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Exploring efficient and high-accuracy computational drug repositioning methods has become a popular
and attractive topic in drug development. This technology can systematically identify potential drug-
disease interactions, which could greatly alleviate the pressures from the high cost and long period taken
by traditional drug research and discovery. However, plenty of current computational drug repositioning
approaches lack interpretability in predicting drug-disease associations, which will not be friendly to
their subsequent in-depth research.
To this end, we hereby propose a novel computational framework, called EDEN, for exploring explain-

able drug repositioning from the disease information network (DIN). EDEN is a graph neural network
framework that learns the local semantics and global structure of the DIN, and models the drug-
disease associations into the DIN by maximizing the mutual information of both and an end-to-end man-
ner. In this way, the learned biomedical entity and link embeddings are enabled to retain the ability to
drug repositioning with the semantical structure of external knowledge, thereby making interpretation
possible. Meanwhile, we also propose a matching score based on the final embeddings to generate the
predictive drug repositioning explanation. Empirical results on the real-world dataset show that EDEN
outperforms other state-of-the-art baselines on most of the metrics. Further studies reveal the effective-
ness of the explainability of our approach.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of new drugs is a lengthy process with a slow
pace, high attrition rates, and substantial costs, entering them into
the market successfully needs more effort. Indeed, the majority of
drug candidates are eliminated during their phase I clinical trials
[1]. Therefore, exploring efficient ways to improve the success rate
of drug research and discovery is pressing and significant. In recent
years, an attractive proposition in the field of drug development,
drug repositioning, attracting increasing interest from both the
pharmaceutical industry and research community.

Drug repositioning, or drug repurposing, aims to identify new
therapeutic opportunities for existing drugs, and to reduce the
time, cost and risk of conventional drug development [2]. The most
straightforward way to find new indications for existing drugs is
through biological experiments to perform target- or cell-based
screens for thousands of medications. While this activity-based
strategy can directly detect potential indications for drugs, it is still
a time-consuming and labor-intensive process, and testing drugs in
assays based on some available comprehensive clinical compound
databases is also extremely challenging [3]. Fortunately, the rapid
advances in multi-omics have provided a great opportunity to
exploit drug repositioning by computational approaches with a
much faster repositioning process at a lower cost.

Many computational methods for drug repositioning have been
developed [4–28], involving techniques ranging from traditional
machine learning, matrix factorization, to network analysis and
deep learning. For instance, Wang et al. [4] proposed a
clustering-based framework, named GS4CDRSC, to identify gene
signatures for cancer drug repositioning by grouping samples into
several clusters based on their gene expression profiles. DrPOCS [5]
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is a matrix completion-based method that integrated drug struc-
ture and disease phenotype information through the idea of pro-
jection onto convex sets (POCS) to predict potential associations
between drugs and diseases. Moreover, Yang et al. [6] developed
a network analysis-based approach, called HED, to infer drug repo-
sitioning by constructing a drug-disease association heterogeneous
network and then applying network embedding technology. Simi-
larly, this method can be extended to network pharmacology. PINA
[7] applied this extension to predict potential indications of Tradi-
tional Chinese Medicines with Liuwei-Dihuang-Wan as a case
study. Yan et al. [8] devised a deep learning-based method, named
MLMC, to determine drug indications through multi-view learning
with matrix completion.

However, these methods have mainly focused on how to better
fuse high-throughput data related to drugs at various levels, such
as genomic data, protein structures and phenotypes, to improve
the predictive performance of drug repositioning, rarely exploring
which aspects of such multi-source data enable the model to pre-
dict the association between drug and disease, in other words,
these methods lack interpretability for this prediction. Citing val-
proic acid as an example, it can be used to treat bipolar disorder
and seizures because of its ability to bind to the mitochondrial
enzymes succinate-semialdehyde dehydrogenase (ALDH5A1) and 4-
aminobutyrate aminotransferase (ABAT) [29]. This is in terms of its
impact on proteins. Furthermore, valproic acid could induce differ-
entiation, growth arrest, and apoptosis in cancer cells, leading to its
repositioning to the treatment of neoplastic conditions such as fa-
milial adenomatous polyposis [30], which is reflected in its action on
pathways.

Through the above observations, we can see that when current
computational models of drug repositioning give a prediction
result, it seldom further explains from which aspects such the
associations arise (e.g., from the aforementioned proteins or path-
ways). Instead, these methods are more concerned with designing
reasonable ideas to integrate these aspects to improve the predic-
tion accuracy of drug repositioning. It is obvious that the inter-
pretable prediction is very important when assessing the
performances of a computational model and for better understand-
ing the underlying mechanisms of drug repositioning, as well as
providing researchers with relevant insights and decision support
in subsequent in-depth studies based on the prediction results.
We are inspired by the recent developments of explainable recom-
mendation [31–33], which have the potential of achieving the goal
but have not been explored much for drug repositioning. This
paper will focus on the interpretable prediction of the computa-
tional models in the drug repositioning.

The following questions should be considered in the design of
explainable drug repositioning computational model:

� How could the interpretable prediction be incorporated into the
drug repositioning model?
� How to reflect the interpretability of drug repositioning predic-
tion results?
� How to ensure the validity of drug repositioning prediction
results while introducing interpretability?

To tackle the above challenges, we propose a novel computational

framework called EDEN (short for explainable drug repositioning)
for exploring explainable drug repositioning. The characteristics of
EDEN include: (1) it projects multiple types of biomedical entities
and relations in the constructed disease information network into
a unified low-dimensional space; (2) it aggregates neighbor mes-
sages into the final embeddings based on different semantic con-
nections to preserve the internal structure of the knowledge; (3)
it equips drugs and diseases with structured knowledge in an
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end-to-end way by maximizing the mutual information between
global structure and local semantic to generate explanations for
drug repositioning and improve the predictive performance; and
(4) it designs a matching score to construct explanations regarding
the prediction results by searching over the paths in the embedding
space.

In summary, the main contributions of this work include:

� Highlighting the importance of capturing different aspects of
action in drug repositioning to provide better interpretable pre-
diction results for subsequent studies;
� Proposing a new framework, EDEN, which learns over the
heterogeneous knowledge from the constructed disease infor-
mation network for explainable drug repositioning under the
graph neural network paradigm;
� Conducting empirical studies on real-world datasets to demon-
strate the effectiveness of EDEN.

The rest of this paper is organized as follows. The related work is
reviewed in Section 2. Some preliminaries and the overall design
of EDEN are depicted in Section 3. Then, the experimental settings
and results are discussed in detail in Section 4. Finally, we conclude
the paper in Section 5.
2. Related Work

We review previous studies relevant to this work in two areas:
the computational methods for drug repositioning and the predic-
tion tasks for interpretability.

2.1. Computational Drug Repositioning

Depending on the implementation technique, most of the cur-
rent computational approaches to drug repositioning can be
roughly divided into the following three main categories: matrix
factorization-based, network propagation-based and machine
learning-based.

2.1.1. Matrix factorization-based
Dai et al. [9] proposed a matrix factorization model based on

known drug-disease associations to predict new drug indications.
Meanwhile, the authors integrated genomic space into the model,
which is to provide molecular biological information for exploring
drug-disease associations. Similarly, Zhang et al. [10] presented a
method called SNNMF, which used a non-negative matrix factor-
ization to fuse the different effects of drug-disease associations
to improve the prediction performance. Considering that many of
the non-occurring edges in the drug-disease associations are actu-
ally unknown or missing cases, Ezzat et al. [11] designed two
matrix factorization methods that utilized the graph regularization
to enhance the prediction of new drugs and new target cases. To
combine multiple side information with the idea of matrix factor-
ization, recent work adopted the singular value decomposition [12]
or the tensor decomposition [13] for drug repositioning. Moreover,
Bagherian et al. [14] proposed a matrix factorization-based method
termed CMMC to capture potential associations between drugs and
diseases by the idea of coupled matrix completion. Meanwhile, this
work also extended CMMC to ‘‘coupled tensor-matrix completion”
in order to merge multiple types of information provided in differ-
ent databases.

2.1.2. Network propagation-based
In recent years, network-based approaches have been widely

employed, due to their powerful advantage in being able to orga-
nize the relationship between biomedical entities well. For exam-
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ple, Luo et al. developed a novel drug repositioning model,
RWHNDR, which extended the random walk method to the con-
structed drug-target-disease network [15], and a bi-random walk
algorithm to predict potential drug-disease associations on drug
and disease similarity networks they built [16]. Shahreza et al.
[17] proposed a method called Heter-LP to identify interactions
between drugs and targets by propagating the label information
across the constructed heterogeneous network. Wang et al. [18]
presented a novel heterogeneous network model which integrated
drug-disease and drug-target interactions prediction into a unified
computational framework. Ji et al. [19] developed a network
propagation-based method, named DTINet, to predict novel dis-
ease targets. This approach identifies novel disease targets for
drugs based on the obtained network topological similarities
among known diseases and drugs associations through the idea
of induction matrix completion. Besides, NEDD [20] is a meta-
path-based computational method to predict new associations
between drugs and diseases using meta paths of different lengths
to explicitly capture the indirect relationships, or high order prox-
imity, within drugs and diseases. Zhao et al. [21] designed a novel
heterogeneous information network-based model, named HINGRL,
to learn the features of nodes in the network constructed with bio-
logical knowledge from the topological and biological perspectives
by applying different representation strategies. HINGRL then
employed a Random Forest classifier to predict unknown drug-
disease associations based on the features obtained in the previous
step.

2.1.3. Machine learning-based
The continuous development of machine learning techniques

has provided various effective and efficient solutions for drug repo-
sitioning. Wang et al. [22] proposed a framework, called PreDR, for
drug repositioning, which calculated the similarity between drug-
disease pairs through the constructed kernel function, and then
trained a support vector machine with the defined kernel to find
the novel effects between drugs and diseases. Olayan et al. [23]
developed a model, named DDR, to improve the drug-target inter-
action prediction accuracy. The DDR applied the random forest
method to extract features from the constructed heterogeneous
graph and predict the relationship between drug and target. In
addition to classical machine learning approaches, many deep
learning-based frameworks (e.g. convolutional neural network,
graph neural network) have recently demonstrated their excel-
lence in exploring drug repositioning, such as GNDD [24] and
DR-HGCN [25]. In addition, Jarada et al. [26] developed a deep
learning-based framework, called SNF-NN, by using similarity
selection, similarity network fusion, and a highly tuned novel neu-
ral network to predict new drug-disease interactions. On this basis,
Jarada et al. [27] also proposed SNF-CVAE, which integrated simi-
larity network fusion and collective variational auto-encoder to
conduct a non-linear analysis and improved the drug-disease
interaction prediction accuracy. Meng et al. [28] proposed a neigh-
borhood interaction-based neural collaborative filtering method,
called DRWBNCF, to infer new potential drugs for diseases.
DRWBNCF integrated known drug-disease associations into a uni-
fied representation through a weighted bilinear graph convolution
operation. And then DRWBNCF utilized the multi-layer perceptron
to predict drug-disease associations.

2.2. Explainable Prediction Model

At present, the majority of work on introducing interpretability
into model is in the recommender systems. These studies leverage
knowledge graph (KG), which is rich in semantic information, to
make explainable decisions for recommender systems. For exam-
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ple, Ai et al. [31] proposed to learn knowledge-based embeddings
for the explainable recommendation. Wang et al. [32] designed
an RNN(Recurrent Neural Network)-based model to reason over
KG for recommendation. Also, Xian et al. [33] presented a method
called PGPR, which generates causal inference through
reinforcement learning to enhance the interpretability of
recommendation.

In addition, in the field of biomedical information, there are
some computational models that have made efforts on the inter-
pretability. Fout et al. [34] used graph neural networks to learn
effective latent representations of the 3D structure of proteins
and visualized predicted protein interface. Gao et al. [35] presented
an interpretable framework to predict drug-target interactions,
which introduced a two-way attention mechanism to track the
likelihood of drug atoms interacting with each amino acid
component.

However, these approaches only utilize the values generated by
the attention mechanism to evaluate the impact of an input feature
on the prediction results or to visualize them, and do not yet have a
high quality of interpretability, that is, it should contain rich
semantic messages.

3. Methodology

In this paper, we focus on explainable drug repositioning, where
the objective of EDEN is to predict novel potential associations
between drugs and diseases, and explain why the connection
between them could produce.

Firstly, we introduce some basic concepts and formalize the
problem definition. Then we present EDEN based on the graph
neural network over the constructed disease information network
to solve the problem.

3.1. Preliminaries

In the scenario of exploring drug repositioning, we typically
have known interactions between drugs and diseases. Here, we
use a drug-disease bipartite network to denote the associations.

Definition 1 (Drug-Disease Bipartite Network): A drug-disease
bipartite network Gb is defined as u; yud; dð Þju 2 U; d 2 Df g, where
U and D respectively represent the drug and disease sets, and a
link yud ¼ 1 indicates that there is a known or approved association
between drug u and disease d; otherwise yud ¼ 0.

To model explainable drug repositioning, the key point of EDEN
is to equip it with rich semantic information. We hereby build a
disease information network from multiple resources to organize
these auxiliary data.

Definition 2 (Disease Information Network): A disease informa-
tion network (DIN), which is a typical heterogeneous graph, is
defined as Gd ¼ V;Ef g, where V and E represent the biomedical
entity set and the link set, respectively. Each entity v 2V and each
link e 2 E are associated with their mapping function
/ vð Þ : V!A and u eð Þ : E! R, in which A and R denote the
biomedical entity types and link types, respectively.

It is worth noting that the alignment of a drug-disease bipartite
network Gb and a disease information network Gd can construct a
unified graph G. We also use a triple to encode the relationship
between biomedical entities in the unified graph. Formally, it is
presented as G ¼ h; r; tð Þjh; t 2V0; r 2 E0f g, where V0 ¼V [U
(D �V) and E0 ¼ E [ ftreatg, where treat represents the semantic
relation between drug u and disease d, e.g., yud ¼ 1.

Now, we formulate the task to be addressed in this paper:

� Input: the drug-disease bipartite network Gb and a disease
information network Gd.
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� Output: a drug repositioning prediction function that predicts
the probability eyud that drug u would treat disease d, and a cor-
responding set of explanations Eud.

3.2. Design of EDEN

Fig. 1 shows the EDEN architecture, which consists of four main
components: 1) local embedding layer, which learns local represen-
tations of entities and links in the graph G by aggregating the infor-
mation from neighbors, and adjust the weight of each neighbor
according to the semantics of link during a propagation; 2) global
embedding layer, which parameterizes each entity as an embedding
by preserving the structure of G; 3) optimization layer, which max-
imizes the mutual information between local embeddings and glo-
bal embeddings, and then refines the entity and link embeddings
from training the objective function; 4) explanation extraction,
which generates a set of sound logical inference paths from the
query drug to predicted disease based on the final embeddings.

3.2.1. Local embedding layer
Here we employ TransE [36], an effective way to model relation

as entity translation, on G to initialize entity and link embeddings.
Specifically, for a given triple h; r; tð Þ, if it exists in G, the translation
principle eh þ er � et is used to learn each entity and link embed-
dings, which is formalized as:

trans h; r; tð Þ ¼ exp eh þ erð Þ � etð Þ ð1Þ
where eh; er and et 2 Rk are the embedding for h; r and t, respec-
tively; k represents the dimension of embedding and a higher score
of trans h; r; tð Þ suggests that the triple is more likely to be true, and
vice versa.

To train the TransE, we adopt a pairwise ranking loss to discrim-
inate valid triples and broken ones:

L1 ¼
X

h;r;t;t0ð Þ2T
� lnl trans h; r; tð Þ � trans h; r; t0ð Þð Þ ð2Þ

where T ¼ h; r; t; t0ð Þj h; r; tð Þ 2 G; h; r; t0ð Þ R Gf g, and h; r; t0ð Þ is a bro-
ken triple constructed by replacing one entity in a valid triple ran-
domly; l �ð Þ is the Sigmoid function.

Next, similar to our previous work [37], we build upon the
graph convolution operations to recursively aggregate neighbor’s
messages; moreover, by exploiting the idea of attention mecha-
nism [38], we introduce attentive weights to links to reveal the
importance of different semantic relations when gathering neigh-
bor embeddings.

Considering an entity h, we use Nr
h to denote the set of neigh-

bors of h, which are connected by link r, and use pr to represent
the attentive weight. Thus, after the l-step convolutional opera-
tions, we recursively formulate the local embedding of an entity as:
Fig. 1. Illustration of the proposed EDEN, which includes four components: local embed
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loc ehð Þ ¼ e lð Þ
h ¼ ReLU W e l�1ð Þ

h þ e l�1ð Þ
Nr
h

� �� �
ð3Þ
e l�1ð Þ
Nr
h
¼

X
r2E0

X
t2Nr

h

pre
l�1ð Þ
t ð4Þ
pr ¼ tanh eh þ erð Þ � etð ÞX
h;r0;t0ð Þ2G

tanh eh þ er0ð Þ � et0ð Þ ð5Þ

where W 2 Rk0�k is the trainable parameter, k0 is the transformation
size, tanh and ReLU are the activation function. In particular,

e 0ð Þ
h ¼ eh.
3.2.2. Global embedding layer
In order to obtain the entity embedding while preserving the

global structure of the graph G, here we use the DeepWalk [39]
method to generate the global embedding of the entities. Deep-
Walk is a deep unsupervised learning model, which can vectorize
all entities in the unified graph G by utilizing truncated random
walks and SkipGram [40]. This way integrates information about
the global structure of the graph into the entity embedding based
on maximizing the probability of observing entity in view of all
entities previously visited up to the current point in the random
walk. Compared with other representation learning methods that
capture the global structure of the graph (e.g., struc2vec [41],
metapath2vec [42]), the advantage of this way is that it does not
require introduction of pre-defined or domain knowledge to guide.

For starters, truncated random walks that the number of ran-
domwalks q of length f to start at each entity are performed. Then,
the SkipGrammodel is implemented to learn the entity embedding
for each random walk. SkipGram maximally compute the co-
occurrence likelihood among the entities that come into view
within a path of window w, and its objective function is as follows:

minU � log Pr eh�w; � � � ; ehþwf g ehjU ehð Þð Þ ð6Þ
glo ehð Þ ¼ U ehð Þ ð7Þ

Here minU means the global embedding-based representations U
related to each entity eh derived from this objective function make
the value solved by the subsequent formula as minimum as possi-
ble. And SkipGram further approximates the above conditional
probability using the assumption as follows:

Pr eh�w; � � � ; ehþwf g ehjU ehð Þð Þ ¼
Yhþw

m¼h�w;m–h

Pr ehjU ehð Þð Þ ð8Þ

More details about DeepWalk are sketched in [39].
ding layer, global embedding layer, optimization layer and explanation extraction.
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3.2.3. Optimization layer
Hereafter, we maximize the mutual information between the

local embeddings and global embeddings of entities, following
the idea of Graph Infomax [43]. Formally, the objective function
is:

L2 ¼
X
h2V0
� log s s loc ehð Þ; glo ehð Þð ÞX

h02V0
s loc ehð Þ; glo eh0ð Þð Þ ð9Þ

where s �ð Þ is the function measuring the affinity of any local embed-
ding and global embedding of an entity, which is set as cosine sim-
ilarity function here; and s is the hyper-parameter to prevent
overfitting.

After performing the above series of operations, we can obtain
the representation for drug entity eu 2 ehj8h 2V0f g; analogous to
disease entity ed are obtained. Finally, we conduct the inner pro-
duct on the drug and disease embeddings to predict their associa-
tion score:

eyud ¼ e>u ed ð10Þ

Algorithm1: EDEN(Gb;Gd;N; z;u; d)

Input: Drug-disease bipartite network Gb, disease
information network Gd, epoch N, query drug and disease
pair u; d 2 Gb and the maximum explanation path depth z

Output: The top-K explanation paths Eud
1: Initializes eh; et and er
2: for n  1 to N do
3: B1  Sampling a set of training sample batches from

Gb [ Gd

4: for each batch of B1 do
5: calculates loc ehð Þ and glo ehð Þ via Eq. (3)–(8)
6: updates eh; et and er with Eq. (2) and Eq. (9)
7: end for
8: B2  Sampling a set of training sample batches from Gb

9: for each batch of B2 do
10: eu; ed  eh [ et via mapping
11: updates eh; et and er with Eq. (10) and Eq. (11)
12: end for
13: end for
14: S eh; er; etð Þf g == The set of embeddings S for all entities

and relations.
15: Vu;Ru; Pu  BFS(S;u; z)
16: Vd;Rd; Pd  BFS(S; d; z)
17: P  £ == The set of paths P.
18: for m 2 Vu \ Vd do
19: P m½ �  Pu mð Þ þ Pd mð Þ == P m½ � represents all paths from

u to d connected by entity m and the corresponding scores
for these paths.

20: end for
21: Pick up the set of paths Eud with the top-K largest P m½ �.
22: return Eud
23:
24: function BFS ðS; i; zÞ
25: Vi  all entities in the set S within z hops from i
26: Ri  the paths from i to the space of each entity in

Gb [ Gd

27: Pi  the score of each combined path from i computed
by Eq. (13)

28: return Vi;Ri; Pi

29: end function
251
To optimize EDEN, we also employ the pairwise ranking loss,
based on the assumption that the observed interactions from the
drug-disease bipartite network Gb, which indicates more likely to
provide guidance for drug repositioning, should be assigned higher
values in the prediction than unobserved ones:

L3 ¼
X

u;di ;djð Þ2O
� lnl eyudi � eyudj

� �
ð11Þ

where O ¼ u;di; dj
� �j u;dið Þ 2 Gb; u;dj

� �
R Gb

� �
denotes the training

set; l �ð Þ is the Sigmoid function.
Finally, we have the total objective function is as follows:

L ¼L1 þL2 þL3 þ kjjHjj22 ð12Þ
where H is the set of model parameters; and k controls the L2 reg-
ularization strength to prevent overfitting. Recall that in our designs
ofL1 (Eq. 2),L2 (Eq. 9), andL3 (Eq. 11), since the Sigmoid function
takes values in the range 0;1ð Þ, which will make the difference in
the loss during training not obvious and is not conducive to conver-
gence, we here adopt the ‘‘ln” function to map the value ranges of
L1 and L3 to the same value range as L2 0;þ1ð Þ in order to facil-
itate the combination of L1;L2, and L3 to obtain the total objec-
tive function and enable it to converge during training. Then we
use the Adam optimization method [44] to optimize the model
and update the model parameters.

3.2.4. Explanation extraction
Now, we describe how to generate explanations of the drug

repositioning prediction with EDEN. Similar to the work [31], given
the predicted drug and disease pair, we utilize the entity and link
embeddings obtained after executing the optimization layer to
match the optimal paths connecting them, so as to create explana-
tions. Since the obtained entity and link embeddings are from the
disease information network we constructed, in order for the
resulting explanation path to have reasonable semantics, the
explanation path should be from the disease information network
[45].

Technically, we conduct breadth first search (BFS) with maxi-
mum depth z from the drug u and the disease d to find paths than
can potentially link them. Also, for each path
p ¼< u; � � � þ ra þ hc þ rb þ � � � ; d > ra; rb 2 E0;hc 2V0� �

, we devise
a measurement to calculate its score for matching u and d:

score pð Þ ¼

X
h;r0;t0ð Þ2p

tanh eh þ er0ð Þ � et0ð Þ

jpj ð13Þ

where jpj represents the number of links in the path p.
At last, EDEN ranks these paths by their matching scores and

returns K paths with the highest score as explanations Eud for pre-
dicting the result between drug u and disease d. The pseudo-code
of EDEN is summarized in Algorithm1.

4. Experiments and Result Discussion

In this section, we conduct experiments on real-world datasets
to evaluate EDEN. We first illustrate the details of experimental
settings including dataset, baseline methods, metrics and setup.
Then we discuss the experimental results by answering the follow-
ing research questions:

� RQ1: Compared with the state-of-the-art computational drug
repositioning methods, how does EDEN perform?
� RQ2: How do different components and parameters influence
EDEN?
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� RQ3: Can EDEN provide reasonable explanations about the pre-
diction results of drug repositioning?

4.1. Experimental Settings

4.1.1. Datasets
To construct the drug-disease bipartite network, we merged

two data sources: CTD [46] and repoDB [47]. Specifically, the links
selected data that is annotated as ‘‘therapeutic” in the CTD and sta-
tus is ‘‘approved” in the repoDB. We also collected the following
data sources to build a disease information network with rich
semantic relations: CTD, DrugBank [48], DisGeNET [49], Gene
Ontology(GO) [50], HGNC [51], BioGRID [52] and MedGen1. Table 1
lists the statistics of entities and links in these datasets and their
detailed descriptions. It is worth noting that the disease information
network constructed in EDEN can preserve the original and rich bio-
logical knowledge in these databases. For example, the BioGRID
database stores two relationships about protein–protein interactions
(corresponding to the two types of links between proteins and pro-
teins in the disease information network), one is generated by the
reaction between proteins through physical contact (physical), and
the other is generated by functional association (genetic). Similarly,
the Gene Ontology database describes genes from three aspects:
molecular function, cellular component, and biological process.
And thus the types of links between genes and GO terms in the dis-
ease information network include: function, component, and
process.
4.1.2. Baseline methods
In order to demonstrate the effectiveness of EDEN, we com-

pared it with ten baseline methods: SNNMF [10], TS-SVD [12],
RWHNDR [15], Heter-LP [17], DTINet [19], GNDD [24], DR-HGCN
[25], DRWBNCF [28], the work of Ezzat et al. [11] and Wang
et al. [13]. We applied the ideas of these methods to the datasets
we constructed and then evaluated the effectiveness of EDEN by
these experimental results. The detailed characteristics of these
methods can be referred to Section 2.
4.1.3. Evaluation metrics
As the drug repositioning is essentially a prediction task, we

employed several metrics (i.e. the area under the receiver operat-
ing characteristic (ROC) curve (AUC), the area under the
precision-recall (PR) curve (AUPR), F1-score (F1) and Hits Ratio
(HR)), which are widely used in prediction tasks, to evaluate the
performance of EDEN as well as the baseline methods.
4.1.4. Experimental setup
Throughout each experiment, several running parameters in

EDEN are set as in default: the dimension of each entity represen-
tations as 64, the epoch as 200, the step of the convolution opera-
tion (i.e., l) as 3 and the learning rate as 0.001 (this rate also
denotes the ratio of learning data available in global embedding
layer). Specifically, why these parameters are set in this way, we
will describe in detail in Section 4.3. Moreover, the global embed-
ding layer contains three parameters: q; f andw. The default values
of them are 20, 40, and 10. Likewise, if there are similar parameters
involved in the baseline methods we set them to the same stan-
dard as EDEN. Besides, to analyze the influence of the different pro-
portion of training dataset on the predictive ability of EDEN and
baseline methods, we randomly select four groups of training set
and test set from the drug-disease bipartite network, and their dis-
tribution ratios are: 6:4, 7:3, 8:2 and 9:1, respectively.
1 https://www.ncbi.nlm.nih.gov/medgen/
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All experiments were conducted on a PC with four GeForce RTX
2080 Ti GPU and 512 GB main memory, running the Ubuntu 20.04.
All algorithms were implemented in Tensorflow and compiled by
Python 3.7. We have released the codes at https://github.com/Ab
ernHE/EDEN.

4.2. Effectiveness Evaluation (RQ1)

We first report the performance of all methods on the metrics
AUPR, AUC, and F1, and then investigate their hits ratios in the case
of randomly generated negative samples and true negative sam-
ples in the test set. In order to reduce occasionality, the experi-
ments were repeated 50 times (i.e., these experiments were
performed on randomly constructed training and testing sets for
50 times) and then the average results were obtained as our even-
tual reports.

The performance comparison results of EDEN and other base-
line methods are presented in Table 2. Based on such results, we
have the following observations:

In general, EDEN consistently yields outstanding performance
on these four groups of datasets with different training ratios
under the metrics AUC, AUPR and F1. Specifically, EDEN attains
AUC scores of 0.8686, 0.8977, 0.9002 and 0.9032, along with AUPR
scores of 0.9436, 0.9586, 0.964 and 0.9698 and F1 scores of 0.8679,
0.8712, 0.8961 and 0.8972 when the ratio of training set to test set
is 6:4, 7:3, 8:2 and 9:1, respectively. In particular, EDEN obviously
improves over the strongest baseline methodsw.r.t. AUC, AUPR and
F1 by 0.84%, 0.2% and 0.45% in the training ratio of 6:4, respec-
tively. In other cases, compared with the best baseline, the
improvement effect of AUPR is 0.34% and 0.67% as well as of F1
is 0.56%, 2.94% and 3.2%, respectively. We can also find that as
the training ratio increases, the performance of EDEN under the
three evaluation metrics of AUPR, AUC and F1 also increases stea-
dily. Although EDEN w.r.t. AUPR only does not reach the best in the
training ratio of 9:1 and w.r.t. AUC does not reach the best in the
training ratio of 7:3, 8:2, and 9:1, it has decent scores. In these
results, we also found that while the baseline DRWBNCF outper-
formed EDEN in terms of the AUC metric for three different train-
ing ratio datasets, DRWBNCF significantly underperformed in
terms of AUPR and F1 metrics. This is because DRWBNCF can be
good at improving its accuracy and precision under the task of drug
repositioning, but there is a clear limitation in its performance for
recall, whereas EDEN could perform well under all of these evalu-
ation metrics. In addition, we note that although the two evalua-
tion metrics, AUPR and F1, are both obtained by comprehensively
considering precision and recall, there are obvious differences in
the scores of these two metrics in our some experimental results.
This is because the precision-recall curve formed by the AUPR met-
ric would gradually become smooth over iterations so that the area
under the curve (i.e. the AUPR score) would be higher than the F1
score which is a metric of purely numerical calculation. (In other
words, the metric calculates a harmonic mean of precision and
recall at each iteration, and then averages them at the end so that
the score is balanced and not too high.).

Besides, we also conduct experiments to investigate the hits
ratio performance of EDEN and baseline methods in the negative
sample of the test set generated from random and real cases under
different training ratios. The results are shown in Fig. 2. We can
observe that whether the negative samples in the test set come
from the randomly generated (Fig. 2 (a)) or the real ones, which
are from the repoDB database except for the data whose status is
‘‘approved” (Fig. 2 (b)), EDEN outperforms the other baseline meth-
ods on the whole. In these experimental results, only one baseline,
DRWBNCF, outperformed EDEN under the HR metric when the
negative sample of the test set come from the real ones and when
the ratio of training to test set is 9:1.



Table 1
Descriptions and statistics of the datasets.

Entity Type # of Entities Link Type # of Links (Type) Density/Max Specific Semantic Data Source

Drug — Disease 30305 (2) 3.63/273 therapeutic, approved CTD & repoDB
Drug 8352 Drug — Protein 417781 (1) 55.41/1939 target DrugBank

Disease 17093 Disease — Gene 84038 (1) 0.73/340 curated_associate DisGeNET
Gene 114472 Gene — Protein 20135 (11) 0.17/5 gene_with_protein_product, HGNC
Protein 22096 protocadherin, immunoglobulin, etc.
GO term 24093 Protein — Protein 572512 (2) 135.39/2940 physical, genetic BioGRID
Pathway 2363 GO — Gene 1048575 (3) 3.85/261 component, process, function Gene Ontology
Phenotype 8299 Gene — Pathway 135814 (1) 1.19/357 participation CTD

Disease — Phenotype 158640 (35) 7.27/186 has_manifestation, related_to, etc. MedGen

# of Links (Type) indicates the number of links (outside the parenthesis) and the number of link types (inside the parenthesis); Density refers to the average number of links
of this type per instance entity; Max represents the maximum number of links owned by an entity among the instance entities involved in this type of link; Specific Semantic
refers to the specific semantics of each link type under the relationship.

Table 2
The prediction performance comparison of EDEN with baseline methods using different training and testing set ratios.

Method train: test j 6: 4 train: test j 7: 3 train: test j 8: 2 train: test j 9: 1
AUC AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC AUPR F1

Ezzat et al. [11] 0.5253 0.6504 0.8020 0.8542 0.9252 0.8256 0.8788 0.9391 0.8286 0.8916 0.9435 0.8272
Wang et al. [13] 0.7034 0.8201 0.8139 0.7065 0.8186 0.8178 0.7299 0.8429 0.8166 0.7601 0.8705 0.8171
Heter-LP [17] 0.7514 0.8544 0.8144 0.7929 0.8874 0.8163 0.8100 0.8924 0.8156 0.8136 0.8964 0.8160
SNNMF [10] 0.8241 0.9280 0.8634 0.8372 0.9325 0.8653 0.8403 0.9321 0.8667 0.8349 0.9274 0.8652

RWHNDR [15] 0.8322 0.9315 0.8508 0.8366 0.9332 0.8522 0.8149 0.9224 0.8513 0.8448 0.9368 0.8506
DR-HGCN [25] 0.8331 0.9173 0.8258 0.8661 0.9325 0.8267 0.8902 0.9452 0.8294 0.8993 0.9479 0.8283
GNDD [24] 0.8576 0.9416 0.8099 0.8968 0.9552 0.8656 0.8933 0.9573 0.8652 0.8977 0.9729 0.8641
TS-SVD [12] 0.8599 0.9337 0.8257 0.8755 0.9415 0.8312 0.8789 0.9414 0.8286 0.8791 0.9416 0.8296
DTINet [19] 0.8602 0.9336 0.8142 0.8888 0.9476 0.8165 0.8787 0.9414 0.8161 0.8794 0.9417 0.8166

DRWBNCF [28] 0.8497 0.4404 0.2890 0.9266 0.2853 0.3381 0.9323 0.3126 0.3567 0.9390 0.3297 0.3732
EDEN 0.8686 0.9436 0.8679 0.8977 0.9586 0.8712 0.9002 0.9640 0.8961 0.9032 0.9698 0.8972

(a) (b)
Fig. 2. Performance comparison of proposed EDEN with ten baseline methods over the HR on different training set ratios. (a) Results where the negative samples are
randomly generated. (b) Results where the negative samples are obtained from real ones.
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4.3. Parameter Sensitivity & Ablation Study (RQ2)

To get deep insights on each component and parameter settings
of EDEN, we investigate their impact.

EDEN contains several hyper-parameters, which have been
tested to evaluate their impacts on EDEN measured by AUPR,
AUC, F1 and HR scores, including the epoch and learning rate in
the optimization process, and the dimension of embeddings. In this
253
part, all experiments are performed on our dataset with the ratio of
training set to test set is 9:1. When comparing a parameter, we
keep the other parameters unchanged. Their performances are pre-
sented in Fig. 3. To verify the effect of epoch on EDEN, we change
the epoch in {50, 100, 150, 200, 250}. From Fig. 3 (a), it can be seen
that with the increase of epoch, the scores of all evaluation metrics
are increasing. The four evaluation scores reach the best when the
epoch is set to 200. Similarly, to analyze the influence of the learn-



(a) (b) (c)

Fig. 3. Analysis of impact of parameters on the performance: (a) epoch, (b) learning rate and (c) dimension using four evaluation metrics: AUPR, AUC, F1 and HR.

Table 3
Effect of different convolution steps and components.

AUPR AUC F1 HR

EDEN-1 0.9080 0.8686 0.8093 0.6834
EDEN-2 0.9276 0.8897 0.8448 0.7877
EDEN-3 0.9698 0.9032 0.8972 0.8288
EDEN-4 0.9393 0.8217 0.8194 0.6931
EDEN-glo 0.7770 0.7061 0.6347 0.5363
EDEN-loc 0.8429 0.7147 0.7282 0.7478
EDEN-g&l 0.8508 0.7278 0.7285 0.7582
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ing rates on the EDEN, we vary the learning rate from {0.001,
0.0005, 0.0001, 0.00005, 0.00001}. It is observed from Fig. 3 (b) that
when the learning rate is set to 0.001, EDEN obtains the best per-
formance. We also examine the sensitivity of the dimension when
it changes in {16, 32, 64, 128, 256}. As shown in Fig. 3 (c), when the
dimension is set to 64, EDEN has the best scores.

Next, we change the step of the convolution operation l in EDEN
to investigate the efficiency of gathering multi-step neighbors’
messages. In particular, the step number is searched in the range
of {1, 2, 3, 4}; we use EDEN-1 to indicate the model with one step,
and similar notations for others. We summarize the results in
Table 3, and have the following observations: increasing the step
of the convolution operation in EDEN is capable of improving the
performance. Clearly, EDEN-3 achieves consistent improvement
over others across all the board. To verify the impact of local
embedding layer, global embedding layer and mutual information
maximization from optimization layer, we do ablation study by
considering three variants of EDEN. In particular, we only use the
local embedding layer, termed EDEN-loc. Similarly, only using
the global embedding layer termed EDEN-glo. Based on using these
two components, the information maximization operation is not
used, and the embedding obtained by the two layers is simply con-
catenate termed EDEN-g&l. We also summarize the experimental
results in Table 3 and have the following finding: removing any
of these three components degrades the model’s performance.
Especially the removal of mutual information maximization and
local embedding layer has the greatest impact.

Furthermore, the definition of a disease information network is
also an important part of our approach. Therefore, inspired by [53],
we change the input of EDEN, that is, use the disease information
network of different scales, to explore the influence of the disease
information network constructed by different types of biomedical
entities on EDEN. Specifically, here we generated ten inputs of dif-
ferent scales based on the five types of biomedical entities included
in the disease information network constructed by datasets we col-
lected. Inputs of ‘‘only gene” and ‘‘only phe” respectively represent
that the entities contained in the disease information network are
only diseases and genes or phenotypes. Since the construction of
the network needs to ensure its connectivity, gene entities need
to be added when only entities GO term, pathway, or protein are
considered in this construction. Therefore, ‘‘only go”, ‘‘only path”,
and ‘‘only pro” indicate that the only entities included in the dis-
ease information network are GO terms, pathways or proteins in
addition to diseases and genes, respectively. These entities then
form five different disease information networks through the links
between them. Similarly, ‘‘w/o go”, ‘‘w/o path”, ‘‘w/o phe”, and ‘‘w/
o pro” represent the network generated by only removing entities
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GO terms, pathways, phenotypes or proteins from the entire dis-
ease information network (the original input of EDEN), respec-
tively. We note that the network generated by ‘‘w/o gene” is the
same as that of ‘‘only phe”. Because the entity gene was removed
from the entire disease information network constructed by EDEN,
the other three types of entities it links cannot be connected in the
network.

In this way, we generated ten different disease information net-
works to analyze the impact on EDEN by the three metrics AUC,
AUPR, and F1 under the default experimental settings. From
Fig. 4, it can be found that when the disease information network
constructed in our model contains less information, the prediction
performance of EDEN on drug repositioning would be weaker. In
particular, the information contained in the entity genes and pro-
teins has the most significant impact on the performance of EDEN.
This can be observed from Figs. 4 (d), (e), and (f) that the perfor-
mance of ‘‘w/o gene” and ‘‘w/o pro”, i.e. the network with the
entity genes and proteins removed, is low compared to the perfor-
mance produced by other disease information networks. Besides, it
can also be observed from Fig. 4 that the performance is worst
when the network ‘‘only phe” contains only entity phenotypes,
and the performance of EDEN is least affected (‘‘w/o phe”) when
only entity phenotypes are removed from the whole network. This
reflects that the entity phenotypes in the disease information net-
work have the least impact on EDEN.

4.4. Case Study (RQ3)

To further testify the effectiveness of EDEN and generated
explanation paths, we selected four drugs Piroxicam, Triamcinolone,
Atorvastatin and Methylphenidate as query objects. Firstly, through
EDEN, we respectively predicted ten diseases that are potentially
associated with Piroxicam, Triamcinolone and Atorvastatin these
three drugs, which are in the top ten of prediction results. The
results are shown in Table 4. It can be seen that the prediction
results are supported by corresponding evidence reported in rele-



Fig. 4. Analysis of the impact of constructing different disease information networks on EDEN performance.

Table 4
The top-10 prediction results and their support evidence for the query drugs
Piroxicam, Triamcinolone and Atorvastatin.

Query Top-10 prediction results Evidence*

Piroxicam Sexual Dysfunction, Physiological PMID:18726914
Hypertension PMID:15199296

Migraine PMID:30219683
Hypertrophy PMID:27652271

Subarachnoid Hemorrhage PMID:27157545
Melanoma PMID:24495407

Breast Neoplasms PMID:15802278
Seizures PMID:19488739

Movement Disorders PMID:26526685
Acute Kidney Injury PMID:12185885

Triamcinolone Seizures PMID:14714756
Neoplasms PMID:18494554

Campylobacter Infection -
Edema PMID: 1459535

Hypertension PMID:20667508
Carcinoma PMID:15637090
Proteinuria PMID: 4368615
Bradycardia PMID: 1676337

Pain PMID:20133530
Chancroids -

Atorvastatin Kidney Diseases PMID:11682445
Seizures PMID:18096215
Edema PMID: 4327920

Chemical and Drug Induced Liver Injury PMID:20623750
Inflammation PMID:16025360
Hypertension PMID:16620303

Breast Neoplasms PMID:16322251
Chronic Myeloproliferative Disorder -

Arrhythmias, Cardiac PMID: 1654493
Pulmonary Hypertension -

PMID represents literature’s PubMed (https://pubmed.ncbi.nlm.nih.gov/) ID.
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vant literatures. We then selected Methylphenidate and Hyperalge-
sia as the query pair, and the top ten explanation paths extracted
by EDEN are shown in Table 5. For the third path in Table 5, we
can observe from the relevant literatures:
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Methylphenidate (MPH) is the first-line treatment of choice for
attention-deficit hyperactive disorder (ADHD) [54]. However, a
considerable interindividual variability exists in clinical outcome,
which may reflect underlying genetic influences. The presumed
mechanism of MPH activity is in blockade of the dopamine trans-
porter (DAT), inhibiting the reuptake of monoamine, such as dopa-
mine and noradrenaline, leading to increased synaptic
catecholamines [55]. Thus, the DAT1 gene has long been consid-
ered a prime candidate that may contribute to the effectiveness
and safety of MPH [56].

Both SLC6A3 and Catechol-O-methyltransferase (COMT) are
well-known genes that play important roles in the pathophysiol-
ogy of different psychiatric illnesses including ADHD. SLC6A3 and
COMT are also two well characterized polymorphisms in
dopamine-related genes. Two particular polymorphisms in SLC6A3
and COMT may alter the response function of dopamine and, in
turn, activation underlying response inhibition. SLC6A3 encodes
DAT, which is responsible for removing dopamine from the
synapse [57]. COMT is the major catecholamine-degrading enzyme
involved in the degradation of catecholamines in synapses, prefer-
entially affecting prefrontal cortical dopamine metabolism [58].

Hyperalgesia is characterized by decreased pain threshold,
increased pain to normally painful stimuli, and spontaneous pain.
Sensitization of peripheral nociceptors or central pain-encoding
neurons leading to hyperalgesia [59]. More and more literature
demonstrated that catecholamines and pathways regulating their
bioavailability influence pain [60]. Here, based on the theory of
pharmacogenetics and pharmacogenomics, we could infer that
MPH is the potential treatment option for hyperalgesia patients
with genetic polymorphism in COMT, SLC6A3, or other cate-
cholamines system related genes. This shows that the third expla-
nation path extracted by EDEN is reasonable.

Similarly, we also generated explainable paths for some of the
prediction results in Table 4. Due to space limitations, we only list
the paths that are supported by evidence in Table 6. We can
observe that EDEN demonstrates a good interpretability for these
prediction results.



Table 5
The explanation paths for the query pair Methylphenidate and Hyperalgesia.

Query pair Top-10 explanation paths

Methylphenidate -
Hyperalgesia

1.Methylphenidate -target- 5-hydroxytryptamine
receptor 1A -gene_with_protein_product- HTR1A -
participation- Serotonin receptors -participation-

HTR2A -curated_associate- Hyperalgesia
2.Methylphenidate -target- 5-hydroxytryptamine
receptor 1A -gene_with_protein_product- HTR1A -
participation- Amine ligand-binding receptors -

participation- DRD3 -curated_associate- Hyperalgesia
3.Methylphenidate -target- Sodium- dependent

dopamine transporter -gene_with_protein_product-
SLC6A3 -participation- Dopamine clearance from the

synaptic cleft -participation- COMT -
curated_associate- Hyperalgesia

4.Methylphenidate -target- Sodium- dependent
dopamine transporter -gene_with_protein_product-

SLC6A3 -participation- Cocaine addiction -
participation- PDYN -curated_associate- Hyperalgesia

5.Methylphenidate -target- Sodium- dependent
dopamine transporter -gene_with_protein_product-

SLC6A3 -participation- Transmission across Chemical
Synapses -participation- COMT -curated_associate-

Hyperalgesia
6.Methylphenidate -target- Sodium- dependent

dopamine transporter -gene_with_protein_product-
SLC6A3 -participation- Neurotransmitter Clearance In

The Synaptic Cleft -participation- COMT -
curated_associate- Hyperalgesia

7.Methylphenidate -target- Sodium- dependent
dopamine transporter -gene_with_protein_product-
SLC6A3 -participation- Amphetamine addiction -

participation- PRKCG -curated_associate- Hyperalgesia
8.Methylphenidate -target- 5-hydroxytryptamine
receptor 1A -gene_with_protein_product- HTR1A -

participation- cAMP signaling pathway -participation-
MAPK8 -curated_associate- Hyperalgesia

9.Methylphenidate -target- 5-hydroxytryptamine
receptor 1A -gene_with_protein_product- HTR1A -

participation- Taste transduction -participation- P2RX3
-curated_associate- Hyperalgesia

10.Methylphenidate -target- Sodium- dependent
dopamine transporter -gene_with_protein_product-

SLC6A3 -participation- Neuronal System -
participation- COMT -curated_associate- Hyperalgesia

Table 6
The explanation paths generated from the prediction results shown in Table 4, with
evidence supported by literatures.

Explanation paths Evidence*

Piroxicam -target- Prostaglandin G/H synthase 2 -
gene_with_protein_product- PTGS2 -process-
inflammatory response -process- PTGER1 -

curated_associate- Sexual Dysfunction, Physiological

PMID:24996777

Piroxicam -target- Prostaglandin G/H synthase 2 -
gene_with_protein_product- PTGS2 -process- positive
regulation of vasoconstriction -process- HTR2A -

curated_associate- Migraine

PMID:30219683 &
27489378

Piroxicam -target- Prostaglandin G/H synthase 2 -
gene_with_protein_product- PTGS2 -process- positive
regulation of prostaglandin biosynthetic process -

process- PTGS2 -curated_associate- Seizures

PMID: 9642033

Triamcinolone -target- Glucocorticoid receptor -
gene_with_protein_product- NR3C1 -participation-

Gene Expression -participation- VDR -
curated_associate- Neoplasms

PMID:24128352 &
27768599

Triamcinolone -target- Glucocorticoid receptor -
gene_with_protein_product- NR3C1 -participation-

Circadian Clock -participation- AVP -
curated_associate- Pain

PMID:31895268 &
32761684

Triamcinolone -target- Glucocorticoid receptor -
gene_with_protein_product- NR3C1 -participation-

Gene Expression -participation- APOE -
curated_associate- Proteinuria

PMID:24128352 &
31019291

Atorvastatin -target- Histone deacetylase 2 -physical-
Serum albumin -gene_with_protein_product- ALB -

curated_associate- Kidney Diseases

PMID:34154367

Atorvastatin -target- Histone deacetylase 2 -physical-
Signal transducer and activator of transcription 3 -

gene_with_protein_product- STAT3 -
curated_associate- Inflammation

PMID:22197944 &
33952812

Atorvastatin -target- Histone deacetylase 2 -physical-
Hypoxia-inducible factor 1-alpha -
gene_with_protein_product- HIF1A -
curated_associate- Hypertension

PMID:33908728

Methylphenidate -target- 5-hydroxytryptamine
receptor 1A -gene_with_protein_product- HTR1A -

participation- cAMP signaling pathway -
participation- MAPK8 -curated_associate-

Hyperalgesia

PMID:31371490 &
33744339

Methylphenidate -target- Sodium-dependent
dopamine transporter -gene_with_protein_product-

SLC6A3 -participation- Transmission across
Chemical Synapses -participation- MAPK1 -

curated_associate- Hypertrophy

PMID:28955722 &
32103377

Methylphenidate -target- Sodium-dependent
dopamine transporter -gene_with_protein_product-

SLC6A3 -participation- Neuronal System -
participation- SLC22A2 -curated_associate- Kidney

Diseases

PMID:32927790 &
23958595

PMID represents literature’s PubMed (https://pubmed.ncbi.nlm.nih.gov/) ID.
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5. Conclusion

Drug repositioning is a good option for reducing the cost of new
drugs research and shortening its developing time. The rapid
development of high-throughput technologies and the explosion
of various biomedical data have provided lots of reliable and abun-
dant resources for identifying drug-target and drug-disease inter-
actions through computational approaches. Recently, a variety of
computer techniques such as matrix factorization and completion,
machine learning and deep neural network, have been used to
develop computational drug repositioning models. Different from
these studies, this paper mainly focuses on the interpretability of
predicted drug repositioning results, which has not been consid-
ered in previous methods, yet is an important factor in the
follow-up in-depth understanding of the prediction results.

Hence, in this work, we propose a novel framework named
EDEN, which leverages the idea of the graph neural network to
capture the features of local semantics and global structures from
the unified graph of the DIN and the drug-disease bipartite net-
work, and iteratively aggregates the heterogeneous information
of neighbors with attentive weights to update all biomedical enti-
ties and links embedding based on maximizing the mutual infor-
mation of these two features. Finally, we can not only predict
potential drug-disease associations, but also generate explanation
paths for them by the total embeddings, which are retrieved
through the proposed matching score. Extensive experiments on
256
real-world datasets demonstrate the rationality and effectiveness
of EDEN. Further case studies also show the validity of the explana-
tion paths generated by EDEN.

For the future work, improvements can be made in considering
expanding the rich information of the drug (scuh as the molecular
structure and side effects) into the model, integrating literature
knowledge to introduce the decision process into explanations
generation, and developing a system for updating the results in
real time when new data sources are available. In addition, making
the explanation paths generated for the prediction results more
natural language, i.e. generating texts that can be directly under-
stood and read, is also an interesting issue for further research.
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