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Abstract 

Sponges are one of the most dominant organisms in marine ecosystems. One reason for their 

success is their association with microorganisms that are besides the host itself responsible for 

the chemical defence. Sponge abundances have been increasing on coral reefs in the Western 

Indian Ocean (WIO) and are predicted to increase further with rising anthropogenic impacts 

on coral reefs. However, there is a paucity of information on chemical ecology of sponges 

from the WIO and their prokaryotic community composition. We used a combination of 

Illumina sequencing and a predictive metagenomic analysis to (1) assess the prokaryotic 

community composition of sponges from Zanzibar, (2) predict the presence of KEGG 

metabolic pathways responsible for bioactive compound production and (3) relate their 

presence to the degree of observed chemical defence in their respective sponge host. We 

found that sponges from Zanzibar host diverse prokaryotic communities that are host species-

specific. Sponge-species and respective specimens that showed strong chemical defences in 

previous studies were also predicted to be highly enriched in various pathways responsible for 

secondary metabolite production. Hence, the combined sequencing and predictive 

metagenomic approach proved to be a useful indicator for the metabolic potential of sponge 

holobionts. 

Introduction 

Sponges harbour the highest diversity of prokaryotic symbionts in any invertebrate host 

recorded to date with at least 63 to 72 prokaryotic phyla and candidate phyla described 

(Webster and Thomas, 2016; Moitinho-Silva et al., 2017). Sponge hosts are assumed to select 

their specific prokaryotic community and both partners use mechanisms to maintain their 

association (Hentschel et al., 2012; Webster and Thomas, 2016). The densities of prokaryotic 

symbionts can approach up to 10
10

 cells per gram of sponge wet weight in high microbial 

abundance (HMA) sponges (Hentschel et al. 2003; Hentschel et al. 2006; Gloeckner et al. 
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2014). In contrast, low microbial abundance (LMA) sponges host only 10
5
 - 10

6
 cells per 

gram of sponge wet weight, closely resembling the abundances of prokaryotic communities in 

the surrounding seawater (Hentschel et al. 2006; Weisz et al. 2007). The sponge microbiome 

in both, LMA and HMA sponges, consists partially of unique prokaryotes that are rarely 

found outside their sponge host in free-living communities (Hentschel et al., 2012; Simister et 

al., 2012; Thomas et al., 2016). 

These associations with prokaryotes likely enabled sponges to be one of the dominant 

benthic components in many ecosystems worldwide since they add to the fitness of the 

sponge host (Freeman and Thacker, 2011; Hentschel et al., 2012; Pawlik et al., 2016; Pita et 

al., 2018). The abundances of sponges in coral reefs exposed to increasing anthropogenic 

stressors are rising in recent years since sponges are able to cope better with global and local 

anthropogenic stressors than corals (Fabricius et al., 2011; Bell et al., 2013). Their 

prokaryotic communities are to a certain extent stable across changes in nutrient concentration 

(Ward-Paige et al., 2005; Luter et al., 2014), temperature (Simister et al., 2012; Pita et al., 

2013), low-pH conditions (Ribes et al., 2016) and light exposure (Cárdenas et al., 2014) as 

well as along geographical (Steinert et al., 2016; Thomas et al., 2016) and temporal (Hardoim 

and Costa, 2014b; Erwin et al., 2015) gradients. Further, secondary metabolites used in the 

chemical defence of the sponge host against space competitors and predators in the reef are 

suspected to be often produced by sponge-associated prokaryotes (Wilson et al., 2014; Graça 

et al., 2015; Bhushan et al., 2017), and play a key role in the increasing prevalence of sponge 

communities in the Caribbean (Loh and Pawlik, 2014). However, the link between the 

chemical ecology of sponges and the prokaryotic ecology remains poorly understood 

(Hardoim and Costa, 2014a; Marino et al., 2017). There is especially a lack of information on 

the ecological role of sponges and the functions of their prokaryotic symbionts in the Western 

Indian Ocean (WIO) region, which remains highly underrepresented in research efforts, even 

though it was identified a biodiversity hotspot (Fisher et al., 2011; Obura, 2012). In some 
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locations of the WIO region, such as the Barrier Reef of Toliara in Madagascar and the 

Quirimba Archipelago in Mozambique, coral reefs shifted already from coral- to sponge-

dominance (Barnes, 1999; Barnes and Bell, 2002). On Zanzibar‟s west coast, sponge cover 

already increased significantly from < 1 % to 7.5 % and is predicted to increase further in the 

next years (Muhando, 2009; Lokrantz et al., 2010; Helber et al., 2017). Currently, there is no 

information on the prokaryotic communities inhabiting sponge species from Zanzibar. Thus, it 

is important to gain deeper insights into the sponge-prokaryotic symbiosis and how it might 

give sponges competitive advantages over other benthic organisms, such as reef building 

corals. Recent efforts in next generation sequencing, such as the sponge microbiome project 

(Moitinho-Silva, et al., 2017), as well as in predictive functional analysis now enable us to 

examine the microbial communities of sponges with a previously unmatched accuracy, and to 

predict specific functions of these microbes based on the detection of marker genes (Langille 

et al., 2013; de Voogd et al., 2015; Cleary et al., 2017). 

The present study uses prokaryotic 16S rRNA gene community data obtained from the 

sponge-related Earth Microbiome Project (EMP) (Gilbert et al., 2014; Moitinho-Silva et al., 

2017; Thompson et al., 2017). A combination of Illumina sequencing derived amplicon 

sequencing variants, here called sub-operational-taxonomic-units (i.e., sOTUs) (Amir et al., 

2017) and predictive metagenomic analysis applying software package Tax4Fun based on the 

amplicon data (Aßhauer et al., 2015) was used to investigate the prokaryotic communities of 

the sponge hosts and to predict the presence of potential pathways for the production of 

bioactive compounds. In addition, we linked the results of previously conducted studies 

(Helber et al., 2017, 2018) on the antipredatory and antimicrobial activities as well as 

cytotoxic properties of the same sponge species collected from the same locations to the 

predictive metagenomic analysis. 

The main goals of our study were to (1) compare prokaryotic taxon abundance between 

the most abundant sponge species (i.e., Biemna sp., Callyspongia sp., Paratetilla sp., 
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Haliclona atra, Haliclona fascigera, Scopalina hapalia, Tetrapocillon minor) on the reefs of 

Bawe and Changuu island on the west coast of Zanzibar and seawater samples, (2) assess if 

chemically stronger defended sponge species (Helber et al., 2017, 2018) harbour similar 

microbial communities, (3) identify the prevalence and presence of predicted KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways (Kanehisa et al., 2014) involved in the 

production of secondary metabolites and (4) relate their prevalence and presence to the degree 

of chemical defence of its respective sponge species. 

Materials and Methods 

Sample collection and study area 

Seven sponge species and seawater samples for the microbial community analyses were 

collected by SCUBA between March to May 2014 from Bawe (06° 09´8.1” S, 

39° 08´3.839” E) and Changuu Island reef (06° 07´7.356” S, 39° 10´10.919” E). Seawater 

samples have been collected at 10 m depth close to the reef before sponge samples were 

taken. Bawe and Changuu Island are located along the Western Coast of the main island 

Ugunja (Zanzibar) in the Zanzibar channel, about 7 km and 6 km, respectively, from the 

capital Stonetown (Muhando et al., 2002). Both reefs are heavily influenced by fishing and 

tourism activities as well as untreated sewage discharge from Stonetown harbour (Muhando, 

2009; Lokrantz et al., 2010; Moynihan et al., 2012; Limbu and Kyewalyanga, 2015). The 

samples for the determination of the LMA or HMA status were collected in November 2015 

at Bawe Island reef (06° 09´25.56” S, 39° 08´0.96” E) at 10 m depth and at least 20 m apart to 

avoid collection of clones. Sponge samples were transferred into zip block bags filled with 

seawater and were immediately transferred to the laboratory facilities at the Institute of 

Marine Sciences (IMS, Stonetown). Sponge vouchers used for species identification have 

been stored at the Naturalis Biodiversity Center in Leiden, Netherlands. Details on taxonomy 

and pictures have been published by Helber and colleagues (2017). 
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The sponge samples (6 replicates per species) for the microbial community analysis were 

transferred in 99.9 % of ethanol (3 replicates) or RNA later (3 replicates). Seawater samples 

(10 ml; 3 replicates per month) were filtered through a Whatman Cyclopore PC Polycarbonate 

Membrane Filter (47 mm diameter, 0.22 μm pore size). Both, sponge and seawater samples, 

were stored at -20°C until further processing at the Institute for Chemistry and Biology of the 

Marine Environment (ICBM), University of Oldenburg, Germany. Sponge samples (3 – 4 

replicates per species) for the analysis of their LMA or HMA status were cut into few cubic 

millimetre sized pieces and immediately fixed in 2.5 % glutaraldehyde/phosphate- buffered 

saline and stored at 4°C until further processing. 

Transmission Electron Microscopy (TEM) 

Following 5 x washing of the samples with 50 mM cacodylate buffer (pH 7.2) and 90 min 

post-fixation at 4°C with 2 % osmium tetroxide in the buffer, the samples were rinsed with 

Milli-Q water and stained overnight in 0.5 % uranyl acetate. Samples were then rinsed with 

Milli-Q water and dehydrated through a series of ethanol and propylene oxide. Following 

overnight infiltration in a propylene oxide-Epon 812 mix (1:1), samples were rinsed in Epon 

812 resin twice for 2 h and transferred into fresh resin for 1 h. Subsequently, the sponge 

samples were embedded in this resin for at least 48 h. Embedded specimen blocks were 

trimmed, cut into ultrathin (70 nm) sections with an ultramicrotome (Leica EM UC7, 

Austria), and then deposited on pioloform coated grids, double contrasted with 2.5 % uranyl 

acetate and Reynold´s lead citrate. Imaging was performed with a Tecnai G2 Spirit BioTwin 

transmission electron microscope (80 kV, FEI, USA) at the Central Microscopy of University 

of Kiel (Germany). For each sponge species, two biological replicates and two technical 

replicates were investigated. For each sample, the entire ultrathin-section was inspected at 

TEM and at least two fields-of-views per ultrathin-section were imaged. 

Sequence data processing and 16S rRNA gene community analyses 
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The present data subset was obtained from the final release of the sponge-related Earth 

Microbiome Project (for further details see http://www.spongeemp.com/ and 

http://gigadb.org/dataset/100332) (Moitinho-Silva et al., 2017). Sample processing, 

sequencing, and core amplicon data analysis were performed following the Earth Microbiome 

Project protocols by the sponge microbiome project collaborators, and all amplicon sequence 

data and metadata have been made public through the EMP data portal 

(qiita.microbio.me/emp and http://gigadb.org/dataset/100332). In brief, DNA extraction, 

Illumina MiSeq sequencing, quality-control, and de-noising using Deblur was carried out by 

the sponge microbiome project collaborators (Moitinho-Silva et al., 2017). The extracted 

subset created using R v.3.3.3 (R Core Team, 2017), consisted of 41 samples and 3970 

sOTUs. The full sponge microbiome dataset can be downloaded from the GigaScience 

Database: http://gigadb.org/dataset/100332). The taxonomy of the sponge microbiome sOTUs 

was updated using mothur v.1.39.5 (Schloss et al., 2009) and the SILVA128 reference files 

(https://www.mothur.org/wiki/ Silva_reference_files). 

The alpha- and beta-diversity analyses (e.g., sOTU richness, Pielou‟ s evenness, 

Shannon and Inverse Simpson index) were performed in R using the vegan v.2.4-2 package if 

not stated otherwise (Oksanen et al., 2013). Prior to the analyses the abundance table was 

standardized using decostand (method = „hellinger‟) and pairwise Bray-Curtis dissimilarities 

were calculated using vegdist (method = „bray‟). Univariate relationships between alpha-

diversity indices (i.e., OTU richness, Shannon index, Simpson‟s inverse index and evenness) 

and differences between the samples were analysed with the Kruskal-Wallis rank sum test 

using kruskal.test (R stats package v.3.3.3) followed by Dunn's Kruskal-Wallis multiple 

comparisons test using dunnTest (FSA package v.0.8.21) and the Benjamini-Hochberg p-

value correction for multiple testing (Benjamini and Hochberg, 1995; Ogle, 2018). For 

multivariate analyses (i.e., betadisper / permanova & adonis) all samples were grouped by 

source type (i.e., host-identity or seawater). Multivariate analyses based on the host-identity 
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and non-metric multidimensional scaling (nMDS) were performed using the permutest, 

betadisper, adonis and metaMDS functions of the vegan package. Hierarchical cluster 

analysis was performed using hclust (method = „average‟). All heatmaps were created using 

JColorGrid (Joachimiak et al. 2006). Finally, we used the software package Statistical 

Analysis of Metagenomic Profiles (STAMP) v.2.1.3, to identify significantly different 

distributed prokaryotic phyla among the sample groups (Parks et al., 2014). 

Functional predictive analysis 

Functional predictive profiling using PICRUSt (Langille et al., 2013) has been successfully 

applied in several recent sponge-microbiota studies (de Voogd et al., 2015; Cleary et al., 

2017; Weigel and Erwin, 2017). Here, we used the R package Tax4fun (Aßhauer et al., 2015), 

which was successfully applied for bacterioplankton communities and provided valid 

correlations of functional profiles to prokaryotic and environmental parameters. In 

comparison to PICRUSt, Tax4Fun displays higher correlation of functional predictions with 

the metagenome profile (Aßhauer et al., 2015). When these two software packages were 

compared, Tax4Fun predicted almost 15 % more KEGG Orthologs than PICRUSt (Koo et al., 

2017). 

The artificial metagenomic functional profile was calculated by utilizing the ultrafast protein 

classification (UProC) option on the normalized 16S OTU table (Tax4Fun parameters: 

refProfile = "UProC", shortReadMode = FALSE, normCopyNo = TRUE). The resulting 

KEGG abundance profile was analysed using STAMP to identify significant pathways for 

secondary metabolite production among the sample groups. In the present study, we used the 

KEGG database and selected a set of KEGG pathways based on their potential for secondary 

metabolite synthesis (Kanehisa and Goto, 2000; Kanehisa et al., 2016, 2017). The comparison 

of differences in single pathways for secondary metabolite production and microbial phyla 

composition between the groups was made by an ANOVA followed by the Tukey–Kramer 

post hoc test and a Bonferroni multiple test correction. Differences were considered 
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significant at corrected p < 0.05. Additionally, a pathway map was created 

(https://www.genome.jp/kegg/tool/map_pathway2.html) and the related BRITE KEGG 

Orthology was collected (https://www.genome.jp/kegg/tool/map_brite2.html) to show 

significantly enriched KEGG Orthologs (KOs) involved in the biosynthesis of polyketides. To 

complement the functional prediction based on 16S rRNA profiles, we included the results of 

previously conducted studies (Helber et al., 2017, 2018) on the biological activities of the 

investigated sponge species to interpret the predictive metagenomic analysis. 

A functional predictive analysis in a recent study (Weigel and Erwin, 2017) found similar KO 

counts and abundances in genes responsible for nitrogen cycling when compared to 

metagenomic sequencing, but still showed noticeable deviations. Thus, functional predictive 

approaches cannot replace whole metagenomic profiling. Results obtained from predictive 

functional analyses using 16S rRNA gene amplicon sequencing can deviate from 

metagenomic profiling and functional gene annotation, as not all predicted genes may indeed 

be present or functional in the respective prokaryotic OTU (Aßhauer et al., 2015; Weigel and 

Erwin, 2017). In addition, because of functional overlap, some KOs can be assigned to more 

than one pathway. Despite these limitations, functional predictive approaches provide a cost-

effective first estimate of metagenomic profiles. 

Results 

Transmission Electron Microscopy (TEM) 

Of the seven sponge species examined (each species with two biological and two technical 

replicates), five (Callyspongia sp., Paratetilla sp., H. atra, H. fascigera, S. hapalia) were 

identified as low microbial abundance (LMA) and one (Biemna sp.) was identified as high 

microbial abundance (HMA) sponge. Unfortunately, one (T. minor) has completely 

degenerated during embedding process. T. minor was suggested to be a LMA host based on 

prediction results by machine learning (Moitinho-Silva et al., 2017). An LMA status of 
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T. minor would indeed be consistent with our amplicon results. Biemna sp. showed HMA 

characteristics based on morphological diversity (Vacelet and Donadey, 1977; Friedrich et al., 

1999) and moderate abundance of extracellular bacteria (Fig. 1). Bacteria in Biemna sp. 

displayed different morphologies, ranging from (1) ovoid to spherical cyanobacteria (up to 

2.5 μm in length; Fig. 1F, b1) that exhibited thylakoids, (2) small bacteria (0.5 - 0.6 μm by 

0.3 - 0.5 μm in size; Fig. 1F, b2) with compact DNA in the middle, (3) bacteria with nuclear 

area and dense deposits (0.7 - 1.3 by 0.6 -1.0 μm in size; Fig. 1F, b3), (4) thread-like bacteria 

(1.1 - 1.5 μm by 0.2 - 0.5 μm in size; Fig. 1F, b4), and other types of bacteria (Fig. 1F, b5). 

Compared to the HMA sponge Biemna sp., the mesohyl tissues of the six investigated LMA 

sponges are noticeably devoid of microorganisms, and prokaryotic cells can only be 

occasionally observed (Fig. 1). Overall, the HMA-LMA status was very clear in that the 

mesohyl of the LMA species was nearly devoid of microorganisms while the mesohyl of the 

HMA species, Biemna sp., contained a variety of different bacterial morphotypes. 

Prokaryotic community composition 

The prokaryotic communities of the following sponge species were analysed within the 

framework of the final EMP “Global Sponge Microbiome Dataset” (Moitinho-Silva, et al., 

2017): Callyspongia sp. (n = 4), Biemna sp. (n = 5), H. atra (n = 5), H. fascigera (n = 6), 

Paratetilla sp. (n = 5), S. hapalia (n = 5), T. minor (n = 6) and seawater samples (n = 5). 

Sequencing yielded 4.278.491 sequences assigned to 3.970 sOTUs after quality control. 

Altogether, sOTUs of 32 bacterial and three archaeal phyla and 91 classes were recovered 

from the sponge and seawater samples of which the phylum Proteobacteria (1.320 sOTUs, 

accounting for approximately 33 % of all sOTUs) was the most abundant (Fig. 2). Within the 

Proteobacteria phylum, Alphaproteobacteria exhibited the highest sOTU richness (n = 419  

sOTUs), followed by Gammaproteobacteria (372), unclassified Proteobacteria (290), 

Deltaproteobacteria (177), Epsiloproteobacteria (40) and Betaproteobacteria (19). Other 

sOTU rich phyla, next to a high number of unclassified Bacteria (n = 929 sOTUs), included 
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Bacteroidetes (373), Firmicutes (336), Planctomycetes (213), Actinobacteria (140), 

Cyanobacteria (100), Chloroflexi (95), Verrucomicrobia (87) and Acidobacteria (78). 

Seawater samples were dominated by Alphaproteobacteria, whereas most sponges were 

dominated by Gammaproteobacteria, except for H. atra, which was the only sponge species 

that harboured unclassified Proteobacteria as their main prokaryotic component (Fig. 2). From 

the 35 prokaryotic phyla, 14 contributed significantly to differences between the sample 

groups (Supporting Information Fig. 1). Out of those phyla, Biemna sp. hosted most 

sequences assigned to Acidobacteria, PAUC34f, Gemmatimonadetes and Chloroflexi; all 

phyla known as HMA indicator phyla (Fig. 2; Moitinho-Silva, et al., 2017). The microbial 

community of the LMA sponges was mainly composed of LMA indicator phyla or a mix of 

other and LMA indicator phyla (Fig. 2). The LMA sponges H. fascigera, S. hapalia, 

Paratetilla sp., Callyspongia sp. and H. atra had the highest phylum level diversities with 24 

to 21 prokaryotic phyla discovered. The HMA sponge Biemna sp. and the LMA sponge 

T. minor possessed the lowest phylum diversity of all sponge samples hosting on average only 

18 and 17 prokaryotic phyla. Seawater samples had the lowest phylum level diversity with 12 

bacterial and three archaeal phyla discovered. These results have to be interpreted with 

caution because of the small volume of seawater used in this study (10ml per sample) that 

might have resulted in lower diversity and richness values for prokaryotic communities in 

seawater samples. However, our results detecting significant differences between sponge and 

seawater samples as well as similarities between LMA sponges and seawater are in line with 

previously published studies that used larger volumes of water (1-2l; e.g. Steinert et al., 2016; 

Thomas et al., 2016). 

The mean sOTU richness of sponge species ranged from 136 for Biemna sp. to 507 in 

H. fascigera. The HMA sponge Biemna sp. had the most diverse (Shannon Index: 

3.62 ± 0.04; Inverse Simpson Index: 25.70 ± 5.60) and evenly distributed (Evenness: 

0.74 ± 0.04) prokaryotic community (Table 1) and differences in those alpha diversity indices 
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compared to the other sponge and seawater samples were significant in pairwise comparisons 

(Supporting Information Table S1). 

The top 30 sOTUs in all samples included members of the Cyanobacteria, 

Proteobacteria (Alpha-, Gamma- and unclassified), Actinobacteria, Thaumarchaeota, 

Bacteroidetes, Nitrospirae and Acidobacteria. Interestingly, 24 of the top 30 sOTUs were 

quite novel and they had low sequence similarity, sometimes only 84 %, when compared 

against known prokaryotes of the 16S NCBI (i.e., 

rRNA_typestrains/prokaryotic_16S_ribosomal_RNA) reference taxonomy (Supporting 

Information Table S2). However, when 16 of the unknown sequences were BLAST searched 

against the nucleotide (nt) database, they showed high similarity (> 98 % identity over 

approximately 100 bp) to previously discovered sponge-associated prokaryotes from the 

Great Barrier Reef, Japan, Florida, the Red Sea, the South China Sea and the Mediterranean 

(Supporting Information Figure S2; Supporting Information Table S2). Nine of those sOTUs 

were exclusively found in one sponge species in the present study or only discovered in very 

low abundances (< 1 %) in others. The most abundant sOTU (sOTU 592), accounting for 

7.65 % of all sOTUs, belonged to the phylum Cyanobacteria, genus Synechococcus, and it 

was present in all samples (Supporting Information Figure S2). The second (sOTU 16635) 

and third (sOTU 1359) most abundant sOTUs were similar to (1) an uncultured bacterium 

clone and (2) an uncultured Candidatus Branchiomonas sp. clone retrieved previously from a 

sponge host when BLAST searched against the nucleotide (nt) database (Supporting 

Information Figure S2; Supporting Information Table S2). The most dominant sOTU (sOTU 

3073) in the seawater samples, was an Alphaproteobacterium assigned to the order of 

Caulobacterales (genus Brevundimonas), closely related to an organism isolated from 

seawater and it was absent from almost all sponge samples. 

The prokaryotic communities in the different sponge hosts are highly host specific and 

they differ significantly between each of the sponge species and seawater (adonis: df = 7, 
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F = 6.4296, R² = 0.577, p < 0.001). Additionally, the non-metric multidimensional scaling 

plots also demonstrated that the LMA sponges, the HMA sponge and seawater formed clear 

clusters and the LMA sponges displayed greater similarity with the seawater samples (Fig. 3). 

Pairwise comparisons of mean group dispersions demonstrated that H. fascigera, T. minor, 

Callyspongia sp. and seawater samples contributed significantly to the differences between 

the groups even though the overall group dispersion was not significant 

(betadisper: df = 7, F = 1.3414, p = 0.271; Supporting Information Table S3). 

Core and species-specific microbiome 

A small core community (100 % presence among all sponge samples – excluding seawater) 

could be found in our investigated sponge species, consisting of 3 sOTUs (0.88%) belonging 

to two bacterial phyla, Cyanobacteria (genus Synechococcus) and Planctomycetes. One of 

those, sOTU592 (Cyanobacteria; Synechococcus), belongs to a formerly described sponge-

specific sequence cluster, namely SC51 (see Simister et al., 2012). However, when we used 

the core community definition of Thomas et al. (2016), that is „presence in 85 % of sponges‟, 

we could find 29 sOTUs making up on average 8.6% of the total community composition. 

Only two of those 29 sOTUs belonged to sponge-specific clusters (SCs) and sponge-coral-

specific clusters (SCCs) (sOTU592 – SC51 and sOTU222 - SC3/SCC4 see Simister et al., 

2012). The majority of core sOTUs were affiliated with either Proteobacteria, Bacteroidetes, 

unclassified bacteria or Planctomycetes. 

The number of species-specific prokaryotes varied greatly among the different sponge 

species. T. minor had the smallest species-specific community, which consisted of ca. 24 % of 

the total community whereas species-specific prokaryotes accounted up to 86 % for 

Paratetilla sp. and 85 % for H. fascigera. The species-specific community of the other four 

sponge species (i.e., S. hapalia, H. atra, Callyspongia sp. and Biemna sp.) consisted of 

approximately 42 – 58 % of the total community. sOTUs belonging to sponge-specific SCs 

(Simister et al., 2012) or later on termed as “sponge-enriched” sequence clusters (Moitinho-
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Silva et al., 2014) made up only a smaller portion (5 – 23 %) of the species-specific 

communities of the individual host sponges. “Sponge-enriched” SCs accounted only for 7 –

 17 % of the overall microbial communities of the different host sponges, but the numbers of 

their reads made up 8 – 30 % of the overall sOTU reads of their microbial communities. 

Approximately 70 % of all “sponge-enriched” SCs were exclusively found in sponges, while 

only 5 % were exclusively discovered in seawater samples. 

Functional Predictive analysis 

We focused on predicted KEGG pathways that are involved in the production of bioactive 

secondary metabolites (Supporting Information Table S4; Fig. 4) and also examined which 

microbial phyla in the associated communities of the hosts explained the main differences 

between the samples (Supporting Information Figure S1). To support the quality of our 

approach we included the FTU values, which represent the fraction of the unmapped Tax4Fun 

OTUs (Table 1). A low FTU value suggests that the majority of OTUs were included in the 

functional predictive analysis and therefore the results might be more similar to actual 

metagenomic data. However, two sponge species in our study, H. atra (FTU= 0.51) and 

H. fascigera (FTU= 0.65), had FTU values >0.5. It was shown that FTU values of up to 0.5 

still resulted in a correlation coefficient of 0.65 between the predictive analysis with Tax4Fun 

and the functional profile obtained by whole metagenome sequencing (Aßhauer et al., 2015). 

Pathways involved in the production of secondary metabolites that explained the main 

proportion of variance between the samples include (KO01057) Biosynthesis of type II 

polyketide products, (KO00521) streptomycin biosynthesis and (KO00100) steroid 

biosynthesis (Fig. 4). Monoterpenoid biosynthesis (KO00902) and indole alkaloid 

biosynthesis (KO00901) were predicted to be particularly enriched in Callyspongia sp., while 

H. atra was more enriched in various antibiotic pathways, such as streptomycin (KO00521), 

vancomycin (KO01055) and tetracycline (KO00253) biosynthesis as well as terpenoid 

backbone (KO00900), and ubiquinone and other terpenoid-quinone biosynthesis (KO00130). 
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The HMA sponge Biemna sp. was predicted to be significantly enriched in pathways 

responsible for steroid biosynthesis (KO00100), indole alkaloid biosynthesis (KO00901), 

sesquiterpenoid and triterpenoid biosynthesis (KO00909), biosynthesis of type II polyketide 

backbone (KO01056) and nonribosomal peptide structures (KO01504). T. minor was only 

enriched in the biosynthesis of type II polyketide products (KO01057) and had otherwise low 

predicted gene counts for pathways associated with secondary metabolite production. 

Both, HMA and LMA sponges, were predicted to be enriched in various genes and 

proteins involved in the biosynthesis of type I and II polyketide synthases (Supporting 

Information Table S5; Supporting Information Fig. S3). However, there was no significant 

difference in enrichment of KOs involved in the production of type I and II polyketide 

synthases between HMA and LMA sponges (Supporting Information Table S6). The 

functional predictive approach proved to be a highly useful tool to get first insights into the 

potential functional capabilities of the symbiotic prokaryotes in our investigated sponges. 

However, it cannot substitute whole metagenome sequencing because its quality depends on 

the amount of prokaryotic reference profiles in the KEEG database and the presence as well 

as the functionality of predicted gene clusters is not verified. 

Discussion 

In the present study we demonstrated that sponge-associated prokaryotic communities of 

seven different reef sponge taxa from Zanzibar‟s west coast are largely sponge host species-

specific. Thus, host identity is a significant factor in explaining the microbiome of the 

sponges as shown before (e.g., Easson and Thacker, 2014; Reveillaud et al., 2014; Steinert et 

al., 2016, 2017). Very low intraspecific variability could be detected in samples of the HMA 

sponge Biemna sp. and of the three LMA sponges T. minor, Paratetilla sp. and H. fascigera. 

This indicates that prokaryotic communities in both, HMA and LMA sponges, are not 

randomly taken up, but strongly selected for (Blanquer et al., 2013; Moitinho-Silva et al., 
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2014). Previously identified HMA indicator phyla (Moitinho-Silva, et al., 2017) were 

especially enriched in the HMA sponge Biemna sp. whereas the prokaryotic communities of 

the LMA sponges and seawater samples were mainly composed of LMA indicator phyla. The 

different LMA sponges did not form strict host-specific clusters when they were grouped at 

prokaryotic phylum level, which is not unusual (Steinert et al., 2017). Even though the 

phylogenetic composition of the prokaryotic communities of LMA sponge species resembled 

the ones in seawater, they also displayed strong sponge-host specificity consistent with 

previous studies (Easson and Thacker, 2014; Moitinho-Silva et al., 2014; Erwin et al., 2015). 

In accordance with previous studies (Schmitt et al., 2012; Reveillaud et al., 2014; Astudillo-

García et al., 2017), we discovered a small core community consisting of 0.88 % (100 % 

presence) or 8.6 % (i.e., present in 85 %of samples) of the overall prokaryotic community. 

The core microbiome (85 % presence) was dominated by Proteobacteria and Bacteroidetes 

and did not mainly consist of “sponge-enriched” SCs as reported before for various sponge 

species (Schmitt et al., 2012; Thomas et al., 2016; Weigel and Erwin, 2017). The “sponge-

enriched” SCs in our investigated sponge species accounted in general only for 7 – 17 % of 

the overall prokaryotic communities of the different host species. However, previous studies 

(Simister et al., 2012; Schmitt et al., 2012; Thomas et al., 2016) reported that “sponge-

enriched” SCs constituted between 27 – 65 % of the overall prokaryotic community in various 

host sponges. In fact, sponge species from Zanzibar harboured a large number of unclassified 

bacteria, several of them being related to sponge-associated bacteria recovered from Great 

Barrier Reef sponges which also possessed less sequences belonging to “sponge-enriched” 

SCs (Webster et al., 2013).  

Approximately 30 % of all “sponge-enriched” SCs were also found in seawater. It is 

still contentious whether symbiotic prokaryotes are metabolically active in seawater or 

whether they could be only detected in seawater due to leakage from sponges (e.g., wounding 

by storm or predation, collapse from disease or spawning events) (Angermeier et al., 2011; 
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Gloeckner et al., 2013; Moitinho-Silva et al., 2014). Recent deep sequencing approaches 

discovered an increasing number of so-called “sponge-specific” prokaryotes in seawater or 

sediments, which might serve as seed bank for sponges (Taylor et al., 2013; Sipkema et al., 

2015; Thomas et al., 2016). These findings are consistent with our study in which we 

discovered sponge-specific candidate phyla, such as Tectomicrobia, SBR1093 and 

Poribacteria in very low abundances in seawater samples. Several bacteria from the 

surrounding seawater, including sponge-specific representatives of the phyla Actinobacteria 

and Gemmatimonadetes, are assumed to be actively finding their sponge hosts via 

chemotactic migration (Tout et al., 2017). Our findings that prokaryotic communities in both, 

LMA and HMA sponges, differ considerably from seawater and that HMA sponges harbour a 

more diverse community are in line with previous studies. These findings indicate that both 

horizontal and vertical transmission potentially occur in sponges, but that horizontal 

transmission is likely more prevalent in LMA species (Reveillaud et al., 2014; Ribes et al., 

2015). 

Functional prediction of secondary metabolite biosynthesis pathways 

Functional prediction of secondary metabolite biosynthesis pathways revealed distinct 

differences between sponge species. Callyspongia sp. harboured a considerable number of 

bacteria belonging to the candidate phylum Tectomicrobia (Wilson et al., 2014). 

Tectomicrobia have large genomes containing many gene clusters dedicated to bioactive 

compound production, similar to members of the phyla Actino- and Cyanobacteria (Omura et 

al., 2001; Flores and Herrero, 2010; Lackner et al., 2017). Next to Tectomicrobia, this sponge 

species harboured the most sOTUs that belonged to yet unclassified bacteria. The strong 

reported cytotoxic activities of Callyspongia sp. could be ascribed to the production of 

alkylpiperidine alkaloids (Fusetani, 2008; Helber et al., 2018) as it was enriched in various 

pathways for alkaloid biosynthesis (KO00901 and KO00960). Thus, Callyspongia sp. would 

be interesting for further exploration of its prokaryotic communities since it was previously 
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reported the chemically strongest defended sponge of the species investigated in the present 

study (Helber et al., 2018). 

Sponges of the genus Biemna are known for their broad spectrum of bioactive 

metabolites, particularly steroids (e.g. Ehrenasterol and Biemnasterol) and alkaloids (e.g. 

Biemnadin, Hydroxyascididemin and Netamines), often with cytotoxic properties especially 

against human carcinoma cells (Zeng et al., 1993; Govinden- Soulange et al., 2014; Youssef 

et al., 2015). Consistent with these previous studies, the sponge Biemna sp. at our site was 

enriched in pathways for steroid (KO00100) and indole alkaloid biosynthesis (KO00901). 

Moreover, the high abundance of type II polyketide backbone (KO01056) and nonribosomal 

peptide structures (KO01054) could be related to the large presence of the phyla PAUC34f, 

Chloroflexi as well as Actinobacteria. Sequences for polyketide synthases (PKS) and non-

ribosomal peptide synthetases (NRPS) were detected in more than half of the isolated 

Actinobacteria from various sponge species (Jiang et al., 2007, 2008). Additionally, 

Chloroflexi and PAUC34f are also known to contain PKS and NRPS (Fieseler et al., 2007; 

Siegl and Hentschel, 2010). 

Predicted functional profiles of the sponge species H. atra revealed the potential 

presence of several pathways involved in the biosynthesis of antimicrobial products. These 

findings are in line with previous studies, in which sponges of the genus Haliclona (Ely et al. 

2004; Aishwarya et al. 2013; Skariyachan et al. 2014) and specifically H. atra (Helber et al., 

2018) demonstrated high antimicrobial activities against a range of bacteria and pathogens.  

The sponge H. fascigera had similar predicted pathways for the production of 

antimicrobial compounds as H. atra. H. fascigera displayed intermediate antimicrobial 

activities in disc diffusion assays, while H. atra demonstrated activity against more than twice 

as much bacteria (Helber et al., 2018). H. fascigera was predicted to harbour genes associated 

with Sphingolipid mechanism (KO00600), which might explain its potent cytotoxic activities 

(Helber et al., 2018). Diverse sphingolipid metabolites have been isolated from a range of 
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sponge species that displayed cytotoxic and antitumor activities (Muralidhar et al., 2003; 

Ando et al., 2010). 

S. hapalia was predicted to be enriched in similar pathways as H. atra as they shared the 

highest similarity in their microbial communities. Though, in contrast to H. atra, S. hapalia 

displayed only moderate antibacterial activities and was the sponge species with the second 

highest activity in the cytotoxicity assay (Helber et al., 2018), in line with previous studies 

investigating species of the genus Scopalina (Biegelmeyer et al., 2015; Vicente et al., 2015). 

Cytotoxic properties might be attributed to the high abundance of Cyanobacteria which are 

known to produce a range of toxic compounds (Faulkner et al., 2000; Matthew et al., 2008, 

2010). No previous information on secondary metabolites for S. hapalia, Paratetilla sp. and 

T. minor have been published so far, highlighting a knowledge gap that needs to be filled. 

Sponges from Zanzibar harboured prokaryotes that produce type I and II polyketide 

synthases, but contrary to previous studies (Fieseler et al., 2007; Siegl and Hentschel, 2010) 

PKS genes and proteins were also predicted to be enriched in LMA sponges. Compared to the 

LMA sponges, the HMA sponge Biemna sp. was not predicted to be significantly enriched in 

genes involved in PKS production. Second to polyketides, terpenoids are also assumed to play 

a role in host defence (Keyzers et al., 2006; Karimi et al., 2017, 2018). The high number of 

different microbial terpenoid pathways found in Biemna sp., Callyspongia sp. and H. atra, is 

noteworthy because terpenoids were until recently suspected to be of plant or fungal origin 

(Yamada et al., 2015). This finding combined with recent studies detecting that terpenoid 

biosynthesis genes are widespread across uncultured sponge-associated bacteria (Karimi et 

al., 2017) could indicate that terpenoids play a more important role in sponge chemical 

defence than previously assumed. 

The strong chemical defences of the investigated sponge species (Helber et al., 2017, 

2018) in combination with continuing ocean warming, destructive fishing practices and 

damage to the reef through tourism activities (Jiddawi and Öhman, 2002; Muhando et al., 
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2002; Lokrantz et al., 2010) might explain the increasing abundances of sponges on the reef 

over the last years. Based on our results on the biological activities of the sponges and the 

functional predictive analyses, the sponges H. atra, Biemna sp. and Callyspongia sp. would 

be the most interesting species for further investigations of secondary metabolism and 

biotechnological potential. 

Our results obtained by a functional predictive approach based on 16S rRNA amplicon 

sequencing cannot replace whole genome sequencing. Thus, the results of our study need to 

be confirmed by (meta)genomic and/ or (meta)transcriptomic work to demonstrate that the 

predicted pathways in the prokaryotic communities of each sponge host are actually present 

and functional. 

Conclusions 

The present study is, to our knowledge, the first to investigate the prokaryotic community 

composition of sponges from the WIO. We have demonstrated that the highly diverse 

prokaryotic communities in sponges from Zanzibar are host species-specific, and that LMA 

sponges, despite being associated with low abundances of prokaryotes, harbour a diverse 

microbiome. The 16S rRNA gene sequencing combined with the functional predictive 

analysis can be a helpful tool to assess the potential capacity to synthesize natural products in 

sponge species and to prioritize sponge species for different follow-up chemistry approaches. 

The high number of unclassified bacteria in all sponge samples was striking, with 24 of the 30 

most abundant sOTUs showing low sequence similarities to known sponge-associated 

prokaryote sequences. These findings render the sponges of Zanzibar interesting for future 

studies, especially with regards to their natural product repertoire. 
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Fig. 1: Transmission electron microscopy showing the HMA or LMA status in six sponge 

species. LMA: (A) Callyspongia sp., (B) Paratetilla sp., (C) Haliclona atra, (D) Haliclona 

fascigera, and (E) Scopalina hapalia. HMA: (F) Biemna sp. with (b1) cyanobacteria, (b2) 

small bacteria with compact DNA in the middle, (b3) bacteria with nuclear area and dense 

deposits, (b4) thread-like bacteria, and (b5) other types of bacteria. Scar bar = 2 μm; b, 

bacteria; f, choanocyte flagella; n, nucleus; sc, sponge cell. Note that there are background 

artefacts in Figs 1B, 1E and 1F probably due to preparation, cutting, or overexposure. 
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Fig. 2: Relative 16S rRNA gene sequence abundance of microbial phyla (Proteobacteria split 

to classes) present in each host sponge species and seawater sample. Samples were arranged 

by Bray-Curtis dissimilarity as shown by the dendrogram on top. Microbial indicator phyla 

for LMA sponges are displayed in red colors, indicator phyla for HMA sponges in blue 

colors. The color scheme (i.e., blue or red) and the classification of HMA and LMA microbial 

indicator phyla are adapted from Moitinho-Silva and colleagues (2017). 
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Fig. 3: Non-metric multidimensional scaling (nMDS) plot based on Bray-Curtis 

dissimilarities for the microbial communities in the different host sponges and seawater 

samples. The LMA and HMA sponge species and the seawater samples form three distinct 

clusters. 
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Fig. 4: Heatmap displaying the average, estimated gene count contributions to KEGG 

pathways involved in secondary metabolite production that have significantly contributed to 

differences between the samples (determined by STAMP). 
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Table 1: Alpha microbiome diversity comparisons between the sponge and seawater samples 

and benthic coverage at 10 m water depth of the most abundant sponge species at Bawe 

Island, Zanzibar. The average values (± standard error) showing the Shannon diversity index, 

inverse Simpson index, sOTU richness and evenness as well as fraction the of unmapped 

tax4fun OTUs (FTU) are displayed for each sponge species and the seawater samples. 

Sample Shannon 

Index 

Inverse 

Simpson Index 

Evenness sOTU 

richness 

Benthic cover at 

10 m depth [%] 

n FTU 

Biemna sp. 3.62 

(±0.21) 

25.70 (±5.60) 0.74 (±0.04) 136 (±12.43) 2.88 (±4.20) 5 0.39 

(±0.03) 

Callyspong

ia sp. 

2.08 

(±0.39) 

4.53 (±1.87) 0.38 (±0.08) 266 (±43.66) 0.13 (±0.48) 4 0.15 

(±0.12) 

H. atra 2.61 

(±0.22) 

4.76 (±1.01) 0.44 (±0.04) 370 (±38.14) 2.33 (±4.70) 5 0.65 

(±0.07) 

H. 

fascigera 

3.46 

(±0.15) 

11.61 (±2.20) 0.56 (±0.02) 507 (±50.57) 0.17 (±0.90) 6 0.51 

(±0.14) 

S. hapalia 3.45 

(±0.17) 

9.43 (±0.60) 0.57 (±0.03) 424 (±46.53) 0.04 (±0.14) 5 0.26 

(±0.09) 

Paratetilla 

sp. 

3.21 

(±0.17) 

13.86 (±1.75) 0.58 (± 0.01) 304 (±81.96) 0.01 (±0.04) 5 0.26 

(±0.03) 

T. minor 2.24 

(±0.10) 

3.64 (±0.27) 0.40 (±0.01) 257 (±22.33) 0.11 (±0.24) 6 0.05 

(±0.03) 

Seawater 3.33 

(±0.23) 

14.57 (±2.18) 0.68 (±0.04) 171 (±60.24) - 5 0.07 

(±0.05) 
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