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A B S T R A C T

Electricity price prediction through statistical and machine learning techniques captures market trends and
would be a useful tool for energy traders to observe price fluctuations and increase their profits over time. A
Nonlinear AutoRegressive Moving Average model with eXogenous inputs (NARMAX) identifies key energy-
related factors that influence hourly electricity price through prediction modelling. We propose to use a
transparent NARMAX model and analyse Irish Integrated Single Electricity Market (ISEM) data from May
2019 until April 2020 to determine which external factors have a significant impact on the electricity pricing.
The experimental results indicate that historical electricity price, demand, and system generation are the
most significant factors with historical electricity price being the most weighted factor and the largest Error
Reduction Ratio (ERR). A NARMAX model generated using correlated lags was also considered to identify
key energy-related lag factors that influence the electricity price. For justification, the significant lag factors
are included as inputs in a Seasonal AutoRegressive Integrated Moving Average model with eXogenous input
(SARIMAX) to determine if model performance improves with refinement. To conclude, using the NARMAX
methodology with energy-related input factors helps to determine the significant factors and results in accurate
predictions of electricity price.
. Introduction

Electricity price data exhibit complex behaviours which result in
rice fluctuations thus making price forecasting difficult (Mosbah &
l-Hawary, 2016). The Integrated Single Electricity Market (ISEM)
s a new electricity market in Ireland providing energy traders with
reater control. Awareness of future electricity prices and appropriate
election of input factors would help ISEM market traders know when
o buy or sell price units. Considering the ISEM market, the system
arginal price, which is the cheapest bid placed by generators to
eet customer demand (Li, Arci, Reilly, Curran, & Belatreche, 2016),

s influenced by many energy-related factors. These factors including
lectricity demand, weather temperature or wholesale gas prices can
ontribute strongly to electricity generation costs and prices (Pandey

Upadhyay, 2016) and therefore necessary to include as input vari-
bles in electricity price prediction models to determine an optimal
orecasting tool.

Machine learning algorithms use historical data to develop optimal
odels used to predict future prices (Gao, Lo, & Fan, 2017). Recent

iterature examined various regression models to predict solar radia-
ion and evaluated the best model by calculating the statistical errors
Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root
ean Squared Error (RMSE)] and selecting the best model with the

mallest error (Karasu, Altan, Sarac, & Hacioglu, 2017). Price data
isplay nonlinear traits and for this reason a hybrid model is also worth
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considering to improve model performance accuracy (Altan, Karasu, &
Bekiros, 2019).

A Nonlinear AutoRegressive Moving Average model with eXogenous
inputs (NARMAX) observes the relationship between inputs and outputs
while considering past error to improve future predictions (Acuna,
Ramirez, & Curilem, 2012). A NARMAX model helps to identify the
statistically significant input factors influencing electricity price by
removing redundant factors. The size of the forecasting window is
also important, with short-term (days/weeks) being more desirable for
energy forecasting to manage supply and demand fluctuations (Amjady
& Hemmati, 2006).

In this paper, the main contribution is a transparent NARMAX model
implemented with multiple hourly inputs (corresponding to various
energy-related factors and their correlated peak lags) to determine
contributing factors for accurately forecasting electricity price. The aim
of the correlated lags model is to enhance prediction accuracy and
improve market performance. This was justified by using the significant
NARMAX lag factors as a hybrid approach to refine a Seasonal AutoRe-
gressive Integrated Moving Average with eXogenous inputs (SARIMAX)
lag model to determine if day-ahead prediction accuracy can be im-
proved. Although the study presented here only uses hourly electricity
data between May 2019 and April 2020 and has minimal parameter
optimisation, we demonstrate excellent results thereby illustrating the
robustness of our modelling approach.
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The remainder of this paper is organised into the following sections:
Section 2 discusses related work using the NARMAX methodology and
the methodology is described in detail in Section 3. The procedure used
to identify correlated lags is outlined in Section 4. Results are presented
and summarised in Sections 5 and 6 concludes with key findings.

2. Related work

Accurate day-ahead forecasting is required for optimal energy trad-
ing. Nogales, Contreras, Conejo, and Espínola (2002) found that short-
term forecasting methods produced accurate predictions, when propos-
ing models to forecast the Spanish and Californian energy markets, with
results displaying small error. It is also beneficial to have a prediction
model that can deal with price volatility (Voronin & Partanen, 2013)
to remain competitive in the market. Huurman, Ravazzolo, and Zhou
(2012) concentrated on weather variables to predict day-ahead energy
prices and noted that information from weather forecasts can be useful
in improving accuracy. Wind is often considered an important energy-
related factor as it is chaotic and difficult to predict accurately thus
resulting in the largest volatility in one study (Cerjan, Matijaš, &
Delimar, 2014). Li et al. (2016) remarked that other factors such as
demand, interconnectors, and power generation were dominant energy-
related factors. Kavanagh (2017) utilised historical load data to perform
day-ahead forecasting and observed daily and weekly patterns rising in
peaks and troughs.

Several computational intelligence forecasting techniques have been
applied in the energy sector. The general price forecasting steps in-
clude: (i) analysing historical data, (ii) data preparation, (iii) model
selection, and (iv) model refinement (Pandey & Upadhyay, 2016).
Vijayalakshmi and Girish (2015) researched short-term electricity price
forecasting and examined the accuracy between time-series models
and an Artificial Neural Network [ANN] model. Gao et al. (2017)
compared an ANN with an AutoRegressive Integrated Moving Average
[ARIMA] model and discovered that both models were less precise
as the prediction window size increased and hence demonstrated that
short-term forecasts were highly accurate.

Nonlinear regression models apply a nonlinear combination of inde-
pendent variables and lagged terms to calculate the dependent variable
(Ghalehkhondabi, Ardjmand, Weckman, & Young, 2017). As energy
market data display nonlinear relationships, nonlinear regression mod-
els such as NARMAX could be useful to identify key external factors
(independent variables) and lags. A NARMAX model can also be con-
sidered for seasonal data as it is able to identify periodic series (Acuna
et al., 2012). A polynomial NARMAX model, which is considered trans-
parent, is desirable since it has a simple model structure with a small
number of parameters (Zito & Landau, 2005) and thus can be easily
analysed. A NARMAX model is fast to compute and incorporates the
relationship between input–output variables (Nehmzow, 2006). NAR-
MAX models have been used in a variety of industry studies: to identify
key features influencing China house prices (Zhang, Hua, & Zhao,
2012); predicting cash demand of ATMs with seasonal input variables
(Acuna et al., 2012); modelling air pressure and turbine relationships
in diesel engines (Zito & Landau, 2005); modelling solar wind in mag-
netosphere evolution (Boynton, Balikhin, Billings, Wei, & Ganushkina,
2011) and modelling monthly West Africa rainfall (Amisigo, van de
Giesen, Rogers, Andah, & Friesen, 2008).

When determining external factors to use for a predictive model,
it is often useful to identify the peak lags as they can be highly
correlated with the dependent variable. Peak lags are determined using
autocorrelation testing with exogenous variables and output checked to
see if any lagged term shows robust correlation or a relationship with
the dependent variable (Ghalehkhondabi et al., 2017; Li et al., 2016).
A common approach is to determine the top influencing lags for each
input factor (Ghalehkhondabi et al., 2017). The work in Li et al. (2016)
suggested using a 24-hour lag as an input as their experimental energy

study found that same hour data from the previous day provided strong

2

correlation. A limitation was noted in another energy market study with
Swedish data as they considered no lagged terms (Xie, Sandels, Zhu, &
Nordström, 2013). Therefore, to improve model accuracy peak lagged
energy-related factors should be included as model inputs.

3. NARMAX methodology

In a NARMAX model, unknown parameters are estimated through
simple regression algorithms (Pagano, Filho, & Plucenio, 2006) con-
sidering the input and output variables (Zito & Landau, 2005). The
NARMAX model identifies the structure by finding the relationship
between previous inputs and current output using a nonlinear equation
(Billings & Coca, 2001). The NARMAX methodology uses an error
measure to refine model structure and improve prediction accuracy
(Acuna et al., 2012). Leontaritis and Billings described a polynomial
NARMAX model (Korenberg, Billings, & Liu, 1987) as:

𝑦 (𝑡) = 𝐹 𝑙[𝑦(𝑡−1),… , 𝑦(𝑡−𝑁𝑦), 𝑢(𝑡),… , 𝑢(𝑡−𝑁𝑢), (𝑡−1),… (𝑡−𝑁 )]+(𝑡)

(1)

where 𝑦 (𝑡) is the output time-series, 𝐹 𝑙 is an unknown non-linear func-
tion either linear, quadratic, or cubic, 𝑁𝑦 is the output lag regression,
𝑢(𝑡) is the input time-series, 𝑁𝑢 is the input lag regression, 𝑁 is the
prediction error lag regression, and (𝑡) is the prediction error.

Firstly the model estimates 𝐹 𝑙, removes unnecessary terms leaving
one large polynomial function (Warnes, Glasseyfl, Montague, & Kara,
1996). It can be difficult to decide which degree of polynomial and in-
teraction terms to use for the initial model structure thus trial and error
combinations are required to select the inputs, degree, and interaction
terms (Warnes et al., 1996). By analysing all possible combinations,
unbiased estimates can be obtained and the key model terms identified
(Boynton et al., 2011). Next, the parameter terms can be estimated.
These two steps are important to remove insignificant coefficients
during the iterative learning process (Billings & Fadzil, 1985) and hence
ensure a compact model is obtained.

In total there are five stages to the NARMAX methodology in
order to estimate and identify the suitable model terms: (1) structure
selection, (2) parameter estimation, (3) model validation, (4) prediction
and (5) analysis. NARMAX splits the data into model estimation and
model validation subsets (Nehmzow, 2006). Structure selection applies
orthogonal estimation algorithms (Korenberg et al., 1987) to identify
model terms and reduce coefficients. The algorithm first estimates lin-
ear parameters excluding (𝑡) allowing extra terms to be added without
e-estimating the model. Next an initial (𝑡) is estimated, and then
efined in each iteration for all coefficients (Korenberg et al., 1987).
ach coefficient is independent as each term is orthogonal, allowing
he model coefficients to be estimated independently (Korenberg et al.,
987). This results in a compact model and avoids over- or under-
itting by adding each term one at a time and checking the coefficient’s
ignificance against the output’s variance (Billings & Coca, 2001).

When considering models with a high number of inputs there is
ncreased difficulty in reaching the desired accuracy. The NARMAX
ethodology uses an error estimation algorithm to calculate the Error
eduction Ratio (ERR) which is the percentage reduction from the

otal Mean Squared Error (MSE) signifying the model term contribution
Taib, 1993). The ERR is calculated as follows (Zito & Landau, 2005):

𝑅𝑅𝑖 =
𝑔2𝑖

∑𝑁
𝑘=1 𝑤

2
𝑖 (𝑡)

∑𝑁
𝑘=1 𝑦

2
𝑖 (𝑡)

(2)

where 𝑔𝑖 is the parameter (in this research, the energy-related factors),
𝑤𝑖 is the regressor (in this research, the electricity price) and 𝑦𝑖 is
the output regressor (in this research, the day-ahead electricity price).
ERR develops a parsimonious model through ranking regressors from
high to low MSE reduction (Amisigo et al., 2008). Validation tests are
necessary to confirm an accurate model fit (Korenberg et al., 1987).
Model validation is verified with unseen data to predict and check
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Table 1
Energy-related factors.

Energy-related Factors Unit Model Input

Historical Electricity Price GBP per Megawatt Hour U1
System Generation Megawatt U2
Demand Megawatt U3
Wind Megawatt U4
East–West Interconnector Megawatt U5
Moyle Interconnector Megawatt U6
CO2 intensity Kilowatt Hour U7
CO2 emissions CO2 intensity per Hour U8
Load Megawatt U9
Temperature Celsius U10

the accuracy (Billing & Voon, 1985). The final model displays the
statistically significant model terms ranked in order (Zhang et al.,
2012). Throughout all stages of the methodology the outcome variable
is dependent on the chosen inputs therefore it is crucial to choose
correctly to reach maximal model accuracy (Billings & Fadzil, 1985).

4. ISEM dataset

A new unique cross-border energy market, the Integrated Single
Electricity Market (ISEM), went live in October 2018 in Northern Ire-
land and Republic of Ireland, increasing transparency and competition
in the market. The ISEM consists of multiple markets allowing traders
to purchase electricity units beforehand in the Day-Ahead or Intra-Day
markets. If market traders do not purchase electricity units in either
of these two markets, they have to pay the balancing market price
as well as any financial costs through the imbalance settlement price
if the electricity price has increased. The ISEM brings complexity in
purchasing and selling electricity units with a need to forecast as it
adapts to the European Target Model process.

The ISEM 2019–2020 data and exogenous variables were down-
loaded from multiple sources: hourly electricity price data were re-
trieved from the day-ahead trading market Single Electricity Market
Operator (SEMOpx, 2020), half-hourly forecast load generation were
collected from SEMO (SEMO, 2020), energy-related data recorded in
15-minute intervals were retrieved from EirGrid smart dashboard (Eir-
Grid, 2020): actual demand (predicted electricity production), system
generation (total electricity production), forecast wind (total all is-
land wind farms), East–West interconnector (connected from Ireland
to Wales), Moyle interconnector (connected from Scotland to Northern
Ireland), CO2 intensity (average of CO2 emissions), CO2 emissions
(estimated total of all power stations), and hourly temperatures were
collected and averaged from five weather Met Office stations across
Northern Ireland (MET Office UK, 2020) and the Republic of Ireland
(Met Office IE, 2020). Table 1 presents a summary of all of the energy-
related factors used in this work. During data pre-processing, the
non-hourly data (e.g. half-hourly load) was averaged per hour per
day. Data preparation involved merging each of the individual datasets
together keeping date, hour, unit and unit value for each energy-related
factor.

5. Correlated lags

Autocorrelation shows the relationship between data points in terms
of the time lag function. Autocorrelation testing can find the corre-
lations when applied to lagged time-series input. An Autocorrelation
Function (ACF) plot displays data trends and is a key diagnostic tool
to identify correlation among the data. Splitting a time-series into 24-
hour time periods instead of using the complete time-series in a model
has been shown to help to improve model accuracy (García-Martos,
Rodríguez, & Sánchez, 2007).

The correlated lag plots for each energy-related factor were ex-
amined to identify peak lags for the ISEM market. Autocorrelation

testing was performed first selecting initial lags as any positive lag

3

Table 2
ISEM peak lags.

Energy-related Factors Unit Peak Lags

Historical Electricity Price GBP per Megawatt Hour Lags 1, 2, 23, 24
System Generation Megawatt Lags 1, 2, 3, 22, 23, 24
Demand Megawatt Lags 1, 2, 3, 22, 23, 24
Wind Megawatt Lag 1
East–West Interconnector Megawatt Lags 1, 2, 3, 24
Moyle Interconnector Megawatt Lags 1, 2, 3, 24
CO2 intensity Kilowatt Hour Lag 1
CO2 emissions CO2 intensity per Hour Lags 1, 2, 3, 22, 23, 24
Load Megawatt Lags 1, 2, 3, 22, 23, 24
Temperature Celsius Lags 1, 2, 3, 22, 23, 24

Fig. 1. Autocorrelation plot of historical electricity price. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. Autocorrelation plot of system generation. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

falling outside the 95% confidence interval (interval is displayed as
a blue boundary in the figures). The ACF plots for each individual
energy-related factor are shown in Figs. 1–10.

For the majority of the factors, the lagged term at hour 24 demon-
strated a strong correlation, which compares to Li et al. (2016) where
the same hour data displays strong correlation, therefore in Figs. 1–
10 the first 28 h are displayed for each factor. All figures, except
Figs. 4 and 7, displayed a multimodal distribution with a peak and
trough pattern indicating correlation. Figs. 4 and 7 display weak to no
correlation and hence in these situations we only use the first six lagged
values.

Using all the lags for each of the exogenous variables, we identify
and extract the peak lags using autocorrelation testing. The peak lags
for each of the exogenous variables are used as individual inputs in the
multiple input single output NARMAX model to determine if correlated
lags do improve model accuracy. Table 2 displays the 44 peak lags for
the ISEM market, from each individual ACF plot, to be used as inputs
in the NARMAX model. For example the peak lags from Fig. 1 were
identified as Lags 1, 2, 23, and 24.
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Fig. 3. Autocorrelation plot of demand. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Autocorrelation plot of wind. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

Fig. 5. Autocorrelation plot of East–West interconnector. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. Autocorrelation plot of Moyle interconnector. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
4

Fig. 7. Autocorrelation plot of CO2 intensity. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Autocorrelation plot of CO2 emissions. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Autocorrelation plot of load. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Autocorrelation plot of temperature. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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6. Results and discussion

Using the NARMAX methodology, we generate a linear polynomial
NARMAX model for prediction which utilises only those significant
factors that have been deemed to be highly correlated. Including in-
fluential energy-related factors as model inputs will help to determine
an accurate forecasting tool for the ISEM market. The experiments used
ISEM data from May 2019 until April 2020 with a total of 8760 records.
The input data ranged from 01st May 2019 until 29th April 2020
and the output data, which was the target day-ahead electricity price,
ranged from 02nd May 2019 until 30th April 2020. Each experiment
resulted in a linear polynomial model, where the ERR was set to 0.05.

Initially all energy-related factors were included as inputs and after
each iteration NARMAX removed redundant factors until the model
converged and contained only the significant factors. The resulting
NARMAX model is represented as:

𝑌𝑡 = 0.38𝑈1 − 0.00053𝑈2 + 0.00086𝑈3 + 0.00082𝑈7 − 0.00080𝑈8

+ 0.0021𝑈9 + 0.26𝑈10 + 31.72 (3)

here each of the parameters are as defined in Table 1. Here we use
0% of the data for model estimation and 50% for model validation.
he Root Mean Squared Error (RMSE) value for the model estimation
as 12.58 and the RMSE value for the model validation was 15.15.
he final model retained seven significant factors which were histor-

cal electricity price, system generation, demand, CO2 intensity, CO2
missions, load, and temperature.

The percentage variance of each significant factor is presented in
able 3, ranking from largest to smallest ERR value. The three largest
RR values approximated to 35.01 proportion of the variance and this
roportion was made up of historical electricity price (30.65), demand
2.85), and system generation (1.51). Historical electricity price was the
ost weighted factor (0.38) and the largest ERR value (30.65). From

he results, both historical electricity price and demand have a large
nfluence on predicting electricity prices. These findings are consistent
ith Li et al. (2016) who found energy production and demand to be
ey forecasting factors.

The results from the final NARMAX model validation are displayed
n Fig. 11. From Fig. 11, it is clear that the predicted electricity
rice is a reasonable fit with the actual electricity price however the
redicted values struggled to reach the peaks and troughs found in the
ctual price data. This finding is similar to Kavanagh (2017) noting the
ppearance of daily load patterns moving in peaks and troughs.

For the second experiment, all energy-related factors and their
orrelated peak lags were included and after each iteration NARMAX
emoved redundant factors until the optimal model was obtained.
he resulting NARMAX model that included the correlated lags is
epresented as:

𝑡 = 0.32𝑈1 − 0.074𝑈1(𝑡−2) + 0.032𝑈1(𝑡−23) + 0.029𝑈1(𝑡−24) − 0.0020𝑈2

+ 0.0010𝑈2(𝑡−1) + 0.0002𝑈2(𝑡−2) + 0.0006𝑈2(𝑡−3) − 0.0008𝑈2(𝑡−22)

+ 0.0007𝑈2(𝑡−23) + 0.0016𝑈3 − 0.0015𝑈3(𝑡−1) + 0.0033𝑈3(𝑡−2)

− 0.0036𝑈3(𝑡−3) − 0.0012𝑈3(𝑡−22) + 0.0005𝑈5 + 0.0038𝑈7

+ 0.0015𝑈8 − 0.0005𝑈8(𝑡−1) − 0.0021𝑈8(𝑡−2) + 0.0028𝑈9

+ 0.0021𝑈9(𝑡−1) − 2.52𝑈10 + 2.54𝑈10(𝑡−1) + 0.37𝑈10(𝑡−22) + 12.34 (4)

The RMSE value for the model estimation was 12.10 and the RMSE
value for the model validation was 15.02. These results are an improve-
ment compared with the initial NARMAX model which contained no
lagged terms. The resulting model retained 8 significant factors and 17
peak lags which consisted of historical electricity price, system genera-
tion, demand, East–West interconnector, CO2 intensity, CO2 emissions,
load, and temperature. Similar to the initial NARMAX model, both
wind and the Moyle interconnector were insignificant and therefore
removed from the resulting model. However, when using the identified
5

Table 3
Error Reduction Ratio NARMAX model.

ERR Energy-related Factors (Model Input)

30.653281 Historical electricity price (U1)
2.847335 Demand (U3)
1.511024 System generation (U2)
0.355038 Load (U9)
0.284880 CO2 intensity (U7)
0.179546 Temperature (U10)
0.059359 CO2 emissions (U8)

Table 4
Error Reduction Ratio correlated lags NARMAX model.

ERR Energy-related Factors (Model Input)

30.653281 Historical electricity price (U1)
2.673473 Demand (U3)
0.879478 System generation (U2)
0.670583 Historical electricity price lag 23 (U1)
0.668477 Demand lag 3 (U3)
0.591910 Historical electricity price lag 24 (U1)
0.484539 System generation lag 23 (U2)
0.476113 Demand lag 22 (U3)
0.453832 Demand lag 2 (U3)
0.451905 System generation lag 3 (U2)
0.443696 Temperature lag 1 (U10)
0.353654 Demand lag 1 (U3)
0.298665 Load (U9)
0.262550 Historical electricity price lag 2 (U1)
0.236631 CO2 emissions lag 1 (U8)
0.214814 Temperature (U10)
0.199812 CO2 emissions lag 2 (U8)
0.166720 System generation lag 2 (U2)
0.110188 Temperature lag 22 (U10)
0.098272 CO2 intensity (U7)
0.091632 System generation lag 1 (U2)
0.081114 East–West interconnector (U5)
0.068008 System generation lag 22 (U2)
0.065651 Load lag 1 (U9)
0.050782 CO2 emissions (U8)

Fig. 11. Model validation for NARMAX model.

highly correlated lagged terms, NARMAX identified that the East–West
interconnector data was significant.

For the 44 identified peak lags from the ACF plots, only 17 remained
in the resulting model. Historical electricity price lag 1 was removed;
system generation lag 24 was removed; demand lags 23 and 24 were
removed; all the lags for wind, East–West interconnector, Moyle inter-
connector, and CO2 intensity were completely removed; CO2 emissions
lags 3, 22, 23 and 24 were removed; load lags 2, 3, 22, 23 and 24
were removed; and temperature lags 2, 3, 23 and 24 were removed.
For the majority of energy-related factors, the importance of Lags 1
and 2 indicates the importance of recent observations.

The percentage variance of each significant factor is presented in
Table 4, ranking from largest to smallest ERR value. The three largest
ERR values approximated to 34.20 proportion of the variance and this
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Fig. 12. Model validation for correlated lags NARMAX model.

proportion was made up of historical electricity price (30.65), demand
(2.67), and system generation (0.88). Temperature Lag 1 was the most
weighted factor (2.54) and historical electricity price had the largest
ERR value (30.65). From the results, historical electricity price has
a large influence on predicting electricity prices as it has the largest
ERR value for both the initial model and that with correlated lags.
A visual representation of the actual and predicted prices using the
resulting correlated lags NARMAX model are displayed in Fig. 12. From
Fig. 12, the predicted electricity prices consistently matched the actual
electricity prices but the predicted values still struggled to reach the
peaks and troughs.

To justify the NARMAX results, a SARIMAX model was considered
using correlated lag data:

𝜑𝑝 (𝐵)𝛷𝑃 (𝐵𝑆 ) (1 − 𝐵)𝑑
(

1 − 𝐵𝑆)𝐷 𝑌𝑡 = 𝛽𝑘𝑥
′
𝑘,𝑡 + 𝜃𝑞 (𝐵)𝛩𝑄(𝐵𝑆 )𝜀𝑡 (5)

where 𝜑𝑝 (𝐵) is the non-seasonal autoregressive term, (1 − 𝐵)𝑑 is the
non-seasonal differencing term, and 𝜃𝑞 (𝐵) is the non-seasonal moving
average term. 𝛷𝑃 (𝐵𝑆 ) is the seasonal autoregressive term,

(

1 − 𝐵𝑆)𝐷 is
the seasonal differencing term, 𝛩𝑄(𝐵𝑆 ) is the seasonal moving average
erm, 𝑌𝑡 is the prediction output, 𝛽𝑘𝑥′𝑘,𝑡 is the exogenous variable of the
th input at time 𝑡 and 𝜀𝑡 is the error term (Vagropoulos, Chouliaras,
ardakos, Simoglou, & Bakirtzis, 2016).

There are four stages to the SARIMAX methodology in order to es-
imate and identify the suitable model terms: (1) model identification,
2) parameter estimation, (3) diagnostic checking, and (4) prediction.
irst, the order terms p, d, q, P, D, Q and S must be identified to deter-
ine an appropriate SARIMAX model. To remove non-stationarity, dif-

erencing was applied between current and previous electricity prices
o make the series trend stationary; d is set to 1. Due to heterogeneity
ithin the data, it was decided not to include seasonal differencing and

hus D is set to 0. For seasonal data, the seasonal pattern must repeat
tself over a time span S (Xie et al., 2013); S is set to 24 to capture the
aily 24-hour recurring cycle.

The ranges for the parameter order terms (p, q, P, Q) are selected
rom the Partial AutoCorrelation Function (PACF) and AutoCorrelation
unction (ACF) plots. From Fig. 13, the last significant autoregressive
ag for p ranges between 1 and 4 and the significant lag for seasonal
rder P ranges between 1 and 2. From Fig. 14, the last significant
oving average lag for q ranges between 1 and 4 and the significant

ag for seasonal order Q ranges between 1 and 2.
The order terms are selected by applying the AIC technique, which

ses a brute force search of all the combinations within the set range, to
easure the quality of the model fit and verify the order terms chosen.
he optimal order terms (𝑝 = 3, 𝑞 = 3, 𝑃 = 2, and 𝑄 = 1) are selected
s they outputted the lowest AIC value (27478.86). The SARIMAX(3,
, 3) (2, 0, 1, 24) correlated lags model function is:

𝑡 = 0.023∇𝑌𝑡−1 + 0.28∇𝑌𝑡−2 + 0.26∇𝑌𝑡−3 − 0.0019∇𝜀𝑡−1 − 0.36∇𝜀𝑡−2
− 0.37∇𝜀 + 0.19𝑆24𝑌 − 0.053𝑆48𝑌 − 0.22𝑆24𝜀
𝑡−3 𝑡−24 𝑡−48 𝑡−24

6

Fig. 13. PACF plot to determine p.

Fig. 14. ACF plot to determine q.

+ 0.28𝑈1 − 0.023𝑈1(𝑡−1) + 0.0008𝑈1(𝑡−2) + 0.012𝑈1(𝑡−23)

+ 0.10𝑈1(𝑡−24) − 0.0004𝑈2 − 6.71𝑒−06𝑈2(𝑡−1) + 0.0001𝑈2(𝑡−2)

+ 0.0003𝑈2(𝑡−3) − 6.61𝑒−05𝑈2(𝑡−22) + 0.0006𝑈2(𝑡−23) − 0.0002𝑈2(𝑡−24)

+ 0.0014𝑈3 + 5.54𝑒−05𝑈3(𝑡−1) − 2.03𝑒−05𝑈3(𝑡−2) − 0.0009𝑈3(𝑡−3)

+ 9.79𝑒−05𝑈3(𝑡−22) + 0.0004𝑈3(𝑡−23) − 0.0004𝑈3(𝑡−24) + 0.0002𝑈4

+ 2.17𝑒−05𝑈4(𝑡−1) + 0.0004𝑈5 + 0.0002𝑈5(𝑡−1) + 0.0003𝑈5(𝑡−2)

+ 0.0004𝑈5(𝑡−3) + 2.38𝑒−05𝑈5(𝑡−24) − 0.0002𝑈6 + 5.92𝑒−05𝑈6(𝑡−1)

− 0.0007𝑈6(𝑡−2) − 0.0004𝑈6(𝑡−3) + 0.0001𝑈6(𝑡−24) − 0.0013𝑈7

+ 0.0006𝑈7(𝑡−1) + 0.0006𝑈8 + 0.0001𝑈8(𝑡−1) − 0.0003𝑈8(𝑡−2)

− 0.0004𝑈8(𝑡−3) − 0.0002𝑈8(𝑡−22) + 0.0001𝑈8(𝑡−23) − 5.54𝑒−05𝑈8(𝑡−24)

+ 0.0002𝑈9 + 0.0016𝑈9(𝑡−1) + 0.0011𝑈9(𝑡−2) + 0.0001𝑈9(𝑡−3)

− 0.0005𝑈9(𝑡−22) − 0.0003𝑈9(𝑡−23) + 0.0002𝑈9(𝑡−24) − 0.38𝑈10

+ 0.48𝑈10(𝑡−1) + 0.45𝑈10(𝑡−2) − 0.58𝑈10(𝑡−3) − 0.16𝑈10(𝑡−22)

− 0.44𝑈10(𝑡−23) − 0.38𝑈10(𝑡−24) + 30.77 (6)

To confirm if SARIMAX(3, 1, 3) (2, 0, 1, 24) is an appropriate model
fit, diagnostic checking was performed on the standardised residuals.
Fig. 15(A) plots the standardised residuals which fluctuate around 0,
however there are many peaks and troughs from outliers; Fig. 15(B) is a
histogram with a density plot (orange line) that is normally distributed
with a narrow bell-shaped pattern symmetrical around 0; Fig. 15(C) is
a normal quantile–quantile plot with the quantiles mainly on, or close
to, the red line suggesting a normal distribution but the sharp curves
at the ends highlight extreme data values that the model is unable to
fit; Fig. 15(D) is a correlogram plot with slight autocorrelation present
as a few lag errors fall outside the blue boundary.

Therefore, SARIMAX correlated lag model is an accurate prediction
with a RMSE value of 14.36. Fig. 16 displays the actual and predicted
electricity prices and the model fit is reasonably accurate with no

extreme declines.
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Fig. 15. Residual diagnostic checks for correlated lags SARIMAX model. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 16. Model validation for correlated lags SARIMAX model.

Table 5
RMSE values for each model.

Model RMSE

NARMAX 15.15
Correlated NARMAX 15.02
Correlated SARIMAX(3, 1, 3)(2, 0, 1, 24) 14.36
Refined correlated SARIMAX(3, 1, 3)(2, 0, 1, 24) 13.99

An approach was applied to determine if the significant NARMAX
actors could refined the statistical SARIMAX model and improve ac-
uracy. The SARIMAX(3, 1, 3)(2, 0, 1, 24) correlated lags model was
efined and the model function is:

𝑡 = 0.065∇𝑌𝑡−1 + 0.27∇𝑌𝑡−2 + 0.20∇𝑌𝑡−3 − 0.031∇𝜀𝑡−1 − 0.36∇𝜀𝑡−2
− 0.33∇𝜀𝑡−3 + 0.17𝑆24𝑌𝑡−24 − 0.053𝑆48𝑌𝑡−48 − 0.19𝑆24𝜀𝑡−24
+ 0.30𝑈1 + 0.035𝑈1(𝑡−2) + 0.013𝑈1(𝑡−23) + 0.11𝑈1(𝑡−24)

− 0.0004𝑈2 − 5.36𝑒−05𝑈2(𝑡−1) + 0.0003𝑈2(𝑡−2) + 0.0004𝑈2(𝑡−3)

− 0.0002𝑈2(𝑡−22) + 0.0006𝑈2(𝑡−23) + 0.0013𝑈3 + 0.0003𝑈3(𝑡−1)

− 3.04𝑒−05𝑈3(𝑡−2) − 0.0010𝑈3(𝑡−3) − 0.0001𝑈3(𝑡−22) + 0.0004𝑈5

− 0.0042𝑈7 + 0.0005𝑈8 + 0.0003𝑈8(𝑡−1) − 0.0003𝑈8(𝑡−2)

+ 0.0005𝑈9 + 0.0008𝑈9(𝑡−1) − 0.48𝑈10 + 0.30𝑈10(𝑡−1)

− 0.37𝑈10(𝑡−22) + 31.09 (7)

The refined model’s RMSE value of 13.99 was lower than the previ-
ous model’s RMSE value of 14.36 highlighting that keeping significant
factors helps improve model performance. Fig. 17 displays an accurate

model fit between the actual and predicted electricity price values. i

7

Fig. 17. Model validation for refined correlated lags SARIMAX model.

For each of the four experiments, RMSE values were compared to
determine if any of the correlated lags or refined models could further
improve model performance and day-ahead electricity price forecast-
ing. From Table 5, it clear that both correlated lags and significant
factors together improve model performance for the ISEM market.

7. Conclusion

This paper examined the performance of a polynomial NARMAX
model with energy-related factors and evaluated the model’s suitability
to accurately predict electricity price in the ISEM market. Correlated
peak lags were identified through autocorrelation testing of energy-
related factors. For both the original and correlated lags models, the
RMSE values were compared to determine if model accuracy can
be further improved with the inclusion of correlated peak lags. The
findings in this paper emphasise that correlated lags for significant
energy-related factors identified from a regression model do help to
refine a statistical model and improve model accuracy. The significant
energy-related factors from the ISEM market were found to be historical
electricity price, demand, and system generation. One limitation of this
paper is that the NARMAX models only considered one threshold error
(ERR = 0.05) and another limitation is that the input data included all
historical records with no split for weekends, holidays, etc. Future work
will explore applying the identified significant energy-related factors
from NARMAX as inputs to other machine learning models to further
improve prediction accuracy.

8. Remarks

This paper applied autocorrelation testing to energy-related factors
from the ISEM market to determine peak correlated lags. A NARMAX
regression model identified the significant energy-related factors and
refined the SARIMAX statistical model to determine if performance
accuracy improved. This was determined by the RMSE values which
highlighted that the inclusion of significant factors and their respective
correlated lags do improve model accuracy for day-ahead forecasting
in the ISEM market.
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