi(0) ∈
θ−1

i Xi, we say that multi-scaled constrained containment is
achieve if limt→∞ xi(t) ∈ θ−1

i (Xi ∩ co(U)) for any i ∈ V .
Clearly, if we choose θi ≡ 1 for all i ∈ V , we reduce to the
original containment problem.

To achieve the multi-scaled constrained containment, we
redesign yi(t) in (2) as

y′
i(t) = − sgn(θi)

∑
j∈Ni

aij(θixi(t) − θjxj(t))

−
m∑

l=1

bil(θixi(t) − ul), i ∈ [n], t ≥ 0, (8)

where sgn is the signum function returning 1 for a positive
and −1 for a negative. The gradient-based controller ξi(t) in
(3) can be modified accordingly as

ξ′i(t) =
y′

i(t), if xi(t) ∈ θ−1
i X int

i ,
y′

i(t),
if xi(t) ∈ θ−1

i Xper
i , θi∇qi(θixi(t))Ty′

i(t) ≤ 0,
[Id − qi(θixi(t))Qi(θixi(t))] y′

i(t),
if xi(t) ∈ θ−1

i Xper
i , θi∇qi(θixi(t))Ty′

i(t) > 0,

(9)

where y′
i(t) is given by (8) and the matrix Qi is defined the

same as in (4) (with the free variable replaced by θixi in (9)).
We update Assumption 3 as follows.

Assumption 4. xi(0) ∈ θ−1
i Xi for i ∈ [n].

With these preparation, we present the following corollary
regarding multi-scaled constrained containment.
Corollary 1. Consider the system modeled by (1) with (8)
and (9) over the multiagent network G = (V, E , A). With
Assumptions 1, 2 and 4 satisfied, if G is connected, then
the multi-scaled constrained containment is achieved, namely,
xi(t) → θ−1

i (Xi ∩ co(U)) for every i ∈ V as t → ∞.
Moreover, if ul ≡ ū for all l ∈ [m], then the multi-scaled

constrained consensus tracking is achieved, namely, xi(t) →
θ−1

i ū for every i ∈ V as t → ∞.

IV. NUMERICAL SIMULATIONS

Fig. 2. Communication network G with V = [4] and m = 3 external inputs
for Example 1.
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Fig. 3. Constrained containment for Example 1: (a) State trajectories
{xi}i∈[4]. Initial and final positions are indicated by squares and crosses,
respectively. External inputs are indicated by triangles. The triangle area
formed by black dotted lines indicates co(U). The inset highlights the finial
legs of trajectories. (b) Time evolution for the two state components.

In this section, we present some numerical examples to
illustrate and discuss some different scenarios of the theoretical
framework.
Example 1. (Constrained containment) We consider a con-
nected graph G = (V, E , A) with V = {1, 2, 3, 4} and
A ∈ R4×4 being a binary (0, 1)-adjacency matrix; see Fig. 2.
Let m = 3 and d = 2. The external inputs are u1 = (6, 4)T,
u2 = (3, 1)T and u3 = (4, 7)T. The weights in B ∈ R4×3 is
also binary.

Fig. 4. Communication network G with V = [4] and m(a) = 2 and m(b) = 1
for Example 2.

Write x = (x1, · · · , x4)T and xi = (xi1, xi2)T for i ∈ [4].
We define the following constraint sets {Xi}i∈[4], which are
characterized by

p1(x1) =(x11 − 4)2 + (x12 − 3)2 − 8,

p2(x2) =2(x21 − 1)2 + (x22 − 3)2

+ 2(x21 − 1)(x22 − 3) − 11,

p3(x3) =3(x31 − 3)2

+ 4(x32 − 6)2 − 2(x31 − 3)(x32 − 6) − 15,

p4(x4) = − 1. (10)

Clearly, the agents 1, 2, and 3 have closed convex constraints
and the agent 4 is unconstrained, i.e., its constraint set is the
entire plane. Regarding the parameters {εi}i∈[4], we have the
ranges ε1 ∈ (−8, 1), ε2 ∈ (−11, 1), ε3 ∈ (−15, 1), ε4 ∈
(−1, 1) according to the definition in the beginning of Section
III. In this example, we set ε1 = −1, ε2 = −2, ε3 = −3, and
ε4 = 0.

Fig. 3 shows the containment result for system (1) with (2)
and (3) over G under the above state constraints. The initial
conditions are taken as x1(0) = (5, 1)T, x2(0) = (0, 2)T,
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Fig. 5. Constrained consensus tracking for Example 2: (a) State trajectories
{xi}i∈[4]. Initial positions are indicated by squares. The external input u1 is
indicated by a black triangle. The inset highlights the finial legs of trajectories.
(b) Time evolution for the two state components.
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Fig. 6. Constrained consensus tracking for Example 2 with ε1 = −7, ε2 =
−10, ε3 = −14 and ε4 = 0. All other parameters are the same as Fig. 5.

x3(0) = (1, 0)T, and x4(0) = (−1, 5)T. They are indicated by
squares in Fig. 3(a). It is direct to check that all conditions of
Theorem 1 are satisfied. The result shows that the constrained
containment is achieved in line with the theoretical prediction.
The states of agents 1 and 4 converge as one would expect
from the communication topology in Fig. 2. Agent 3 arrives
at an interior point within X3 while agent 2 smoothly glides
along the boundary ∂X2. It is worth noting that in this
example, X ∩ co(U) = ∅. It helps to clarify that such an
empty intersection does not impede the containment according
to Theorem 1. The algorithm in [28], however, would not apply
in this case.
Example 2. (Constrained consensus tracking) We next
consider a similar connected graph G = (V, E , A) with
V = {1, 2, 3, 4} as shown in Fig. 4. We again consider 2D
space, namely d = 2. Regarding the external input, we display
two scenarios, where m(a) = 2,

B(a) =
(

1 0 0 0
0 1 0 0

)T

, (11)

u(a) = (uT
1 , uT

2 )T with u1 = u2 = (2, 4.5)T in Fig. 4(a) and
m(b) = 1, B(b) = (1, 1, 0, 0)T and u(b) = u1 = (2, 4.5)T in
Fig. 4(b), where the matrix B is defined in the proof of Lemma
2. It is straightforward to verify that co(U (a)) = co(U (b)) =
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Fig. 7. Constrained containment for Example 3: (a) State trajectories
{xi}i∈[4]. Initial and final positions are indicated by squares and crosses,
respectively. External inputs are indicated by triangles. The triangle area
formed by black dotted lines indicates co(U). The inset highlights the finial
legs of trajectories. (b) Time evolution for the two state components.

{u1},

diag(B(a)1m(a)) = (1, 1, 0, 0)T = diag(B(b)1m(b)), (12)

and

(B(a) ⊗ I2)u(a) = (uT
1 , uT

1 , 0T
2 , 0T

2 )T = (B(b) ⊗ I2)u(b).
(13)

Therefore, the two scenarios are essentially the same as one
would expected. Nevertheless, our general framework provides
flexibility for different configurations of inputs. For example,
multiple inputs are allowed for a single informed agent.

The constraint sets {Xi}i∈[4] and {εi}i∈[4] are taken as
Example 1. Fig. 5 shows the consensus tracking result for
system (1) with (2) and (3) over G under the above state
constraints and the same initial states as Example 1. The
external input u1 ∈ X is represented as a triangle. We observe
that all agents are driven to the fixed input state u1, which is
in consistent with Theorem 1.

Finally, we note that the parameters {εi}i∈[4] chosen above
and in Example 1 are relatively large given the possible ranges.
As commented in Remark 4, this means the constraints are in
effect at a later stage. As a comparison, we plot in Fig. 6 the
state evolution for a set of smaller values: ε1 = −7, ε2 = −10,
ε3 = −14 and ε4 = 0. This in principle would activate the
constraints at an earlier stage. Comparing the two insets of
Fig. 6 and Fig. 5(a), we notice a clear evidence is that agent
2 is farther repulsed from the boundary of X2 in Fig. 6.
Example 3. (The case of X = ∅) The condition X =
∩i∈[n]Xi 6= ∅ (in Assumption 1) plays a key role in our
proof of Theorem 1. Obviously, if this condition does not
hold, constrained consensus tracking would not be achieved.
However, it is not clear whether this condition is necessary for
constrained containment. Here, we give a preliminary example
by modifying Example 1 to show that constrained containment
is still possible when X = ∅. Analytical study will be a future
work.

We make a minimal modification by considering the same
graph G in Example with binary weights in both A and B.
We only shift the constraint set X3 for agent 3 so that the
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Fig. 8. Centrosymmetric constrained consensus tracking for Example 4.
The external input u1 = (1, 1)T is indicated by the upper triangle and the
centrosymmetric point −u1 is indicated by the lower triangle.

intersection X = ∩i∈[4]Xi becomes empty. Specifically, we
redefine

p3(x3) =3(x31 − 5)2 + 4(x32 − 6)2

− 2(x31 − 5)(x32 − 6) − 15. (14)

With the initial condition of agent 3 changed to x3(0) =
(5, 7)T ∈ X3 and all other conditions remain the same, we
show the evolution of agents in Fig. 7. It can be seen that
the constrained containment is still achieved as in Example 1,
where each agent converges to the intersection of its constraint
set and the convex hull co(U).
Example 4. (Centrosymmetric consensus tracking) In this
final example, we consider a centrosymmetric consensus track-
ing over the connected graph G = (V, E , A) described in
Fig. 4(b). Let d = 2. For the external input, we set m = 1,
B = (1, 1, 0, 0)T and u = u1 = (1, 1)T, where B is defined
in the proof of Lemma 2. It is straightforward to verify that
co(U) = {u1}. The constraint sets {Xi}i∈[4] are taken as
follows

p1(x1) =(x11 − 1)2 + (x12 − 1)2 − 8,

p2(x2) =2(x21 − 1)2 + (x22 + 2)2

+ 2(x21 − 1)(x22 + 2) − 11,

p3(x3) =3(x31 + 1)2

+ 4x2
32 − 2(x31 + 1)x32 − 25,

p4(x4) = − 1. (15)

The parameters {εi}i∈[4] are given by ε1 = −1, ε2 = −2,
ε3 = −3, and ε4 = 0 so that they are inside the allowed
ranges.

Suppose that we aim to drive the three agents 1, 2 and
3 to the external input point u1 and drive agent 4 to the
centrosymmetric point −u1 = (−1,−1)T. To this end, we
set θ1 = θ2 = θ3 = 1 and θ4 = −1 and apply the
multi-scaled constrained containment strategy given in (8)
and (9). It is straightforward to check that centrosymmetric
consensus tracking can be achieved according to Corollary 1.
The trajectories of the state components are shown in Fig. 8.
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Fig. 9. Classification of containment control with state constraints.

V. CONCLUSION

Distributed containment control problem under state con-
straints has been studied in this paper. The agents follow
continuous-time dynamics over a fixed undirected network.
Informed agents in the network are able to receive infor-
mation from external inputs. The newly developed nonlinear
controllers drive all agents to the convex hull spanned by the
external inputs, and at the same time, limit their states within
the constraint sets. Each constraint set is only supposed to
intersect the convex hull, which is the weakest possible as-
sumption for this problem. The constrained consensus tracking
problem and the multi-scaled containment problem are solved
as a byproduct.

For future work, it would be interesting to explore the
necessity of some conditions such as X 6= ∅ and the proposed
method in this paper may be generalized to double integrator
agents, which are favorable in areas such as robotics and
formation control. In addition, as the containment control with
state constraints is a nascent field, we present in Fig. 9 a
diagram for a classification of some possible combinations of
network and system conditions for future investigation.
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APPENDIX

PROOF OF LEMMA 1
Fix any agent i ∈ [n] = V . The initial state xi(0) belongs to

the convex constraint set Xi by Assumptions 1 and 3. For the
its state to move outside the constraint set Xi, agent i must
first move into the peripheral part Xper

i and point outwards.
It follows from (1)-(4) that

q̇i(xi(t)) =∇qi(xi(t))Tẋi(t)

=∇qi(xi(t))T [Id − qi(xi(t))Qi(xi(t))] yi(t)

=∇qi(αixi(t))Tyi(t)

− qi(xi(t))∇qi(xi(t))T
∇qi(xi)∇qi(xi)T

‖∇qi(xi)‖2
yi(t)

=(1 − qi(xi(t)))∇qi(xi(t))Tyi(t), (16)

where the term 1 − qi(xi(t)) is positive but decreasingly
diminishing as the state xi approaches ∂Xi = {xi ∈ Rd :
qi(xi) = 1}, and ∇qi(xi(t))Tyi(t) > 0. Recall that Xi is
closed. The state xi(t) will be pushed back into Xi instead of
moving beyond Xi as it approaches ∂Xi.

PROOF OF LEMMA 2
Let B = (bil) ∈ Rn×m and LB = L + diag(B1m), where

1m ∈ Rm is the vector with all elements being one. Let
u = (uT

1 , uT
2 , · · · , uT

m)T ∈ Rmd. We consider the following
Lyapunov candidate V : Rnd → R:

V (x) =
1
2
xT(LB ⊗ Id)x − uT(BT ⊗ Id)x, (17)

which is a continuous and locally Lipschitz function. Here, ⊗
represents the Kronecker product [29].

In view of Lemma 1 and Assumptions 1 and 3, by (17) we
derive

V̇ (x(t)) =x(t)T(LB ⊗ Id)ẋ(t) − uT(BT ⊗ Id)ẋ(t)

= −
n∑

i=1

yi(t)Tẋi(t)

= −
∑

i∈Q(t)

yi(t)T [Id − qi(xi(t))Qi(xi(t))] yi(t)

−
∑

i∈V\Q(t)

yi(t)Tyi(t), (18)

where the subset of nodes Q(t) is defined as Q(t) := {i ∈
V : qi(xi(t)) ∈ (0, 1],∇qi(xi(t))Tyi(t) > 0}.

The idea is to show V̇ (x(t)) ≤ 0 and invoke LaSalle’s
invariance principle [35]. For the second term of (18),∑

i∈V\Q(t) yi(t)Tyi(t) ≥ 0. We only need to examine the first
term. We have for all t ≥ 0,

Id − qi(xi(t))Qi(xi(t)) =Id − Qi(xi(t))
+ (1 − qi(xi(t)))Qi(xi(t)). (19)

The matrix Qi(xi(t)) is positive semidefinite by the definition
in (4). In view of Lemma 1, we know 1 − qi(xi(t)) ≥
0. Furthermore, by direct calculation for any vector yi =
(yi1, yi2, · · · , yid)T ∈ Rd,

yT
i [Id − Qi(xi(t))] yi =∑

1≤r1<r2≤d

[
∇qi(xi(t))r1yir2 −∇qi(xi(t))r2yir1

]2∑d
r=1 ∇qi(xi(t))2r

, (20)

where ∇qi(xi(t)) := (∇qi(xi(t))1,∇qi(xi(t))2, · · · ,
∇qi(xi(t))d)T ∈ Rd.

It is obvious from (20) that Id − Qi(xi(t)) is a positive
semidefinite matrix. Moreover, yT

i [Id − Qi(xi(t))] yi = 0 if
and only if ∇qi(xi(t))r1yir2 = ∇qi(xi(t))r2yir1 for any 1 ≤
r1 < r2 ≤ d. Combining the above comments with (18) and
(19) we know that V̇ (x(t)) ≤ 0 for t ≥ 0. In view of the
definition in (5)-(7), we readily complete the proof of Lemma
2 by using LaSalle’s invariance principle.
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PROOF OF LEMMA 3
Recall that X = ∩n

i=1Xi is the intersection of convex
constraint sets. We will prove the result by using an argument
of contradiction. Suppose there is a node k ∈ [n] such that
y∗

k 6= 0d. By using (2),

−y∗
k∑

j∈Nk
akj +

∑m
l=1 bkl

=x∗
k −

∑
j∈Nk

akjx
∗
j +

∑m
l=1 bklul∑

j∈Nk
akj +

∑m
l=1 bkl

. (21)

By our condition, x∗
k ∈ X ⊆ Xk. Suppose that x∗

k ∈ Xk\∂Xk,
which is not empty by Assumption 1. Under this assumption,
we know qk(x∗

k) < 1. Note that

Id − qk(x∗
k)Qk(x∗

k) =Id − Qk(x∗
k)

+ (1 − qk(x∗
k))Qk(x∗

k). (22)

By the definition in (4), Qk(x∗
k) is positive semidefinite. Using

the comment in Lemma 2, if for some vector yk ∈ Rd we
have yT

k Qk(x∗
k)yk = 0, then yT

k [Id −Qk(x∗
k)]yk > 0. In other

words, the matrix expressed by (22) must be positive definite
even though both of the two additive parts are just positive
semidefinite. Since x∗ = (x∗T

1 , x∗T
2 , · · · , x∗T

n )T ∈ Y in (5),
the node k 6∈ Q. But again, since (5) holds, y∗

k = 0d. This
contradicts our assumption. Hence, Lemma 3 is proved under
the additional assumption x∗

k ∈ Xk\∂Xk.
Now, suppose x∗

k ∈ ∂Xk. Notice that the second term
on the righthand side of (21) sits inside X ⊆ Xk by
our conditions and Assumption 2. Therefore, the vector
y∗

k/(
∑

j∈Nk
akj +

∑m
l=1 bkl) points towards the inside of Xk

at the boundary point x∗
k. In light of the geometric property of

gradient, we have ∇qk(x∗
k)Ty∗

k < 0. By (6), k ∈ V\Q. Since
x∗ = (x∗T

1 , x∗T
2 , · · · , x∗T

n )T ∈ Y in (5), we derive y∗
k = 0d.

This contradicts our assumption, and accordingly completes
the entire proof of Lemma 3.

PROOF OF LEMMA 4
We shall prove the result by using an argument of contra-

diction. Suppose Y 6=
{
x∗ :

∑n
i=1 y∗T

i y∗
i = 0

}
. By (5), there

must be some node k0 ∈ Q. In view of (6), y∗
k0

6= 0d. Define

∆ := max
{

max
i∈V

d(x∗
i , X), max

l: bil>0
d(ul, X)

}
, (23)

where d(·, X) represents the distance of a vector from X . By
Assumptions 1 and 2, ∆ is well defined. Using Lemma 3, we
know there is a node k1 ∈ V satisfying x∗

k1
6∈ X . Since X is

closed, ∆ > 0. We will examine the following three cases. (i)
There is a node k ∈ V such that ∆ = d(x∗

k, X) and y∗
k = 0d;

(ii) For every i satisfying ∆ = d(x∗
i , X), y∗

i 6= 0d holds; and
(iii) ∆ = d(ul, X) for some l ∈ [m]. In each of these cases,
we will aim to derive a contradiction.

(i). There is a node k ∈ V such that ∆ = d(x∗
k, X) and

y∗
k = 0d. Denote by x̃ ∈ ∂X be the projection of x∗

k on X
and write the vector h := x∗

k − x̃ ∈ Rd. Hence, ‖h‖ = ∆.
Define a hyperplane H := {y ∈ Rd : hTy = hTx∗

k} passing
the point x∗

k, which is parallel to the tangent space {y ∈ Rd :
hTy = hTx̃} at x̃. By (23) and the convexity of X , we have

hTx∗
i ≤ hTx∗

k and hTu∗
l ≤ hTx∗

k (24)

for all i ∈ [n] and l ∈ [m] with bkl > 0. Hence, all {x∗
i }i∈[n]

and {ul}l:bkl>0 are on the same side of the hyperplane H.
Recall that we have y∗

k0
6= 0d. Since G is connected, this

implies there exists a node i1 ∈ Nk such that x∗
i1

6= x∗
k by (5)

and Lemma 2. In light of (23), we know that d(x∗
i1

, X) ≤ ∆.
Since X is a convex set, the point x∗

i1
is not located on the

hyperplane H and thus

hTx∗
i1 < hTx∗

k. (25)

By our assumption, 0d = y∗
k = −

∑
j∈Nk

akj(x∗
k − x∗

j ) −∑m
l=1 bkl(x∗

k − ul). We obtain

0d = −
∑

j∈Nk

akjh
T(x∗

k − x∗
j ) −

m∑
l=1

bklh
T(x∗

k − ul). (26)

Combining (25), (26) and the fact that all coefficients akj

and bkl are nonnegative, we conclude that there exists i1 ∈
Nk satisfying hTx∗

i1
> hTx∗

k or ul with bkl > 0 satisfying
hTu∗

l > hTx∗
k. However, this conflicts with (24).

(ii). For every i satisfying ∆ = d(x∗
i , X), y∗

i 6= 0d holds.
We fix a node k ∈ [n] satisfying ∆ = d(x∗

k, X) and y∗
k 6= 0d.

In view of (5), we know k ∈ Q. Accordingly,

qk(x∗
k) ∈ (0, 1] and ∇qk(x∗

k)Ty∗
k > 0 (27)

by (6).
Since x∗ ∈ Y , by (5) we have∑
i∈Q

y∗T
i [Id − qi(x∗

i )Qi(x∗
i )] y

∗
i +

∑
i∈V\Q

y∗T
i y∗

i = 0 (28)

and hence y∗T
k [Id − qk(x∗

k)Qk(x∗
k)] y∗

k = 0. Furthermore,

0 = y∗T
k [Id − qk(x∗

k)Qk(x∗
k)] y∗

k

= qk(x∗
k)y∗T

k [Id − Qk(x∗
k)] y∗

k + [1 − qk(x∗
k)]y∗T

i y∗
i . (29)

Noting that (27) holds and that Id − Qk(x∗
k) is positive

semidefinite, we obtain

y∗T
k [Id − Qk(x∗

k)] y∗
k = 0 (30)

and qk(x∗
k) = 1 by (29). Thereby we derive x∗

k ∈ ∂Xk and

∇qk(x∗
k)r1y

∗
kr2

= ∇qk(x∗
k)r2y

∗
kr1

(31)

for all 1 ≤ r1 < r2 ≤ d following the same analysis of Lemma
2, where y∗

k = (yk1, yk2, · · · , y∗
kd)

T ∈ Rd.
Let x̃ ∈ ∂X denote the projection of x∗

k on X and write
the vector h = x∗

k − x̃ ∈ Rd. Hence, ‖h‖ = ∆. Similarly as
in the case (i), we introduce the hyperplane H := {y ∈ Rd :
hTy = hTx∗

k} at x∗
k, which is parallel to the tangent space

{y ∈ Rd : hTy = hTx̃} passing the point x̃. By the definition
of k and noting that X is a closed convex set, we have

hTx∗
i ≤ hTx∗

k and hTu∗
l ≤ hTx∗

k (32)

for all i ∈ [n] and l ∈ [m] with bkl > 0. Hence, {x∗
i }i∈[n]

and {ul}l:bkl>0 are on the same side of the hyperplane H. It
follows from (7) and (32) that

− hT
∑

i∈Nk

aki(x∗
k − x∗

i ) − hT
m∑

l=1

bkl(x∗
k − ul)

=hTy∗
k ≤ 0. (33)
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Since x∗
k ∈ ∂Xk and x̃ ∈ X ⊆ Xk, the vector −h based

at x∗
k points towards the inside of Xk. Moreover, the vector

∇qk(x∗
k) is normal to the tangent space of Xk at x∗

k, and it
points towards the outside of Xk. Consequently, hT∇qk(x∗

k) >
0. By (27), we have hT∇qk(x∗

k)∇qk(x∗
k)Ty∗

k > 0. Thanks to
the relationship (31), this can be rewritten as follows

0 < hT∇qk(x∗
k)∇qk(x∗

k)Ty∗
k

=
d∑

r1,r2=1

hr1∇qk(x∗
k)r1∇qk(x∗

k)r2y
∗
kr2

=
d∑

r1,r2=1

hr1∇qk(x∗
k)2r2

y∗
kr1

= hTy∗
k

d∑
r2=1

∇qk(x∗
k)2r2

, (34)

where h = (h1, h2, · · · , hd)T ∈ Rd and y∗
k =

(y∗
k1, y

∗
k2, · · · , y∗

kd)
T ∈ Rd. Hence, hTy∗

k > 0. This conflicts
with (33).

(iii). ∆ = d(ul, X) for some l ∈ [m]. If ∆̃ :=
maxi∈[n] d(x∗

i , X) > 0, then we can replace ∆ with ∆̃. This
case can be proved along the same lines as above. Otherwise,
we have x∗

i ∈ X for any i ∈ [n]. This conflicts with the
condition x∗

k1
6∈ X .

PROOF OF THEOREM 1

It follows from Lemma 4 and (7) that

−
∑
j∈Ni

aij(x∗
i − x∗

j ) −
m∑

l=1

bil(x∗
i − ul) = 0 (35)

for all i ∈ [n]. Let u = (uT
1 , uT

2 , · · · , uT
m)T ∈ Rmd. It is

straightforward to check that

(LB ⊗ Id)(x∗T
1 , x∗T

2 , · · · , x∗T
n )T = (B ⊗ Id)u, (36)

where LB = L + diag(B1m) ∈ Rn×n.
Since LB is a symmetric and diagonally dominant matrix,

all eigenvalues of LB are nonnegative [29]. Suppose the
smallest eigenvalue is λ = 0. Let γ ∈ Rn be the normalized
eigenvector associated with λ. This means 0n = LBγ =
Lγ + diag(B1m)γ. Multiplying γT on both sides of the
expression yields

0 = γTLBγ = γTLγ + γTdiag(B1m)γ. (37)

Notice that γTLγ ≥ 0 and γTdiag(B1m)γ ≥ 0. The equality
(37) implies

γTLγ = 0 and γTdiag(B1m)γ = 0. (38)

Since G is connected, the first equality in (38) indicates γ =
1√
n
1n. Hence, γTdiag(B1m)γ > 0 as there is at least one

informed agent. This conflicts with the second equality in (38).
Hence, by deducing contradiction, we have proved the smallest
eigenvalue is λ > 0. Thus, LB is invertible. It then follows
from (36) that x∗ = (L−1

B B ⊗ Id)u.

We can write LB as LB = sIn − S with

s = max
i∈[n]

{ n∑
j=1

aij +
m∑

l=1

bil

}
(39)

and S ∈ Rn×n being a nonnegative matrix. Moreover, by
using the Gershgorin disc theorem, the spectral radius of S is
not larger than s. Therefore, LB is an M -matrix. Lemma 5
implies that L−1

B is nonnegative.
By the definition of LB and B, we have

(LB ,−B)1n+m = 0n. (40)

In other words, LB1n−B1m = 0n and hence L−1
B B1m = 1n.

As all elements of L−1
B and B are nonnegative, x∗

i ∈ co(U)
for i ∈ [n]. By Lemma 1, x∗

i ∈ Xi ∩ co(U). Applying Lemma
2, we obtain xi(t) → Xi ∩ co(U) for i ∈ [n] as t → ∞.
Namely, the constrained containment can be achieved.

If ul ≡ ū for all l ∈ [m], co(U) = {ū} ⊆ X . An application
of Lemma 2 yields xi(t) → ū for i ∈ [n] as t → ∞. The
constrained consensus tracking is achieved. This completes
the proof of Theorem 1.

PROOF OF COROLLARY 1

We can prove Corollary 1 following the same line of
Theorem 1 through a series of lemmas. In particular, Lemmas
1-4 will be updated by the following Lemmas 6-9.
Lemma 6. Consider the system modeled by (1) with (8) and (9)
over the multiagent network G = (V, E , A). With Assumptions
1 and 4 satisfied, xi(t) ∈ θ−1

i Xi for any i ∈ V and t ≥ 0.
Let diag(θ1, · · · , θn) ∈ Rn×n be the diagonal matrix with

diagonal objects θ1, · · · , θn. Let ⊗ be the Kronecker product
[29]. Write x∗ = (x∗T

1 , x∗T
2 , · · · , x∗T

n )T ∈ Rnd. Define a set
Y ′ ∈ Rnd as follows

Y ′ :=
{

(diag(θ1, · · · , θn) ⊗ Id)x∗ :∑
i∈Q′

|θi|y∗T
i [Id − qi(θix

∗
i )Qi(θix

∗
i )] y

∗
i

+
∑

i∈V\Q′

|θi|y∗T
i y∗

i = 0
}

, (41)

where

Q′ := {i ∈ V : qi(θix
∗
i ) ∈ (0, 1], θi∇qi(θix

∗
i )

Ty∗
i > 0} (42)

and

y∗
i := − sgn(θi)

∑
j∈Ni

aij(θix
∗
i − θjx

∗
j )

−
m∑

l=1

bil(θix
∗
i − ul), i ∈ V. (43)

Lemma 7. Let x(t) = (x1(t)T, x2(t)T, · · · , xn(t)T)T ∈ Rnd

be a solution of the system (1) with (8) and (9) over the
multiagent network G = (V, E , A). With Assumptions 1 and 4
satisfied, the set of limit points of (diag(θ1, · · · , θn)⊗ Id)x(t)
is contained in Y ′.
Lemma 8. Consider the system modeled by (1) with (8) and (9)
over the multiagent network G = (V, E , A). With Assumptions
1, 2 and 4 satisfied, if x∗

i ∈ θ−1
i X for every i ∈ V , then
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y∗
i = 0d for every i ∈ V , where 0d ∈ Rd is the vector of all

elements being zero.
Lemma 9. Consider the system modeled by (1) with (8)
and (9) over the multiagent network G = (V, E , A). Under
Assumptions 1, 2 and 4, if G is connected, then Y ′ ={
(diag(θ1, · · · , θn) ⊗ Id)x∗ : y∗

i = 0d

}
, where y∗

i is deter-
mined by (43).
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