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Abstract—Airlines develop an operation plan, during the day
prior to operations (D-1), to identify potential network issues
and prepare potential pre-tactical preventing measures such as
aircraft tail swapping or crew reassignment to be applied on
DO0. Flights might experience discrepancies between their plan
and execution due to many different factors, and in particular
demand-capacity imbalances in the network leading to Air Traffic
Flow Management (ATFM) regulations. Dispatcher3, a Clean
SKky 2 innovation action, focuses on the use of machine learning
techniques to support the airlines processes prior departure:
dispatching, understood as the broad flight planning from the day
prior to operations to the flight plan definition and selection, and
advisories to pilot. This paper focuses on the estimation of ATFM
delay for individual flights during the pre-tactical phase (D-1),
which could help airspace users apply mitigation actions. Four
machine learning models are developed to produce individual
independent estimations with different level of granularity. The
first two are binary classifier models that provide information on
the probability of a given flight being affected by ATFM delay,
and the reason for this delay (airport or airspace congestion).
These models reported an accuracy between 75% and 88%. The
later two models estimate the impact of the delay (amount of
delay assigned to the flight if regulated), with a Mean Absolute
Error close to 9.35 minutes.

Index Terms—ATFM delay; prediction; pre-tactical; uncer-
tainty

I. INTRODUCTION

In the European Air Traffic Management (ATM) Network,
airspace users benefit from high flexibility in the flight plan-
ning process, providing them with the advisability to account
for uncertain factors, such as aircraft availability or convective
weather [1].

Airlines perform their aircraft assignment between 15 and
7 days prior to the day of operations. With this process,
specific aircraft frames are allocated to schedules considering
operational constraints, defining the different rotations for their
flights through the day of operation (D0). The day prior
to operations (D-1), the operation plan is drawn with the
objective of identifying potential network issues and preparing
pre-tactical preventing measures, such as aircraft tail swapping
or crew reassignment. During the day of operation, flight plans
will be updated (up to 3 hours prior to departure) and pre-
tactical actions implemented, if needed by the duty manager, in
order to minimise the propagation of disruption in the network.

During the operational plan definition, airlines submit mul-
tiple flight plans, trying to optimize as much as possible the
different rotations of flights for the day of operation (DO).

However, flights might experience discrepancies between their
plan and execution due to many different factors, and in
particular, demand-capacity imbalances in the network leading
to Air Traffic Flow Management (ATFM) regulations.

Over the years, the impact of ATFM delays has increased
because of the growth in the demand (number of flights)
and the limited capacity (number of simultaneous flights an
Air Traffic Controller (ATCO) can safely manage). In 2018,
at European Civil Aviation Conference (ECAC) level, the
number of flights increased by +14.6%, which corresponds
to 1.4 million additional flights in 2018 compared to 2013.
At the same time, en-route ATFM delays more than doubled
compared to 2017 (+104%). As a result, 9.6% of the flights
were delayed by these types of regulations with an increment
of 1.74 minutes per flight in 2018 [2].

Since 2020 traffic has decreased significantly due to
COVID-19. However, a complete recovery is expected by 2024
[3], and hence a return to demand-capacity imbalance and its
associated delays. Therefore, anticipating the potential delay
of flights in the fleet is paramount for a robust operation plan
in order to minimise the downstream disruptions.

ATFM delays are particularly complex. First, when a flight
is affected by an ATFM regulation they are issued with a
Calculated Take-Off Time (CTOT) which indicates a time
window for the flight to depart (from 5 minutes prior CTOT to
10 minutes after). If a flight cannot depart within this window,
e.g. due to other delays, the ATFM slot will be missed and a
new one assigned. This could lead to significant extra delay
being issued to the airline as early slots might already not be
available. Therefore, CTOTs act as barriers in the planning of
flights, if the delay is propagated in a way that ATFM slots
are missed this might have a significant downstream impact
even if the initially assigned delay by the regulation is small
or even zero; airlines need to closely monitor if slots might be
missed and notify it to the Network Manager (NM) as soon
as possible to obtain a new CTOT as close as possible to their
new Estimated Take-Off Time (ETOT). On the contrary, if
the initial delay is large, then some propagation of delay by
previous legs can be absorbed by the imposed delay due to
the ATFM regulation i.e., even if the flight is ready it will not
be able to depart until its CTOT window.

Second, in some cases airlines can respond to the ATFM
regulations. For example, if the regulation issuing the delay is
in the airspace, a new flight plan which avoids the congested
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Fig. 1: Pipeline of the advice generator and the possible
outcomes

airspace, e.g. re-routing or maintaining a lower altitude to
avoid entering the airspace, could reduce (or eliminate) the
issued delay. Moreover, if the aircraft is ready, i.e., with the
crew and passengers boarded, messages can be exchanged
with the NM to try to benefit from potential new early slots
generated due to delay or cancellations by other flights.

Overall, airlines need to closely monitor flights which have
been issued ATFM delays and actively produce new flight
plans and solutions to reduce the impact of this delay on their
fleet. As showed, not only if a flight is impacted by ATFM
delay, but the characteristics of this (amount of delay and type
of regulation) are required as soon as possible for effective
management of the fleet.

This paper focuses on the identification and prediction of
ATFM regulations for individual flights, during the pre-tactical
phase (D-1) and the characteristics of this delay. For this
purpose, and considering the impact that ATFM delay has
on airlines operations, a set of four Machine Learning (ML)
models are developed to produce individual estimators with
different levels of granularity to support the planning process:

1) Probability ATFM regulations: Probability of a flight
being issued an ATFM regulations

2) Aerodrome VS Airspace: For regulated flights, whether
the regulation is due to aerodrome or airspace restriction

3) Zero VS Non-zero delay: If the delay assigned is positive,
i.e., NON-ZEro

4) Distribution ATFM delay: Expected value and distribu-
tion of ATFM delay assigned, if non-zero.

The first two models predict if a flight is affected by
ATFM regulations and their characteristics, and the latter two
models provide an indication of the issued delay. Fig. 1, shows
the pipeline of the proposed framework, which combines the
outcome of the different models.

II. STATE-OF-THE-ART

Previous research projects have focused on Demand-
Capacity Balancing (DCB) issues. For example, COT-
TON (Capacity Optimisation in TrajecTory-based OperatioNs)
project [4] focuses on the DCB processes regarding airspace
management without using Artificial Intelligence (AI). ISO-
BAR (Artificial Intelligence Solutions to Meteo-Based DCB

Imbalances for Network Operations Planning) project [5]
aims to integrate enhanced convective weather forecasts to
predict imbalances between capacity and demand, using ML
techniques. TAPASO [6] investigates eXplainable Artificial In-
telligence (XAI) methods addressing the requirements of both
operational cases, which focus on the needs of operators (and
other potential actors) concerning the quality and transparency
of solutions generated by XAI methods.

Applying machine learning techniques to ATM is an active
area of research. However, less attention has received the study
of ATFM regulations.

It has been proved that, at the sector-level and during
the pre-tactical phase, it is possible to accurately anticipate
regulations due to weather using ML models [7], [8]. Similarly,
[9] showed that ATFM capacity regulations can be predicted
using supervised models. In all the cases, an accuracy of
around 80% was obtained across the different experiments.

Related to the delay generated due to ATFM regulations, the
total delay and number of regulated flights in the European
network with a mean absolute percentage error of 22% and
14% respectively was predicted in [10].

On the other hand, at flight-level, previous research pre-
sented a comparative analysis of models predicting ATFM
delays for specific Origin-Destination (OD) pairs [11]. Their
analysis focused on the USA network and studied three
different prediction problems between 2 and 24 hours in the
future: classification of OD pair delay (delays above or below
a threshold), prediction of OD pair delays, and predictions of
airport delay. Similarly, in a previous paper [12], the authors
used a Random Forest algorithm to predict departure delays
between 2 and 24 hours in the future. In this case, a 19% error
was obtained, classifying 100 different OD pairs as above or
below 60-minutes.

While, as shown in [13], airport demand figures, capacity es-
timations, and METeorological Aerodrome Report (METAR)
data can be used to find the most similar day to day-of-
operations. In the study, the authors used a Random Forest
algorithm to learn the similarity between days and to infer
possible corrective actions that could be applied.

The resilience of the European Air Traffic Management
Network (EATMN) is studied in [14], focusing on the man-
agement of emergent demand-capacity imbalances (tactical
phase), regarded as disruptions, and due to regulations.

Despite the vast research activity on machine learning
applications to ATM in the last years, tackling the problem
of ATFM identification at the flight-level, for the pre-tactical
phase, exhibits a significant gap.

III. RESEARCH QUESTION AND ASSUMPTIONS

Due to the lack of previous research for this particular
scenario, we want to investigate which information is more
relevant for the different models and define which problems
are feasible from a ML perspective. Therefore, it is assumed
that flight plans and accurate weather information are avail-
able.



This will reduce the uncertainty of the information to
properly study which problems can be learned by ML models,
and the relevance of the input features. We assume access
to the last filled flight plan for all the flights as reported in
the Data Demand Repository 2 (DDR2) repository by EURO-
CONTROL. Additionally, we use actual weather information
at the airport at the expected time of departure/arrival of the
flight, i.e., no noise is added during the training.

IV. METHODOLOGY

During the training/testing process, three sources of infor-
mation are used for the four models previously identified
(Probability ATFM regulations, Aerodrome VS Airspace, Zero
VS Non-zero delay and Distribution ATFM delay):

o pre-tactical traffic from DDR2, used to identify planned
flights and compute demand features;

« METAR data to compute features related to the meteo-
rological conditions at the departure and arrival airport;

« historical data from Vueling on their flights for labelling.

First, we will show the input features used for all the
models. Second, we will present the architecture of the ML
models. Third, we will define how we will evaluate the models.

A. Input features

The ML models will receive as input features information
related to the planned day of operation, characteristics of
the departure/arrival airport, the number of flights depart-
ing/landing at the origin/destination airports, the most crowded
crossed elementary sector, and weather information. These
features are shared by the four models as summarised in
Table I.

TABLE I: Features considered by the models

[ Topic [ Features [ Values [ Type |
Operational Hour departure 0-23 .
time Day of the week 0-6 Static

Month 0-11
Size departure small, medium, large
Departure as a hub yes, no
Airport by airline .
static Size arrival small, medium, large Statie
Arrival as a hub by yes, no
airline
normalised number 0-1
of departures same
Airport hour of take-off D .
demand normalised number 0-1 ynamic
of arrivals same
hour of landing
normalised OC 0-1
Network elementary sector D .
demand normalised EC 0-1 ynamic
elementary sector
Weather ATMAP weather 0-64
departure score . .
and arrival Temperature -15 — 45 (Celsius) Dynamic
airport Wind speed 0 — 50 (Knots)
Visibility 0 - 10 (Km)

Note that static features are those independent of the pre-
diction horizon, while dynamic might evolve in time as data
is updated.

Day, month and hour of planned departure are used to
characterise the day of operations. The departure hour is
included since it has been observed that the regulations are
scheduled mostly in the morning. The day of the week and
the month are also relevant because, typically, there is a
higher expected volume of traffic on the weekends and in the
summer, respectively. Moreover, the month of the year could
be interpreted as a season feature, since weather disruptions
exhibit seasonality.

The characteristics of departure and arrival airports are also
considered as shown in Table I. We used the size of the
airports, and if it is used as a hub by the airline [15].

Also related to the airports, we compute the normalised
number of departures and arrivals in the same hour as planned
by the flight, using the OD pairs and ETOT. The normalisation
of these features has been done using two techniques. First,
by the average number of departures/arrivals at the same hour
of the flight in the previous thirty days. Second, the average
number of flights at the same hour, and same day of the week,
in the previous thirty days. Using normalised features allows
us to show to the model the number of departures/arrivals at
the airports with respect to other periods of time

Information about the expected congestion of the network is
also used. In this case, we show to the models the normalised
Occupancy Count (OC) and Entry Count (EC) between all the
elementary crossed sectors in the planned routes.

The expected OC indicates the number of flights inside the
most crowded elementary sector, while the expected EC shows
how many flights will enter the elementary sector with most
flights. In both cases, the counting has been done for the same
hour in which the flight is planned to be inside/entering each
sector. Similarly to the normalisation used for the number of
departures and arrival, for these features we have used two
normalisations. First, we normalise both the OC and EC with
respect to the average number of flights inside the sector in the
previous thirty days in the same hour. Second, we normalise
the features with respect to the maximum OC and EC in the
previous thirty days, also in the same hour of the day.

Note that routes from the pre-tactical phase contain informa-
tion about all the elementary crossed sectors, and information
from all airlines has been used to compute this counting.
Finally, the weather conditions at airports are modelled based
on the METAR. We have used the ATM Airport Performance
(ATMAP) weather score, which aggregates the METAR data
in a single value [16] and has been shown to be correlated to
delay at airports [17], and simple indicators such as tempera-
ture, wind, and visibility.

B. Probability ATFM regulation

This is the first binary classifier used (see Fig. 1), aiming to
identify the likelihood of a flight facing an ATFM regulation.
Vueling data is used to create the labels for this model.
The information available is the ATFM delay imposed on



the flights. Therefore, those flights with no ATFM delay are
labelled with a zero, otherwise, the label is one. Note that
flights with zero-minute delay will have a label equal to one.

After an exhaustive search over specified parameter val-
ues for different estimators (grid-search analysis), the results
showed that the ML model that best fits the input features with
the label used is a Random Forest Classifier. The model uses,
during the training, a Gini impurity criterion to measure the
quality of the splits, a maximum depth of the trees equal to
fifty, and one-hundred estimators.

C. Aerodrome VS Airspace

Once we know the likelihood of a flight being affected by
a regulation, we can extend the analysis. The NM tags the
ATFM regulations as aerodrome when these are issued due to
demand-capacity imbalance at airports, e.g. due to convective
weather or peaks of demand. On the other hand, airspace
regulation refers to issues in a particular sector.

It is interesting to identify the location of the regulation to
implement proper action to mitigate possible disruptions.

To create the dataset for this model, we have used regu-
lated flights, and concretely information from Vueling. Those
regulated flights due to demand-capacity imbalances in an
aerodrome will have a label equal to zero, while imbalance
is in an airspace sector we have a label equal to one.

After a grid-search analysis, the model that best fits the
input features and the labelling is a Random Forest Classifier,
with a Gini impurity criterion to measure the quality of the
splits, a maximum depth of the trees equal to twenty-five, and
one-hundred estimators.

D. Zero VS Non-zero delay

It is not uncommon that a flight is affected by an ATFM
regulation but issued a delay of zero minutes, i.e., their ETOT
is within their assigned CTOT window. It is important to
identify flights in this category as they need to be closely
monitored by airlines to avoid missing the assigned slot.

The same information as in the first model (see Sec-
tion I'V-B) is used to label the dataset. A regulated flight with a
zero-minute delay will have a label equal to zero, and a flight
with a non-zero delay will have a label equal to one.

For this problem, the analysis also reported that the model
that best fits the input features and the labels is a Random
Forest Classifier. We used a Gini impurity criterion to measure
the quality of the splits, a maximum depth of the trees equal
to twenty-five, and one-hundred estimators.

E. Distribution of ATFM delay

Finally, for those flights that are expected to be regulated
with a non-zero delay, we want to estimate the amount of
delay they could receive.

Not only the expected amount of delay but the distribution
(and uncertainty) associated with this prediction is relevant to
the airline due to the non-linearities of the cost of delay [18].
Therefore, an approach based on a combination of regression
and classification models is used. First, a conventional regres-
sion model estimates the ATFM delay. Then, a multi-layer

Perceptron classification model predicts the distribution of the
error for the previous prediction [19].

The labelling for the regressor comes from the actual ATFM
delay imposed on each flight, and the grid-search analysis
indicates that the model best fits the input features and the
labels is a Random Forest Regressor. We have used a variance
reduction criterion to measure the quality of the splits, a
maximum depth of the trees equal to fifty, and twenty-five
estimators.

The goal of the classifier is to predict the probability
distribution of the error. Therefore, the labelling is based on
computing the difference between the predicted value by the
regressor and the actual delay. For example, if the regression
model produces most of the predictions with an error between
-20 and 20 minutes, this will be the range of values the
classifier will try to estimate. Thus, using twenty bins in the
distributions, each bin corresponds to a two-minutes error.

F. Evaluation metrics

Due to the nature of the different ML models, two types of
evaluations are performed.

For the binary classifiers Probability of ATFM regulation,
Aerodrome VS Airspace, and Zero VS Non-zero delay, we use
the following well-known metrics:

e Accuracy: Ratio of correctly predicted samples (both
positives and negatives).

o Recall: Ratio of actual positive samples that were cor-
rectly identified.

« Precision: Ratio of positive predictions that were correct.

¢ F1 score: Harmonic mean of the precision and recall, or
weighted average of the precision and recall

On the other hand, for the model Distribution ATFM delay,
we want to answer two questions: How close the expected
value of the probability distribution generated as an outcome
is to the actual ATFM delay? How uncertain is the model
about the predicted delay?

To answer the first question, we compute the mean absolute
error between the expected value from the distribution and the
actual ATFM delay. To obtain the expected value, we compute
the weighted sum between the range of values used, and the
probabilities predicted by the classifier. Then, we compute the
difference between the previous results and the actual delay.

To answer the second question, we compute the average
minutes required to cover 90% of the probability of ATFM
delay. We count the number of bins required to cover such
probability, and then, the value is transformed into minutes.

As an example, the mean absolute error in Fig 2 will be
the difference between the expected value and the red dashed
line. While the number of bins required to cover 90% of the
probability will be six. Therefore, with a bin length of two-
minutes, the uncertainty will be 12 minutes

V. RESULTS

First, we will perform a statistical analysis of the data
used. Second, we will present the results obtained using the
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proposed individual models ( Probability of ATFM regulation,
Aerodrome VS Airspace, and Zero VS Non-zero delay). Third,
we will show the performance of the models used to obtain
the distribution of expected delay (Distribution ATFM delay).

A. Input data analysis

For this publication, we have used around 200,00 flights
from 2018. According to the analysis done, 30% of the flights
were regulated. 41% of the regulations were due to demand-
capacity imbalance and 25% due to convective weather.

A more general categorisation of the regulations is accord-
ing to their location. Two types of locations are possible.
Aerodrome when the regulation is located in an airport, or
Airspace if the issue is in a sector. In this case, according
to the analysis, 42% of the regulations were associated with
aerodromes and 58% with airspace sectors.

Now, if we focus on the moment the regulations were
implemented, the weekends are the moment of the week
with more regulations. Fridays, Saturdays, and Sundays got
around 50% of the regulations. However, if we look at the
starting hour of the regulations, the majority of regulations
were implemented between 5 a.m and 10 a.m., with two less
severe peaks around 3 p.m. and around 8 p.m.

Finally, if we look at the length of the ATFM delay in
minutes, we see that around 70% of the flights received a
delay smaller or equal to 20 minutes (see Fig. 3).
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Fig. 4: Relevance of the input features for the prediction of
ATFM regulations.

TABLE II: Performance of Probability of ATFM regulation
model

[ Accuracy [ Recall | Precision [ Fl-score ]
[ 08 [ 000 | 08 [ 089 |

B. Probability of ATFM regulation

Fig. 4 shows the results of the feature analysis for the
first binary classifier, based on F-value ANalysis Of VAriance
(ANOVA). Note how operational time and airport static are
static features, while airport demand, network demand and
weather are dynamic features which might depend on the data
available at a given prediction horizon. We can see that the
most relevant features are the size of the airport at arrival,
the temperature, the expected number of flights in the most
crowded elementary sector, and if the departure airport is used
as a hub by the airline. They are followed by the normalised
number of flights departing/landing at the origin/destination
airports according to the hour of departure, the size of the
origin airport, and characteristics of the operational time
(hour, day, month). Finally, the less relevant features are the
normalised number of flights departing/landing according to
the day of the week, and weather information such as the
visibility, wind speed, or ATMAP score.

Table II shows the accuracy, recall, precision, and FI-
score of this first model. 172,111 samples have been used for
training and 41,692 samples for testing.

As it can be seen, the model can correctly predict the major-
ity of the regulations with an accuracy of 0.88. Furthermore,
the model is able to properly identify both the non-regulated
and regulated flights, reporting an Fl-score equal to 0.89.
Notice that because of the high recall and lower precision,
the models tend to predict that the flight will be regulated.

Although the input features used do not directly provide
information about all the possible types of regulations, the
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Fig. 5: Relevance of the input features for the prediction
Aerodrome VS Airspace

TABLE III: Performance Aerodrome VS Airspace model

[ Accuracy [ Recall | Precision [ Fl-score ]
[ 084 [ 080 | 083 [ 082 |

results obtained indicate that the model is able to infer some
of them. The model reported accuracy of 0.88, while 0.66
of the regulations were related to demand-capacity issues and
convective weather.

C. Aerodrome VS Airspace

Fig. 5 shows the results of the ANOVA for the Aerodrome
VS Airspace model, which estimate the location of the regu-
lation. We can see that the most relevant features are the size
of the airports, together with the temperature at the airports,
and the use of the arrival airport as a hub by the airline.
Next, the expected number of flights in the most crowded
elementary sector with respect to the maximum number of
fights in the previous 30 days. Then, also relevant features
are the visibility, wind, ATMAP score at arrival, the day of
departure, and month. Followed by the normalised number of
flights departing/landing, if the departure airport is used as a
hub, and the expected number of flights in the most crowded
elementary sector with respect to the mean number of fights
in the previous 30 days. Notice that compared to the previous
models, in this case, the used weather features play a more
active role.

Table III shows the results of this second ML model. In
this case, we have used samples from regulated flights. 56,146
samples have been used for training and 14,037 for testing.

The results show that the model can properly predict the
location of the regulation, independently of the category. It
exhibits an accuracy of 0.84, and an Fl-score equal to 0.82.
However, it presents a 0.6 drop in the overall performance
(F1-score) compared to the previous model. Moreover, it has
lower recall than precision.
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Fig. 6: Relevance of the input features for the prediction Zero
VS Non-zero delay.

TABLE IV: Performance of Zero VS Non-zero model

[ Accuracy [ Recall | Precision [ Fl-score ]
075 [ 08 | 071 [ 076 |

D. Zero VS Non-zero delay

Fig. 6 presents the feature analysis for the model Zero VS
Non-zero delay, where it can be seen that the most relevant
features are the hour of departure, size of departure airport,
if the departure airport is used as a hub by the airline, the
normalised number of flights departing at the same hour,
and the day of the departure. Then, also relevant for the
model are features such as the temperature, the rest of the
normalised features at the airports, the ATMAP score at the
arrival airport, the number of flights in the most crowded
sector, static information about the arrival airport, the ATMAP
at the departure airport, and the visibility at arrival. Next,
the wind speed, and the month of operation play a negligible
role. Finally, notice that the visibility at the departure airport
presents a negative score, meaning that it is a source of noise
for the model.

Table IV shows the results from this Zero VS Non-zero
delay model, where 56,146 samples were used for training
and 14,037 for testing.

This last individual ML model is the weakest one, with
a less balanced performance. It exhibits high recall and low
precision, meaning that the model has some difficulties to
predict zero delays.

The low performance of this model could come from two
factors: First, the imposed delays are close to zero (see
previous Fig. 3), which makes it difficult for the model to
distinguish low delays from delays equal to zero. Second,
it tries to predict values from the Computer Assisted Slot
Allocation (CASA) algorithm, which is based on the principle
of first-in-first-serve. This information is difficult to infer
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predicted by the regressor and the actual ATFM delay.

TABLE V: Performance of the Distribution ATFM delay
model

[ Mean absolute delay error [ Mean num. bins 90% probability |
[ 9.37 mins [ 13.56 mins |

because no information from other flights is provided.

E. Distribution of ATFM delay

This last model tries to estimate the probability distribution
of the delay imposed on regulated flights.

Fig. 7 shows the probability density distribution of the errors
in minutes reported by the regressor, which tries to estimate the
ATFM delay. As it can be seen, the majority of the predictions
have an error between -20 and 20 minutes.

Table V shows the performance of the model Distribution
ATFM delay, which uses the previous regressor and a classifier
to estimate both the ATFM delay and the error of such delay.
We used 46,698 samples for training and 20,013 for testing.

The results obtained comparing the actual ATFM delay with
the expected value from the distribution show that the model
can predict the ATFM delay with a mean absolute error of 9.37
minutes. The model exhibits, as a measure of uncertainty, that
around 13.5 minutes are required to cover a 90% probability
of delay from the distribution.

Notice that, similar to the model Zero VS Non-zero delay,
predicting the ATFM delay is a challenging task. However, the
performance of the model corresponds to the state-of-the-art.
In the most recent similar work, an absolute error of around
12 minutes was reported predicting the delay of specific OD
pairs in the USA network [11].

VI. CASE STUDY

This section aims to show the possible usage of the frame-
work, combining the different individual models.

Fig. 8a shows the predictions obtained for a flight from
LIQOR to LFPO at 8:24 a.m. As it can be seen, the framework
predicts with a high probability that the flight will be regulated
with a non-zero delay, but it is slightly less sure about
the location. Moreover, the final distribution is quite narrow,
indicating low uncertainty in the expected delay.

Airlines need to closely monitor flights which have been
regulated. Therefore, they could benefit from identifying those
flights during the pre-tactical phase. Furthermore, they actively
produce new flight plans and solutions to reduce the impact
of ATFM delays on their fleet.

The proposed framework could also be used to evaluate
the new produced flight plans. Fig. 8b uses the same data
for the previous fight but with a possible change in the route
(horizontally), crossing less congested airspace. This has been
modeled by decreasing by 15% the expected number of flights
inside the most crowded elementary sector (one of the input
features). As observed, the change reduces the probability of
regulation (from 97% to 65%) and the expected ATFM delay
(from 15.45 to 12.28 minutes).

VII. DISCUSSION ON DATA AVAILABLE AT PREDICTION
HORIZON

This paper aims to define the initial framework and identify
feasible scenarios for ATFM regulations. However, the main
limitation of this work is data availability at the planned
time horizon of execution. The dynamic features presented
in Table I are assumed to be known at D-1 without any
uncertainty, as we have assumed it is available pre-tactical
traffic information similar to pre-departure DDR2 traffic and
weather forecast with the accuracy of actual METAR.

Although analysis of 2018 traffic data shows that up to
80% of routes between OD pairs have been previously flown,
assuming we know the exact trajectory with allocated crossing
times of sectors is unrealistic. Similarly, it is unrealistic
to assume weather forecast with similar accuracy to actual
weather. However, as shown in Figs. 4, 5 and 6, dynamic
features have a relevant role on the predicting capabilities of
the models.

To identify the impact of these features, Fig. 9 presents the
F1-score of the different binary classifiers, removing different
sets of dynamic features (weather and demand/traffic related).
We focus on the Fl-score because it is an accuracy indicator
which takes into account the positive and negative labels.

As seen, if we remove the weather data (METAR) at the
airports, the performance of the models decreases by around
6%. According to the feature analysis done, we were expecting
the biggest drop for the model Aerodrome VS Airspace due to
the relevance of these features (see Fig. 5). However, the model
Probability ATFM delay reports the largest drop.

When only static features are maintained (removing
METAR and all other features time horizon dependent), the
performance drops around 0.14. In this case, model Zero VS
Non-zero exhibits a further decline with 0.15.

Fig. 10 shows the performance of the approach Distribution
ATFM delay under the same previous three scenarios. The
METAR information has a low impact on the models, mainly
affecting the uncertainty of the predictions. As it can be
seen, it produces an increment of one minute. However, the
combination of weather information and dynamic features has
a much bigger impact. It produces a gain of three minutes on



Airspace: 88%

Location

ATFM delay: 97% (aerodrome VS airspace)

ATFM delay yes

ATFM delay: 15.45 mins

015

obability

P

010 Uncertainty: 14 mins

ATFM delay (minutes)

Flight
information (i ms) Non-zero: 92%
Amount of delay nonzero Amount of delay
(zero VS no-zero) (prob. distribution)
(a) Example flight with low uncertain predictions
Airspace: 92%
B Location
ATFM delay: 65% (aerodrome VS airspace)
Flight o ATFM delay yes

information (yes VSino) Non-zero: 48%

Amount of delay nonzero |/Amount of delay
(prob. distribution)

(zero VS no-zero)

ATFM delay: 12.28 mins

Uncertainty: 22 mins

i

ATFM delay

(b) Example flight with high uncertain predictions

Fig. 8: Output of the framework. Green boxes indicate high probability (prob < 0.25, prob >0.75). Red boxes high uncertainty

(0.25 < prob < 0.75).

All input features Without METAR

1.00

Without METAR and dynamic features

0,88

081
.81 0,78
1181075 0,76
0,74 ) 07

0,61

F1-score

Prob. ATFM delay  Aerodrome VS Airspace  Zero VS Non-zero

Fig. 9: Fl-score of binary models as a function of the inclusion
of dynamic features.

the mean absolute error and an increment of six and a half
minutes of the uncertainty.

This analysis helps to identify the impact of the dynamic
features and to highlight the importance of traffic features
(demand forecast) along with weather characteristics on the
performance of the models. Note that the model with only
static features does not depend on the prediction horizon, i.e.,
on the dynamics of the system, and can therefore be used
for strategic estimation of the criticality of operations. Adding
the dynamic features as they are available will improve the
predictions as the time of operation approaches.

VIII. CONCLUSIONS

We have proposed and evaluated a new framework based
on four supervised ML models to predict whether a flight will
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Fig. 10: Error and uncertainty for Distribution ATFM delay
model as a function of the inclusion of dynamic features.

issue an ATFM regulation.

For specific flights operated by Vueling in 2018, the models
reported an accuracy of 88% identifying the probability of
a flight being regulated and 84% predicting the location of
such regulations. In both cases, the models exhibit a balanced
performance with an Fl-score of 0.89 and 0.82 respectively,
being able to identify both categories.

Lower performance has been reported when trying to esti-
mate if the delay will be zero, or non-zero, with an accuracy
of 0.73. Although the model reported a reasonable accuracy, it
struggles to predict the category of zero minutes of delay. Few
samples had an exact zero minutes delay, but many fights have
a delay close to zero. However, the model which predicts the
minutes of ATFM delay and the distribution of error reported
state-of-the-art results. It exhibits a mean absolute error of 9.37



minutes and uncertainty of around 13.5 minutes.

Therefore, according to the results obtained, it should be
possible to predict which flights will be regulated, and the
location of such regulation, together with the estimation of the
ATFM delay. Nonetheless, the intermediate step of predicting
if the delay will be zero is the most challenging task, probably
due to the lack of information from other flights. As the
objective of this model is to provide information to the airspace
user of a flight with a low delay assigned, other operationally
valid thresholds instead of zero could be considered.

The analysis done in Section VII shows that the inclusion
of features related to demand has a significant impact on
the performance of the models. Therefore, overcoming the
assumption related to the use of pre-tactical DDR2 data is
the main priority. To ensure data availability of traffic on the
day before operations, we plan to use an implementation of
PREDICT [20], [21], which is the tool used by the NM to
estimate the pre-tactical routes.

Finally, although the overall contribution of weather at
airport information seems to play a less critical role, features
such as the temperature have high relevance for the models.
In future work, we will replace the actual weather data at the
airports with the weather corresponding forecast and airspace
weather should also be included.
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