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Apoptosis is crucial for the correct development of the nervous system. In adulthood, the
same protein machinery involved in programmed cell death can control neuronal
adaptiveness through modulation of synaptic pruning and synaptic plasticity
processes. Caspases are the main executioners in these molecular pathways, and
their strict regulation is essential to perform neuronal remodeling preserving cell
survival. FAIM-L and SIVA-1 are regulators of caspase activation. In this review we will
focus on FAIM-L and SIVA-1 as two functional antagonists that modulate non-apoptotic
caspase activity in neurons. Their participation in long-term depression and neurite pruning
will be described in base of the latest studies performed. In addition, the association of
FAIM-L non-apoptotic functions with the neurodegeneration process will be reviewed.
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INTRODUCTION

Neuronal apoptotic pathways play crucial roles during the nervous system development
(Burek and Oppenheim, 1996) as selective elimination of those neurons that are unable to
correctly innervate their targets, ensuring the survival of complete and functional circuits only.
We have an extensive knowledge of the pathways that lead to apoptosis. Caspases are the main
executioners of apoptosis, and for years their role orchestrating programmed cell death has
been broadly reported in physiology and pathology of the nervous system (Lossi et al., 2018;
Hollville et al., 2019; Voss and Strasser, 2020).

During the last 2 decades, however, accumulating evidence has been supporting a non-apoptotic
and non-inflammatory function of caspases in neurons, essential in processes that occur during the
whole life of the organism, as dendritic pruning and synaptic plasticity. Overall, caspases emerge as
decisive in every structural change of the nervous system beyond apoptosis, starting from
development, remodeling, and finally degeneration (D’Amelio et al., 2011; Hyman, 2011; Unsain
et al., 2013; Mukherjee and Williams, 2017).

In the non-apoptotic processes as pruning it has been shown that while active caspases are found
in degenerating axons, the cell bodies remain viable (Williams et al., 2006; Simon et al., 2016). To
allow neuronal survival, caspase activation is required to be transient and localized to specific cell
compartments, such as neurites during pruning upon nerve growth factor (NGF) deprivation or
nerve injury (Simon et al., 2012; Unsain et al., 2013; Yang et al., 2013), or synapses during plasticity
processes (Hollville and Deshmukh, 2018). Different levels of control can limit caspase to sublethal
activation conditions, such as specific and a rapid turnover of proteins that modulate caspase
activation (Jiao and Li, 2011; Simon et al., 2016).
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Here we will review FAIM-L and SIVA-1, two proteins
involved in the complex molecular interplay that regulates
caspase activation which our group has shown to be
functional antagonists on caspase-activation and consequent
functions in neurons.

FAIM-L and SIVA-1 as Components of the
Classic Apoptotic Pathway
The first Fas apoptotic Inhibitory Molecule gene product,
FAIM-short (FAIM-S), was identified as a death receptor
(DR) inhibitor in immune cells (Schneider et al., 1999). Few
years later, a neuronal-specific isoform, FAIM-long (FAIM-
L) was described (Zhong et al., 2001). FAIM-S is ubiquitously
expressed and is capable of inducing resistance to Fas-
mediated cell death in several cell types (Schneider et al.,
1999; Sole et al., 2004; Kaku and Rothstein, 2010).
Remarkably, in neurons, FAIM-S does not directly protect
from DR-induced apoptosis, but it has a role in promoting
NGF-dependent neuronal differentiation and branching
through activation of ERK and NF-κB pathways (Sole
et al., 2004). FAIM-L on the other hand, is expressed
exclusively in neurons and differs from FAIM-S by the
inclusion of the neuronal exon 2b, which codifies for 22 aa
located at the N-Term of the protein (Segura et al., 2007;
Coccia et al., 2017). Our group has focused on elucidating
FAIM-L mechanism of action, and over the years we have
been able to describe part of its relevance in neurons.

FAIM-L blocks DR-induced cell death by two main
mechanisms: direct binding to non-stimulated Fas receptor,
therefore impairing caspase-8 recruitment to the DISC
complex (Segura et al., 2007), and acting on the regulation of
XIAP degradation, the main endogenous inhibitor of effector
caspases. FAIM-L can directly bind to XIAP’s BIR2 domain and
impair its auto-ubiquitination and consequent degradation by the
proteasome. Therefore, FAIM-L maintains XIAP levels, enabling
it to inhibit effector caspases and to promote survival (Moubarak
et al., 2013).

As part of FAIM-L characterization we were able to identify
SIVA-1 as an interacting partner (Coccia et al., 2020). SIVA-1 was
first described in 1997 in immune cells as an adaptor protein that
binds to the cytoplasmic tail of CD27 receptor (Prasad et al.,
1997), and has been later found to also interact and modulate
signal transduction of different TNFR family receptors (Spinicelli
et al., 2002). SIVA-1 has been described to induce extensive
apoptosis through multiple mechanisms (Cao et al., 2001; Py
et al., 2004, 2007; Zins et al., 2014). Several typical markers have
been reported in SIVA-1 cell death induction, such as BAK/BAX
translocation to mitochondrial membrane, cytochrome-c release
and caspase-3 activation (Xue et al., 2002; Jacobs et al., 2007;
Resch et al., 2009). Moreover, SIVA-1 is an inhibitor and
interacting partner of XIAP (Resch et al., 2009; Coccia et al.,
2020). In our recent work we demonstrated that SIVA-1 induces
neuronal cell death through caspase-3 activation, and that it
displaces the FAIM-L/XIAP interaction, which can be
sufficient to promote XIAP degradation (Coccia et al., 2020).

FAIM-L and SIVA-1 in Non-Apoptotic Roles
of Caspases
Many forms of learning and memory require experience-
dependent synaptic adjustments in the hippocampus (Bateup
and Sabatini, 2010). The best characterized forms of long-term
plasticity of excitatory synapses in response to glutamate
signaling are long-term potentiation (LTP) and depression
(LTD). In LTP the outcome is a gain in AMPA receptor
(AMPAR) expression and increase in synaptic strength, while
in LTD, synapses experience a decrease in the number of surface
AMPA receptors and weakening of synapses (Beattie et al., 2000).
Studies have shown a great conservation between apoptotic and
LTD induction pathways. During LTD it has been shown the
activation of essential players of the apoptotic pathway,
mitochondrial engagement, and cytochrome-c release.
Caspase-3 is found to be the essential effector of LTD, which,
in fact, is abolished in the hippocampus of caspase-3 deficient
mice (Li et al., 2010).

During recent years several modulators of apoptosis have been
implicated in LTD regulation. Our group has shown that both
FAIM-L and SIVA-1 are able to play a role in AMPAR
internalization, but with opposite roles (Figure 1). In our
studies we used the extensively described chemical LTD
(chLTD) (Li et al., 2004), in which primary neurons undergo
LTD changes after cells are trated with NMDA for a short
treatment (15min). That is, with NMDA stimulation, chLTD
is induced. A rapid increase in calcium levels is triggered by
NMDA receptor activation, followed by calcineurin activation.
Calcineurin dephosphorylates AMPAR and pBAD, which in turn
leads to activation of apoptotic-machinery components and
finally caspase-3. The activation of caspase-3 culminates in
AMPAR internalization and therefore synaptic weakening (Lee
et al., 1998, 2002; Li et al., 2010; Jiao and Li, 2011). In 2016 we
demonstrated that FAIM-L overexpression totally abrogates
AMPAR internalization in LTD through stabilization of XIAP
and consequent caspase-3 inhibition (Martínez-Mármol et al.,
2016).

SIVA-1 on the other hand has the opposite effect, as its
overexpression is sufficient to decrease GluA2 levels, a
component of AMPAR, in a caspase-dependent manner.
FAIM-L restores AMPAR levels changes induced by SIVA-1
in hippocampal neurons, indicating that both proteins act on
the same pathway.

Another non-apoptotic mechanism in which apoptotic
proteins are essential is neurite pruning, essential to sculpt
neuronal connections, as it removes excessive or inaccurate
projections without resulting in the death of the cell. The
mechanism can involve small-scale pruning of axon terminals,
or large-scale removal of branches (Luo and O’Leary, 2005).

Pruning is characterized by cytoskeletal destabilization,
microtubules disassemble, neurofilament fragmentation and
degradation of axonal components. The portion of the axon
destined for removal is finally engulfed and digested by
surrounding glia (Saxena and Caroni, 2007).

During development of the peripheral nervous system,
depriving of NGF only distal axons of neurons promotes axon
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pruning and remodeling without causing neuronal death
(Nikolaev et al., 2009; Cusack et al., 2013). In vitro culture of
peripheral sensory neurons is a convenient system to study this
process, and has been widely used as a model for developmental
disease (Campenot, 1977).

Experimental results show that in response to local NGF
withdrawal, a pathway that converges with apoptotic initiation
is activated. BAX engagement is required to induce cytochrome-c
release frommitochondria (Nikolaev et al., 2009), and a caspase-9
to caspase-3 cascade is activated and crucial for apoptosis (Luo
and O’Leary, 2005; Buss et al., 2006). Caspase-3, the main
effector, activates caspase-6, which plays a significant but
subsidiary downstream role (Simon et al., 2012). Caspases
finally orchestrate cytoskeleton fragmentation and organelle
degradation.

Several mechanisms fine-tune the activation intensity of
caspase-3, thereby favoring a transient activity in LTD and
pruning, instead of a persistent activation that would commit
cells to induce apoptosis. Proteins that participate in apoptotic
modulation are found in dendrites and synaptic terminals, which
are also equipped with the tools for a rapid and strictly regulated
protein turnover, such as proteasome for degradation, translation

machinery, and local mRNA (Williams et al., 2006; Ertürk et al.,
2014). Mitochondria are essential for activating the pathway that
leads to caspase engagement in non-apoptotic activities. These
organelles can be found in dendrites, and sometimes in individual
spines (Li et al., 2004). Moreover, their distribution and motility
are regulated by synaptic activity, allowing for a spatial control of
the pathway activation (Li et al., 2004).

During plasticity processes it is essential to have a local and
rapid turnover of components of the synaptic proteome,
composed by ion channels, neurotransmitter receptors,
regulators of synaptic function, and adhesion and scaffolding
molecules. Synapses are equipped to have rapid and dynamic
changes in protein levels necessary for plasticity. Both translation
machinery and proteasomal system are found in synapses, so that
protein synthesis and degradation occurs rapidly and
independently of the cell Soma - that can be located up to
hundreds of microns away (Schuman et al., 2006; Richter and
Klann, 2007; Tom Dieck et al., 2014). Like other pro-apoptotic
proteins, SIVA-1 is involved in this process by maintaining a
partial induction of caspase-3 activation. During LTD, pro-
apoptotic BAX and BAD have been shown to be sufficient and
necessary for mitochondrial factor release. However, as opposed

FIGURE 1 | Participation of FAIM-L and SIVA-1 in neuronal plasticity processes. The upper panel diagram represents the molecular mechanism by which FAIM-L
and SIVA-1 are involved in AMPA receptors internalization during LTD processes in synaptic plasticity, in response to NMDA stimulation. Themaintenance of XIAP-FAIM-
L interaction would allow XIAP-mediated caspase-3 inhibition, and therefore prevent the caspase-3-dependent AMPA receptors internalization; a displacement of this
interaction mediated by SIVA-1 binding to FAIM-L would allow the activation of caspase-3 and its consequent LTD induction and synaptic weakening. The lower
panel diagram shows the similar role of FAIM-L and SIVA-1 in axonal pruning, as in trophic factors deprivation. In this case, an upstream activation of the mitochondrial
apoptotic machinery would converge in the activation of caspase-3, whose activity would be regulated by the balance between SIVA-1-FAIM-L or XIAP-FAIM-L binding.
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to apoptotic induction, in this situation BAX translocation to the
mitochondrial membrane is not observed, therefore resulting in
only a mild engagement of mitochondria that could explain the
transient activation of the apoptotic cascade (Li et al., 2010; Jiao
and Li, 2011). SIVA-1 regulation, on the other hand, is secured by
a rapid calcium dependent induction, and its levels are
maintained only for a few minutes after the stimulation
(Coccia et al., 2020). Synthesis of new proteins encoded by
pre-existing mRNAs in the synapses occurs in response to
stimulation, and even if it is not necessary for initiation of
AMPAR endocytosis in hippocampal LTD, it is required for
AMPAR trafficking for its maintenance (Huang et al., 2005;
Hoeffer and Klann, 2008; Di Prisco et al., 2014).

FAIM-L also recently emerged as a regulator of caspase-
dependent non-apoptotic activation during long-term
synaptic depression (LTD) and neurite pruning (Martínez-
Mármol et al., 2016). As other anti-apoptotic proteins such as
XIAP and BCL-2, FAIM-L has a crucial role in temporal and
spatial restriction of the physiological activation of caspases
to local sites and to suppress it so that it does not spread to the
whole cell (Bateup and Sabatini, 2010; Li et al., 2010;
Martínez-Mármol et al., 2016). Specifically, IAPs (XIAP
protein family) can bind to caspases in a sort of IAP-based
“clutch system,” in which active caspases are stalled, ready for
quick release upon stimuli, bypassing the need for Apaf-1 and
apoptosome formation. Together, low Apaf1 engagement and
high FAIM-L levels grant a strict control of XIAP post-
cytochrome-c inhibition of caspases which allows to stop
the wave of caspase activation before it can reach cell Soma
(Potts et al., 2003; Martínez-Mármol et al., 2016).

FAIM-L and SIVA-1 in Pathologies
Our group has found a correlation between FAIM-L levels and
Alzheimer’s disease (AD) progression (Carriba and Comella,
2015; Carriba et al., 2015). AD is the principal
neurodegenerative disease, whose main hallmarks are
extracellular aggregates of amyloid beta (Aβ), intraneuronal
Tau neurofibrillary tangles, and progressive neuronal loss.
FAIM-L decrease is induced by Aβ oligomers in culture, and
it would imply a higher susceptibility to stress insults to neurons.
Moreover, since FAIM-L and SIVA-1 counteract each other’s
function, loss of FAIM-L would induce a gain of function of
SIVA-1 activity, and overall, a deregulation of the pathways that
lead to caspase activation.

Over-activation of caspases would afterwards exacerbate
the hallmarks of AD, being first extreme plasticity processes
in neurons, and finally neuronal degeneration (Chi et al.,
2018; Wang et al., 2020; Baranov et al., 2021). Hundreds of
studies can be found on the correlation among caspase
activation and AD pathological markers, such as increase
in production of Aβ (Unsain and Barker, 2015), microtubule
associated protein tau phosphorylation and aggregation (Wu
et al., 2010), and as consequence, to deficits in cell survival
and plasticity pathways. Mouse models of the disease, which
overexpress human amyloid precursor protein (APP), have
been extremely useful to detect which pathways are
deregulated in the disease. Thanks to these models, it was

described that memory loss, beginning early in AD, can be
attributed to processes previous to cell death. Aβ oligomers
induce a deregulation of LTD, which causes disruption of
synaptic plasticity, micro-pruning, and spine loss (Fasulo
et al., 2000; Gamblin et al., 2003; Rissman et al., 2004;
Zhou et al., 2004; D’Amelio et al., 2011; Oh et al., 2013).
Given that both FAIM-L and SIVA-1 are involved in these
pathways, any deregulation of their functional balance can be
determinant for assessing the progression or a potential
treatment of the disease.

Recently, a relationship between FAIM and protein
aggregation became evident (Kaku et al., 2020) pointing to
a function of FAIM in protein homeostasis. FAIM is able to
protect against environmental insults that cause
accumulation of cytotoxic and aggregated proteins, such as
oxidative stress, which are frequently found in the main
neurodegenerative diseases. The protective mechanism in
this case is reported to be caspase-independent and based
on the ability to bind to ubiquitinated protein aggregates and
prevent cell damage. Both FAIM-S and FAIM-L prevent Aβ
aggregation in vitro. Therefore, FAIM-L decrease in AD could
also be pathologically linked to a more rapid, aggressive Aβ
aggregation. In a Faim-KO mice model (Huo et al., 2016), we
identified the presence of ubiquitinated aggregates
throughout the retina, a gliotic activation response in the
Müller cells, and pronounced vascular leakage that lead to
late-onset photoreceptor cell death (Sirés et al., 2021).

Beyond its role in apoptosis, SIVA-1 also regulates other
cellular processes, such as cellular migration (Li et al., 2011;
Ma et al., 2017), autophagy (Van Nostrand et al., 2015), and
proliferation (Ma et al., 2017; Liu et al., 2020). In cancer studies
SIVA-1 has been found to have a role as pro- or anti-malignant
factor, depending on cellular context (Vachtenheim et al., 2018).

Studies carried out in ovarian and cervical cancer cells show
that SIVA-1 suppresses migration and invasion of cancer cells,
and overall prevents metastasis through phosphorylation of
stathmin, a microtubule destabilizer (Ma et al., 2017; Liu et al.,
2020).

In other cases, instead, SIVA-1 has been reported to have
the opposite role. Pro-oncogenic role of SIVA-1 has been
linked to a negative feedback loop regulation that can induce
degradation of p53 (Wang et al., 2013), and to its
involvement in mitochondrial respiratory capacity and
energy production. Van Nostrand and others showed in
non-small cell lung cancer that SIVA-1 knockdown
reduces energy production and results in autophagy,
suggesting that SIVA-1 is necessary to facilitate
tumorogenesis (Van Nostrand et al., 2015).

In line with the findings of SIVA-1 as a protein of relevance in
several cellular processes, Jacobs and others reported an essential
role of SIVA-1 during embryonic development, during which a
tight regulation of cellular proliferation and differentiation
mechanisms is essential. They generated a Siva-1 KO mice and
reported that Siva-1 deficiency results in mid-gestational
embryonic lethality, associated with several developmental
abnormalities, developmental delay and defects in neural tube
closure (Jacobs et al., 2019).
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Available Mouse Models to Study FAIM
For many FAIM-related functions it is not clear which isoform of
FAIM (L or S) is responsible for the observed effects. Currently
available Faim-KO models lack both forms of the protein, and
some inconsistency is found in the reports about Faim-KO mice
phenotypes. Dr. Lam’s group reported FAIM-S regulation of
insulin signaling and first generated a FAIM null mouse in
2009 (Huo et al., 2009). These mice present a spontaneous
non-hyperphagic obesity, an increased fatty acid synthesis in
the liver, and reduced insulin receptor beta, supporting the
involvement of FAIM-S in energy homeostasis and insulin
signaling (Huo et al., 2016). The obese phenotype described by
Lam’s group was not reproduced in a second Faim-KO mice
generated by Dr. Rothstein’s group (Kaku and Rothstein, 2020),
and in our study with the former model some phenotypic
characteristics changed based on the genetic background of
the mice strain used. However, our group recently identified a
retinal neurodegenerative phenotype in Dr. Huo’s model,
compatible with the observations on protein homeostasis
reported by Dr. Rothstein (Sirés et al., 2021). Several factors
can influence the appearance of phenotypes when analyzing mice
models, such as genetic background of mice strain, flanking genes
modifications during the generation of the mice, KO generation
methodology, or environmental factors. The discrepancy on
reports about Faim-KO mice makes therefore difficult for us
to appoint any phenotype described to the lack of FAIM-L or

FAIM-S. For this reason, it would be of great interest to generate
new specific mouse models knockout of each FAIM isoform, and
more interestingly of FAIM-L because of its selective expression
in neuronal cells and relevance in cell-type specific physiology.

CONCLUSION

In conclusion, we have reviewed the role of FAIM-L and SIVA-1
as novel regulatory proteins that modulate the activity of caspase-
3, involved in a wide range of remodeling processes that are
essential for a correct neuronal function. Given the relevance of
this fine-tune regulation, any alteration in regulatory proteins
may be a possible cause of pathology, and may constitute
therefore, a plausible therapeutic target. A better
understanding of the mechanisms involved in synapses
remodeling will help the development of new therapeutic
strategies for neurodegenerative diseases.
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