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Abstract 

Increasing anthropogenic carbon dioxide (CO2) emissions to the atmosphere 

have partially been absorbed by the global oceans. The role which the plankton 

community contributes to this net CO2 sink, and how it may change under 

climate change has been identified as a key issue to address within the United 

Nations decade of ocean science (2021-2030) Integrated Ocean Carbon 

Research (IOC-R) programme. This thesis sets out to explore how the net 

community production (NCP; the balance between photosynthesis and 

respiration) of the plankton community contributes to the variability in air-sea 

CO2 flux in the South Atlantic Ocean.  

In Chapter 2, NCP is shown to be accurately and precisely estimated from 

satellite measurements with respect to in situ observations. For this, weighted 

statistics are used to account for satellite, in situ and model uncertainties. The 

accuracy of satellite NCP could be improved by up to 40% by reducing 

uncertainties in net primary production (NPP). In Chapter 3, these satellite NCP 

observations were then used within a feed forward neural network scheme (SA-

FNN) to extrapolate partial pressure of CO2 in seawater (pCO2 (sw)) over space 

and time, which is a key component to estimating the CO2 flux. NCP improved 

the accuracy and precision of pCO2 (sw) fields compared to using chlorophyll a 

(Chl a); the primary pigment in phytoplankton which is often used as a proxy for 

the biological CO2 drawdown. Compared to in situ observations, the seasonal 

variability in pCO2 (sw) was improved using the SA-FNN in key areas such as the 

Amazon River plume and Benguela upwelling, which make large regional 

contributions to the air-sea CO2 flux in the South Atlantic Ocean. In Chapter 4, 

these complete pCO2 (sw) fields were used with a timeseries decomposition 

method to determine the drivers of air-sea CO2 flux over seasonal, interannual 

and multi-year timescales. NCP was shown to correlate with the variability in 

CO2 flux on a seasonal basis. At interannual and mutli-year timescales, NCP 

became a more important contributor to variability in CO2 flux. This has not 

been previously analysed for this region.  

Mesoscale eddies in the global ocean can modify the biological, physical, and 

chemical properties and therefore may modify the CO2 flux. In Chapter 5, the 

cumulative CO2 flux of 67 long lived eddies (lifetimes > 1 year) was estimated 
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using Lagrangian tracking with satellite observations. The eddies could enhance 

the CO2 flux into the South Atlantic Ocean by up to 0.08 %, through eddy 

modification of biological and physical properties. Collectively this research has 

shown that the plankton community plays a more significant role in modulating 

the air-sea CO2 flux in the South Atlantic Ocean, which has significant 

implications for the global ocean. 
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Chapter 1: General Introduction 

Since the industrial revolution, anthropogenic carbon dioxide (CO2) emissions 

have resulted in a ~47 % increase in atmospheric CO2 concentration from ~280 

µatm in 1750 to ~410 µatm in 2019 (IPCC, 2021). As a result, global air 

temperatures have increased by 1.09 °C and sea surface temperatures have 

risen by 0.8 °C since 1850 (IPCC, 2021). This warming is leading to 

unprecedented change in the global climate, affecting the atmosphere, oceans, 

cryosphere and biospheres as outlined in the Intergovernmental Panel on 

Climate Change (IPCC) AR6 report (IPCC, 2021). 

Terrestrial and oceanic ecosystems are a net sink for CO2 having absorbed ~56 

% of anthropogenic emissions between 1959 and 2019, of which the global 

ocean has absorbed 24 % and terrestrial land has drawn down 32 % 

(Friedlingstein et al., 2020). The oceans have absorbed CO2 at a rate between 

1 and 3.5 Pg C yr-1 (1 Pg=1015 g), and the rate appears to be increasing 

(Watson et al., 2020b; Friedlingstein et al., 2020; Landschützer et al., 2016). 

Future projections suggest that this absorption will continue to increase in the 

short term due to increasing atmospheric CO2 concentrations effectively forcing 

more CO2 into the oceans (IPCC, 2021), but the precise response of the ocean 

under reduced, or even decreasing, anthropogenic CO2 emissions is currently 

unknown. 

The long-term absorption of CO2 into the oceans does not occur without 

negative effects. The long-term dissolution of CO2 into the oceans is altering the 

marine carbonate chemistry of the ocean, resulting in a lowering of pH; and a 

decrease in carbonate ions; a process known as ocean acidification (Raven et 

al., 2005). Decreasing surface ocean pH, and carbonate ions, have negative 

impacts for calcifying organisms, such as corals and coccolithophores, which 

affects their ability to form calcium carbonate structures at lower pH (IPCC, 

2021). The effect of decreasing seawater pH on other phytoplankton and the 

marine food web in general, is currently unknown (Dutkiewicz et al., 2015). 

Understanding the current drivers of the oceanic CO2 sink, and predicting how 

these may change under future climate change scenarios, is pivotal to 

identifying the consequences of these changes on the ocean CO2 sink (Aricò et 

al., 2021). 
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1.1 Air-sea gas exchange of CO2 

The air-sea gas exchange of CO2 or the CO2 flux (F), that collectively results in 

the ocean CO2 sink, is controlled by the CO2 concentration difference between 

the base ([CO2 (sw)]) and top ([CO2 (atm)]) of a thin mass boundary layer (MBL; 

20-200 μm in thickness) at the sea surface (Fig. 1.1), alongside the gas transfer 

velocity (k). The CO2 flux can therefore be expressed as: 

F = k([[CO2 (sw)] − [CO2 (atm)])                                (1.1) 

The CO2 concentration in seawater is a function of the CO2 solubility (α) and the 

fugacity of CO2 (fCO2). Therefore Eq. 1.1 can be rewritten in the form 

F = k(αsw𝑓CO2 (sw) −  αatm𝑓CO2 (atm))                           (1.2) 

where the subscripts denote seawater (sw) and atmosphere (atm). The fCO2 

corrects the partial pressure of CO2 (pCO2) for the non-ideal behaviour of CO2. 

 

Figure 1.1 – Schematic of the ocean’s surface, highlighting the mass boundary 
layer (MBL; black arrow) embedded within the thermal skin (red arrow). Depth 
profile on right side of schematic shows an idealised temperature profile from 
the air-sea interface to the sub skin temperature (TSUBSKIN), highlighting the 
vertical temperature gradient. Exemplar depths of each idealised layer are 
shown on left of figure. Schematic developed from Donlon et al. (2007) and 
Woolf et al. (2016) and is not to scale. 
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fCO2 and pCO2 vary by <0.5% (Mcgillis and Wanninkhof, 2006) over the 

temperature range in the ocean, therefore fCO2 is commonly substituted with 

pCO2 such that Eq. 1.2 becomes: 

F = k(αsw𝑝CO2 (sw) −  αatm𝑝CO2 (atm))                          (1.3) 

Another popular rearrangement of Eqs 1.2 and 1.3 ignores the differences 

between the solubilities at the base and top of the MBL, and uses only the 

solubility at the base (αsw), resulting in 

F = k αsw(𝑓CO2 (sw) −  𝑓CO2 (atm))                             (1.4) 

and 

F = k αsw(𝑝CO2 (sw) −  𝑝CO2 (atm))                              (1.5) 

These formulations are commonly referred to as the “bulk” parameterisation of 

the CO2 flux. Eqs 1.4 and 1.5 are also commonly condensed to the form 

F = k αsw Δ𝑓CO2                                           (1.6) 

and 

F = k αsw Δ𝑝CO2                                           (1.7) 

ΔfCO2 is the difference in fugacity of CO2 between the seawater and 

atmosphere, and ΔpCO2 is the partial pressure of CO2 difference.  

The solubility of CO2 is strongly dependent on temperature, and to a lesser 

extent salinity (Weiss, 1974), such that CO2 is more soluble in colder, less 

saline waters. The MBL is embedded within the thermal skin layer (Fig. 1.1), 

where due to the cool skin (TSKIN) (Donlon et al., 1999, 2002), vertical 

temperature gradients exist across the MBL (Woolf et al., 2016). Therefore, 

using only the sub skin temperature (TSUBSKIN), and the resulting solubility, will 

introduce a bias in the CO2 flux estimates, which can be substantial on the 

global scale (Watson et al., 2020b; Woolf et al., 2019). For accurate gas flux 

calculations, the solubility at the base and top of the MBL should be included, 

as in Eq. 1.2 and 1.3, as opposed to the commonly used expressions of Eq 1.4 

– 1.7 which neglect this difference in solubilities. For this thesis, as fCO2 and 

pCO2 are similar for the temperature range found in the ocean (Mcgillis and 
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Wanninkhof, 2006), pCO2 will be used, and therefore Eq. 1.3 is used for air-sea 

CO2 flux calculations. 

The air-sea CO2 flux is also controlled by the gas transfer coefficient. Gas 

exchange is influenced by bubbles (Woolf, 1997), wave breaking (Woolf, 2005) 

and surface turbulence, which are typically linked to wind speed. The gas 

transfer coefficient is generally parameterised as a function of wind speed 

(Nightingale et al., 2000; Wanninkhof, 2014, 1992). Spatial and temporal 

variability in wind speeds will therefore also play a role in determining the air-

sea CO2 flux variability (Keppler and Landschützer, 2019; Takahashi et al., 

2002; Wanninkhof and Triñanes, 2017), and a large concentration difference 

will not necessarily mean a high rate of exchange (Kitidis et al., 2019). 

1.2 Controls on pCO2 (sw) variability 

The previous section described how the air-sea CO2 flux is determined by the 

CO2 concentration difference across the MBL and the gas transfer coefficient. 

The concentration of CO2 in seawater is a function of the pCO2 (sw) and the 

solubility, therefore pCO2 (sw) variability is an important control on the CO2 

concentration. The atmospheric concentration of CO2 is fairly homogenous 

spatially in comparison to the pCO2 (sw), which shows seasonal and regional 

variability.  

The global distribution of pCO2 (sw) is spatially heterogenous, which is controlled 

and modulated by ocean physics and biological activity. Temperature is a 

dominant control, through the strong dependence on the solubility of CO2 

(Weiss, 1974), which leads to increased pCO2 (sw) with increasing temperature. 

Biological activity in the surface waters, in the form of photosynthesis by 

phytoplankton and the respiration of the entire plankton community modifies the 

pCO2 (sw). Photosynthesis, or net primary production (NPP), draws down CO2 

and nutrients to form organic carbon, which lowers pCO2 (sw). Respiration 

releases CO2 back into the seawater through the remineralisation of the fixed 

organic carbon, raising pCO2 (sw). A varying proportion of the fixed organic 

carbon can be exported into the deeper ocean where it is remineralised back to 

CO2 (Laws et al., 2000; Henson et al., 2011; Sarmiento and Gruber, 2004). The 

rate of NPP and respiration is seasonally and spatially variable and will be 

discussed in more detail in section 1.4. 
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The upwelling of deeper water masses into the surface waters brings cooler, 

CO2 rich waters to the surface through coastal, equatorial and wind driven 

upwelling (Arnone et al., 2017; Lefèvre et al., 2002, 2008; Parard et al., 2010). 

The increase in CO2 concentrations elevates pCO2 (sw), and the warming of 

these waters will amplify the pCO2 (sw) increase. These upwelled waters are 

nutrient rich and can stimulate elevated NPP, which can sequester a portion of 

the upwelled CO2 (Kim et al., 2019) 

The addition of freshwater through riverine (Lefèvre et al., 2020; Chen et al., 

2012a) and rainfall inputs has the opposite effect of upwelling by introducing 

CO2 depleted fresh waters into the surface ocean which lowers pCO2 (sw). 

Riverine inputs can also introduce substantial nutrient inputs that can fuel NPP 

(Smith and Demaster, 1996; Lefèvre et al., 2017), amplifying the depressed 

pCO2 (sw) (Ibánhez et al., 2016; Körtzinger, 2003). 

The spatial distribution of pCO2 (sw) is therefore a complex balance between 

different amplifying or counteracting contributions from multiple driving 

mechanisms. These drivers will have regionally differing contributions to the 

pCO2 (sw) spatial variability but also the temporal variability on seasonal 

(Takahashi et al., 2002), interannual (Henson et al., 2018) and decadal 

timescales (Landschützer et al., 2014, 2016). 

1.3 Estimating the global air-sea CO2 flux  

Early assessments of the global ocean CO2 sink were limited to ocean 

biogeochemical models (Wanninkhof et al., 2013), atmospheric (Peylin et al., 

2013) and oceanic (Gruber et al., 2009) inversions or the binning of sparse in 

situ pCO2 (sw) observations into long-term climatology assessments (Tans et al., 

1990; Takahashi et al., 1997, 2009, 2002, 1999). More recently due to the 

availability of large community collated in situ datasets (Bakker et al., 2016; 

Takahashi et al., 2017) and satellite observations, methods which intelligently 

extrapolate in situ pCO2 (sw) measurements for regional or global analyses, are 

now routinely employed (Shutler et al., 2020; Friedlingstein et al., 2020). 

Stephens et al. (1995) extrapolated in situ observations in the North Pacific 

using seasonal linear regressions between SST and pCO2 (sw) to produce basin 

scale fields from monthly satellite SST estimates. Regional SST based linear 

regressions have  also been parameterised for the Caribbean Sea (Olsen et al., 
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2004), Chilean upwelling (Lefèvre et al., 2002) and Atlantic Ocean (Lefèvre and 

Taylor, 2002). The addition of further parameters into multi-linear regression 

models have also included sea surface salinity (SSS) (Lefèvre et al., 2002) and 

chlorophyll a (Chl a) (Ono et al., 2004) as a proxy for biological production, 

which improved regional estimates of pCO2 (sw), by accounting for a higher 

proportion of the pCO2 (sw) variability.  

In the pursuit of further improvements, different extrapolation methods were 

employed. These moved away from linear and multi-linear regression of pCO2 

(sw) and extrapolation parameters, towards neural networks (Lefèvre et al., 2005; 

Telszewski et al., 2009) which could effectively capture non-linear relationships. 

These methods have provided accurate pCO2 (sw) estimates on both regional 

and global scales as quality controlled global dataset of pCO2 (sw) became 

available. 

Global estimates of pCO2 (sw) based on the extrapolation of in situ pCO2 (sw) 

using satellite observations did not appear until after the release of the Surface 

Ocean CO2 Atlas (SOCAT) v1.5 in 2011 (Pfeil et al., 2013; Sabine et al., 2013). 

SOCAT provided a database of quality controlled global in situ fCO2 (sw) 

observations (that can be converted to pCO2 (sw)), which has been continually 

updated since the first release to add more in situ observations (Bakker et al., 

2016) and is now updated annually (https://www.socat.info/). The first global 

multiyear pCO2 (sw) data-based estimate of the global ocean carbon sink were 

produced by Rodenbeck et al. (2013) using a mixed layer based diagnostic 

model that was fit to SOCAT pCO2 (sw). An increase in the number of data-based 

estimates followed using a multitude of different methods and parameter 

combinations to extrapolate the pCO2 (sw) observations (Rödenbeck et al., 2015; 

Landschützer et al., 2014; Iida et al., 2015; Denvil-Sommer et al., 2019; Zeng et 

al., 2015). 

These global pCO2 (sw) estimates, based on SOCAT in situ observations, 

allowed the investigation of seasonal, interannual, decadal and long-term trends 

in the global ocean CO2 sink. For example, Landschützer et al. (2015, 2016) 

identified decadal changes in the Southern Ocean CO2 sink strength, a region 

that had not been studied well, using a self-organising map coupled to a feed 

forward neural network approach. These global approaches followed the 

regional approaches incorporating physical parameters, including SST, SSS 

https://www.socat.info/
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and mixed layer depths, into the extrapolation schemes. The biological 

contribution to pCO2 (sw) variability was either assumed to be driven by changes 

in the physical parameters (Watson et al., 2020b), or Chl a (Landschützer et al., 

2014), the dominant pigment in phytoplankton which has been widely used as a 

proxy for the balance between photosynthesis and respiration within the 

plankton community, or the net community production (NCP). Chl a does not 

quantify the biological exchange of CO2 however, since it does not quantify both 

the carbon uptake and that respired by the plankton community.  This is 

discussed in further detail in the following section. 

1.4 Biological controls on pCO2 (sw) 

Biological activity in the surface ocean can modify the concentration of CO2, 

and therefore the pCO2 (sw). The balance between the NPP and respiration by 

the whole plankton community determines NCP. When NCP is positive, NPP is 

greater than respiration, and the plankton community is predominantly 

autotrophic, and a net drawdown of CO2 is observed. Where NCP is negative, 

respiration outweighs NPP, heterotrophy is dominant and a net release of CO2 

from the plankton community is observed. Therefore, the NCP of the plankton 

community quantifies the balance between the biological drawdown or release 

of CO2 from the surface ocean.  

The NPP rate of a particular plankton community is determined by the 

phytoplankton biomass in the community as a first order approximation, hence 

why Chl a is regularly used as a proxy for NPP. However, the rate of NPP is not 

solely determined by the phytoplankton biomass and can be modified by the 

phytoplankton community composition (Bouman et al., 2005) and environmental 

conditions including, for example, SST (Behrenfeld and Falkowski, 1997b; 

Bouman et al., 2005; Eppley et al., 1985; Bouman et al., 2018), light availability 

(Dogliotti et al., 2014; Poulton et al., 2006; Sathyendranath et al., 1989), and 

macro (nitrate, phosphate and silicate) (Marañón et al., 2003; Poulton et al., 

2006; Marañón et al., 2018) and micro nutrient availability (e.g. iron) 

(Behrenfeld and Milligan, 2012; Boyd et al., 2000; Coale et al., 1996; Behrenfeld 

et al., 2009). Thus elevated phytoplankton biomass (or as a proxy; elevated Chl 

a) does not always equate to an equal increase in the overall NPP (Poulton et 

al., 2006; Dogliotti et al., 2014; Kulk et al., 2020).  



42 
 

NPP rates are determined by a balance between limiting processes that will 

control the overall NPP rate of a phytoplankton community. Empirical models 

that relate Chl a concentrations to the NPP rate are able to account for some of 

the variability in NPP (Tilstone et al., 2009; Eppley et al., 1985). More complex 

models that incorporate light and photosynthetic rate parameters, are able to 

predict a higher proportion of the observed variability in NPP rates (Tilstone et 

al., 2009; Campbell et al., 2002; Carr et al., 2006; Friedrichs et al., 2009; 

Behrenfeld and Falkowski, 1997b; Dogliotti et al., 2014). This highlights that Chl 

a, although important for determining NPP, is not the sole parameter controlling 

the variability in NPP, and changes in Chl a do not necessarily indicate an equal 

response in NPP rates. Whereas the NCP is the balance between 

phytoplankton NPP and the respiration of heterotrophic organisms, and 

therefore the variability in NCP is not only determined by NPP but also by the 

respiration rate of the plankton community (Serret et al., 2015). Respiration 

rates have been shown to increase with increasing NPP rates, but this is not 

proportional, and NPP tends to increase more than respiration rates (Duarte et 

al., 2013; Williams, 1998; Serret et al., 2009, 2015; Williams et al., 2013). 

However, in situ comparisons of NPP to respiration relationships show 

substantial variability, indicating that NPP is not the sole determining variable 

for respiration variability (Serret et al., 2015, 2009; Tilstone et al., 2015b; Yvon-

Durocher et al., 2012).  

Other controls on respiration rates can include temperature where higher 

temperatures support greater respiration rates (Regaudie-De-Gioux and Duarte, 

2012; García-Corral et al., 2014; Tilstone et al., 2015b), and therefore modify 

the NPP to respiration relationship. Variability in these relationships has also 

been observed due to temporal lags between NPP increases and a subsequent 

increase in respiration as organic matter flows through the community 

(Robinson and Williams, 2005), especially surrounding the spring bloom (Serret 

et al., 1999). Geographical differences also introduce variability when scaling to 

basin wide estimates, for example between the North and South Atlantic gyres 

due to differences in the respiration rate (Serret et al., 2002, 2015). 

NCP rates are therefore determined by changes in both NPP and respiration 

(Serret et al., 2015). NPP is related to Chl a, but other processes can modify the 

NPP rate for a given Chl a concentration as discussed previously. Community 
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respiration has been shown to weakly relate to Chl a concentrations (Robinson 

and Williams, 2005; Robinson et al., 2002b, a), but is more closely related to the 

NPP rates (Tilstone et al., 2015b; Serret et al., 2009; Duarte et al., 2013). 

Therefore, using Chl a as a proxy for NCP, will miss variability in NCP driven 

not only by differences in NPP, but also due to differences in respiration rates. 

1.5 Satellite estimates of phytoplankton biomass and rates 

Though in situ data is essential in understanding the variability in NCP, NPP, 

Chl a, and respiration, it does not capture the large-scale variability in these 

parameters over space and time. To synoptically assess NCP on a basin scale, 

and therefore to include NCP within schemes to extrapolate pCO2 (sw) 

observations, satellite estimates are required. Satellite based ocean colour, the 

optical signal from the ocean water leaving radiance at visible wavelengths, was 

unlocked in 1979 with the launch of the experimental Coastal Zone Color 

Scanner (CZCS) on the Nimbus 7 satellite. This satellite sensor provided the 

first synoptic global scale estimates of ocean colour, as proof of concept, until 

its demise in 1986. In 1997, the National Aeronautics and Space Administration 

(NASA) launched the Sea Viewing Wide Field of View Sensor (SeaWiFS) on 

the Orbview-2 satellite which allowed the synoptic and routine estimation of 

ocean colour within the global oceans. Following the success of SeaWiFS, the 

Moderate Resolution Imaging Spectroradiometer on the Aqua satellite (MODIS-

A) was launched in 2002 providing continued ocean colour data until the 

present day, making MODIS-A the longest single sensor record of ocean colour.  

Other ocean colour sensors, including for example the Visible Infrared Imaging 

Radiometer Suite (VIIRS), Medium Resolution Imaging Spectrometer (MERIS) 

and Ocean Colour Land Imager (OLCI), have since followed. To achieve longer 

timeseries of ocean colour observations, individual sensor data has been 

merged into combined multisensor timeseries. These include the Ocean Colour 

Climate Change Initiative (OC-CCI; Sathyendranath et al., 2019), Copernicus 

Marine Environmental Monitoring Service (CMEMS) and GlobColour 

(Garnesson et al., 2019) services. However, the focus of this thesis will be 

MODIS-A. 

Downwelling irradiance from the sun crosses the air-sea interface, interacts with 

the ocean, and a small proportion of this is reflected back to the atmosphere 

which is detected by ocean colour satellites. When light from the sun enters the 
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ocean it is either absorbed or scattered by optically active in water constituents, 

that include Chl a in phytoplankton, coloured dissolved organic matter (CDOM), 

suspended sediments and the water molecules (Morel and Prieur, 1977). Each 

constituent has an optical signature that will modify the received light and allows 

the estimation of that constituent (Fig. 1.2). In the case of Chl a, it absorbs 

strongly in the blue and red relative to green wavelengths (Fig. 1.2a) and the 

ratio or relationship between the reflected light at these wavelengths can be 

used to estimate the concentration of Chl a. Ocean colour satellites are 

however restricted in the wavelengths of light that can be sampled due to 

atmospheric opacity in the ultraviolet and infrared wavelengths. The 

wavelengths (or bands) generally coincide with signatures of in water 

constituents (Fig. 1.2d). The properties of constituents will therefore be 

imprinted on the received light at the satellite, dependent on the concentration 

of the constituent (Fig. 1.2d). 

1.5.1 Chlorophyll a 

Empirical (O’Reilly et al., 1998; O’Reilly and Werdell, 2019; Hu et al., 2012; 

Gohin et al., 2002) and semi analytical (Maritorena et al., 2010, 2002; Werdell 

et al., 2013) algorithms have been developed and refined over the last three 

decades to estimate the Chl a concentrations based on this distinct absorption 

(Fig. 1.2a). These algorithms perform well in the open ocean (Brewin et al., 

2015, 2016) where Chl a and covarying phytoplankton products dominate the 

optical signal received by the satellite (Case-1 waters) (Morel and Prieur, 1977). 

However, degraded performance and higher uncertainties are observed in 

coastal regions (Lavender et al., 2004) where other in water substances, such 

as suspended sediments and CDOM, have a more dominant role in determining 

the optical properties of the water (Case-2 waters) (Morel and Prieur, 1977) and 

therefore the light received at the satellite. 

The accuracy and precision of these Chl a algorithm types and formulation must 

be assessed with respect to in situ observations of Chl a. Globally, large in situ 

datasets of Chl a observations have been compiled (Werdell and Bailey, 2005; 

Valente et al., 2016, 2019) for the purpose of assessing the performance of 

algorithms. In a recent study by Brewin et al. (2015) the global accuracy of 15 

algorithms were assessed, indicating the majority of algorithms were able to 

estimate Chl a with a similar accuracy.   
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Figure 1.2 - Relative absorption spectra of (a) Chl a, (b) Coloured Dissolved Organic Matter and (c) pure water (Pope and Fry, 1997). 
Black dashed lines indicate the central wavelength of MODIS-A spectral bands. (d) Remote sensing reflectance (Rrs) from MODIS-A for 
in situ Chl a concentrations ranging from 0.03 to 22 mgm-3 in the South Atlantic Ocean, extracted from data used in Chapter 2. 
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However, regionally algorithms have shown higher or lower accuracies (Brewin 

et al., 2016; Dogliotti et al., 2009; Tilstone et al., 2011; Garcia et al., 2006; 

Kampel et al., 2009b) compared to the global accuracy. This highlights the need 

to assess the accuracy of satellite Chl a algorithms using high quality in situ 

data for regional analyses, to select the best performing algorithm. 

1.5.2 Net Primary Production 

The first global oceanic NPP estimate of between 45 to 50 Pg C yr-1 using 

satellite observations were made by Longhurst et al. (1995). Concerted efforts 

over the last 30 years have made advances in the estimation of NPP from 

satellite observations, and upwards of 20 algorithms have been developed and 

refined, with a comprehensive series of round-robin inter-comparisons at both 

global and regional scales to determine both the accuracy and limitations of the 

algorithms tested (Carr et al., 2006; Saba et al., 2010; Friedrichs et al., 2009; 

Campbell et al., 2002; Saba et al., 2011).  

Early estimates of NPP from satellite observations by the CZCS were based on 

empirical relationships to Chl a concentrations (Eppley et al., 1985). These 

empirical methods only accounted for ~30 % of the seasonal variability in NPP 

at single stations (Campbell and O’Reilly, 1988), highlighting that changes in 

photosynthetic rates are important for the accurate estimation of NPP 

(Behrenfeld and Falkowski, 1997b). More complex algorithms which 

incorporated in situ photosynthetic rates (Bouman et al., 2018; Kulk et al., 2020; 

Longhurst et al., 1995), models of the phytoplankton photosynthetic response to 

the light spectra (Platt and Sathyendranath, 1988; Sathyendranath et al., 2020; 

Morel, 1991; Smyth et al., 2005), temperature (Behrenfeld and Falkowski, 

1997b) and other environmental conditions (Behrenfeld et al., 2002), alongside 

vertical changes in these parameters (Sathyendranath et al., 1995), were 

developed to improve the accuracy of satellite derived NPP. Algorithm 

complexity also increased by resolving these photosynthetic responses through 

time, wavelength and depth, or combinations of the three (Behrenfeld and 

Falkowski, 1997a).  

A series of algorithm intercomparisons performed by NASA compared the 

accuracy of a large selection of these algorithms with different structures and 

complexities (Campbell et al., 2002; Carr et al., 2006; Saba et al., 2010; 
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Friedrichs et al., 2009; Saba et al., 2011). These intercomparisons showed an 

increase in the accuracy of the NPP algorithms from the first comparison by 

Campbell et al. (2002) to the study by Saba et al. (2011). On the global scale, 

algorithms tended to have a similar accuracy compared to in situ observations, 

however regional differences between algorithms were still apparent. For 

example, Friedrich et al. (2009) showed a tendency to overestimate the NPP 

rate but underestimate the NPP variability in the Equatorial Pacific. However, 

Saba et al. (2010) reported that NPP was underestimated at two stations in the 

oligotrophic, low NPP regions, namely the Bermuda Atlantic Time Series 

(BATS) and Hawaii Ocean Time series (HOTS), compared to two decades of in 

situ observations. These differences are reinforced by independent regional 

studies, such as those in the Atlantic Ocean (Tilstone et al., 2009; Dogliotti et 

al., 2014; Tilstone et al., 2015a; Lobanova et al., 2018). And these regional 

differences lead to a global NPP estimate between 49 to 60 Pg C yr-1 across the 

NPP algorithms tested (Carr et al., 2006). 

Friedrich et al. (2009) and Saba et al. (2011) assessed the impact of 

uncertainties in the input parameters, on the NPP algorithm accuracy. Friedrich 

et al. (2009) showed that more than 50% of the deviations between in situ and 

satellite NPP estimates could be attributed to the algorithm input parameters. 

Saba et al. (2011) reported a larger value of 72%, however. Both studies 

identified Chl a as the largest contribution to uncertainty, which was between 25 

% and 35 % of the uncertainty in NPP estimates. Geographical differences in 

the accuracy of satellite Chl a algorithms, as described in the previous section, 

highlights the need to select the most accurate Chl a algorithm for the region of 

study, as well as the most accurate NPP algorithm. 

1.5.3 Net Community Production 

Satellite algorithms of NCP are still in their infancy compared to NPP (Serret et 

al., 2009; Tilstone et al., 2015b), and the first NCP algorithms have only been 

recently applied to satellite data (Tilstone et al., 2015b). Tilstone et al. (2015b) 

presented algorithms to estimate NCP in the Atlantic Ocean from an empirical 

power law relationship to NPP based upon in situ analyses. An additional 

algorithm including a relationship between NCP and SST within the power law, 

was shown to perform most accurately in the Atlantic Ocean, compared to in 



 

48 
 

situ observations. The SST relationship improved the accuracy of these 

algorithms, by capturing more of the temperature dependency in respiration 

rates (Regaudie-De-Gioux and Duarte, 2012; García-Corral et al., 2014). 

Although these NCP algorithms are in their infancy, their good performance 

(when assessed against in situ data) means that these estimates are useful. 

Clear differences in the relationships between NPP and NCP exist in the North 

and South Atlantic oceans (Serret et al., 2015; Gist et al., 2009). It is therefore 

of paramount importance to assess the NCP algorithm performance and to 

quantify the uncertainties, with respect to in situ observations, prior to using 

these approaches to ensure that the satellite NCP regional estimates are 

reliable and accurate. 

1.6 The South Atlantic Ocean 

The South Atlantic Ocean is a dynamic system with regions of high and very 

low biological activity but is under sampled with limited in situ observations. 

Satellite observations provide a mechanism to study this region in greater detail 

and at higher resolution (Fig. 1.3). In the Equatorial region, the seasonal 

upwelling brings CO2 rich water to the surface between June and September 

(Parard et al., 2010; Lefèvre et al., 2008), which also enhances the biological 

activity through nutrient inputs. In the western Equatorial Atlantic the Amazon 

River delivers ~20% of all the global freshwater riverine inputs into the oceans 

(Cai et al., 2013). The freshwater input produces an extensive plume, that 

extends offshore following the North Brazil current retroflection during August to 

November (Ibánhez et al., 2016). This riverine input also supplies nutrients that 

enhance biological activity within the plume (Smith and Demaster, 1996). 

Strong biological activity is observed on the southeastern shelf within the 

Benguela upwelling system (Lamont et al., 2014), on the southwestern shelf 

and offshore into the Brazil Malvinas confluence (Dogliotti et al., 2014). These 

features will all contribute to pCO2 (sw) variability both spatially and temporally, 

and therefore influence the air-sea CO2 flux. 

1.6.1 Mesoscale features in the oceans 

Mesoscale features, of the order 100 km and timescales of days to years, are 

prevalent in the global oceans and especially in the South Atlantic Ocean.  
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Figure 1.3 – Map of the South Atlantic Ocean, overlaid on a MODIS-A mission 
long composite of Chl a. Solid yellow arrow indicates the flow of the Amazon 
Plume, and dashed arrow indicates the flow during the North Brazil Current 
Retroflection. Yellow bounding indicates the region under the influence of the 
Equatorial Upwelling. The black arrows represent the main surface currents 
which are North Equatorial Counter Current (NECC), North Brazil Current 
(NBC), South Equatorial Current (SEC), Brazil Current (BC), Benguela Current 
(BCS), Malvinas Current, (MC), South Atlantic Current (SAC) and Agulhas 
Current Retroflection (ACR). Red circles indicate eddies formed at the ACR. 
Blue circles indicate eddies forming from the Benguela Upwelling System. Both 
types of eddy follow their idealised trajectories (solid arrows) across the South 
Atlantic Ocean (Chelton et al., 2011; Guerra et al., 2018). Red and blue circles 
at the Brazil-Malvinas Confluence (BC-MC) indicate the intense mesoscale 
eddy formation, and re-circulation in the region. 

These features occur as eddies (Chelton et al., 2011; Pegliasco et al., 2022; 

Chaigneau et al., 2009), filaments (Rubio et al., 2009), meanders (Lefèvre et al., 

2020; Lefévre et al., 2010), and fronts. They can modify the physical (Laxenaire 

et al., 2019; Nencioli et al., 2018), chemical (Orselli et al., 2019a; Arhan et al., 

2011; Orselli et al., 2019b; Pezzi et al., 2021),and biological (Carvalho et al., 

2019; Hernández-Hernández et al., 2020; Dufois et al., 2016; Gaube et al., 

2014; Roughan et al., 2017; Lehahn et al., 2011) oceanic conditions as well as 

the overlying atmospheric conditions (Frenger et al., 2013; Pezzi et al., 2021; 

Souza et al., 2021) compared to the surrounding environment. It is likely that 

these features will also modify the air-sea CO2 flux, however few studies have 
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investigated the effect of these mesoscale features in controlling the CO2 flux 

(Pezzi et al., 2021; Chen et al., 2007; Song et al., 2016; Orselli et al., 2019b; 

Sarma et al., 2019). These features exist in the South Atlantic Ocean, for 

example, Agulhas retroflection eddies (Guerra et al., 2018), filaments and 

eddies forming from the Benguela upwelling front (Rubio et al., 2009) and 

intense eddies, fronts and filaments in the Brazil-Malvinas confluence (Mason et 

al., 2017) (Fig. 1.3). Few studies have analysed the effects of these features on 

air-sea CO2 flux. 

1.7 Thesis Objectives 

In this thesis, the biological contribution to the air-sea CO2 flux in the South 

Atlantic Ocean is explored. The objectives of the thesis are: 

1. To assess the accuracy of satellite Chl a, NPP and NCP using a 

comprehensive dataset of in situ observations. 

2. To identify whether using satellite NCP, as the quantified biological 

contribution to pCO2 (sw), instead of Chl a will improve basin scale estimates 

of pCO2 (sw) from satellite observations. 

3. To identify the seasonal, interannual and multi-year drivers of changes in the 

air-sea CO2 flux 

4. To assess the contribution of mesoscale features to the air-sea CO2 flux 

using satellite and in situ observations. 

Chapter 2, “Wind speed and mesoscale features drive net autotrophy in 

the South Atlantic Ocean”, is published as Ford et al (2021a), and identifies 

the most accurate satellite estimates of Chl a, NPP and NCP whilst accounting 

for the in situ observation uncertainties. In this process the satellite uncertainties 

for each parameter are determined. A 16 year satellite-based NCP timeseries 

was constructed to explore the environmental and climate drivers of NCP 

variability in the South Atlantic Ocean, whilst accounting for the uncertainties in 

the satellite NCP estimates.  

Chapter 3, “Derivation of seawater pCO2 from net community production 

identifies the South Atlantic Ocean as a CO2 source”, is published as Ford 

et al. (2022, 2021b), and presents a novel comparison of spatially and 

temporally complete pCO2 (sw) fields estimated using a neural network 

extrapolation scheme which applies satellite Chl a, NPP, or NCP as the 
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estimator of the biological contribution to pCO2 (sw) variability. The satellite 

uncertainties for Chl a, NPP and NCP determined in Chapter 2 are used to 

investigate the potential reductions in the pCO2 (sw) uncertainties that could be 

attributed to the biological parameter, and where future efforts should focus to 

improve pCO2 (sw) estimates. 

Chapter 4, “Identifying the biological control of the annual and multi-year 

variations in South Atlantic air-sea CO2 flux” presents a timeseries 

decomposition approach applied to complete pCO2 (sw) fields estimated in 

Chapter 3 from NCP, to assess the seasonal and interannual drivers of ΔpCO2 

and the CO2 flux in the South Atlantic Ocean. The multi-year trends in ΔpCO2 

and the CO2 flux are identified and suggest that biological contributions are an 

important control of these changes. 

Chapter 5, “Mesoscale eddies enhance the air-sea CO2 sink in the South 

Atlantic Ocean” presents a novel Lagrangian tracking approach applied to long 

lived mesoscale eddies as they transit across the South Atlantic Ocean. The 

cumulative air-sea CO2 flux is estimated throughout their respective lifetimes 

using the neural network approach in Chapter 3 to estimate pCO2 (sw) and 

assess the contribution of mesoscale eddies to the CO2 flux. 
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Chapter 2:  Wind speed and mesoscale features drive net 

autotrophy in the South Atlantic Ocean 

This chapter is a reformatted version of my publication: 

Ford, D., Tilstone, G. H., Shutler, J. D., Kitidis, V., Lobanova, P., Schwarz, J., 

Poulton, A. J., Serret, P., Lamont, T., Chuqui, M., Barlow, R., Lozano, J., 

Kampel, M. and Brandini, F. (2021): Wind speed and mesoscale features 

drive net autotrophy in the South Atlantic Ocean, Remote Sensing of the 

Environment, 260, 112435, https://doi.org/10.1016/j.rse.2021.112435  

 

DJF processed and analysed the data, prepared the figures, and wrote the 

paper. DJF, GHT, JDS and VK conceived and directed the research. DJF and 

JS directed the basin scale time series analysis. PL processed and extracted 

the VGPM and PSM primary production algorithms. DJF, PS, JL, VK, GHT, 

AJP, MC, FB, MK, RB and TL collected in situ data used within the 

manuscript.  

 

 

Abstract: A comprehensive in situ dataset of chlorophyll a (Chl a; N=18,001), 

net primary production (NPP; N=165) and net community production (NCP; 

N=95), were used to evaluate the performance of Moderate Resolution Imaging 

Spectroradiometer on Aqua (MODIS-A) algorithms for these parameters, in the 

South Atlantic Ocean, to facilitate the accurate generation of satellite NCP time 

series. For Chl a, five algorithms were tested using MODIS-A data, and OC3-CI 

performed best, which was subsequently used to compute NPP. Of three NPP 

algorithms tested, a Wavelength Resolved Model (WRM) was the most 

accurate, and was therefore used to estimate NCP with an empirical 

relationship between NCP with NPP and sea surface temperature (SST). A 

perturbation analysis was deployed to quantify the range of uncertainties 

introduced in satellite NCP from input parameters. The largest reductions in the 

uncertainty of satellite NCP came from MODIS-A derived NPP using the WRM 

(40 %) and MODIS-A Chl a using OC3-CI (22 %).  

The most accurate NCP algorithm, was used to generate a 16 year time series 

(2002 to 2018) from MODIS-A to assess climate and environmental drivers of 

NCP across the South Atlantic basin. Positive correlations between wind speed 

anomalies and NCP anomalies were observed in the central South Atlantic 

Gyre (SATL), and the Benguela Upwelling (BENG), indicating that autotrophic 

conditions may be fuelled by local wind-induced nutrient inputs to the mixed 

https://doi.org/10.1016/j.rse.2021.112435
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layer. Sea Level Height Anomalies (SLHA), used as an indicator of mesoscale 

eddies, were negatively correlated with NCP anomalies offshore of the BENG 

upwelling fronts into the SATL, suggesting autotrophic conditions are driven by 

mesoscale features. The Agulhas bank and Brazil-Malvinas confluence regions 

also had a strong negative correlation between SLHA and NCP anomalies, 

similarly, indicating that NCP is forced by mesoscale eddy generation in this 

region. Positive correlations between SST anomalies and the Multivariate 

ENSO Index (MEI) in the SATL, indicated the influence of El Niño events on the 

South Atlantic Ocean, however the plankton community response was less 

clear.  

2.1 Introduction 

Autotrophic plankton produce up to 50% of the net organic carbon on our planet 

(Field et al., 1998), as they draw down carbon dioxide (CO2) from the 

atmosphere into the ocean. A proportion of this NPP is respired by 

heterotrophic plankton, which results in a re-release of some of the fixed CO2 

back into the atmosphere. The balance between autotrophic production and 

heterotrophic respiration determines NCP. Measurements of NCP made on 

research ships, though essential to understanding the dynamics of NCP, 

provides only a snapshot of the system rather than broader temporal-spatial 

dynamics. Such measurements can be estimated by observing ocean colour 

from space (Tilstone et al., 2015b). The use of in situ data to identify the most 

accurate ocean colour satellite algorithms, will facilitate the generation of 

reliable synoptic-scale NCP time series. Such data are needed for identifying 

trends in the metabolic balance of the oceans, and understanding the biological 

draw down and release of CO2 from the oceans.  

The estimation of NCP from satellite ocean colour is dependent on the accurate 

quantification of NPP, which is derived from Chl a, photo-physiological 

parameters (e.g.: maximum photosynthetic rate, PB
m; initial slope of the light-

dependent photosynthetic rate, αB), and photosynthetically active radiation 

(PAR), and the estimation of the relationship between NPP and heterotrophic 

respiration from proxy parameters such as SST. Chl a, as the dominant pigment 

in phytoplankton, has been routinely monitored on a global scale using satellite 

data since the launch of the National Aeronautics and Space Administration 

(NASA) Sea Viewing Wide Field of View Sensor (SeaWiFS) on the Orbview-2 
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satellite in 1997. Following the success of SeaWiFS, MODIS-A was launched in 

2002 providing continued monitoring of Chl a globally. Concerted efforts over 

the last three decades to estimate NPP from Chl a on a global scale resulted in 

the development of 20 models that use a variety of algorithm architecture (Carr 

et al., 2006; Friedrichs et al., 2009). A series of inter-comparisons performed by 

NASA indicated that NPP models of different complexities performed similarly 

(Friedrichs et al., 2009), though they displayed regional dependencies 

(Campbell et al., 2002). These inter-comparisons also highlighted that up to 50 

% of model uncertainties could be attributed to uncertainty in the input 

parameters, with by far the largest contribution coming from Chl a (Saba et al., 

2011). Such differences in algorithm performance highlight the need to identify 

the best performing NPP and Chl a algorithms regionally, to reduce the 

uncertainty attributed to input parameters. 

Recently NCP has been estimated from ocean colour data using empirical or 

semi-analytical algorithms based on NPP (Chang et al., 2014; Li and Cassar, 

2016; Serret et al., 2009; Tilstone et al., 2015b). Regional empirical NCP 

algorithms for the Atlantic Ocean have been derived from in vitro 14C-based 

NPP and O2-based NCP estimates (Serret et al., 2009; Tilstone et al., 2015b). 

However, these empirical algorithms assume a spatially homogenous 

relationship between photosynthesis and respiration that has been shown to be 

variable, for example between the North and South Atlantic Oceans (Serret et 

al., 2015). This reinforces the need to identify the most accurate algorithms for a 

particular geographical region.  

According to Saba et al. (2011), 22 % of the uncertainty in NPP models could 

be attributed to the in situ NPP measurements uncertainty. Chl a, NPP and 

NCP algorithms will all have uncertainties in both the algorithm input 

parameters, and the uncertainty of the in situ measurements, used to assess 

their performance. Previous statistical assessments have assumed that all 

uncertainty resides in the satellite retrievals, and consider the in situ 

measurements to be truth (i.e. ‘100% accurate’). Neglecting the in situ 

uncertainty could result in a reduction in algorithm performance, especially 

when limited in situ data exist to either calibrate or validate the algorithm.  

The South Atlantic Ocean is under sampled and few in situ datasets are 

available. It is however an exceptionally dynamic and varied system, that 
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includes the seasonal Equatorial upwelling, high productivity on the 

southwestern (Dogliotti et al., 2014; Garcia et al., 2004) and the southeastern 

shelf (Hutchings et al., 2009; Lamont et al., 2018a), as well as the propagation 

of Agulhas Current eddies through the basin (Guerra et al., 2018). NCP 

variability can feasibly be observed using ocean colour remote sensing, to 

assess principal environmental drivers, assuming the performance of ocean 

colour algorithms have been evaluated. There are few studies however, that 

have assessed the performance of ocean colour satellite algorithms in the 

South Atlantic Ocean. These have been focused mainly on the southwestern 

shelf and Brazilian Coast, but with conflicting results (Dogliotti et al., 2014, 

2009; Garcia et al., 2005; Kampel et al., 2009a, b). Dogliotti et al. (2014, 2009) 

showed that the MODIS-A OC3M, underestimates Chl a on the southwestern 

shelf, over a range of in situ values spanning 0.1 to 11 mg m-3. By contrast, 

Kampel et al. (2009a) showed that OC3M overestimates Chl a on the Brazilian 

Coast, but over a much smaller range of in situ values from 0.08 to 0.20 mg m-3. 

The objectives of this paper are to investigate the NCP dynamics in the South 

Atlantic Ocean, using MODIS-A multi-spectral observations, in order to assess 

the principal environmental drivers of NCP over a 16 year period. In order to 

generate accurate satellite NCP time series, the performance of MODIS-A 

estimates of Chl a, NPP and NCP for the South Atlantic Ocean are assessed, 

whilst also accounting for the in situ uncertainty. Weighted statistics are 

computed to account for the uncertainty in both the satellite and in situ data to 

evaluate algorithm performance. Following selection of the most accurate 

algorithms, a perturbation analysis to determine the magnitude of the 

uncertainty induced on satellite NCP by each input parameter, and on the in situ 

measurements themselves was conducted. The uncertainty analysis identifies 

where future efforts should focus on reducing the uncertainties in these 

parameters.  

2.2 Methods 

2.2.1 Chlorophyll a 

Chl a was measured semi-autonomously and continuously along seven Atlantic 

Meridional Transects (AMT; data available from BODC; 

https://www.bodc.ac.uk/) from 2009 to 2018 (Fig. 2.1a). Chl a was derived from 
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total particulate absorption coefficients, measured using a WetLabs AC-S 

connected to the ships clean flow through system, which sampled the surface 

seawater continuously from a depth of approximately 5 m.  

 

Figure 2.1 - Sampling locations for measurements of (a.) in situ chlorophyll a 

(Chl a) collected at discrete stations along the Brazilian coast (BRAZIL dataset, 

green diamonds), Benguela and Southern Ocean (BEN dataset, green squares) 

and continuous underway estimates collected on seven Atlantic Meridional 

Transect (AMT) cruises (coloured lines); (b.) in vitro net primary production and 

(c.) in vitro net community production both determined at discrete stations on 

AMT cruises between 2002 and 2019. (d) indicates discrete Chl a, net primary 

production and net community production stations with satellite matchups. The 

province areas are from Longhurst (1998) as follows: WTRA is Western 

Tropical Atlantic; ETRA is Eastern Tropical Atlantic; BRAZ is Brazilian Current 

coastal; SATL is South Atlantic Gyre; BENG is Benguela Current coastal 

upwelling; FKLD is Southwest Atlantic shelves; SSTC is South Subtropical 

Convergence; SANT is Sub Antarctic and ANTA is Antarctic. 
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Further details of this method are given in Brewin et al. (2016) following 

methods of Dall’Olmo et al. (2009), Slade et al. (2010) and Dall’Olmo et al. 

(2012). The AC-S Chl a method provided ~80,000 measurements in the study 

area. The in situ uncertainty (Ԑins CHL) in the measurements were assessed 

using the log10 root mean square difference between the HPLC Chl a and AC-S 

estimated Chl a for each cruise, ranging from 0.06 to 0.26 log10(mg m-3). 

A further 211 discrete Chl a measurements were collected along the South 

American coast (BRAZIL dataset) on six cruises between 2012 and 2018. For 

each measurement, between 0.5 and 1 L of seawater was filtered onto 25 mm 

GF/F filters and stored in liquid nitrogen until analysis in the laboratory. Chl a 

was extracted in a solution of acetone and di-methyl sulphoxide (DMSO) and 

estimated fluorometrically following the method of Welschmeyer (1994) on a 10 

AU Turner Fluorometer. No replicate measurements were taken to assess the 

uncertainty of these values. 

Additionally, 223 discrete Chl a measurements were collected in the South 

Atlantic (November 2003), Benguela upwelling system (October 2002, May 

2014 and September 2014) and the Atlantic sector of the Southern Ocean 

(January - February 2009) on five cruises (BEN dataset). For these samples, 

between 1.5 and 2.4 L of seawater was filtered onto 25 mm GF/F filters and the 

filters were stored in liquid nitrogen until analysis ashore. Frozen filters were 

added to 90% acetone to extract pigments for analysis using the reverse-phase 

HPLC procedures outlined by Barlow et al. (1997) or Zapata et al. (2000). No 

replicate measurements were taken to assess the uncertainty for these 

estimates. 

2.2.2 In vitro NPP 

In vitro 14C NPP incubations were conducted at 165 stations (Fig. 2.1b), from 15 

AMT cruises between 2002 and 2019, following the protocols outlined in 

Poulton et al. (2006) and Tilstone et al. (2009). The in situ uncertainty (ԐinsNPP) 

was estimated by propagating the triplicate standard deviations of the discrete 

depth measurements, through the water column, using the same integration 

scheme, for each station. ԐinsNPP was on average 49 mg C m-2 d-1, and ranged 

between 5 and 300 mg C m-2 d-1. 
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2.2.3 In vitro NCP 

In vitro NCP measurements were conducted at 95 stations (Fig. 2.1c) on 10 

AMT cruises between 2003 and 2019 using in vitro changes in dissolved 

oxygen (O2), following the procedures described in Gist et al. (2009). The in situ 

uncertainty (ԐinsNCP) was assessed by integrating the combined standard errors 

of the initial and light replicate bottles, at discrete depths through the water 

column, following the same integration scheme, for each station. ԐinsNCP was 

on average 20 mmol O2 m-2 d-1 and ranged between 5 and 114 mmol O2 m-2 d-1.  

The in situ NCP dataset contains a subset of the data present in Tilstone et al. 

(2015b; N = 50), alongside an additional 45 stations from four AMT cruises; 

AMT 22 (2012), AMT 23 (2013), AMT 24 (2014) and AMT 29 (2019). 

2.2.4 Chl a Algorithms 

Satellite Chl a was estimated using five algorithms. The OC algorithms are 

based on an empirical relationship between the log-transformed blue to green 

remote sensing reflectance (Rrs) ratio and the in situ Chl a concentration 

(O’Reilly et al., 1998). For MODIS-A, the OC3Mv6 algorithm uses the log-

transformed maximum band ratio (R) from two bands, Rrs(443) and Rrs(448) 

using Rrs(547) as the denominator as follows: 

𝑅 =  𝑙𝑜𝑔10(
max[𝑅𝑟𝑠(443),𝑅𝑟𝑠(488)]

𝑅𝑟𝑠(547)
),                                       (2.1) 

Chl a was estimated according to: 

Chl 𝑎 = 10(𝑎0+𝑎1𝑅+ 𝑎2𝑅2+𝑎3𝑅3+𝑎4𝑅4) ,                               (2.2) 

where a0 = 0.2424, a1 = -2.7423, a2 = 1.8017, a3 = 0.0015 and a4 = -1.2280. 

The algorithm performs well where phytoplankton dominate the optical signal, 

however in coastal waters the performance decreases, where suspended 

sediments and coloured dissolved organic matter (CDOM), change the optical 

properties of the water (Morel and Prieur, 1977).  

OC5 is a modification of the OC algorithm, to improve performance in areas 

with increased absorption by CDOM and scattering by suspended sediments. 

Chl a concentrations are estimated by a triplicate look up table (LUT) approach, 

using the OC maximum band ratio, normalised water leaving radiance (nLw(λ) at 

412 and 555 nm; Gohin et al., 2002). The algorithm was developed using 
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observations in the English Channel and Bay of Biscay, but has been shown to 

perform well in other areas with high CDOM and/or sediment loads (Tilstone et 

al., 2011, 2017). 

The GSM semi analytical model (Garver and Siegel, 1997; Maritorena et al., 

2002) simultaneously estimates Chl a, absorption by detrital and dissolved 

matter at 443 nm, and particle backscatter at 443 nm using non-linear 

optimisation of the Rrs spectrum. The underlying bio-optical model is: 

𝑅𝑟𝑠(𝜆) = 

 {∑ 𝑔𝑖 [
𝑏𝑏𝑤+ 𝑏𝑏𝑝(𝜆0)(

𝜆

𝜆0
)

−Υ

𝑏𝑏𝑤+ 𝑏𝑏𝑝(𝜆0)(
𝜆

𝜆0
)

−Υ
+ 𝑎𝑤(𝜆)+𝑐ℎ𝑙𝑎∗𝑎𝑝ℎ

∗ (𝜆)+𝑎𝑑𝑔(𝜆0) exp[−𝑆𝑑𝑔(𝜆−𝜆0)]
]𝑖2

𝑖=1 } 0.5238   (2.3) 

Where λ0 = 443, and gi, γ, Sdg and a*
ph(λ) are predefined values (Maritorena et 

al., 2002) and 0.5238 is a conversion from below water to above water Rrs. The 

GSM has the advantage of solving for multiple parameters simultaneously.  

The Color Index (CI) method was developed for the clearest waters (Hu et al., 

2012) to reduce impacts from artefacts and biases due to residual glint, stray 

light, and atmospheric correction errors in the Rrs spectra. A three band 

reflectance difference method was used between Rrs(555) and a linear baseline 

between Rrs(443) and Rrs(670). For MODIS-A, the associated bands are band 

shifted to those required by the CI. The approach is merged with the OC 

algorithm (OCI) in the standard NASA Chl a algorithm to improve retrievals in 

the oligotrophic gyres (Hu et al., 2012). For this work, the CI was merged with 

OC3 and OC5 (OC3-CI and OC5-CI) blending linearly between 0.15 and 0.2 mg 

m-3.  

2.2.5 NPP Algorithms 

NPP was determined using three algorithms, which have previously shown to 

be accurate regionally in the Atlantic Ocean and/or the South Atlantic Ocean 

(Campbell et al., 2002; Carr et al., 2006; Dogliotti et al., 2014; Friedrichs et al., 

2009; Lobanova et al., 2018; Tilstone et al., 2015a, 2009). In each case, 

satellite Chl a determined by the best performing algorithm was used as input. 

The Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski, 

1997) estimates NPP in the euphotic zone (1% light level) taking the form: 
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𝑁𝑃𝑃𝑉𝐺𝑃𝑀 = 𝐶ℎ𝑙𝑎 𝑧𝑒𝑢 0.66125 [𝑃𝑜𝑝𝑡
𝐵 𝐼0

4.1+𝐼0
] 𝐷𝐿                        (2.4) 

Where DL is the day length, zeu is the euphotic zone depth and I0 is the daily 

surface PAR. PB
opt is the biomass specific optimum photosynthetic rate 

retrieved as a function of SST (Behrenfeld and Falkowski, 1997b).  

The Platt and Sathyendranath model (PSM; Platt et al., 1991) estimates daily 

NPP at a specific depth (z), based on an exponential photosynthetic-irradiance 

(P-I) function (square brackets): 

𝑁𝑃𝑃(𝑧)𝑃𝑆𝑀 = 𝐶ℎ𝑙𝑎(𝑧) [𝑃𝑚
𝐵 (1 − exp (−

𝛼𝐵𝐼(𝑧)

𝑃𝑚
𝐵 ))] 𝐷𝐿                   (2.5) 

where, I(z) is PAR at z. The P-I function is driven by two parameters: the 

biomass specific maximum photosynthetic rate (PB
m) and the initial slope of the 

light-dependent photosynthetic rate (αB). These parameters cannot be 

determined using remote sensing, therefore in situ values were used from a 

published database (Bouman et al., 2018) averaged across the provinces (Fig. 

2.1) and seasons in which the in situ NPP were sampled; PB
m = 3.43 mg C (mg 

Chl)-1 h-1 and αB = 0.039 mg C (mg Chl)-1 h-1 (µEm-2s-1)-1. NPP(z)PSM was 

integrated to zeu to provide total water column NPPPSM (Lobanova et al., 2018). 

The P-I function was propagated through the water column using the Beer-

Lambert-Bouguer  law, as a function of surface PAR (I0): 

𝐼(𝑧) = 𝐼0 exp(−𝐾𝑑𝑧)                                     (2.6) 

Where Kd is the downwelling diffuse attenuation coefficient of PAR.  Zeu for the 

VGPM and PSM was estimated using the following equation, derived from 

equation 2.6, assuming I0 is 100% of the surface PAR and PAR at the euphotic 

zone depth is 1%: 

𝑧𝑒𝑢 =  −
ln(0.01)

𝐾𝑑
=  

4.6

𝐾𝑑
                                   (2.7) 

Where Kd for the PAR spectrum was calculated as a function of Kd at 490 nm 

(Morel et al., 2007) available from satellite estimates (see Section 2.2.7 for data 

source). The PSM was therefore run as a broad-band model using PAR as the 

input light parameter. 
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The Wavelength Resolved Model (WRM) of Morel (1991), implemented 

following Smyth, Tilstone and Groom (2005), spectrally resolves the irradiance 

and associated phytoplankton response. The WRM takes the form: 

𝑁𝑃𝑃𝑊𝑅𝑀 =  12 𝑎𝑚𝑎𝑥
∗ 𝜙𝑚 ∫ ∫ ∫ 𝐶ℎ𝑙 𝑎(𝑧) 𝑃𝑈𝑅 (𝑧, 𝑡, 𝜆) 𝑓(𝑥(𝑧, 𝑡)) 𝑑𝜆 𝑑𝑧 𝑑𝑡

700

400

𝑧𝑒𝑢

0

𝐷𝐿

0
 (2.8) 

where, a*
max is the maximum phytoplankton Chl a -specific absorption coefficient 

and Фm is the maximum quantum yield for growth, both parametrised using Chl 

a following Morel et al. (1996), and PUR is the phytoplankton usable radiation. 

The PSM can also be run in a wavelength resolving configuration. The above-

water incident PAR was computed from the Gregg and Carder (1990) model at 

5 nm wavelength and 1 minute time resolution. Meteorological and ozone data 

were obtained from the National Centres for Environmental Prediction (NCEP) 

and Earth Total Ozone Mapping Spectrometer data (EPTOMS), respectively. 

Cloud cover fields were obtained from the European Centre for Medium Range 

Weather Forecasts (ECMWF) ERA5 model reanalysis product, downloaded 

from the Copernicus Climate Data Store (CCDS; 

https://cds.climate.copernicus.eu/), and used to modify the light field following 

Reed (1977). NPPWRM was integrated to the same zeu as the VGPM and PSM, 

computed using equation 7.  

2.2.6 NCP Algorithms 

NCP was estimated using four empirical algorithms as described in Tilstone et 

al. (2015b). All four algorithms are based on a power law relationship between 

NPP and NCP. NCP-A was derived using data from mainly net heterotrophic 

areas of the North Atlantic Ocean (negative NCP). NCP-B was derived using 

data from mainly net autotrophic areas of the North Atlantic Ocean (positive 

NCP; Serret et al., 2009). These algorithms take the form: 

𝑁𝐶𝑃𝐴 = 49.53 ∗ ∫ 𝐶 
14 𝑁𝑃𝑃0.48 − 300     (AMT6 Model)                  (2.9) 

𝑁𝐶𝑃𝐵 = 212.01 ∗  ∫ 𝐶 
14 𝑁𝑃𝑃0.15 − 300  (AMT11 Model)               (2.10) 

Two further algorithms, NCP-C and NCP-D, were developed using data 

spanning net autotrophic and net heterotrophic regimes in the Atlantic Ocean, 

but weighted towards the North Atlantic Ocean. An additional relationship 

between NCP and SST is included in the NPP exponent for NCP-D (Tilstone et 

al., 2015b): 

https://cds.climate.copernicus.eu/
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𝑁𝐶𝑃𝐶 = 163.83 ∗  ∫ 𝐶 
14 𝑁𝑃𝑃0.2035 − 300                        (2.11) 

𝑁𝐶𝑃𝐷 = 179.86 ∗ ∫ 𝐶 
14 𝑁𝑃𝑃(0.2487+(−0.0036∗𝑆𝑆𝑇)) − 300             (2.12) 

2.2.7 MODIS-A Data  

MODIS-A Level 1 images downloaded from the NASA Ocean Colour website 

(https://oceancolor.gsfc.nasa.gov) were processed to Level 2 (Reprocessing 

2018) 1 km products using SeaDAS v7.5 using the standard atmospheric 

correction and projected onto a linearly spaced 1 km grid for matchup analysis. 

PAR, Kd(490) and SST were processed alongside Chl a using standard MODIS-

A algorithms, as described on the NASA Ocean Colour website 

(https://oceancolor.gsfc.nasa.gov/atbd/), as inputs to the NPP and NCP 

algorithms. The AMT, BEN and BRAZ Chl a datasets used 56, 38 and 30 

images respectively for matchup analysis. 

The procedure for matchup analysis described in Brewin et al. (2016) was 

followed using level 2, 1 km products. Although Brewin et al. (2016) highlighted 

that level 3, 4 km products could be used to evaluate the continuously 

measured AMT Chl a dataset, NPP and NCP in situ measurements represent 

discrete water samples, driving the choice of level 2, 1 km products. Discrete 

station data were subjected to the same quality checks (Brewin et al., 2016), 

including the elimination of data collected at night, leading to an approximate 

time window of ± 8 hours, to remain consistent between continuous and 

discrete datasets. A 3 × 3 pixel window centred on each 1 km station-matchup 

pixel was selected to test for spatial homogeneity, and matchups with fewer 

than 5 valid pixels within the 3 × 3 pixel windows (after standard L2 flags were 

applied), were excluded from further analysis (Bailey and Werdell, 2006).  

After selection of the most accurate algorithms, MODIS-A monthly 4 km Chl a 

composites were produced for the entire South Atlantic domain using OC3-CI. 

Monthly composites of NPP were computed with the WRM using the LUT 

described in Smyth et al. (2005), using additional input composites of MODIS-A 

PAR, Kd(490) and SST downloaded from the NASA Ocean Colour website 

(https://oceancolor.gsfc.nasa.gov/l3/). Monthly NCP composites were 

assembled using NCP-D, to perform a monthly time series analysis against 

climate indices and environmental drivers between July 2002 and December 

2018. Monthly NCP anomalies were calculated on a per pixel basis, by 

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
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subtracting from the monthly NCP the corresponding month’s climatological 

NCP value computed using a time series between 2002 and 2018. 

2.2.8 Uncertainties in satellite data 

The combined uncertainty in the satellite measurements (ԐCALGORITHM) was 

estimated as the combination of three components (BIPM, 2008). Firstly, the 

stated uncertainty of the algorithm (ԐaALGORITHM) during the parameterisation 

with in situ data was taken from the literature (see Table 1). Secondly, the 

spatial uncertainty in the satellite data (ԐsALGORITHM) were estimated using the 

standard deviation of the 3 × 3 pixel grid used to test for homogeneity. Finally, 

the uncertainty attributed to the satellite input parameters (ԐiALGORITHM) was 

calculated as follows: In the case of Chl a, Ԑi is the Rrs uncertainty, which is 

outside the scope of the work; For NPP and NCP algorithms Ԑi was estimated 

using a Monte Carlo uncertainty propagation, where 1000 calculations were 

made perturbing the input products using random noise representing the 

uncertainty on the MODIS-A retrieval of each parameter (ԐRPARAMETER). ԐR for 

Chl a and NPP were assessed in this paper as log10 root mean square 

difference (log-RMS) values. ԐR for SST was taken as the RMS value of a 

comparison of MODIS-A SST to in situ skin SST (details in Appendix 2.3; Table 

A2.7). ԐR for PAR and Kd(490) were estimated using SeaWiFS Bio-optical 

Archive and Storage System (SeaBASS) matchups between in situ and 

MODIS-A data from a global dataset (PAR ԐR = 5.6 Einstein m-2 d-1, and 

Kd(490) ԐR = 0.257 in log10 space).  

The three components (Ԑa, Ԑs and Ԑi) are assumed to be independent, and 

combined in quadrature (Taylor, 1997) to estimate ԐCALGORITHM for each 

matchup: 

ԐC =  √Ԑa2 +  Ԑs2 +  Ԑi2                                    (2.13) 

2.2.9 Weighted Statistical Analyses 

Measured and satellite estimates of each parameter were compared in log10 

space. To enable log10 transformation of NCP estimates, the minimum value of 

the satellite matchups (-170 mmol O2 m-2 d-1) was added to each value.  

The measured and satellite estimates were first evaluated using a non-weighted 

statistical approach to assess the performance of satellite algorithms (e.g: 
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Brewin et al., 2015; Dogliotti et al., 2014, 2009). A Type-II regression analysis 

was employed to calculate the slope, intercept and the percentage variability 

explained by the linear regression (R2). To evaluate the accuracy of each 

model, the absolute percentage difference (APD), log-RMS and the mean (M) 

and standard deviation (S) of the log10 difference were calculated. Following the 

methods of Campbell et al. (2002) the inverse log10 difference between the in 

situ and satellite values of 10M (Fmed), 10M + S (Fmax) and 10M – S (Fmin) were 

calculated. The number of matchups used to compute the statistics (N) is also 

given. 

Table 2.1 – Tabulated algorithm uncertainties (Ԑa) used for parameterisation 

with in situ data from the literature. * indicates for OC3-CI and OC5-CI the 

uncertainty is assumed to be the same as the non-CI version. ** indicates for 

the PSM an uncertainty value to our knowledge is unavailable, and therefore 

assume the same value as the VGPM. 

Algorithm Algorithm Uncertainty (Ԑa) Reference 

Chl a Algorithms  
Uncertainty units: log10(mg m-3) 

OC3 + OC3CI* 0.255 
NASA Oceancolour 

Website 

GSM 0.156 (Maritorena et al., 2002) 

OC5 + OC5CI* 0.220 (Gohin et al., 2002) 

   

NPP Algorithms 
Uncertainty units: log10(mg C m-2 d-1) 

VGPM 0.24  (Friedrichs et al., 2009) 

PSM 0.24** N/A 

WRM 0.16 (Smyth et al., 2005) 

   

NCP Algorithms 
Uncertainty units: mmol O2  m-2 d-1 

NCP-A 103 (Tilstone et al., 2015b) 

NCP-B 46 (Tilstone et al., 2015b) 

NCP-C 40 (Tilstone et al., 2015b) 

NCP-D 35 (Tilstone et al., 2015b) 

 

  



 

66 
 

The estimates were then evaluated by a weighted statistical approach using 

weighted variants of the previously mentioned statistics. The weights for each 

matchup were computed using Ԑins and ԐC: 

𝑤𝑒𝑖𝑔ℎ𝑡 =  
1

√Ԑins2 + ԐC2 
                                           (2.14) 

The weights were rescaled between zero and one. This approach allows the 

satellite and in situ uncertainties to be accounted for in the statistical analysis, 

which was not previously possible, because in situ data uncertainties were not 

determined. The approach emphasises matchups where both the satellite and 

in situ measurements are more certain, while less certain matchups produce a 

smaller effect on the overall statistics. For the BRAZIL and BEN datasets, no in 

situ uncertainty could be calculated, and therefore the weighting uses only the 

satellite uncertainty (Appendix 2.2). NCP algorithms were assessed firstly 

driven using in situ NPP and in situ SST, and secondly driven by MODIS-A 

estimates. 

2.2.10 Uncertainty Perturbation Analysis 

Following the methods of Saba et al. (2011), a perturbation analysis was 

conducted to determine the potential reduction in NCP-D log-RMS which could 

be attributed to uncertainties in the satellite input parameters and in situ NCP. 

This analysis quantifies the range of uncertainty introduced in satellite NCP 

estimates from the input parameters, including the in situ NCP used to validate 

these estimates. Each of the input parameters; Chl a, PAR and SST can have 

three possible values for each NCP measurement (original value, original – ԐR 

and original + ԐR). The WRM algorithm used to determine NPP also has an 

uncertainty (log-RMS found in this paper, using weighted statistics: 0.20; Table 

2.3), and therefore three values are also possible. For each NCP measurement, 

81 perturbations of the input data were calculated. Similarly, each in situ NCP 

measurement could also have three perturbations (original value, original - 

ԐinsNCP, original + ԐinsNCP). Log-RMS was used to assess the performance of 

NCP-D under different scenarios. For each NCP measurement, the 81 

perturbations were examined and the perturbation that produced the lowest log-

RMS from 4 scenarios was selected, in order to assess the potential reduction 

in log-RMS that could be attributed to each of the parameters. The 4 scenarios 

tested were: (1) uncertainty in individual input parameters (Chl a, PAR, SST and 
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NPP algorithm), (2) uncertainty in all input parameters together, (3) uncertainty 

in in situ NCP measurements and (4) uncertainty in all input parameters and in 

situ NCP. The analysis focused on the reduction in log-RMS, however 

considering the uncertainties from the input parameters could also increase log-

RMS. The input parameter uncertainties that have the greatest control on 

satellite NCP uncertainties were therefore indicated. Additionally, for scenarios 

two and four the combination of multiple parameter perturbations could lead to 

compensating effects (i.e. one parameter reducing and another increasing the 

log-RMS reduction). These scenarios provide a useful indicator of the overall 

impact of satellite data (scenario two) and satellite with in situ data uncertainties 

(scenario four). 

2.2.11 Climate Indices and Environmental Drivers 

Climate indices indicate large-scale variability in physical parameters in the 

ocean. Satellite estimated NCP anomalies were compared to three climate 

indices: the North Atlantic Oscillation (NAO), indicating atmospheric pressure 

conditions in the North Atlantic, downloaded from 

http://www.cgd.ucar.edu/cas/catalog/; the Multivariate ENSO Index (MEI) as an 

indicator of El Niño Southern Oscillation (ENSO) phases, downloaded from 

https://www.esrl.noaa.gov/psd/enso/mei and the Southern Annular Mode 

(SAM), indicating the displacement of the westerly winds in the Southern 

Ocean, downloaded from http://www.nerc-bas.ac.uk/icd/gjma/sam.html.  

Changes in wind forcing can affect the distribution of phytoplankton through 

changes in the mixed layer. ECMWF ERA5 monthly wind speeds were 

downloaded from the CCDS (https://cds.climate.copernicus.eu/), with a 

resolution of 0.25°, coincident with the MODIS-A NCP time series (July 2002 – 

December 2018). Wind speed anomalies were calculated by subtracting from 

the monthly wind speed, the corresponding monthly climatology value 

calculated from the ECMWF ERA5 wind speed. 

Sea Level Height Anomalies (SLHA) can be associated with mesoscale 

processes and water mass changes, which can contribute to changes in 

phytoplankton distributions across basins. Monthly mean SLHA were 

downloaded from AVISO+ (https://www.aviso.altimetry.fr/) coinciding with the 

http://www.cgd.ucar.edu/cas/catalog/
https://www.esrl.noaa.gov/psd/enso/mei
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
https://cds.climate.copernicus.eu/
https://www.aviso.altimetry.fr/
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MODIS-A NCP time series at a resolution of 0.25°. Anomalies were calculated 

by AVISO+ with respect to a 25 year climatology between 1993 and 2018. 

2.2.12 Time series Analysis 

Mean monthly NCP anomalies were averaged from 4 km monthly NCP anomaly 

maps for the South Atlantic Longhurst provinces; WTRA, ETRA, SATL, BRAZ, 

BENG, FKLD and SSTC (Fig. 2.1; Longhurst, 1998). The potential drivers of 

NCP variability were explored firstly by calculating Spearman correlation 

coefficients between monthly province-averaged NCP anomalies, climate 

indices and environmental drivers. The use of anomalies to determine 

correlations reduces the effect of temporal autocorrelation which may 

complicate interpretation. 

Averaging NCP anomalies over the provinces may highlight the dominant 

drivers of variability but mask the effects of opposing trends within a province as 

well as the more subtle and localised drivers, such as mesoscale eddies. The 

localised forcing is explored using a per pixel correlation approach, where a 

monthly time series of NCP anomalies is generated for each 4 km pixel for 

comparison against environmental drivers (Spearman correlation, α = 0.05). 

Spatial autocorrelation was tested using the method of field significance (Wilks, 

2006). 

The uncertainties in NCP anomalies were propagated through the Spearman 

correlations using a Monte Carlo uncertainty propagation. Each monthly NCP 

measurement in the time series, was perturbed with random noise representing 

the uncertainty of the MODIS-A NCP estimate 1000 times as in Section 2.2.8, 

and the Spearman correlations were repeated. The 95% confidence interval 

was calculated from the resulting distribution of the correlations. The correlation 

was deemed significant (α = 0.05), where the 95% confidence interval remained 

significant. The per pixel analysis was repeated for NPP and SST anomalies. 

2.3 Results 

2.3.1 Accuracy assessment of MODIS-A Chl a. 

Weighted regression analysis between in situ Chl a and five MODIS-A 

algorithms for data collected on seven AMT campaigns is given in Fig. 2.2, and 

the associated statistical analysis are given in Table 2.2. Using the weighted 
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approach to determine the algorithm performance, all five algorithms performed 

similarly, with R2 > 0.9 and log-RMS < 0.20. OC3-CI, the standard MODIS-A 

algorithm, showed the best performance with the lowest log-RMS, slope close 

to 1 and Fmin, Fmed and Fmax close to 1. All algorithms had positive M indicating a 

tendency to underestimate Chl a. OC5-CI, GSM and OC5 were characterised 

by higher values of M compared to OC3-CI and OC3, and by Fmed and Fmax 

values greater than 1, highlighting that these three algorithms perform worse 

compared to OC3-CI and OC3 at the medium and maximum range Chl a values 

(Table 2.2). OC3-CI and OC5-CI showed lower scatter at Chl a < 0.15 mg m-3 

(Fig. 2.2a, e), compared to OC3 and OC5 (Fig. 2.2b, d), which resulted in a 

lower S over this range (Table 2.2).  

For both the BEN and BRAZIL datasets the weighting used only the satellite 

uncertainty. For the BEN, the trend in MODIS-A Chl a algorithms was similar to 

that of the AMT dataset except for the GSM (Appendix 2.2 Table A2.6), which 

had a higher log-RMS, higher S and negative M and a tendency to overestimate 

Chl a above 3 mg m-3 (Fig. 2.2c). For the BRAZIL dataset, the trends were 

different (Appendix 2.2 Table A2.5); the GSM exhibited the worst performance 

with lowest R2, highest log-RMS, M and S, indicating a failure in the algorithm to 

estimate Chl a accurately in this region (Fig. 2.2c).  
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Table 2.2 – Performance indices for satellite chlorophyll a algorithms using the AMT dataset. Log-differences uncertainties in satellite 

estimates are mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean and one sigma range of the difference are 

given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage Difference. N indicates the 

number of matchups used to compute statistics. The most accurate algorithm for each statistic is highlighted in bold. Statistics were 

computed by weighting each station based on the in situ and satellite uncertainty (weighted). The statistics were performed on firstly, all 

the available matchups, and secondly, on matchups where in situ Chl a < 0.15 mg m-3. 

Weighted (All) 

A
M

T
 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

OC3-CI 0.93 0.96 -0.08 0.16 123 0.06 0.14 0.83 1.16 1.61 1440 

OC3 0.91 0.96 -0.08 0.17 122 0.05 0.16 0.78 1.13 1.65 1440 

GSM 0.91 0.96 -0.10 0.18 144 0.09 0.16 0.84 1.22 1.77 1440 

OC5 0.91 0.92 -0.13 0.19 166 0.08 0.17 0.82 1.21 1.79 1440 

OC5-CI 0.93 0.93 -0.12 0.18 163 0.09 0.15 0.87 1.23 1.74 1440 

Weighted (Chl < 0.15 mg m-3) 

A
M

T
 

OC3-CI 0.87 1.05 0.04 0.10 6.9 0.01 0.10 0.81 1.03 1.30 884 

OC3 0.74 1.05 0.06 0.14 9.4 0.00 0.14 0.72 1.00 1.40 884 

GSM 0.72 1.02 0.00 0.14 9.5 0.03 0.14 0.79 1.08 1.48 884 

OC5 0.74 1.04 0.03 0.14 8.6 0.01 0.14 0.75 1.02 1.40 884 

OC5-CI 0.87 1.05 0.04 0.10 7.0 0.02 0.10 0.83 1.05 1.33 884 
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Figure 2.2 - Comparison of in situ and MODIS-A estimates of chlorophyll a for: (a) OC3-CI, (b) OC3, (c) GSM, (d) OC5 and (e) OC5-CI. 

Algorithms are described in section 2.2.3. Red points indicate satellite matchups with the continuous Atlantic Meridional Transect (AMT) 

dataset, blue squares the Brazilian dataset (BRAZIL) and green squares the Benguela dataset (BEN). Black dashed line is 1:1 line, red 

dashed line is a weighted Type-II linear regression for the AMT dataset, blue dashed line is a weighted Type-II linear regression for the 

Brazilian dataset and green dashed line the weighted Type-II linear regression for the Benguela dataset. Horizontal error bars indicate in 

situ uncertainty (ԐinsCHLA). Vertical error bars indicate the combined satellite uncertainty (ԐC).
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2.3.2 Accuracy assessment of MODIS-A NPP 

There was a high variability in the in situ NPP uncertainty at each station. This 

was accounted for using the weighted method, which then showed that the 

WRM exhibited the best performance (Table 2.3, Fig. 2.3) with the lowest log-

RMS, slope closest to 1 and intercept closest to 0. The VGPM also had low log-

RMS and M equal to 0 but displayed the lowest R2 and the highest S (Table 

2.3). The PSM had high R2 but systematically underestimated NPP with Fmin, 

Fmed and Fmax greater than 1.  

 

Figure 2.3 – Comparison of in vitro and MODIS-A estimated net primary 
production. Algorithms are described in section 2.5. Black dashed line is the 1:1 
line. Red, green and blue dashed lines indicate a weighted Type-II linear 
regression for the VGPM, PSM and WRM respectively. Horizontal error bars 
indicate in situ uncertainty (ԐinsPP). Vertical error bars indicate the combine 
satellite uncertainty (ԐC). 
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Table 2.3 - Performance indices for satellite net primary production algorithms. 
Log-differences uncertainties in satellite estimates are mean (M), standard 
deviation (S) and Root Mean Square (log-RMS). The mean and one sigma 
range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 
indicate greater accuracy. APD is the Absolute Percentage Difference. N 
indicates the number of matchups used to compute statistics. The most 
accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed by weighting each station based on the in situ and satellite 
uncertainty (weighted). 

Weighted 

Model R2 Slope Intercept 
Log-

RMS 
APD M S Fmin Fmed Fmax N 

VGPM 0.72 0.97 0.06 0.22 6.9 0.00 0.22 0.61 1.01 1.68 18 

PSM 0.79 0.88 0.05 0.32 9.6 0.25 0.20 1.11 1.77 2.82 18 

WRM 0.81 0.96 0.02 0.20 6.3 0.07 0.18 0.78 1.18 1.79 18 

 

2.2.3 Accuracy assessment of MODIS-A NCP 

The four NCP algorithms were firstly run using in situ NPP and in situ SST (N = 

84) to assess their accuracy (Fig. 2.4, Table 2.4). Using the weighted approach 

NCP-C was the most accurate, with low log-RMS and S and the highest R2. 

NCP-D had a higher log-RMS and lower R2. NCP-B tended to overestimate 

NCP, indicated by Fmin and Fmed less than 1 but had a similar log-RMS to NCP-

C and NCP-D. NCP-A had the highest slope, log-RMS, M and S indicating a 

tendency to underestimate NCP with Fmin, Fmed and Fmax all greater than 1.  

MODIS-A SST and NPP using the WRM model were then applied to estimate 

NCP (N = 14; Fig. 2.5; Table 2.5). Using the weighted approach, NCP-D 

showed the highest R2, low log-RMS and lowest S, and of all four algorithms 

was the most accurate. NCP-C showed a similar accuracy, but the slope 

deviated further from 1. Both algorithms tended to underestimate NCP when 

driven by MODIS-A NPP, compared to the in situ NPP. NCP-B tended to 

overestimate NCP, indicated by Fmin less than 1. NCP-A tended to 

underestimate NCP indicated by Fmed and Fmax greater than 1, low R2 and high 

log-RMS.  

 

  



 

74 
 

 

Figure 2.4 - Comparison of net community production (NCP) algorithms driven using in situ net primary production and sea surface 
temperature where each scatter plot refers to (a) NCP-A, (b) NCP-B, (c) NCP-C and (d) NCP-D. Algorithms are described in section 
2.2.6. Black dashed line is the 1:1 line. Red dashed line indicates a weighted Type-II linear regression. Horizontal error bars indicate in 
situ uncertainty (ԐinsNCP). Vertical error bars indicates the in situ uncertainty in NPP and SST propagated through the NCP algorithms. 
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Table 2.4 - Performance indices for net community production (NCP) algorithms 
driven by in situ net primary production and in situ sea surface temperature. To 
log transform negative NCP values, we added the minimum value (-170 mmol 
O2 m-2d-1) to all values. Log-differences uncertainties in satellite estimates are 
mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean 
and one sigma range of the difference are given as; Fmed, Fmin and Fmax; 
values closer to 1 indicate greater accuracy. APD is the Absolute Percentage 
Difference. N indicates the number of matchups used to compute statistics. The 
most accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed by weighting each station based on the in situ and satellite 
uncertainty (weighted). 

Weighted 

Model R2 Slope Intercept 
Log-

RMS 
APD M S Fmin Fmed Fmax N 

A 0.17 1.17 -0.68 0.53 18.11 0.39 0.36 1.09 2.47 5.60 84 

B 0.30 0.93 0.16 0.11 3.4 -0.04 0.10 0.72 0.90 1.14 84 

C 0.31 0.95 0.09 0.10 3.5 0.00 0.10 0.79 1.00  1.28 84 

D 0.26 0.90 0.17 0.12 4.2 0.02 0.12 0.80 1.05 1.37 84 

2.3.4 Uncertainty Perturbation Analysis 

For the scenario in which the uncertainty in both the input parameters and in 

situ NCP measurements were considered, log-RMS decreased by 87% (Table 

2.6). The uncertainties in the NPP model (40%) and in situ NCP (36%) 

accounted for the largest reduction in log-RMS. Chl a uncertainties accounted 

for a reduction in log-RMS of 22%, whereas PAR and SST contributed the 

smallest reductions in the log-RMS of 2.8% and 3.5% respectively.  
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Figure 2.5 – Comparison of in vitro and MODIS-A estimated net community 
production (NCP). Algorithms are described in section 2.2.6. Black dashed line 
is the 1:1 line. Red, green, blue and pink dashed lines indicate a weighted 
Type-II linear regression for the A, B, C and D respectively. Horizontal error 
bars indicate in situ uncertainty (ԐinsNCP). Vertical error bars indicate the 
combine satellite uncertainty (ԐC). 

Table 2.5 – Performance indices for satellite net community production (NCP) 
algorithms. To log transform negative NCP values, we added the minimum 
value (-170 mmol O2 m-2d-1) to all values. Log-differences uncertainties in 
satellite estimates are mean (M), standard deviation (S) and Root Mean Square 
(log-RMS). The mean and one sigma range of the difference are given as; Fmed, 
Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute 
Percentage Difference. N indicates the number of matchups used to compute 
statistics. The most accurate algorithm for each statistic is highlighted in bold. 
Statistics were computed by weighting each station based on the in situ and 
satellite uncertainty (weighted). 

Weighted 

Model R2 Slope Intercept 
Log-

RMS 
APD M S Fmin Fmed Fmax N 

A 0.54 0.99 -0.11 0.48 14.4 0.33 0.34 0.97 2.14 4.70 14 

B 0.64 0.96 0.04 0.10 3.4 0.01 0.10 0.81 1.03 1.30 14 

C 0.62 0.96 0.01 0.12 4.5 0.07 0.10 0.93 1.17 1.48 14 

D 0.70 0.98 0.00 0.11 3.5 0.06 0.09 0.93 1.14 1.40 14 
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Table 2.6 – Perturbation analysis results showing the percentage reduction in 
NCP-D log-RMS under different scenarios as described in section 2.2.10. The 
first five scenarios use single parameter perturbations to determine the 
individual reductions in log-RMS when accounting for the uncertainties. The 
further two scenarios determine the reduction in log-RMS when firstly all input 
parameters (Chl a, PAR, SST and NPP) are perturbed by their uncertainties, 
and secondly when all input parameters and the in situ NCP uncertainties are 
perturbed. 

Scenario Percentage reduction in log-RMS 

Chl a 22% 

SST 3.5% 

PAR 2.8% 

NPP 40% 

in situ NCP 36% 

All Input 61% 

All Input and in situ NCP 87% 

 

2.3.5 NCP Time series Analysis 

Since NCP-D was the most accurate NCP algorithm, it was applied to the 

MODIS-A time series. There were no significant correlations between province-

averaged NCP anomalies, climate indices and environmental drivers, when the 

uncertainties were accounted for.  

On a per pixel basis and accounting for the uncertainties, there were significant 

correlations between NCP anomalies, with SLHA, wind speed anomalies, and 

the MEI (Fig. 2.6a, b, c). NCP anomalies were positively correlated with wind 

speed anomalies along the BENG coast (Fig. 2.6b). Negative correlations 

between NCP anomalies and SLHA occurred offshore in the BENG extending 

to the SATL (Fig. 2.6a). Significant negative correlations between NCP 

anomalies and SLHA, were also observed along the boundary between the 

SATL and SSTC. Positive correlations between NCP anomalies and wind 

speed anomalies, occurred in the SATL, especially around the centre of the 

South Atlantic gyre (Fig. 2.6b) which extended north into the WTRA. Patchy 

negative correlations between NCP anomalies and the MEI were observed (Fig. 

2.6c), but were at the limits of significance (Wilks, 2006). No significant 

correlations were found between NCP anomalies and the NAO and SAM. 
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Figure 2.6 – Significant per pixel Spearman correlations between monthly 
satellite net community production (NCP-D) anomalies and (a) sea level height 
anomaly, (b) wind speed anomaly and (c) Multivariate ENSO Index (MEI). (d), 
(e) and (f) show the same for monthly satellite net primary production (WRM) 
anomalies and (g), (h) and (i) for monthly satellite sea surface temperature 
anomalies. The correlations were deemed significant when the 95% confidence 
interval of the Spearman correlation, determined through a Monte Carlo 
uncertainty propagation, remained significant (α = 0.05).  Light grey regions 
indicate no significant correlation. Green areas indicate where more than 24 
months of data are missing (N = 168 to 192). 

2.4 Discussion 

2.4.1 Satellite Uncertainty Analysis 

This is one of the first studies to evaluate the performance of and uncertainties 

in MODIS-A Chl a, NPP and NCP over the entire South Atlantic basin, using a 

comprehensive in situ dataset. In the following sections the reasons for the 

algorithms performance and where and why some of them fail is explored.  

2.4.1.1 Accuracy assessment of MODIS-A Chl a 

Previous studies in this region showed that MODIS-A OC3M tends to 

underestimate Chl a on the Patagonian Shelf over a Chl a range of 0.2 to 6 mg 
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m-3 (Dogliotti et al., 2009) and 0.3 to 11 mg m-3 (Dogliotti et al., 2014). Dogliotti 

et al. (2009) suggested that the underestimate is caused by increased aerosol 

loading off the Patagonian deserts, generating lower than expected Rrs(412) 

and Rrs(443) retrievals. Our results would suggest that this is not a local 

underestimation. In this study, we found that OC3-CI performed most accurately 

out of the five algorithms tested. There was, however, a tendency in all 

algorithms tested to underestimate Chl a, especially at concentrations > 0.3 mg 

m-3 (Fig. 2.2). 

Szeto et al. (2011) found that the Chl a in the Atlantic Ocean was generally 

overestimated, however the majority of their Atlantic data were from the North 

American coast. Brewin et al. (2016) showed that using the same AC-S derived 

Chl a, OC3M Chl a were close to the 1:1 line and had a low bias. Compared to 

our results this could suggest bio-optical differences between the North and 

South Atlantic, resulting in an underestimation that may relate to changes in 

CDOM to Chl a ratios (Szeto et al., 2011), driven by changes in the 

phytoplankton community structure (Organelli and Claustre, 2019).  

MODIS-A is now in its 18th year of operation and has known degradation in the 

blue bands (412 and 443 nm; Meister and Franz, 2014). NASA have corrected 

for some of this and conducted a vicarious calibration for these bands; the 

newly reprocessed data (R2018) prove to be accurate (MODIS-A Reprocessing 

R2018, 2020). The OC5 algorithm uses the 412 nm band to account for 

atmospheric overcorrection and/or CDOM absorption. Anomalies with this band 

have previously been reported, associated with the performance of the GSM 

(Maritorena et al., 2010), and may explain why OC5 performs worse than the 

other algorithms tested. Differences in the reprocessing versions may account 

for the difference found in this study to previous studies (Brewin et al., 2016; 

Dogliotti et al., 2014, 2009; Kampel et al., 2009a). The regional bias for the 

South Atlantic shown in this study highlights the on-going need to monitor the 

performance of satellite ocean colour data, especially in regions where in situ 

data are sparse. 

2.4.1.2 Accuracy assessment of MODIS-A NPP 

Using MODIS-A OC3-CI Chl a as input to the NPP models, the WRM was the 

most accurate algorithm for this area, followed by the VGPM, similar to findings 
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of Tilstone et al. (2009) for the entire Atlantic basin. The general trend in all 

three algorithms was an underestimation of NPP, especially at higher values, 

and reflects the trend in MODIS-A Chl a. Platt and Sathyendranath (1988) 

showed that the largest contributor to NPP variability is Chl a. Using in situ Chl 

a data, Tilstone et al. (2009) showed that the WRM and VGPM tend to 

overestimate NPP in the SATL during the period 1998 to 2005. This contrasts 

our results using MODIS-A Chl a, which showed an underestimate in NPP, 

during 2002 to 2019, by a similar amount. Stations at which in situ NPP 

exceeded 700 mg C m-2 d-1 exhibited an underestimation in MODIS-A Chl a, 

whereas the remaining stations both over and under estimated satellite Chl a. 

The PSM showed a systematic bias (Fig. 2.3) resulting in a higher 

underestimation of NPP compared to the WRM and VGPM. The photosynthetic 

parameters, PB
m and αB

, used to parameterise the rate of photosynthesis in the 

PSM, are not used in the other models. Our data suggest that the regionally-

averaged values of these parameters used in this study may be underestimated 

for the South Atlantic. Dogliotti et al. (2014) reported that the PSM performed 

well on the Patagonian Shelf when using in situ PB
m and αB

, collected at the 

same time as Chl a data used for validation of NPP algorithms, but it is not 

possible to run the PSM at the basin scale in this way. To assess this further, 

the PSM was run using in situ PB
m and αB from the season and province of each 

individual station, but there was no improvement and an even higher systematic 

bias (M = 0.37, log-RMS = 0.41, N=17), indicating that the variability in the two 

photosynthetic parameters is not sufficiently represented by the available in situ 

data for the South Atlantic (Bouman et al., 2018; Platt and Sathyendranath, 

1988).   

2.4.1.3 Accuracy assessment of NCP 

The NCP algorithms tested in this study are still in their infancy compared to 

NPP models, but the results are promising. Running the NCP algorithms with in 

situ NPP and SST showed that NCP-C performs slightly better than NCP-D 

(Table 2.4). This contrasts with Tilstone et al. (2015b), who found that over the 

entire Atlantic Ocean NCP-D was more accurate since it includes a temperature 

function which theoretically captures more of the natural variability in respiration 

rates. Howard et al. (2017) observed net autotrophic conditions in the SATL 

during austral autumn, which are also represented more accurately by NCP-C, 
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but observed NCP closer to estimates of NCP-D in the SSTC. Serret et al. 

(2015) highlighted that NCP is not just determined by NPP, with a 

heterogeneous relationship between NPP and respiration and substantial 

differences between the North and South Atlantic. The relationship between 

NPP and respiration could also change with the season (Serret et al., 2015), 

while the majority of the calibration data for NCP-C and NCP-D occurs in austral 

spring. Using satellite data alone however, NCP-D was the best performing 

algorithm (Table 2.5), and when driven with in situ NPP the differences to NCP-

C were small. 

2.4.1.4 Weighted Statistics and Perturbation Analysis 

In situ measurements used to assess satellite algorithm performance have their 

own uncertainties (e.g. mean ԐinsNPP in this study = 15%) and should not be 

assumed to be “100% accurate” as is common practice (e.g. Brewin et al., 

2015; Dogliotti et al., 2014, 2009). The perturbation analysis conducted in this 

paper showed that 36% of the NCP algorithm uncertainty could be attributed to 

the in situ NCP uncertainty (Table 2.6), indicating that this is the highest 

accuracy that a satellite NCP algorithm can currently achieve (equivalent to 

0.03 log10 mmol O2 m-2 d-1). A further 61% of the uncertainty was attributed to all 

of the satellite input parameters (Table 2.6), reinforcing the need to account for 

in situ as well as satellite uncertainties when assessing satellite algorithm 

performance, and therefore to use weighted statistics to account for the 

uncertainties in both the in situ data used to evaluate algorithm performance, 

and the satellite data used to run the algorithm. Differences between the 

unweighted and weighted statistics are clearer for discrete station 

measurements, such as NPP (Table 2.3; Appendix 2.1 Table A2.2) and NCP 

(Table 2.4, 2.5; Appendix 2.1 Table A2.3, A2.4), where uncertainties are 

unlikely to be constant.  

Large in situ datasets have been compiled for Chl a to test the performance of 

satellite algorithms (e.g. Valente et al., 2019, 2016). These datasets contain 

discrete station measurements across the globe, but do not include the 

associated uncertainties. A weighted approach could also be expanded for 

algorithm development, where uncertainties in both the in situ calibration and 

validation datasets could also be used to evaluate the algorithm performance.  
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Uncertainties in the satellite data make the largest contribution to the total 

uncertainty. In this study we have not included the uncertainties associated with 

atmospheric correction and the resulting satellite Rrs (Li et al., 2019). Land et al. 

(2018) proposed a promising statistical approach to estimate some of these 

uncertainties in Chl a alone. This is beyond the scope of this study, but is an 

important topic to pursue in the future to trace the uncertainties in Rrs through 

Chl a to NPP to NCP. 

2.4.2 Climate Indices and Environmental Drivers of NCP 

Applying the most accurate satellite NCP and input parameter algorithms to the 

16 year MODIS-A time series, enables the exploration of climate indices and 

environmental drivers that may modulate NCP in the South Atlantic. Tilstone et 

al. (2015b) showed correlations between monthly province-averaged NCP 

anomalies and climate indices for the SeaWiFS time series between 1998 and 

2010 in the Atlantic Ocean.  

Conducting the correlation analysis on province-averaged NCP anomalies, 

between 2002 and 2018, we showed no significant correlations between NCP 

anomalies and wind speed anomalies, SLHA and the climate indices, when the 

NCP uncertainties were accounted for. Tilstone et al. (2015b) showed 

significant correlation between NCP anomalies and the MEI in the SATL, which 

may become non-significant if the uncertainties are accounted for. Correlations 

with the environmental drivers at local scales may however, still be significant. 

This was therefore studied in more detail, by conducting a correlation analysis 

on a per pixel basis across the region (Fig. 2.6). This technique has previously 

proved effective for determining trends in phytoplankton pigments and 

production (e.g.: Behrenfeld et al., 2006; Dunstan et al., 2018; Kahru et al., 

2010). 

Significant positive correlations were found between wind speed and NCP 

anomalies, along the BENG coast (Fig. 2.6b). An increase in upwelling 

conducive wind speeds enhances the upwelling of colder, nutrient rich waters, 

causing an increase in NPP (Chen et al., 2012b; Lamont et al., 2019) and 

therefore potentially in NCP. The negative correlations between wind speed and 

SST anomalies (Fig. 2.6h) indicate the enhancement of nutrient rich, cold water 
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at the surface, under elevated wind speeds, which in turn drive the correlations 

between wind speed and NPP anomalies (Fig. 2.6e).  

Negative correlations between NCP anomalies and SLHA were observed 

offshore in the BENG, extending into the SATL (Fig. 2.6a). SLHA show 

substantial mesoscale activity in the form of eddies and filaments that 

propagate away from the upwelling front and advect more productive, cooler 

waters (negative SLHA; positive NCP anomalies) into the SATL (Rubio et al., 

2009). The positive correlations between SST anomalies and SLHA (Fig. 2.6g; 

negative SST anomalies; negative SLHA) extended offshore of the BENG, but 

to a lesser extent than negative correlations between NPP anomalies and SLHA 

(Fig. 2.6d). Rubio et al. (2009) indicated that these eddies and filaments can 

advect a significant volume of nutrient rich water into the SATL, which 

potentially enhances NPP and NCP offshore. Lamont et al. (2019) showed that 

long-term trends in Chl a and phytoplankton size structure differed between 

open ocean (> 1000 m) and shelf (< 1000 m) regions of the BENG, suggesting 

different driving mechanisms between shelf and open ocean regions. 

In the SATL, an area of positive correlations between NCP anomalies and wind 

speed anomalies were observed (Fig. 2.6b). Productivity in this region is 

influenced by the equatorial upwelling and South Equatorial current, both of 

which are wind-driven (Hooker et al., 2000). Wind speed anomalies were 

positively correlated with both NPP and NCP anomalies (Fig. 2.6b), suggesting 

a connection between wind induced mixing of nutrients to the photic zone which 

in turn fuels NPP and NCP. Negative correlations between SST anomalies and 

wind speed anomalies have a larger regional influence (Fig. 2.6h) than 

correlations with NCP and NPP anomalies (Fig. 2.6b, e). 

In the SSTC, significant negative correlations between NCP anomalies and 

SLHA were observed, extending north into the SATL (Fig. 2.6a). From 30° S to 

40° S, the western region between 54° W and 36° W, is influenced by 

mesoscale eddies from the Brazil-Malvinas confluence, where the deflection of 

the two currents generates, anticyclonic (positive SLHA; negative NCP 

anomalies) and cyclonic (negative SLHA; positive NCP anomalies) eddies 

(Garcia et al., 2004).  
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The leakage of Indian Ocean waters into the South Atlantic is facilitated by 

Agulhas eddies, shed from the Agulhas Current, at the southern tip of South 

Africa (Guerra et al., 2018). These rings propagate across the South Atlantic, 

reaching the Brazilian coast between 15° S and 30° S. A band of significant 

positive correlations between SST anomalies and SLHA (Fig. 2.6g), are an 

indication of the presence of mesoscale eddies, which start at the southern tip 

of Africa, and end near the Brazilian coast. This is consistent with the basin-

scale propagation of these Agulhas rings. These rings are anticyclonic ‘warm’ 

eddies, generally associated with positive SLHA, which induce downwelling of 

nutrients that potentially decreases NPP (He et al., 2016). The response of the 

plankton community to these Agulhas eddies in both NPP and NCP anomalies 

is clear at the southern tip of Africa, with negative correlations between 

NPP/NCP anomalies and SLHA (Fig. 2.6a, d; positive SLHA; negative 

NPP/NCP anomalies). The response as these Agulhas eddies propagate 

across the South Atlantic is less clear however, with some patchy negative 

correlations between NCP anomalies and SLHA (Fig. 2.6a), and to a lesser 

extent between NPP anomalies and SLHA (Fig. 2.6d). The influence of oceanic 

mesoscale eddies on phytoplankton production varies with the structure and 

age of the feature (Liu et al., 2018; Nencioli et al., 2018).  

On a per pixel basis, patchy negative correlations between NCP anomalies and 

the MEI were observed in the SATL (Fig. 2.6c), reciprocated in correlations 

between NPP anomalies and the MEI (Fig. 2.6f). El Niño periods are coupled 

with variability in SST in the South Atlantic, leading to higher temperatures in 

the SATL (Rodrigues et al., 2015), which are evident in the positive correlations 

between SST anomalies and the MEI in this region (Fig. 2.6i). Higher SST in the 

SATL is associated with stronger stratification and decreased nutrient supply, 

which can reduce NPP and NCP, but this was not seen in our analysis of the 

South Atlantic.  

Future climate change effects could drive changes in environmental forcing, 

which we have shown to control the metabolic state of the South Atlantic. 

Oceanic wind speeds have increased from 1985 to 2018 (Young and Ribal, 

2019) and if this trend continues, it may suggest that areas of the South Atlantic 

become more autotrophic, driven by nutrient enrichment from upwelling and 

water column mixing. Upwelling favourable winds may become more prevalent 
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along eastern boundary upwelling systems (Aguirre et al., 2019), inducing a 

further increase in these autotrophic communities in the Benguela system.  

2.5 Conclusions 

In this paper, we perform a comprehensive uncertainty analysis of ocean colour 

parameters for MODIS-A in the South Atlantic Ocean, to enable the generation 

of an accurate satellite NCP time series, to investigate the effect of 

environmental drivers on NCP. Five Chl a, three NPP and four NCP satellite 

algorithms were assessed using a weighted statistical analysis which takes into 

account the uncertainty in both the satellite and in situ data. For Chl a, OC3-CI 

showed the best performance, however all algorithms showed a large 

underestimation at higher Chl a concentrations. For NPP, the WRM showed the 

best performance, however it underestimated NPP at more productive stations. 

For NCP, NCP-D showed the highest accuracy and NCP-C was also similar. Up 

to 61% of the uncertainty in satellite NCP could be attributed to uncertainties in 

the input parameters. The uncertainties in the NPP model (40%) and Chl a 

(22%) accounted for the greatest reduction in the log-RMS, indicating that these 

need to be reduced to improve the derivation of NCP using satellite data. 

Using NCP-D, in conjunction with the most accurate input parameters, a 16 

year monthly time series of NCP anomalies was produced for the South Atlantic 

Ocean, to investigate the effect of climate indices and environmental drivers on 

NCP. The central SATL showed significant positive correlations between wind 

speed and NCP anomalies. Similarly, in the Benguela region, significant 

positive correlations between wind speed and NCP anomalies dominated the 

coastal regions, indicating that wind driven upwelling controls autotrophic NCP 

in this region. Offshore SLHA had significant negative correlation with NCP 

anomalies which extended into the South Atlantic gyre. This correlation 

suggests that the propagation of mesoscale eddies and filaments from the 

BENG, modifies the autotrophic metabolic state of the plankton community 

offshore and into the SATL. Significant negative correlations between NCP 

anomalies and SLHA were also observed at the southern tip of Africa, 

highlighting that anticyclonic Agulhas Current rings and their associated fronts 

control NCP in this region. Significant negative correlations between SLHA and 

NCP anomalies also occur in the Brazil-Malvinas Confluence region through 

persistent eddy generation.
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Appendices 

Appendix 2.1 – Unweighted Statistics 

Table A2.1- Performance indices for satellite chlorophyll a algorithms using AMT dataset. Log-differences uncertainties in satellite 
estimates are mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean and one sigma range of the difference are 
given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage Difference. N indicates 
the number of matchups used to compute statistics. The most accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed using a standard unweighted procedure. 

Unweighted 

A
M

T
 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

OC3-CI 
0.94 0.92 -0.14 0.15 125 0.07 0.14 0.85 1.17 1.60 1440 

OC3 
0.92 0.91 -0.14 0.16 126 0.06 0.15 0.80 1.14 1.63 1440 

GSM 
0.92 0.94 -0.15 0.18 143 0.09 0.15 0.87 1.24 1.75 1440 

OC5 
0.92 0.86 -0.21 0.18 162 0.09 0.16 0.84 1.22 1.77 1440 

OC5-CI 
0.93 0.87 -0.21 0.17 161 0.09 0.14 0.89 1.24 1.73 1440 
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Table A2.2- Performance indices for satellite net primary production algorithms. 
Log-differences uncertainties in satellite estimates are mean (M), standard 
deviation (S) and Root Mean Square (log-RMS). The mean and one sigma 
range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 
indicate greater accuracy. APD is the Absolute Percentage Difference. N 
indicates the number of matchups used to compute statistics. The most 
accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed using a standard unweighted procedure. 

Unweighted 

Model R2 Slope Intercept 
log-

RMS 
APD M S Fmin Fmed Fmax N 

VGPM 0.68 0.86 0.33 0.23 7.4 0.02 0.23 0.62 1.05 1.79 18 

PSM 0.78 0.76 0.37 0.31 9.7 0.24 0.20 1.12 1.75 2.75 18 

WRM 0.71 0.91 0.16 0.22 7.6 0.06 0.22 0.69 1.15 1.90 18 

 

Table A2.3- Performance indices for net community production (NCP) 
algorithms driven by in situ net primary production and in situ sea surface 
temperature. To log transform negative NCP values, we add the minimum value 
(-170 mmol O2 m-2d-1) to all values. Log-differences uncertainties in satellite 
estimates are mean (M), standard deviation (S) and Root Mean Square (log-
RMS). The mean and one sigma range of the difference are given as; Fmed, Fmin 
and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute 
Percentage Difference. N indicates the number of matchups used to compute 
statistics. The most accurate algorithm for each statistic is highlighted in bold. 
Statistics were computed using a standard unweighted procedure. 

Unweighted 

Model R2 Slope Intercept 
log-

RMS 
APD M S Fmin Fmed Fmax N 

A 0.14 3.00 -4.93 0.53 18.2 0.39 0.36 1.08 2.48 5.70 84 

B 0.23 0.53 1.11 0.12 3.8 -0.05 0.11 0.69 0.89 1.16 84 

C 0.23 0.74 0.58 0.12 3.9 0.00 0.12 0.76 0.99 1.31 84 

D 0.21 0.95 0.10 0.13 4.6 0.01 0.13 0.75 1.02 1.38 84 
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Table A2.4- Performance indices for satellite net community production (NCP) 
algorithms. To log transform negative NCP values, we added the minimum 
value (-170 mmol O2 m-2d-1) to all values. Log-differences uncertainties in 
satellite estimates are mean (M), standard deviation (S) and Root Mean Square 
(log-RMS). The mean and one sigma range of the difference are given as; Fmed, 
Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute 
Percentage Difference. N indicates the number of matchups used to compute 
statistics. The most accurate algorithm for each statistic is highlighted in bold. 
Statistics were computed using a standard unweighted procedure. 

Unweighted 

Model R2 Slope Intercept 
log-

RMS 
APD M S Fmin Fmed Fmax N 

A 
0.35 3.53 -6.32 0.79 27.0 0.59 0.54 1.12 3.92 13.69 14 

B 
0.50 0.48 1.20 0.13 4.6 -0.03 0.13 0.69 0.94 1.27 14 

C 
0.49 0.69 0.65 0.13 5.0 0.05 0.13 0.84 1.12 1.50 14 

D 
0.61 0.81 0.40 0.11 4.0 0.04 0.11 0.85 1.10 1.42 14 
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Appendix 2.2 – Chl a Statistics for BRAZ and BEN datasets 
Table A2.5– Performance indices for satellite chlorophyll a algorithms using BRAZIL dataset. Log-differences uncertainties in satellite 
estimates are mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean and one sigma range of the difference are 
given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage Difference. N indicates the 
number of matchups used to compute statistics. The most accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed firstly assuming all stations have equal weighting (unweighted) and secondly weighting each station based only on the satellite 
uncertainty (ԐC) (weighted). 

Unweighted 

B
R

A
Z

IL
 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

OC3-CI 0.83 0.90 -0.15 0.13 35 0.07 0.12 0.88 1.16 1.53 30 

OC3 0.73 1.07 -0.03 0.19 38 0.09 0.16 0.85 1.24 1.80 30 

GSM 0.22 1.01 -0.22 0.38 104 0.23 0.30 0.85 1.71 3.42 30 

OC5 0.72 0.96 -0.16 0.20 46 0.13 0.16 0.94 1.35 1.93 30 

OC5-CI 0.86 0.78 -0.27 0.15 42 0.09 0.12 0.94 1.24 1.63 30 

             

Weighted 

B
R

A
Z

IL
 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

OC3-CI 0.86 1.00 -0.06 0.13 39 0.08 0.11 0.92 1.19 1.54 30 

OC3 0.81 0.94 -0.09 0.15 39 0.07 0.13 0.86 1.17 1.58 30 

GSM 0.43 1.04 -0.10 0.26 38 0.16 0.21 0.90 1.45 2.32 30 

OC5 0.81 0.87 -0.17 0.17 48 0.11 0.13 0.95 1.28 1.72 30 

OC5-CI 0.88 0.91 -0.14 0.14 44 0.09 0.11 0.97 1.24 1.59 30 
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Table A2.6 - Performance indices for satellite chlorophyll a algorithms using BEN dataset. Log-differences uncertainties in satellite 
estimates are mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean and one sigma range of the difference are 
given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage Difference. N indicates the 
number of matchups used to compute statistics. The most accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed firstly assuming all stations have equal weighting (unweighted) and secondly weighting each station based only on the satellite 
uncertainty (ԐC) (weighted). 

Unweighted 

B
E

N
 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

OC3-CI 0.74 0.92 0.00 0.28 108 0.02 0.28 0.55 1.05 2.00 38 

OC3 0.75 0.94 -0.01 0.28 108 0.02 0.28 0.55 1.06 2.02 38 

GSM 0.69 1.10 0.09 0.35 109 -0.11 0.34 0.36 0.78 1.71 38 

OC5 0.76 0.85 -0.11 0.30 103 0.14 0.27 0.74 1.37 2.57 38 

OC5-CI 0.76 0.84 -0.10 0.30 103 0.14 0.27 0.73 1.37 2.56 38 

             

Weighted 

B
E

N
 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

OC3-CI 0.80 0.92 -0.02 0.25 89 0.03 0.25 0.61 1.08 1.93 38 

OC3 0.80 0.94 -0.03 0.25 89 0.04 0.25 0.61 1.09 1.95 38 

GSM 0.75 1.00 0.05 0.30 92 -0.06 0.30 0.44 0.86 1.71 38 

OC5 0.80 0.87 -0.10 0.29 94 0.14 0.25 0.78 1.39 2.48 38 

OC5-CI 0.80 0.86 -0.10 0.29 94 0.14 0.25 0.78 1.38 2.47 38 



 

91 
 

Appendix 2.3 – Satellite skin sea surface temperature uncertainty 

Sea surface temperature (SST) is a key variable for both NPP and NCP 

algorithms, and therefore the performance of MODIS-A SST retrievals were 

assessed. SST measurements by infrared radiometers, such as MODIS-A, are 

a measurement of the SST at the oceans skin (~10 µm), but are usually 

compared to in situ buoy measurements of temperature below the surface (~5 

m). These temperature measurements can introduce additional uncertainty 

through vertical temperature gradients in the water column, and therefore a 

measurement of skin SST should be used in determining the uncertainty of 

MODIS-A SST. 

Skin SST measurements made on three AMT cruise in 2017, 2018 and 2019 

(AMT 27, 28, 29) using an infrared SST autonomous radiometer (ISAR) as 

outlined in Donlon et al. (2008), were downloaded from the Ships4SST website 

(http://ships4sst.org/). Each individual measurement was provided with an 

uncertainty using the statistical model outlined in Wimmer and Robinson (2016).  

In situ measurements were subjected to the same matchup protocol as the 

ocean colour component, as described in section 2.2.7. Satellite uncertainties 

were determined following the same approach as the ocean colour component, 

with Ԑi assumed to be negligible, and Ԑa assigned a value of 0.345 °C (Brown 

and Minnett, 1999). 

Weighted linear regression analysis is shown in Fig. A2.1 with associated 

statistics tabulated in Table A2.7. Our results show MODIS-A SST 

measurements are accurate having no bias and little scatter, falling on the 1:1 

line. 

  

http://ships4sst.org/
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Table A2.7- Performance indices for satellite sea surface temperature (SST). 
Log-differences uncertainties in satellite estimates are mean (M) and standard 
deviation (S). Root Mean Square Error (RMS) was computed as opposed to 
log-RMS. The mean and one sigma range of the difference are given as; Fmed, 
Fmin and Fmax; values closer to 1 are more accurate. APD is the Absolute 
Percentage Difference. N indicates the number of matchups used to compute 
statistics. Statistics were computed firstly assuming all stations have equal 
weighting (unweighted) and secondly weighting each station based on the in 
situ and satellite uncertainty (weighted). 

 

Figure A2.1 – Comparison of ISAR and MODIS-A skin sea surface temperature 

(SST). Black dashed line is the 1:1 line. Red dashed line is a weighted Type-II 

linear regression between the ISAR and MODIS-A skin SST. Horizontal error 

bars indicate in situ uncertainty (Ԑins). Vertical error bars indicate the combine 

satellite uncertainty (ԐC).  

Unweighted 

 R2 Slope Intercept RMS APD M S Fmin Fmed Fmax N 

SST 0.99 1.01 -0.16 0.41 1.4 0.00 0.01 0.98 1.00 1.02 362 

            

Weighted 

 R2 Slope Intercept RMS APD M S Fmin Fmed Fmax N 

SST 0.99 1.00 -0.08 0.41 1.4 0.00 0.01 0.98 1.00 1.02 362 
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Ford, D. J., Tilstone, G. H., Shutler, J. D., and Kitidis, V. (2022): Derivation of 
seawater pCO2 from net community production identifies the South Atlantic Ocean as 
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The data produced within this publication was published in: 
Ford, D. J., Tilstone, G. H., Shutler, J. D., and Kitidis, V. (2021): Interpolated surface 
ocean carbon dioxide partial pressure for the South Atlantic Ocean (2002-2018) using 
different biological parameters. PANGAEA, https://doi.org/10.1594/PANGAEA.935936  
DJF, GHT, JDS and VK conceived and directed the research. DJF developed the 
code and prepared the manuscript. GHT, JDS and VK provided comments that 
shaped the final manuscript. 

Abstract: A key step in assessing the global carbon budget is the determination 

of the partial pressure of CO2 in seawater (pCO2 (sw)). Spatially complete 

observational fields of pCO2 (sw) are routinely produced for regional and global 

ocean carbon budget assessments by extrapolating sparse in situ 

measurements of pCO2 (sw) using satellite observations. As part of this process, 

satellite chlorophyll a (Chl a) is often used as a proxy for the biological 

drawdown or release of CO2. Chl a does not however quantify carbon fixed 

through photosynthesis and then respired, which is determined by net 

community production (NCP).  

In this study, pCO2 (sw) over the South Atlantic Ocean is estimated using a feed 

forward neural network (FNN) scheme and either satellite derived NCP, net 

primary production (NPP) or Chl a to compare which biological proxy produces 

the most accurate fields of pCO2 (sw). Estimates of pCO2 (sw) using NCP, NPP or 

Chl a were similar, but NCP was more accurate for the Amazon Plume and 

upwelling regions, which were not fully reproduced when using Chl a or NPP. A 

perturbation analysis assessed the potential maximum reduction in pCO2 (sw) 

uncertainties that could be achieved by reducing the uncertainties in the satellite 

biological parameters. This illustrated further improvement using NCP 

compared to NPP or Chl a. Using NCP to estimate pCO2 (sw) showed that the 

South Atlantic Ocean is a CO2 source, whereas if no biological parameters are 

used in the FNN (following existing annual carbon assessments), this region 

appears to be a sink for CO2. These results highlight that using NCP improved 

the accuracy of estimating pCO2 (sw) and changes the South Atlantic Ocean from 

a CO2 sink to a source. Reducing the uncertainties in NCP derived from satellite 

https://doi.org/10.5194/bg-19-93-2022
https://doi.org/10.1594/PANGAEA.935936
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parameters will ultimately improve our understanding and confidence in 

quantification of the global ocean as a CO2 sink. 

3.1 Introduction 

Since the industrial revolution, anthropogenic CO2 emissions have resulted in 

an increase in atmospheric CO2 concentrations (IPCC, 2013; Friedlingstein et 

al., 2020). By acting as a sink for CO2, the oceans have buffered the increase in 

anthropogenic atmospheric CO2, without which the atmospheric concentration 

would be 42-44 % higher (DeVries, 2014). The long-term absorption of CO2 by 

the oceans is altering the marine carbonate chemistry of the ocean, resulting in 

a lowering of pH, a process known as ocean acidification (Raven et al., 2005). 

Observational fields of the partial pressure of CO2 in seawater (pCO2 (sw)) are 

one of the key datasets needed to routinely assess the strength of the oceanic 

CO2 sink (Rödenbeck et al., 2015; Landschützer et al., 2014; Watson et al., 

2020b; Landschützer et al., 2020; Friedlingstein et al., 2020). These methods 

are reliant on the extrapolation of sparse in situ observations of pCO2 (sw) using 

satellite observations of parameters which account for the variability of, and the 

controls on, pCO2 (sw) (Shutler et al., 2020). These parameters include sea 

surface temperature (SST; e.g. Landschützer et al., 2013; Stephens et al., 

1995), salinity and chlorophyll a (Chl a) (Rödenbeck et al., 2015). SST and 

salinity control pCO2 (sw) by changing the solubility of CO2 in seawater (Weiss, 

1974), whilst biological processes such as photosynthesis and respiration 

contribute by modulating its concentration. 

Chl a is routinely used as a proxy for the biological activity (Rödenbeck et al., 

2015), but it does not distinguish between carbon fixation through 

photosynthesis and the carbon respired by the plankton community. Net primary 

production (the net carbon fixation rate; NPP) is determined by the standing 

stock of phytoplankton, for which the Chl a concentration is used as a proxy, 

and modified by the photosynthetic rate and the available light in the water 

column (Behrenfeld et al., 2016). Photosynthetic rates are, in turn, modified by 

ambient nutrient and temperature conditions (Behrenfeld and Falkowski, 1997b; 

Marañón et al., 2003). Elevated Chl a does not always equate to elevated NPP 

(Poulton et al., 2006), and for the same Chl a concentrations, NPP can vary 

depending on the health and metabolic state of the plankton community. All of 

these controls are captured by the net community production (NCP), which is 
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the metabolic balance of the plankton community resulting from the carbon fixed 

through photosynthesis and that lost through respiration. Where NCP is 

positive, the plankton community is autotrophic which implies that there is a 

drawdown of CO2 from seawater (since the plankton reduce the CO2 in the 

water column). Where NCP is negative the community is heterotrophic implying 

a release of CO2 into the ocean (as the plankton produce or release CO2) which 

can then be released into the atmosphere (Schloss et al., 2007; Jiang et al., 

2019). Using NCP to estimate pCO2 (sw) compared to Chl a should theoretically 

lead to an improvement in the derivation of pCO2 (sw). 

Many studies have used satellite Chl a to estimate pCO2 (sw) at both regional 

(Benallal et al., 2017; Moussa et al., 2016; Chierici et al., 2012), and global 

scales (Landschützer et al., 2014; Liu and Xie, 2017). Chierici et al. (2012) 

attempted to use satellite NPP to estimate pCO2 (sw) in the southern Pacific 

Ocean, but there was no significant improvement over using satellite Chl a. This 

is not surprising as NPP captures more of the biological signal, but still lacks 

any inclusion of respiration which results in the release of CO2 into the water 

column. To our knowledge the use of satellite NCP to estimate pCO2 (sw) has not 

been attempted before and could be a means of improving estimates of pCO2 

(sw) as long as satellite NCP observations are accurate (Ford et al., 2021b; 

Tilstone et al., 2015a). These satellite measurements may improve the 

estimation of pCO2 (sw) as NCP includes the full biological control on pCO2 (sw). 

This is particularly important in regions where in situ pCO2 (sw) observations are 

sparse and where interpolation and neural network techniques are therefore 

likely to struggle (Watson et al., 2020b). 

The South Atlantic Ocean is under sampled with limited pCO2 (sw) observations 

(e.g. Fay and McKinley, 2013; Watson et al., 2020b). The region is varied and 

dynamic as it includes the seasonal Equatorial upwelling, high biological activity 

on the south-western (Dogliotti et al., 2014) and south-eastern shelves (Lamont 

et al., 2014), as well as the propagation of the Amazon Plume into the western 

Equatorial Atlantic (Ibánhez et al., 2015). This dynamic biogeochemical 

variability in conjunction with a comprehensive database of satellite 

observation-based data with associated uncertainties (Ford et al., 2021a) 

provides the potential to identify the improvement to pCO2 (sw) estimates that 

could be made from using NCP.  
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The objective of this paper is to compare the estimation of pCO2 (sw) using either 

NCP, NPP or Chl a to determine which biological descriptor produces the most 

accurate and complete pCO2 (sw) fields. A 16 year time series of pCO2 (sw) was 

generated for the South Atlantic Ocean using satellite NCP, NPP or Chl a, as 

the biological input, alongside two approaches with no biological input 

parameters. Regional differences in the resulting pCO2 (sw) fields are assessed. 

The seasonal and interannual variability in pCO2 (sw) estimated from NCP, NPP, 

Chl a and the approaches with no biological parameters were also compared. A 

perturbation analysis was conducted to evaluate the potential reduction in the 

uncertainty in the pCO2 (sw) fields when estimated from NCP, NPP or Chl a. This 

is discussed in the context of reducing uncertainties in these input variables for 

future improvements in spatially complete fields of pCO2 (sw), and the effect on 

estimates of the oceanic carbon sink. 

3.2 Methods 

3.2.1 Surface Ocean Carbon Atlas (SOCAT) pCO2 (sw) and atmospheric CO2 

SOCATv2020 (Bakker et al., 2016; Pfeil et al., 2013) individual fugacity of CO2 

in seawater (fCO2 (sw)) observations were downloaded from 

https://www.socat.info/index.php/data-access/. Data were extracted from 2002 

to 2018 for the South Atlantic Ocean (10º N-60º S, 25º E–80º W; Fig. 3.1b). The 

individual cruise observations were collected from different depths, and are not 

representative of the fCO2 (sw) in the top ~100 μm of the ocean, where gas 

exchange occurs (Goddijn-Murphy et al., 2015; Woolf et al., 2016). Therefore, 

the SOCAT observations were re-analysed to a standard temperature dataset 

and depth (Reynolds et al., 2002) that is considered representative of the 

bottom of the mass boundary layer (Woolf et al., 2016). This was achieved 

using the ‘fe_reanalyse_socat’ utility in the open source FluxEngine toolbox 

(Shutler et al., 2016; Holding et al., 2019), which follows the methodology 

described in Goddijn-Murphy et al. (2015). The reanalysed fCO2 (sw) 

observations were converted to pCO2 (sw), and gridded onto 1º monthly grids 

following SOCAT protocols (Sabine et al., 2013). The uncertainties in the in situ 

data were taken as the standard deviation of the observations in each grid cell, 

or where a single observation exists were set as 5 μatm following Bakker et al. 

(2016). 

https://www.socat.info/index.php/data-access/
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Figure 3.1 - (a) Map of the 8 static biogeochemical provinces in the South Atlantic Ocean, following Longhurst et al. (1995) and 
Longhurst (1998). Markers and letters indicate the locations of timeseries extracted from Fig. 3. The four Atlantic Meridional Transect 
(AMT) cruise tracks are also overlaid (b) Map showing the spatial distribution of the SOCATv2020 dataset used, where the data 
frequency is the number of available months of data within each 1° pixel. The province areas acronyms are: WTRA is Western Tropical 
Atlantic; ETRA is Eastern Equatorial Atlantic; SATL is South Atlantic Gyre; BRAZ is Brazilian current coastal; BENG is Benguela Current 
coastal upwelling; FKLD is Southwest Atlantic shelves; SSTC is South Subtropical Convergence; SANT is Sub Antarctic and ANTA is 
Antarctic. 
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Monthly 1º grids of atmospheric pCO2 (pCO2 (atm)) were extracted from v5.5 of 

the global estimates of pCO2 (sw) dataset (Landschützer et al., 2017, 2016). 

pCO2 (atm) was estimated using the dry mixing ratio of CO2 from the NOAA-

ESRL marine boundary layer reference 

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/), Optimum Interpolated SST 

(Reynolds et al., 2002) and sea level pressure following Dickson et al. (2007).  

3.2.2 Moderate Resolution Spectroradiometer on Aqua (MODIS-A) satellite 
observations 

4 km resolution monthly mean Chl a were calculated from MODIS-A Level 1 

granules, retrieved from National Aeronautics and Space Administration (NASA) 

Ocean Colour website (https://oceancolor.gsfc.nasa.gov/) using SeaDAS v7.5, 

and applying the standard OC3-CI Chl a algorithm 

(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). In addition, monthly mean 

MODIS-A SST and photosynthetically active radiation (PAR) were also 

downloaded from the NASA Ocean Colour website. Mean monthly NPP were 

generated from MODIS-A Chl a, SST and PAR using the Wavelength Resolving 

Model (Morel, 1991) with the look up table described in Smyth et al. (2005). 

Coincident mean monthly NCP using the algorithm NCP-D described in Tilstone 

et al. (2015a) were generated using the MODIS-A NPP and SST data. Further 

details of the satellite algorithms are given in O’Reilly et al. (1998; 2019) and Hu 

et al. (2012) for Chl a, Smyth et al. (2005) and Tilstone et al. (2005, 2009) for 

NPP and Tilstone et al. (2015a) for NCP. These satellite algorithms were shown 

to be the most accurate for the South Atlantic Ocean in an algorithm inter-

comparison which accounted for the uncertainties in both in situ, model and 

input data (Ford et al., 2021a). All monthly mean data were generated between 

July 2002 and December 2018 and were re-gridded onto the same 1º grid as 

the pCO2 (sw) observations. The assessed uncertainties from the literature for 

each of the input parameters used are given in Table 3.1.  

  

https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
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Table 3.1 - Uncertainties in the input parameters of the Feed Forward Neural 
Network used in Monte Carlo uncertainty propagation and perturbation analysis. 

Parameter Algorithm Uncertainty Reference 

Chlorophyll a 0.15 log10(mg m-3) (Ford et al., 2021a) 

Net Primary Production 0.20 log10(mg C m-2 d-1) (Ford et al., 2021a) 

Net Community Production 45 mmol O2 m-2 d-1 (Ford et al., 2021a) 

SST 0.41 ºC (Ford et al., 2021a) 

pCO2 (atm) 1 μatm Takahashi et al. (2009) 

3.2.3 Feed forward neural network scheme 

The South Atlantic Ocean was partitioned into 8 biogeochemical provinces (Fig. 

3.1a), following Longhurst et al. (1995) and Longhurst (1998). The pCO2 (sw) 

observations in the eastern Equatorial Atlantic were sparse, and therefore the 

Equatorial region was merged into 1 province. In each province the available 

monthly pCO2 (sw) observations were matched to temporally and spatially 

coincident pCO2 (atm), MODIS-A, NCP and SST, to provide training data for the 

feed forward neural network (FNN). Observations in coastal regions (< 200 m 

water depth) were removed from the analysis, due to the increased uncertainty 

in ocean colour observations in these areas (e.g. Lavender et al., 2004). Due to 

constraints on the coverage of ocean colour data, no data were available in 

austral winter below ~50º S. 

The coincident observations in each province were randomly split into 3 

datasets: 1.) A training dataset (50 % of the observations) used to train the 

FNNs; 2.) A validation dataset (30 % of the observations) used to assess the 

performance of the FNN and to prevent the networks from overfitting; 3.) An 

independent test dataset (20 % of the observations) to assess the final 

performance of the FNN, with observations that are independent of the network 

training. The optimal split (ropt) method of Amari et al. (1997) was used to 

partition the input data into these three sets, as follows: 

 𝑟𝑜𝑝𝑡 = 1 −
1

√2𝑚
                                            (3.1) 

where m is number of input parameters. For our three input parameters, an 

optimal split of 60 % training data to 40 % validation data would occur, where 
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we removed 10 % from each dataset to provide a further independent test 

dataset. A pre-training step was used to determine the optimum number of 

hidden neurons in the FNN (Moussa et al., 2016; Benallal et al., 2017; 

Landschützer et al., 2013), to provide the best fit for the observations, whilst 

preventing over fitting (Demuth et al., 2008).  

The FNNs consist of 1 hidden layer with between 2 and 30 nodes depending on 

the pre-training step and 1 output layer. The networks were trained using the 

optimum number of hidden neurons, in an iterative process until the Root Mean 

Square Difference (RMSD) remained unchanged for 6 iterations. The best 

performing FNN, with the lowest RMSD was then used to estimate pCO2 (sw). 

The uncertainties in the input parameters were propagated through the FNN, 

using a Monte Carlo uncertainty propagation, where 1000 calculations were 

made perturbing the input parameters, using random noise for their uncertainty 

(Table 3.1). The output from the 8 province FNNs were then combined and 

weighted statistics, which account for both the satellite and in situ uncertainty, 

were used to assess the overall performance of the FNN (as also used in Ford 

et al., 2021b). The combined 8 FNNs approach will hereafter be referred to as 

SA-FNN.  

The approach to training the FNNs was repeated replacing NCP with Chl a or 

NPP sequentially (Table 3.2), to determine if there was an improvement by 

using NCP. Chl a and NPP estimates were log10 transformed before input into 

the FNN, due to their respective uncertainties being determined in log10 space 

(Table 3.1). A baseline SA-FNN with no biological parameters as input was 

trained using pCO2 (atm) and MODIS-A SST (SA-FNNNO-BIO-1; Table 3.2). A 

second SA-FNN with no biological parameters (SA-FNNNO-BIO-2; Table 3.2) was 

trained with the addition of sea surface salinity and mixed layer depth from the 

Copernicus Marine Environment Modelling Service 

(https://resources.marine.copernicus.eu/) global ocean physics reanalysis 

product (GLORYS12V1). This parameter combination (pCO2 (atm), SST, salinity 

and mixed layer depth) has recently been included within a neural network 

scheme to estimate global fields of pCO2 (sw) (Watson et al., 2020b). 

Following these methods, a monthly mean time-series of pCO2 (sw) was 

generated in the South Atlantic Ocean, applying the SA-FNN approach using 

NCP (SA-FNNNCP), NPP (SA-FNNNPP), Chl a (SA-FNNCHLA) or no biological  

https://resources.marine.copernicus.eu/
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Table 3.2 - The input parameters of the neural network variants described in 
section 3.2.3. and 3.2.6. xCO2 is the atmospheric mixing ratio of CO2. 

Neural Network Variant Input parameters 

SA-FNNNCP pCO2 (atm), SST and NCP 

SA-FNNNPP pCO2 (atm), SST and NPP 

SA-FNNCHLA pCO2 (atm), SST and Chl a 

SA-FNNNO-BIO-1 pCO2 (atm) and SST 

SA-FNNNO-BIO-2 pCO2 (atm), SST, salinity, and mixed layer 

depth 

W2020 (Watson et al., 

2020a) 

xCO2 (atm), SST, salinity, and mixed layer 

depth 

parameters (SA-FNNNO-BIO-1 and SA-FNNNO-BIO-2). The pCO2 (sw) fields were 

spatially averaged using a 3×3 pixel filter, but were not averaged temporally as 

in previous studies (Landschützer et al., 2014, 2016) because averaging 

temporally could mask features that occur within single months of the year. The 

uncertainties in the input parameters (Table 3.1) were propagated through the 

neural network on a per pixel basis, and combined in quadrature with the RMSD 

of the test dataset, to produce a combined uncertainty budget for each pixel, 

assuming all sources of uncertainty are independent and uncorrelated (Taylor, 

1997; BIPM, 2008).  

3.2.4 Atlantic Meridional Transect in situ data 

To assess the accuracy of the SA-FNN, coincident in situ measurements of 

NCP, NPP, Chl a, SST, pCO2 (atm) and pCO2 (sw), with uncertainties, were 

provided by Atlantic Meridional Transects 20, 21, 22 and 23 in 2010, 2011, 

2012 and 2013, respectively. All the Atlantic Meridional Transect data described 

in this section can be obtained from the British Oceanographic Data Centre 

(https://www.bodc.ac.uk/). Chl a was computed following the methods of Brewin 

et al. (2016), using underway continuous spectrophotometric measurements 

from AMT 22, and uncertainties were estimated as ~0.06 log10(mg m-3) (Ford et 

al., 2021a).  14C based NPP measurements were made based on dawn to dusk 

simulated in situ incubations, following the methods given in Tilstone et al. 

(2017), at 56 stations with a per station uncertainty. Uncertainties ranged 

between 8 and 213 mg C m-2 d-1 and were on average 53 mg C m-2 d-1. NCP 

was estimated using in vitro changes in dissolved O2, following the methods of 

https://www.bodc.ac.uk/
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Gist et al. (2009) and Tilstone et al. (2015a) at 51 stations with a per station 

uncertainty calculated. Uncertainties ranged between 5 and 25 mmol O2 m-2 d-1 

and were on average 14 mmol O2 m-2 d-1.  

Underway measurements of pCO2 (sw) and pCO2 (atm) were performed 

continuously, following the methods of Kitidis et al. (2017). SST was 

continuously measured alongside all observations (SeaBird SBE45), with a 

factory calibrated uncertainty of ±0.01 °C. The mean of underway pCO2 (sw), 

pCO2 (atm), SST and Chl a were taken ±20 minutes around each station where 

NCP and NPP were measured. These pCO2 (sw) observations (N≈200) were 

removed from the SOCATv2020 dataset so that the Atlantic Meridional Transect 

data remained independent from the training and validation datasets. 

3.2.5 Perturbation analysis 

Following the approach of Saba et al. (2011), a perturbation analysis was 

conducted, to evaluate the potential reduction in SA-FNN pCO2 (sw) RMSD that 

could be attributed to the input parameters. The analysis indicates the 

maximum reduction in RMSD that could be achieved if uncertainties in the input 

parameters were reduced to ~0.  Each of the input parameters; NCP, SST and 

pCO2 (atm) can have three possible values for each in situ pCO2 (sw) observation 

(original value, original ± uncertainty; Table 3.1), enabling 27 perturbations of 

the input data as input to the SA-FNN. For each in situ pCO2 (sw) observation, 

the 27 perturbations of SA-FNN pCO2 (sw) were examined, and the perturbation 

that produced the lowest RMSD and bias combination was selected. The RMSD 

and bias were calculated between all the in situ pCO2 (sw) and the selected 

perturbations. The percentage difference between this RMSD and the original 

RMSD when training the SA-FNN was calculated to indicate the maximum 

achievable reduction. This approach was conducted for two scenarios; (1) 

uncertainty in individual input parameters (NCP, SST and pCO2 (atm)) and (2) 

uncertainty in all input parameters together. The approach was conducted on all 

three training datasets, and on the Atlantic Meridional Transect in situ data. The 

analysis was repeated sequentially replacing NCP with Chl a and NPP, to 

determine if there was a greater maximum reduction in RMSD using NCP. The 

analysis was also conducted allowing for a 10 % reduction in input parameter 

uncertainties, to indicate the short-term reduction in pCO2 (sw) RMSD that could 

be achieved by reducing the input parameter uncertainties. 
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3.2.6 Comparison of the SA-FNNNCP with the SA-FNNNO-BIO, SA-FNNCHLA, SA-
FNNNPP and ‘state of the art’ data for the South Atlantic 

The most comprehensive pCO2 (sw) fields to date are from Watson et al. (2020b, 

a). The ‘standard method’ pCO2 (sw) fields within the Watson et al. (2020b, 

2020a) data were produced by extrapolating the in situ reanalysed 

SOCATv2019 pCO2 (sw) observations using a self-organising map feed forward 

neural network approach (Landschützer et al., 2016), hereafter referred to as 

‘W2020’. A time-series was extracted from the W2020 data, coincident with SA-

FNNNCP, SA-FNNNPP, SA-FNNCHLA and the two SA-FNNNO-BIO variants. For the 

six methods, a monthly climatology referenced to the year 2010 was computed, 

assuming an atmospheric CO2 increase of 1.5 μatm yr-1 (Takahashi et al., 2009; 

Zeng et al., 2014). The climatology should be insensitive to the assumed rise in 

atmospheric CO2 due to the reference year being central to the time series. The 

standard deviation of this climatology was also computed on a per pixel basis. 

The stations (Fig. 3.1) are representative of locations from previous literature 

that analysed the variability of in situ pCO2 (sw) in the South Atlantic Ocean. For 

each station, the monthly climatology of pCO2 (sw), representing the average 

seasonal cycle of pCO2 (sw), and the standard deviation of the climatology, as an 

indication of the interannual variability, were extracted from the six approaches. 

The pCO2 (sw) value for each station was the statistical mean of the four nearest 

data points weighted by their respective proximity to the station coordinate. In 

situ pCO2 (sw) observations from the SOCATv2020 Flag E dataset were also 

extracted for stations A and B (Fig. 3.1a), and a climatology was generated. 

These observations represent data from the Prediction and Research Moored 

Array in the Atlantic (PIRATA) buoys at these locations (Bourlès et al., 2008). 

The station climatologies for the SA-FNNNO-BIO-1, SA-FNNNO-BIO-2, W2020, SA-

FNNCHLA, and SA-FNNNPP were compared to the SA-FNNNCP, by testing for 

significant differences in the seasonal cycle and annual pCO2 (sw) (offset). The 

seasonal cycles (seasonality) were compared using a non-parametric 

Spearman’s correlation and deemed statistically different where the correlation 

was not significant (α < 0.05). A non-parametric Kruskal-Wallis was used to test 

for significant (α < 0.05) differences in the annual pCO2 (sw), indicating an offset 

between the two tested climatologies. The Southern Ocean station (station H) 

was excluded from the statistical analysis due to missing data in the SA-FNN. 
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3.2.7 Estimation of the bulk CO2 flux 

The flux of CO2 (F) between the atmosphere and ocean (air-sea) can be 

expressed in a bulk parameterisation as: 

𝐹 = 𝑘 (𝛼𝑊 𝑝𝐶𝑂2 (𝑠𝑤) − 𝛼𝑠 𝑝𝐶𝑂2 (𝑎𝑡𝑚))                             (2) 

Where k is the gas transfer velocity, and αw and αs are the solubility of CO2 at 

the base and top of the mass boundary layer at the sea surface respectively 

(Woolf et al., 2016). k was estimated from ERA5 monthly reanalysis wind speed 

(downloaded from the Copernicus Climate Data Store; 

https://cds.climate.copernicus.eu/) following the parameterisation of Nightingale 

et al. (2000). The parameter αw was estimated as a function of SST and sea 

surface salinity (Weiss, 1974) using the monthly Optimum Interpolated SST 

(Reynolds et al., 2002) and sea surface salinity from the Copernicus Marine 

Environment Modelling Service global ocean physics reanalysis product 

(GLORYS12V1). The αs parameter was estimated using the same temperature 

and salinity datasets but included a gradient from the base to the top of mass 

boundary layer of -0.17 K (Donlon et al., 1999) and +0.1 salinity units (Woolf et 

al., 2016). pCO2 (atm) was estimated using the dry mixing ratio of CO2 from the 

NOAA-ESRL marine boundary layer reference, Optimum Interpolated SST 

(Reynolds et al., 2002) applying a cool skin bias (0.17K; Donlon et al., 1999) 

and sea level pressure following Dickson et al. (2007). Spatially and temporally 

complete pCO2 (sw) fields, which are representative of pCO2 (sw) at the base of 

the mass boundary layer, were extracted from the SA-FNNNCP, SA-FNNNPP, SA-

FNNCHLA, SA-FNNNO-BIO-1, SA-FNNNO-BIO-2 and W2020.  

The monthly CO2 flux was calculated using the open source FluxEngine toolbox 

(Holding et al., 2019; Shutler et al., 2016) between 2003 and 2018 for the six 

pCO2 (sw) inputs, using the ‘rapid transport’ approximation (described in Woolf et 

al., 2016). The net annual flux was determined for the South Atlantic Ocean 

(10° N-44° S; 25° E-70° W) using the ‘fe_calc_budgets.py’ utility within 

FluxEngine with the supplied area and land percentage masks. The mean net 

annual flux was calculated as the mean of the 15 year net annual fluxes. 

Positive net fluxes indicate a net source to the atmosphere, and negative net 

fluxes represent a sink. 

https://cds.climate.copernicus.eu/
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3.3 Results 

3.3.1 SA-FNN performance and perturbation analysis 

The performance of the SA-FNN trained using pCO2 (atm), SST and NCP for the 

three training datasets are given in Fig. 3.2. The SA-FNNNCP had an accuracy 

(RMSD) of 21.68 μatm and a precision (bias) of 0.87 μatm, which was 

determined with the independent test data (N = 1300). Training the SA-FNN 

using Chl a or NPP instead of NCP, resulted in a similar performance (Appendix 

3.1 Fig. A3.1, Fig. A3.2). The RMSD for the independent test data was within 

~1.5 μatm for Chl a (19.88 μatm), NPP (20.48 μatm) and NCP (21.68 μatm) and 

bias near zero.  

The reduction in pCO2 (sw) RMSD that could be achieved if input parameter 

uncertainties were reduced to ~0 was assessed using the perturbation analysis 

(Table 3.3, Appendix 3.1 Table A3.1). This showed that a reduction in pCO2 (sw) 

RMSD of 36% was achieved by eliminating satellite NCP uncertainties, 34% by 

eliminating satellite NPP uncertainties, and 19% by eliminating satellite Chl a 

uncertainties. The bias remained near zero for all parameters indicating good 

precision of the SA-FNN approach (not shown). Applying the Atlantic Meridional 

Transect in situ data as input to the SA-FNN and using the perturbation 

analysis, a decrease in pCO2 (sw) RMSD of 25 % for NCP, 13 % for NPP and 7 

% for Chl a was observed.  

The reduction in pCO2 (sw) RMSD from reducing input parameter uncertainties 

by 10 % was also assessed through the perturbation analysis (Table 3.4). This 

indicated a decrease in pCO2 (sw) RMSD of 8 % for NCP, 5 % for NPP and 2 % 

for Chl a, again indicating that improving NCP uncertainties has the largest 

impact on improving the estimated pCO2 (sw) fields. 
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Table 3.3 - The percentage reduction in pCO2 (sw) RMSD by reducing NCP, 
NPP and Chl a uncertainties to ~0 as described in Section 2.5. The full results 
can be found in Appendix Table A3.1. 

Parameter Training Validation 
Independent 

Test 
AMT in situ 

NCP 32 % 40 % 36 % 25 % 

NPP 31 % 37 % 36 % 13 % 

Chl a 17 % 21 % 20 % 7 % 

 

Table 3.4 - The percentage reduction in pCO2 (sw) RMSD by reducing NCP, net 
primary production and chlorophyll a uncertainties by 10 % as described in 
Section 2.5.  

Parameter Training Validation 
Independent 

Test 
AMT in situ 

NCP 7 % 8 % 8 % 3 % 

NPP 5 % 6 % 5 % 1.5 % 

Chl a 2 % 2 % 2 % 0.5 % 
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Figure 3.2 - Scatter plots showing the combined performance of the 8 feed forward neural networks trained using NCP for each 
biogeochemical province (Fig. 1) using 4 separate training and validation datasets; (a) Training, (b) Validation, (c) Independent Test and 
(d) Atlantic Meridional Transect (AMT) in situ. The data points are highlighted in red to distinguish them from the error bars in blue. The 
blue dashed line is the Type II regression and the black dashed line is the 1:1 line. Horizontal error bars indicate the uncertainty of the 
SOCATv2020 pCO2 (sw). Vertical error bars indicate the uncertainty attributed to the input parameter uncertainty propagated through the 
feed forward neural networks. The statistics within each plot are; Root Mean Square Difference (RMSD), Slope and Intercept of the Type 
II regression, Coefficient of Determination (R2), Pearson’s Correlation Coefficient (R), Bias and number of samples (N).
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3.3.2 Comparison between SA-FNNNCP and other methods 

The monthly climatologies of pCO2 (sw) generated using the SA-FNNNCP and 

referenced to the year 2010 showed differences with two published 

climatologies, especially in the Equatorial region (Appendix 3.2). The monthly 

climatology for 8 stations (Fig. 3.1) were extracted from the SA-FNNNCP, SA-

FNNNPP, SA-FNNCHLA, SA-FNNNO-BIO-1, SA-FNNNO-BIO-2 and the W2020, to 

assess differences between the pCO2 (sw) estimates (Fig. 3.3). The SA-FNNNCP 

and SA-FNNNO-BIO-1 showed significant divergence in the Equatorial Atlantic 

(Figs. 3.3b, f, g; Fig. 3.4). At the eastern equatorial station, the interannual 

variability in pCO2 (sw) from the SA-FNNNCP was high and a minimum occurred 

between January and April, which gradually increased to a maximum in 

September and October (Fig. 3.3b). The SA-FNNNO-BIO-1 showed no seasonality 

in the pCO2 (sw) and was consistently below the SA-FNNNCP pCO2 (sw). The Gulf 

of Guinea station showed a similar variability in the SA-FNNNCP pCO2 (sw) except 

that the maxima was lower at this station (Fig. 3.3f). The SA-FNNNO-BIO-1 

indicated pCO2 (sw) below the SA-FNNNCP throughout the year. The greatest 

divergence occurred near the Amazon plume (Fig. 3.3g) where SA-FNNNCP 

pCO2 (sw) was below or at pCO2 (atm) for all months and there was a large 

interannual variability in pCO2 (sw). The SA-FNNNO-BIO-1 displayed higher pCO2 

(sw) and a lower interannual variability (Fig. 3.3g).  

The SA-FNNNCP and SA-FNNNO-BIO-1 showed no significant difference in the 

seasonal patterns of pCO2 (sw) at stations south of 20 °S (Figs. 3.3c, d, e; Fig. 

3.4). There was, however, a significant offset at some stations where the SA-

FNNNCP generally exhibited lower pCO2 (sw) in austral summer and a higher 

interannual variation. The SA-FNNNCP was significantly different to W2020 and 

SA-FNNNO-BIO-2 at similar stations to those at which SA-FNNNO-BIO-1 were 

different (Fig. 3.3, Fig. 3.4).   
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Figure 3.3 - Monthly climatologies of pCO2 (sw) referenced to the year 2010 for the 8 stations marked in Fig. 1 from the SA-FNNNCP, SA-
FNNNPP, SA-FNNCHLA, SA-FNNNO-BIO-1, SA-FNNNO-BIO-2 and W2020 (Watson et al., 2020b). Light blue lines in Fig. 3a, b indicate the in situ 
pCO2 (sw) observations from PIRATA buoys. The atmospheric CO2 increase was set as 1.5 μatm yr-1. Black dashed line indicates the 
atmospheric pCO2 (~380 μatm). Error bars indicate the 2 standard deviation of the climatology (~95% interval), where larger error bars 
indicate a larger interannual variability. Red circles indicate the literature values of pCO2 (sw) described in section 4.2. Note the different y-
axis limits in each plot. 
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Figure 3.4 - Statistical comparison of the SA-FNNNCP with the W2020, SA-FNNNO-BIO-1, SA-FNNNO-BIO-2, SA-FNNCHLA and SA-FNNNPP 
climatologies, where yellow blocks indicate a significant difference (α = 0.05). Seasonality indicates a difference in the seasonal cycle 
and offset indicates a difference between the mean pCO2 (sw) of the climatologies.
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The SA-FNNNCP and SA-FNNCHLA showed significant differences in pCO2 (sw) 

values in the South Benguela and Amazon Plume. In the South Benguela (Fig. 

3.3e; Fig. 3.4), SA-FNNNCP had pCO2 (sw) maxima in austral summer, whereas 

the SA-FNNCHL maximum occurs in austral winter. In the Amazon Plume there 

was significant offset between the two methods and the SA-FNNCHL resulted in 

lower pCO2 (sw) compared to the SA-FNNNCP (Fig. 3.3g; Fig. 3.4). The SA-

FNNNCP and SA-FNNNPP had a significant offset at the Eastern Equatorial 

station (Fig. 3.3c; Fig. 3.4), where the SA-FNNNPP indicated lower pCO2 (sw). For 

the other stations, no significant differences were observed. 

3.4 Discussion 

3.4.1 Assessment of biological parameters to estimate pCO2 (sw) 

In this paper, the differences in estimating pCO2 (sw) using FNNs with satellite 

derived NCP, NPP or Chl a were assessed. The SA-FNNNCP had an overall 

accuracy (21.68 μatm; Fig. 3.2) that is consistent with other approaches that 

have been developed for the Atlantic (22.83 μatm; Landschützer et al., 2013), 

and slightly lower than the published global result of 25.95 μatm (Landschützer 

et al., 2014). Training the SA-FNN using Chl a or NPP showed comparable 

broad-scale accuracy to NCP. When the uncertainties in the input parameters 

were investigated however, differences in the estimates of pCO2 (sw) were 

apparent. The perturbation analysis indicated that up to a 36 % improvement in 

estimating pCO2 (sw) could be achieved if NCP data uncertainties were reduced 

(Table 3.3). A similar improvement could be obtained if the NPP uncertainties 

were reduced (Table 3.3). Ford et al. (2021a) showed that up to 40 % of the 

uncertainty in satellite NCP is attributed to the uncertainty in satellite NPP, 

which is an input to the NCP approach. This suggests that improvements in 

estimating NPP from satellite data will lead to a further improvement in 

estimating pCO2 (sw) from NCP. These improvements could be achieved through 

better estimates of the water column light field (e.g. Sathyendranath et al., 

2020), and the vertical variability of input parameters or assignment of 

photosynthetic parameters (e.g. Kulk et al., 2020), for example. For a 

discussion on improving satellite NPP estimates we refer the reader to Lee et 

al. (2015). 
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To uncouple the Chl a, NPP and NCP estimates and their uncertainties, the 

perturbation analysis was also conducted on Atlantic Meridional Transect in situ 

observations. This showed that reducing in situ NCP uncertainties provided the 

greatest reduction in pCO2 (sw) RMSD, which was three times the reduction 

achievable using Chl a (Table 3.3; Table 3.4). This indicates that the optimal 

predictive power of Chl a to estimate pCO2 (sw) has been reached and to achieve 

further improvements in estimates of pCO2 (sw) and reduction in its associated 

uncertainty, requires the use of NCP.  

A reduction of input uncertainties to ~0 is near impossible, but a reduction by 10 

% could be feasible (e.g. NCP uncertainty reduced from 45 to 40.5 mmol O2 m-2 

d-1; Table 3.1). A perturbation analysis conducted for this showed similar 

results, with NCP producing the greatest reduction in pCO2 (sw) RMSD of 8 % 

compared to 2 % for Chl a (Table 3.4). Thus reducing NCP uncertainties will 

provide a greater improvement in pCO2 (sw) compared to reducing the 

uncertainties in Chl a. 

These improvements in estimating NCP could be achieved through many 

components. Ford et al. (2021a) showed that 40 % of satellite NCP 

uncertainties were attributed to in situ NCP uncertainties. The in situ bottle 

incubation measurements could be improved using the principles of Fiducial 

Reference Measurements (FRM; Banks et al., 2020), which are traceable to 

metrology standards, referenced to inter-comparison exercises, with a full 

uncertainty budget. This becomes complicated however, when considering the 

number of different methods to measure NCP and the large divergence 

between them (Robinson et al., 2009). A review of these methods has already 

been conducted (Duarte et al., 2013; Ducklow and Doney, 2013; Williams et al., 

2013). The methods broadly fall into the following categories: a.) in vitro 

incubations of samples under light/dark treatments (Gist et al., 2009) and b.) in 

situ observations of oxygen to argon (O2/Ar) ratios (Kaiser et al., 2005) or the 

observed isotopic signature of oxygen (Luz and Barkan, 2000; Kroopnick, 

1980). All of these methods are subject to, but do not account for, the 

photochemical sink which may lead to underestimation of in vitro NCP by up to 

22 % (Kitidis et al., 2014). Independent ground measurements that use 

accepted protocols for the in vitro method are currently made on the Atlantic 

Meridional Transect, however a community consensus should consider a 
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consistent methodology for NCP. Increasing the number of such observations 

for the purpose of algorithm development, would further constrain the NCP, but 

also provide observations across the lifetime of newly launched satellites. The 

uncertainties on each in vitro measurement are assessed through replicate 

bottles which could be used to calculate a full uncertainty budget for each NCP 

measurement when combined with analytical uncertainties.  

Serret et al. (2015) indicated that NCP is controlled by both the heterogeneity in 

NPP and respiration. The satellite NCP algorithm applied in this study accounts 

for some of the heterogeneity in respiration, through an empirical SST to NCP 

relationship (Tilstone et al., 2015a). Quantifying the variability in respiration 

could further improve NCP estimates when coupled with NPP rates from 

satellite observations. 

3.4.2 Accuracy of SA-FNNNCP pCO2 (sw) at seasonal and interannual scales 

The seasonal and interannual variability of pCO2 (sw) estimated using the SA-

FNNNCP was compared with the SA-FNNNO-BIO, W2020 (Watson et al., 2020b), 

SA-FNNCHL and SA-FNNNPP at 8 stations. The stations (Fig. 3.1) represent 

locations of previous studies into in situ pCO2 (sw) variability allowing 

comparisons with literature values. Significant differences between the SA-

FNNNCP and SA-FNNNO-BIO were observed at four stations (Fig. 3.4), especially 

in the Equatorial Atlantic.  

At 8° N 38° W (Fig. 3.3a), Lefèvre et al. (2020) reported pCO2 (sw) to be stable at 

~400 μatm, between June and August 2013, and to decrease in September to 

~360 μatm, which is attributed to the Amazon Plume propagating into the 

western Equatorial Atlantic (Coles et al., 2013). Bruto et al. (2017) indicated 

however, that elevated pCO2 (sw) at ~430 μatm was observed in September for  

2008 to 2011. The errorbars on the PIRATA buoy pCO2 (sw) observations (Fig. 

3.3a) clearly highlight the differences between Lefèvre et al. (2020) and Bruto et 

al. (2017), but there are less than 4 years of monthly observations available, 

which do not resolve the full seasonal cycle. For the station in the Amazon 

Plume at 4° N 50° W (Fig. 3.3g), where the effects of the plume extend 

northwest towards the Caribbean (Coles et al., 2013; Varona et al., 2019), 

Lefèvre et al. (2017) indicated that this region acts as a sink for CO2 (pCO2 (sw) < 

pCO2 (atm)), especially between May to July, coincident with maximum discharge 
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from the Amazon River (Dai and Trenberth, 2002). Valerio et al. (2021) 

indicated pCO2 (sw) varied at and below pCO2 (atm) at 4° N 50° W consistent with 

the SA-FNNNCP. The interannual variability of pCO2 (sw) has been shown to be 

high in this region in all months (Lefèvre et al., 2017). The SA-FNNNCP provided 

a better representation of the seasonal and interannual variability induced by 

the Amazon River discharge and associated plume at these two stations 

compared to the SA-FNNNO-BIO, although differences were small at 8° N 38° W. 

The station in the Eastern Tropical Atlantic at 6° S 10° W (Fig. 3.3b), is under 

the influence of the equatorial upwelling (Lefèvre, Guillot, Beaumont, & Danguy, 

2008), which is associated with the upwelling of CO2 rich waters between June 

and September. Lefèvre et al. (2008) indicated that peak pCO2 (sw) of ~440 μatm 

was observed in September, and remained stable until December, before 

decreasing to a minima of ~360 μatm in May (Parard et al., 2010). Lefèvre et al. 

(2016) showed however, that the influence of the equatorial upwelling does not 

reach the buoy in all years, and in some years lower pCO2 (sw) is observed. The 

PIRATA buoy observations (Fig. 3.3b) clearly show this seasonality but also 

highlight the interannual variability in in situ pCO2 (sw). Further north at 4° N 10° 

W (Fig. 3.3f), Koffi et al. (2010) suggested that this region follows a similar 

seasonal cycle as the station at 6° S 10° W, but that pCO2 (sw) is ~30 μatm lower 

(Koffi et al., 2016). The interannual variability in SA-FNNNCP pCO2 (sw) clearly 

shows the influence of the equatorial upwelling at these stations, with latitudinal 

gradients in pCO2 (sw) during the upwelling period (Lefèvre et al., 2016), but 

struggles to identify elevated pCO2 (sw) between December to April shown by the 

PIRATA buoy observations (Fig. 3.3b). By contrast, the SA-FNNNO-BIO-1 

indicated little influence from the equatorial upwelling and a depressed pCO2 (sw) 

during the upwelling season. 

The two methods converge on the seasonal cycle at the remaining stations 

although significant offsets in the mean annual pCO2 (sw) remain. The station at 

35° S 18° W (Fig. 3.3c) has consistently been implied as a sink for CO2. 

Lencina-Avila et al. (2016) showed the region to have 340 μatm pCO2 (sw) and to 

be a sink for CO2 between October to December. Similarly, Kitidis et al. (2017) 

implied that the region is a sink for CO2 during March to April. The region has 

depressed pCO2 (sw) due to high biological activity that originates from the 

Patagonian shelf and the South Subtropical Convergence Zone. The station at 
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45° S 50° W (Fig. 3.3d), has also been implied as a strong, but highly variable 

sink, where pCO2 (sw) can be between ~280 μatm and ~380 μatm during austral 

spring, and is constant at ~310 μatm during austral autumn (Kitidis et al., 2017). 

The SA-FNNNCP and SA-FNNNO-BIO-1 methods reproduced the seasonal 

variability in the pCO2 (sw) at these two stations accurately, but only the SA-

FNNNCP captures the magnitude of the depressed pCO2 (sw) at 45° S. 

Within the southern Benguela upwelling system, pCO2 (sw) at station 33° S 17° E 

(Fig. 3.3e) is influenced by gradients in the seasonal upwelling (Hutchings et al., 

2009). Santana-Casiano et al. (2009) showed that pCO2 (sw) varies from ~310 

μatm in July to ~340 μatm in December and that the region is a CO2 sink 

through the year. González-Dávila et al. (2009) suggested however, that this 

CO2 sink is highly variable during upwelling events, and that recently upwelled 

waters act as a source (pCO2 (sw) > pCO2 (atm)) of CO2 to the atmosphere 

(Gregor and Monteiro, 2013). Arnone et al. (2017) indicated elevated pCO2 (sw) 

during austral spring and autumn at the station, with a ~40 μatm seasonal cycle 

amplitude. The SA-FNNNCP and SA-FNNNO-BIO-1 were able to reproduce the 

seasonal cycle, although the SA-FNNNCP correctly represented the seasonal 

magnitude in pCO2 (sw) as reported by Santana-Casiano et al. (2009) and 

Arnone et al. (2017). 

In summary, for these stations, the SA-FNNNCP better represents the 

seasonality and the interannual variability of pCO2 (sw) in the South Atlantic 

Ocean compared to the SA-FNNNO-BIO-1, especially in the Equatorial Atlantic. 

The SA-FNNNO-BIO-2 also displayed significant differences to SA-FNNNCP, 

indicating that the variability in pCO2 (sw) has a strong biological contribution 

which is not fully represented and explained by the additional physical 

parameters included in the FNN. The SA-FNNNO-BIO-2 and W2020 both 

displayed significant differences to the SA-FNNNCP at specific stations (Fig. 3.4). 

There are methodological differences between these approaches however. The 

SA-FNN method uses only in situ pCO2 (sw) observations from the South Atlantic 

Ocean to train the FNNs. The W2020 uses global in situ pCO2 (sw) observations 

to train FNNs for 16 provinces with similar seasonal cycles (Landschützer et al., 

2014; Watson et al., 2020b). The W2020 will therefore be weighted to pCO2 (sw) 

variability in regions of relatively abundant in situ observations (i.e. Northern 

Hemisphere) and may not be fully representative of the South Atlantic Ocean. 
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This would explain the SA-FNNNO-BIO-2 and W2020 differences, when driven 

using the same input variables.  

Comparing the SA-FNNNCP and SA-FNNCHLA there were two significant 

differences (Fig. 3.4). A difference in the seasonal cycle in the southern 

Benguela (Fig. 3.3e) was observed. Santana-Casiano et al. (2009) showed that 

the minima pCO2 (sw) in July and maxima in December, consistent with the SA-

FNNNCP and SA-FNNNPP whereas the SA-FNNCHL estimated the opposite 

scenario. Lamont et al. (2014) reported Chl a concentrations to remain 

consistent in May and October, but NPP rates were significantly higher in 

October, associated with increased surface PAR and enhanced upwelling. The 

disconnect between Chl a and NPP can also be observed in the satellite 

observations (Appendix 3.3 Fig. A3.8) limiting the ability of Chl a to estimate 

pCO2 (sw), which is highlighted by the failure of the SA-FNNCHLA to identify the 

seasonal pCO2 (sw) cycle. 

A Chl a to NPP disconnect has also been reported in the Amazon Plume (Smith 

and Demaster, 1996), where Chl a concentrations can be similar but NPP rates 

significantly different due to light limitation caused by suspended sediments. A 

significant offset between the SA-FNNNCP and SA-FNNCHLA was observed in this 

region (Fig. 3.3g; Fig. 3.4). Lefèvre et al. (2017) reported pCO2 (sw) values 

ranging from 400 ± ~10 μatm in January to ~240 ± ~70 μatm in May. Although, 

the SA-FNNNCP January estimates are consistent, the May estimates are higher 

than these in situ measurements. These observations were made further north 

(6° N) where the turbidity within the plume has decreased sufficiently for 

irradiance to elevate NPP rates (Smith and Demaster, 1996), which decrease 

pCO2 (sw). Chl a remains relatively consistent across the plume (not shown), 

suggesting a disconnect between Chl a and NPP at 4° N 50° W which would 

lead to lower pCO2 (sw) estimates by the SA-FNNCHLA, where NPP rates are low 

due to light limitation (Smith and Demaster, 1996; Chen et al., 2012a). 

Respiration would be elevated from the decomposition of riverine organic 

material reducing NCP further (Lefèvre et al., 2017; Cooley et al., 2007; Jiang et 

al., 2019). It is noted that the Amazon Plume is a dynamic region with transient, 

localised biological and pCO2 (sw) features (Ibánhez et al., 2015; Lefèvre et al., 

2017; Valerio et al., 2021; Cooley et al., 2007) that may be masked by the 

coarse resolution of estimates available using satellite data. The SA-FNNNCP 
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however, agreed with in situ pCO2 (sw) observations at 4° N 50° W where pCO2 

(sw) varied at or below pCO2 (atm) (Valerio et al., 2021). 

Though the differences between the SA-FNNNCP and SA-FNNCHLA may appear 

small, the Amazon Plume and Benguela Upwelling have a higher intensity in the 

CO2 flux per unit area compared to the open ocean, illustrating a 

disproportionate contribution to the overall global CO2 sink than their small areal 

coverage implies (Laruelle et al., 2014). The differences in the pCO2 (sw) 

estimates result in a 22 Tg C yr-1 alteration in the annual CO2 flux for the South 

Atlantic Ocean (SA-FNNNCP = +14 Tg C yr-1; SA-FNNCHLA = -9 Tg C yr-1; Fig. 

3.5f). This unequivocally reinforces the use of NCP to improve basin scale 

estimates of pCO2 (sw), especially in regions where Chl a, NPP and NCP 

become disconnected.  

Recent assessments of the strength of the global oceanic CO2 sink have been 

made using pCO2 (sw) fields estimated using no biological parameters as input 

(Watson et al., 2020b). Our results indicate that the SA-FNNNCP more accurately 

represented the pCO2 (sw) variability in the South Atlantic Ocean compared to 

the SA-FNNNO-BIO-2, which included additional physical parameters. Estimating 

the South Atlantic Ocean net CO2 flux with the SA-FNNNCP pCO2 (sw) produced a 

14 Tg C yr-1 source compared to a 10 Tg C yr-1 sink indicated by the SA-FNNNO-

BIO-2 (Fig. 3.5f). The incremental inclusion of parameters to account for the 

biological signal starting with Chl a (-9 Tg C yr-1) then NPP (-7 Tg C yr-1) then 

NCP (+14 Tg C yr-1) switched the South Atlantic Ocean from a CO2 sink to a 

source, which is driven by differences in the pCO2 (sw) estimates in regions that 

are biologically controlled. This 21 Tg C yr-1 difference between the SA-FNNNCP 

and SA-FNNNPP is due to additional outgassing in the Equatorial Atlantic 

provinces of the WTRA and ETRA (Fig 3.1a; Fig. 3.5f). Compared to the in situ 

pCO2 (sw) observations at the Equatorial stations (Fig. 3.3a, b), it is likely that the 

outgassing is still underestimated by the SA-FNNNCP but does improve these 

estimates within the upwelling season (June – September).  
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Figure 3.5 - Long term average annual mean CO2 flux for the South Atlantic Ocean, using pCO2 (sw) estimates from (a) SA-FNNNCP, (b) 
W2020 (Watson, et al., 2020a), (c) SA-FNNNO-BIO-2, (d) SA-FNNCHLA and (e) SA-FNNNPP. (f) Bar chart displaying the mean annual CO2 
flux for different regions of the South Atlantic Ocean including 10° N to 44° S (Whole South Atlantic Ocean), 10° N to 20° S, 20° S to 44° 
S, alongside the WTRA and ETRA biogeochemical provinces (Fig. 3.1a). 



 

119 
 

The W2020 identified the South Atlantic Ocean as a source for CO2 of 15 Tg C 

yr-1, which is consistent with the SA-FNNNCP (Fig. 3.5f). The SA-FNNNCP 

however, indicated the Equatorial Atlantic (10° N to 20° S) as a 20 Tg C yr-1 

stronger source and south of 20° S (20° S to 44° S) as a 20 Tg C yr-1 stronger 

sink. These differences indicate that biologically induced variability in pCO2 (sw) 

would not be captured by the W2020 and could reduce the variability in the 

global ocean CO2 sink. A further SA-FNN trained with pCO2 (atm), SST, salinity, 

mixed layer depth and NCP indicated a similar CO2 source of 12 Tg C yr-1 (data 

not shown) as the SA-FNNNCP for the South Atlantic Ocean, highlighting that 

additional physical parameters cannot fully account for the biological 

contribution to the variability in pCO2 (sw). This further confirms the importance of 

using NCP within estimates of the global ocean CO2 sink. 

2.5 Conclusions 

In this paper, we compare neural network models of pCO2 (sw) parameterised 

separately using either satellite Chl a, NPP or NCP as biological proxies to 

estimate complete fields of pCO2 (sw). The results suggest that using NCP 

improved the estimation of pCO2 (sw). The differences between satellite Chl a, 

NPP or NCP were initially small, but the use of a perturbation analysis to assess 

the uncertainties in these parameters, showed that NCP has a greater potential 

uncertainty reduction of up to ~36 % of the RMSD, compared to a ~19 % for Chl 

a. These results were verified using in situ observations from the Atlantic 

Meridional Transect, which resulted in a 25 % improvement in pCO2 (sw) RMSD 

when the in situ NCP uncertainties were reduced to ~0, compared to 7 % for 

Chl a and 13 % for NPP.  

Monthly climatological estimates of pCO2 (sw) at 8 stations in the South Atlantic 

Ocean, calculated using satellite NCP were compared with the NPP and the Chl 

a approaches and two neural networks that do not use biological parameters. 

The NCP approach significantly improved on both approaches with no biological 

parameters at 4 stations in reconstructing the seasonal and interannual 

variability, compared to in situ pCO2 (sw) observations. At the remaining 4 

stations, differences were also observed although these were not statistically 

significant. In the eastern Equatorial Atlantic, in the upwelling region, a 

significant difference between the NCP and NPP approaches occurred. 

Significant differences between the NCP and Chl a approaches were also 
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observed in the Benguela upwelling and Amazon Plume, where pCO2 (sw) from 

Chl a suggested that photosynthetic rates were not solely controlled by Chl a. 

Using NCP to estimate pCO2 (sw) the South Atlantic Ocean was characterised as 

a net source of CO2, whereas methods that only include physical controls have 

indicated the region to be a small sink for CO2. Sequentially using Chl a to 

estimate pCO2 (sw), then NPP incrementally reduced the South Atlantic CO2 sink 

and finally using NCP the area switched to being a source of CO2. These 

results indicate that in regions where biological activity is important in controlling 

the variability in pCO2 (sw), the use of NCP, which is available from satellite data, 

is important for quantifying the ocean carbon pump, and for providing data in 

areas that are sparsely covered by observations such as the Southern Ocean. 

Appendices 

Appendix 3.1 - Feed forward neural network training and perturbation 
analysis 
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Figure A3.1 - Scatter plots showing the combined performance of the 8 feed forward neural networks trained using chlorophyll a for 4 
separate training and validation datasets; (a) Training, (b) Validation, (c) Independent Test and (d) Atlantic Meridional Transect (AMT) in 
situ. The blue dashed line is the Type II regression and the black dashed line is the 1:1 line. Horizontal error bars indicate the uncertainty 
of the SOCATv2020 pCO2 (sw). Vertical error bars indicate the uncertainty attributed to the input parameter uncertainty propagated 
through the feed forward neural networks. The statistics within each plot are; Root Mean Square Difference (RMSD), Slope and Intercept 
of the Type II regression, Coefficient of Determination (R2), Pearson’s Correlation Coefficient (R), Bias and number of samples (N). 
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Figure A3 2 - Scatter plots showing the combined performance of the 8 feed forward neural networks trained using net primary 
production for 4 separate training and validation datasets; (a) Training, (b) Validation, (c) Independent Test and (d) Atlantic Meridional 
Transect (AMT) in situ. The blue dashed line is the Type II regression and the black dashed line is the 1:1 line. Horizontal error bars 
indicate the uncertainty of the SOCATv2020 pCO2 (sw). Vertical error bars indicate the resulting uncertainty attributed to the input 
parameter uncertainty propagated through the feed forward neural networks. The statistics within each plot are; Root Mean Square 
Difference (RMSD), Slope and Intercept of the Type II regression, Coefficient of Determination (R2), Pearson’s Correlation Coefficient 
(R), Bias and number of samples (N). 



 

123 
 

 

Figure A3.3 - Scatter plots showing the combined performance of the 8 feed forward neural networks trained using no biological 
parameters (SA-FNNNO-BIO-1) for 3 separate training and validation datasets; (a) Training, (b) Validation and (c) Independent Test. The 
blue dashed line is the Type II regression and the black dashed line is the 1:1 line. Horizontal error bars indicate the uncertainty of the 
SOCATv2020 pCO2 (sw). Vertical error bars indicate the resulting uncertainty attributed to the input parameter uncertainty propagated 
through the feed forward neural networks. The statistics within each plot are; Root Mean Square Difference (RMSD), Slope and Intercept 
of the Type II regression, Coefficient of Determination (R2), Pearson’s Correlation Coefficient (R), Bias and number of samples (N). 
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Figure A3.4 - Scatter plots showing the combined performance of the 8 feed forward neural networks trained using no biological 
parameters (SA-FNNNO-BIO-2) for 3 separate training and validation datasets; (a) Training, (b) Validation and (c) Independent Test. The 
blue dashed line is the Type II regression and the black dashed line is the 1:1 line. Horizontal error bars indicate the uncertainty of the 
SOCATv2020 pCO2 (sw). Vertical error bars indicate the resulting uncertainty attributed to the input parameter uncertainty propagated 
through the feed forward neural networks. The statistics within each plot are; Root Mean Square Difference (RMSD), Slope and Intercept 
of the Type II regression, Coefficient of Determination (R2), Pearson’s Correlation Coefficient (R), Bias and number of samples (N).  
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Table A3.1 - The percentage reduction in Root Mean Square Difference (RMSD) attributable to the uncertainties in the input parameter 
for each training and validation datasets determined from a perturbation analysis as described in Sect. 3.2.5. 

 Parameter Training Validation Independent Test AMT in situ 

N
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t 
C
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m

m
u

n
it
y
 

P
ro
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n
 

ALL 33 % 42 % 38 % 28 % 

SST 10 % 12 % 10 % 0.5 % 

Net Community 

Production 
32 % 40 % 36 % 25 % 

pCO2 (atm) 6 % 7 % 6 % 9 % 
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c
ti
o

n
 

ALL 34 % 40 % 40 % 17 % 

SST 9 % 10 % 10 % 0.4 % 

Net Primary 

Production 
31 % 37 % 36 % 13 % 

pCO2 (atm) 6 % 6 % 6 % 9 % 

C
h
lo

ro
p

h
y
ll 

a
 ALL 22 % 26 % 25 % 29 % 

SST 9 % 10 % 9 % 0.4 % 

Chlorophyll a 17 % 21 % 20 % 7 % 

pCO2 (atm) 8 % 9 % 9 % 16 % 
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Appendix 3.2 - Climatology comparison 

A monthly climatology was generated from the SA-FNNNCP monthly timeseries 

(Fig. A3.5), referenced to the year 2010, assuming an atmospheric CO2 

increase of 1.5 μatm yr-1 (Takahashi et al., 2009; Zeng et al., 2014). The 

standard deviation of the monthly climatology was computed, as an indication of 

the interannual variations in the climatology. The ability of the SA-FNNNCP to 

estimate the spatial distribution of pCO2 (sw) was compared to two methods.  

Firstly, the SA-FNNNCP climatology was compared to the climatology from Woolf 

et al. (2019), produced following the statistical ‘ordinary block kriging’ approach 

described in Goddijn-Murphy et al. (2015), using the SOCATv4 reanalysed 

data. The method provides an interpolation uncertainty where in regions of 

sparse data this becomes larger. Fig. A3.6 shows the methods produce similar 

climatological pCO2 (sw) values for the South Atlantic Ocean, with some clear 

differences along the African coastline, and equatorial region. 

Secondly, the SA-FNNNCP was compared to a climatology calculated from the 

‘standard method’, a Self Organising Map Feed Forward Neural Network 

presented in Watson et al. (2020b; W2020). Fig. A3.7 shows the methods 

produce similar climatological pCO2 (sw) values for the South Atlantic Ocean, 

however, clear differences in the Equatorial region occur across all months. In 

the central South Atlantic Ocean, artefacts form the self organising map can be 

seen during January and February. 
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Figure A3.5 - Monthly climatologies of pCO2 (sw) between July 2002 and December 2018 estimated by the SA-FNNNCP approach 
referenced to 2010. The atmospheric CO2 increase was set as 1.5 μatm yr-1. The colour scale is centred on the atmospheric 
concentration for 2010 (~380 μatm). Red shaded areas indicate oversaturated regions, and blue shaded areas indicate under saturated 
regions. Light green areas indicate where no input data to compute pCO2 (sw) are available.  
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Figure A3.6 - Monthly comparison between pCO2 (sw) climatology estimated by the SA-FNNNCP and Woolf et al (2019) climatology 
referenced to 2010 (SA-FNNNCP pCO2 – Woolf pCO2). Red (Blue) shades indicate regions where SA-FNN is greater (less) than the Woolf 
climatology. 
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Figure A3.7 - Monthly comparison between pCO2 (sw) climatologies estimated by the SA-FNNNCP and W2020 (Watson et al, 2020a) 
climatology referenced to 2010 (SA-FNNNCP pCO2 – W2020 pCO2). Red (Blue) shades indicate regions where SA-FNNNCP is greater 
(less) than the W2020 climatology. 
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Appendix 3.3 – Biological parameter climatologies 

 

Figure A3.8 - Monthly climatologies of the biological parameters (Chl a, NPP and NCP) for the 8 stations (Fig. 3.1a). Chl a and NPP 
scale on the left axis, and NCP on the right. Note the different axis limits on each plot.  
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Chapter 4: Identifying the biological control of the annual 

and multi-year variations in South Atlantic air-sea CO2 flux 

This chapter is a reformatted version of my in review publication: 

Ford, D. J., Tilstone, G. H., Shutler, J. D., and Kitidis, V. (2022): Identifying 
the biological control of the annual and multi-year variations in South Atlantic 
air-sea CO2 flux, Biogeosciences Discussions,  
 

DJF, GHT, JDS and VK conceived and directed the research. DJF developed 
the code and prepared the manuscript. GHT, JDS and VK provided 
comments that shaped the final manuscript. 

 

Abstract: The accumulation of anthropogenic CO2 emissions in the 

atmosphere has been buffered by the absorption of CO2 by the global ocean 

which acts as a net CO2 sink. The CO2 flux between the atmosphere and the 

ocean, that collectively results in the oceanic carbon sink, is spatially and 

temporally variable, and fully understanding the driving mechanisms behind this 

flux is key to assessing how the sink may change in the future. In this study a 

time series decomposition analysis was applied to satellite observations to 

determine the drivers that control the sea-air difference of CO2 partial pressure 

(ΔpCO2) and the CO2 flux on seasonal and interannual time scales in the South 

Atlantic Ocean. Linear trends in ΔpCO2 and the CO2 flux were calculated to 

identify key areas of change.  

Seasonally, changes in both the ΔpCO2 and CO2 flux were dominated by sea 

surface temperature (SST) in the subtropics (north of 40 o S) and were 

correlated with biological processes in the subpolar regions (south of 40 °S). In 

the Equatorial Atlantic, analysis of the data indicated that biological processes 

are likely a key driver, as a response to upwelling and riverine inputs. These 

results highlighted that seasonally ΔpCO2 can act as an indicator to identify 

drivers of the CO2 flux. Interannually, the SST and biological contributions to the 

CO2 flux in the subtropics were correlated with the Multivariate ENSO Index 

(MEI) which leads to a weaker (stronger) CO2 sink in El Niño (La Niña) years.  

The 16-year time-series identified significant trends in ΔpCO2 and CO2 flux, 

however, these trends were not always consistent in spatial extent. Therefore, 

predicting the oceanic response to climate change requires the examination of 

CO2 flux rather than ΔpCO2. Positive CO2 flux trends (weakening sink for 

atmospheric CO2) were identified within the Benguela upwelling system, 
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consistent with increased upwelling and wind speeds. Negative trends in the 

CO2 flux (intensifying sink for atmospheric CO2) offshore into the South Atlantic 

Gyre, were consistent with an increase in the export of nutrients in mesoscale 

features, which drives the biological drawdown of CO2. These multi-year trends 

in the CO2 flux indicate that the biological contribution to changes in the air-sea 

CO2 flux cannot be overlooked when scaling up to estimates of the global ocean 

carbon sink. 

4.1 Introduction 

Since the industrial revolution, anthropogenic CO2 emissions have increased 

unabated and continue to raise atmospheric CO2 concentrations (IPCC, 2021). 

The global oceans have buffered the rise by acting as a sink for atmospheric 

CO2 at a rate of between 1 and 3.5 Pg C yr-1 (e.g. Friedlingstein et al., 2020; 

Landschützer et al., 2014; Watson et al., 2020). The strength of the ocean as a 

sink for CO2 appears to be increasing with time (Friedlingstein et al., 2020; 

Watson et al., 2020b). Regionally this can vary hugely, however and the ocean 

can oscillate between a source or sink of atmospheric CO2.  The difference in 

the partial pressure of CO2 (pCO2) between the seawater and atmosphere 

(ΔpCO2) is used as an indicator or proxy, for the net direction of air-sea CO2 flux 

during gas exchange. 

In the open ocean, changes in physical and biogeochemical processes that 

control seawater pCO2 (pCO2 (sw)) also modify ΔpCO2 as the atmospheric pCO2 

(pCO2 (atm)) is less variable (e.g. Henson et al., 2018; Landschützer et al., 2016). 

ΔpCO2 can therefore be controlled by changes in sea surface temperature 

(SST), because the pCO2 is proportional to the temperature. In addition, 

plankton net community production (NCP) modifies the concentration of CO2 in 

the seawater depending on the balance between net primary production (NPP; 

uptake of CO2 via photosynthesis) and respiration (release of CO2 into the 

water). The NCP describes the overall metabolic balance of the plankton 

community, where positive (negative) NCP indicates a drawdown (or release) of 

CO2 from (or into) the water contributing to a decrease (increase) in ΔpCO2. 

Physical processes, including riverine input (e.g. Ibánhez et al., 2016; Lefèvre et 

al., 2020; Valerio et al., 2021), and upwelling (e.g. González-Dávila et al., 2009; 

Lefèvre et al., 2008; Santana-Casiano et al., 2009) can alter pCO2 (sw) and 

ΔpCO2 directly through the entrainment of high-CO2 water or indirectly by 
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modifying NCP through nutrient supply (enhancing photosynthesis) and/or 

organic material supply (enhancing respiration). 

The air-sea CO2 flux is more precisely a function of the difference in CO2 

concentrations across the mass boundary layer at the ocean’s surface, with any 

turbulent exchange characterised by the gas transfer velocity. The CO2 

concentration difference is determined by the pCO2 at the base (pCO2 (sw)) and 

top (pCO2 (atm)) of the mass boundary layer and the respective  solubilities 

(Weiss, 1974), and must be carefully calculated due to vertical thermo-haline 

gradients existing across the mass boundary layer (Woolf et al., 2016). The gas 

transfer velocity is usually parameterised as a function of wind speed (e.g. Ho et 

al., 2006; Nightingale et al., 2000; Wanninkhof, 2014) which accounts for ~75% 

of the variance in surface turbulent exchange (e,g, Dong et al., 2021; Ho et al., 

2006). Therefore, both oceanographic and meteorological conditions are able to 

modify and control the seasonality, interannual variability and multi-year trends 

of this flux.  

Seasonal drivers of ΔpCO2 have been explored globally (Takahashi et al., 

2002), and regionally in the Atlantic Ocean (Landschützer et al., 2013; Henson 

et al., 2018). Takahashi et al. (2002) used binned in situ pCO2 (sw) observations 

to a 4º by 5º global grid, and found that SST drives ΔpCO2 in the subtropics, 

and non-SST processes (i.e. biological activity and ocean circulation) dominate 

in subpolar and equatorial regions. Landschützer et al. (2013) used a self-

organising map feed forward neural network (SOM-FNN) technique to 

extrapolate the in situ pCO2 (sw) observations and reported similar seasonal 

drivers in the Atlantic Ocean with one exception, that SST and non-SST 

processes compensated each other in the Equatorial Atlantic. Henson et al. 

(2018) using binned in situ observations for the North Atlantic Ocean, also 

indicated that the subtropics are driven by SST and that subpolar regions are 

correlated with biological activity.  

The interannual drivers of ΔpCO2 are different compared to the seasonal drivers 

in the North Atlantic (Henson et al., 2018), which could be true of the South 

Atlantic Ocean, though this needs to be further investigated. Landschützer et al. 

(2016, 2014) postulated the El Niño cycle may influence ΔpCO2 in the 

subtropical South Atlantic but did not explore the underlying processes. South 

of 35° S, Landschützer et al. (2015) indicated that atmospheric forcing could 
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control the interannual variability of ΔpCO2 through changes in Ekman transport 

and upwelling. These interannual drivers of ΔpCO2 and the CO2 flux in the 

South Atlantic Ocean are poorly understood but have key implications for 

determining how the oceanic CO2 sink could be impacted by climate change 

and its evolution over interannual and decadal timescales.  

In this study, we investigate the drivers of ΔpCO2 and the CO2 flux in the South 

Atlantic Ocean over both seasonal and interannual timescales using a 

timeseries decomposition approach. Trends in ΔpCO2 and the CO2 flux were 

calculated from 2002 to 2018, and regions in the South Atlantic Ocean showing 

the greatest change in the CO2 flux are investigated. 

4.2 Data and Methods 

4.2.1 pCO2 data 

Satellite estimates of pCO2 (sw) were retrieved from the South Atlantic Feed 

Forward Neural Network (SA-FNN) dataset (Ford et al., 2022, 2021a). Ford et 

al. (2022) showed that the SA-FNN improved on the seasonal pCO2 (sw) 

variability in the South Atlantic Ocean compared to current estimates using the 

‘state of the art’ methodology (the SOM-FNN). The SA-FNN estimates pCO2 (sw) 

by clustering in situ monthly 1° gridded Surface Ocean CO2 Atlas (SOCAT) 

v2020 pCO2 (sw) observations (Bakker et al., 2016; Sabine et al., 2013), that 

have been reanalysed into a dataset configured using consistent depth and 

temperature fields (Goddijn-Murphy et al., 2015; Woolf et al., 2016; Reynolds et 

al., 2002), into eight static provinces in the South Atlantic Ocean (Fig. B1a). The 

use of eight static provinces allows the SA-FNN to more accurately reproduce 

the pCO2 (sw) variability. The nonlinear relationships between pCO2 (sw) and three 

environmental drivers; SST, NCP and pCO2 (atm) were constructed for each 

province with a feed forward neural network (FNN). The FNN for each province 

were applied to produce spatially and temporally complete pCO2 (sw) fields on 

monthly 1° grids between July 2002 and December 2018, with uncertainties 

also generated on a per pixel basis as described in Ford et al. (2022). These 

per pixel uncertainties are displayed in Appendix 4.2 (Fig. A4.3).  

Monthly 1º grids of pCO2 (atm) were extracted from v5.5 of the global estimates of 

pCO2 (sw) dataset (Landschützer et al., 2017, 2016) which was calculated using 

the dry mixing ratio of CO2 from the NOAA-ESRL marine boundary layer 
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reference (https://www.esrl.noaa.gov/gmd/ccgg/mbl/; last accessed 

25/09/2020), Optimum Interpolated SST (Reynolds et al., 2002) and sea level 

pressure following Dickson et al. (2007). ΔpCO2 was calculated from pCO2 (sw) 

and pCO2 (atm) as;  

ΔpCO2 = pCO2 (sw) – pCO2 (atm)                                  (4.1) 

4.2.2 Air-sea CO2 flux data 

The air-sea CO2 flux (F) can be estimated using a bulk parameterisation as: 

𝐹 = 𝑘 (𝛼𝑊 𝑝𝐶𝑂2 (𝑠𝑤) − 𝛼𝑠 𝑝𝐶𝑂2 (𝑎𝑡𝑚))                             (4.2) 

Where k is the gas transfer velocity which was estimated from ERA5 monthly 

reanalysis wind speed (Hersbach et al., 2019) following the parameterisation of 

Nightingale et al. (2000). αw and αs are the solubility of CO2 at the base and top 

of the mass boundary layer at the sea surface (Woolf et al., 2016). αw was 

calculated as a function of SST and sea surface salinity (SSS) (Weiss, 1974) 

using the monthly Optimum Interpolated SST (Reynolds et al., 2002) and SSS 

from the Copernicus Marine Environment Modelling Service global ocean 

physics reanalysis product (GLORYS12V1; CMEMS, 2021). αs was calculated 

using the same temperature and salinity datasets but included a gradient from 

the base to the top of mass boundary layer of -0.17 K (Donlon et al., 1999) and 

+0.1 salinity units (Woolf et al., 2016). pCO2 (atm) was calculated using the dry 

mixing ratio of CO2 from the NOAA-ESRL marine boundary layer reference, 

Optimum Interpolated SST (Reynolds et al., 2002) applying a cool skin bias 

(0.17K; Donlon et al., 1999) and sea level pressure following Dickson et al. 

(2007).  

All of these calculations along with the resulting monthly CO2 flux were carried 

out using the open source FluxEngine toolbox (Holding et al., 2019; Shutler et 

al., 2016), for the period between July 2002 and December 2018, assuming 

‘rapid’ transfer (as described in Woolf et al., 2016). 

4.2.3 Biological data 

The 4 km resolution mean monthly chlorophyll a (Chl a) was calculated from 

Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-A) Level 1 

granules, retrieved from the National Aeronautics Space Administration (NASA) 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/
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Ocean Colour website (https://oceancolor.gsfc.nasa.gov/; last accessed 

10/12/2020), using SeaDAS v7.5, and applying the standard OC3-CI algorithm 

for Chl a (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/; last accessed 

15/12/2020). Monthly composites of MODIS-A SST (NASA OBPG, 2015) and 

photosynthetically active radiation (PAR; NASA OBPG, 2017b) were also 

downloaded from the NASA Ocean Colour website. Monthly NPP composites 

were generated from MODIS-A Chl a, SST and PAR composites using the 

Wavelength Resolving Model (Morel, 1991) with the look up table described in 

Smyth et al. (2005). Coincident monthly composites of NCP using the algorithm 

NCP-D described in Tilstone et al. (2015b) were generated using the NPP and 

SST data. Further details of the satellite algorithms are given in O’Reilly et al. 

(1998), O’Reilly and Werdell (2019) and Hu et al. (2012) for Chl a, Smyth et al. 

(2005), Tilstone et al. (2005, 2009) for NPP and Tilstone et al. (2015b) for NCP. 

Monthly composites were generated between July 2002 and December 2018 

and were re-gridded onto the same 1º grid as the pCO2 (sw) and flux data. Ford 

et al. (2021b) showed that these satellite algorithms for Chl a, NPP, NCP and 

SST are accurate compared to in situ observations in the South Atlantic Ocean 

following an algorithm intercomparison which accounted for model, in situ and 

input parameter uncertainties.  

4.2.4 Seasonal and interannual driver analysis 

The X-11 analytical econometric tool (Shiskin et al., 1967) was used to 

decompose the timeseries into seasonal, interannual and residual components 

following the methodology of Pezzulli et al. (2005). In brief, the X-11 method 

comprises a three step filtering algorithm; (1) The interannual component (Tt) is 

initially estimated using an annual centred running mean, which is subtracted 

from the initial timeseries (Xt) and a seasonal running mean applied to estimate 

the seasonal component (St). (2) Tt is revised by applying an annual centred 

running mean to the Xt minus St. The revised Tt is removed from Xt and the final 

St calculated with a seasonal running mean. (3) The final Tt is calculated by 

applying an annual centred running mean to Xt minus the revised St. The 

analysis has been shown to be effective in the decomposition of environmental 

time-series (Pezzulli et al., 2005; Vantrepotte & Mélin, 2011; Henson et al., 

2018), that allows the seasonal cycle to vary on a yearly basis and, produces an 

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
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interannual component that results in a robust representation of the longer-term 

changes in the timeseries.  

The approach was applied to monthly 1° fields of ΔpCO2 that were estimated 

from pCO2 (atm) and SA-FNN pCO2 (sw), on a per pixel basis. The pCO2 (atm) and 

spatially and temporally varying pCO2 (sw) uncertainties (Table 4.1; Fig. A4.3) 

were propagated through the X-11 analysis, using a Monte Carlo uncertainty 

propagation approach. The input time series were randomly perturbed 1000 

times within the uncertainties of each parameter, and Spearman correlations 

calculated for each perturbation. The 95% confidence interval was extracted 

from the resulting distribution of correlations coefficients, and results were 

deemed significant (α < 0.05) where the confidence interval remained 

significant. Spatial autocorrelation was tested using the method of field 

significance (Wilks, 2006). The analysis was then conducted on the CO2 fluxes, 

on a per pixel basis. The pCO2 (sw), pCO2 (atm), gas transfer velocity, SST and 

SSS uncertainties (Table 4.1) were propagated through the flux calculations 

using the same Monte Carlo uncertainty propagation approach used for ΔpCO2. 

The potential drivers tested were MODIS-A skin SST, NCP and NPP alongside 

SSS from the CMEMS global reanalysis product (GLORYSV12; CMEMS, 2021) 

and two climate indices: Multivariate ENSO Index (MEI) as an indicator of El 

Niño Southern Oscillation phases, https://www.esrl.noaa.gov/psd/enso/mei (last 

accessed: 19/12/2019); Southern Annular Mode (SAM) data, which indicate the 

displacement of the westerly winds in the Southern Ocean, were downloaded 

from http://www.nerc-bas.ac.uk/icd/gjma/sam.html (last accessed: 19/12/2019).  

  

Table 4.1 - Uncertainties in the input parameters used in the Monte Carlo 
uncertainty propagation. 

Parameter Uncertainty Reference 

pCO2 (sw) Variable (Appendix B) (Ford et al., 2022) 

SST 0.441 °C (Ford et al., 2021b) 

SSS 0.1 psu (Jean-Michel et al., 2021) 

pCO2 (atm) 1 µatm (Takahashi et al., 2009) 

Gas transfer velocity 20 % (Woolf et al., 2019) 

https://www.esrl.noaa.gov/psd/enso/mei
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
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4.2.5 Trend analysis 

The linear trend in the interannual components of ΔpCO2 and the CO2 flux were 

calculated on a per pixel basis using the non parametric Mann-Kendall test for 

trend (Kendall, 1975; Mann, 1945) and Sen’s Slope estimates (Sen, 1968), 

which are less sensitive to outliers in the timeseries. The input parameter 

uncertainties (Table 4.1) were propagated within this trend analysis using a 

Monte Carlo uncertainty propagation (n = 1000) to extract the 95% confidence 

interval on the trends. The overall trend was deemed significant if 95% of the 

trends were significant (α = 0.05), and the uncertainties in these trends are 

displayed in Appendix B (Fig. A4.4). 

4.2.6 Limitations 

It should be noted that correlations between the ΔpCO2 and SST/NCP are 

expected since the SA-FNN estimates pCO2 (sw) (the major determinant of 

ΔpCO2 variability) using SST and NCP as input parameters which are 

subsequently interpreted as drivers here. By extension, but to a lesser extent, 

this also applies to correlations between CO2 flux and SST/NCP since pCO2 (sw) 

is included in the flux calculations. Different lines of evidence suggest that this is 

not a major limitation of our study. Firstly, any correlation between ΔpCO2/CO2 

flux and SST/NCP is not determined a priori, but is an emerging property of the 

SA-FNN. Therefore, the driver analysis undertaken here represents an indirect 

decomposition of the SA-FNN drivers rather than a strict correlation analysis 

between independent variables. The accurate representation of seasonal pCO2 

(sw) cycles across the South Atlantic Ocean (Ford et al., 2022) provides 

confidence in the SA-FNN. Secondly, conducting the analysis described by 

Henson et al. (2018) using in situ pCO2 (sw) to estimate ΔpCO2 on a per province 

basis (Longhurst, 1998) for the South Atlantic Ocean, yielded similar seasonal 

drivers to the SA-FNN (Appendix 4.1). The interannual drivers displayed some 

differences however, which may be due to the spatial and temporal averaging 

that is required to construct the in situ timeseries. 

4.3 Results 

4.3.1 Seasonal drivers of ΔpCO2 and CO2 flux 

The X-11 analysis conducted on ΔpCO2 indicated significant seasonal 

correlations (Fig. 4.1), when the uncertainties are accounted for. The subtropics 
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(10 °S to 40 °S) showed positive correlations between ΔpCO2, SST and SSS 

(Fig. 4.1c, d), as well as negative correlations between ΔpCO2, NCP and NPP 

(Fig. 4.1a, b). In contrast the subpolar (south of 40 °S) and equatorial regions 

(10 °N to 10 °S) displayed negative correlations between ΔpCO2 and SST (Fig. 

4.1c). Correlations between ΔpCO2 and NCP were negative in the subpolar 

regions and were positive in the Equatorial regions (Fig. 4.1a). There were no 

significant correlations observed between ΔpCO2 and MEI or SAM in any of the 

regions. 

Regional deviations were observed in the Amazon Plume, Benguela upwelling, 

the South American coast, and a band across 40 °S. The region under the 

influence of the Amazon Plume indicated negative correlations between ΔpCO2 

and NCP in contrast to the surrounding waters which had positive correlations 

(Fig. 4.1a). The Benguela upwelling displayed positive correlations between 

ΔpCO2 and NCP (Fig. 4.1a), no significant correlations between ΔpCO2 and 

SST (Fig. 4.1c), and negative correlations between ΔpCO2 and SSS (Fig. 4.1e). 

The South American coast between 12 °S and 17 °S displayed positive 

correlations between ΔpCO2 and NPP (Fig. 4.1b), along with negative 

correlations between ΔpCO2 and SSS (Fig. 4.1e). Negative correlation between 

ΔpCO2 and SSS, and positive correlations between NCP, NPP and ΔpCO2 

were also observed in the southwestern Atlantic (Fig. 4.1e). Positive 

correlations between NCP, NPP and ΔpCO2 were identified in a band across 40 

°S (Fig. 4.1a, b). Performing the X-11 analysis on the CO2 flux revealed similar 

and comparable correlations to ΔpCO2 (Fig. 4.2). Significant driver-flux 

correlations were observed over a larger area however, compared to ΔpCO2. 
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Figure 4.1- Significant Spearman correlations between the ΔpCO2 seasonal component of the X-11 analysis and (a) net community 
production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), (e) Multivariate 
ENSO index (MEI) and (f) Southern Annular Mode (SAM) seasonal components. White regions indicate no significant correlations, and 
green regions indicate no analysis was performed due to missing satellite data. 
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Figure 4.2 - Significant Spearman correlations between the air-sea CO2 flux seasonal component of the X-11 analysis and (a) net 
community production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), (e) 
Multivariate ENSO index (MEI) and (f) Southern Annular Mode (SAM) seasonal components. White regions indicate no significant 
correlations, and green regions indicate no analysis was performed due to missing satellite data.
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4.3.2 Interannual drivers of ΔpCO2 and CO2 flux 

The X-11 analysis identified regionally significant interannual correlations 

between ΔpCO2 and SST, MEI and to a lesser extent NCP and SSS (Fig. 4.3). 

The subtropics displayed positive correlations between SST and ΔpCO2, which 

extended across the basin from the South American coast (Fig. 4.3c). Positive 

correlations were also observed between the MEI and ΔpCO2 (Fig. 4.3e), with a 

similar geographic extent as the correlations with SST. In the central South 

Atlantic gyre spatially variable negative correlations between NCP and ΔpCO2, 

and positive correlations between SSS and ΔpCO2 were observed (Fig. 4.3a, 

d). The central Equatorial Atlantic displayed spatially variable positive 

correlations between NCP and ΔpCO2, which extended south-east towards the 

African coast (Fig. 4.3a).  

Significant interannual correlations for the CO2 flux were also identified by the 

X-11 analysis (Fig. 4.4), which generally covered a larger spatial area to the 

corresponding ΔpCO2 correlations (Fig. 4.3). Positive correlations between the 

CO2 flux and SST were observed in the subtropics (Fig. 4.4c), consistent with 

the correlations with ΔpCO2 (i.e. by comparing Fig. 4.4c and Fig. 4.3c). 

Nevertheless, negative correlations between the CO2 flux and SST were 

observed at the border between the equatorial region and subtropics; which 

was not identified in the ΔpCO2 correlations. Negative correlations between 

NCP and the CO2 flux were also identified over a spatially larger area (Fig. 4.4a, 

4.3a). Correlations between the MEI and CO2 flux were positive in the 

subtropics (Fig. 4e) and included a band of negative correlations to the south 

between 35 °S and 45 °S (Fig. 4.4e).  

Positive correlations between NCP and CO2 flux were observed in the western 

equatorial Atlantic, alongside spatially variable negative correlations to SST 

(Fig. 4.4a, c). Positive correlations between SSS and CO2 flux were identified in 

the region of the Amazon plume (Fig. 4.4d). Weak positive correlations between 

the SAM and CO2 flux were identified between 30° S and 45° S (Fig. 4.4f).  
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Figure 4.3 - Significant Spearman correlations between the ΔpCO2 interannual component of the X-11 analysis and (a) net community 
production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), (e) Multivariate 
ENSO index (MEI) and (f) Southern Annular Mode (SAM) interannual components. White regions indicate no significant correlations, and 
green regions indicate no analysis was performed due to missing satellite data. 



 

144 
 

 

Figure 4.4 - Significant Spearman correlations between the air-sea CO2 flux interannual component of the X-11 analysis and (a) net 
community production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), (e) 
Multivariate ENSO index (MEI) and (f) Southern Annular Mode (SAM) interannual components. White regions indicate no significant 
correlations, and green regions indicate no analysis was performed due to missing satellite data. 
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4.3.3 Trends in interannual ΔpCO2 and CO2 flux 

Regions of significant trends in the interannual component of ΔpCO2 were 

observed (Fig. 4.5a). Negative trends occurred in the South Atlantic gyre. 

Positive trends in ΔpCO2 were identified along the South African coast, which 

switched to strong negative trends moving offshore into the central South 

Atlantic gyre. Positive trends were also observed in the Equatorial Atlantic 

consistent with the positions of the Amazon Plume and Equatorial Upwelling. 

Regions of significant trends in the CO2 flux were identified (Fig. 4.5b), but over 

much larger spatial areas than evident in the ΔpCO2 results (i.e. comparing Fig. 

4.5a with 4.5b). The trends in CO2 flux are generally in the same direction as 

trends in ΔpCO2. Strong positive trends in the CO2 flux occurred in the 

Benguela upwelling region, before switching to a negative trend offshore of 

similar magnitude but occupying a larger spatial extent.  

4.4 Discussion 

4.4.1 Seasonal drivers of ΔpCO2 and CO2 flux 

Previous studies have explored the seasonal drivers of ΔpCO2 and to a lesser 

extent the air-sea CO2 flux . In this study, we investigated the drivers of ΔpCO2 

and CO2 flux at both seasonal and interannual timescales in the South Atlantic 

Ocean. In the North Atlantic, Henson et al. (2018) indicated that the seasonal 

variability in subtropical ΔpCO2 variability is driven by SST, whereas the 

variability in ΔpCO2 in subpolar regions is biologically driven, similar to previous 

studies (Takahashi et al., 2002; Landschützer et al., 2013). The X-11 analysis 

conducted on spatially complete ΔpCO2 and CO2 flux displayed consistent 

seasonal results (Fig. 4.1, 4.2), though for the CO2 flux significant correlations 

occupied a larger area. These both indicated a similar pattern in seasonal 

drivers for the South Atlantic Ocean, with subtropical ΔpCO2 and CO2 flux 

driven by SST, and subpolar correlated with biological controls, although the 

equatorial region exhibited more complex patterns (Fig. 4.1).  
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Figure 4.5 - Linear trends in (a) ΔpCO2 and (b) the air-sea CO2 flux between 2002 and 2018. Hashed areas indicate non-significant 
trends when accounting for the uncertainties. Green regions indicate insufficient data to calculate trends. 
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In the Equatorial Atlantic, the correlations between ΔpCO2, SST and biological 

production were spatially variable (Fig. 4.1). Landschützer et al. (2013) 

suggested that the temperature and non-temperature (i.e. biological and 

circulation) drivers generally compensated each other. We found positive 

correlations between the NCP, ΔpCO2 and CO2 flux seasonal components, 

indicating that biological activity is likely a key driver of seasonal variability in 

response to the equatorial upwelling. Ford et al. (2022) showed that the SA-

FNN improved the seasonal pCO2 (sw) variability in the Equatorial Atlantic 

compared to the current ‘state of the art’ SOM-FNN methodology (Watson et al., 

2020b). Elevated ΔpCO2 associated with elevated NCP in the eastern 

Equatorial Atlantic was consistent with the seasonal equatorial upwelling 

(Radenac et al., 2020). Parard et al. (2010) indicated strong negative 

correlations between SST and ΔpCO2 during the upwelling season (R= -0.76 for 

June to September), which is also consistent with our results. By contrast, 

Lefèvre et al. (2016) showed that correlations between pCO2 (sw) and SST were 

weak across the whole year (R = -0.13), and SSS (R = 0.93) was the primary 

driver at the same station. 

In the western Equatorial Atlantic, negative correlations between NCP and 

ΔpCO2, and positive correlations between the SSS and ΔpCO2 seasonal 

component occurred in the vicinity of the Amazon River mouth. The mixing of 

the Amazon river and oceanic water decreases SSS (Ibánhez et al., 2016; 

Lefèvre et al., 2020; Bonou et al., 2016; Lefévre et al., 2010), and increases the 

nutrient supply to the ocean which can in turn enhance NPP and NCP, leading 

to a decrease in ΔpCO2 within the Amazon plume (Körtzinger, 2003; Cooley et 

al., 2007). This coupling produces an extensive area of depressed ΔpCO2 

which is a CO2 sink (Ibánhez et al., 2016). Lefèvre et al. (2010) indicated that 

rainfall from the intertropical convergence zone could reduce SSS, with an 

associated decrease in ΔpCO2. The Eastern Tropical Atlantic is also subject to 

large river input, especially from the Congo (Hopkins et al., 2013) and Niger 

rivers, which could produce nutrient-rich plumes that fuel NCP and decrease 

ΔpCO2 (Lefèvre et al., 2016, 2021). 

Between 30 °S and 45 °S, dissolved inorganic carbon and SST exert a similar 

influence on pCO2 (sw), indicating that seasonal changes in dissolved inorganic 

carbon driven by biological uptake in the summer and upwelling in winter are 
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approximately balanced by seasonal changes in SST and their control on the 

solubility pump (Henley et al., 2020). This likely explains the band of positive 

correlations between NCP, NPP and ΔpCO2 and sharp transitions in 

correlations between SST and ΔpCO2 across ~40 °S.  

Deviations from the expected drivers in the subtropics, occurred within the 

Benguela upwelling system between 20 °S and 35 °S. Positive correlations 

between NCP and the CO2 flux (Fig. 4.2a) alongside negative correlations 

between SST, SSS and the CO2 flux (Fig. 4.2c, d) are indicative of upwelled 

waters that have both elevated pCO2 (sw) and nutrients, which cause an increase 

in NPP (Lamont et al., 2014). These upwelled waters move offshore in filaments 

(Rubio et al., 2009) where NPP decreases, and SST becomes the dominant 

driver, which is confirmed by the positive correlations between SST and the 

CO2 flux further offshore. Ford et al. (2021b) indicated a switch in NCP drivers 

in the Benguela upwelling from wind driven upwelling on the shelf, to filaments 

that propagate offshore from the upwelling front, which is consistent with the 

switch in the drivers observed for the CO2 flux as these filaments move 

offshore.  

At between 12° S and 17 °S along the South American coast, there were also 

deviations from the expected drivers as there were positive correlations 

between NPP and ΔpCO2 (Fig. 4.1b) and negative correlations between SSS 

and ΔpCO2 (Fig. 4.1d), which are consistent with an upwelling signature that 

occurs along the coast. Aguiar et al. (2018) also showed intense seasonal 

upwelling events in this region that are driven by wind and currents. The 

southern coast of South America is strongly influenced by riverine water input 

that reduces the total alkalinity and therefore causes an increase in pCO2 (sw) 

(Liutti et al., 2021). This is associated with an increased supply of nutrients 

which in turn enhances NPP, though the main drivers of pCO2 (sw) in this region 

still remain as total alkalinity and SST (Liutti et al., 2021). This potentially 

explains the positive correlation between ΔpCO2 and both NCP and NPP (Fig. 

4.1a, b), as well as the negative correlations between ΔpCO2 and SSS. The 

extension offshore of this negative correlation between SSS and ΔpCO2 (Fig. 

4.1d) could be caused by the advection of water masses due to intense 

mesoscale eddy activity arising from the Brazil-Malvinas confluence (Mason et 

al., 2017). 
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The seasonal correlations between the CO2 flux and the drivers were similar to 

ΔpCO2, but for CO2 flux these occurred over a larger spatial area. The South 

Atlantic subtropical anticyclone (Reboita et al., 2019) which controls wind 

speeds across the region, and therefore the gas transfer velocity, could 

enhance the CO2 flux into the subtropical ocean, through higher (or lower) wind 

speeds in winter (or summer; Xiong et al., 2015). Since seasonal variations in 

ΔpCO2 largely explain the seasonal variability in the CO2 flux, ΔpCO2 can be 

used as a proxy to understand seasonal variations in the CO2 flux in this region. 

4.4.2 Interannual drivers of ΔpCO2 and CO2 flux 

The larger geographic region of significant correlations for the air-sea CO2 flux 

compared to ΔpCO2, and the consistency between the two results (i.e. 

comparing the smaller regions of ΔpCO2 correlations with their equivalent in the 

flux results; Fig. 4.3, 4.4) suggests that analysing the CO2 flux is the better 

dataset to investigate drivers of variations in inter-annual and longer timescales. 

The results become clearer when analysing the CO2 flux, where the effects of 

solubility and gas transfer (estimated via wind speed proxy) could reinforce 

correlations and multi-year trends, which will be retrieved by performing long 

timeseries analyses on the CO2 flux. Landschützer et al. (2015) showed that 

variations in the Southern Ocean carbon sink were primarily driven by changes 

in ΔpCO2, when integrating across basin scales. At localised scales of 1° by 1° 

as performed in our analysis, changes in surface turbulence and solubility are 

shown to be important in determining interannual variability, consistent with 

Keppler and Landschützer (2019). In the North Atlantic Ocean, Henson et al. 

(2018) showed that the seasonal and interannual drivers of ΔpCO2 are different, 

which could arise from the necessity to study CO2 fluxes over longer 

timescales.  

The interannual component of NCP and the CO2 flux were negatively correlated 

in the subtropical gyre (Fig. 4.4a), alongside a positive correlation between SST 

and CO2 flux (Fig. 4.4b). El Niño (La Niña) events are known to influence the 

South Atlantic Ocean, causing an increase (decrease) in SST across the basin 

(Rodrigues et al., 2015; Colberg et al., 2004), and a decrease (increase) in NPP 

and NCP (Ford et al., 2021b; Tilstone et al., 2015). Positive correlations 

between the MEI and CO2 flux (Fig. 4.4e) indicate that the MEI partially controls 

the interannual variability in CO2 flux in the South Atlantic subtropical gyre, 
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through modulations primarily in SST and to a lesser extent NCP. The South 

Atlantic Subtropical Anticyclone has been observed to strengthen (weaken) and 

move south (north) during La Niña (El Niño) events. This displacement 

increases (decreases) wind speeds across the subtropical South Atlantic, which 

will enhance (weaken) gas exchange, and elevate (depress) NCP (Ford et al., 

2021b). These results suggest a more significant role of NCP in controlling the 

interannual variability in the CO2 flux than has previously been thought.  

The negative correlation between the CO2 flux and the MEI in a band between 

30° S and 45° S (Fig. 4.4e), indicates that reduced (elevated) wind speeds that 

occur during La Niña (El Niño) events in this region, suppress (enhance) the 

gas exchange (Colberg et al., 2004) and therefore acts as a weaker (stronger) 

CO2 sink. In the equatorial region, neither ΔpCO2 or the CO2 flux were 

correlated with the MEI, in sharp contrast with Lefèvre et al. (2013) who showed 

stronger outgassing of CO2 in the western equatorial Atlantic for the year 

following the 2009 El Niño. In that respect, it should be noted that our analysis 

would not identify such lagged correlations. 

The SAM has known meteorological connections to the MEI (Fogt et al., 2011), 

where El Niño (La Niña) events generally coincide with negative (positive) SAM 

phases, resulting in northward (southward) displacement of the westerly winds 

in the Southern Ocean. Our results showed positive correlations between the 

CO2 flux and the SAM between 30° S and 45° S (Fig. 4.4f) indicating stronger 

(weaker) CO2 drawdown into the oceans during negative (positive) SAM 

phases. Although no significant correlations were found between ΔpCO2 and 

the SAM (Fig. 4.3f), the changes in the gas transfer driven by the displacement 

of the westerly winds could control the CO2 flux. Landschützer et al. (2015) 

indicated that the SAM is unlikely to be the main driver of changes in the 

Southern Ocean CO2 flux, but an observed zonally asymmetric atmospheric 

pattern could induce changes in the CO2 flux (Keppler and Landschützer, 2019; 

Landschützer et al., 2015). This asymmetric atmospheric pattern, however, may 

not be captured within the SAM index. 

4.4.3 Multi-year trends in ΔpCO2 and CO2 flux 

The trends in ΔpCO2 and CO2 flux over 16 years (Fig. 4.5) showed some 

similarities to previous trend assessments in the South Atlantic Ocean 
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(Landschützer et al., 2016). Our results indicated a lower number of significant 

trends however, since uncertainties in the trend analysis were accounted for. 

The uncertainties in both the pCO2 (sw) estimates from extrapolation techniques 

and the gas transfer velocity are rarely propagated through previous trend 

analyses. By accounting for these uncertainties, the trend analyses provide a 

robust depiction of regions that can confidently be determined as changing. As 

with the seasonal and inter-annual analysis, the CO2 flux-based trend analysis 

showed a greater spatial area of significant trends, when compared to ΔpCO2 

(Fig. 4.5).  

The strongest trends in ΔpCO2 and the CO2 flux were observed in the Benguela 

upwelling system. Arnone et al. (2017) reported positive trends in in situ pCO2 

(sw) of 6.1 ± 1.4 µatm yr-1,  between 2005 and 2015. Assuming an atmospheric 

CO2 increase of 1.5 µatm yr-1
 (Takahashi et al., 2002; Zeng et al., 2014), to 

remove the trend in pCO2 (atm) from the pCO2 (sw) and approximate a ΔpCO2 

trend, these results are consistent with the ΔpCO2 trends observed in this study 

(1.5 ± 1.1 – 3.8 ± 1.1 µatm yr-1, Fig. 4.5a). Arnone et al. (2017) also suggested 

that the positive trend was due to a stronger influence of upwelling (Rouault et 

al., 2010), which injects CO2 and nutrients into the area that is then not 

completely removed by the enhanced NPP/NCP. Varela et al. (2015) indicated 

an increase in the strength of the Benguela upwelling. By contrast, Lamont et al. 

(2018b) showed no significant change in upwelling in the Southern Benguela 

but increases in the Northern Benguela which are consistent with our data that 

highlights an increasing efflux of CO2 to the atmosphere (Fig. 4.5b). The CO2 

flux trends in this study (0.03 ± 0.01 – 0.09 ± 0.02 mol m-2 yr-1, Fig. 4.5b) were 

also consistent with but slightly lower than the 0.13 ± 0.03 mol m-2 yr-1 trend in 

CO2 flux observed by Arnone et al. (2017). An increase in the strength of the 

upwelling that injects CO2 into the surface layer, will be driven by enhanced 

(upwelling-conducive) winds, that also enhance the gas transfer. This highlights 

the importance of studying multi-year trends using the CO2 flux, because the 

enhancement of these trends by meteorological conditions would not be 

observed using ΔpCO2 alone. 

Offshore from the upwelling region negative ΔpCO2 and CO2 flux trends were 

observed. Rubio et al. (2009) showed that mesoscale filaments and eddies 

propagate away from the upwelling front, transporting nutrients offshore into the 
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South Atlantic gyre. Ford et al. (2021b) showed negative correlations between 

sea level height anomalies (SLHA), and NPP/NCP anomalies (negative SLHA; 

positive NCP/NPP), indicating an influence of mesoscale features on ΔpCO2 

and the CO2 flux. Xiu et al. (2018) indicated that an increase in upwelling 

conducive winds could increase the number of mesoscale eddies, which would 

transport nutrients offshore of the Californian upwelling. Although the Benguela 

and Californian upwelling systems are not identical, these connections could 

suggest an elevated nutrient export offshore, driving elevated NPP/NCP, which 

would increase the CO2 sink. Kulk et al. (2020) showed significant increases in 

NPP of ~2 % yr-1
, between 1998 and 2018 in the region of strong negative 

trends in the CO2 flux observed in this study, which supports the  contribution of 

NCP to multi-year trends in the CO2 flux. 

There were also positive trends in ΔpCO2 and CO2 flux in the Equatorial 

Atlantic. In the Eastern Equatorial Atlantic, Lefèvre et al. (2016) previously 

suggested a negative trend in in situ ΔpCO2, between 2006 and 2013, but 

indicated that the trend may be biased by extreme events at either end of the 

record. From 1995 to 2007, Parard et al. (2010) indicated a greater increase in 

in situ pCO2 (sw) than pCO2 (atm) (increasing ΔpCO2), but the trend was derived 

from data from only two research cruises. For the Equatorial upwelling, an 

increase in ΔpCO2 (as shown here and in Landschützer et al., 2016) is counter 

intuitive because there is evidence that upwelled water has recently been in 

contact with the atmosphere (~15 years; Reverdin et al., 1993). Dissolved 

inorganic carbon in these upwelled waters has been shown to increase at a 

similar rate to the surface waters (e.g Woosley et al., 2016). Therefore, the 

trend in ΔpCO2 should be ~0 with increasing pCO2 (atm). This could suggest a 

missing component within the SA-FNN to estimate pCO2 (sw), such as changes 

in the biological export efficiency (Kim et al., 2019), which could then suppress 

upwelling induced CO2 outgassing.  

The Western Tropical Atlantic, in the vicinity of the Amazon Plume, also showed 

positive trends in ΔpCO2 and CO2 flux. Previous studies have not investigated 

the trends in ΔpCO2 or CO2 flux in the Amazon Plume, however the carbon 

retention in a colored ocean site (CARIACO), situated to the northwest, 

displayed positive trends in pCO2 (sw) of 2.95 ± 0.43 µatm yr-1 (Bates et al., 

2014). Araujo et al. (2019) identified a positive trend in pCO2 (sw) of 1.20 µatm yr-
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1, but a trend in pCO2 (atm) of 1.70 µatm yr-1 (i.e. decreasing ΔpCO2) for the 

northeast Brazilian coast, Although, the air-sea CO2 flux and ΔpCO2 within the 

Amazon Plume region is spatially and temporally variable (Valerio et al., 2021; 

Ibánhez et al., 2016; Bruto et al., 2017). 

The South Atlantic gyre exhibited negative trends in ΔpCO2 and the CO2 flux 

indicating an increasing drawdown of atmospheric CO2 into the ocean, which 

were consistent with Landschützer et al. (2016) over the period from 1982 and 

2011 though the trends were at the limits of the uncertainties (Appendix 4.2; 

Fig. A4.4). Fay and Mckinley (2013) showed weak negative trends in ΔpCO2 

using in situ observations over different time series lengths. Gregor et al. 

(2019), with an ensemble of complete pCO2 (sw) fields, indicated negative trends 

in ΔpCO2 however there was low confidence in these trends especially in the 

South Atlantic gyre. By contrast, Kitidis et al. (2017) reported a mean trend in in 

situ ΔpCO2 between 1995 and 2013, that was not significantly different from 

zero. These contradictory trends support the conclusion that ΔpCO2 is unlikely 

to be representative of the CO2 flux over multi-year timescales. Therefore, we 

recommend that the CO2 flux should be used to assess multi-year variability in 

the oceanic CO2 sink, as the importance of changes in solubility and gas 

transfer velocity (estimated via wind speed) increases (Keppler and 

Landschützer, 2019). 

During the United Nations decade of ocean science (2021-2030) , the 

Integrated Ocean Carbon Research (IOC-R) highlights that the role of biology is 

a key issue to understanding the global ocean CO2 sink (Aricò et al., 2021). The 

biological contribution to both interannual and multi-year variations in the South 

Atlantic air-sea CO2 flux shown in this study, and supported by Ford et al. 

(2022), indicates that the biology activity through NCP cannot be assumed to be 

in steady state. The biological effect of NCP on ΔpCO2 and CO2 flux should 

therefore not be overlooked when assessing the interannual and multi-year 

variations in the global ocean carbon sink. 

4.5 Conclusions 

In this paper, we have investigated the seasonal and interannual drivers of 

ΔpCO2 and the air-sea CO2 flux in the South Atlantic Ocean using satellite 

observations. Seasonally, our results indicated that the subtropics were 
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controlled by SST, and the subpolar regions were correlated with biological 

processes. Deviations from this trend occurred in the Benguela upwelling where 

predominately biological processes correlated with variability in the ΔpCO2 as 

well as upwelling. The Equatorial Atlantic showed spatially variable drivers 

associated with the Amazon Plume and Equatorial upwelling which induced a 

biological effect. These regions imply a strong biological control on ΔpCO2 

through local physical processes. The CO2 flux had similar seasonal drivers to 

ΔpCO2, but with significant correlations over a larger spatial area. This 

highlights that ΔpCO2 can be used to indicate the important drivers of the CO2 

flux on seasonal timescales, but it’s still possible that ΔpCO2 will miss some of 

the spatial correlations and will likely overestimate the strength of these 

correlations. 

The interannual variability of ΔpCO2 and the CO2 flux was correlated with the 

MEI through a reduction (increase) of NCP and increase (decrease) in SST 

during El Niño (La Niña) events, again highlighting the importance of biology to 

the interannual variability. The CO2 flux response extended over a larger 

geographical region, indicating that the CO2 flux should be used to assess 

interannual trends in the oceanic CO2 sink, as opposed to a proxy such as 

ΔpCO2, which may overestimate the strength of the correlations and does not 

include variability in the solubility and the gas transfer velocity (estimated via 

wind speed). The 16 year trends in ΔpCO2 and the CO2 flux were determined 

with associated uncertainties which identified negative trends in the CO2 flux in 

the South Atlantic gyre. Positive trends in the CO2 flux were observed in the 

Benguela upwelling region, which were associated with an increase in the 

strength and frequency of upwelling. A transition to negative trends offshore 

were consistent with elevated nutrient export from the upwelling area, and 

subsequent biological drawdown of CO2. These results highlight that changes in 

biological activity in the South Atlantic Ocean can control the interannual and 

multi-year trends in the oceanic CO2 flux. This emphasises the importance of 

biology and specifically NCP in assessing the global ocean carbon sink. 
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Appendices 

Appendix 4.1 – Driver analysis using in situ ΔpCO2 

Henson et al. (2018) performed the X-11 analysis using in situ pCO2 (sw) 

observations to estimate average ΔpCO2 for the Longhurst provinces 

(Longhurst, 1998). The in situ pCO2 (sw) observations were obtained from 

SOCATv2020 (https://www.socat.info/; Bakker et al., 2016), and were 

reanalysed to a temperature dataset representative for a consistent and fixed 

depth (Reynolds et al., 2002) which is used to represent the base of the mass 

boundary layer. The reanalysis method used the ‘fe_reanalyse_socat.py’ 

routine within FluxEngine (Holding et al., 2019; Shutler et al., 2016), which 

follows the methodology of Goddijn-Murphy et al. (2015), and as used in Woolf 

et al. (2019) and Watson et al (2020b). ΔpCO2 was calculated using the 

reanalysed in situ pCO2 (sw) observations and pCO2 (atm). These ΔpCO2 

estimates were used within the driver analysis as described by Henson et al. 

(2018), using the drivers described in section 4.2.4, for the South Atlantic 

Longhurst provinces (Longhurst, 1998). The seasonal drivers of in situ ΔpCO2 

(Fig. A4.1) showed a similar spatial distribution as the SA-FNN ΔpCO2 (Fig. 

4.1). The interannual drivers (Fig. A4.2) showed some differences to the SA-

FNN (Fig. 4.3). The averaging required to produce the in situ ΔpCO2 timeseries 

may mask interannual signals, and Ford et al. (2021b) indicated that averaging 

over large province areas could mask correlations, especially in dynamic 

regions, and locally these correlations may be significant. 

 

https://www.socat.info/
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Figure A4.1 - Spearman correlations between the in situ ΔpCO2 seasonal component of the X-11 analysis and (a) net community 
production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), (e) Multivariate 
ENSO index (MEI) and (f) Southern Annular Mode (SAM) seasonal components on a per province basis. Hashed areas indicate no 
significant correlations, and green regions indicate no analysis was performed due to missing data. 
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Figure A4.2 - Spearman correlations between the in situ ΔpCO2 interannual component of the X-11 analysis and (a) net community 
production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS) (e) Multivariate 
ENSO index (MEI) (f) Southern Annular Mode (SAM) interannual components on a per province basis. Hashed areas indicate no 
significant correlations, and green regions indicate no analysis was performed due to missing data. 
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Appendix 4.2 – SA-FNN pCO2 (sw) and trend uncertainties 

 

Figure A4.3 - (a) Mean SA-FNN pCO2 (sw) uncertainty between July 2002 and December 2018. Longhurst provinces (Longhurst, 1998) 
used within the SA-FNN training described in Ford et al. (2022; note the WTRA and ETRA are merged into one province). The province 
areas acronyms are listed as follows: WTRA is western tropical Atlantic; ETRA is eastern equatorial Atlantic; SATL is South Atlantic 
Gyre; BRAZ is Brazilian current coastal; BENG is Benguela Current coastal upwelling; FKLD is Southwest Atlantic shelves; SSTC is 
South Subtropical Convergence; SANT is sub-Antarctic and ANTA is Antarctic. (b) Standard deviation of SA-FNN pCO2 (sw) uncertainty.  
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Figure A4.4 - (a) Uncertainty in the ΔpCO2 trends presented in Fig. 5a (b) Uncertainty in the air-sea CO2 flux trends presented in Fig. 5b 
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Chapter 5: Mesoscale eddies enhance the air-sea CO2 sink 

in the South Atlantic Ocean 

This chapter is a reformatted version of my in prep publication: 

Ford, D. J., Tilstone, G. H., Shutler, J. D., Kitidis, V., Sheen, K. L., Dall’Olmo, 
G. and Orselli, I. B. M. (in prep): Mesoscale eddies enhance the air-sea CO2 
sink in the South Atlantic Ocean 
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and IBMO provided comments that have shaped the manuscript.GD provided 
useful discussions on the Lagrangian tracking and application of the neural 
network approach. IBMO provided in situ observations from the Following 
Ocean Rings in the South Atlantic Ocean cruise. 

 

Abstract: Long lived mesoscale eddies are abundant in the global oceans and 

known to affect marine biogeochemical cycles. Understanding their cumulative 

impact on modulating the air-sea CO2 flux would appear important for assessing 

the global carbon budget. In this study, satellite observations and Lagrangian 

tracking are used to estimate the air-sea CO2 flux into long lived mesoscale 

eddies in the South Atlantic Ocean. Using this technique, we find that 

anticyclonic eddies originating from the Agulhas retroflection, and cyclonic 

eddies from the Benguela upwelling act as cumulative net CO2 sinks over their 

respective lifetimes. In combination the anticyclonic and cyclonic eddies 

significantly enhanced the CO2 sink into the South Atlantic Ocean by 0.08 %. 

However, these long lived eddies account for 0.4 % of eddies globally, and 

therefore, the inclusion of mesoscale eddies within models used to estimate the 

global ocean carbon sink could be important. 

Plain Languange Summary: Ocean mesoscale eddies are formed when part 

of a main current gets pinched off to form circular rotating currents that wander 

the oceans and last from weeks to years. These eddies can modify the ocean 

properties and affect the rate at which CO2 flows between the ocean and the 

atmosphere, which is known as the global ocean CO2 sink. Little is known on 

how these eddies modify the ocean CO2 sink. Using satellite based 

observations, to estimate the eddy CO2 exchange in the South Atlantic Ocean, 

we show that the eddies enhance the drawdown of CO2 from the atmosphere, 

thus modifying the ocean to be a stronger net sink of CO2. These results are of 

importance as they quantify how much eddies contribute to the drawdown of 
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CO2 from the atmosphere to the ocean. Our results further support the inclusion 

of these, currently unresolved, features in future global climate models. 

5.1 Introduction 

Mesoscale eddies are ubiquitous in the global oceans with radii up to 100 km 

and last for weeks to years (Chelton et al., 2011; Pegliasco et al., 2022). Eddies 

modify the physical (Laxenaire et al., 2019; Nencioli et al., 2018), biological 

(Carvalho et al., 2019; Dufois et al., 2016; Lehahn et al., 2011; Roughan et al., 

2017), and chemical (Arhan et al., 2011; Orselli et al., 2019a, b; Chen et al., 

2007) oceanic conditions compared to the surrounding waters, and can advect 

these waters far away from the formation regions. Alteration of the ocean 

surface conditions can modulate the air-sea exchange of CO2 through changes 

in the partial pressure of CO2 (pCO2 (sw)) (Orselli et al., 2019b; Chen et al., 2007; 

Song et al., 2016; Jones et al., 2017), solubility of CO2, and the overlying 

atmospheric conditions (Frenger et al., 2013; Pezzi et al., 2021; Souza et al., 

2021). Few studies have investigated the role of eddies in the air-sea exchange 

of CO2 (Pezzi et al., 2021; Orselli et al., 2019b; Chen et al., 2007; Jones et al., 

2017) and none has identified their cumulative impact on the oceanic CO2 sink. 

Anticyclonic eddies generally display high pressure centres, displace isopycnals 

downwards, and have higher sea surface temperatures (SST) than the 

surrounding environment (McGillicuddy, 2016). The solubility of CO2 in 

seawater decreases with increasing temperature (Weiss, 1974), and biological 

activity would hypothetically decrease due to lower nutrient inputs into the 

surface layer (e.g. Gaube et al., 2014; Liu et al., 2018). Therefore, these 

anticyclonic features are commonly thought to increase pCO2 (sw) and 

considered as weak CO2 sinks or even sources of CO2 to the atmosphere. 

Cyclonic eddies are expected to follow the opposite convention with low 

pressure centres, lower SST, elevated isopycnals, enhanced biological activity 

and therefore decreased pCO2 (sw), potentially enhancing the CO2 sink. 

Mesoscale eddies are, however, intricate structures, and the modification of the 

air-sea CO2 fluxes can be more complex. Jones et al. (2017) identified that both 

anticyclonic and cyclonic eddies were hotspots for CO2 drawdown in the 

Southern Ocean. Orselli et al. (2019b) showed that anticyclonic (Agulhas) 

eddies are stronger CO2 sinks in the South Atlantic Ocean. By contrast, Pezzi et 
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al. (2021) identified an anticyclonic eddy acting as a CO2 source and Chen et al. 

(2007) reported that a single cyclonic eddy in the North Pacific weakened the 

CO2 sink by ~ 17 %. Song et al. (2016) showed that modifications to the air-sea 

CO2 flux are seasonally dependent in the Southern Ocean. Anticyclonic 

(cyclonic) eddies were stronger (weaker) CO2 sources in winter and stronger 

(weaker) CO2 sinks in summer. The ability of mesoscale eddies to modify the 

CO2 flux as they age (Orselli et al., 2019b), may also be modified by seasonal 

variability.  

The South Atlantic Ocean contains some of the largest long-lived (> 1 year) 

anticyclonic eddies globally, originating from the Agulhas retroflection (Guerra et 

al., 2018), which propagate across the basin to the Brazilian Coast. In 

conjunction with these, cyclonic eddies forming from the Benguela upwelling 

system also propagate across the basin (Rubio et al., 2009; Chelton et al., 

2011; Pegliasco et al., 2022). The modulation of the air-sea CO2 flux by eddies, 

differences between anticyclonic and cyclonic, and their role in the global ocean 

CO2 sink requires further investigation, especially since eddy kinetic energy, a 

proxy for mesoscale eddies, has been increasing globally (Martínez-Moreno et 

al., 2021). 

The objective of this study is to estimate the air-sea CO2 flux of long-lived 

mesoscale eddies in the South Atlantic Ocean throughout their lifetimes using 

satellite observations. In total, 36 Agulhas anticyclonic and 31 Benguela 

cyclonic eddies were tracked in a Lagrangian mode using satellite observations 

(2002 - 2018), and the cumulative air-sea CO2 fluxes of these 67 eddies were 

estimated in order to assess their role in the South Atlantic CO2 sink. The pCO2 

(sw) timeseries for each eddy was decomposed into the thermal and non-thermal 

drivers to assess changes over the lifetime of the respective eddies.   

5.2 Data and Methods 

5.2.1 Sea surface temperature, salinity, biological and wind speed data 

Daily 4 km resolution chlorophyll a (Chl a) composites were calculated from 

Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-A) Level 1 

granules, retrieved from the National Aeronautics Space Administration (NASA) 

Ocean Colour website (https://oceancolor.gsfc.nasa.gov/; accessed 

10/12/2020), using SeaDAS v7.5, and applying the standard OC3-CI algorithm 

https://oceancolor.gsfc.nasa.gov/
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for Chl a (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/; accessed 

15/12/2020). Coincident daily composites of SST (NASA OBPG, 2015) and 

photosynthetically active radiation (PAR) (NASA OBPG, 2017) were retrieved 

from the NASA ocean colour website (https://oceancolor.gsfc.nasa.gov/; 

accessed 10/12/2020). SST, PAR and Chl a were used to estimate net primary 

production (NPP) using the Wavelength Resolving Model (Morel, 1991) with the 

look up table described in Smyth et al. (2005). Daily net community production 

(NCP) composites were generated using NPP and SST data with the algorithm 

NCP-D described in Tilstone et al. (2015b). These satellite algorithms were 

shown to be the best performing with respect to in situ data in an algorithm 

intercomparison which accounted for in situ, satellite and algorithm uncertainties 

(Ford et al., 2021a). Daily 8 km sea surface salinity (SSS) composites were 

retrieved from the Copernicus Marine Service (CMEMS) physics reanalysis 

product (GLORYSV12) (CMEMS, 2021). Daily 0.25 ° resolution wind speed at 

10 m were downloaded from Remote Sensing Systems Cross-Calibrated Multi-

Platform (CCMP) product (Wentz et al., 2015). All data were retrieved for the 

period July 2002 to December 2018. 

5.2.2 AVISO+ Mesoscale Eddy Tracking Product and Lagrangian Tracking 

The AVISO+ Mesoscale Eddy Product META3.1exp (Pegliasco et al., 2022; 

Mason et al., 2014; Pegliasco et al., 2021) was used to identify the trajectories 

of mesoscale eddies within the South Atlantic Ocean, which provides daily 

estimates of the eddy location and radius. Anticyclonic (Agulhas) eddies were 

considered for analysis using three criteria: (1) the eddy trajectory started in a 

region surrounding the Agulhas retroflection (30 °S – 40 °S; 5 °E – 25 °E; Fig. 

1c); (2) the eddy trajectory was longer than 1 year and (3) the trajectory crossed 

0 °E into the South Atlantic gyre region. These criteria identified 36 anticyclonic 

eddies for analysis between July 2002 and December 2018, that entered the 

South Atlantic Ocean as a single trajectory from formation to dissipation, with 

limited interactions with other eddies. The selection procedure was repeated for 

cyclonic eddies originating from the Benguela upwelling system (15 °S – 40 °S; 

5 °E – 25 °E; Fig. 1c), which identified 31 cyclonic eddies for further analysis. 

For each eddy, a daily timeseries of SST, SSS, NCP and wind speed was 

constructed using the eddy location and radius estimates from the AVISO+ 

product. For each parameter, the available data were extracted assuming a 

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
https://oceancolor.gsfc.nasa.gov/
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circular eddy and the median value taken when at least 30 % of the data within 

the eddy were available. An example of the timeseries extraction is presented in 

Fig. A5.1. A daily timeseries of the environmental conditions surrounding the 

eddy was also extracted from a circular region three times the radius of eddy, 

where data inside the eddy radius were excluded. Median calendar month SST, 

SSS, NCP and wind speeds were calculated from the daily timeseries both for 

the eddy and the environmental conditions surrounding the eddy. 

5.2.3 Sea surface pCO2 estimates 

The sea surface pCO2 (pCO2 (sw)) was determined for each calendar month of 

the eddy trajectories using the South Atlantic Feed Forward Neural Network 

(SA-FNNNCP; Ford et al. 2022). The SA-FNNNCP estimates pCO2 (sw) at the base 

of the mass boundary layer (sub skin pCO2 (sw)) (Woolf et al., 2016) using non-

linear relationships between pCO2 (sw) and three environmental drivers; pCO2 

(atm), SST and NCP, which were constructed for eight static provinces in the 

South Atlantic Ocean. The SA-FNNNCP was supplied with the calendar month 

median SST and NCP, and the monthly pCO2 (atm) for the mean location of the 

eddy within the month was estimated using the dry mixing ratio of CO2 from the 

NOAA-ESRL marine boundary layer reference, monthly mean skin SST and 

sea level pressure following Dickson et al. (2007). The pCO2 (sw) uncertainty was 

estimated by propagating the pCO2 (atm) (1 µatm), satellite SST (0.441 °C) and 

NCP (45 mmol O2 m-2 d-1) (Ford et al., 2021a) uncertainties through the SA-

FNNNCP, and combined in quadrature with the SA-FNNNCP uncertainty (21.48 

µatm) (Ford et al., 2022).  

5.2.4 Estimation of the cumulative bulk air-sea CO2 flux 

The air-sea CO2 flux (F) was calculated for each calendar month of the eddy 

trajectory using a bulk parameterisation as: 

𝐹 = 𝑘 (𝛼𝑊 𝑝𝐶𝑂2 (𝑠𝑤) − 𝛼𝑠 𝑝𝐶𝑂2 (𝑎𝑡𝑚))                           (5.1) 

Where k is the gas transfer velocity estimated from median wind speeds 

following the parameterisation of Nightingale et al. (2000). αw and αs are the 

solubility of CO2 at the base and top of the mass boundary layer at the sea 

surface (Woolf et al., 2016). αw was calculated as a function of the skin SST and 

SSS (Weiss, 1974), applying a cool skin bias of +0.17K to convert the skin SST 
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to sub skin SST (Donlon et al., 1999; Woolf et al., 2016). αs was calculated as a 

function of the eddy skin SST and the SSS with a salinity gradient of +0.1 

salinity units between the base and top of the mass boundary layer (Woolf et 

al., 2016). The CO2 flux calculations were carried out with the open source 

FluxEngine toolbox (Shutler et al., 2016; Holding et al., 2019) using the ‘rapid 

transport’ approximation (described in Woolf et al., 2016) and using a monthly 

time step. 

The monthly average daily flux of CO2 (mmol C m-2 d-1) was multiplied by the 

number of days and the area of the eddy, assuming a circular eddy with the 

mean eddy radius, in the respective month. The fluxes (Tg C mon-1) were then 

added cumulatively to retrieve the net cumulative CO2 flux for each eddy. The 

uncertainties in pCO2 (sw) (temporally varying), pCO2 (atm) (1 µatm), SST (0.441 

°C) and the gas transfer velocity (assumed to be ± 10%; Woolf et al., 2019) 

were propagated through the cumulative flux calculations using a Monte Carlo 

uncertainty propagation (N = 1000), and the 95% confidence interval (2 

standard deviations) on the cumulative net CO2 flux extracted. 

5.2.5 Thermal and non-thermal decomposition of pCO2 (sw) timeseries 

The eddy pCO2 (sw) timeseries was separated into its thermal and non-thermal 

components as described in Takahashi et al. (2002). The thermal component 

(pCO2 (therm)) was calculated as: 

𝑝𝐶𝑂2 (𝑡ℎ𝑒𝑟𝑚) = 𝑝𝐶𝑂2 (𝑠𝑤)  ×  𝑒(0.0423 ×(𝑆𝑆𝑇̅̅ ̅̅ ̅−𝑆𝑆𝑇))                         (5.2) 

𝑆𝑆𝑇̅̅ ̅̅ ̅ and SST are the mean subskin SST across the eddy timeseries and the 

monthly subskin SST respectively. The non-thermal component (pCO2 (bio)) was 

calculated as: 

𝑝𝐶𝑂2 (𝑏𝑖𝑜) =  𝑝𝐶𝑂2 (𝑠𝑤)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ×  𝑒(0.0423 ×(𝑆𝑆𝑇− 𝑆𝑆𝑇̅̅ ̅̅ ̅))                               (5.3) 

𝑝𝐶𝑂2 (𝑠𝑤)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  was the mean pCO2 (sw) for the eddy timeseries. The contributions of 

the two competing components to the pCO2 (sw) timeseries can be determined 

from the seasonal amplitude of the pCO2 (therm) and pCO2 (bio); 

∆𝑝𝐶𝑂2 (𝑡ℎ𝑒𝑟𝑚) = [𝑝𝐶𝑂2 (𝑡ℎ𝑒𝑟𝑚)]
𝑚𝑎𝑥

− [𝑝𝐶𝑂2 (𝑡ℎ𝑒𝑟𝑚)]
𝑚𝑖𝑛

                    (5.4) 

∆𝑝𝐶𝑂2 (𝑏𝑖𝑜) = [𝑝𝐶𝑂2 (𝑏𝑖𝑜)]
𝑚𝑎𝑥

− [𝑝𝐶𝑂2 (𝑏𝑖𝑜)]
𝑚𝑖𝑛

                          (5.5) 
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The seasonal amplitudes were calculated using a 12 month moving window for 

the lifetime of the eddy, and the ratio between the thermal and non-thermal 

component (R) was determined as: 

𝑅 =  
∆𝑝𝐶𝑂2 (𝑡ℎ𝑒𝑟𝑚)

∆𝑝𝐶𝑂2 (𝑏𝑖𝑜)
⁄                                   (5.6) 

In cases where R is greater (less) than 1, the thermal (non-thermal) contribution 

was the dominant driver. The anomaly in R was determined by subtracting the 

mean R across the eddy’s lifetime. 

5.3 Results 

Both anticyclonic (Agulhas; median = -0.54 Tg C per eddy) and cyclonic 

(Benguela; median = -0.27 Tg C per eddy) eddies acted as cumulative net CO2 

sinks (Fig 5.1 a, d). Anticyclonic eddies displayed an exponential decay in the 

increase of the net cumulative CO2 sink, compared to a more linear increase in 

cyclonic eddies when fit with the same functional equation (Fig. 5.1 b, e). The 

anomaly in the thermal to non-thermal contribution to pCO2 (sw) variability in 

anticyclonic eddies changed over their lifetimes (Fig. 5.2a), where a positive 

anomaly indicates an increasing dominance of temperature on controlling pCO2 

(sw). For cyclonic eddies the anomaly in R did not change significantly over time 

(Fig. 5.2b).  

The anticyclonic (-3.7 %, Mann-Whitney U-Test, p <0.001, n = 36) and cyclonic 

(-1.4%, Mann-Whitney U-Test, p = 0.005, n =31) eddies significantly enhance 

the cumulative CO2 sink compared the water surrounding each eddy (Fig. 5.3). 

No significant differences between the ability of anticyclonic and cyclonic eddies 

to modify the CO2 sink were observed (Fig. 5.3; Mann-Whitney U-Test, p = 

0.16), although the anticyclonic modification (-3.7 %) was double that of the 

cyclonic eddies (-1.4 %; Fig. 5.3). 
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Figure 5.1 - (a) Red lines indicate the cumulative net CO2 flux for the 36 anticyclonic eddies, where shading is the propagated 
uncertainty. Black dots indicate the cumulative net CO2 flux at eddy dissipation. Black dashed line indicates the mean cumulative net CO2 
flux at eddy dissipation (i.e. mean of black dots). Blue dashed lines indicate the estimates for 6 anticyclonic eddies presented in Orselli et 
al. (2019b). (b) Cumulative net CO2 flux for the 36 anticyclonic eddies plotted since eddy formation. Black line indicates a power law fit (y 
= a*xb+c) for the temporal evolution of the net CO2 flux of the 36 anticyclonic eddies, where shading indicates the 95% confidence limits. 
(c) Trajectories of the 36 anticyclonic (red lines) and 31 cyclonic (blue lines) eddies. Red and blue boxes indicate the formation region for 
the anticyclonic and cyclonic eddies respectively. (d) the same as (a) but for the 31 cyclonic eddies. (e) the same as (b) but for the 31 
cyclonic eddies. 
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Figure 5.2 - (a) Anomaly in the 12 month running thermal to the non-thermal ratio of pCO2 (sw) for the 36 anticyclonic eddies. Black solid 
line indicates the linear fit since the formation of the eddy. Black dashed line indicates an anomaly of 0. Statistics within the plot are: 
Slope is the slope of the linear fit, R2 is the coefficient of determination, Sig is the significance of the linear fit and N is number of 
samples. (b) Same as (a) but for the 31 cyclonic eddies. 
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Figure 5.3 - Box plots indicating the percentage change in the cumulative net 
CO2 flux at eddy dissipation with respect to theoretical eddies containing waters 
surrounding the eddy. Negative (positive) percentages indicate a stronger 
(weaker) flux  

5.4 Discussion 

This is the first study to provide an observation-based assessment of the 

cumulative net CO2 flux of 67 long-lived mesoscale eddies. Chen et al. (2007) 

reported SST-pCO2 (sw) relationships from in situ measurements made outside 

of a cyclonic eddy, but were not able to reproduce the pCO2 (sw) within the eddy. 

We performed a comparison between the SA-FNNNCP estimated pCO2 (sw) and 

in situ pCO2 (sw) observations within both anticyclonic (n = 6) and cyclonic eddies 

(n = 2; Fig. A5.2). The SA-FNNNCP was accurate and precise within anticyclonic 

eddies (root mean square deviation = 10.2 µatm; bias = 0.4 µatm; n = 6) but 

showed larger differences in pCO2 (sw) for the cyclonic eddies, albeit from just 

two crossovers (root mean square deviation = 20.9 µatm; bias 11.1  µatm; n = 

2). 

In this study, we followed the trajectory of 36 anticyclonic eddies over their 

lifetime and found that they were a net cumulative CO2 sink (median = 0.54 Tg 

C). Anticyclonic (Agulhas) eddies have previously been identified as a net sink 

for CO2 varying from ~0.6 Tg C to ~1.4 Tg C (median = 1.26 Tg C; Fig. 5.1a; 
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Orselli et al. 2019b). This was based on extrapolation of a snapshot of the 

eddies CO2 uptake potential from ship observations that crossed the paths of six 

eddies. Two of these eddies were tracked in this study (V1, V3; Fig. 5.1a) and 

were identified as CO2 sinks of 0.64 and 0.40 Tg C compared to 1.34 and 1.36 

Tg C by Orselli et al. (2019b). The lower cumulative CO2 sink in this study are 

likely due to the effect of seasonality whereby the study of Orselli et al. (2019b) 

sampled eddies in austral winter which acted as stronger CO2 sinks, compared 

to our estimates which accounted for the seasonal variability in the air-sea CO2 

flux.  

Both the cyclonic and anticyclonic eddies showed an increasing CO2 sink over 

their lifetime (Fig. 5.1b, e). For the latter, the rate of CO2 uptake decreased 

exponentially over this period (Fig. 5.1b). This is consistent with the 

geographical propagation of the eddies in the oligotrophic South Atlantic gyre 

(Fig. 5.1c), and eddy stirring of the environment (McGillicuddy, 2016). The 

significant increase in the anomalies of the seasonal thermal to non-thermal 

pCO2 (sw) ratio (becoming more temperature driven; Fig. 5.2a), mainly driven by 

a reduction in the non-thermal contribution (not shown), highlights the changing 

role of biological activity and/or circulation over time as the eddies propagated 

into the gyre. Carvalho et al. (2019) showed phytoplankton community 

succession where younger anticyclonic (Agulhas) eddies  were dominated by 

haptophytes (small flagellates) followed by prokaryotes as these eddies aged. 

Sarkar et al. (2021) highlighted that haptophytes are crucial for the biological 

CO2 drawdown in the Agulhas retroflection, reinforcing a weaker biological 

pump as the eddies age. In contrast, the cyclonic eddies displayed a linear 

increase in the cumulative CO2 sink (Fig. 5.1e). This may be because the 

cyclonic eddies do not propagate as far as anticyclonic eddies into the South 

Atlantic gyre (Fig. 5.1e), which is also illustrated by no significant change in the 

thermal to non-thermal pCO2 (sw) ratio anomaly (Fig. 5.2b).   

Both the anticyclonic and cyclonic eddies were shown to significantly increase 

the CO2 drawdown in the South Atlantic Ocean (Fig. 5.3), with respect to the 

surrounding waters. Jones et al. (2017) showed that both anticyclonic and 

cyclonic eddies were hotspots for CO2 drawdown of similar magnitude in the 

Antarctic Circumpolar Current. Dufois et al. (2016) examined Chl a variability in 

anticyclonic eddies using a rotated empirical orthogonal function (REOF) 
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analysis, which decomposes the spatial variability into dominant components. 

This showed the first two modes of variability were consistent with eddy stirring, 

and the third mode highlighted the mesoscale modification. In this study, by 

comparing the cumulative CO2 fluxes of the eddies to a theoretical eddy 

consisting of surface waters surrounding the eddy, the mesoscale modulation of 

the air-sea CO2 flux is highlighted. 

The cyclonic eddies generally showed lower SST, and higher NCP (Fig. A5.3; 

Fig. A5.4) compared to the surrounding waters, suggesting a biological and 

physical amplification of the CO2 sink. Chen et al. (2007) showed pCO2 (sw) to be 

elevated at the core of a cyclonic eddy in the North Pacific, due to the upwelling 

of CO2 rich waters into the surface layer and the eddy acting as a weaker CO2 

sink compared to the surrounding. By comparison, Lovecchio et al. (2022) 

identified that cyclonic eddies around the Canary upwelling system entrain 

nearshore nutrient rich waters into the eddy core at formation, where upwelled 

nutrients as a result of mesoscale processes were a small component of the 

total nutrients sustaining the biological production. This indicated that the CO2 

rich water supplied by upwelling, is a minor component of the CO2 flux caused 

by cyclonic eddies which ultimately create a CO2 sink induced by the associated 

physical and biological processes.  

The anticyclonic eddies were associated with elevated SST at formation, which 

rapidly changed to depressed SST for the remainder of their lifetimes (Fig. 

A5.3) compared to the surrounding waters. NCP remained lower than the 

surroundings (Fig. A5.4). These characteristics suggest opposing physical and 

biological forces on the modification of the air-sea CO2 flux. Similarly, Laxenaire 

et al. (2019) showed that the SST anomaly associated with surface water of an 

anticyclonic (Agulhas) eddy switched from positive to negative over its lifetime, 

also implying a change from a CO2 source to sink as it propagated over the 

South Atlantic basin. Thus, indicating the physical component exerts the 

greatest control on amplifying the air-sea CO2 sink into these anticyclonic 

eddies.  

This study has identified that the variability in the modification of the air-sea CO2 

flux by eddies (Fig. 5.3) is driven by intrinsic differences between individual 

eddies (Fig. A5.3, A5.4). Lehahn et al. (2011) observed an isolated patch of 

elevated Chl a associated with an anticyclonic eddy that was transported into 
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the South Atlantic gyre, perhaps suggesting enhanced biological drawdown of 

CO2, but whether this is a common feature of all anticyclonic eddies was not 

verified. Entrainment of nutrient rich nearshore waters into the cyclonic eddies 

as identified by Lovecchio et al. (2022), is likely to be highly variable depending 

on the location and interaction with other water bodies, which will in turn lead to 

a different biological response and therefore modulation of the air-sea CO2 flux.  

Many of these studies are limited by the availability of in situ data. The 

expanding use of Bio-Argo profilers, especially those with pH sensors 

(Roemmich et al., 2019), is improving the potential to assess the air-sea CO2 

flux both globally and regionally (e.g. Gray et al., 2018), but coverage still 

remains a limitation for studying eddies.  

Based on a recent assessment by Ford et al. (2022) of the South Atlantic 

Ocean (20 °S to 44 °S) which estimated the region to be a CO2 sink of 76 Tg C 

yr-1
, the contribution to this by anticyclonic eddies would be 0.06 % (Table 5.1). 

This suggesting that these eddies play a more significant role in modifying the 

air-sea CO2 flux within this region. Orselli et al. (2019b) showed that 

anticyclonic (Agulhas) eddies enhance the CO2 sink in the South Atlantic Ocean 

(14 °S to 50 °S) by  ~1.55 10-6 %, assuming that the region is a CO2 sink of 

~300 Tg C yr-1
 (Takahashi et al., 2002). In contrast, assuming the same South 

Atlantic CO2 sink as Orselli et al. (2019b) we find the contribution of anticyclonic 

eddies to be 0.01% (Table 5.1).  

In combination, anticyclonic and cyclonic eddies contribute to the oceanic CO2 

sink into the South Atlantic Ocean (20 °S to 44 °S) by a further 0.08 % (Table 

1). Globally, long lived mesoscale eddies, such as those studied here, make up 

0.4% of the eddy trajectories in the AVISO+ dataset (Pegliasco et al., 2022). 

This suggests that the effect of all eddies on the CO2 flux could be globally and 

regionally significant as shown by modelling studies. Harrison et al. (2018) for 

example, showed that mesoscale resolving models may have a modest effect 

on the global balance of carbon export (<2%), but regionally the effect can be 

large (±50%). Jersild et al. (2021) highlighted that an Earth System Model 

(ESM) that explicitly resolved mesoscale eddies was able to produce the 

observed seasonal biological productivity and pCO2 (sw) cycles in the Southern 

Ocean, but when the eddies were not included, the seasonal cycle was not well 

reproduced. Both the methods utilised and results from this study have 
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significant implications on the air-sea CO2 flux for use in current global ESM, 

which parameterise the oceanographic effects of eddies (Hewitt et al., 2020, 

2017). Eddy kinetic energy, as a proxy for mesoscale eddies, has been 

increasing at a rate between 2 and 5 % per decade (Martínez-Moreno et al., 

2021), indicating that the role of mesoscale eddies on the oceanic CO2 sink 

maybe becoming more significant. In the context of climate change and 

increasing global temperatures, further work is required to quantify whether this 

will reduce the capacity of eddies as a CO2 sink. 
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Table 5.1 - The calculation of the modification to the South Atlantic CO2 sink 
that mesoscale eddies may contribute. The median percentage change in the 
eddy flux compared to the surrounding environment is converted to a median 
Tg C yr-1 equivalent and compared to three estimates of the South Atlantic CO2 
sink in the region the eddies propagate.  

 Anticyclonic Cyclonic  

Median cumulative CO2 

flux  

(Fig. 5.1a, d; Tg C per 

eddy) 

-0.54 -0.27  

Median percentage 

change in CO2 flux (Fig. 

5.3; %) 

-3.7 -1.4  

Additional flux into eddy 

(Tg C per eddy) 
-0.02 -0.004  

Mean eddy lifetime (yr) 2.5 1.7  

Additional flux into eddy 

per year (Tg C yr-1) 
-0.008 -0.002  

Spawn Rate (yr) 

6 

(Guerra et al., 

2018) 

4 

(Chaigneau et al., 

2009) 

 

Additional flux into eddies 

(Tg C yr-1) 
-0.05 -0.01  

   Total 

Ford et al. (2022) 

(-76 Tg C yr-1) 20 °S to 44 

°S 

-0.06 % -0.02 % -0.08 % 

Woolf et al. (2019; 

Holding et al., 2019) 

(-261 Tg C yr-1) 20 °S to 

44 °S 

-0.02 % -0.005 % -0.03 % 

Takahashi et al. (2002) 

(-300 Tg C yr-1) 14 °S to 

50 °S 

-0.01 % -0.006 % -0.02 % 
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5.5 Conclusions 

Our analysis presents a novel approach to assess the impact of long-lived 

mesoscale eddies on the air-sea CO2 flux in the South Atlantic Ocean. Using 

satellite observations and Lagrangian tracking we show that anticyclonic and 

cyclonic eddies are cumulative net CO2 sinks of 0.54 Tg C and 0.27 Tg C per 

eddy, respectively. Anticyclonic eddies exhibited an exponential decay in the 

rate of CO2 uptake, and significant changes in the thermal to non-thermal 

drivers of the pCO2 (sw) ratio anomaly. This suggests a reduction in the role of 

biology to the CO2 sink as the eddies age and propagation over different 

geographic trajectories in the South Atlantic gyre. The cyclonic eddies showed a 

more linear rate of CO2 uptake, and there was no significant change in the 

drivers of the seasonal pCO2 (sw) ratio anomaly. 

Both anticyclonic and cyclonic eddies amplified the CO2 sink into the South 

Atlantic Ocean significantly by 3.7 % and 1.4 %, respectively. For the 

anticyclonic eddies, physical drivers acted to increase the CO2 sink, whereas 

the biological component worked to oppose the uptake. In cyclonic eddies both 

physical and biological components worked synergistically to increase the CO2 

sink. 

In combination, these mesoscale eddies could amplify the CO2 sink into the 

South Atlantic Ocean (20 °S to 44 °S) by 0.08 %. Although this modification 

appears subtle, these long-lived eddies make up only 0.4 % of eddies in the 

global ocean, and therefore the amplification of the global CO2 sink from all 

eddies is likely to be much larger than previously estimated. Therefore, the 

inclusion of these mesoscale features within models used to estimate the global 

ocean carbon sink could be important. 

Appendices 
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Appendix 5.1 – Eddy tracking example 

 

Figure A5.1 - Example output from the Lagrangian eddy tracking approach for an anticyclonic eddy. (a) Blue line indicates the monthly 
pCO2 (sw) estimated with the SA-FNNNCP, and shading indicates the uncertainty on the SA-FNNNCP retrieval. Red line indicates the 
monthly atmospheric pCO2 for the mean location of the eddy in the respective month. (b) Blue line indicates the daily sea surface 
temperature (SST) for the eddy lifetime. Red line shows the calendar month medians of SST. (c) Blue line indicates the daily net 
community production (NCP) for the eddy lifetime. Red line shows the calendar month medians of NCP. (d) Red line shows the 
geographic track of the eddy over the lifetime. (e) Black line indicates the monthly pCO2 (sw). Red line indicates the thermal contribution 
and blue line indicates the non-thermal contribution to the pCO2 (sw) variability. (f) Black line shows the cumulative net CO2 flux, where the 
shading indicates he 95% confidence interval. 
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Appendix 5.2 – Comparison of SA-FNNNCP and in situ pCO2 (sw) within 
mesoscale eddies 

The global ocean ship-based hydrographic investigations program (GO-SHIP) 

research cruises conduct hydrographic observations which include Dissolved 

Inorganic Carbon (DIC) and Total Alkalinity (TA) along CLIVAR/WOCE repeat 

hydrographic sections. Transects within the South Atlantic Ocean between 2002 

and 2018 were downloaded from the NODC/NOAA data centre 

(https://www.ncei.noaa.gov/access/ocean-carbon-data-

system/oceans/RepeatSections/, last accessed: 29/09/2021), which included 

sections A10 (2003; 2011; 2017), A9.5 (2009; 2018), A13.5 (2013) and A16S 

(2005; 2013; Fig. A5.2 a). Each transect was analysed for measurements which 

coincided with anticyclonic or cyclonic eddies tracked in this study. pCO2 (sw) 

was calculated from DIC and TA using CO2SYSv3 (Sharp et al., 2021; van 

Heuven et al., 2011; Orr et al., 2018; Lewis et al., 1998), and the reported 

uncertainties in DIC (~2 µmolkg-1), TA (~2 µmolkg-1), carbonic acid (Waters et 

al., 2014) and H2SO4 dissociation constants (Dickson, 1990) were propagated 

to retrieve the pCO2 (sw) uncertainty. The in situ pCO2 (sw) were corrected to a 

consistent temperature and depth dataset (Reynolds et al., 2002), following the 

methodology described in Goddijn-Murphy et al. (2015), to be consistent with 

the SA-FNNNCP sub skin pCO2 (sw) observations (Woolf et al., 2016). 

The Following Ocean Rings in the South Atlantic (FORSA) cruise, sampled six 

anticyclonic eddies with a continuous underway pCO2 (sw) system, described in 

Orselli et al. (2019b). These pCO2 (sw) observations were reanalysed to a 

consistent temperature and depth dataset (Reynolds et al., 2002; Goddijn-

Murphy et al., 2015) using the “fe_reanalyse_socat.py” functions within the 

open source FluxEngine (Shutler et al., 2016; Holding et al., 2019), and the 

cruise track analysed for anticyclonic and cyclonic eddies tracked in this study. 

The mean and standard deviation of in situ pCO2 (sw) for matching eddies were 

extracted for the region within the AVISO+ eddy radius. 

In total six anticyclonic (GO-SHIP = 4; FORSA = 2; Fig. A5.2 a) and two 

cyclonic (GO-SHIP = 1; FORSA = 1; Fig. A5.2 b) eddies tracked in this study 

were sampled in situ. The in situ pCO2 (sw) were compared with the SA-FNNNCP 

pCO2 (sw) estimates for the month the eddy was sampled in situ (Fig. A5.2 c). 

The SA-FNNNCP pCO2 (sw) estimates were accurate compared to the pCO2 (sw) in 

https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/RepeatSections/
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/RepeatSections/
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anticyclonic eddies with a low root mean square difference(RMSD; 10.2 µatm; 

Fig. A5.2 c) but showed a higher RMSD for the cyclonic eddies (20.9 µatm; Fig 

A5.2 c), although this was lower than the SA-FNNNCP accuracy (21.48 µatm). 
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Figure A5.2 - (a) Dashed coloured lines indicate the trajectories of tracked anticyclonic eddies that were sampled in situ, where the 
sampling location is highlighted by the same coloured point. Solid coloured lines indicate cruise tracks which sampled the respective 
eddy. (b) Same as (a) but for cyclonic eddies. (c) Comparision of in situ pCO2 (sw) with SA-FNNNCP pCO2 (sw) for anticyclonic (red 
errorbars) and cyclonic eddies (blue errorbars). Central coloured point represents the respective eddy sampled in (a) or (b). In plot 
statistics are root mean square deviation (RMSD), bias and the number of eddies (n). Inset indicates an eddy centric diagram identifying 
the location the in situ stations sampled (coloured points) with respect to the eddy radius (dashed line). Note the FORSA cruise sampled 
pCO2 (sw) continuously and therefore does not appear on the inset. 
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Appendix 5.3 – Are mesoscale eddies distinct from their environment? 

Daily anomalies in MODIS-A SST, SSS and NCP within both anticyclonic and 

cyclonic eddies were calculated with respect to the environmental conditions 

surrounding the eddy (described in section 5.2.2). The daily anomalies were fit 

with a ‘smoothing spline’ function within MATLAB (smoothing parameter = 4.14 

× 10-7) to identify the longer term variations in the anomalies for each eddy (Fig. 

A5.3; Fig. A5.4). 

The anticyclonic eddies generally showed initial positive SST (Fig. A5.3a) and 

SSS (Fig. A5.3b) anomalies, which were converted to negative SST anomalies 

within ~6 months from the start of eddy tracking. The strength of negative SST 

anomalies were generally greater in austral winter, than summer. SSS 

anomalies indicated a linear decrease over time, as the eddy moved into the 

South Atlantic gyre. The cyclonic eddies showed initial negative SST anomalies 

which rapidly increase to ~ 0, but with seasonal fluctuations (Fig. A5.3 c). The 

SSS anomalies however showed no clear pattern and were generally weak 

(Fig.A5.3 d). 
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Figure A5.3 - Smoothed anomalies in physical parameters (SST and SSS) within mesoscales eddies with respect to the environmental 
conditions. (a) and (c) show SST anomalies for anticyclonic and cyclonic eddies respectively. (b) and (d) show SSS anomalies for 
Agulhas and cyclonic eddies respectively. 
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Figure A5.4 - Smoothed anomalies in NCP within mesoscale eddies with respect to the environmental conditions. (a) shows the NCP 
anomalies for anticyclonic eddies, and (b) the same for cyclonic eddies. 
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Chapter 6: General discussion and future directions 

With the onset of the United Nations decade of ocean science (2021 – 2030), 

the role of biology in the global ocean CO2 sink, and how it is changing was 

highlighted as a key issue to address by the IOC-R (Aricò et al., 2021). This 

thesis set out to understand the plankton contribution to the air-sea CO2 flux and 

its variability using satellite and in situ observations in the South Atlantic Ocean. 

6.1 Observing plankton from space using satellite ocean colour 

Satellite ocean colour provide synoptic scale estimates of phytoplankton 

pigments and productivity globally (Behrenfeld et al., 2006; Kahru et al., 2010). 

MODIS-A is the longest single sensor ocean colour record (2002 to present; 20 

years at the time of this thesis), however NASA have launched multiple ocean 

colour sensors, including SeaWiFS (1997 to 2010) and two Visible Infrared 

Imaging Radiometer Suites (VIIRS; VIIRS SNNP: 2012 to present; VIIRS-

JPSS1: 2017 to present). In parallel the European Space Agency (ESA) also 

launched a series of ocean colour sensors that included the Medium Resolution 

Imaging Spectroradiometer (MERIS; 2002 to 2012) and more recently, two 

Ocean and Land Colour Instruments (OLCI; S3A: 2016 to present; S3B: 2018 to 

present). Individually these sensors provide useful observations but by merging 

(bias correcting and cross-calibrating) individual sensors into a coherent 

continuous record has provided a long climate data record timeseries 

(Sathyendranath et al., 2019). These individual sensors and merged products 

(Maritorena et al., 2010; Sathyendranath et al., 2019) all require continual 

accuracy assessments, especially when operating outside their designed 

lifetimes (e.g. MODIS designed lifetime was 6 years) and/or when individual 

sensor teams provide updated dataset versions.  

The accuracy of MODIS-A has continually been assessed throughout its lifetime 

in many studies (Dogliotti et al., 2014, 2009; Kampel et al., 2009b, a; Garcia et 

al., 2005; Brewin et al., 2016) however these assume the in situ observations 

are “100% accurate”, or truth, which is not feasible. The same situation is true 

for the limited number of accuracy assessments of merged ocean colour 

products (Brewin et al., 2015; Maritorena et al., 2010; Sathyendranath et al., 

2019). Chapter 2 (Ford et al., 2021a) assessed the accuracy of MODIS-A Chl a, 
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NPP and NCP in the South Atlantic Ocean, whilst accounting for uncertainties in 

the in situ measurements. The in situ observation uncertainties were accounted 

for using weighted statistics (an established statistical method), which showed 

that uncertainties in the in situ measurements were negatively influencing the 

resulting estimates of the satellite observation accuracy and precision. At the 

time of this thesis, Mckinna et al. (2021) also used a weighting scheme to 

account for in situ uncertainties when developing and assessing the accuracy of 

particulate backscattering coefficient algorithms. Both the approaches apply 

weighted statistics and highlighted that accounting for in situ observation 

uncertainties provides a more equitable assessment and identified that the 

satellite approaches were actually performing better than previously thought.  

The approach of accounting for in situ observation uncertainties should be 

applied when evaluating satellite accuracy and bias more widely. However, 

current global datasets of Chl a which have been complied to assess the 

accuracy of satellite observations (Valente et al., 2019, 2016; Werdell and 

Bailey, 2005)  do not contain the necessary in situ data uncertainties. There is a 

clear desire from space agencies to include in situ uncertainties within datasets 

used for satellite validation, and more recently this desire can be seen in the 

formation of Fiducial reference measurements (FRM) datasets. These are in 

situ observations that are traceable to standards, referenced to inter-

comparison exercises and with a full uncertainty budget (Banks et al., 2020). In 

the future it is likely satellite accuracy assessments will only use datasets that 

include in situ uncertainties meaning that weighted statistics can be used. 

Mckinna et al. (2021) showed these in situ uncertainties can also be accounted 

for within the development of new algorithms. This is especially important for 

NCP algorithms, since for both NPP and NCP the uncertainties are unlikely to 

be consistent. Weighted statistics could also be applied within algorithm 

intercomparisons. Brewin et al. (2015) identified the most accurate algorithms 

for a range of ocean colour based parameters using a statistical point based 

system. The statistics applied could be exchanged for weighted variants to 

account for the in situ uncertainties but this would require that these be included 

within the in situ observation datasets. 
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6.2 Biological contribution to pCO2 (sw) and air-sea CO2 flux 

Chapter 3 showed that the SA-FNNNO-BIO variants were not able to fully 

reproduce the variability of pCO2 (sw) in the South Atlantic Ocean. Watson et al. 

(2020b) produced global fCO2 (sw) fields using a SOM-FNN that used only 

physical parameters as input, similar to the SA-FNNNO-BIO-2. These results 

suggest that using only physical parameters to extrapolate pCO2 (sw) 

observations cannot fully represent the biological contribution to pCO2 (sw) 

variability. Global pCO2 (sw) extrapolation schemes have also included Chl a as a 

biological proxy (Landschützer et al., 2014; Denvil-Sommer et al., 2019), and 

therefore include a representation of the biological contribution to pCO2 (sw). 

Schloss et al. (2007) showed a weak linear relationship between NCP and Chl a 

on the southwestern Atlantic shelf, highlighting that Chl a can act as a proxy for 

NCP. However, Chapter 3 showed the SA-FNNCHLA was not able to fully 

represent the pCO2 (sw) in the South Atlantic Ocean but did improve on the SA-

FNNNO-BIO variants. This improvement is likely due to Chl a acting as proxy for 

NCP (Schloss et al., 2007), but does not quantify variations in photosynthesis 

and respiration that are modulated by other environmental conditions, such as 

temperature, nutrient and light availability. 

NCP, as the biological contribution to pCO2 (sw) variability, improved the 

estimation of pCO2 (sw) and modified the regional air-sea CO2 fluxes in the South 

Atlantic Ocean as shown in Chapter 3 (Ford et al., 2022). Although the SA-

FNNNCP had a similar accuracy (21.56 µatm) compared to the other SA-FNN 

variants, it was shown to accurately reproduce the pCO2 (sw) as measured by 

independent buoy observations and literature descriptions. Therefore, the 

incorporation of NCP into global pCO2 (sw) extrapolation schemes is the next 

step to improving the biological contribution to the global ocean CO2 sink 

estimates. 

The satellite based NCP algorithms evaluated in Chapter 2 were developed 

using in situ observations in the Atlantic Ocean (Tilstone et al., 2015b). Serret et 

al. (2015) showed differences in the NPP to respiration scaling between the 

North and South Atlantic Oceans, which also varied seasonally. Therefore, it 

cannot be assumed that the same algorithms presented for the Atlantic Ocean 
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will be applicable to other ocean basins. A comparison of the best performing 

NCP algorithms from Chapter 2 (NCP-C and NCP-D) driven using in situ 

observations from the Hawaii Ocean Timeseries (HOTS; 

https://hahana.soest.hawaii.edu/hot/) suggests differences in the NPP to NCP 

scaling between the North Pacific and Atlantic Oceans (Fig. 6.1). This may be 

due to differences in the respiration rates, as NCP tends to be lower at HOTS 

(Fig. 6.1a) for NPP rates observed in the Atlantic Ocean. The observed bias 

when applying NCP-D (Fig. 6.1b) to these in situ observations reinforces this 

evaluation. This is beyond the scope of this thesis, but highlights that applying 

these NCP algorithms to other ocean basins needs to be taken with caution. 

Until a more extensive global database of NCP observations is available to 

assess the accuracy of these algorithms, the use of NCP for global pCO2 (sw) 

extrapolation may be hindered. 

Chapter 3 highlighted that reducing satellite NCP uncertainties would provide 

the greatest reduction in the uncertainty of pCO2 (sw), and these estimates were 

verified with in situ observations from the AMT cruises. Chapter 2 showed that 

40% of the satellite NCP uncertainties were due to the NPP algorithm. This 

suggests that improvements in satellite NPP estimation will lead to further 

improvements in pCO2 (sw) estimates from NCP. These could be achieved 

through improvements in the estimation of the water column light field 

(Sathyendranath et al., 2020), assignment of photosynthetic rates or vertical 

variability in input parameters (Kulk et al., 2020), for example. The use of 

autonomous platforms, such as Bio-Argo profilers (Roemmich et al., 2019), 

could provide important information on the spatial and vertical distribution of 

parameters that can synergistically be applied to satellite observations. Lee et 

al. (2015) provide a thorough review on improving satellite NPP estimates, and 

provide a strategic assessment on where efforts should be focused. 

  

https://hahana.soest.hawaii.edu/hot/
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Figure 6.1 - (a) Power law relationship between in situ NPP (mmol C m-2d-1) and NCP (mmol O2 m-2d-1) using NCP-C algorithm (black 
dashed line) tested in the Chapter 2. Blue points indicate in situ data presented in Chapter 2 for the South Atlantic Ocean. Red points 
indicate data from the AMT cruises in the North Atlantic Ocean removed from the Chapter 2 analysis. Magenta points indicate in situ 
observations at the Hawaii Ocean Timeseries (HOTS), downloaded from https://hahana.soest.hawaii.edu/hot/ (last accessed: 
04/05/2022). Horizontal error-bars indicate the per station in situ NPP uncertainty, and vertical error-bars indicate the per station NCP 
uncertainty. (b) Comparision of in situ NCP observations against modelled NCP using NCP-D driven with in situ observations from the 
regions in (a). Horizontal error-bars indicate the in situ NCP uncertainty, and vertical error-bars indicate the uncertainty in modelled NCP 
by propagating uncertainties in NPP (variable) and SST (assumed to be 0.01 °C). The NCP-D algorithm uncertainty (35 mmol O2 m-2d-1) 
was not incorporated into the overall uncertainty to improve visibility of points in the figure. Statistics in figure are Bias and Root Mean 
Square Deviation (RMSD).  

https://hahana.soest.hawaii.edu/hot/
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Improving NCP estimates from satellite observations could also be achieved by 

explicitly quantifying respiration variability. Serret et al. (2015) showed NCP is 

determined by changes in both respiration and NPP. The satellite NCP 

algorithm applied in this thesis accounts for some of the respiration 

heterogeneity through an empirical NCP to SST relationship (Tilstone et al., 

2015b). However by assessing the performance of NCP-D at HOTS (Fig. 6.1) 

this relationship may not account for respiration variability both in the South 

Atlantic and globally. Semi-analytical models could improve on empirical 

estimates by dynamically adjusting NPP to NCP relationships to account for 

respiration variability (Serret et al., 2015, 2009), and therefore become globally 

applicable. However, this still requires increased in situ observations globally to 

tune these models and therefore a concerted effort to understand respiration 

variability in the surface oceans is required.  

6.3 Plankton induced variability in the air-sea CO2 flux 

Chapter 4 investigated the drivers of the air-sea CO2 flux at different timescales 

using the SA-FNNNCP pCO2 (sw) estimates and highlighted that biology 

contributed to seasonal, interannual and long term trends in the air-sea CO2 

flux. On seasonal timescales, the analysis was consistent with previous studies 

(Takahashi et al., 2002; Landschützer et al., 2013) showing that SST is a 

dominant driver in the subtropics, and biology and circulation control in the 

Equatorial and subpolar regions. On interannual timescales, biological induced 

variability in the air-sea CO2 flux was observed that could be linked to the MEI. 

Chapter 2 showed a response in NCP to the El Niño South Oscillation (ENSO) 

but this was at the limits of the uncertainties in satellite NCP.  

The interannual variability and long-term trends in Chapter 4 could be attributed 

to changes in biological activity, induced by changes in circulation. For example, 

offshore from the Benguela upwelling system strong negative trends in the CO2 

flux (i.e an increasing CO2 sink) were observed (Fig. 4.5b). This trend was 

linked to changes in biological activity as observed by Kulk et al. (2020), that 

could be driven by increasing nutrient export offshore through changes in 

circulation and mesoscale eddies (Rubio et al., 2009; Xiu et al., 2018). 

Therefore, it may be difficult to decompose the two signals separately when 
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determining the contributions of biology and circulation due to the linkages 

between them. DeVries (2022) showed that ocean circulation and biological 

activity are more important than the rise in atmospheric CO2 concentrations and 

changes in SST for driving decadal variability in the global CO2 sink. It is 

therefore clear that NCP cannot be assumed to be steady state in both pCO2 (sw) 

extrapolation schemes and when assessing the seasonal, interannual and 

decadal variability of the ocean CO2 sink. 

6.4 Mesoscale eddies in the oceans 

The role that mesoscale eddies contribute to variability in the global ocean is an 

active area of research due to their ability to modify and transport physical, 

biological and chemical properties within the oceans (Chen et al., 2007; Orselli 

et al., 2019b, a; Pezzi et al., 2021; Souza et al., 2021; Lovecchio et al., 2022; 

Laxenaire et al., 2019; Nencioli et al., 2018). Long lived mesoscale eddies were 

shown in Chapter 5 to enhance the air-sea CO2 sink with respect to the 

surrounding waters, using a novel Lagrangian tracking approach that 

implemented the SA-FNNNCP. Long lived mesoscale eddies make up only 0.4 % 

of the AVISO+ mesoscale trajectories dataset (Pegliasco et al., 2022), and the 

enhancement of the CO2 sink by eddies globally could be significant. 

This approach could therefore be applied to shorter lived and assess a larger 

proportion of these mesoscale eddies providing an opportunity to investigate the 

total effect of all eddies on the air-sea CO2 flux in the South Atlantic Ocean but 

could also be expanded globally. 

However, the expansion of the approach requires in situ observations of pCO2 

(sw) to further assess the accuracy of the SA-FNNNCP within mesoscale eddies. 

Chapter 5 showed the SA-FNNNCP pCO2 (sw) was accurate within eddies, 

however this was based on a small number of in situ observations (n = 8). The 

sampling of eddies on research cruises is generally unintentional, except in a 

few cases (e.g. Following Ocean Rings in the South Atlantic; FORSA), and 

following a single eddy over its lifetime is also unfeasible. The use of 

autonomous platforms could provide the increase in observations that is 

needed. For example, the physical properties of Agulhas eddies have been 

tracked with Argo profiles that become entrained within the eddy for a period, 
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allowing for the evolution of the eddy physical properties to be evaluated 

(Laxenaire et al., 2019). Chemical properties of an Agulhas eddy have been 

sampled by a Bio-Argo profiler (Nencioli et al., 2018). The increasing number of 

Bio-Argo profilers (Roemmich et al., 2019), especially those with pH sensors, 

will provide valuable in situ observations to assess pCO2 (sw) within mesoscale 

eddies.  

The results of Chapter 5 also have implications for current Earth System Models 

(ESM), where eddy induced modifications to oceanographic fields are generally 

parameterised. Harrison et al. (2018) showed that mesoscale resolving models 

may have a small effect on global balance of carbon export (< 2%), but 

regionally this effect can be large (± 50%). This is particularly important for 

ESMs used to assess future climate change under different emission targets 

(Coupled Model Intercomparison Project Phase 6; CMIP6) which are used to 

inform the IPCC assessment reports (IPCC, 2021). The parameterisation of 

mesoscale eddies within these models could neglect changes in eddy activity, 

which has been increasing (Martínez-Moreno et al., 2021), and whether this 

modification of the air-sea CO2 flux by eddies is changing with time. 

Mesoscale eddies are contained water masses that can be tracked through 

satellite altimetry fields (Pegliasco et al., 2022; Mason et al., 2014). But the 

waters outside of the eddies are also advected by the surface currents and 

geostrophic flows in the oceans. These waters can travel large distances 

through the ocean in a single month and move through difference 

biogeochemical regions (Fig. 6.2). The desire for higher temporal and spatial 

resolution pCO2 (sw) datasets may rely on the use of Lagrangian tracking of 

surface waters, to understand the processes that have previously acted on the 

water mass. This is particularly important for biological activity, where the 

signature of previous biological drawdown can be maintained on the order of 

months (Broecker and Peng, 1974). Dall’Olmo et al. (2021) produced daily 

global Lagrangian trajectories that could be applied within a pCO2 (sw) 

extrapolation, to incorporate the processes that have previously acted on the 

surface water, for example, the biological “history”. This could be a promising 

approach to increase the spatial and temporal resolution of current pCO2 (sw) 

extrapolation approaches. 



   
 

193 
 
 

 

 

Figure 6.2 - Lagrangian trajectories of surface water for 1st January 2010 from 
the ocean Lagrangian trajectories (OLTraj) dataset (Dall’Olmo et al., 2021) in 
the South Atlantic Ocean. Black dots indicate the initial location, spaced at 3° 
intervals. Blue lines indicate the 1 month backwards trajectory (i.e where the 
water mass has travelled from). Red lines indicate the 1 month forward 
trajectory (i.e where the water mass will travel to). 

6.5 Conclusions and future work 

This thesis has shown that the plankton community in the oceans plays a key 

role in the CO2 sink in the South Atlantic Ocean, and this is likely similar across 

the global oceans. Chapter 2 illustrated that NCP can be accurately estimated 

from satellite observations. Chapter 3 showed that including NCP within a pCO2 

(sw) extrapolation scheme improved the complete fields of pCO2 (sw) and modified 

the regional air-sea CO2 flux. Chapter 4 highlighted interannual and long-term 

variability in the air-sea CO2 flux could be attributed to changes in NCP. 
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Chapter 5 indicated that mesoscale eddies are important in modifying the air-

sea CO2 flux, and this can be through the mesoscale modification of NCP.  

As a result of the advancements and findings of this thesis, recommendations 

for future work are presented in the following research questions: 

From Chapter 2: 

• Are NCP algorithms for the Atlantic Ocean applicable globally? 

• What is the effect of in situ uncertainties on the global performance of Chl a, 

NPP and NCP algorithms? 

• How does plankton respiration vary in the global ocean? Can respiration be 

quantified or estimated from satellite observations? 

• Are regions of plankton autotrophy becoming more or less prevalent? 

• What is the performance of NCP algorithms when applied to climate data 

records of ocean colour data (The only one of which is the European Space 

Agency Ocean Colour Climate Change Initiative; OC-CCI)? 

• What is the effect of accounting for in situ observation uncertainties when 

developing new NCP algorithms? Are current algorithms biased by uncertain 

in situ observations used during their development?  

From Chapter 3: 

• To what extent does including NCP in global pCO2 (sw) extrapolation 

schemes modify the global ocean CO2 sink? 

• Can pCO2 (sw) estimates be improved by including in situ buoy observations 

into the SA-FNN? Does this improve the pCO2 (sw) estimates in the 

Equatorial Atlantic? 

From Chapter 4: 

• What is the contribution of biological activity to interannual and decadal 

changes in the global ocean CO2 sink? 

• Are there instances where changes in global biological activity are more 

important than changes in ocean circulation in controlling the variability in 

the ocean CO2 sink? Are these processes tightly coupled? 
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From Chapter 5: 

• What is the contribution of long-lived mesoscale eddies to the global ocean 

CO2 sink? 

• What is the contribution of all mesoscale eddies to the South Atlantic CO2 

sink? 

• Can Lagrangian tracking of surface waters improve the temporal and spatial 

resolution of pCO2 (sw) estimates? 

• Does the increased air-sea CO2 flux into Agulhas eddies account for their 

higher levels of anthropogenic carbon, as proposed by Orselli et al. (2019a)? 

  



   
 

196 
 
 

  



   
 

197 
 
 

References 

Aguiar, A. L., Cirano, M., Marta-Almeida, M., Lessa, G. C., and Valle-Levinson, 
A.: Upwelling processes along the South Equatorial Current bifurcation region 
and the Salvador Canyon (13°S), Brazil, Cont. Shelf Res., 171, 77–96, 
https://doi.org/10.1016/j.csr.2018.10.001, 2018. 

Aguirre, C., Rojas, M., Garreaud, R. D., and Rahn, D. A.: Role of synoptic 
activity on projected changes in upwelling-favourable winds at the ocean’s 
eastern boundaries, npj Clim. Atmos. Sci., 2, 44, 
https://doi.org/10.1038/s41612-019-0101-9, 2019. 

Amari, S. I., Murata, N., Müller, K. R., Finke, M., and Yang, H. H.: Asymptotic 
statistical theory of overtraining and cross-validation, IEEE Trans. Neural 
Networks, 8, 985–996, https://doi.org/10.1109/72.623200, 1997. 

Araujo, M., Noriega, C., Medeiros, C., Lefèvre, N., Ibánhez, J. S. P., Flores 
Montes, M., Silva, A. C. da, and Santos, M. de L.: On the variability in the CO2 
system and water productivity in the western tropical Atlantic off North and 
Northeast Brazil, J. Mar. Syst., 189, 62–77, 
https://doi.org/10.1016/j.jmarsys.2018.09.008, 2019. 

Arhan, M., Speich, S., Messager, C., Dencausse, G., Fine, R., and Boye, M.: 
Anticyclonic and cyclonic eddies of subtropical origin in the subantarctic zone 
south of Africa, J. Geophys. Res. Ocean., 116, 1–22, 
https://doi.org/10.1029/2011JC007140, 2011. 

Aricò, S., Arrieta, J. M., Bakker, D. C. E., Boyd, P. W., Cotrim da Cunha, L., 
Chai, F., Dai, M., Gruber, N., Isensee, K., Ishii, M., Jiao, N., Lauvset, S. K., 
McKinley, G. A., Monteiro, P., Robinson, C., Sabine, C., Sanders, R., Schoo, K. 
L., Schuster, U., Shutler, J. D., Thomas, H., Wanninkhof, R., Watson, A. J., 
Bopp, L., Boss, E., Bracco, A., Cai, W., Fay, A., Feely, R. A., Gregor, L., Hauck, 
J., Heinze, C., Henson, S., Hwang, J., Post, J., Suntharalingam, P., Telszewski, 
M., Tilbrook, B., Valsala, V., and Rojas, A.: Integrated Ocean Carbon Research: 
A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean 
Carbon Research and Observations for the Next Decade., edited by: 
Wanninkhof, R., Sabine, C., and Aricò, S., UNESCO, Paris, 46 pp., 
https://doi.org/10.25607/h0gj-pq41, 2021. 

Arnone, V., González-Dávila, M., and Magdalena Santana-Casiano, J.: CO2 
fluxes in the South African coastal region, Mar. Chem., 195, 41–49, 
https://doi.org/10.1016/j.marchem.2017.07.008, 2017. 

Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit 
validation of ocean color satellite data products, Remote Sens. Environ., 102, 
12–23, https://doi.org/10.1016/j.rse.2006.01.015, 2006. 

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., 
Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S. I., Nojiri, Y., 
Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., 
Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, 
A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W. J., Castle, R. D., 
Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., 



   
 

198 
 
 

Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-
Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, 
C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., 
Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., 
Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, 
L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., 
Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., 
Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., 
Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., 
Telszewski, M., Tuma, M., Van Heuven, S. M. A. C., Vandemark, D., Ward, B., 
Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in 
version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 
383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. 

Banks, A. C., Vendt, R., Alikas, K., Bialek, A., Kuusk, J., Lerebourg, C., 
Ruddick, K., Tilstone, G., Vabson, V., Donlon, C., and Casal, T.: Fiducial 
reference measurements for satellite ocean colour (FRM4SOC), Remote Sens., 
12, https://doi.org/10.3390/RS12081322, 2020. 

Barlow, R., Cummings, D., and Gibb, S.: Improved resolution of mono- and 
divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts 
using reverse phase C-8 HPLC, Mar. Ecol. Prog. Ser., 161, 303–307, 
https://doi.org/10.3354/meps161303, 1997. 

Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-
Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, 
J. M.: A time-series view of changing surface ocean chemistry due to ocean 
uptake of anthropogenic CO2 and ocean acidification, 27, 126–141, 
https://doi.org/10.5670/oceanog.2014.16, 2014. 

Behrenfeld, M. J. and Falkowski, P. G.: A consumer’s guide to phytoplankton 
primary productivity models, Limnol. Oceanogr., 42, 1479–1491, 
https://doi.org/10.4319/lo.1997.42.7.1479, 1997a. 

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from 
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 
https://doi.org/10.4319/lo.1997.42.1.0001, 1997b. 

Behrenfeld, M. J. and Milligan, A. J.: Photophysiological Expressions of Iron 
Stress in Phytoplankton, Ann. Rev. Mar. Sci., 5, 217–246, 
https://doi.org/10.1146/annurev-marine-121211-172356, 2012. 

Behrenfeld, M. J., Marañón, E., Siegel, D. A., and Hooker, S. B.: 
Photoacclimation and nutrient-based model of light-saturated photosynthesis for 
quantifying oceanic primary production, Mar. Ecol. Prog. Ser., 228, 103–117, 
https://doi.org/10.3354/meps228103, 2002. 

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. 
L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, 
E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 
752–755, https://doi.org/10.1038/nature05317, 2006. 

Behrenfeld, M. J., Westberry, T. K., Boss, E. S., O’Malley, R. T., Siegel, D. A., 



   
 

199 
 
 

Wiggert, J. D., Franz, B. A., McClain, C. R., Feldman, G. C., Doney, S. C., 
Moore, J. K., Dall’Olmo, G., Milligan, A. J., Lima, I., and Mahowald, N.: Satellite-
detected fluorescence reveals global physiology of ocean phytoplankton, 6, 
779–794, https://doi.org/10.5194/bg-6-779-2009, 2009. 

Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., 
Halsey, K. H., Milligan, A. J., Siegel, D. A., and Brown, M. B.: Revaluating 
ocean warming impacts on global phytoplankton, Nat. Clim. Chang., 6, 323–
330, https://doi.org/10.1038/nclimate2838, 2016. 

Benallal, M. A., Moussa, H., Lencina-Avila, J. M., Touratier, F., Goyet, C., El Jai, 
M. C., Poisson, N., and Poisson, A.: Satellite-derived CO2 flux in the surface 
seawater of the Austral Ocean south of Australia, Int. J. Remote Sens., 38, 
1600–1625, https://doi.org/10.1080/01431161.2017.1286054, 2017. 

BIPM: Evaluation of measurement data—Guide to the expression of uncertainty 
in measurement., 2008. 

Bonou, F. K., Noriega, C., Lefèvre, N., and Araujo, M.: Distribution of CO2 
parameters in the Western Tropical Atlantic Ocean, Dyn. Atmos. Ocean., 73, 
47–60, https://doi.org/10.1016/j.dynatmoce.2015.12.001, 2016. 

Bouman, H., Platt, T., Sathyendranath, S., and Stuart, V.: Dependence of light-
saturated photosynthesis on temperature and community structure, Deep Sea 
Res. Part I Oceanogr. Res. Pap., 52, 1284–1299, 
https://doi.org/10.1016/j.dsr.2005.01.008, 2005. 

Bouman, H. A., Platt, T., Doblin, M., Figueiras, F. G., Gudmundsson, K., 
Gudfinnsson, H. G., Huang, B., Hickman, A., Hiscock, M., Jackson, T., Lutz, V. 
A., Mélin, F., Rey, F., Pepin, P., Segura, V., Tilstone, G. H., van Dongen-
Vogels, V., and Sathyendranath, S.: Photosynthesis–irradiance parameters of 
marine phytoplankton: synthesis of a global data set, Earth Syst. Sci. Data, 10, 
251–266, https://doi.org/10.5194/essd-10-251-2018, 2018. 

Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F., Nobre, P., Campos, 
E., Yu, L., Planton, S., Busalacchi, A., Moura, A. D., Servain, J., and Trotte, J.: 
THE PIRATA PROGRAM, Bull. Am. Meteorol. Soc., 89, 1111–1126, 
https://doi.org/10.1175/2008BAMS2462.1, 2008. 

Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., 
Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette, M., 
Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., 
Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M. T., McKay, R. 
M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., 
Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and Zeldis, J.: A 
mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron 
fertilization, Nature, 407, 695–702, https://doi.org/10.1038/35037500, 2000. 

Brewin, R. J. W., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, 
P. Y., Devred, E., Doerffer, R., Fomferra, N., Franz, B., Grant, M., Groom, S., 
Horseman, A., Hu, C., Krasemann, H., Lee, Z. P., Maritorena, S., Mélin, F., 
Peters, M., Platt, T., Regner, P., Smyth, T., Steinmetz, F., Swinton, J., Werdell, 
J., and White, G. N.: The Ocean Colour Climate Change Initiative: III. A round-



   
 

200 
 
 

robin comparison on in-water bio-optical algorithms, Remote Sens. Environ., 
162, 271–294, https://doi.org/10.1016/j.rse.2013.09.016, 2015. 

Brewin, R. J. W., Dall’Olmo, G., Pardo, S., van Dongen-Vogels, V., and Boss, 
E. S.: Underway spectrophotometry along the Atlantic Meridional Transect 
reveals high performance in satellite chlorophyll retrievals, Remote Sens. 
Environ., https://doi.org/10.1016/j.rse.2016.05.005, 2016. 

Broecker, W. S. and Peng, T.-H.: Gas exchange rates between air and sea, 26, 
21–35, https://doi.org/10.3402/tellusa.v26i1-2.9733, 1974. 

Brown, O. B. and Minnett, P. J.: MODIS Infrared Sea Surface Temperature 
Algorithm, 1999. 

Bruto, L., Araujo, M., Noriega, C., Veleda, D., and Lefèvre, N.: Variability of CO2 
fugacity at the western edge of the tropical Atlantic Ocean from the 8°N to 38°W 
PIRATA buoy, Dyn. Atmos. Ocean., 78, 1–13, 
https://doi.org/10.1016/j.dynatmoce.2017.01.003, 2017. 

Cai, W.-J., Arthur Chen, C. T., and Borges, A.: Carbon dioxide dynamics and 
fluxes in coastal waters influenced by river plumes, in: Biogeochemical 
Dynamics at Major River-Coastal Interfaces, edited by: Bianchi, T., Allison, M., 
and Cai, W.-J., Cambridge University Press, New York, 155–173, 
https://doi.org/10.1017/CBO9781139136853.010, 2013. 

Campbell, J., Antoine, D., Armstrong, R., Arrigo, K., Balch, W., Barber, R., 
Behrenfeld, M., Bidigare, R., Bishop, J., Carr, M.-E., Esaias, W., Falkowski, P., 
Hoepffner, N., Iverson, R., Kiefer, D., Lohrenz, S., Marra, J., Morel, A., Ryan, J., 
Vedernikov, V., Waters, K., Yentsch, C., and Yoder, J.: Comparison of 
algorithms for estimating ocean primary production from surface chlorophyll, 
temperature, and irradiance, Global Biogeochem. Cycles, 16, 9-1-9–15, 
https://doi.org/10.1029/2001GB001444, 2002. 

Campbell, J. W. and O’Reilly, J. E.: Role of satellites in estimating primary 
productivity on the northwest Atlantic continental shelf, Cont. Shelf Res., 8, 
179–204, https://doi.org/10.1016/0278-4343(88)90053-2, 1988. 

Carr, M. E., Friedrichs, M. A. M., Schmeltz, M., Noguchi Aita, M., Antoine, D., 
Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., 
Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., 
Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., 
Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, 
A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., 
Waters, K., and Yamanaka, Y.: A comparison of global estimates of marine 
primary production from ocean color, Deep. Res. Part II Top. Stud. Oceanogr., 
53, 741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006. 

Carvalho, A. da C. de O., Mendes, C. R. B., Kerr, R., Azevedo, J. L. L. de, 
Galdino, F., and Tavano, V. M.: The impact of mesoscale eddies on the 
phytoplankton community in the South Atlantic Ocean: HPLC-CHEMTAX 
approach, Mar. Environ. Res., 144, 154–165, 
https://doi.org/10.1016/j.marenvres.2018.12.003, 2019. 

Chaigneau, A., Eldin, G., and Dewitte, B.: Eddy activity in the four major 



   
 

201 
 
 

upwelling systems from satellite altimetry (1992–2007), Prog. Oceanogr., 83, 
117–123, https://doi.org/10.1016/j.pocean.2009.07.012, 2009. 

Chang, C. H., Johnson, N. C., and Cassar, N.: Neural network-based estimates 
of Southern Ocean net community production from in situ O2/Ar and satellite 
observation: A methodological study, 11, 3279–3297, 
https://doi.org/10.5194/bg-11-3279-2014, 2014. 

Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of 
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, 
https://doi.org/10.1016/j.pocean.2011.01.002, 2011. 

Chen, C. T. A., Huang, T. H., Fu, Y. H., Bai, Y., and He, X.: Strong sources of 
CO2 in upper estuaries become sinks of CO2 in large river plumes, Curr. Opin. 
Environ. Sustain., 4, 179–185, https://doi.org/10.1016/j.cosust.2012.02.003, 
2012a. 

Chen, F., Cai, W. J., Benitez-Nelson, C., and Wang, Y.: Sea surface pCO2-SST 
relationships across a cold-core cyclonic eddy: Implications for understanding 
regional variability and air-sea gas exchange, Geophys. Res. Lett., 34, 
https://doi.org/10.1029/2006GL028058, 2007. 

Chen, Z., Yan, X. H., Jo, Y. H., Jiang, L., and Jiang, Y.: A study of Benguela 
upwelling system using different upwelling indices derived from remotely 
sensed data, Cont. Shelf Res., 45, 27–33, 
https://doi.org/10.1016/j.csr.2012.05.013, 2012b. 

Chierici, M., Signorini, S. R., Mattsdotter-Björk, M., Fransson, A., and Olsen, A.: 
Surface water fCO2 algorithms for the high-latitude Pacific sector of the 
Southern Ocean, Remote Sens. Environ., 119, 184–196, 
https://doi.org/10.1016/j.rse.2011.12.020, 2012. 

CMEMS: Copernicus Marine Modelling Service global ocean physics reanalysis 
product (GLORYS12V1), Copernicus Mar. Model. Serv. [data set], 
https://doi.org/10.48670/moi-00021, 2021. 

Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S., 
Chavez, F. P., Ferioli, L., Sakamoto, C., Rogers, P., Millero, F., Steinberg, P., 
Nightingale, P., Cooper, D., Cochlan, W. P., Landry, M. R., Constantinou, J., 
Rollwagen, G., Trasvina, A., and Kudela, R.: A massive phytoplankton bloom 
induced by an ecosystem-scale iron fertilization experiment in the equatorial 
Pacific Ocean, Nature, 383, 495–501, https://doi.org/10.1038/383495a0, 1996. 

Colberg, F., Reason, C. J. C., and Rodgers, K.: South Atlantic response to El 
Niño-Southern Oscillation induced climate variability in an ocean general 
circulation model, J. Geophys. Res. C Ocean., 109, 1–14, 
https://doi.org/10.1029/2004JC002301, 2004. 

Coles, V. J., Brooks, M. T., Hopkins, J., Stukel, M. R., Yager, P. L., and Hood, 
R. R.: The pathways and properties of the Amazon river plume in the tropical 
North Atlantic Ocean, J. Geophys. Res. Ocean., 118, 6894–6913, 
https://doi.org/10.1002/2013JC008981, 2013. 

Cooley, S. R., Coles, V. J., Subramaniam, A., and Yager, P. L.: Seasonal 



   
 

202 
 
 

variations in the Amazon plume-related atmospheric carbon sink, Global 
Biogeochem. Cycles, 21, 1–15, https://doi.org/10.1029/2006GB002831, 2007. 

Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from continents: 
Latitudinal and seasonal variations, J. Hydrometeorol., 3, 660–687, 
https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002. 

Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and Slade, W. H.: 
Significant contribution of large particles to optical backscattering in the open 
ocean, https://doi.org/10.5194/bg-6-947-2009, 2009. 

Dall’Olmo, G., Boss, E., Behrenfeld, M. J., and Westberry, T. K.: Particulate 
optical scattering coefficients along an Atlantic Meridional Transect, Opt. 
Express, 20, 21532, https://doi.org/10.1364/OE.20.021532, 2012. 

Dall’Olmo, G., Nencioli, F., Jackson, T., Brewin, R. J. W., Gittings, J. A., and 
Raitsos, D. E.: Ocean Lagrangian Trajectories (OLTraj): Lagrangian analysis for 
non-expert users, Open Res. Eur., 1, 117, 
https://doi.org/10.12688/openreseurope.14133.2, 2021. 

Demuth, H., Beale, M., and Hagan, M.: Neural Network Toolbox 6 Users Guide, 
3 Apple Hill Drive, Natick, MA, 846 pp., 2008. 

Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-FFNN-v1: A 
two-step neural network model for the reconstruction of surface ocean pCO2 
over the global ocean, Geosci. Model Dev., 12, 2091–2105, 
https://doi.org/10.5194/gmd-12-2091-2019, 2019. 

DeVries, T.: The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and 
transports over the industrial era, Global Biogeochem. Cycles, 28, 631–647, 
https://doi.org/10.1002/2013GB004739, 2014. 

Dickson, A. G.: Standard potential of the Standard potential of the reaction -
AgCl(s)+1/2H-2(g)=Ag(s)+HCl(aq) and the standard acidity constant of the ion 
HSO4- in synthetic sea-water from 273.15-K to 318.15-K, J. Chem. 
Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 
1990. 

Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to Best Practices for 
Ocean CO2 measurements, PICES Special Publication, IOCCP Report No . 8, 
191 pp. pp., 2007. 

Dogliotti, A. I., Schloss, I. R., Almandoz, G. O., and Gagliardini, D. A.: 
Evaluation of SeaWiFS and MODIS chlorophyll‐ a products in the Argentinean 
Patagonian Continental Shelf (38° S–55° S), Int. J. Remote Sens., 30, 251–273, 
https://doi.org/10.1080/01431160802311133, 2009. 

Dogliotti, A. I., Lutz, V. A., and Segura, V.: Estimation of primary production in 
the southern Argentine continental shelf and shelf-break regions using field and 
remote sensing data, Remote Sens. Environ., 140, 497–508, 
https://doi.org/10.1016/j.rse.2013.09.021, 2014. 

Dong, Y., Yang, M., Bakker, D. C. E., Kitidis, V., and Bell, T. G.: Uncertainties in 
eddy covariance air–sea CO2 flux measurements and implications for gas 
transfer velocity parameterisations, Atmos. Chem. Phys., 21, 8089–8110, 



   
 

203 
 
 

https://doi.org/10.5194/acp-21-8089-2021, 2021. 

Donlon, C., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E., 
Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I., Beggs, 
H., Poulter, D. J. S., Merchant, C. J., Bingham, A., Heinz, S., Harris, A., Wick, 
G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., 
Reynolds, R. W., Kawamura, H., and Rayner, N.: The Global Ocean Data 
Assimilation Experiment High-resolution Sea Surface Temperature Pilot Project, 
Bull. Am. Meteorol. Soc., 88, 1197–1214, https://doi.org/10.1175/BAMS-88-8-
1197, 2007. 

Donlon, C., Robinson, I. S., Reynolds, M., Wimmer, W., Fisher, G., Edwards, 
R., and Nightingale, T. J.: An infrared sea surface temperature autonomous 
radiometer (ISAR) for deployment aboard volunteer observing ships (VOS), J. 
Atmos. Ocean. Technol., 25, 93–113, 
https://doi.org/10.1175/2007JTECHO505.1, 2008. 

Donlon, C. J., Nightingale, T. J., Sheasby, T., Turner, J., Robinson, I. S., and 
Emergy, W. J.: Implications of the oceanic thermal skin temperature deviation at 
high wind speed, Geophys. Res. Lett., 26, 2505–2508, 
https://doi.org/10.1029/1999GL900547, 1999. 

Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., 
Ward, B., and Murray, M. J.: Toward Improved Validation of Satellite Sea 
Surface Skin Temperature Measurements for Climate Research, J. Clim., 15, 
353–369, https://doi.org/10.1175/1520-
0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002. 

Duarte, C. M., Regaudie-de-Gioux, A., Arrieta, J. M., Delgado-Huertas, A., and 
Agustí, S.: The Oligotrophic Ocean Is Heterotrophic, Ann. Rev. Mar. Sci., 5, 
551–569, https://doi.org/10.1146/annurev-marine-121211-172337, 2013. 

Ducklow, H. W. and Doney, S. C.: What Is the Metabolic State of the 
Oligotrophic Ocean? A Debate, Ann. Rev. Mar. Sci., 5, 525–533, 
https://doi.org/10.1146/annurev-marine-121211-172331, 2013. 

Dufois, F., Hardman-Mountford, N. J., Greenwood, J., Richardson, A. J., Feng, 
M., and Matear, R. J.: Anticyclonic eddies are more productive than cyclonic 
eddies in subtropical gyres because of winter mixing, Sci. Adv., 2, 1–7, 
https://doi.org/10.1126/sciadv.1600282, 2016. 

Dunstan, P. K., Foster, S. D., King, E., Risbey, J., O’Kane, T. J., Monselesan, 
D., Hobday, A. J., Hartog, J. R., and Thompson, P. A.: Global patterns of 
change and variation in sea surface temperature and chlorophyll a, Sci. Rep., 8, 
1–9, https://doi.org/10.1038/s41598-018-33057-y, 2018. 

Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. 
T., and Berman-Frank, I.: Impact of ocean acidification on the structure of future 
phytoplankton communities, Nat. Clim. Chang., 5, 1002–1006, 
https://doi.org/10.1038/nclimate2722, 2015. 

Eppley, R. W., Stewart, E., Abbott, M. R., and Heyman, U.: Estimating ocean 
primary production from satellite chlorophyll. Introduction to regional differences 
and statistics for the Southern California Bight, J. Plankton Res., 7, 57–70, 



   
 

204 
 
 

https://doi.org/10.1093/plankt/7.1.57, 1985. 

Fay, A. R. and McKinley, G. A.: Global trends in surface ocean pCO2 from in 
situ data, Global Biogeochem. Cycles, 27, 541–557, 
https://doi.org/10.1002/gbc.20051, 2013. 

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary 
production of the biosphere: Integrating terrestrial and oceanic components, 
Science (80-. )., 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 
1998. 

Fogt, R. L., Bromwich, D. H., and Hines, K. M.: Understanding the SAM 
influence on the South Pacific ENSO teleconnection, Clim. Dyn., 36, 1555–
1576, https://doi.org/10.1007/s00382-010-0905-0, 2011. 

Ford, D., Tilstone, G. H., Shutler, J. D., Kitidis, V., Lobanova, P., Schwarz, J., 
Poulton, A. J., Serret, P., Lamont, T., Chuqui, M., Barlow, R., Lozano, J., 
Kampel, M., and Brandini, F.: Wind speed and mesoscale features drive net 
autotrophy in the South Atlantic Ocean, Remote Sens. Environ., 260, 112435, 
https://doi.org/10.1016/j.rse.2021.112435, 2021a. 

Ford, D. J., Tilstone, G. H., Shutler, J. D., and Kitidis, V.: Interpolated surface 
ocean carbon dioxide partial pressure for the South Atlantic Ocean (2002-2018) 
using different biological parameters, PANGAEA [data set], 
https://doi.org/10.1594/PANGAEA.935936, 2021b. 

Ford, D. J., Tilstone, G. H., Shutler, J. D., and Kitidis, V.: Derivation of seawater 
pCO2 from net community production identifies the South Atlantic Ocean as a 
CO2 source, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, 2022. 

Frenger, I., Gruber, N., Knutti, R., and Münnich, M.: Imprint of Southern Ocean 
eddies on winds, clouds and rainfall, Nat. Geosci., 6, 608–612, 
https://doi.org/10.1038/ngeo1863, 2013. 

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., 
Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., 
Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, 
A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., 
Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., 
Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., 
Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, 
A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., 
Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., 
Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, 
Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., 
Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, 
A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der 
Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., 
Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, 
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-
2020, 2020. 

Friedrichs, M. A. M., Carr, M.-E., Barber, R. T., Scardi, M., Antoine, D., 



   
 

205 
 
 

Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Buitenhuis, E. T., Chai, F., 
Christian, J. R., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Gentili, B., 
Gregg, W., Hoepffner, N., Ishizaka, J., Kameda, T., Lima, I., Marra, J., Mélin, F., 
Moore, J. K., Morel, A., O’Malley, R. T., O’Reilly, J., Saba, V. S., Schmeltz, M., 
Smyth, T. J., Tjiputra, J., Waters, K., Westberry, T. K., and Winguth, A.: 
Assessing the uncertainties of model estimates of primary productivity in the 
tropical Pacific Ocean, J. Mar. Syst., 76, 113–133, 
https://doi.org/10.1016/j.jmarsys.2008.05.010, 2009. 

García-Corral, L. S., Barber, E., Regaudie-De-Gioux, A., Sal, S., Holding, J. M., 
Agustí, S., Navarro, N., Serret, P., Mozetič, P., and Duarte, C. M.: Temperature 
dependence of planktonic metabolism in the subtropical North Atlantic Ocean, 
11, 4529–4540, https://doi.org/10.5194/bg-11-4529-2014, 2014. 

Garcia, C. A. E., Sarma, Y. V. B., Mata, M. M., and Garcia, V. M. T.: Chlorophyll 
variability and eddies in the Brazil-Malvinas Confluence region, Deep. Res. Part 
II Top. Stud. Oceanogr., https://doi.org/10.1016/j.dsr2.2003.07.016, 2004. 

Garcia, C. A. E., Garcia, V. M. T., and McClain, C. R.: Evaluation of SeaWiFS 
chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans, 
Remote Sens. Environ., https://doi.org/10.1016/j.rse.2004.12.006, 2005. 

Garcia, V. M. T., Signorini, S., Garcia, C. A. E., and McClain, C. R.: Empirical 
and semi-analytical chlorophyll algorithms in the south-western Atlantic coastal 
region (25-40°S and 60-45°W), Int. J. Remote Sens., 27, 1539–1562, 
https://doi.org/10.1080/01431160500382857, 2006. 

Garnesson, P., Mangin, A., Fanton d’Andon, O., Demaria, J., and Bretagnon, 
M.: The CMEMS GlobColour chlorophyll-a product based on satellite 
observation: multi-sensor merging and flagging strategies, Ocean Sci., 15, 819–
830, https://doi.org/10.5194/os-15-819-2019, 2019. 

Garver, S. A. and Siegel, D. A.: Inherent optical property inversion of ocean 
color spectra and its biogeochemical interpretation: 1. Time series from the 
Sargasso Sea, J. Geophys. Res. Ocean., 102, 18607–18625, 
https://doi.org/10.1029/96JC03243, 1997. 

Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., and Strutton, 
P. G.: Regional variations in the influence of mesoscale eddies on near-surface 
chlorophyll, J. Geophys. Res. Ocean., 119, 8195–8220, 
https://doi.org/10.1002/2014JC010111, 2014. 

Gist, N., Serret, P., Woodward, E. M. S., Chamberlain, K., and Robinson, C.: 
Seasonal and spatial variability in plankton production and respiration in the 
Subtropical Gyres of the Atlantic Ocean, Deep. Res. Part II Top. Stud. 
Oceanogr., 56, 931–940, https://doi.org/10.1016/j.dsr2.2008.10.035, 2009. 

Goddijn-Murphy, L. M., Woolf, D. K., Land, P. E., Shutler, J. D., and Donlon, C.: 
The OceanFlux Greenhouse Gases methodology for deriving a sea surface 
climatology of CO2 fugacity in support of air-sea gas flux studies, Ocean Sci., 
11, 519–541, https://doi.org/10.5194/os-11-519-2015, 2015. 

Gohin, F., Druon, J. N., and Lampert, L.: A five channel chlorophyll 
concentration algorithm applied to SeaWiFS data processed by SeaDAS in 



   
 

206 
 
 

coastal waters, Int. J. Remote Sens., 23, 1639–1661, 
https://doi.org/10.1080/01431160110071879, 2002. 

González-Dávila, M., Santana-Casiano, J. M., and Ucha, I. R.: Seasonal 
variability of fCO2 in the Angola-Benguela region, Prog. Oceanogr., 83, 124–
133, https://doi.org/10.1016/j.pocean.2009.07.033, 2009. 

Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., 
Talley, L. D., Wanninkhof, R., Williams, N. L., and Sarmiento, J. L.: Autonomous 
Biogeochemical Floats Detect Significant Carbon Dioxide Outgassing in the 
High-Latitude Southern Ocean, Geophys. Res. Lett., 45, 9049–9057, 
https://doi.org/10.1029/2018GL078013, 2018. 

Gregg, W. W. and Carder, K. L.: A simple spectral solar irradiance model for 
cloudless maritime atmospheres, Limnol. Oceanogr., 
https://doi.org/10.4319/lo.1990.35.8.1657, 1990. 

Gregor, L. and Monteiro, P. M. S.: Is the southern benguela a significant 
regional sink of CO2?, S. Afr. J. Sci., 109, 1–5, 
https://doi.org/10.1590/sajs.2013/20120094, 2013. 

Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A comparative 
assessment of the uncertainties of global surface ocean CO2 estimates using a 
machine-learning ensemble (CSIR-ML6 version 2019a)-Have we hit the wall?, 
Geosci. Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-5113-
2019, 2019. 

Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S., 
Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, 
D., Mouchet, A., Müller, S. A., Sarmiento, J. L., and Takahashi, T.: Oceanic 
sources, sinks, and transport of atmospheric CO2, Global Biogeochem. Cycles, 
23, 1–21, https://doi.org/10.1029/2008GB003349, 2009. 

Guerra, L. A. A., Paiva, A. M., and Chassignet, E. P.: On the translation of 
Agulhas rings to the western South Atlantic Ocean, Deep. Res. Part I 
Oceanogr. Res. Pap., 139, 104–113, https://doi.org/10.1016/j.dsr.2018.08.005, 
2018. 

Harrison, C. S., Long, M. C., Lovenduski, N. S., and Moore, J. K.: Mesoscale 
Effects on Carbon Export: A Global Perspective, Global Biogeochem. Cycles, 
32, 680–703, https://doi.org/10.1002/2017GB005751, 2018. 

He, Q., Zhan, H., Cai, S., and Li, Z.: Eddy effects on surface chlorophyll in the 
northern South China Sea: Mechanism investigation and temporal variability 
analysis, Deep. Res. Part I Oceanogr. Res. Pap., 112, 25–36, 
https://doi.org/10.1016/j.dsr.2016.03.004, 2016. 

Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and 
Quartly, G. D.: A reduced estimate of the strength of the ocean’s biological 
carbon pump, Geophys. Res. Lett., 38, 10–14, 
https://doi.org/10.1029/2011GL046735, 2011. 

Henson, S. A., Humphreys, M. P., Land, P. E., Shutler, J. D., Goddijn-Murphy, 
L., and Warren, M.: Controls on Open-Ocean North Atlantic ΔpCO2 at Seasonal 



   
 

207 
 
 

and Interannual Time Scales Are Different, Geophys. Res. Lett., 45, 9067–
9076, https://doi.org/10.1029/2018GL078797, 2018. 

Hernández-Hernández, N., Arístegui, J., Montero, M. F., Velasco-Senovilla, E., 
Baltar, F., Marrero-Díaz, Á., Martínez-Marrero, A., and Rodríguez-Santana, Á.: 
Drivers of Plankton Distribution Across Mesoscale Eddies at Submesoscale 
Range, Front. Mar. Sci., 7, 1–13, https://doi.org/10.3389/fmars.2020.00667, 
2020. 

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, 
J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., 
Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single 
levels from 1979 to present, Copernicus Clim. Chang. Serv. Clim. Data Store 
[dataset], https://doi.org/10.24381/cds.f17050d7, 2019. 

van Heuven, S., D. Pierrot, J. W. B. R., Lewis, E., and Wallace, D. W. R.: 
MATLAB Program Developed for CO2 System Calculations, Carbon Dioxide 
Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, 
https://doi.org/10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1, 2011. 

Hewitt, H. T., Bell, M. J., Chassignet, E. P., Czaja, A., Ferreira, D., Griffies, S. 
M., Hyder, P., McClean, J. L., New, A. L., and Roberts, M. J.: Will high-
resolution global ocean models benefit coupled predictions on short-range to 
climate timescales?, Ocean Model., 120, 120–136, 
https://doi.org/10.1016/j.ocemod.2017.11.002, 2017. 

Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E., Chassignet, E. 
P., Fox-Kemper, B., Hyder, P., Marshall, D. P., Popova, E., Treguier, A. M., 
Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M., Kuhlbrodt, T., Arsouze, T., 
Bellucci, A., Castruccio, F., Gan, B., Putrasahan, D., Roberts, C. D., Van 
Roekel, L., and Zhang, Q.: Resolving and Parameterising the Ocean Mesoscale 
in Earth System Models, Curr. Clim. Chang. Reports, 6, 137–152, 
https://doi.org/10.1007/s40641-020-00164-w, 2020. 

Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill, P.: 
Measurements of air-sea gas exchange at high wind speeds in the Southern 
Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, 
L16611, https://doi.org/10.1029/2006GL026817, 2006. 

Holding, T., Ashton, I. G., Shutler, J. D., Land, P. E., Nightingale, P. D., Rees, 
A. P., Brown, I., Piolle, J.-F., Kock, A., Bange, H. W., Woolf, D. K., Goddijn-
Murphy, L., Pereira, R., Paul, F., Girard-Ardhuin, F., Chapron, B., Rehder, G., 
Ardhuin, F., and Donlon, C. J.: The FluxEngine air–sea gas flux toolbox: 
simplified interface and extensions for in situ analyses and multiple sparingly 
soluble gases, Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-
2019, 2019. 

Hooker, S. B., Rees, N. W., and Aiken, J.: An objective methodology for 
identifying oceanic provinces, Prog. Oceanogr., 45, 313–338, 
https://doi.org/10.1016/S0079-6611(00)00006-9, 2000. 

Hopkins, J., Lucas, M., Dufau, C., Sutton, M., Stum, J., Lauret, O., and 
Channelliere, C.: Detection and variability of the Congo River plume from 



   
 

208 
 
 

satellite derived sea surface temperature, salinity, ocean colour and sea level, 
Remote Sens. Environ., 139, 365–385, 
https://doi.org/10.1016/j.rse.2013.08.015, 2013. 

Howard, E. M., Durkin, C. A., Hennon, G. M. M., Ribalet, F., and Stanley, R. H. 
R.: Biological production, export efficiency, and phytoplankton communities 
across 8000 km of the South Atlantic, Global Biogeochem. Cycles, 31, 1066–
1088, https://doi.org/10.1002/2016GB005488, 2017. 

Hu, C., Lee, Z., and Franz, B.: Chlorophyll a algorithms for oligotrophic oceans: 
A novel approach based on three-band reflectance difference, J. Geophys. Res. 
Ocean., 117, 1–25, https://doi.org/10.1029/2011JC007395, 2012. 

Hutchings, L., van der Lingen, C. D., Shannon, L. J., Crawford, R. J. M., 
Verheye, H. M. S., Bartholomae, C. H., van der Plas, A. K., Louw, D., Kreiner, 
A., Ostrowski, M., Fidel, Q., Barlow, R. G., Lamont, T., Coetzee, J., Shillington, 
F., Veitch, J., Currie, J. C., and Monteiro, P. M. S.: The Benguela Current: An 
ecosystem of four components, Prog. Oceanogr., 83, 15–32, 
https://doi.org/10.1016/j.pocean.2009.07.046, 2009. 

Ibánhez, J. S. P., Diverrès, D., Araujo, M., and Lefèvre, N.: Seasonal and 
interannual variability of sea-air CO2 fluxes in the tropical Atlantic affected by 
the Amazon River plume, Global Biogeochem. Cycles, 29, 1640–1655, 
https://doi.org/10.1002/2015GB005110, 2015. 

Ibánhez, J. S. P., Araujo, M., and Lefèvre, N.: The overlooked tropical oceanic 
CO2 sink, Geophys. Res. Lett., 43, 3804–3812, 
https://doi.org/10.1002/2016GL068020, 2016. 

Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Sugimoto, H., Midorikawa, T., and 
Ishii, M.: Trends in pCO2 and sea–air CO2 flux over the global open oceans for 
the last two decades, J. Oceanogr., 71, 637–661, 
https://doi.org/10.1007/s10872-015-0306-4, 2015. 

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of 
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. 
B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 
Cambridge University Press, Cambridge, UK, 1535 pp., 2013. 

IPCC: Climate Change 2021: The Physical Science Basis. Contribution of 
Working Group I to the Sixth Assessment Report of the Intergovernmental 
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., 
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, 
M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., 
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 
2021. 

Jean-Michel, L., Eric, G., Romain, B.-B., Gilles, G., Angélique, M., Marie, D., 
Clément, B., Mathieu, H., Olivier, L. G., Charly, R., Tony, C., Charles-
Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., and Pierre-Yves, 
L. T.: The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 
Reanalysis, Front. Earth Sci., 9, 1–27, 



   
 

209 
 
 

https://doi.org/10.3389/feart.2021.698876, 2021. 

Jersild, A., Delawalla, S., and Ito, T.: Mesoscale Eddies Regulate Seasonal Iron 
Supply and Carbon Drawdown in the Drake Passage, Geophys. Res. Lett., 48, 
https://doi.org/10.1029/2021GL096020, 2021. 

Jiang, Z. P., Cai, W. J., Lehrter, J., Chen, B., Ouyang, Z., Le, C., Roberts, B. J., 
Hussain, N., Scaboo, M. K., Zhang, J., and Xu, Y.: Spring net community 
production and its coupling with the CO2 dynamics in the surface water of the 
northern Gulf of Mexico, 16, 3507–3525, https://doi.org/10.5194/bg-16-3507-
2019, 2019. 

Jones, E. M., Hoppema, M., Strass, V., Hauck, J., Salt, L., Ossebaar, S., Klaas, 
C., van Heuven, S. M. A. C., Wolf-Gladrow, D., Stöven, T., and de Baar, H. J. 
W.: Mesoscale features create hotspots of carbon uptake in the Antarctic 
Circumpolar Current, Deep. Res. Part II Top. Stud. Oceanogr., 138, 39–51, 
https://doi.org/10.1016/j.dsr2.2015.10.006, 2017. 

Kahru, M., Gille, S. T., Murtugudde, R., Strutton, P. G., Manzano-Sarabia, M., 
Wang, H., and Mitchell, B. G.: Global correlations between winds and ocean 
chlorophyll, J. Geophys. Res. Ocean., 115, 1–11, 
https://doi.org/10.1029/2010JC006500, 2010. 

Kaiser, J., Reuer, M. K., Barnett, B., and Bender, M. L.: Marine productivity 
estimates from continuous O2/Ar ratio measurements by membrane inlet mass 
spectrometry, Geophys. Res. Lett., 32, n/a-n/a, 
https://doi.org/10.1029/2005GL023459, 2005. 

Kampel, M., Sathyendranath, S., Platt, T., and Gaeta, S. A.: Satellite estimates 
of phytoplankton primary production at santos bight, southwestern-south 
Atlantic: Comparison of algorithms, in: 2009 IEEE International Geoscience and 
Remote Sensing Symposium, II-286-II–289, 
https://doi.org/10.1109/IGARSS.2009.5418066, 2009a. 

Kampel, M., Lorenzzetti, J. A., Bentz, C. M., Nunes, R. A., Paranhos, R., 
Rudorff, F. M., and Politano, A. T.: Simultaneous measurements of chlorophyll 
concentration by lidar, fluorometry, above-water radiometry, and ocean color 
MODIS images in the Southwestern Atlantic, 9, 528–541, 
https://doi.org/10.3390/s90100528, 2009b. 

Kendall, M. G.: Rank Correlation Methods, 4th ed., Charles Griffin, London, UK, 
1975. 

Keppler, L. and Landschützer, P.: Regional Wind Variability Modulates the 
Southern Ocean Carbon Sink, Sci. Rep., 9, 1–10, 
https://doi.org/10.1038/s41598-019-43826-y, 2019. 

Kim, H. J., Kim, T., Hyeong, K., Yeh, S., Park, J., Yoo, C. M., and Hwang, J.: 
Suppressed CO2 Outgassing by an Enhanced Biological Pump in the Eastern 
Tropical Pacific, J. Geophys. Res. Ocean., 124, 7962–7973, 
https://doi.org/10.1029/2019JC015287, 2019. 

Kitidis, V., Tilstone, G. H., Serret, P., Smyth, T. J., Torres, R., and Robinson, C.: 
Oxygen photolysis in the Mauritanian upwelling: Implications for net community 



   
 

210 
 
 

production, Limnol. Oceanogr., 59, 299–310, 
https://doi.org/10.4319/lo.2014.59.2.0299, 2014. 

Kitidis, V., Brown, I., Hardman-mountford, N., and Lefèvre, N.: Surface ocean 
carbon dioxide during the Atlantic Meridional Transect ( 1995 – 2013 ); 
evidence of ocean acidification, Prog. Oceanogr., 158, 65–75, 
https://doi.org/10.1016/j.pocean.2016.08.005, 2017. 

Kitidis, V., Shutler, J. D., Ashton, I., Warren, M., Brown, I., Findlay, H., Hartman, 
S. E., Sanders, R., Humphreys, M., Kivimäe, C., Greenwood, N., Hull, T., 
Pearce, D., McGrath, T., Stewart, B. M., Walsham, P., McGovern, E., Bozec, Y., 
Gac, J.-P., van Heuven, S. M. A. C., Hoppema, M., Schuster, U., Johannessen, 
T., Omar, A., Lauvset, S. K., Skjelvan, I., Olsen, A., Steinhoff, T., Körtzinger, A., 
Becker, M., Lefevre, N., Diverrès, D., Gkritzalis, T., Cattrijsse, A., Petersen, W., 
Voynova, Y. G., Chapron, B., Grouazel, A., Land, P. E., Sharples, J., and 
Nightingale, P. D.: Winter weather controls net influx of atmospheric CO2 on the 
north-west European shelf, Sci. Rep., 9, 20153, https://doi.org/10.1038/s41598-
019-56363-5, 2019. 

Koffi, U., Lefèvre, N., Kouadio, G., and Boutin, J.: Surface CO2 parameters and 
air-sea CO2 flux distribution in the eastern equatorial Atlantic Ocean, J. Mar. 
Syst., 82, 135–144, https://doi.org/10.1016/j.jmarsys.2010.04.010, 2010. 

Koffi, U., Kouadio, G., and Kouadio, Y. K.: Estimates and Variability of the Air-
Sea CO2 Fluxes in the Gulf of Guinea during the 2005-2007 Period, Open J. 
Mar. Sci., 06, 11–22, https://doi.org/10.4236/ojms.2016.61002, 2016. 

Körtzinger, A.: A significant CO2 sink in the tropical Atlantic Ocean associated 
with the Amazon River plume, Geophys. Res. Lett., 30, 2–5, 
https://doi.org/10.1029/2003GL018841, 2003. 

Kroopnick, P.: Isotopic fractionations during oxygen consumption and carbonate 
dissolution within the North Atlantic Deep Water, Earth Planet. Sci. Lett., 49, 
485–498, https://doi.org/10.1016/0012-821X(80)90089-8, 1980. 

Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H. A., Babin, 
M., Brewin, R. J. W., Doblin, M., Estrada, M., Figueiras, F. G., Furuya, K., 
González-Benítez, N., Gudfinnsson, H. G., Gudmundsson, K., Huang, B., Isada, 
T., Kovač, Ž., Lutz, V. A., Marañón, E., Raman, M., Richardson, K., Rozema, P. 
D., van de Poll, W. H., Segura, V., Tilstone, G. H., Uitz, J., van Dongen-Vogels, 
V., Yoshikawa, T., and Sathyendranath, S.: Primary production, an index of 
climate change in the ocean: Satellite-based estimates over two decades, 
Remote Sens., 12, https://doi.org/10.3390/rs12050826, 2020. 

Lamont, T., Barlow, R. G., and Kyewalyanga, M. S.: Physical drivers of 
phytoplankton production in the southern Benguela upwelling system, Deep. 
Res. Part I Oceanogr. Res. Pap., 90, 1–16, 
https://doi.org/10.1016/j.dsr.2014.03.003, 2014. 

Lamont, T., Brewin, R. J. W., and Barlow, R. G.: Seasonal variation in remotely-
sensed phytoplankton size structure around southern Africa, Remote Sens. 
Environ., 204, 617–631, https://doi.org/10.1016/j.rse.2017.09.038, 2018a. 

Lamont, T., García-Reyes, M., Bograd, S. J., van der Lingen, C. D., and 



   
 

211 
 
 

Sydeman, W. J.: Upwelling indices for comparative ecosystem studies: 
Variability in the Benguela Upwelling System, J. Mar. Syst., 188, 3–16, 
https://doi.org/10.1016/j.jmarsys.2017.05.007, 2018b. 

Lamont, T., Barlow, R. G., and Brewin, R. J. W.: Long‐Term Trends in 
Phytoplankton Chlorophyll a and Size Structure in the Benguela Upwelling 
System, J. Geophys. Res. Ocean., 124, 1170–1195, 
https://doi.org/10.1029/2018JC014334, 2019. 

Land, P. E., Bailey, T. C., Taberner, M., Pardo, S., Sathyendranath, S., Zenouz, 
K. N., Id, V. B., Shutler, J. D., and Id, G. D. Q.: A Statistical Modeling 
Framework for Characterising Uncertainty in Large Datasets : Application to 
Ocean Colour, Remote Sens., 10, 
https://doi.org/https://doi.org/10.3390/rs10050695, 2018. 

Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., 
Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of 
the seasonal to inter-annual variability of the Atlantic Ocean carbon sink, 10, 
7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013. 

Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent 
variability of the global ocean carbon sink, Global Biogeochem. Cycles, 28, 
927–949, https://doi.org/10.1002/2014GB004853, 2014. 

Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. 
E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., 
Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the Southern Ocean 
carbon sink, Science (80-. )., 349, 1221–1224, 
https://doi.org/10.1126/science.aab2620, 2015. 

Landschützer, P., Gruber, N., and Bakker, D. C. E.: Decadal variations and 
trends of the global ocean carbon sink, Global Biogeochem. Cycles, 30, 1396–
1417, https://doi.org/10.1002/2015GB005359, 2016. 

Landschützer, P., Gruber, N., and Bakker, D. C. E.: An observation-based 
global monthly gridded sea surface pCO2 product from 1982 onward and its 
monthly climatology (NCEI Accession 0160558), NOAA Natl. Centers Environ. 
Information. Dataset, https://doi.org/10.7289/v5z899n6, 2017. 

Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform 
pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 
12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, 2020. 

Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global 
budget of the CO2 exchange at the air-water interface in continental shelf seas, 
Global Biogeochem. Cycles, 28, 1199–1214, 
https://doi.org/10.1002/2014GB004832, 2014. 

Lavender, S. J., Pinkerton, M. H., Froidefond, J.-M., Morales, J., Aiken, J., and 
Moore, G. F.: SeaWiFS validation in European coastal waters using optical and 
bio-geochemical measurements, Int. J. Remote Sens., 25, 1481–1488, 
https://doi.org/10.1080/01431160310001592481, 2004. 

Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J. J.: 



   
 

212 
 
 

Temperature effects on export production in the open ocean, Global 
Biogeochem. Cycles, 14, 1231–1246, https://doi.org/10.1029/1999GB001229, 
2000. 

Laxenaire, R., Speich, S., and Stegner, A.: Evolution of the Thermohaline 
Structure of One Agulhas Ring Reconstructed from Satellite Altimetry and Argo 
Floats, J. Geophys. Res. Ocean., 124, 8969–9003, 
https://doi.org/10.1029/2018JC014426, 2019. 

Lee, Z., Marra, J., Perry, M. J., and Kahru, M.: Estimating oceanic primary 
productivity from ocean color remote sensing: A strategic assessment, J. Mar. 
Syst., 149, 50–59, https://doi.org/10.1016/j.jmarsys.2014.11.015, 2015. 

Lefévre, N., Diverrés, D., and Gallois, F.: Origin of CO2 undersaturation in the 
western tropical Atlantic, Tellus, Ser. B Chem. Phys. Meteorol., 62, 595–607, 
https://doi.org/10.1111/j.1600-0889.2010.00475.x, 2010. 

Lefèvre, N. and Taylor, A.: Estimating pCO2 from sea surface temperatures in 
the Atlantic gyres, Deep. Res. Part I Oceanogr. Res. Pap., 49, 539–554, 
https://doi.org/10.1016/S0967-0637(01)00064-4, 2002. 

Lefèvre, N., Aiken, J., Rutllant, J., Daneri, G., Lavender, S., and Smyth, T.: 
Observations of pCO2 in the coastal upwelling off Chile: Spatial and temporal 
extrapolation using satellite data, J. Geophys. Res., 107, 3055, 
https://doi.org/10.1029/2000JC000395, 2002. 

Lefèvre, N., Watson, A. J., and Watson, A. R.: A comparison of multiple 
regression and neural network techniques for mapping in situ pCO2 data, 
Tellus, Ser. B Chem. Phys. Meteorol., 57, 375–384, 
https://doi.org/10.1111/j.1600-0889.2005.00164.x, 2005. 

Lefèvre, N., Guillot, A., Beaumont, L., and Danguy, T.: Variability of fCO2 in the 
Eastern Tropical Atlantic from a moored buoy, J. Geophys. Res. Ocean., 113, 
https://doi.org/10.1029/2007JC004146, 2008. 

Lefèvre, N., Caniaux, G., Janicot, S., and Gueye, A. K.: Increased CO2 
outgassing in February-May 2010 in the tropical Atlantic following the 2009 
Pacific El Niño, J. Geophys. Res. Ocean., 118, 1645–1657, 
https://doi.org/10.1002/jgrc.20107, 2013. 

Lefèvre, N., Veleda, D., Araujo, M., and Caniaux, G.: Variability and trends of 
carbon parameters at a time series in the eastern tropical Atlantic, Tellus, Ser. B 
Chem. Phys. Meteorol., 68, https://doi.org/10.3402/tellusb.v68.30305, 2016. 

Lefèvre, N., Montes, M. F., Gaspar, F. L., Rocha, C., Jiang, S., De Araújo, M. 
C., and Severino Pino Ibánhez, J.: Net heterotrophy in the Amazon continental 
shelf changes rapidly to a sink of CO2 in the outer Amazon plume, Front. Mar. 
Sci., 4, 1–16, https://doi.org/10.3389/fmars.2017.00278, 2017. 

Lefèvre, N., Tyaquiçã, P., Veleda, D., Perruche, C., and van Gennip, S. J.: 
Amazon River propagation evidenced by a CO2 decrease at 8°N, 38°W in 
September 2013, J. Mar. Syst., 211, 103419, 
https://doi.org/10.1016/j.jmarsys.2020.103419, 2020. 

Lefèvre, N., Mejia, C., Khvorostyanov, D., Beaumont, L., and Koffi, U.: Ocean 



   
 

213 
 
 

Circulation Drives the Variability of the Carbon System in the Eastern Tropical 
Atlantic, 2, 126–148, https://doi.org/10.3390/oceans2010008, 2021. 

Lehahn, Y., D’Ovidio, F., Lévy, M., Amitai, Y., and Heifetz, E.: Long range 
transport of a quasi isolated chlorophyll patch by an Agulhas ring, Geophys. 
Res. Lett., 38, https://doi.org/10.1029/2011GL048588, 2011. 

Lencina-Avila, J. M., Ito, R. G., Garcia, C. A. E., and Tavano, V. M.: Sea-air 
carbon dioxide fluxes along 35°S in the South Atlantic Ocean, Deep. Res. Part I 
Oceanogr. Res. Pap., 115, 175–187, https://doi.org/10.1016/j.dsr.2016.06.004, 
2016. 

Lewis, E., Wallace, D., and Allison, L. J.: Program developed for CO2 system 
calculations, Oak Ridge, TN, https://doi.org/10.2172/639712, 1998. 

Li, J., Jamet, C., Zhu, J., Han, B., Li, T., Yang, A., Guo, K., and Jia, D.: Error 
Budget in the validation of radiometric products derived from OLCI around the 
China Sea from Open Ocean to Coastal Waters Compared with MODIS and 
VIIRS, Remote Sens., 11, 1997–2010, https://doi.org/10.3390/rs11202400, 
2019. 

Li, Z. and Cassar, N.: Satellite estimates of net community production based on 
O2/Ar observations and comparison to other estimates, Global Biogeochem. 
Cycles, 30, 735–752, https://doi.org/10.1002/2015GB005314, 2016. 

Liu, F., Yin, K., He, L., Tang, S., and Yao, J.: Influence on phytoplankton of 
different developmental stages of mesoscale eddies off eastern Australia, J. 
Sea Res., 137, 1–8, https://doi.org/10.1016/j.seares.2018.03.004, 2018. 

Liu, W. T. and Xie, X.: Space Observation of Carbon Dioxide Partial Pressure at 
Ocean Surface, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 5472–
5484, https://doi.org/10.1109/JSTARS.2017.2766138, 2017. 

Liutti, C. C., Kerr, R., Monteiro, T., Orselli, I. B. M., Ito, R. G., and Garcia, C. A. 
E.: Sea surface CO2 fugacity in the southwestern South Atlantic Ocean: An 
evaluation based on satellite-derived images, Mar. Chem., 236, 104020, 
https://doi.org/10.1016/j.marchem.2021.104020, 2021. 

Lobanova, P., Tilstone, G. H., Bashmachnikov, I., and Brotas, V.: Accuracy 
assessment of primary production models with and without photoinhibition using 
Ocean-Colour climate change initiative data in the North East Atlantic Ocean, 
Remote Sens., 10, 1–24, https://doi.org/10.3390/rs10071116, 2018. 

Longhurst, A.: Ecological geography of the sea, Academic Press, San Diego, 
1998. 

Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate of 
global primary production in the ocean from satellite radiometer data, J. 
Plankton Res., 17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995. 

Lovecchio, E., Gruber, N., Münnich, M., and Frenger, I.: On the Processes 
Sustaining Biological Production in the Offshore Propagating Eddies of the 
Northern Canary Upwelling System, J. Geophys. Res. Ocean., 127, 1–28, 
https://doi.org/10.1029/2021JC017691, 2022. 



   
 

214 
 
 

Luz, B. and Barkan, E.: Assessment of Oceanic Productivity with the Triple-
Isotope Composition of Dissolved Oxygen, Science (80-. )., 288, 2028–2031, 
https://doi.org/10.1126/science.288.5473.2028, 2000. 

Mann, H. B.: Nonparametric Tests Against Trend, 13, 245, 
https://doi.org/10.2307/1907187, 1945. 

Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B., and Zubkov, M. V.: 
High variability of primary production in oligotrophic waters of the Atlantic 
Ocean: Uncoupling from phytoplankton biomass and size structure, Mar. Ecol. 
Prog. Ser., 257, 1–11, https://doi.org/10.3354/meps257001, 2003. 

Marañón, E., Lorenzo, M. P., Cermeño, P., and Mouriño-Carballido, B.: Nutrient 
limitation suppresses the temperature dependence of phytoplankton metabolic 
rates, ISME J., 12, 1836–1845, https://doi.org/10.1038/s41396-018-0105-1, 
2018. 

Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of a 
semianalytical ocean color model for global-scale applications, Appl. Opt., 41, 
2705, https://doi.org/10.1364/AO.41.002705, 2002. 

Maritorena, S., d’Andon, O. H. F., Mangin, A., and Siegel, D. A.: Merged 
satellite ocean color data products using a bio-optical model: Characteristics, 
benefits and issues, Remote Sens. Environ., 114, 1791–1804, 
https://doi.org/10.1016/j.rse.2010.04.002, 2010. 

Martínez-Moreno, J., Hogg, A. M. C., England, M. H., Constantinou, N. C., Kiss, 
A. E., and Morrison, A. K.: Global changes in oceanic mesoscale currents over 
the satellite altimetry record, Nat. Clim. Chang., 11, 397–403, 
https://doi.org/10.1038/s41558-021-01006-9, 2021. 

Mason, E., Pascual, A., and C., M. J.: A New Sea Surface Height – Based Code 
for Oceanic Mesoscale Eddy Tracking, J. Atmos. Ocean. Technol., 31, 1181–
1188, https://doi.org/10.1175/JTECH-D-14-00019.1, 2014. 

Mason, E., Pascual, A., Gaube, P., Ruiz, S., Pelegrí, J. L., and Delepoulle, A.: 
Subregional characterization of mesoscale eddies across the Brazil‐Malvinas 
Confluence, J. Geophys. Res. Ocean., 122, 3329–3357, 
https://doi.org/10.1002/2016JC012611, 2017. 

McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical 
Interaction at the Oceanic Mesoscale, Ann. Rev. Mar. Sci., 8, 125–159, 
https://doi.org/10.1146/annurev-marine-010814-015606, 2016. 

Mcgillis, W. R. and Wanninkhof, R.: Aqueous CO2 gradients for air – sea flux 
estimates, Mar. Chem., 98, 100–108, 
https://doi.org/10.1016/j.marchem.2005.09.003, 2006. 

McKinna, L. I. W., Cetinić, I., and Werdell, P. J.: Development and Validation of 
an Empirical Ocean Color Algorithm with Uncertainties: A Case Study with the 
Particulate Backscattering Coefficient, J. Geophys. Res. Ocean., 126, 
https://doi.org/10.1029/2021JC017231, 2021. 

Meister, G. and Franz, B. A.: Corrections to the MODIS aqua calibration derived 
from MODIS aqua ocean color products, IEEE Trans. Geosci. Remote Sens., 



   
 

215 
 
 

52, 6534–6541, https://doi.org/10.1109/TGRS.2013.2297233, 2014. 

Morel, A.: Light and marine photosynthesis: a spectral model with geochemical 
and climatological implications, Prog. Oceanogr., 26, 263–306, 
https://doi.org/10.1016/0079-6611(91)90004-6, 1991. 

Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. 
Oceanogr., 22, 709–722, https://doi.org/10.4319/lo.1977.22.4.0709, 1977. 

Morel, A., Antoine, D., Babin, M., and Dandonneau, Y.: Measured and modeled 
primary production in the northeast Atlantic (EUMELI JGOFS program): The 
impact of natural variations in photosynthetic parameters on model predictive 
skill, Deep. Res. Part I Oceanogr. Res. Pap., https://doi.org/10.1016/0967-
0637(96)00059-3, 1996. 

Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz, B. A.: 
Examining the consistency of products derived from various ocean color 
sensors in open ocean (Case 1) waters in the perspective of a multi-sensor 
approach, Remote Sens. Environ., 111, 69–88, 
https://doi.org/10.1016/j.rse.2007.03.012, 2007. 

Moussa, H., Benallal, M. A., Goyet, C., and Lefèvre, N.: Satellite-derived CO2 
fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward 
neural network, Int. J. Remote Sens., 37, 580–598, 
https://doi.org/10.1080/01431161.2015.1131872, 2016. 

MODIS-A Reprocessing R2018: 
https://oceancolor.gsfc.nasa.gov/reprocessing/r2018/aqua/, last access: 29 April 
2020. 

NASA OBPG: MODIS Aqua Level 3 SST Thermal IR Daily 4km Daytime 
v2014.0, NASA Phys. Oceanogr. DAAC [data set], 
https://doi.org/10.5067/MODSA-1D4D4, 2015. 

NASA OBPG: MODIS-Aqua Level 3 Mapped Photosynthetically Available 
Radiation Data Version R2018.0, NASA Ocean Biol. DAAC [data set], 
https://doi.org/10.5067/AQUA/MODIS/L3M/PAR/2018, 2017. 

Nencioli, F., Dall’Olmo, G., and Quartly, G. D.: Agulhas Ring Transport 
Efficiency From Combined Satellite Altimetry and Argo Profiles, J. Geophys. 
Res. Ocean., 123, 5874–5888, https://doi.org/10.1029/2018JC013909, 2018. 

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. 
I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation of air-sea gas 
exchange parameterizations using novel conservative and volatile tracers, 
Global Biogeochem. Cycles, 14, 373–387, 
https://doi.org/10.1029/1999GB900091, 2000. 

O’Reilly, J. E. and Werdell, P. J.: Chlorophyll algorithms for ocean color sensors 
- OC4, OC5 & OC6, Remote Sens. Environ., 229, 32–47, 
https://doi.org/10.1016/j.rse.2019.04.021, 2019. 

O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., 
Garver, S. A., Kahru, M., and Mcclain, C.: Ocean color chlorophyll algorithms 
for SeaWiFS encompassing chlorophyll concentrations between, J. Geophys. 



   
 

216 
 
 

Res., 103, 24937–24953, 1998. 

Olsen, A., Triñanes, J. A., and Wanninkhof, R.: Sea-air flux of CO2 in the 
Caribbean Sea estimated using in situ and remote sensing data, Remote Sens. 
Environ., 89, 309–325, https://doi.org/10.1016/j.rse.2003.10.011, 2004. 

Ono, T., Saino, T., Kurita, N., and Sasaki, K.: Basin-scale extrapolation of 
shipboard pCO2 data by using satellite SST and Chla, Int. J. Remote Sens., 25, 
3803–3815, https://doi.org/10.1080/01431160310001657515, 2004. 

Organelli, E. and Claustre, H.: Small Phytoplankton Shapes Colored Dissolved 
Organic Matter Dynamics in the North Atlantic Subtropical Gyre, Geophys. Res. 
Lett., 46, 12183–12191, https://doi.org/10.1029/2019GL084699, 2019. 

Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Routine 
uncertainty propagation for the marine carbon dioxide system, Mar. Chem., 207, 
84–107, https://doi.org/10.1016/j.marchem.2018.10.006, 2018. 

Orselli, I. B. M., Goyet, C., Kerr, R., de Azevedo, J. L. L., Araujo, M., Galdino, 
F., Touratier, F., and Garcia, C. A. E.: The effect of Agulhas eddies on 
absorption and transport of anthropogenic carbon in the South Atlantic Ocean, 
7, 1–25, https://doi.org/10.3390/CLI7060084, 2019a. 

Orselli, I. B. M., Kerr, R., Azevedo, J. L. L. d., Galdino, F., Araujo, M., and 
Garcia, C. A. E.: The sea-air CO2 net fluxes in the South Atlantic Ocean and the 
role played by Agulhas eddies, Prog. Oceanogr., 170, 40–52, 
https://doi.org/10.1016/j.pocean.2018.10.006, 2019b. 

Parard, G., Lefévre, N., and Boutin, J.: Sea water fugacity of CO2 at the 
PIRATA mooring at 6°S, 10°W, Tellus, Ser. B Chem. Phys. Meteorol., 62, 636–
648, https://doi.org/10.1111/j.1600-0889.2010.00503.x, 2010. 

Pegliasco, C., Delepoulle, A., and Faugere, Y.: Mesoscale Eddy Trajectories 
Atlas Delayed-Time all satellites: version META3.1exp DT allsat, Avis. [dataset], 
https://doi.org/10.24400/527896/a01-2021.001, 2021. 

Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., and 
Dibarboure, G.: META3.1exp: a new global mesoscale eddy trajectory atlas 
derived from altimetry, Earth Syst. Sci. Data, 14, 1087–1107, 
https://doi.org/10.5194/essd-14-1087-2022, 2022. 

Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., 
Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., Van Der Laan-
Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: Results from an 
ensemble of atmospheric CO2 inversions, 10, 6699–6720, 
https://doi.org/10.5194/bg-10-6699-2013, 2013. 

Pezzi, L. P., de Souza, R. B., Santini, M. F., Miller, A. J., Carvalho, J. T., Parise, 
C. K., Quadro, M. F., Rosa, E. B., Justino, F., Sutil, U. A., Cabrera, M. J., 
Babanin, A. V., Voermans, J., Nascimento, E. L., Alves, R. C. M., Munchow, G. 
B., and Rubert, J.: Oceanic eddy-induced modifications to air–sea heat and CO2 
fluxes in the Brazil-Malvinas Confluence, Sci. Rep., 11, 10648, 
https://doi.org/10.1038/s41598-021-89985-9, 2021. 

Pezzulli, S., Stephenson, D. B., and Hannachi, A.: The variability of seasonality, 



   
 

217 
 
 

J. Clim., 18, 71–88, https://doi.org/10.1175/JCLI-3256.1, 2005. 

Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, 
J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. 
G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W. J., Chavez, F. P., Chen, A., 
Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., 
Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, 
C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., 
Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., 
Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., 
Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., 
Park, G. H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., 
Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., 
Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., 
Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, 
J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., 
Wong, C. S., and Yoshikawa-Inoue, H.: A uniform, quality controlled Surface 
Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125–143, 
https://doi.org/10.5194/essd-5-125-2013, 2013. 

Platt, T. and Sathyendranath, S.: Oceanic Primary Production: Estimation by 
Remote Sensing at Local and Regional Scales, Science (80-. )., 241, 1613–
1620, https://doi.org/10.1126/science.241.4873.1613, 1988. 

Platt, T., Caverhill, C., and Sathyendranath, S.: Basin-scale estimates of 
oceanic primary production by remote sensing: The North Atlantic, J. Geophys. 
Res. Ocean., 96, 15147–15159, https://doi.org/10.1029/91JC01118, 1991. 

Pope, R. M. and Fry, E. S.: Absorption spectrum (380–700 nm) of pure water. II. 
Integrating cavity measurements, Appl. Opt., 36, 8710, 
https://doi.org/10.1364/AO.36.008710, 1997. 

Poulton, A. J., Holligan, P. M., Hickman, A., Kim, Y. N., Adey, T. R., 
Stinchcombe, M. C., Holeton, C., Root, S., and Woodward, E. M. S.: 
Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in 
the Atlantic Ocean, Deep. Res. Part II Top. Stud. Oceanogr., 53, 1593–1610, 
https://doi.org/10.1016/j.dsr2.2006.05.007, 2006. 

Radenac, M. H., Jouanno, J., Carine Tchamabi, C., Awo, M., Bourlès, B., 
Arnault, S., and Aumont, O.: Physical drivers of the nitrate seasonal variability in 
the Atlantic cold tongue, 17, 529–545, https://doi.org/10.5194/bg-17-529-2020, 
2020. 

Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, 
U., Shepherd, J., Turley, C., and Watson, A.: Ocean acidification due to 
increasing atmospheric carbon dioxide, The Royal Society, London, 68 pp., 
2005. 

Reboita, M. S., Ambrizzi, T., Silva, B. A., Pinheiro, R. F., and da Rocha, R. P.: 
The south atlantic subtropical anticyclone: Present and future climate, Front. 
Earth Sci., 7, 1–15, https://doi.org/10.3389/feart.2019.00008, 2019. 

Reed, R. K.: On Estimating Insolation over the Ocean, J. Phys. Oceanogr., 7, 



   
 

218 
 
 

482–485, https://doi.org/10.1175/1520-
0485(1977)007<0482:OEIOTO>2.0.CO;2, 1977. 

Regaudie-De-Gioux, A. and Duarte, C. M.: Temperature dependence of 
planktonic metabolism in the ocean, Global Biogeochem. Cycles, 26, 1–10, 
https://doi.org/10.1029/2010GB003907, 2012. 

Reverdin, G., Weiss, R. F., and Jenkins, W. J.: Ventilation of the Atlantic Ocean 
equatorial thermocline, J. Geophys. Res., 98, 16289, 
https://doi.org/10.1029/93JC00976, 1993. 

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An 
improved in situ and satellite SST analysis for climate, J. Clim., 15, 1609–1625, 
https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002. 

Robinson, C. and Williams, P. J. le B.: Respiration and its measurement in 
surface marine waters, in: Respiration in Aquatic Ecosystems, Oxford University 
Press, 147–180, https://doi.org/10.1093/acprof:oso/9780198527084.003.0009, 
2005. 

Robinson, C., Widdicombe, C. E., Zubkov, M. V., Tarran, G. A., Miller, A. E. J., 
and Rees, A. P.: Plankton community respiration during a coccolithophore 
bloom, Deep. Res. Part II Top. Stud. Oceanogr., 49, 2929–2950, 
https://doi.org/10.1016/S0967-0645(02)00064-4, 2002a. 

Robinson, C., Serret, P., Tilstone, G., Teira, E., Zubkov, M. V, Rees, A. P., and 
Woodward, E. M. S.: Plankton respiration in the Eastern Atlantic Ocean, Deep 
Sea Res. Part I Oceanogr. Res. Pap., 49, 787–813, 
https://doi.org/10.1016/S0967-0637(01)00083-8, 2002b. 

Rodenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, 
C., and Heimann, M.: Global surface-ocean pCO2 and sea – air CO2 flux 
variability from an observation-driven ocean mixed-layer scheme, Ocean Sci., 9, 
193–216, https://doi.org/10.5194/os-9-193-2013, 2013. 

Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, 
S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., 
Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J. D., Valsala, V., 
Wanninkhof, R., and Zeng, J.: Data-based estimates of the ocean carbon sink 
variability – first results of the Surface Ocean pCO2 Mapping intercomparison 
(SOCOM), 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, 2015. 

Rodrigues, R. R., Campos, E. J. D., and Haarsma, R.: The impact of ENSO on 
the south Atlantic subtropical dipole mode, J. Clim., 28, 2691–2705, 
https://doi.org/10.1175/JCLI-D-14-00483.1, 2015. 

Roemmich, D., Alford, M. H., Claustre, H., Johnson, K. S., King, B., Moum, J., 
Oke, P. R., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., 
Wijffels, S. E., Zilberman, N., Bakker, D., Baringer, M. O., Belbeoch, M., Bittig, 
H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D. O., 
D’Ortenzio, F., Dall’Olmo, G., Desbruyères, D., Fennel, K., Fer, I., Ferrari, R., 
Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., 
Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C., Kang, K. R., 
Kolodziejczyk, N., Koertzinger, A., Le Traon, P. Y., Lenn, Y. D., Maze, G., Mork, 



   
 

219 
 
 

K. A., Morris, T., Nagai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R. R., 
Prakash, S., Riser, S., Schmechtig, C., Shroyer, E., Sterl, A., Sutton, P., Talley, 
L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T., Turton, J. 
D., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., 
Waterhouse, A., Watson, A., Wilson, C., Wong, A. P., Xu, J., and Yasuda, I.: On 
the future of Argo: A global, full-depth, multi-disciplinary array, Front. Mar. Sci., 
6, 1–28, https://doi.org/10.3389/fmars.2019.00439, 2019. 

Rouault, M., Pohl, B., and Penven, P.: Coastal oceanic climate change and 
variability from 1982 to 2009 around South Africa, African J. Mar. Sci., 32, 237–
246, https://doi.org/10.2989/1814232x.2010.501563, 2010. 

Roughan, M., Keating, S. R., Schaeffer, A., Cetina Heredia, P., Rocha, C., 
Griffin, D., Robertson, R., and Suthers, I. M.: A tale of two eddies: The 
biophysical characteristics of two contrasting cyclonic eddies in the East 
Australian Current System, J. Geophys. Res. Ocean., 122, 2494–2518, 
https://doi.org/10.1002/2016JC012241, 2017. 

Rubio, A., Blanke, B., Speich, S., Grima, N., and Roy, C.: Mesoscale eddy 
activity in the southern Benguela upwelling system from satellite altimetry and 
model data, Prog. Oceanogr., 83, 288–295, 
https://doi.org/10.1016/j.pocean.2009.07.029, 2009. 

Saba, V. S., Friedrichs, M. A. M., Carr, M. E., Antoine, D., Armstrong, R. A., 
Asanuma, I., Aumont, O., Bates, N. R., Behrenfeld, M. J., Bennington, V., Bopp, 
L., Bruggeman, J., Buitenhuis, E. T., Church, M. J., Ciotti, A. M., Doney, S. C., 
Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K. J. W., 
Ishizaka, J., Kameda, T., Karl, D. M., Lima, I., Lomas, M. W., Marra, J., 
McKinley, G. A., Melin, F., Moore, J. K., Morel, A., O’Reilly, J., Salihoglu, B., 
Scardi, M., Smyth, T. J., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., 
Westberry, T. K., and Yool, A.: Challenges of modeling depth-integrated marine 
primary productivity over multiple decades: A case study at BATS and HOT, 
Global Biogeochem. Cycles, 24, 1–21, https://doi.org/10.1029/2009GB003655, 
2010. 

Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma, I., 
Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. W., 
Ishizaka, J., Kameda, T., Marra, J., Mélin, F., Morel, A., O’reilly, J., Scardi, M., 
Smith, W. O., Smyth, T. J., Tang, S., Uitz, J., Waters, K., and Westberry, T. K.: 
An evaluation of ocean color model estimates of marine primary productivity in 
coastal and pelagic regions across the globe, 8, 489–503, 
https://doi.org/10.5194/bg-8-489-2011, 2011. 

Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., 
Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., 
Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W. J., Chavez, F. P., 
Chen, A., Cosca, C., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-
Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., 
Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., 
Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., 
Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., 
Omar, A. M., Padin, X. A., Park, G. H., Paterson, K., Perez, F. F., Pierrot, D., 



   
 

220 
 
 

Poisson, A., Ríos, A. F., Salisbury, J., Santana-Casiano, J. M., S. Sarma, V. V. 
S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, 
T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., 
Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., 
and Yoshikawa-Inoue, H.: Surface Ocean CO2 Atlas (SOCAT) gridded data 
products, Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-
2013, 2013. 

Santana-Casiano, J. M., González-Dávila, M., and Ucha, I. R.: Carbon dioxide 
fluxes in the Benguela upwelling system during winter and spring: A comparison 
between 2005 and 2006, Deep Sea Res. Part II Top. Stud. Oceanogr., 56, 533–
541, https://doi.org/10.1016/j.dsr2.2008.12.010, 2009. 

Sarkar, A., Mishra, R., Bhaskar, P. V., Anilkumar, N., Sabu, P., and Soares, M.: 
Potential Role of Major Phytoplankton Communities on pCO2 Modulation in the 
Indian Sector of Southern Ocean, 37, 531–548, https://doi.org/10.1007/s41208-
021-00323-2, 2021. 

Sarma, V. V. S. S., Sampath Kumar, G., Yadav, K., Dalabehera, H. B., Rao, D. 
N., Behera, S., and Loganathan, J.: Impact of eddies on dissolved inorganic 
carbon components in the Bay of Bengal, Deep Sea Res. Part I Oceanogr. Res. 
Pap., 147, 111–120, https://doi.org/10.1016/j.dsr.2019.04.005, 2019. 

Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, 2004. 

Sathyendranath, S., Platt, T., Caverhill, C. M., Warnock, R. E., and Lewis, M. 
R.: Remote sensing of oceanic primary production: computations using a 
spectral model, Deep Sea Res. Part A, Oceanogr. Res. Pap., 36, 431–453, 
https://doi.org/10.1016/0198-0149(89)90046-0, 1989. 

Sathyendranath, S., Longhurst, A., Caverhill, C. M., and Platt, T.: Regionally 
and seasonally differentiated primary production in the North Atlantic, Deep. 
Res. Part I, 42, 1773–1802, https://doi.org/10.1016/0967-0637(95)00059-F, 
1995. 

Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V., Calton, B., 
Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R., Donlon, C., 
Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., 
Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., 
Moore, T. S., Müller, D., Regner, P., Roy, S., Steele, C. J., Steinmetz, F., 
Swinton, J., Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando, V. E., 
Feng, H., Feldman, G., Franz, B. A., Frouin, R., Gould, R. W., Hooker, S. B., 
Kahru, M., Kratzer, S., Mitchell, B. G., Muller-Karger, F. E., Sosik, H. M., Voss, 
K. J., Werdell, J., and Platt, T.: An ocean-colour time series for use in climate 
studies: The experience of the ocean-colour climate change initiative (OC-CCI), 
19, https://doi.org/10.3390/s19194285, 2019. 

Sathyendranath, S., Platt, T., Kovač, Ž., Dingle, J., Jackson, T., Brewin, R. J. 
W., Franks, P., Marañón, E., Kulk, G., and Bouman, H. A.: Reconciling models 
of primary production and photoacclimation [Invited], Appl. Opt., 59, C100, 
https://doi.org/10.1364/AO.386252, 2020. 

Schloss, I. R., Ferreyra, G. A., Ferrario, M. E., Almandoz, G. O., Codina, R., 



   
 

221 
 
 

Bianchi, A. A., Balestrini, C. F., Ochoa, H. A., Pino, D. R., and Poisson, A.: Role 
of plankton communities in sea-air variations in pCO2 in the SW Atlantic Ocean, 
Mar. Ecol. Prog. Ser., 332, 93–106, https://doi.org/10.3354/meps332093, 2007. 

Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall’s Tau, J. 
Am. Stat. Assoc., 63, 1379–1389, 
https://doi.org/10.1080/01621459.1968.10480934, 1968. 

Serret, P., Fernández, E., Sostres, J., and Anadón, R.: Seasonal compensation 
of microbial production and respiration in a temperate sea, Mar. Ecol. Prog. 
Ser., 187, 43–57, https://doi.org/10.3354/meps187043, 1999. 

Serret, P., Fernandez, E., and Robinson, C.: Biogeographic Differences in the 
Net Ecosystem Metabolism of the Open Ocean, Ecology, 83, 3225, 
https://doi.org/10.2307/3071855, 2002. 

Serret, P., Robinson, C., Fernández, E., Teira, E., Tilstone, G., and Pérez, V.: 
Predicting plankton net community production in the Atlantic Ocean, Deep. Res. 
Part II Top. Stud. Oceanogr., 56, 941–953, 
https://doi.org/10.1016/j.dsr2.2008.10.006, 2009. 

Serret, P., Robinson, C., Aranguren-Gassis, M., García-Martín, E. E., Gist, N., 
Kitidis, V., Lozano, J., Stephens, J., Harris, C., and Thomas, R.: Both 
respiration and photosynthesis determine the scaling of plankton metabolism in 
the oligotrophic ocean, Nat. Commun., 6, 1–10, 
https://doi.org/10.1038/ncomms7961, 2015. 

Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C., Lewis, E. 
R., and Wallace, D. W. R.: CO2SYSv3 for MATLAB, 
https://doi.org/10.5281/ZENODO.4774718, 2021. 

Shiskin, J., Young, A. J., and Musgrave, J. C.: The X-11 variant of the Census 
Method II Seasonal Adjustment Program, US Dept of Commerce, 68 pp., 1967. 

Shutler, J. D., Land, P. E., Piolle, J. F., Woolf, D. K., Goddijn-Murphy, L., Paul, 
F., Girard-Ardhuin, F., Chapron, B., and Donlon, C. J.: FluxEngine: A flexible 
processing system for calculating atmosphere-ocean carbon dioxide gas fluxes 
and climatologies, J. Atmos. Ocean. Technol., 33, 741–756, 
https://doi.org/10.1175/JTECH-D-14-00204.1, 2016. 

Shutler, J. D., Wanninkhof, R., Nightingale, P. D., Woolf, D. K., Bakker, D. C., 
Watson, A., Ashton, I., Holding, T., Chapron, B., Quilfen, Y., Fairall, C., 
Schuster, U., Nakajima, M., and Donlon, C. J.: Satellites will address critical 
science priorities for quantifying ocean carbon, Front. Ecol. Environ., 18, 27–35, 
https://doi.org/10.1002/fee.2129, 2020. 

Slade, W. H., Boss, E., Dall’olmo, G., Langner, M. R., Loftin, J., Behrenfeld, M. 
J., Roesler, C., and Westberry, T. K.: Underway and moored methods for 
improving accuracy in measurement of spectral particulate absorption and 
attenuation, J. Atmos. Ocean. Technol., 
https://doi.org/10.1175/2010JTECHO755.1, 2010. 

Smith, W. O. and Demaster, D. J.: Phytoplankton biomass and productivity in 
the Amazon River plume: Correlation with seasonal river discharge, Cont. Shelf 



   
 

222 
 
 

Res., 16, 291–319, https://doi.org/10.1016/0278-4343(95)00007-N, 1996. 

Smyth, T. J., Tilstone, G. H., and Groom, S. B.: Integration of radiative transfer 
into satellite models of ocean primary production, J. Geophys. Res. C Ocean., 
110, 1–11, https://doi.org/10.1029/2004JC002784, 2005. 

Song, H., Marshall, J., Munro, D. R., Dutkiewicz, S., Sweeney, C., McGillicuddy, 
D. J., and Hausmann, U.: Mesoscale modulation of air-sea CO2 flux in Drake 
Passage, J. Geophys. Res. Ocean., 121, 6635–6649, 
https://doi.org/10.1002/2016JC011714, 2016. 

Souza, R., Pezzi, L., Swart, S., Oliveira, F., and Santini, M.: Air-sea interactions 
over eddies in the Brazil-malvinas confluence, Remote Sens., 13, 
https://doi.org/10.3390/rs13071335, 2021. 

Stephens, M. P., Samuels, G., Olson, D. B., Fine, R. A., and Takahashi, T.: 
Sea-air flux of CO2 in the North Pacific using shipboard and satellite data, J. 
Geophys. Res., 100, 13571, https://doi.org/10.1029/95JC00901, 1995. 

Szeto, M., Werdell, P. J., Moore, T. S., and Campbell, J. W.: Are the world’s 
oceans optically different?, J. Geophys. Res. Ocean., 116, 1–14, 
https://doi.org/10.1029/2011JC007230, 2011. 

Takahashi, T., Feely, R. A., Weiss, R. F., Wanninkhof, R. H., Chipman, D. W., 
Sutherland, S. C., and Takahashi, T. T.: Global air-sea flux of CO2: An estimate 
based on measurements of sea-air pCO2 difference, Proc. Natl. Acad. Sci. U. 
S. A., 94, 8292–8299, https://doi.org/10.1073/pnas.94.16.8292, 1997. 

Takahashi, T., Wanninkhof, W. H., Feely, R. A., Weiss, R. F., Chipman, D. W., 
Bates, N. R., Olafsson, J., Sabine, C. L., and Sutherland, S. G.: Net sea-air CO2 
flux over the global oceans: An improved estimate based on the sea-air pCO2 
difference, 1999. 

Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, 
B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, 
Y.: Global sea–air CO2 flux based on climatological surface ocean pCO2, and 
seasonal biological and temperature effects, Deep Sea Res. Part II Top. Stud. 
Oceanogr., 49, 1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6, 
2002. 

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., 
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., 
Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., 
Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, 
J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., 
Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological 
mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux 
over the global oceans, Deep. Res. Part II Top. Stud. Oceanogr., 56, 554–577, 
https://doi.org/10.1016/j.dsr2.2008.12.009, 2009. 

Takahashi, T., Sutherland, S. C., and Kozyr, A.: LDEO Database (Version 
2019): Global Ocean Surface Water Partial Pressure of CO2 Database: 
Measurements Performed During 1957-2019, NOAA Natl. Centers Environ. Inf. 
[dataset], https://doi.org/10.3334/cdiac/otg.ndp088(v2015), 2017. 



   
 

223 
 
 

Tans, P. P., Fung, I. Y., and Takahashi, T.: Observational constraints on the 
global atmospheric CO2 budget, Science (80-. )., 247, 1431–1438, 
https://doi.org/10.1126/science.247.4949.1431, 1990. 

Taylor, J. R.: An introduction to error analysis, University Science Books, 
Sausalito, Calif., 1997. 

Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C., Bakker, 
D. C. E., González-Dávila, M., Johannessen, T., Körtzinger, A., Lüger, H., 
Olsen, A., Omar, A., Padin, X. A., Ríos, A. F., Steinhoff, T., Santana-Casiano, 
M., Wallace, D. W. R., and Wanninkhof, R.: Estimating the monthly pCO2 
distribution in the north Atlantic using a self-organizing neural network, 6, 1405–
1421, https://doi.org/10.5194/bg-6-1405-2009, 2009. 

Tilstone, G. H., Smyth, T. J., Gowen, R. J., Martinez-Vicente, V., and Groom, S. 
B.: Inherent optical properties of the Irish Sea and their effect on satellite 
primary production algorithms, J. Plankton Res., 27, 1127–1148, 
https://doi.org/10.1093/plankt/fbi075, 2005. 

Tilstone, G. H., Smyth, T., Poulton, A., and Hutson, R.: Measured and remotely 
sensed estimates of primary production in the Atlantic Ocean from 1998 to 
2005, Deep. Res. Part II Top. Stud. Oceanogr., 56, 918–930, 
https://doi.org/10.1016/j.dsr2.2008.10.034, 2009. 

Tilstone, G. H., Angel-Benavides, I. M., Pradhan, Y., Shutler, J. D., Groom, S., 
and Sathyendranath, S.: An assessment of chlorophyll-a algorithms available 
for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea, 
Remote Sens. Environ., 115, 2277–2291, 
https://doi.org/10.1016/j.rse.2011.04.028, 2011. 

Tilstone, G. H., Taylor, B. H., Blondeau-Patissier, D., Powell, T., Groom, S. B., 
Rees, A. P., and Lucas, M. I.: Comparison of new and primary production 
models using SeaWiFS data in contrasting hydrographic zones of the northern 
North Atlantic, Remote Sens. Environ., 156, 473–489, 
https://doi.org/10.1016/j.rse.2014.10.013, 2015a. 

Tilstone, G. H., Xie, Y. yuan, Robinson, C., Serret, P., Raitsos, D. E., Powell, T., 
Aranguren-Gassis, M., Garcia-Martin, E. E., and Kitidis, V.: Satellite estimates 
of net community production indicate predominance of net autotrophy in the 
Atlantic Ocean, Remote Sens. Environ., 164, 254–269, 
https://doi.org/10.1016/j.rse.2015.03.017, 2015b. 

Tilstone, G. H., Lange, P. K., Misra, A., Brewin, R. J. W., and Cain, T.: Micro-
phytoplankton photosynthesis, primary production and potential export 
production in the Atlantic Ocean, Prog. Oceanogr., 158, 109–129, 
https://doi.org/10.1016/j.pocean.2017.01.006, 2017. 

Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., 
Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Belanger, S., 
Berthon, J. F., Besiktepe, S., Brando, V., Canuti, E., Chavez, F., Claustre, H., 
Crout, R., Frouin, R., Garcia-Soto, C., Gibb, S. W., Gould, R., Hooker, S., 
Kahru, M., Klein, H., Kratzer, S., Loisel, H., McKee, D., Mitchell, B. G., Moisan, 
T., Muller-Karger, F., O’Dowd, L., Ondrusek, M., Poulton, A. J., Repecaud, M., 



   
 

224 
 
 

Smyth, T., Sosik, H. M., Twardowski, M., Voss, K., Werdell, J., Wernand, M., 
and Zibordi, G.: A compilation of global bio-optical in situ data for ocean-colour 
satellite applications, Earth Syst. Sci. Data, 8, 235–252, 
https://doi.org/10.5194/essd-8-235-2016, 2016. 

Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., 
Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., 
Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Canuti, E., 
Chavez, F., Cianca, A., Claustre, H., Clementson, L., Crout, R., Frouin, R., 
García-Soto, C., Gibb, S. W., Gould, R., Hooker, S. B., Kahru, M., Kampel, M., 
Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Loisel, H., Matrai, P., McKee, D., 
Mitchell, B. G., Moisan, T., Muller-Karger, F., O’Dowd, L., Ondrusek, M., Platt, 
T., Poulton, A. J., Repecaud, M., Schroeder, T., Smyth, T., Smythe-Wright, D., 
Sosik, H. M., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., 
Wright, S., and Zibordi, G.: A compilation of global bio-optical in situ data for 
ocean-colour satellite applications – version two, Earth Syst. Sci. Data, 11, 
1037–1068, https://doi.org/10.5194/essd-11-1037-2019, 2019. 

Valerio, A. M., Kampel, M., Ward, N. D., Sawakuchi, H. O., Cunha, A. C., and 
Richey, J. E.: CO2 partial pressure and fluxes in the Amazon River plume using 
in situ and remote sensing data, Cont. Shelf Res., 215, 104348, 
https://doi.org/10.1016/j.csr.2021.104348, 2021. 

Varela, R., Álvarez, I., Santos, F., DeCastro, M., and Gómez-Gesteira, M.: Has 
upwelling strengthened along worldwide coasts over 1982-2010?, Sci. Rep., 5, 
1–15, https://doi.org/10.1038/srep10016, 2015. 

Varona, H. L., Veleda, D., Silva, M., Cintra, M., and Araujo, M.: Amazon River 
plume influence on Western Tropical Atlantic dynamic variability, Dyn. Atmos. 
Ocean., 85, 1–15, https://doi.org/10.1016/j.dynatmoce.2018.10.002, 2019. 

Wanninkhof, R.: Relationship between wind speed and gas exchange over the 
ocean, J. Geophys. Res., 97, 7373, https://doi.org/10.1029/92JC00188, 1992. 

Wanninkhof, R.: Relationship between wind speed and gas exchange over the 
ocean revisited, Limnol. Oceanogr. Methods, 12, 351–362, 
https://doi.org/10.4319/lom.2014.12.351, 2014. 

Wanninkhof, R. and Triñanes, J.: The impact of changing wind speeds on gas 
transfer and its effect on global air-sea CO2 fluxes, Global Biogeochem. Cycles, 
31, 961–974, https://doi.org/10.1002/2016GB005592, 2017. 

Wanninkhof, R., Park, G. H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., 
Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quere, C., Heinze, C., 
Schwinger, J., Graven, H., and Khatiwala, S.: Global ocean carbon uptake: 
Magnitude, variability and trends, 10, 1983–2000, https://doi.org/10.5194/bg-10-
1983-2013, 2013. 

Waters, J., Millero, F. J., and Woosley, R. J.: Corrigendum to “The free proton 
concentration scale for seawater pH”, [MARCHE: 149 (2013) 8–22], Mar. 
Chem., 165, 66–67, https://doi.org/10.1016/j.marchem.2014.07.004, 2014. 

Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., 
Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Interpolated Global 



   
 

225 
 
 

surface ocean carbon dioxide partial pressure and ocean-atmosphere fluxes 
1992-2018, corrected for surface temperature deviations, 
https://doi.org/10.1594/PANGAEA.922985, 2020a. 

Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., 
Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Revised estimates of 
ocean-atmosphere CO2 flux are consistent with ocean carbon inventory, Nat. 
Commun., 11, 1–6, https://doi.org/10.1038/s41467-020-18203-3, 2020b. 

Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal 
gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 
1974. 

Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence of 
chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985–1992, 
https://doi.org/10.4319/lo.1994.39.8.1985, 1994. 

Wentz, F. J., Scott, J., Hoffman, R., Leidner, M., Atlas, R., and Ardizzone, J.: 
Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly 
ocean vector wind analysis product on 0.25 deg grid, Version 2.0, Remote 
Sens. Syst. St. Rosa, CA [dataset], Available online 
www.remss.com/measurements/ccmp. [Accessed 08-11-2021], 2015. 

Werdell, P. J. and Bailey, S. W.: An improved in-situ bio-optical data set for 
ocean color algorithm development and satellite data product validation, 
Remote Sens. Environ., 98, 122–140, https://doi.org/10.1016/j.rse.2005.07.001, 
2005. 

Werdell, P. J., Franz, B. A., Bailey, S. W., Feldman, G. C., Boss, E., Brando, V. 
E., Dowell, M., Hirata, T., Lavender, S. J., Lee, Z. P., Loisel, H., Maritorena, S., 
Mélin, F., Moore, T. S., Smyth, T. J., Antoine, D., Devred, E., D’Andon, O. H. F., 
and Mangin, A.: Generalized ocean color inversion model for retrieving marine 
inherent optical properties, Appl. Opt., 52, 2019–2037, 
https://doi.org/10.1364/AO.52.002019, 2013. 

Wilks, D. S.: On “field significance” and the false discovery rate, J. Appl. 
Meteorol. Climatol., 45, 1181–1189, https://doi.org/10.1175/JAM2404.1, 2006. 

Williams, P. J. L. B.: The balance of plankton respiration and photosynthesis in 
the open oceans, Nature, 394, 55–57, https://doi.org/10.1038/27878, 1998. 

Williams, P. J. le B., Quay, P. D., Westberry, T. K., and Behrenfeld, M. J.: The 
Oligotrophic Ocean Is Autotrophic, Ann. Rev. Mar. Sci., 5, 535–549, 
https://doi.org/10.1146/annurev-marine-121211-172335, 2013. 

Wimmer, W. and Robinson, I. S.: The ISAR instrument uncertainty model, J. 
Atmos. Ocean. Technol., 33, 2415–2433, https://doi.org/10.1175/JTECH-D-16-
0096.1, 2016. 

Woolf, D. K.: Bubbles and their role in gas exchange, in: The Sea Surface and 
Global Change, Cambridge University Press, 173–206, 
https://doi.org/10.1017/CBO9780511525025.007, 1997. 

Woolf, D. K.: Parametrization of gas transfer velocities and sea-state-dependent 
wave breaking, Tellus B, 57, 87–94, https://doi.org/10.1111/j.1600-



   
 

226 
 
 

0889.2005.00139.x, 2005. 

Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., and Donlon, C. 
J.: On the calculation of air-sea fluxes of CO2 in the presence of temperature 
and salinity gradients, J. Geophys. Res. Ocean., 121, 1229–1248, 
https://doi.org/10.1002/2015JC011427, 2016. 

Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A. J., Chapron, B., 
Nightingale, P. D., Donlon, C. J., Piskozub, J., Yelland, M. J., Ashton, I., 
Holding, T., Schuster, U., Girard-Ardhuin, F., Grouazel, A., Piolle, J. F., Warren, 
M., Wrobel-Niedzwiecka, I., Land, P. E., Torres, R., Prytherch, J., Moat, B., 
Hanafin, J., Ardhuin, F., and Paul, F.: Key Uncertainties in the Recent Air-Sea 
Flux of CO2, Global Biogeochem. Cycles, 33, 1548–1563, 
https://doi.org/10.1029/2018GB006041, 2019. 

Woosley, R. J., Millero, F. J., and Wanninkhof, R.: Rapid anthropogenic 
changes in CO2 and pH in the Atlantic Ocean: 2003-2014, Global Biogeochem. 
Cycles, 30, 70–90, https://doi.org/10.1002/2015GB005248, 2016. 

Xiong, X., Masuda, Y., Hashioka, T., Ono, T., and Yamanaka, Y.: Effect of 
seasonal change in gas transfer coefficient on air–sea CO2 flux in the western 
North Pacific, J. Oceanogr., 71, 685–701, https://doi.org/10.1007/s10872-015-
0313-5, 2015. 

Xiu, P., Chai, F., Curchitser, E. N., and Castruccio, F. S.: Future changes in 
coastal upwelling ecosystems with global warming: The case of the California 
Current System, Sci. Rep., 8, 1–9, https://doi.org/10.1038/s41598-018-21247-7, 
2018. 

Young, I. R. and Ribal, A.: Multiplatform evaluation of global trends in wind 
speed and wave height, Science (80-. )., 364, 548–552, 
https://doi.org/10.1126/science.aav9527, 2019. 

Yvon-Durocher, G., Caffrey, J. M., Cescatti, A., Dossena, M., Giorgio, P. del, 
Gasol, J. M., Montoya, J. M., Pumpanen, J., Staehr, P. A., Trimmer, M., 
Woodward, G., and Allen, A. P.: Reconciling the temperature dependence of 
respiration across timescales and ecosystem types, Nature, 487, 472–476, 
https://doi.org/10.1038/nature11205, 2012. 

Zapata, M., Rodríguez, F., and Garrido, J.: Separation of chlorophylls and 
carotenoids from marine phytoplankton:a new HPLC method using a reversed 
phase C8 column and pyridine-containing mobile phases, Mar. Ecol. Prog. Ser., 
195, 29–45, https://doi.org/10.3354/meps195029, 2000. 

Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., and Nakaoka, S.: A global 
surface ocean fCO2 climatology based on a feed-forward neural network, J. 
Atmos. Ocean. Technol., 31, 1838–1849, https://doi.org/10.1175/JTECH-D-13-
00137.1, 2014. 

Zeng, J., Nojiri, Y., Nakaoka, S. ichiro, Nakajima, H., and Shirai, T.: Surface 
ocean CO2 in 1990–2011 modelled using a feed-forward neural network, 
Geosci. Data J., 2, 47–51, https://doi.org/10.1002/gdj3.26, 2015. 

 


