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ABSTRACT 

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease of the 

central nervous system, being nowadays considered the most prevalent age-related dementia 

worldwide. AD pathology is characterized by the extracellular deposition of insoluble amyloid-

beta plaques, and the intracellular accumulation of abnormally phosphorylated tau protein into 

neurofibrillary tangles. Other hallmarks include neuronal death, exacerbation of the immune 

system and chronic inflammation, synaptic loss, and brain atrophy. 

The world population is rapidly aging, and an increase in the older population is foreseen, 

as well as in the prevalence of dementias such as AD. Currently, there is no effective treatment 

to neither decrease nor cease the damage of this disease, which, allied with the lack of new 

approved medicines since 2003, comprises a social, economic and health burden. Moreover, 

clinical trials have been exhibiting high failure rates, especially during toxicity and efficacy 

assessments, which implies a poor representation of the actual human disease in preclinical 

animal models. Thus, it is vital to evaluate what molecularly distinguishes them in terms of 

disease pathophysiology, and how can they be improved to better represent the human disease. 

On this note, this project purposes to assess the dissimilarities between the AD-induced gene 

expression (i.e. transcriptomic) alterations between preclinical AD mouse models and human 

AD patients, both carrying mutations in the PSEN1 gene. For this purpose, microarray data 

was used for both species, and gene expression differences between AD and non-AD 

conditions were assessed through linear modelling for each specie. To unveil the biological 

meaning behind this changes, gene set enrichment analyses (GSEA) were performed. 

Mechanisms associated with the immune system, namely with the inflammatory response, 

appear up-regulated in both human AD patients and mouse models, whereas neurotransmitter 

trafficking processes appear down-regulated in both. The majority of the other most strikingly 

disrupted pathways varied between human and mouse, but were often in accordance with prior 

scientific knowledge on AD. However, a few of them appeared differently altered between 

species, such as diabetes mellitus associated pathways, that appeared down-regulated in human 

patients and up-regulated in AD mouse models. 

The analysis of the joint dataset (resulting of merging the human and mouse datasets) 

unveiled synaptic and neuronal activity -related pathways as down-regulated in the disease 

common to both species, but less so in mouse AD compared to human patients. On the other 

hand, immune system genes and pathways were commonly up-regulated in the disease but 
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more so in the human patients. These subtle variations between human and mouse 

transcriptomic information suggest that disease dynamics are potentially species-specific and 

reinforce the need to generate models that are able to more effectively replicate the human 

disease. 

Additionally, we also identified compounds able to induce GE alterations opposite to those 

observed for the species-common component of the disease, as well as those capable of 

emulating human-specific AD-induced transcriptomic alterations. Those candidate compounds 

can be further explored as therapeutics to combat AD or as a vehicle to obtain novel and 

innovative mouse models that more effectively replicate the transcriptomic signature of the 

actual human disease. Two groups of compounds were considered: those with prescription 

information for neurology-related conditions and those prescribed for other conditions. 

Moreover, only compounds positioned at the phase III of clinical trials or already available in 

the market were considered. 

For future work, it would be possible to perform a similar analysis but to assess genetic 

perturbations (i.e. knockdowns or overexpression) rather than compounds, which could, 

likewise, be able to induce an opposite transcriptomic profile to that of the species-common 

disease, and of those that could promote the development of a human AD signature in a mouse 

model. 

Moreover, given the complexity of the brain in terms of cell type composition and 

interactions between cell types, and the consequences of a neurodegenerative disease upon 

these, it would be interesting to incorporate brain cell-type-specific signatures as explanatory 

variables in the linear model used to estimate GE changes, in order to decouple AD-associated 

cell-type-specific and systemic GE alterations from brain cellular composition changes 

(namely neuronal loss). 

The end goal of the present project would be to evaluate the effects of carefully selected 

genetic perturbations and compounds in cell lines and mouse models, in order to obtain a model 

able to more accurately develop the human AD.  

Keywords: Alzheimer’s disease; transcriptomics; PSEN1; mouse models; compounds 
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RESUMO 

A doença de Alzheimer (AD) é uma doença progressiva e irreversível do sistema nervoso 

central, sendo atualmente a demência mais prevalente a nível mundial, cuja incidência aumenta 

com o avançar da idade. Esta patologia caracteriza-se pela acumulação extracelular de placas 

insolúveis de péptido amiloide-beta (A), e pela acumulação intracelular de proteína tau 

irregularmente hiperfosforilada sob a forma de agregados fibrilares. Outras características 

patofisiológicas incluem morte neuronal e perda de sinapses, exacerbação do sistema 

imunitário e inflamação crónica, e atrofia cerebral. 

O presente rápido envelhecimento da população mundial prevê, com o aumento da 

proporção de população envelhecida, um igual aumento da prevalência e incidência de doenças 

neurodegenerativas associadas à idade, como é o caso das demências, categoria em que se 

inclui a AD. Atualmente não existe um tratamento eficaz que abrande ou impeça a progressão 

desta doença, o que, simultaneamente com a escassez de aprovação de novos medicamentos 

que se tem sentido na última década, constitui uma preocupação social, económica e de saúde 

pública. Adicionalmente, a maioria dos ensaios clínicos em doenças neurodegenerativas, 

inclusive em AD, apresenta elevadas taxas de insucesso, especialmente a nível dos ensaios de 

toxicidade e eficácia. O insucesso nesta fase dos ensaios reflete as dificuldades de transpor os 

resultados obtidos através dos modelos animais durante os estudos pré-clínicos para a doença 

humana, sugerindo que esta não será bem representada por estes modelos. Neste sentido, é 

imperativo avaliar as diferenças moleculares que distinguem os modelos animais e os doentes 

com Alzheimer em termos da fisiopatologia da doença, e também desenvolver diferentes 

abordagens que possam auxiliar a descoberta de modelos animais mais representativos da AD. 

Nesse sentido, este projeto propõe avaliar os perfis de alteração de expressão génica 

(também referenciadas como alterações transcritómicas) entre amostras de cérebro de controlos 

e doentes com AD, tanto para amostras humanas como para amostras obtidas a partir de 

modelos animais, sendo que em ambas as espécies as amostras relativas aos portadores de um 

fenótipo de doença apresentam mutações no gene da presenilina 1 (PSEN1). Com esta 

abordagem pretendeu-se comparar os perfis de alterações transcritómicas induzidos pela AD 

no cérebro obtidos para cada uma das espécies através de modelação linear de dados de 

microarrays, sendo que para essa análise foi considerada, para além da condição (controlo 

versus doente), outra informação sobre as amostras como a idade do dador. A interpretação 

biológica dessas alterações transcritómicas foi feita por análise de alguns genes encontrados 

diferencialmente expressos, e também com recurso a Gene Set Enrichment Analysis (GSEA), 
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um método que identifica as vias metabólicas mais desreguladas, tendo por base o perfil das 

alterações transcritómicas entre as condições em estudo. 

As amostras de ratinhos com AD consideradas no presente estudo dividem-se em três 

categorias: (1) animais com mutações exclusivamente a nível do PSEN1, e animais que 

adicionalmente são portadores de mutações no gene APP, podendo estes ser (2) heterozigóticos 

ou (3) homozigóticos. Os três modelos mostraram inexistente ou fraca correlação com a doença 

humana, aquando da comparação dos perfis de alteração transcritómica. Adicionalmente, os 

dois primeiros modelos não apresentaram diferenças de expressão significativas entre as 

amostras controlo e as amostras doentes. Considerando que o modelo homozigótico com 

mutações em PSEN1 e APP foi o único a apresentar alterações a nível do perfil transcritómico, 

todas as análises e comparações descritas consideraram apenas estes ratinhos. 

Os resultados mostram que tanto em humano como em ratinho portadores de doença de 

Alzheimer existe uma sobre-expressão dos genes envolvidos nos mecanismos de regulação do 

sistema imunitário, nomeadamente a nível de inflamação crónica, e uma diminuição do 

transporte de neurotransmissores. As restantes vias mais alteradas com a AD diferem entre 

humano e ratinho, embora a maioria esteja alinhada com a bibliografia existente sobre a 

patologia. Algumas vias metabólicas também surgiram inversamente desreguladas entre as 

duas espécies. 

Genes envolvidos em vias metabólicas de diferenciação, proliferação e apoptose celular, 

processamento de DNA e RNA, e mecanismos relacionados com o sistema cardiovascular 

surgiram sobre-expressos na doença humana; enquanto genes envolvidos em vias associadas 

com atividade sináptica e neuronal, canais de transporte de membrana, e com a diabetes 

surgiram sub-expressos. Contrariamente, no caso do ratinho, verificou-se um exacerbar da 

diabetes, juntamente com o de vias metabólicas relacionadas com a colesterol e interações 

celulares; e sub-expressão de genes envolvidos na atividade mitocondrial e respiração celular, 

e em mecanismos de expressão génica, nomeadamente a nível do spliceossoma. 

Realizou-se também uma análise conjunta dos dados de humano e ratinho, com a qual se 

observou uma maior variância de expressão génica entre os controlos humanos e os indivíduos 

doentes humanos, comparativamente com os ratinhos controlo e doentes, reforçando a 

possibilidade de que o desenvolvimento e a progressão da doença em ratinho não sejam 

demarcados o suficiente para que, a nível do transcritoma, exista uma explícita diferenciação 

entre as condições de doença e de não-doença. 
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As diferenças de expressão génica para os dados conjuntos foram modeladas linearmente, 

incorporando nos modelos, como variáveis, informação não só sobre a idade e condição das 

amostras, mas também sobre a espécie a que pertencem. Deste modo, foi possível isolar o efeito 

doença do efeito espécie e obter as diferenças transcritómicas ocorridas mais 

preponderantemente em humano e em ratinho, bem como as diferenças comuns às duas 

espécies, ou seja, independentes da espécie. 

Esta análise revelou que a diminuição da atividade neuronal e sináptica está associada à AD, 

mas que surge menos afetada nos modelos de ratinho comparativamente aos doentes humanos. 

Quanto aos genes envolvidos nos mecanismos de regulação do sistema imunitário que também 

se revelam sobre-expressos na doença geral, encontraram-se mais sobre-expressos na doença 

humana do que no modelo de ratinho considerado. Estas subtis diferenças entre a informação 

transcritómica do humano e do ratinho sugerem que as dinâmicas associadas à AD possam ser 

específicas da espécie, reforçando a necessidade de ajustar os modelos animais para que 

simulem mais eficientemente a patologia humana. 

Este projeto teve ainda como objetivo encontrar compostos e perturbações genéticas 

(knockdowns ou sobre-expressões) com potencial de recapitular as diferenças de expressão 

mais específicas da AD humana, para que possam ser administrados/manipulados em modelos 

de ratinho com o intuito de melhorar modelos já existentes ou encontrar um novo e 

aperfeiçoado modelo animal que replique de forma mais fidedigna as alterações decorridas da 

doença humana. Adicionalmente, também serão de interesse perturbações químicas e genéticas 

com capacidade de replicar perfis transcritómicos antagónicos daquele encontrado para a 

generalidade da doença, que possam ser utilizados como novas terapêuticas ou como objetos 

de estudo dos mecanismos associados à AD. 

Para o propósito mencionado acima, recorreu-se à base de dados do Connectivity Map, que 

inclui informação transcritómica para diversas linhas celulares, antes e após lhes serem 

administrados diferentes compostos ou alterações genéticas. Usando um software desenvolvido 

no nosso laboratório, cTRAP, podemos, a partir dos perfis de alteração de expressão genética 

encontrados no nosso estudo, obter as perturbações químicas e genéticas que recapitulem as 

alterações transcritómicas do nosso interesse. 

No tempo do estudo, analisou-se apenas as perturbações químicas, fazendo uma separação 

entre dois grupos de compostos: (1) aqueles com indicações para doenças do foro neurológico 

e (2) os com indicação de foro não neurológico. Para cada uma das duas categorias foram 
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selecionados os 10 compostos mais relevantes, isto é, aqueles que estatisticamente estão mais 

correlacionados com as alterações transcritómicas de interesse. Apenas compostos em fase III 

de desenvolvimento clínico ou disponíveis no mercado foram considerados. 

A análise similar das perturbações genéticas fica então referenciada para trabalho a 

desenvolver no futuro. Adicionalmente, dada a complexidade celular do sistema nervoso 

central em termos de heterogeneidade e proporção celular, a qual é afetada em estados de 

doença, e especificamente neste caso de doenças neurodegenerativas, seria de interesse 

acrescentar uma assinatura que distinga os vários tipos celulares à informação proporcionada 

ao modelo linear utilizado para derivar os perfis de alteração transcritómica. Desta forma, seria 

possível distinguir alterações de expressão genética associadas a mudanças na composição 

celular daquelas relacionadas com mecanismos específicos da AD.  

O objetivo final do projeto será testar perturbações químicas e genéticas escolhidas 

cuidadosamente, em linhas celulares e em modelos de ratinho, e testar a sua capacidade em 

gerar um modelo animal cujo desenvolvimento e progressão da AD seja mais similar ao 

observado em condições de doença humana; bem como o potencial dos mesmos em reverter 

características desta patologia. 

Palavras-chave: doença de Alzheimer; transcritómica; PSEN1; modelos de ratinho; 

compostos 
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CHAPTER I – INTRODUCTION 

1. Alzheimer’s disease 

1.1. Relevance of Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease of the 

central nervous system (CNS). It was first described in 1907 by the German psychiatrist and 

neuroanatomist Alois Alzheimer as “an unusual illness of the cerebral cortex” 1–3, and 

nowadays is the most prevalent age-related dementia worldwide 4–6. 

According to the World Population Prospects 2019 Report, the worldwide population aged 

65 years or older will more than double by 2050, reaching 1.5 billion people (Figure 1) 7. 

Furthermore, the World Health Organization (WHO) assesses that 5-8% of individuals, above 

60 years old, will have dementia, a syndrome that currently impacts 50 million people globally, 

with around 10 million new cases per year 8. In total, WHO envisions that 152 million people 

will develop dementia by 2050, the majority of which will live in low and medium income 

countries 8. 

The prevalence and incidence of AD increases with age, the onset being around 65 years 

old, and peaks in the range from 70 to 90 years old 6,7,9. Hence, it is expected a parallel increase 

in the number of AD cases along with the population ageing. 

Figure 1 | Estimated and projected global population by age group from 1950 to 2100 

World population (in billions) among five age groups, across time. Values were estimated since 1950 

until 2018, and projected for future years until 2100. The most significant difference is among the 25-

64 and 65+ years old groups, the latter being the fastest-growing and projected to more than double. 

Age groups below 24 years old are not expected to undergo significant changes. Based on World 

Population Prospects 2019 report 7. 
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1.2. Pathophysiology of Alzheimer’s disease 

AD pathology comprises two major events: (A) the extracellular deposition of insoluble 

amyloid-beta (A) plaques, and (B) the intracellular accumulation of abnormally 

phosphorylated tau protein into neurofibrillary tangles (NFT) in degenerating neurons 6,10,11. In 

AD, Aplaques usually first affect the frontal and temporal lobes, hippocampus and limbic 

system, while neurofibrillary tangles originate in the temporal lobe and hippocampus 6. Overall, 

both hallmarks spread to affect the entire neocortex and hippocampus 6, as illustrated in Figure 

2. 

 

Figure 2 | Alzheimer’s disease pathology 

(A) Histopathology images of neurofibrillary tangles (orange arrows) and amyloid plaques (pink 

arrows) from a brain with AD, near a healthy neuron (light-blue arrow) – adapted from Kandel et al 12. 

(B) Schematic representation of amyloid (top) and tau (bottom) pathologies progression through the 

brain – inspired by Masters et al 6. 

 

In healthy neurons, phosphorylated tau protein, encoded by the microtubule-associated 

protein tau (MAPT) gene, regulates and stabilizes microtubules involved in neuronal 

development and in axonal transport 10,13. In AD-damaged neurons, chemical alterations cause 

dissociation of tau and microtubules, with detached tau proteins eventually aggregating to form 

fibrillary tangles that block the neuronal transport system and hinder mechanisms such as 

metabolic and synaptic pathways 6,10. Affected neurons can also excrete fibrillary tau into the 

intercellular space, which is then internalized by healthy neighbouring neurons and initiates tau 
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pathology 6. Hyperphosphorylated tau levels often appear augmented in the brain and 

cerebrospinal fluid (CSF) of AD patients 6 (Figure 3A). 

On the other hand, amyloid plaques arise from amyloid precursor protein (APP), whose 

physiological function is not yet fully understood, although some studies hypothesize a direct 

involvement on synaptic maintenance and plasticity 6,14,15 and an indirect role on 

neuroprotection, neurite growth, signal transduction and apoptotic signalling, through its 

metabolic products 11,14. APP can undergo processing by non-amyloidogenic pathway if 

cleaved by -secretases, or the amyloidogenic pathway if sequentially cleaved by -secretases 

and -secretases 16–19. The -secretase complex includes presenilin 1 (PS1) and presenilin 2 

(PS2) transmembrane proteins, respectively encoded by PSEN1 and PSEN2 genes 6,19,20. These 

proteins can also be found intracellularly in endosomes and within the Golgi complex and 

endoplasmic reticulum 21. 

Given that the knockout of PS1 leads to brain abnormalities and low longevity of animal 

models, this protein is postulated to have an important role in brain development and survival, 

contrarily to PS2, since the knockout mice are less affected 21. The APP amyloidogenic 

metabolic pathway generates several length-differing A peptides as products, of which the 

Aand Aoligomersand the ratio of these two peptides, are the most relevant in AD 6,17,18. 

In healthy individuals, Ais usually benign and more abundant than the longest isomer 17. 

Despite being neurotoxic, Ais produced at a physiological rate that can be cleared in an 

healthy organism 17. Regardless of mutations on PSEN1 and PSEN2 potentially resulting in 

genetic gain of a toxic function, biochemically they seem to lead to loss of function of the -

secretase complex, resulting in an incomplete metabolization of APP protein and an increase 

in the longest Apeptide variant of 42 residues (A) 22.  

Notwithstanding the neuronal and astrocytic physiological production of A, mutations in 

presenilins or APP genes lead to the overproduction of the toxic isomer, thus increasing the 

A Aratio to levels beyond clearance capacity, which culminates with A excretion into 

the extracellular space 6,17. Neurotoxic Ais more prone to aggregate into soluble oligomers 

that coalesce until reaching an insoluble fibril state, which ultimately deposits into senile 

plaques in the extracellular space between neurons 6,10,17,19. Some studies suggest that the 

soluble Aoligomers that concentrate around the plaques are more toxic and better correlated 

with disease progression than the actual plaque deposition 19,23 (Figure 3B).  
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Figure 3 | Alzheimer’s pathological hallmarks 

AD is characterized by (A) tau pathology where tau protein decouples from microtubules and forms 

intracellular fibrillary tangles (B) amyloid pathology characterized by extracellular Adeposition into 

fibrillary plaques that are surrounded by soluble A(C) which is able to directly or indirectly affect 

NMDA receptors (NMDAR). (D) Both pathologies lead to neuronal death that, along with amyloid 

plaques, attract microglia, astrocytes and macrophages. This immune cell types release pro-

inflammatory cytokines and other toxins that result in chronic inflammation and damage of the brain. 

Figure inspired by Master et al 6. 

 

Glutamate is the most abundant neurotransmitter in the human brain and is an agonist ligand 

of glutamatergic receptors, which include the ionotropic glutamatergic N-methyl-D-aspartate 

(NMDA) receptors 24. These ligand-gated ion channels have an important role during rapid 

neuronal communication and excitatory synapses 24, which are crucial during the learning 

process and memory formation 24,25. Overall, the extracellular deposited A is preponderantly 

located near excitatory synaptic clefts and NMDA receptors where, particularly the soluble and 

unrestricted Aform, can affect calcium influx and synaptic transmission 24,26. The oligomers 

interact with neighbouring astrocytic receptors and induce glutamate exocytosis that, in turn, 

activates the extrasynaptic and perisynaptic NMDA receptors of neurons through the GluN2B 

subunit, thus increasing the influx of calcium ions (Ca2+), consequently leading to a 

excitotoxicity state 17,24 (Figure 3C). As a consequence, of calcium overload, depolarisation of 

mitochondrial membrane potential is observed, together with an increase in reactive oxygen 
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species (ROS), that not only promote phosphorylation of tau protein but also incite oxidative 

stress, leading to synaptic damage and neuronal death 17. Furthermore, some studies have found 

evidence on oligomeric Ainduced loss of function of the synaptic NMDA receptors 25,26 

(Figure 3C), possibly through degradation of EphB2 26, a tyrosine kinase responsible for 

maintaining the structural integrity of these receptors, thus impairing long term synaptic 

potentiation and affecting cognition and memory 24,25. 

Similarly to the glutamatergic system, cholinergic events are involved in both cognitive 

development, information processing and memory recall 27. Physiological acetylcholine (ACh), 

the neurotransmitter associated with cholinergic neurons, is synthesized by the choline 

acetyltransferase (ChAT) enzyme, and is inactivated by the acetylcholinesterase (AChE) prior 

to its release in the synaptic cleft 27. A decrease in neuronal ChAT expression, characteristic of 

AD, diminishes the amount of available ACh and hinders synaptic transmission and neuronal 

survival 27. Some studies also suggest that the AChE enzyme may interact with Apeptide and 

exacerbate Aaggregation and deposition 28,29. 

Additionally, Aplaques affect the vascular system, reducing the brain supply of oxygen 

and glucose, and damaging the blood-brain barrier 6,10,17. Elimination of Adebris and dead 

cells often involves their uptake by microglia, which are considered the immune cells of the 

CNS, and astrocytes 17. The elevated levels of Adebris occurring in AD exhaust cells’ 

clearance capacity and lead to high concentration of activated microglia and astrocytes. These 

cells release pro-inflammatory cytokines, including interleukin 1 (IL-1), tumour necrosis 

factor alpha (TNF-α) and interferon gamma (INF-, creating an imbalance in pro- and anti-

inflammatory signalling that culminates in chronic inflammation of the diseased brain 10,17,30,31 

(Figure 3D), which is known to exacerbate both tau and Apathologies 31. Besides cytokines, 

these activated glial cells also excrete toxic products including ROS 31. 

TNF-α is crucial to initiate and regulate the inflammatory cascade of events and interplays 

with the transcription factor NF-kB (nuclear factor kappa-light-chain-enhancer of activated B 

cells), and and secretases during neuronal apoptosis 31. By interfering in the APP cleavage 

process, TNF-α is tightly related with Aproduction. In turn, Astimulates the increase of 

TNF-α levels through activation of microglial NF-kB, feeding a cyclical loop of inflammatory 

exacerbation 31. Another critical cytokine for Aplaque deposition is IL-1, which has been 

implicated in APP synthesis, in addition to regulating other pro-inflammatory cytokines, 

namely TNF-α 31. 



 

[6] 

 

Physiologically, the triggering receptor expressed on myeloid cells 2 (TREM2) is an innate 

immune phagocytic receptor that acts as a bridge between the extracellular milieu and 

microglial intracellular signalling pathways. In vivo, TREM2 expression increases when in the 

presence of pro-inflammatory agents, with elevated TREM2 peripheral levels having been 

detected in AD patients 32. Moreover, the R47H TREM2 variant is considered a risk factor for 

late-onset AD 31,32. 

The accumulation of synaptic loss, decreased supply of oxygen and glucose to the brain, 

reduced capacity of glucose metabolization and neuronal loss, consequentially culminates in 

brain atrophy 10,30. 

The amyloid cascade hypothesis assumes deposition of amyloid plaques as the trigger event 

for AD development and has been the most studied and accepted theory in the scientific 

community for decades. However, the high failure rate of clinical trials of compounds that 

target the amyloid process has been rising questions in the scientific community and led to the 

upsurge of other theories such as the tau hypothesis, which states formation of neurofibrillary 

tangles as the starting event of the disease 19,33. 

 

1.3. Classification of Alzheimer’s disease forms and Risk Factors 

AD can be classified as Early-Onset Alzheimer’s Disease (EOAD) or Late-Onset 

Alzheimer’s Disease (LOAD), depending if the patient is younger or older than 65 years of 

age, at the moment of the diagnosis, respectively 34–36 (Figure 4). 

The disease can also be classified into Familial Alzheimer’s Disease (FAD), or Sporadic 

Alzheimer’s Disease (SAD) 6,34,35. FAD, that only represents 1% of all AD cases, is linked to 

the inherited genetic background and is thought to be related with increased formation and 

aggregation of A 6,34,35. On the other hand, SAD is the most common form comprehending 

over 95% of diagnosed patients, and for which the causes are unknown 6,35 albeit being thought 

to stem from the inability to clear the Adepositions 6. 
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Figure 4 | Subclasses of Alzheimer’s disease 

AD can onset before (EOAD) or after (LOAD) the patient reaches 65 years of age, with its origin being 

genetic (familial AD) or sporadic. The current work focuses on AD caused by mutations in the 

presenilin-1 gene (blue path). 

 

Although not exclusively, early-onset AD is usually of the FAD form while LOAD is 

commonly sporadic 6. Despite these categorizations, all types of the disease are thought to have 

similar pathology and clinical symptoms 36. 

FAD is associated with mutations in the APP, PSEN1 and PSEN2 genes, leading to 

alterations in APP cleavage and A formation 6,34, and in MAPT, the gene coding for tau protein 

6. PSEN1 is the most prevalently mutated gene 34. Regarding SAD, despite its origin being 

unknown 35, genetic variations have been described in genes involved in the clearance of 

Aaffecting the organism ability to eliminate the plaques. Such genetic variants include 

apolipoprotein E (APOE) polymorphisms 6 and the R47H variant of TREM2, which has been 

associated with LOAD 31. APOE is highly expressed in the brain, being the primary 

apolipoprotein involved in lipid metabolism in the CNS 6. 

Besides genetics, several other risk factors have been identified, such as female gender and 

advanced age, with women being reportedly more affected by the disease 6,7,9,31 maybe due to, 

among other factors, their increased life expectancy 7 and decrease in the levels and/or action 

of sex hormones progesterone and estrogen 37. Other conditions such as physical inactivity 38,39, 

low education levels 9,38,40, smoking 41, depression 38,42, mid-life obesity 9,38,43, metabolic 

disorders such as diabetes mellitus 9,38,44, mid-life hypertension and other cardiovascular 
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pathologies 31,38,45–47, as well as traumatic brain injury 31,48 have also been linked to increased 

predisposition to develop AD. The latter three have been associated with immune system 

responses, such as inflammatory events that, as aforementioned, correspond to a hallmark of 

AD and prompt disease development 31. 

 

1.4. Clinical diagnosis, symptomatology and disease stages 

There are several methods that can be used for AD diagnosis, with the choice depending on 

the availability of the technique within the healthcare provider, its cost and the patient 

preference 49. 

The evaluation can be non-invasive, which includes assessment of cognitive function 

through intellectual tests such as the clock test (where patients are asked to draw a clock figure 

50), as well as detection of amyloid plaque deposition through amyloid PET imaging 6,49. 

Another diagnostic method, more invasive but less expensive than PET, is the lumbar puncture 

procedure, which measures the levels of A42, hyperphosphorylated tau protein and/or total tau 

protein content in the CSF 49. 

AD symptoms start with memory loss, problem-solving difficulties, thinking impairment 

and confusion, followed by decline in oral and written communication and everyday tasks, 

such as getting dressed, behavioural and personality changes, agitation and depression 30,50,51. 

Movement impairment is usually linked to later stages and, if severe, patients can become 

bedridden 30,51. 

Diagnosed individuals fall into one of the three disease stages: preclinical AD, mild 

cognitive impairment (MCI) and dementia due to AD. In the first stage, pathophysiological 

hallmarks are detectable with diagnostic tools but clinical symptomatology is not yet present 

30. It is noteworthy that not all individuals diagnosed with preclinical AD further develop MCI 

or dementia 30. Patients within the MCI stage show a stronger cognitive decline compared to 

regular aging, especially in thinking abilities, despite still being independent and able to 

perform everyday tasks 30. In the last stage, dement individuals undergo a conspicuous 

impairment of memory, thinking and behavioural abilities, with symptoms deteriorating from 

mild to moderate to severe dementia, in parallel with neural damage 30. 
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1.5. Current therapeutic options 

At the moment, there is no effective treatment neither to decrease nor cease the damage of 

AD 6,30. Available therapies only temporarily improve symptomatology and can be classified 

into (1) pharmacological and (2) non-pharmacological treatments 6,30. 

Pharmacological treatments operate either on increasing the amount of neurotransmitters or 

on blocking specific brain receptors to prevent excessive stimulation, acting on cholinergic, 

monoaminergic and glutamatergic systems 6,30,49. Cholinergic inhibitors include donepezil, 

rivastigmine and galantamine, and prevent the inactivation of the acetylcholine 

neurotransmitter by the AChE 27, while memantine is a NMDA receptor inhibitor and acts on 

the glutamatergic system 6,49. 

Regarding the non-pharmacological approaches, medical foods can be prescribed 6,52, 

mainly for patients that are intolerant or not respondent to the pharmacotherapy 6, which 

however has been shown more beneficial in pre-symptomatic or in early stages of AD 52. 

Likewise, nutritional supplements aligned with physical exercise and lifestyle adjustments are 

also typical medical recommendations 6. 

 

 

2. Failure rate of clinical trials 

The drug development process starts with target identification and validation, followed by 

preclinical studies in vitro and in vivo that assess safety, toxicity, pharmacokinetics and   

efficacy 53. After the preclinical stage, the third phase of drug development focuses on clinical 

trials, subdivided in four phases, conducted in human volunteers. The first phase (Phase I) only 

enrols healthy volunteers to determine safety, toxicity and the optimal drug dosage, while 

patients with the condition under study enter the trials in Phase II for evaluation of efficacy and 

secondary effects 53. Phase III and IV further explore the previous studies, increasing the 

number of participants 53, with the fourth phase being posterior to market approval (Figure 5).  



 

[10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 | Development of a new pharmaceutical drug 

Drug development has three essential phases: research and development of new compounds, preclinical 

studies where the compound is tested in vitro and in vivo, and lastly clinical trials in human. The third 

and fourth sub-phases of clinical trials are the longest periods of drug development. Figure inspired by 

Orion Pharma’s online available materials 54. 

 

The most recently approved therapeutic drug for AD, Memantine, dates from 2003 55,56, and 

was released by today’s Actavis Generics that belongs to Teva Pharmaceutical Industries. Of 

the four currently approved therapeutic drugs, none constitutes a disease-modifying treatment 

(DMT) 49, being one considered as such if able to slow or completely interrupt the progress of 

disease 57. 

In 2018, a total of 220 AD-related ongoing clinical studies were reported 57, encompassing 

not only therapeutic drugs, but also diagnostic techniques and other interventions, such as diet 

and exercise 57. As of January 2018, an annual report stated 135 ongoing clinical trials testing 

112 different agents, of which 63% were DMTs 58. By July, five big-pharma compounds had 

already failed, four of which were in late-stage studies 55, belonging to Takeda Pharmaceuticals 
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55,59, Merck & Co. 55,60, vTv Therapeutics 55,61, Eli Lilly and Astrazeneca 55,62, and Janssen 55,63. 

Moreover, in the beginning of the year the pharma giant Pfizer announced that it is stepping 

out of the race of neuroscientific research and drug development after a series of failed clinical 

trials 64. 

In February 2019, there were 156 AD-related ongoing clinical trials registered in 

ClinicalTrials.gov 65, with a total of 132 different therapeutic agents, of which thirty-two 

entered the trials in 2019 56. 73% of the overall therapeutic agents intended to modify the 

underlying molecular mechanisms of the disease, while the minority aimed for prevention or 

targeted cognitive and symptomatic enhancement 56. Similar to last year, 2019 has been 

difficult for drug development targeting AD, given that, at the time of the present study, at least 

Roche 66, Biogen 67, Novartis and Amgen 68 have already abandoned some of their ongoing 

studies. 

Defying all scrapped studies, the number of clinical trials seems to grow each year, with 

new approved trials entering the niche 56,58. More than half of the trials are sponsored by the 

pharmaceutical industry, followed by 30-35% supported by academic centres 56,58. A drug 

development program for AD costs around 5.07 billion euros, extends for an average of 13 

years, since preclinical trials until market access approval, with the last Phase III being the 

most costly part of the trial 69. 

Despite all efforts to convert biological breakthroughs into translational products for clinical 

application, none of the hundreds of drugs that underwent clinical trials until this point has 

been brought to the market since 2003 70,71. 

High failure rates of AD clinical trials have been associated to (1) the choice of the target 

pathological substrate 72,73, with the majority of DMTs aiming amyloid plaques 56, (2) 

insufficient comprehension of the underlying biochemical processes 72,73, (3) inadequate trial 

design, namely patient selection 72,73, and (4) incorrect drug dosage, high toxicity and/or low 

efficacy, which disclosures the limitations of extrapolating data obtained from preclinical 

animal models for human testing 71,73.  
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3. Animal models 

Animal models have been, and currently are, vital for scientific advances regarding AD. 

They are extensively used to derive otherwise unreachable insights into the molecular pathways 

underlying the disease’s pathophysiology. They also serve as preclinical models for drug target 

validation and testing of the therapeutic potential of innovative drugs, as well as other 

treatments, before clinical trials 70,74,75. In summary, they have been useful for experiments that 

are overall impractical to execute in human patients. 

Currently, there are 171 mouse models and 8 rat models available for research purposes 76, 

which struggle to effectively replicate the human disease, thus resulting in an elevated clinical 

trial failure rate of almost all pre-clinically approved therapies 70,71,74,75. 

Mouse models do not naturally develop AD nor its pathological hallmarks possibly due to 

their low longevity 77 or the fact that their -amyloid proteins do not tend to aggregate and form 

plaques 71. Therefore, in order to study this disease, they have to be manipulated into carrying 

human mutations, making transgenic models the most commonly used ones 78. Transgenic 

models are often genetically modified with human mutations, namely in APP and PSEN genes, 

resembling more the familial AD form, which represents only 1% of all cases, than the 

prevalent sporadic form 71,75. This might be one of the reasons for therapies approved in 

preclinical trials to fail when tested in humans, especially because clinical studies often 

encompass patients with non-familial AD 71,75. 

Furthermore, some of those mutations are introduced during the embryonic phase of the 

animal’s development without any control of their genome location, quantity, transcription nor 

of the downstream RNA and protein processing 71,75. All these mechanisms depend on the 

promoter used during insertion, which varies according to the animal model, contributing to 

discrepancies between models themselves and between the animal models and the human 

disease 71,75. Since inserted transgenes are human, their expression in rodents is also highly 

unpredictable and can trigger mechanisms that are later confounded with disease pathology 

and lead to incorrectly interpreted results 71. 

Regarding the pathophysiology, human AD is highly related to neuronal loss followed by 

brain atrophy, a hallmark that is not so evident in single-mutant mouse and rat models 70,71,75. 

The low longevity of rodents might also prevent the full development of the disease, since AD 

is an age-related condition and more prone to occur in increased ages, as seen in humans 77. 
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Thus, in order to obtain a moderate or severe neuronal loss and a faster accumulation of 

Aplaques, double- or triple- mutated rodents are needed which, besides suffering brain 

atrophy before Adeposition, constitute a hazard regarding extrapolation of results due to 

excessive genetic manipulation leading to combinations and expression levels not found in 

human patients 70,71,75. This accumulation of genetic mutations also results in an earlier disease 

onset, which differs from the human disease that appears in advanced ages 70. This, allied to 

differences in the immune system that occur with aging, could possibly result in mouse models 

better representing early-onset AD, which are the minority of cases, or even preclinical AD 70. 

The inflammatory pattern in rodents is also often less protuberant compared to humans, with 

chronic inflammation supporting AD development and progression 71. 

Additionally, the pathological topography differs between humans and transgenic rodents, 

with Aplaques depositing first in the human neocortex, and, for the rodents, overall in 

hippocampus and cortex, despite its high dependence on the promoter used on the transgenes 

71. Beyond that, plaques are structurally different, with human plaques being insoluble while 

the rodent ones are fairly soluble, possibly due to dissimilar post-translational modifications 71.  

The majority of rodent models fail to concomitantly develop Aplaques and neurofibrillary 

tangles, which has been a significant limitation for translational research 70,71,75,79. The few that 

develop both hallmarks usually fail on neurodegeneration and loss of synapses, with all of them 

being genetically over-manipulated, which directly contributes to the extrapolation gap 

towards human disease 79. The disease epigenetics and environmental contributions, of much 

importance to disease establishment and progression, are highly difficult to simulate in animal 

models, thus increasing the extrapolation gap 75. Additionally, structurally similar homologue 

genes may have species-specific functions 71. 

It has been suggest that adequate animal models should display the same genetic alterations 

as seen in the human disease and develop correspondent pathological features, while 

concordantly responding to therapeutics already approved to human patients 75. The authors 

also note that a good model does not necessarily meet all known AD conditions, considering 

that not all AD cases are equal, being highly dependent on the stage desired to replicate 75. 
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4. Transcriptomics and bioinformatics 

Transcriptomics is the scientific field that studies RNA transcripts of an organism and their 

functions, which has seen an exponential technological reform since the first published partial 

human transcriptome in 1991 80,81, and nowadays is highly empowered by bioinformatic 

approaches 81. Bioinformatics can be described as the application of computer software tools 

on data collected through research in the fields of, among others, life sciences, medical and 

biomedical fields, either in basic science or in applied/translational studies 82. Those data can 

take a variety of forms, ranging from DNA, RNA or amino acid sequence, to protein structures 

and biological pathways, among others 82. For the current project, mRNA datasets were the 

focus. 

Computational techniques applied to life sciences research are emerging and revolutionizing 

how scientists perceive data by equipping them with powerful tools to handle and analyse 

scientific datasets from several different sizes and sources in effective and cost-efficient 

manners 82,83. This analytical task becomes impractical for human end-users in case of high 

dimensionality data 82,83, being eased by high-tech evolution that allows to derive new 

knowledge that would possibly be unreachable by already existing laboratory techniques alone 

82,83. 

 

4.1. Value of gene expression data 

Every individual has his/her own hereditary genetic information, with cells sharing the same 

genes. However, gene expression (GE) and post-transcriptional modifications are vital to 

provide cell variability and phenotypically differentiate an organism 81,84. Post-translational 

changes play, as well, an important role in the case of protein-coding genes 81,84. 

Genes are initially transcribed into mRNA, whose quantification can inform on gene activity 

84. GE is genetically and environmentally (including, for example, diet and physical 

performance, temperature or stress, and inflammatory status) influenced, being those 

differences important to outline cells’ function, development stage and/or pathological stage 

84. On this note, a multitude of human diseases are associated with GE changes due to genetic 

mutations, polymorphisms or altered mRNA regulation 81,84. Evaluating GE differences 

between conditions (for instance, healthy vs disease contexts), complements genomic studies 

by capturing a snapshot of the changes in gene regulation and transcription that may occur 
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between them 81,84. Moreover, comparing mRNA data of different tissues, conditions or 

longitudinal time points, assists in unveiling new insights on the biomolecular processes 

specifically occurring at dynamic states of our interest, such as a disease states 81, like AD. 

Given the complexity of AD and all the aforementioned factors that can enter the equation 

of developing the phenotype, even when dealing with familial EOAD linked to the genetic 

background, it is imperative to consider transcriptomic data in its study. This type of data can 

not only potentially unveil biomolecular mechanisms and pathways related to the disease 

pathophysiology that would otherwise not be easily perceptible, but also be useful to unveil 

novel candidate targets that can be manipulated in order to elicit transcriptomic features of 

interest. 

 

4.2. Gene expression assessment 

At the moment, transcript quantification relies on two main techniques, microarrays and 

RNA sequencing (RNA-Seq) 81. For the present work, we used data derived from microarray 

analysis. The microarray technique is advantageous compared to laboratory quantification 

methods, such as northern blotting and reverse transcriptase quantitative polymerase chain 

reaction (RT-qPCR), as it allows the simultaneous quantification of numerous transcripts 81. 

Oligonucleotide microarrays or gene chips are solid slides printed with thousands of 

microscopic nano-wells (named spots), each containing a few copies of the same DNA 

oligonucleotide, which corresponds to a fragment of a gene of known sequence 81,84. These 

oligomers, known as probes, are synthetized in situ and chemically attached to the slide in an 

orderly manner, with replicates of the same probe being strategically distributed in different 

spots throughout the chip 81,84 (Figure 6). The chips can either represent the whole known 

transcriptome of the organism in study or focus on genes of interest 84. Affymetrix GeneChip® 

platforms are prominent amongst this type of microarrays. 

Another contemporary technology is the BeadArray®, a bead-based microarray system, 

developed by Illumina, in which the probes constitute microscopic silica spheres coated with 

thousands of oligomers with the same sequence, which are randomly distributed within a chip 

micro-perforated with spots, similar to the one used by Affymetrix 85,86. Probe identification is 

accomplished through a series of decoding hybridizations 85.  
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For GE assays, the mRNA under study is firstly isolated and reversely transcribed into 

cDNA, then fluorescently labelled and hybridized to the microarray. Lastly, a laser scanner is 

used to measure the intensity of the fluorophore 81,84. The spot in which the hybridization occurs 

identifies the probe and, therefore, informs on the transcript sequence, while the measured 

intensity values relate to transcript abundance and are converted to GE values 81,84. Samples 

from different conditions are assigned to different chips in order to assess GE information that 

can then be compared. 

Notwithstanding all welfares related to the use of microarrays, transcriptome comparison is 

defied by the multitude of available methodologies for transcriptomic analysis, with even 

experiments with equal protocols generating discrepant results 74. Inter-species assays have the 

additional challenge of being restricted by homologous genes, than can either be scarce or yield 

non-comparable species-specific functions 74. 

RNA-Seq is a more recent technique where the isolated mRNA is fragmented, reversely 

transcribed to cDNA and then sequenced with high-throughput sequencing methods 81,87, such 

as those developed by Illumina IG, Applied Biosystems SOLiD and Roche 454 Life Sciences. 

The sequenced fragments are referred to as reads, being noteworthy that to one gene may 

correspond several reads. This process further allows the reconstruction of the original 

transcriptome through either computational de novo assembly or alignment of the reads against 

a reference genome (or transcriptome) (Figure 6) 81,87. GE values are derived from the number 

of reads aligned to each gene 81, thus being a more accurate strategy than microarrays, as 

quantification is not dependent on hybridization success 87. RNA-Seq can be performed on 

whole tissue or cell-specific (single-cell RNA-Seq) transcriptomes 81. Despite RNA-Seq’s 

robustness and accuracy, microarrays remain widely in use for monetary reasons, with RNA-

Seq technology being often a more expensive process, as well as due to the higher availability 

of publicly available microarray databases 88. Moreover, in the context of solely querying for 

GE, microarrays are much reliable, given the accuracy of their gene annotation already 

available for several species 88. This was the main reason for choosing microarray data for the 

present project, given the scarcity of concordant mouse and human RNA-Seq datasets related 

with AD, at the time of the study. 
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Figure 6 | mRNA quantification techniques: microarray and RNA sequencing 

In both techniques, the first steps are mRNA isolation and its processing to fragments of double-

stranded cDNA (ds-cDNA). Microarrays (left) are based on fluorescently labelled cDNA that hybridises 

with complementary pre-defined probes, while RNA-Seq (right) uses high-throughput sequencing of 

ds-cDNA fragments followed by genome alignment of the sequences reads. Figure inspired by Lowe et 

al 81. 

 

4.3. AD transcriptome comparison studies between human and mouse models 

At the time of writing, we found eight recent research papers, available in either PubMed 

(peer-reviewed) or BioRxiv (pre-prints), in which the authors compared human and mouse 

transcriptomic data relating to AD pathology 78,89–95. 
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The methodological approach chosen by these authors often relied on the overlap of 

differentially expressed genes (DEG) between species, or of enriched gene sets derived from 

databases 78,89–92,94,95 such as the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 96–98 

or the Gene Ontology (GO) Resource 99,100. It is noteworthy that by comparing a priori defined 

gene sets, one is limited by those known functional associations 101, which may lack gene 

specificity and disregard important details. Additionally, a couple of papers focused on specific 

cell types rather than whole-tissue transcriptomes 89,93. However, at the beginning of the present 

study, to our knowledge, public single cell databases of concordant mouse and human data on 

AD were not available. 

Moreover, none of the aforementioned papers explicitly considered using mouse models 

that matched human patients regarding the type of AD (such as if it is familial AD, or early- or 

late-onset) or the type of mutation, with even one of them 78 clearly admitting to compare 

transcriptomes of human idiopathic AD with those of several transgenic mouse and rat models 

78. As mentioned above, transgenic animals often carry human AD-related mutations, hence 

being more closely related to the human familial form of Alzheimer’s 71,75. Also, due to the low 

longevity of the animals, they more easily match patients with early-on-set AD than LOAD 

patients 77. 

These studies were not concordant among themselves on whether mouse models correctly 

replicate the human disease, with some supporting that premise 91,92,94 and others being more 

judicious about it 78,89,90,93,95. 

Regarding AD-associated biological pathways, there is a common trend along some of those 

studies that unveils immune responses, namely the inflammatory response, as an AD-induced 

enhanced mechanism, both in human patients and mouse models 78,90–93. Oxidative stress 92 and 

the protein kinase cascade signalling 78 were also mentioned as up-regulated mechanisms, 

respectively in mouse models and human patients. Processes such as the tricarboxylic acid 

cycle 78 and mitochondrial activity 94 were described as affected in AD, as well as metabolic 

processes, protein transport and metabolism, transmembrane transport and vesicle trafficking 

90,92. Mechanisms linked to neuronal activity (such as neurodevelopment, long term 

potentiation and synaptic activity 91,92) and cell cycle (such as cell differentiation, proliferation 

and death, and regulation of cell cycle 92,93) were also found disrupted in AD. 
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5. Motivation and project goals  

The world population is rapidly aging, and a swift of the social stratum is foreseen, with an 

increase in the population above 60 years old, as well as in the ratio between the elder and 

younger individuals 7. The increase of the median population age is accompanied by age-

related diseases such as dementia, of which AD is the most prevalent one. An increase of AD 

pervasiveness entails, besides health problems, social and economic burdens. The monetary 

cost of dementia’s upsurge is estimated to be 32 000€ per patient in Europe, covering direct 

healthcare, non-medical care and indirect costs 102. 

The scarcity of available treatments for AD, allied with the lack of new, more efficacious, 

approved medicines for the last 16 years, emphasizes the need for improved research on 

neurodegenerative diseases. Moreover, none of the existing therapeutics curtail nor halt disease 

progression, making it imperative to find new biochemical targets and drugs that can advance 

disease treatment. The difficulty in finding new medicines resides in the low success rates of 

clinical trials, with several new compounds passing preclinical tests but failing when tested in 

humans, especially during toxicity and efficacy assessments. This implies a poor representation 

of the actual human disease in preclinical animal models, thus being vital to evaluate what 

molecularly distinguishes them in terms of disease pathophysiology, and how can they be 

improved to better represent the human disease. 

On this note, we purpose to assess the dissimilarities between AD preclinical mouse models 

and human patients at the transcriptome level. Contrasting to other studies with the same 

purpose, we carefully matched human and mouse samples regarding AD form and mutated 

gene. Therefore, the main goal of the present project is to address to what extent a PSEN1-

mutated mouse model is able to recapitulate human FAD with mutations in the same gene, by 

analysing and comparing whole-transcriptome brain microarray data. This approach allows to 

find genes that are differentially expressed in AD samples compared to control non-diseased 

samples, and which of these genes vary, in the same or contrary direction, between species. 

We also propose to pinpoint potential genetic alterations or compounds that can recapitulate 

the human transcriptomic signature of AD and that could be applied in a novel and more 

effective mouse model that better recapitulates the human disease. 

Finally, the findings from this study are thought to provide insight not only into the 

biomolecular variances between AD PSEN1 human patients and mouse models carrying human 
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PSEN1 mutations, but also on valuable and innovative targets that can henceforward be tested 

for a potential improved AD mouse model, as well as unveil new mechanisms that underlie 

disease progression.  
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CHAPTER II – MATERIALS AND METHODS 

6. Datasets 

For the present study, GE microarray data from post-mortem brain samples were used. For 

human samples, we resorted to the dataset published by Anna Antonell et al. 103, while mouse 

data were extracted from the dataset derived by Mar Matarin et al. 104. Both datasets are 

publicly available in the National Center for Biotechnology (NCBI) Gene Expression Omnibus 

(GEO) repository 105. Table 1 summarizes relevant information regarding the datasets and the 

samples considered for the current project. 

 

6.1. Human dataset 

Antonell and colleagues 103 derived a microarray GE dataset of post-mortem human brain 

samples from the posterior cingulate area in the cortex, with the intent of assessing 

transcriptomic differences between patients with sporadic EOAD, patients with FAD caused 

by mutations in the PSEN1 gene and individuals without signs of neurodegenerative disease 

(considered as “healthy” individuals). This dataset and its annotation are publicly available 

under the NCBI GEO accession number GSE39420 103. 

The authors considered 14 EOAD subjects in their experiment, out of which 7 held 

mutations in PSEN1, comprising the FAD-PSEN1 samples (4 with the M139T mutation, 2 with 

the V89L mutation and 1 with the E120G mutation). No known mutations were detected in 

APP, PSEN1 or PSEN2 for the remaining 7 samples, corresponding to the sporadic EOAD 

batch. Additionally, the authors included 7 samples from non-AD subjects, which showed no 

hallmarks of the disease. 

For microarray analysis and differential GE assessment, the authors followed the Affymetrix 

microarray standard protocol for the GeneChip Human Gene 1.1 ST Array Plate. 

Information provided by the authors regarding the samples’ neuropathological changes (Braak 

stage), APOE genotype, PSEN1 mutation, age, gender and post-mortem delay/interval 

(PMD/PMI) 103 was contemplated in the present analysis. 
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6.2. Mouse dataset 

The public mouse data used in the present study were generated by Matarin and colleagues 

104 and obtained through the NCBI GEO accession number GSE64398. These data were 

derived from five different transgenic mice, carrying knock-in human mutations, four of which 

develop β-amyloid pathology at different rates and one that developed tau pathology and NFT. 

The first group includes APP-mutant mice carrying the double mutation K670N/M671L 

(TAS10), PSEN1-mutant mice with the M146V mutation (TPM) and a homozygous (HO-

TASTPM) and a heterozygous (HET-TASTPM) crossbreeds of those two, all of which are 

regulated by a Thy1 promoter. The NFT transgenic mouse (TAU) had a knock-in mutation 

(P30IL) in MAPT, regulated by a CaMKII promoter. The authors also provided data for age-

matched control mice, raised as littermates of the aforementioned transgenics except for the 

double-mutant mice. Thus, three subgroups of controls are present (littermates of APP-, 

PSEN1- and MAPT-mutated mice). Authors isolated brain samples at 2, 4, 8 and 18 months of 

age, from three different brain regions: hippocampus, cortex and cerebellum. GE was measured 

with Illumina MouseRef-8 v2.0 BeadChip microarrays. 

Matarin and colleagues intended to assess discrepancies in GE regarding NFT-developing 

mice and those that developed β-amyloid pathology, towards non-AD control conditions. 

Additionally, they identified GE changes across the different rates of amyloidosis progression, 

i.e. across the different transgenic mice with different degrees of amyloidosis pathology (using 

the TPM, HET-TASTPM and HO-TASTPM mice, explained in more detail below). They 

evaluated GE differences across age and brain regions, as well. 

In the context of this thesis, only cortex GE data from mice carrying mutations in PSEN1 

(i.e. the TPM, HO-TASTPM and HET-TASTPM animals) were used, in order to match the 

available human data. The three types of mice were divided into separate datasets and will be 

respectively referred to as single-mutant mice (PSEN), and homozygous (HO) and 

heterozygous (HET) double-mutant, for simplicity. Despite the latter combinations displaying 

three mutations, these mice are going to be referred to as “double-mutants” given that two 

genes carry mutations. 

The authors characterized AD pathology development in the mouse models used in present 

study by their ability to develop amyloid plaques, which was assessed through 

immunohistochemistry. The single-mutant mice did not show any staining by 18 months, 

whereas the double-mutant mice developed the pathology at 8 months 104. Contrarily to HET 
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mice that displayed sporadic staining, reflecting low pathology development, HO mice were 

the most affected by plaque deposition, showing the highest level of Aβ staining, which could 

start to be slightly noticed even at 4 months 104. 

Table 1 | Dataset information summary 

Dataset/ 

Species 
Human Mouse 

Microarray 

technology 
Affymetrix GeneChip Illumina BeadArray 

Gene 

annotation 

package 

GeneChip Human Gene 1.1 ST 

Array Plate 
MouseRef-8 v2.0 BeadChip 

GEO 

accession 

number 

GSE39420 GSE64398 

First Author Anna Antonell Mar Matarin 

Reference 103 104 

Samples 

(*used in 

the present 

study) 

PSEN1-

mutant 

EOAD 

EOAD 
Non-AD 

controls 

APP-

mutant 

*PSEN1

-mutant 

*APP- 

and 

PSEN1-

mutant 

*APP- 

and 

PSEN1-

mutant 

MAPT-

mutant 
*Controls 

Name PSEN EOAD Control TAS10 TPM 

HET-

TASTP

M 

HO-

TASTP

M 

TAU Control 

Number of 

individuals 
7 7 7 - 14 16 15 - 36 

Mutation 

M139T 

V89L 

E120G 

None None 
K670N 

M671L 
M146V 

K670N 

M671L 

M146V 

K670N 

M671L 

M146V 

P30IL None 

Available 

information 

Condition (PSEN, EOAD, 

Controls) 

Age 

Gender 

APOE genotype 

PMI 

Braak stage 

PSEN1 mutation 

Condition (PSEN, EOAD, Controls) 

Age 

Information 

used in 

modelling 

Condition (PSEN, EOAD, 

Controls) 

Age 

PMI 

Condition (PSEN, EOAD, Controls) 

Age 
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6.3. Joint dataset 

From the junction of the aforementioned human and mouse datasets, a third dataset was 

compiled, that included all considered samples and only the orthologous genes between human 

and mouse. The methods to remove outliers and find the orthologous genes are summarized in 

sections 8.1 and 8.2 to follow. 

Combination of datasets was performed on expression matrices (i.e. table-like data 

structures comprising the GE values) com with microarray probes as rows and samples as 

columns. The merger was implemented based on the gene symbols annotating the probes in 

both datasets, using the R programming language, more specifically the merger function 106 

(software is explained in more detail in the next section). 

 

 

7. Software 

Data mining, manipulation and visualisation, as well as all statistical analyses and linear 

modelling were performed with the R programming language 106. Specifically, the open-source 

and web-based R Studio 107, an integrated development environment for R, was used. In Table 

S1, the most relevant R packages and functions used in the present analysis are summarized. 

 

 

8. Methods 

8.1. Data pre-processing 

8.1.1. Import data files 

Probe intensity values were provided in CEL files for the human GeneChip microarrays, 

and in IDAT files for the mouse BeadArray dataset. These files were imported into the R 

environment using function read.celfiles from the oligo R package 108 for the human CEL 

dataset, and function read.idat from the limma R package 109 for the mouse IDAT one.  

Sample metadata for both human and mouse were available as TXT files and were imported 

into R using the read_delim function from the readr R package 110. 
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8.1.2. Data transformation and normalization 

The data pre-processing pipeline is identical for both used types of microarray datasets, 

comprising background correction, logarithmic transformation and quantile normalization 

111,112. Background correction is an important step to adjust the retrieved intensity in order to 

account for the background signal from non-specific binding, modelled by negative control 

probes specifically designed for non-specific binding 111,112. For both the human and the mouse 

data, background correction was performed by the normal-exponential (normex) convolution 

model, which assumes observed intensities as the sum of an exponentially distributed 

foreground (specific binding) signal and normally distributed background (unspecific binding, 

i.e. noise) values 111. 

Logarithmic transformation is performed to make the typically log-normal-like distributions 

of probe intensities and GE values more amenable to statistical analyses that assume 

distributions to be normal. With a logarithmization of base 2, one unit of logFC translates an 

increment or decrement of 100%, i.e. twice the GE value, between compared conditions (in the 

case of categorical variables), or by unit of the condition in study (in the case of continuous 

variables, such as age) 113. Lastly, quantile normalization is performed in order to reduce the 

technical inter-sample data variance, by approximating the distributions of probe intensities 

across all arrays/samples, making them thereby comparable 112. 

Function rma from the oligo R package that implements Robust Multi-Array Analysis 

(RMA), was used to pre-process the human Affymetrix GeneChip data 111,112, while function 

neqc from the limma R package was used on the mouse Illumina BeadArray data. Both 

functions implemented the normex convolution model for background correction, followed by 

quantile normalization and log2 transformation 111,114,115. 

 

8.1.3. Probe set summarization and expression values 

Replicates of the same probe appear in multiple positions within the same array, in order to 

encompass for technical variability and positional biases that may occur. Additionally, in 

GeneChip microarrays probes, different sequences target the same transcript. Each group of 

such probes is called a probeset. 

Matrices with probe expression values for each sample were computed, with probes as rows 

and samples as columns. For the human data, function exprs from the Biobase R package 116 
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was used to compute the probe expression matrix from the output object of the rma function, 

whereas for the mouse dataset an expression matrix was obtained through the EList object 

resultant from the neqc function. 

After transforming and normalizing the data, it is therefore important to summarize all 

values corresponding to the same probeset into a single value. The applied rma and neqc 

functions inherently perform probe summarization. 

 

8.1.4. Quality control and outlier removal 

An initial quality assessment of the human GeneChip data was performed by generating 

probe intensity grey-scaled images from the CEL files. These images show how probe 

intensities spatially distribute across each array and therefore allow the visual detection of 

potential spatial artefacts, such as surface scratches, particles and other contaminants 112, which 

are exemplified in Figure 7. Depending on the size and intensity of the artefact, an affected 

array may be considered as a technical outlier and discarded from further analysis. Given that 

Matarin et al. did not published individual intensity values (only intensities summarized by 

probe, i.e. probe replicates were absent), raw chip images could not be computed for the mouse 

data. 

Function image from the oligo R package was provided with the output object of the 

read.celfiles function and used to display probe intensity images for the human data. The 

considered samples did not display any visible artefact besides the expected chip tag, located 

in the middle of the image (Figure S1). 

Figure 7 | Affymetrix microarray artefacts 

Exemplifying images of possible technical artefacts detected by Petri et al. 117 in Affymetrix GeneChip 

microarrays. 
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For the same data, Relative Log Expression (RLE) and Normalized Unscaled Standard Error 

(NUSE) plots were computed after probe-level model (PLM) fitting (Figure S2). A RLE plot 

is a representation of the relative expression distribution of all probesets across each sample, 

which, for each probeset, corresponds to the ratio between its expression values in the array, 

estimated through PLM, and its median expression value across all arrays 112. The majority of 

probesets are assumed not to change much between samples, hence distributions are expected 

to fluctuate around zero 118. 

NUSE is the individual probe error fitting the PLM. NUSE boxplots inform on the 

distributions of normalized standard error of probesets for each sample. Given that NUSE 

values are standardized at the probeset level across the arrays, the median of their distributions 

should be centered in 1.0. Samples with median NUSE values above 1.05 need further 

investigation since those deviations can be seen as a 5% average loss in precision 118. RLE and 

NUSE were computed using functions NUSE and RLE from the oligo R package, using the 

object from PLM fitting as input. Similarly to what was observed for the raw images, no human 

sample was flagged as a potential outlier neither in RLE nor NUSE (Figure S2). 

For both human and mouse microarrays, GE distribution boxplots were outlined for each 

sample, before and after data normalization. For that purpose, function boxplot from the oligo 

R package was used. After normalization, the distribution of expression values per sample 

should be similar across samples, with substantially deviating cases being flagged as outliers. 

No outliers were detected for neither the human nor the mouse data (Figure S3 and S6). 

 

8.2. Gene Annotation 

8.2.1. Probe ID to gene symbol conversion 

The tables used for conversion between probe IDs (e.g. ILMN_2127842 for Illumina-

derived data) and gene symbols (HBA2 for human and Hba2 for mouse) were directly imported 

from Bioconductor 116 through the select function from the AnnotationDbi R package 119. 

Annotation packages hugene11sttranscriptcluster.db 120 and illuminaMousev2.db 121 for the 

human and mouse conversions were respectively used. 

With microarrays, one gene is often profiled by different probes. Hence, when analysing 

differential GE, probes were ranked based on the corresponding t-statistic absolute value 
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(derived after linear modelling, as explained in section 8.7), and, for each gene, the probe with 

the highest rank was kept. 

 

8.2.2. Mouse to human orthologue gene symbol conversion 

The table with the mouse-human orthology relations, that enabled the conversion from 

mouse to human gene symbols, was extracted from BioMart 122,123, in which the GRCm38.p6 

annotation of mouse genes and respective human orthologues were selected within the Ensembl 

Genes 97 database 124. Only genes with one-to-one orthology were considered orthologs. 

 

8.3. Statistical hypothesis testing 

When deducing information from data, it is important to have a clearly formulated question 

in the form of a testable hypothesis. Statistical inference relies on the formulation of the 

alternative or research hypothesis (H1), that reflects our premises, and the null hypothesis (H0), 

which includes all possibilities except the one we hypothesize 112. These two hypotheses need 

therefore to be mutually exclusive and encompass all potential outcomes in their union. 

 

8.3.1. Significance and p-value 

Statistical tests evaluate if there is enough evidence to reject the null hypothesis based on 

the probability value (p-value) of erroneously rejecting a true null hypothesis in favour of the 

alternative hypothesis, i.e. of obtaining a false-positive call 112. It is noteworthy that this value 

is computed by testing the assumption that the null hypothesis is true, hence it does not convey 

any probability of the alternative hypothesis being true 125. 

The lower the p-value the lower the probability of inferring false positives 112. Prior to 

testing, the researcher defines a significance level, α, based on the data prior to testing, which 

translates the amount of uncertainty one is willing to take when accepting an outcome 112,125. 

The null hypothesis is rejected when the p-value, calculated based on the chosen statistic 

applied to the data, is lower than α 125. 
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8.3.2. Multiple testing correction 

Considering GE data, when assessing if one gene is differentially expressed between two 

conditions, the commonly used significance level of 0.05 translates into a probability of 

correctly deciding not to reject the null hypothesis of 1 − 𝛼, that is, 95% 112. When testing for 

N genes, the probability of being always correct becomes (1 − 𝛼)𝑁, while the probability of 

finding at least one false positive within the N results is 1 − (1 − 𝛼)𝑁 112. Considering the 

aforementioned example, if 100 genes are tested, that would translate into a 99.4% chance of 

having at least one false positive. 

There are several correction methods conceived for multiple testing. In the current work, 

the Benjamin and Hochberg approach 126 was used, where the false discovery rate (FDR), i.e. 

the proportion of false-positives towards the totality of positive results, is controlled. This 

method allows for some dependency between the variables in study which is important when 

dealing with expression data of genes that are often complexly related through biological 

processes 112. 

For multiple testing correction, tests’ p-values are ranked in ascending order. The last-in-

rank FDR-adjusted p-value (q-value) equals its p-value, whereas the remaining are assessed by 

going backwards on the rank. The penultimate ranked p-value would be adjusted by choosing 

the lowest value of two options: (1) the last q-value or (2) a q-value obtained through equation 

1 126,127. This procedure is completed by always considering the q-value immediately after; for 

instance, the 5th p-value would be adjusted by choosing between the q-value obtained for the 

p-value ranked 6th or through equation 1, whichever is the lowest. 

𝑞𝑣𝑎𝑙𝑢𝑒 = 𝑝𝑣𝑎𝑙𝑢𝑒 ×
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

𝑟𝑎𝑛𝑘
 

 

(1) 

 

8.4. Statistical tests 

8.4.1. Gaussian distribution assessment 

Several statistical tests assume that data either follow a Gaussian/normal distribution or are 

sampled from a normally distributed population – these are called parametric tests. Contrarily, 

non-parametric methods do not make assumptions on data distributions nor analyse their actual 

values, but instead work with their ranks 125. 
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The theoretical Gaussian distribution has a bell shape and spreads symmetrically around its 

mean and infinitely to both the positive and negative directions (Figure 8), which usually does 

not apply to real data. Nonetheless, the majority of parametric tests is robust enough to perform 

well with distributions approximate to the Gaussian 125. 

 

 

 

 

 

 

 

 

Figure 8 | Normal or Gaussian distribution 

Representation of a theoretical normal distribution, with a mean of zero and a standard deviation of one. 

Data computed using the function dnorm from built-in R package stats 106, with the probability function 

on the y axis. 

 

The Shapiro-Wilk test was used to assess data normality in our study, since sample sizes 

were lower than 50 (otherwise the Kolmogorov-Smirnov test would be used) 128. In that case, 

the null hypothesis states that the sample in study follows a normal distribution, which has no 

evidence to be rejected if p-value is higher than the set significance level 128. Function 

shapiro.test from built-in R package stats 106 was used to perform the Shapiro-Wilk test. 

For the distributions for which normality was tested, Q-Q plots and probability distributions 

were also outlined (Figure S10-11). The first compares the quantiles of a theoretical normal 

distribution against the quantiles of the empirical data distribution, and the latter helps to 

visualize if data follows a normal distribution 128. In the Q-Q plots, a linear relation is expected 

if normality is followed 128. For this purpose, function ggqqplot from the ggpubr R package 129 

was employed. 

In the present study, for the two distributions (Age and PMI) evaluated for normality, a p-

value associated with the Shapiro-Wilk test (displayed in the Q-Q plots in Figure S10-11) 
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higher than a significance level of 0.05 was obtained. The assumption of normality was not 

rejected for the Age distribution (Figure S10), but it was for the PMI distribution (Figure S11). 

This decision was based on the non-Gaussian appearance of PMI probability distribution and 

the p-value which, despite being higher than 0.05, is small. 

 

8.4.2. Variance assessment 

Wilcoxon and t tests are, respectively, non-parametric and parametric hypothesis testing 

methods 125. To assess differences between groups of samples, t-tests were conducted for 

variables that follow normal distributions, and Wilcoxon tests for those that do not 125. Both 

tests were computed with function stat_compare_means from the ggpubr R package, used 

along ggplot2 130, differing in the method argument that discriminates between t.test and 

wilcox.test. The significance level was set at 0.05. 

 

8.4.3. Correlation analysis 

Correlation analysis infers the statistical association between two continuous variables, 

translating it into a value, the correlation coefficient 125. The coefficient ranges from -1, cases 

in which variables are 100% inversely correlated, and +1, where they are 100% positively 

correlated, i.e. they simultaneously increase in the same direction. This analysis can either be 

performed in a non-parametrical or in a parametrical way by respectively employing 

Spearman’s or Pearson’s correlations 125. 

For this project, Spearman’s rank correlation was chosen based on its ability to detect both 

linear and non-linear monotonic correlations, contrarily to Pearson’s correlation, that only tests 

for linear associations between variables 125. Spearman’s method computes and compares the 

individual ranking of values for each variable, under the null hypothesis of absence of 

correlation (correlation coefficient = 0), i.e. that the ranked values of the variables in study are 

not covariant 125,131. For the present study, the function cor.test from built-in R package stats 

was used to compute the correlation coefficient (R for Pearson’s or Rho for Spearman’s) and 

its respective p-value (p). To complement the analysis, a visual representation of the 

relationship between variables was also often plotted with function smoothScatter from the 

graphics built-in R package 106 or ggscatter from the ggpubr R package.   
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8.5. Principal Component Analysis 

Due to the high dimensionality of data, as seen in microarray datasets where several 

thousands of genes are measured, techniques have been developed to assist researchers dealing 

with the thousands of variables under study and the high covariance between them 132,133. 

Principal Component Analysis (PCA) is one of the most commonly used methods 132. 

PCA acts as a descriptive statistical technique that reduces the dimensions of a dataset by 

summarizing its variability into new uncorrelated variables – known as principal components 

(PCs) –, while preserving the original information within the data 132,133. In this sense, each PC 

is a linear combination of the original variables weighted by their individual contribution for 

the variance explained by that component 132,133. 

PCA calculates new coordinates in the direction of most variance within the data (Figure 9), 

and then finds the projections of the data points in the new coordinate system 112. At first, 

variables are centred by their average, sometimes scaled, and then a correlation matrix is 

derived 132,133, which is decomposed in eigenvectors and their respective eigenvalues 112. 

Centring the variables is important in order to consider the variance within the data, instead of 

how much their averages stand apart from zero. Scaling is relevant when variables have 

different units or spread in very discrepant ranges 132 but, if applied to GE, it would equalize 

the contribution of each gene to separate the samples, across all genes, without distinguishing 

genes with highly and lowly variable expression. Therefore, scaling was not applied in the 

present analysis, such that genes with more variable expression contribute more to the 

separation of samples. 

The obtained eigenvectors define the principal components, while the respective 

eigenvalues are scalars proportional to the variation explained by their components 112. 

Principal components are ranked according to the percentage of variance that they explain, with 

the first (PC1) being the one with the highest variance 112,132. Even though the number of 

components equals the number of variables, around 70% to 90% of the variance is typically 

explained by the first 10 or less components, with those lower in rank usually being dispensable 

112,132,133. That reduced number of variables is easier to explore and manipulate than the original 

amount 112,132,133, which for this work would translate into thousands of genes’ expression 

values. 
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Figure 9 | Principal Component 

Analysis 

(A) When applying PCA to GE, 

the genes’ expressions correspond to 

the original variables, and the data 

points to the samples in study. For 

simplicity, the figure accounts for 

only two genes, and thus two 

dimensions. The first component 

follows the direction of the highest 

variance within the data.  

(B) Graphically, PCA can be 

considered as a rotation of the data. 

Within this process, data are 

centered on the average and the 

origin is shifted towards the centroid 

of the data. The positions of the data 

points relative to each other are 

never affected during this analysis. 

Figure inspired by [109] 

 

Comparing PCs in a plot allows to assess the heterogeneity of the data 133 and explore 

patterns, visualize relevant clusters 112, and roughly assess which features and variables could 

explain more the variability between samples. If the components with the highest variance are 

assumed to be the most important, PCA on GE data can also inform on relevant biological 

pathways 133. This analysis becomes an important tool to highlight putatively important features 

to include in downstream differential expression analyses, being also practical to visually detect 

samples that might be considered outliers 132. 

Computationally, the original matrix had samples as rows and genes as columns, that are  

centred using function stdize from the pls R package 134, with the scale argument turned 

FALSE. To compute the principal components, function PCA from the FactoMineR R package 

135 was used, with the scaling argument also turned FALSE. A matrix with samples as rows 

and principal components as columns was retrieved, and components were plotted against each 

other using the ggplot2 R package. Eigenvalues were also obtained using function 

get_eigenvalue from the factoextra R package 136, and the percentage of variance explained by 

each component was plotted resorting to the fviz_eig function, also from factoextra. 
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8.6. Clustering analysis 

Clustering analysis consists on grouping similar data points together, such that they are 

closer to each other, by a given distance metric, than to data points of other clusters 112. The 

similarity of data points can be assessed through several different distance functions, such as 

the Manhattan distance, correlation distance, the angle between vectors, among others 112. For 

the present analysis, the Euclidean distance was used. 

Heatmaps are graphical representations of data where the values are color-coded, being 

often used alongside cluster analysis. As part of such plots, hierarchical clustering can be 

represented through tree-like diagrams named dendograms, where samples are clustered 

together based on similarity until reaching one single cluster 112. Functions HeatmapAnnotation 

and Heatmap from the ComplexHeatmap R package 137 were used to compute heatmaps and 

respective dendograms. 

 

8.7. Multiple linear modelling 

Linear modelling assumes a linear relationship between a dependent or response variable y, 

and the factors by which it is influenced, that are assumed to be independent predictor variables, 

also named explanatory variables (xk) 
112,125. The current project deals with multiple linearity, 

as the expression of a given gene (dependent variable), is modulated by several different factors 

for which information is available, i.e. samples’ metadata, which are treated as explanatory 

variables that are assumed to impact GE. Given k explanatory variables, a multiple linear 

regression model follows equation (2), where 𝑦 = 𝐺𝐸 of a given gene. 

𝐺𝐸 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀 (2) 

 

The β parameters are regression coefficients associated with each of the explanatory 

variables, except for β0 which is an additive constant that graphically represents the intercept 

with the y axis 112,125 – referred to as Baseline. 𝜀 is the error term that works as an adjustment 

in regards of all factors that contribute to modulate GE (the dependent variable) that are not 

included in the explanatory variables 112,125. 

Linear modelling finds the function that best fits the data based on the explanatory variables 

according to the least squares’ method. Hence, the fittest model will be the one that minimizes 
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the sum of squared distances (SSD) 112,125
 between the data points and the regression line – 

these distances are called residuals. 

Samples’ description regarding these predictor variables was supplied to the modelling 

algorithm in the form of a design matrix. For instance, if a model had Age and Disease as 

predictor variables, the design matrix would be similar to Table 2. 

Table 2 | Example of a design matrix 

A design matrix has the samples as rows and explanatory variables as columns, where the Baseline is a 

vector of ones, since all samples contribute to it. In this example, the Age column corresponds to the 

donors’ age in years and the Disease column is a binary categorical variable with 1 for the samples 

diagnosed with AD and 0 for the non-AD individuals. 

Samples Baseline Age Disease 

AD1 1 20 1 

AD2 1 17 1 

AD3 1 16 1 

Control1 1 35 0 

Control2 1 27 0 

Control3 1 32 0 

 

Explanatory variables will also be referred to as predictors or coefficients, and their names 

will be in italic. When a variable is included in a linear model as the only explanatory variable, 

it may be denoted as a “single” variable. For instance, for a model translated by the equation 

3A, the Age variable would be single-Age. Additionally, models differing exclusively in the 

presence of one explanatory variable will be referred to as variable-differing models, with 

variable replaced by its name (for instance, equations 3A and equations 3B represent Age-

differing models). 

𝐺𝐸 = 𝛽0 + 𝛽𝑃𝑆𝐸𝑁𝑃𝑆𝐸𝑁 (3A) 

 

𝐺𝐸 = 𝛽0 + 𝛽𝑃𝑆𝐸𝑁𝑃𝑆𝐸𝑁 + 𝛽𝐴𝑔𝑒𝐴𝑔𝑒 (3B) 

 

We used function lmFit from the limma R package to fit each model. For every model, the 

fold changes in expression associated with each contrast/variable are estimated for each gene. 
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8.7.1. Interaction coefficient and centring variables 

In linear models, an Interaction coefficient can also be added to the model, if it is thought 

that two explanatory variables have a synergistic or offsetting relation, as such that impacts the 

dependent variable (y) differently than their additive effect alone. The Interaction consists in a 

multiplicative term between the two interacting explanatory variables 138. An Interaction 

coefficient might also adjust the interpretation of the model. For instance, in the joint dataset, 

without Interaction, the PSEN coefficient would inform on the average AD-induced GE 

changes across samples, irrespectively of their species of origin. Adding the Interaction 

coefficient allows to distinguish between AD-induced GE changes specific of the human data 

and the ones specific of the mouse data (a more refined interpretation is discussed in results 

section 13.2). The design matrix of a model that integrates the Interaction effect is represented 

in Table 3. 

Table 3 | Example of a design matrix with an Interaction coefficient 

The Interaction effect is modelled by the multiplication of the two explanatory variables involved. 

Samples Baseline Age Disease 
Interaction 

(Age * Disease) 

AD1 1 20 1 20 

AD2 1 17 1 17 

AD3 1 16 1 16 

Control1 1 35 0 0 

Control2 1 27 0 0 

Control3 1 32 0 0 

 

When adding an Interaction coefficient to a model, centring of variables is also an important 

step, consisting in subtracting the mean of a variable across samples to each sample’s individual 

value. This method is useful to diminish the correlation between the Interaction coefficient and 

its component variables, making the model more consistent with the purpose of estimating 

independent effects 138. It can also ease interpretation of coefficient estimates. Centring shifts 

the “prediction centre” (i.e. the reference sample) to the centre of the available data (Figure 

10), by turning the variable’s mean to 0 138. In models where an Interaction coefficient is 

absent, the independence assumptions are already met and centring does not affect the 

coefficients’ estimations, thus being irrelevant to apply 138. Regarding the example in Figure 

10, centring of the Species variable turns the linear model baseline to a conceptual 
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human/mouse hybrid. It is noteworthy that the mathematical comparison between the GE in 

human and mouse samples remains unchanged, given that the distance between them in the 

model remains unchanged. 

Depending on the effects that we hypothesise to interact and the meeting of independence 

assumptions, we can decide to centre all variables or some of our choice. For the present 

analysis, exclusive centring of the Species variable was tested – Species-centred model –, as 

well as centring of both Species and PSEN variables – fully-centred model. In these cases, the 

Interaction coefficient is obtained with the centred variables. Further comments on the choice 

of the centring approach are discussed in results section 13.2. 

Figure 10 | Centring of the Species variable 

 

In the case of modelling the joint dataset (which includes an Interaction coefficient), 

centring was attempted in order to obtain AD-induced GE changes common to the human 

patients and mouse models (in the PSEN coefficient), as well as those species-specific (in the 

Interaction coefficient). This shift in the data changes the baseline (i.e. the reference sample) 

from human controls to a conceptual human/mouse hybrid control (Figure 10). To centre the 

variables, the scale function from built-in R package base 106, with the scale argument turned 

FALSE, was employed. 

For this project, several linear models of GE (Table 4) were tested in the human and mouse 

datasets. For the human dataset, different combinations of up to four variables were tested as 

explanatory variables, while for the mouse two were selected. Two predictors were also used 

for the joint dataset. 
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Table 4 | Linear Models 

Summary of linear models for GE used in each dataset, and their respective explanatory variables. 

Dataset Model Explanatory variables Centring process 

Human 

(with 

EOAD) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Disease 

PSEN + EOAD 

Age 

PMI 

Disease + Age 

Disease + PMI 

Disease + Age + PMI 

PSEN + EOAD + Age 

PSEN + EOAD + PMI 

PSEN + EOAD + Age + PMI 

None 

Human 

(without 

EOAD) 

1 

2 

3 

PSEN 

Age 

PSEN + Age 

None 

Mouse 1 PSEN + Age None 

Joint 1 PSEN + Species + IntPSEN+Species 

None 

Species centred 

PSEN and Species centred 

 

 

8.7.2. Differential gene expression analysis with a Bayesian approach 

We used function eBayes from the limma R package to adjust the outcome from the linear 

models through an empirical Bayesian moderation, and function topTable from the same 

package to summarize the statistics of differential expression of each gene for the 

contrasts/effects in each given linear model. Those statistics are summarized in Table 5. 

The Bayesian approach builds upon conditional probabilities where the estimated likelihood 

of an event occurring is based on prior knowledge, such as a previous event 139. The Bayesian 

approach is inspired by the way human individuals gain knowledge and is useful when a 

researcher does not hold information on all variables that can affect a certain event, most 

commonly because of either data scarcity or a gap in the scientific knowledge 140. 
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Table 5 | Statistics of differential GE 

Statistics obtained after fitting a linear model to the GE data, adjusting its errors through Bayesian 

moderation, and assessing differential GE, using the limma package in R 109. These statistics can be 

retrieved for each coefficient in each linear model. 

Statistic Abbreviation Meaning 

Log fold-change logFC 
Average log2 of GE ratios between 

experimental conditions 

Average expression AveExpr 
Average expression of each gene across 

samples 

Moderated t-statistic t 

T-statistic of differential expression, 

with standard errors moderated through 

an empirical Bayesian model 

Probability value P.Value P-value corresponding to t-statistic 

Adjusted probability value adj.P.Val 
Adjusted p-value for multiple testing as 

described in section 8.3.2  

B-statistic B or log odds 

Logarithmized empirical Bayes odds 

ratio of a gene being differentially 

expressed between conditions, assuming 

a default prior that 1% of genes are DE 

 

The logFC represents the average magnitude of differential expression between 

experimental conditions. However, the logFC statistic alone provides no information on how 

precise is that estimate, and expression values can have a high variance within conditions. 

Moreover, with few replicates per condition, logFC estimates can be easily biased by outlier 

expression values 141. 

The t-statistic is commonly used to deal with those issues by aiming at a compromise 

between magnitude and precision, being the ratio between the average logFC of a gene within 

a condition, and its associated standard error 141. This statistic is therefore proportional to the 

magnitude of expression changes but penalizes genes whose expression variance within 

conditions is high when compared to that between conditions. However, given the high number 

(thousands) of genes tested and the small sample size (i.e. the low number of samples) 

associated with each test, there will be a few genes with an extremely low within-condition 

standard-error, just by chance, which are assigned with high t-statistic of differential 

expression, even if they have a small logFC 141. To mitigate this source of “false positives”, a 

common option is to “moderate” standard errors, i.e. to adjust randomly extreme values. 
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A Bayesian-moderated t-statistic encompasses variance information from all genes in the 

standard error. In this case, the gene-wide expression variance distribution constitutes the prior 

knowledge that is used to infer adjusted individual values of variance for each gene’s 

expression 142,143. Moderated t-statistics still encompass information on the magnitude of 

differential expression, being positively correlated with logFC (Figure 11A). 

A new statistic, named B-statistic, can be computed from the moderated t-statistic as the 

logarithmized empirical (because priors are “empirically” derived from the data) Bayes odds 

ratio of a gene being differentially expressed. While t-statistics differentiate between up- and 

down-regulated genes, B-statistics inform on DEG but do not inform on the direction of that 

alteration. Absolute values of the moderated t-statistics are indeed perfectly positively 

correlated with B-statistic values (Figure 11B), as one is a surrogate of the other 144. 

Figure 11 | Correlation between t-statistic and logFC and B statistic values 

Example of t-statistics of differential expression that are highly correlated with (A) logFC values, as 

well as (B) in their absolute values with B-statistics. Rho and p – Spearman’s rank correlation 

coefficient and p-value, respectively. 

 

8.7.3. Visualizing differential gene expression 

Plotting a smoothed scatter of the average expression of the genes against their logFC value 

(Figure 12A), for each contrast of the model, provides a preliminary visual quality control of 

the differential expression analysis. As most genes are not DE, a darker density cloud should 

appear around the zero logFC axis, through the entire range of average expression. 

To visually identify DEG between the different conditions, B-statistic values were plotted 

against the logFC, for each contrast in each applied linear model. These V-shaped plots are 

called volcano plots (Figure S12) and allow to simultaneous visualize the significance (B-
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statistic in the y-axis) and the magnitude (logFC in the x-axis) of GE changes. Given that a B-

statistic of 0 means that a given gene has 50% probability of being differentially expressed 109, 

only genes with positive B values were considered statistically significant. For categorical 

variables, a minimum logFC threshold of 1 was considered to define genes as differentially 

expressed, in order to obtain genes that are at least two times more up- or down-regulated in 

the condition of interest compared with the control condition. A threshold of 2 was also often 

used in order to refine the quantity of DEG and obtain the more extreme/interesting genes. In 

any case, the threshold was set after looking at the data. 

Usually, the majority of the genes is not differentially expressed, thus volcano plots should 

present higher density of data points around a logFC of zero. To visualize shifts in data density 

that could compromise the interpretation of the plots, density volcano plots (Figure 12B) were 

simultaneously derived. On this note, function stat_density_2d function from the ggplot2 R 

package was used. 

All contrasts of all linear models, for the three datasets, demonstrated qualitatively similar 

patterns observed to those in Figure 12, both when plotting the logFC as a function of the 

average expression (Figure 12A), and in the volcano plots (Figure 12B). 

Figure 12 | Density scatter plots 

Quality control of DEG patterns can be done through plotting genes’ logFC values against (A) their 

average expression across all samples or (B) their statistical significance of differential expression. 

Given most genes are usually not differentially expressed, point density should be higher around a 

logFC of zero. 
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8.7.4. Choosing the most suitable linear model 

Linear regression aims to correctly infer the linear relationship between the explanatory and 

dependent variables, based on sample data 125. Nonetheless, it is easy to generate a model that 

overfits on the sample data by encompassing an excessive amount of explanatory variables 

which can also be redundant or too specific for that sample 125. In the case of overfitting, the 

model explains the given sample data but is not applicable to other samples. In contrast, if the 

model does not encompass enough explanatory variables, it can underfit and lack relevant 

complexity, thus being unable to make accurate predictions 145 (Figure 12). 

 

Figure 13 | Fitting data 

Example of underfitting and overfitting a regression model. On the left panel, the model underfits the 

data by not adequately capturing their underlying structure; a linear model is fitted to clearly non-linear 

data. A good model (middle) approximates well the data’s true underlying structure and provides a good 

representation of all points. An over complex model (right) adjusts itself to all available points and 

overfits the data, capturing their residual variation (i.e. noise) as if part of their underlying structure. 

 

Models with different combinations of explanatory variables can be compared among 

themselves in order to infer their relative suitability for further analysis. On this note, scatter 

plots, regarding the coefficients associated with the same explanatory variables between linear 

models, can be computed for t-statistics, B-statistics and logFC, and these statistics can be 

tested for their correlation between variables and/or models. 

For instance, let us consider model Z with explanatory variable α, and model Y with α and 

γ. A high correlation of logFC or B-statistic values of α between the two models (see example 

scatter plot in Figure 14, where each point is a gene) could mean that the γ explanatory variable 

is not confounded with α, i.e. it is independent from α (blue points in Figure 14). 
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Genes that, for a given explanatory variable, appear highly correlated between the two 

compared models, are similarly DE in both (i.e. have proportional magnitude and significance). 

Contrarily, genes deviating from correlation suggest that the α estimates are different between 

models (green and magenta points in Figure 14) and therefore that there is, at least, some 

interdependence between explanatory variables (between α and γ, for the considered example). 

Figure 14 | Comparison between 

statistics from different models 

Considering model Z with explanatory 

variable α, and model Y with α and γ, 

the plot represents the hypothetical 

comparison of a certain DE statistic 

(logFC, B, t statistic) associated with 

variable α between the two models. 

Blue points represent genes that are 

highly correlated between the two 

models (i.e. are equally differentially 

expressed), whereas green points and 

magenta those that are not. 

 

Overall, the t-statistic was used to compare the different explanatory variables, as it 

encompasses information on the magnitude of differential GE, and correlates with its statistical 

significance (B-statistic). 

By correlating different explanatory variables within the same model, one can also infer on 

redundancy. Highly correlated variables do not add valuable contributions to the model and 

indicate overfitting 125. Collinearity or multicollinearity can be fixed either through inclusion 

of just one of the variables, or through the creation of a new variable that merges all the 

information 125. 

The biological meaning and importance of the explanatory variables were also accounted 

for as exclusion or inclusion criteria, in the light of their relevance towards the main objective 

of the project of comparing the transcriptomes of AD human patients and mouse models. For 

instance, Age was always a considered variable given that AD is known to be an age-related 

dementia 6,7,9,31,37. 
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8.8. Gene Set Enrichment Analysis 

To extract the biological meaning associated with GE differences (e.g. which pathways may 

be concomitantly dysregulated) genes need to be functionally annotated. Gene Set Enrichment 

Analysis (GSEA), a software distributed by the Broad Institute 101,146, was used to statistically 

assess the enrichment in predefined gene sets amongst genes altered between conditions 101,146. 

These classes are defined a priori considering genes with chromosome proximity, common 

involvement in biological pathways and processes, shared association with disease pathways, 

among other criteria. The software receives a ranked list of genes based on a metric that 

quantifies their differences in GE between two conditions in study 101. 

The geneset-defining databases selected for the present study were Reactome 147,148, 

established by the European Bioinformatics Institute and the European Molecular Biology 

Laboratory (EMBL), KEGG 96–98 and the Biological Processes from GO 99,100. 

GSEA software was provided, from each dataset (human, mouse and joint), with a list of all 

considered genes ranked by their correspondent t-statistic of differential expression derived 

with linear modelling (ranging from positive to negative values). The program returns the pre-

defined gene sets linked to already known pathways, from the aforementioned databases, that 

are significantly enriched in differentially expressed genes. For each pathway, while scrolling 

through the given ranked list of genes, GSEA calculates the Enrichment Score (ES) by 

incrementing or decrementing a score – called running ES – depending if the gene in the list is 

included in the gene set or not, respectively. The increment/decrement magnitude is 

proportional to the relevance of the gene to the gene set-associated pathway, which is defined 

within the program 101,146. This process results in a running ES distribution of which the 

maximum absolute value corresponds to the overall ES associated with the gene set 101,146. The 

software returns a list of up-regulated and a list of down-regulated pathways, which in the 

current study are distinguished based on the t-statistic signal associated with the genes that 

contribute to the enrichment of the pathway in question (Figure 15). 
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Figure 15 | Gene Set Enrichment Analysis 

A ranked list of genes is given to GSEA software, which increases and decreases a running Enrichment 

Score (red) based on genes’ contribution to the pathway, and returns a list of ranked pathways that are 

differentially expressed between the conditions in study, each associated with a final ES (Max 

Enrichment Score) value. Figure inspired by 146. 

 

Since the number of genes present in the pathways can be very different from other 

pathways, a normalized ES (NES) that considers differences among gene set sizes is also 

computed, along with the p-value and FDR for statistical significance 101,146. 

 

8.9. Identification of DE-recapitulating and DE-reverting genetic and chemical 

perturbations  

To infer either genetic (gene over-expressions or knock-downs) or compound perturbations 

that recapitulate the changes in GE unveiled by applying linear modelling to the 

aforementioned datasets, cTRAP, an R tool developed in the host lab 149 was used. This package 

makes use of data from the Connectivity Map (CMap) of the Broad Institute 150,151. The CMap 
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database comprises GE data across several human cell lines, prior to and after being subjected 

to the different mentioned perturbations. 

Similarly to GSEA, cTRAP accepts a list of ranked genes that, in the present analysis, was 

also based on t-statistics. The program then outputs a ranked list of perturbations among over-

expressions, knockdowns and compound administrations, based on their ability to replicate 

similar or opposite transcriptomic changes. The correspondence between each returned 

alteration and the transcriptomic changes provided is evaluated through different statistical 

tests, of which Spearman’s correlation was chosen due to the advantage of detecting non-linear 

relationships compared to Pearson’s correlation, and thus enabling the identification of a 

broader range of relations. For each perturbation, a correlation coefficient value and 

correspondent p- and q-values were outputted. A positive test coefficient suggests perturbations 

that replicate the provided transcriptomic changes, while negative values reflect correlation 

with opposite transcriptomic changes. 

Information on the genetic alterations and compounds is also provided, including the genetic 

target of the drug, its clinical development phase and the medical field and condition of 

prescription 150,151. For the purpose of this thesis, only marketed compounds or those in phase 

III of clinical trials were considered of interest in order to ease future validation work. 

 

8.9.1.  DAVID software 

The online DAVID software 152,153 was used to summarize gene targets associated with the 

compound perturbations obtained with cTRAP into categories with explicit functions. The list 

of target genes was inputted to the Gene Functional Classification tool and compared against 

the default Homo sapiens gene list provided by DAVID, as the transcriptomic background used 

to derivate all the drug gene targets was absent. DAVID outputs a list of the gene targets 

clustered by their functions. These gene families were then manually curated in order to reflect 

the core functions of its genes. The obtained information was appended to the cTRAP results. 
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CHAPTER III – RESULTS AND DISCUSSION 

9. Quality control and sample removal for human and mouse data 

9.1. Human dataset 

To assess array quality and identify possible outliers within the human data, raw chip images 

(Figure S1) were generated along with NUSE and RLE plots (Figure S2). Given the absence 

of visual artefacts on those images, and the samples being within NUSE and RLE quality 

standard intervals (see section 8.1), no samples were considered to be outliers at this stage. 

However, the NUSE distributions of three controls (C1, C3 and C5), one EOAD (E2) and one 

PSEN (P4) were the most shifted towards values greater than 1 and apart from the remaining 

samples (Figure S2), and thus were flagged for further quality control steps. 

Boxplots of normalized probe-intensity for human revealed E2 as the most deviant sample, 

but it aligns with the remaining samples after normalization (Figure S3). In the heatmap, C1 

and P4 (deviant in NUSE) also did not cluster with the remaining samples of the same category. 

Additionally, samples E3 and P6 clustered with control samples (Figure S4A). Besides, C1, 

E3, E4 and P6 were also separated using PCA coloured by condition (Figure 16).  

Despite the deviations observed for C1, E3, E4 and P6, they do not fall within the criteria to 

be considered as technical outliers, i.e. after normalization there are no deviant distributions in 

the boxplots, nor isolated samples in heatmaps’ clusters or PCA distributions. Moreover, there 

can be variance attributable to biological factors not covered by the available metadata. 

Nonetheless, considering all the results from the exploratory analyses, C1, E3, E4 and P6 were 

discarded from posterior analyses of the human dataset, in order to maximize the distinction 

between non-diseased individuals and AD patients. After removing those samples, P4 was the 

only visually misplaced sample in the heatmap (Figure S4B). Nevertheless, since P4 clusters 

with diseased samples and is consistent with the remaining PSEN samples in PCA (Figure S5), 

P4 was kept in the dataset and therefore get a more robust GE signature for that distinction. 

In other words, if the deviations observed for C1, E3, E4 and P6 had a biological meaning, 

they could provide extra information to the model and narrow down the DEG by considering 

the slight overlap in GE distributions between the controls and AD patients. However, the 

decision was to exclude those samples, sacrificing biological variability for robustness of the 

GE signatures and maximization of the separation between the controls and AD patients. 
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Figure 16 | PCA before sample exclusion coloured by condition (Human) 

Principal components of normalized human GE data, with points coloured by AD condition. Flagged 

samples are identified with labels (C for Controls, E for EOAD and P for PSEN). 

 

9.2. Mouse dataset 

The boxplot for non-normalized GE mouse data (Figure S6) and the heatmap for normalized 

data (Figure S7) unveiled three deviant control samples (C22, C23 and C24). C22 and C23 

substantiated as outliers in the heatmap and in PCA on normalized GE data (Figure 17), hence 

being discarded from further analyses. Considering that C24 clustered with the remaining 

samples in PCA (Figure 17 and Figure S8), this sample was kept. Results were concordant 

across the three murine datasets, with the results displayed below being only related the 

homozygous double-mutant mice. 

 

Figure 17 | PCA before outlier exclusion coloured by condition (HO Mouse) 

Principal components of normalized mouse GE data, with points coloured by AD condition. Flagged 

outliers are identified with labels (C for Controls). 
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10. Human dataset analysis  

10.1. Finding explanatory variables with an impact on gene expression 

To evaluate the effect of potential explanatory variables on data variance, PCA on 

normalized GE data was plotted and coloured according to samples’ available metadata, such 

as Condition (which includes the distinction between control, EOAD and PSEN samples), age 

(in years), PMI (in minutes), gender, APOE genotype, Braak stage and the type of PSEN1 

mutation. Only Condition, Age and PMI revealed observable trends in the data (Figure 18 and 

Figure S5). 

The first principal component (PC1) explains 57.5% of the normalized GE variance (Figure 

S9), being explicit a separation of non-diseased subjects and AD patients, visible when 

coloured by Condition, while the second component seems to explain the variance between 

EOAD and PSEN1-mutated AD patients (Figure 18). Visible trends were absent along the other 

components, for the Condition variable (Figure S5). 

However, samples’ age and PMI also appeared associated with the pattern along PC1 

(Figure 18), with samples from older individuals appearing to also present higher PMI values. 

The fact that these three variables (condition, age and PMI) vary along the same principal 

component suggests that they might be confounded to some extent. As such, Condition, Age 

and PMI were the explanatory variables used for linear modelling, and the decoupling of the 

three effects was attempted. 

 

Figure 18 | Principal Component Analysis (Human) 

Principal components of normalized human GE data, with points coloured by AD condition (left), age 

(middle) and PMI (right). 
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10.1.1. Age and PMI correlation 

Given that age and PMI followed a similar pattern in PCA plots, in order to integrate 

information on both variables in the linear models, it is important to ensure their independence 

to avoid redundant information and overfitting. On this note, correlation between age and PMI 

original values was computed (𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛’𝑠 𝑟ℎ𝑜 =  0.26, 𝑝 =  0.31; Figure 19). Given the 

p-value of 0.31, the null hypothesis, which states that the variables are not correlated, could not 

be rejected at a significance level of 0.05. Thus, the variables were considered mostly 

independent of each other, also based on the low correlation coefficient, hence both could be 

integrated as predictors in the same linear models. 

 

Figure 19 | Age and PMI comparison 

Comparison between Age (in years) and PMI 

(in minutes) across human samples. Linear 

regression line in black, and its 95% 

confidence interval is represented by the grey 

area. Rho and p – Spearman’s rank correlation 

coefficient and p-value, respectively. 

 

 

To better unveil the importance of modelling age and PMI, t-statistic values for each 

coefficient were compared using different linear models. The comparisons were made between 

single-Age and single-PMI models (models 3 and 4, respectively – see Table 4), and between 

Age and PMI coefficients of models where both variables are used as predictors (models 7 and 

10 – see Table 4). The variables are not much correlated when compared between different 

models where each variable is the only explanatory variable, nor when they are concomitantly 

present with Disease in a model (Figure 20A-B). Even though Age’s and PMI’s t-statistics were 

slightly correlated when the Disease variable is distinguished between PSEN and EOAD 

(Figure 20C), it was decided to still be feasible to use them simultaneously in linear models. 

Of note, low p-values indicate significance of the low correlations due to the very high number 

(thousands) of genes considered in the analysis, but the assessments above were based on the 

magnitude of association (Rho) between variables. 
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Figure 20 | Age and PMI t-statistic comparison 

Comparison between t-statistics of differential expression retrieved with linear modelling for (A) single-

Age and single-PMI, for (B) coadjutant Age and PMI coefficients concomitant with Disease, and (C) 

coadjutant Age and PMI coefficients concomitant with PSEN+EOAD. Rho and p – Spearman’s rank 

correlation coefficient and p-value, respectively. 

 

10.1.2. Assessing condition confounding with Age and PMI variables 

The age and PMI trend along PC1 suggested a confounding with AD condition. In order to 

better understand the relation between the three variables, age and PMI distributions for non-

AD, EOAD and PSEN1 samples were compared (Figure 21). 

 

 

Figure 21 | Age and PMI distributions for Controls, EOAD and PSEN samples 

(A) Age (in years) and (B) PMI (in minutes) distributions across Controls, EOAD and PSEN1-mutated 

samples. Between groups differences were respectively assessed with the t-test (A) and the Wilcoxon-

test (B), in accordance with sections 8.4.1 and 8.4.2 and 3.4.2 (∗ 𝑝 < 0.05,∗∗ 𝑝 < 0.01,∗∗∗ 𝑝 < 0.001, 

ns stands for non-significant, for 𝛼 =  0.05). 
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No statistically significant PMI differences were found between groups (Figure 21). 

Additionally, PMI should not be considered an explanatory variable, given that no genes are 

significantly differentially expressed based on PMI when considering this variable in any of 

the linear models (Figure S12). This suggests that PMI does not add relevant information to 

GE differences between samples.  

When comparing t-statistic values of differential expression for all the Condition 

coefficients across PMI-differing models (models 1 and 6, 2 and 9, 5 and 7, and 8 and 10), 

correlation coefficients were close to 1 (Figure 22). These results corroborate the idea that 

using or not PMI as a predictor does not affect the relationship between the Condition variable 

and the response variable (gene expression) and, therefore, PMI does not add robustness to the 

model regarding the distinction between AD and non-AD samples. As such, we decided not to 

include PMI as an explanatory variable for linear modelling of GE. 

 

Figure 22 | t-statistic comparison between explanatory variables of PMI-differing models’  

Comparison between t-statistics of differential expression retrieved with linear modelling for the same 

Condition variable across PMI-differing models. Rho and p – Spearman’s rank correlation coefficient 

and p-value, respectively. 
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EOAD patients are significantly older than controls and PSEN patients (Figure 21), 

illustrating a possible confounding between AD condition and the age of the individual. As 

such, t-statistics were compared between single-Age (model 3) and single-Condition (Disease 

– which encompasses both EOAD and PSEN –, EOAD and PSEN; models 1 and 2) variables, 

and between coadjutant Age and Condition of models that include information exclusively on 

those variables (models 5 and 8) (Figure 23) – see Table 4 for linear models. 

Single-Age and single-Condition appear to affect GE similarly, since these are highly 

correlated (Figure 23A). That effect is somewhat diluted and even inverted when the model 

considers both variables (Figure 23B), suggesting not only that both variables, to some extent, 

affect GE is the same way, but also that is difficult to fully decouple their independent effects, 

emphasizing the condition-age bias. Moreover, the EOAD coefficient is more correlated with 

Age than PSEN (Figure 23), which is in accordance with EOAD patients being the oldest 

(Figure 21). 

 

Figure 23 | t-statistic comparison between Age and Condition variables 

Comparison between t-statistics of differential expression retrieved with linear modelling for (A) single-

Age and single-Condition variables and for (B) coadjutant Age and Condition coefficients. Rho and p – 

Spearman’s rank correlation coefficient and p-value, respectively. 
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Condition variables appear highly correlated between Age-differing models, suggesting that 

Age as an explanatory variable does not have a big impact on the Condition effect (Figure 24), 

and thus could be removed from the models, similarly to what was observed for PMI. 

Nevertheless, considering its biological meaning and the fact that AD is a dementia with high 

prevalence in older individuals, Age was kept as a predictor. Instead, in order not to disrupt the 

linear models with a confounding effect on the association between Age and Condition, and 

given the project focus on comparing human and mouse data (the latter lacking EOAD 

samples), EOAD individuals were henceforth removed from the human dataset. If not for the 

confounding effect, it would be interesting to keep these samples in the dataset and gain 

insights on idiopathic AD. In conclusion, a model with PSEN and Age as explanatory variables 

(equation 4) was considered for further analyses. 

𝐺𝐸 = 𝛽0 + 𝛽𝑃𝑆𝐸𝑁𝑃𝑆𝐸𝑁 + 𝛽𝐴𝑔𝑒𝐴𝑔𝑒 (4) 

 

 

Figure 24 | t-statistic comparison of Age-differing models 

Comparison between t-statistics of differential expression retrieved with linear modelling for the same 

Condition variable across Age-differing models. Rho and p – Spearman’s rank correlation coefficient 

and p-value, respectively. 

 

10.2. Exploring AD-induced DEG in human patients  

The aforementioned linear model (equation 4) unveiled a few up-regulated genes in human 

AD compared to non-diseased individuals, but the majority of the DEG were down-regulated 

(Figure 25). 

The most statistically significant up-regulated gene is ARRDC4, which participates in the 

internalization of activated G-protein coupled receptors 154 and, more recently, has been linked 
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to the innate immune system, participating in inflammatory responses 155. Other up-regulated 

genes include FOXJ1, LPAR4 and ST6GALNAC2. 

FOXJ1 encodes a transcription factor required for the formation of motile cilia, hair-like 

structures present in the surface of ependymal cells that outline the brain ventricles filled with 

CSF 156. The motile cilia generates CSF movement that is vital for cleaning of waste products 

and transport of nutrients and signalling molecules 156.  

LPAR4 encodes a lysophosphatidic acid (LPA) receptor. LPA participates in cellular 

survival, differentiation, proliferation and migration, and has also been related with neuronal 

and glial alterations in neuronal disorders 157. As for ST6GALNAC2, it induces molecular 

modifications that might affect cellular communications 158. 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 | DEG in human AD 

Volcano plots of differentially expressed genes up- (positive logFC) and down-regulated (negative 

logFC) in human AD patients, compared with non-diseased individuals, for the PSEN coefficient. Genes 

in orange stood out from the most differentially expressed and/or statistically significant genes. 

Thresholds of magnitude (vertical dashed lines) and significance (horizontal dashed line) for the DEG 

(represented in darker colour) were considered according to section 8.7.3 (logFC > 2; B > 0). 
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Some of the most down-regulated genes, such as MAP3K9 159 and ZNF385B, are associated 

with cellular responses, namely apoptosis. MAP3K9 is involved in responses evoked by 

environmental triggers, which can culminate in neuronal apoptosis 159. Intuitively, these 

processes were expected to be up-regulated in AD compared to non-disease conditions because 

of the neuronal death known to be associated with AD. However, we can also speculate that 

their down-regulation can be a feedback mechanism: given the increased and non-physiological 

neuronal death that occurs in a diseased state, the organism might impair natural apoptosis 

mechanisms in an attempt to control further damage. The ZNF385B protein contains zing-

finger domains and its cognate gene was found to be highly expressed in B-cells and regulate 

the induction of their apoptosis when in ectopic conditions, by functioning as a p53-mediated 

DNA damage control checkpoint 160. According to The Human Protein Atlas 161–163, ZNF385B 

is highly expressed in the brain, especially in the cerebellum and cerebral cortex 164, but a 

connection with its expression in B cells has not yet, to our knowledge, been proposed. Given 

the rise in immune responses seen in AD conditions, the need to reduce B-cell apoptosis might 

be expected, which would explain ZNF385B down-regulation. However, it is of note that 

ZNF385B expression was only detected, in the author’s study, in B-cells of germinal centers, 

where B-cells proliferate and differentiate 160. The gene may, of course, also have other 

function within the brain that have not yet been discovered. 

Furthermore, synaptic functions were also apparently altered, with genes like UNC13C 165, 

RPH3A 166, GABRA1 167 and SYNPR 168, which are associated with synaptic vesicle cycle and 

trafficking, formation of synapses and neurotransmitter release, being down-regulated in AD. 

At a presynaptic level, rabphilin-3A, encoded by RPH3A, is recruited to synaptic vesicle 

membranes where it modulates synaptic vesicle trafficking. Reduction of RPH3A 

levels/activity has already been linked to AD pathology and increased concentrations of Aβ 166. 

GABRA1 acts as a GABA receptor, the main inhibitory neurotransmitter in mammals, and plays 

a role in synaptic inhibition 167. The down-regulation of GABRA1 suggests that, besides the 

aforementioned loss of synapses and decrease in the trafficking of neurotransmitters associated 

with AD, synaptic inhibition itself is also affected. 

It is noteworthy that the down-regulation of those genes, especially the ones associated with 

synaptic activity and signal transmission, can also derive from neuronal loss, which is not 

detectable by the used linear model since it does not encompass for neural cell type proportion 

as an explanatory variable. Nevertheless, this would be an interesting and important factor to 

consider in future work.  
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10.3. Disrupted biological pathways in human AD brains 

In order to extract the biological meaning associated with the AD-induced differentially 

expressed genes (given by the PSEN coefficient), Gene Set Enrichment Analysis (GSEA) was 

conducted to obtain pathways that might inform on gene function, which are pre-defined in 

databases such as Reactome, GO Biological Processes and KEGG. After converting probe 

annotation to gene annotation, genes were ranked by their t-statistics of AD-associated 

differential expression and ran in GSEA. 

The most up-regulated Reactome pathways (Figure 26) and GO Biological Processes 

(Figure S13) in AD conditions are related with the immune system, DNA and cell cycle, and 

elastic fibres. KEGG pathways (Figure S13) follow the same pattern, with immune system-

related conditions appearing up-regulated, such as viral infections, auto-immune diseases and 

transplants. 

Figure 26 | Altered Reactome pathways for the PSEN coefficient (Human) 

Representation of the 10 most significantly down- (blue) and up-regulated (magenta) Reactome 

pathways, in human PSEN brains. Pathways were considered significantly enriched if FDR < 0.05. 

 

As aforementioned, immune responses are increased in AD, where there is an abnormal 

migration of glial cells towards brain regions with increased neural debris and Aβ deposition, 

resulting in the release of pro-inflammatory cytokines and ultimately triggering a chronic 

inflammatory state of the diseased brain 10,17,30,31.  

Elastic fibres, of which elastin is the main component, are macromolecules present in the 

extracellular matrix of dynamic connective tissues, such as the lungs, skin and blood vessels 

169. These fibres are indeed vital for maintaining the flexibility and extensibility of arteries, and 
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work along collagen fibrils 169. Elastin has also been associated with deposition of amyloid-

like structures in blood vessels, which disrupts the circulatory system 170. Additionally, in AD, 

Aβ oligomers may migrate into the blood stream, blocking and disrupting brain arteries 170, and 

possibly the elastic fibres present in the cerebral vascular system, hence the activation of their 

synthesis mechanisms. 

Cell cycle and the Hippo signalling pathways are up-regulated in PSEN conditions, as well. 

These pathways are involved in cellular differentiation, proliferation, and apoptosis 171, which 

aligns with glial activation and proliferation, immune cells proliferation and neuronal 

apoptosis, processes known to occur in an AD context. Moreover, Aβ oligomers and oxidative 

stress induce MST1-mediated (MST1 being an hypo kinase) phosphorylation of the Forkhead 

transcription factor FOXO3, triggering an apoptotic pathway that culminates in neuronal death 

171–173.  

The oxidative stress that underlies the pathogenic mechanisms of AD leads to oxidative 

DNA damage. The accumulation of disrupted DNA molecules triggers neuronal death and 

contributes to disease progression 174, being therefore predictable the activation of DNA 

repairing mechanisms to counter-balance these events (Figure S13). 

Down-regulated Reactome pathways and Biological Processes in PSEN relate with synaptic 

and neuronal activity, as well as neurotransmitter trafficking. This is in accordance with AD-

related mechanisms such as (1) microtubule disruption through tau hyperphosphorylation 

which destabilizes axonal transportation in affected neurons, thus disrupting vesicle and 

neurotransmitters trafficking 6,10, and (2) Aβ interference of transmembrane channels, such as 

NMDA receptors 24,26. These mechanisms hinder neurotransmitters’ release and culminate in 

synaptic loss and neuronal death, the major cellular hallmarks of AD. The down-regulation of 

NMDA receptors’ activation suggests that Aβ oligomers are inducing their loss of function 

rather than their overstimulation, as discussed in section 1.2. 

Moreover, Antonell et al. also found, in both EOAD and PSEN1 comparisons with non-AD 

samples, disruptions within pathways related to signal transmission, with great focus on 

calcium signalling, neuronal ligand-receptor interactions and long term potentiation, thus 

impacting neuronal plasticity 103. The authors used DAVID software to identify these 

potentially dysregulated pathways from the DEG, not specifying if these pathways’ activities 

are positively or negatively affected. However, they have clarified that the genes associated 
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with the pathways were found down-regulated, i.e. pathways were enriched in down-regulated 

genes. 

Unexpectedly, some KEGG pathways related with neurodegenerative diseases, such as AD, 

and with diabetes mellitus (considered as a risk factor of AD 175,176), are downregulated in 

PSEN. Given the GSEA scoring system with ES (explained in section 8.8), it was hypothesized 

that, in the dataset used for the analysis, the number of genes that are usually down-regulated 

in AD is greater than of those usually up-regulated, thus having a major contribution to the 

negative ES scores of those pathways (Figure 27). In fact, GSEA unveils that the major 

contributors for the down-regulation of the AD pathway, i.e. a pathway that represents the 

unfolding of events that lead to the diseased state, are mitochondrial genes belonging to the 

NDUF, SDH, UQCR, COX and ATP families, whose altered levels have been associated with 

mitochondrial dysfunction in AD 177. KEGG representation of the AD pathway (Figure S14) 

corroborates this hypothesis, showing that the expression of those genes (categorized in the Cx 

family) is inhibited in AD 178. GRIN2B and GRIN2D genes encode proteins of NMDA 

receptors’ subunits 179, whose loss of function was already suggested in the Reactome analysis 

above. Likewise, the ITPR1 gene that encodes for a intracellular channel that mediates calcium 

release from the endoplasmic reticulum 180, and the CALM3 gene that encodes a calcium-

binding protein 181, were found down-regulated and contributing to the GSEA results regarding 

the AD pathway, which can be linked to alterations in membrane receptors, such as those seen 

in NMDA receptors, and altered Ca2+ homeostasis 181 in AD. 

 

Figure 27 | Genes that contribute to the 

Alzheimer’s disease KEGG pathway 

Volcano plots of differentially expressed, 

i.e. up- (positive logFC) and down-

regulated (negative logFC), genes in 

human AD patients, compared with non-

diseased individuals, for the PSEN 

coefficient. Highlighted genes are a sample 

of those contributing to the down-

regulation of Alzheimer’s disease KEGG 

pathway. Thresholds of magnitude (vertical 

dashed lines) and significance (horizontal 

dashed line) for the DEG (represented in 

darker colour) were considered according 

to section 8.7.3 (logFC > 2; B > 0). 
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11. Mouse dataset analysis 

The murine dataset considered for the present analysis involved mice exclusively carrying 

a human PSEN1 mutation (single-mutant mice, PSEN), and mice carrying heterozygous (HET) 

and homozygous (HO) combinations of human mutations in the PSEN1 and APP genes – 

double-mutants. These three conditions were analysed as separate datasets. 

 

11.1. Finding explanatory variables with an impact on gene expression 

Biological features besides Condition and Age were not available for mouse data, thus these 

comprised the explanatory variables available for linear modelling. There was low correlation 

between the t-statistics obtained for these variables (Figure 28), showing that they are not 

substantially associated (the very high significance value can, in this case, be a consequence of 

a very large sample size), except perhaps mildly for the homozygous double-mutant mice. 

Henceforward, a model with PSEN and Age as explanatory variables was used for in the 

analysis of the three mouse datasets (equation 5). 

𝐺𝐸 = 𝛽0 + 𝛽𝑃𝑆𝐸𝑁𝑃𝑆𝐸𝑁 + 𝛽𝐴𝑔𝑒𝐴𝑔𝑒 (5) 

 

 

Figure 28 | Age and PSEN t-statistic comparison (Mouse) 

Comparison between the t-statistics of differential expression for the PSEN and Age coefficients of (A) 

the single-mutant, (B) the heterozygous double-mutant and (C) the homozygous double-mutant mice. 

To ease visualization of the correlations, the limits on x-axis do not include THY1 gene, which has a 

high t-statistic value on the PSEN coefficient (interpreted in section 11.2). Rho and p – Spearman’s rank 

correlation coefficient and p-value, respectively. 
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11.2. Exploratory transcriptomic characterization of the three mouse datasets 

PCA plots for the single-mutant and HET mouse datasets displayed no pattern in the data, 

associated with either the AD condition or the age of the mice (Figure 29A-B). Moreover, no 

relevant separation between AD and non-AD samples was found. Regarding the homozygous 

double-mutant mice, PCA unveiled a relevant separation between non-AD and AD samples 

along PC1 and PC2 (Figure 29C). 

 

Figure 29 | PCA of the mouse datasets 

Principal components of normalized GE, with points coloured by condition (top) and age in weeks 

(bottom), for (A) single-mutant mice, (B) heterozygous double-mutant mice and (C) homozygous 

double-mutant mice. 

 

Moreover, linear modelling did not unveil statistically significant DEG regarding the PSEN 

coefficient for the single-mutant mice (Figure 30A). In the heterozygous double-mutant, the 

majority of the statistically significant DEG detected in PSEN have a small magnitude effect 
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(|𝑙𝑜𝑔𝐹𝐶| < 1) between AD and non-AD samples (Figure 30B), meaning that those genes were 

less than two-fold up- or down-regulated in AD. Contrarily, many statistically significant DEG 

(|𝑙𝑜𝑔𝐹𝐶| > 1; 𝐵 > 0) were detected for the homozygous double-mutant mice (Figure 30C). 

THY1, the gene whose promoter is used to insert the mutated human genes in the transgenic 

mice, constantly appears more statistically significant (i.e. with higher B-statistic) than the 

others (Figure 30). In the mouse, this gene encodes a cell surface glycoprotein expressed in 

several cell types, including neurons and immune cells, such as T-cells 182,183, whereas in 

humans it is only expressed in neurons 182,184. The encoded glycoprotein mediates cell-cell 

interactions and cell adhesion, promotes T-cell activation and inhibits neurite growth 182,183. 

Figure 30 | Volcano plots of differential expression for the mouse datasets 

Volcano plots of differential expression derived for PSEN and Age coefficients of (A) single-mutant, 

(B) heterozygous double-mutant, and (C) homozygous double-mutant mice. Rho and p – Spearman’s 

rank correlation coefficient and p-value, respectively. Thresholds of magnitude (vertical dashed lines) 

and significance (horizontal dashed lines) for the DEG (represented in darker colour) were considered 

according to section 8.7.3 (logFC > 1; B > 0). 

 

11.3. Choosing the best mouse dataset for comparison with the human dataset 

Under the assumption that mouse models recapitulate human AD, it would be expected the 

PSEN effects in both datasets (human and mouse) to be greatly correlated. 

To address the similarities between human and mouse datasets, t-statistic values obtained 

for the PSEN coefficient (respectively using the models in equations 4 and 5) were compared 

between species, revealing negligible and low correlations of single-mutant and HET mice with 

human patients (Figure 31A-B). The comparison between the human dataset and the HO mice 
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unveiled a higher correlation than the ones obtained for the other mouse datasets (Figure 31C), 

despite still being lower than expected for a bona fide mouse model. 

 

Figure 31 | Human and mouse PSEN t-statistic comparison 

Comparison of t-statistics of differential expression derived for the PSEN coefficient between humans 

and (A) the single-mutant, (B) the heterozygous double-mutant and (C) the homozygous double-mutant 

mice. To ease visualization of the correlations, the limits on y-axis do not include THY1 gene, which 

has a high t-statistic value on the PSEN coefficient (interpreted in section 11.2). Rho and p – Spearman’s 

rank correlation coefficient and p-value, respectively. 

 

The lack of DEG and the low correlations obtained between human and single-mutant and 

HET mouse models, is concordant with the AD phenotype described by Matarin et al 104. As 

they reported, single-mutant mice did not develop AD pathology, while a late development was 

observed for HET mice, with mild Aβ plaque deposition only visible when 8 months old or 

older (samples were collected at 2, 4, 8 and 18 months of age). The scarcity of AD pathology 

described by Matarin and co-workers 104, and of DEG, led to the decision of discarding the 

single-mutant and HET mouse datasets from further analysis. 

Contrarily to the other two mouse model, HO mice were described, in the original study 104, 

as suffering from Aβ plaque deposition by the age of 4 months (strong signal is only seen at 8 

months). The fact that these mice develop AD pathology earlier and more intensively compared 

to the other models, might relate with the observed stronger changes in GE reflected in the 

PCA pattern, corroborating the need to multi-mutate mouse models in order to have those 

develop a phenotype that resembles the human disease 70,71,75. Multi-mutation is a common 

practice in AD research 70,71,75. The low correlation between HO mouse and human t-statistics 
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suggests that even multi-mutated mouse models that develop AD hallmarks, are not able to 

fully recapitulate the human disease 70,71,75. 

The present analysis includes mice from all ages, with younger mice (2 and 4 month old) 

not expressing significant immunohistochemical marking of Aβ in the original study of Matarin 

and colleagues 104, thus being considered to have milder AD phenotype. Although the used 

linear model encompasses for age, if only mice with a stronger disease phenotype were 

included within the AD samples, the GE heterogeneity in those would be lower, considering 

GE is different between the mice without AD phenotype and those for which plaque deposition 

is detectable. These molecular variances can be illustrated with the PCA plot in Figure 32, 

where the samples from 2 month old mice are nearer the control samples compared to the 

remaining ones. We are left wondering if those phenotypic observations are reflected on GE in 

a way that is compatible with our models or if there are non-linear changes in GE that introduce 

noise in our models, so that young mutant mice should not be included. In future analyses, we 

should test if this would allow for a more robust separation of the AD group from the control 

group, potentially easing the discrimination of similarities and discrepancies between human 

patients and mouse models regarding AD-induced GE alterations.  

 

 

 

Figure 32 | PCA of the HO mouse dataset – 

highlighting 2 month old mice 

Principal components of normalized GE, with 

points coloured by condition for the 

heterozygous double-mutant mice. 2 month 

old AD mice are identified with labels (HO). 
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11.4. Exploring AD-induced DEG in the HO mouse model 

The linear model defined in equation 5 unveiled a few AD-induced up-regulated genes in 

the homozygous double-mutant mice, compared to control mice (Figure 33). 

As seen before, the most significant up-regulated gene was THY1, which was already 

discussed above (see section 11.2). LGALS3BP is another example of an up-regulated gene 

whose protein controls cellular interactions, adhesion, migration and proliferation, 

participating in the migration of neuroblasts and differentiation of oligodendrocytes 185,186. 

LGALS3BP also plays a role in innate immunity, namely by acting as a pro-inflammatory 

mediator 185,186. 

Genes that act upon the immune system comprise the majority of the most up-regulated 

genes, including CD59A, SLAMF9, TLR2, CD52, CST7 and CCL3. CD59A acts as an inhibitory 

agent towards complement system immunity and T-cell activation, thus regulating T-cell 

responses and protecting host cells from complement immune responses 187,188. On a similar 

note, LSP1 negatively regulates neutrophils adhesion, polarization, and migration 189. SLAMF9 

plays a role in lymphocytic activation 190 and TLR2 is vital for antigen recognition and 

activation of innate immune responses, with murine T cells constitutively expressing TLR2, 

while human T cells do not 191. Amongst the most up-regulated genes are also CST7, which is 

expressed in microglia during demyelination, a white-matter pathology that has been described 

in AD in association with oligodendrocytes’ function or quantity alterations 192,193; and CCL3, 

whose coding protein is considered an inflammatory chemokine that promotes monocyte 

migration to affected regions 194.  

Moreover, CCL4 gene is, in fold-change, the most AD-induced up-regulated gene in the HO 

mouse model, which constitutes a pro-inflammatory chemokine as CCL3, and is produced from 

and secreted by glial cells and astrocytes in stress conditions, being involved in the migration 

of leukocytes to the affected region 195. This prevalence of immune-related disrupted pathways 

is in accordance with the aforementioned immunological AD hallmarks. 

Lastly, CLEC7A was also found to be up-regulated. This gene encodes a protein that is 

thought to participate in axonal regeneration of affected neurons, suggesting it is a defence 

mechanisms against the consequences of AD pathology, such as neuronal degeneration 196. 
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Figure 33 | DEG in mouse model of AD 

Differentially expressed, i.e. up- (positive 

logFC) and down-regulated (negative logFC), 

gene in HO mouse model, compared with control 

mice, for the PSEN coefficient. Genes in orange 

are a sample of the most statistically significant 

differentially expressed genes, while those in 

green are a sample of down-regulated genes 

whose drop in expression is near two-fold. 

Thresholds of magnitude (vertical dashed lines) 

and significance (horizontal dashed line) for the 

DEG (represented in darker colour) were 

considered according to section 8.7.3 (logFC > 

1; B > 0). 

 

Some genes whose drop in expression does not exceed but is near two-fold are CD6, PSME2 

and CORT. The first two genes are involved in the immune response, with CD6 acting upon T-

cell activation regulation 197. PSME2 encodes a subunit of the immunoproteasome, which 

seems to be induced by an inflammatory state and the presence of chemokines such as INF-γ 

and IL-1 198. The proteasome is vital for the assembling of antigenic peptides shown in MHC 

class I receptors, increasing the activation of T-cells, as well 198. Lastly, CORT encodes a 

neuropeptide that mimics somatostatin 199, a growth hormone-inhibiting hormone that acts as 

a neurotransmitter and neuromodulator in the CNS 200. Somatostatin interacts with G-protein 

coupled receptors and affects neurotransmission and cell proliferation, mainly holding an 

inhibitory function 200. 

 

11.5. Disrupted biological pathways in AD mouse models’ brains 

Similarly to what was performed on the human data, GSEA was conducted to extract the 

biological meaning associated with the expression differences obtained for the PSEN 

coefficient through linear modelling. AD-induced disrupted pathways in homozygous double-

mutant mice were obtained. 

The majority of the unveiled up-regulated KEGG (Figure S20), Reactome (Figure 34) 

pathways and Biological Processes (Figure S20) in AD conditions relate with the immune 

system, similarly to the human results. Moreover, some AD-induced human down-regulated 
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KEGG pathways, such as those related with diabetes mellitus, are shown as up-regulated in 

mouse AD. These pathways’ shift from down-regulated in human to up-regulated in mouse 

might reflect the important transcriptomic differences between mouse and human AD, 

therefore suggesting genes to be differently affected by the disease between both species. A 

more abrupt interpretation would be the mechanisms that underlie disease progression being 

completely different between human and mouse, justifying the poorly correlated transcriptomic 

changes and the inefficiency of mouse models in replicating the human disease. The 

hypothetical caveat of including younger mice that do not manifest evident AD phenotype, and 

the possibility of more pronounced neuronal death in humans compared to mice, can also play 

a role in the surge of these discrepancies. 

Another group of up-regulated Reactome pathways was related with metabolic disruptions 

and cholesterol biosynthesis, with high levels of cholesterol having previously been linked to 

AD development 201. For the human species, the brain is the organ with the highest levels of 

cholesterol, being crucial for maintenance of neuronal plasticity and function 201. The brain-

consumed cholesterol is synthetized within the CNS, majorly by glial cells, with special focus 

on astrocytes 201. In a healthy state, the blood-brain barrier restricts the efflux of cerebral 

cholesterol into the peripheral circulatory system and prevents the influx of circulatory 

cholesterol into the brain, except for two oxidized forms (24S-hydroxycholesterol and 27-

hydroxycholesterol) that are able to cross the blood-brain barrier 201. In a disease state, where 

the blood-brain barrier is compromised, there is an influx of cholesterol-carrying lipoproteins 

into the brain that therefore disturbs the cholesterol levels within CNS 201. Moreover, high 

levels of free cholesterol in neurons were found to favour the activity of β- and γ-secretases, 

thus increasing Aβ production 201. In AD, the inflammatory state that affects the permeability 

of the blood-brain barrier 202 might lead to increased brain cholesterol levels, and therefore to 

higher production rates of Aβ. 

An up-regulation of the Lysosome KEGG pathway is also observed (Figure S20). Deficits 

in lysosome axonal transport have been described in AD-diseased neurons, where lysosomes 

end up accumulating at amyloid plaque deposits, promoting disease progression 203. 
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Figure 34 | Reactome pathways differentially expressed for the PSEN coefficient (Mouse) 

Representation of the 10 most down- (blue) and up-regulated (magenta) Reactome pathways in mouse 

PSEN brains (homozygous combination dataset). Pathways were considered significantly enriched if 

FDR < 0.05. 

 

Down-regulated Biological Processes (Figure S20), Reactome (Figure 34) and KEGG 

(Figure S20) pathways show an impairment at the level of RNA splicing. A recent study has 

unveiled Tau-mediated dysregulation of several spliceosome components and even loss of 

function of some vital proteins, such as the small nuclear ribonucleoprotein-associated protein 

B (SmB) 204. Even though disrupted Tau is not detected in the mouse models used in the present 

study, the cognate gene of the SmB protein, SNRPB, shows decreased expression in AD 

condition for both the mouse and human datasets (Figure 35), suggesting that a different SmB-

disruption mechanim is activated, at least in the mouse model. Some transfer RNA(tRNA)-

related pathways are also down-regulated in Reactome, namely tRNA aminoacylation, which 

may relate with dysregulation of the spliceosome given that aminoacyl-tRNA synthetases also 

play a role in RNA splicing 205. Alternative splicing is crucial for neuronal diversity and 

function, with disruptions of the spliceosome machinery being related to neurologic diseases, 

namely dementia 204. 

Results also show the down-regulation of pathways associated with cellular respiration and 

mitochondrial processes. These alterations in the mitochondrial machinery might mirror its 

functional shift or loss, which might explain the aforementioned down-regulation of 

mechanisms related with GE regulation, as these are highly demanding in terms of energy 

requirements 206. Moreover, mitochondrial impairment have been described to affect GE, 

alternative splicing and translational processes 206. Prior to Aβ outburst and plaque formation, 

Aβ oligomers are found to accumulate in neuronal mitochondria in AD conditions, thus leading 

to the disability of respiratory functions that are crucial for cell maintenance 207. Considering 

that neurons require a great amount of energy in order to properly function, dysfunction of the 
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mitochondrial system has an immense effect in neuronal survival and AD development and 

progression 207. Lastly, and in accordance to what was observed for the human data, KEGG 

pathways related with neurodegenerative diseases are also downregulated. 

Figure 35 | Gene expression distribution for the SNRPB gene 

SNRPB GE distribution across controls and PSEN1-mutated samples in the (A) human and (B) mouse 

datasets. T-test comparisons were conducted with a considered significance of 𝛼 =  0.05 (∗ 𝑝 < 0.05,∗

∗ 𝑝 < 0.01,∗∗∗ 𝑝 < 0.001, ns stands for non-significant). 

 

 

12. Summary of findings for the human and mouse independent datasets 

Our results show a prominence of AD-induced up-regulation of immune system 

mechanisms in both human and mouse datasets. Additionally, processes related with the 

cardiovascular system, cellular differentiation, proliferation and apoptosis, and nucleic acid 

processing were up-regulated in the human dataset. As for the mouse dataset, besides the 

immune system, cellular interactions, diabetes and cholesterol related pathways are up-

regulated. 

It is noteworthy that diabetes mellitus associated genes are down-regulated in human AD 

conditions, which is discrepant from mouse results. Overall, neural-related mechanisms, i.e. 

neuronal and synaptic activity, neurotransmitter trafficking and ionic channels, are also down-

regulated in human AD; whereas spliceosome machinery and cellular respiration and 
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mitochondrial processes appear down-regulated in the mouse dataset. A few genes, whose drop 

in expression does not exceed but is near two-fold, are associated with the immune system and 

neuronal mechanisms. Disrupted mechanisms are summarized in Table 6. 

These discrepancies between the mouse and the human datasets suggest that different genes 

are being affected in AD or, more drastically, that the disease is developing through different 

mechanisms between species. This premise is reinforced by the lack of correlation between the 

human and mouse AD-associated transcriptomic changes. These discrepancies could be 

exacerbated by the inclusion of younger AD mice amongst the PSEN mouse samples, 

increasing heterogeneity in the disease development GE signature through the approximation 

of those samples to mouse controls and divergence from human AD patients. 

 

Table 6 | Up- and down-regulated mechanisms in the separate human and mouse datasets 

Datasets Human Mouse 

Up-

regulated 

mechanisms 

Immune system 

Cardiovascular system 

Cellular differentiation/proliferation 

Apoptosis 

Nucleic acid processing 

Immune system 

Cholesterol 

Diabetes mellitus 

Cell interactions 

Down-

regulated 

mechanisms 

Ionic channels 

Neutransmitter trafficking 

Neuronal and synaptic activity 

Diabetes mellitus 

Spliceosome/Gene expression 

Cellular respiration and 

mitochondrial processes 

Neutransmitter trafficking 

 

However, the PSEN coefficients estimated by our linear modelling encompass, for each 

dataset, information on the mechanisms respectively underlying the human and mouse disease. 

To decouple the common and species-specific effects, the analysis described so far was 

repeated on the joint human and mouse dataset. Its results are explained in the following 

section.  
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13. Joint dataset 

13.1. Choosing the explanatory variables for linear modelling 

In order to obtain differential GE signatures that could be specifically linked to either mouse 

or human AD, as well as those common to both species, human and mouse data were merged 

into a joint dataset. PCA of the resulting normalized GE was used to unveil some patterns in 

the data, where points were respectively colour- or shape-distinguished by species and 

condition (Figure 36). Unsurprisingly, the plots unveiled species as the feature that explained 

most of the variance within the data (87.7%). This result was, to some extent, anticipated by 

the lack of correlation in the transcriptomic changes introduced by AD between human and 

mouse, seen in Figure 31C. 

 

 

 

 

 

 

 

 

 

Figure 36 | Principal Component Analysis (Joint dataset) 

Principal components of normalized GE data, with points shaped by AD condition and coloured by 

species. 

 

Moreover, PC2 can decouple non-AD from AD human samples, as well as non-AD from 

AD mouse samples, albeit to a lesser extent. A separation of mouse controls and ADs is only 

obtained in PC3, which represents only 0.9% of the variance within the data. These results 

reinforce that differences between AD and non-AD samples are much subtler in mouse models 

than in humans, thus corroborating the premise of mouse models not effectively replicating the 

human disease, with pathology development not being strong enough to exhibit relevant 

molecular differences regarding non-diseased samples. As already discussed, the modest 
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differences found between control and AD mice could also be accentuated by the heterogeneity 

within PSEN mouse samples, among which 2 and 4 month old mice, hardly showing any AD 

phenotype, are incorporated.  

To fully decouple species-specific AD signatures from the ones common to the disease 

development in both species, GE of the joint dataset was modelled based not only on the 

Species and PSEN, but also on the interaction of those variables (equation 6). The Interaction 

coefficient allows to estimate species-specific AD transcriptomic changes. 

𝐺𝐸 = 𝛽0 + 𝛽𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝛽𝑃𝑆𝐸𝑁𝑃𝑆𝐸𝑁 + 𝛽𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑒𝑠 ∙ 𝑃𝑆𝐸𝑁 (6) 

 

 

13.2. Decoupling species-specific and species-common AD-induced GE changes 

Given that an Interaction coefficient was added to the model, different data centring 

approaches were considered (see section 8.7.1). To choose which explanatory variables to 

centre, three linear models were compared, where (A) Species and PSEN were not centred, (B) 

only Species was centred, and (C) both predictors were centred. In all three models, Species 

and PSEN are independent from each other, as well as Species and Interaction, with the fully-

centred model displaying the lowest correlation between Species and Interaction (Figure 37). 

PSEN is highly correlated with Interaction in the non-centred model, and less so in both centred 

models (Figure 37).  
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Figure 37 | t-statistic comparison between explanatory variables of the same model 

Comparison of t-statistics of differential expression between the different explanatory variables of the 

linear model (Species, PSEN and Interaction) for (A) the non-centred model, (B) the Species-centred 

model and (C) the model with both Species and PSEN centred. Rho and p – Spearman’s rank correlation 

coefficient and p-value, respectively. 

 

When comparing the same variable between models that include an Interaction effect but 

have different centring approaches, it is expected the Interaction estimates to be constant 

irrespectively of the centring, whereas the remaining coefficients can vary with it when they 

are not the differently centred variable 138 (i.e. for instance, Species estimates are not affected 

by centring the Species variable), as it is seen in Figure 38. 

In our data, the Species estimates correlate almost perfectly between the models where it is 

prone to change. The PSEN estimates vary equally between the Species-centred and fully-
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centred models compared with the non-centred one (Figure 38), which is expected since the 

coefficient is equally affected by both centring approaches.  

  

 

Figure 38 | t-statistic comparison of the same variable between centring-differing models 

Comparison between t-statistics of differential expression retrieved with linear modelling across 

centring-differing models for the variables Species (top), PSEN (middle) and Interaction (bottom). Rho 

and p – Spearman’s rank correlation coefficient and p-value, respectively. NC stands for non-centred, 

speC for Species-centred and AC for all centred variables (Species and PSEN).  
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Recalling the explanation in section 8.7.1, the Species-centred model turns the baseline from 

a human individual (mouse is defined as the “positive” species) into a conceptual human/mouse 

hybrid. In a model with Interaction where both Species and PSEN are centred (referred to as 

“fully-centred” model), the baseline turns into a half-diseased hybrid, which is biologically less 

meaningful than the Species-centred baseline.  

To favour the interpretability of the model, the Species-centred model was chosen for further 

analysis, also considering that the Species-Interaction correlation is not very high and the PSEN 

is as uncorrelated with the Interaction in that model as they are in the fully-centred one, since 

the PSEN estimates do not change between them. 

 

13.3. Exploring AD-induced DEG in the joint dataset 

13.3.1. AD-induced DEG common to mouse models and human patients 

Using the linear model displayed in equation 6, differential expression regarding the PSEN 

coefficient unveils the AD-induced GE changes that occur in both human patients and mouse 

models – which will be referred to as “common AD changes” –, with up- and down-regulated 

genes respectively having positive and negative logFC values (Figure 39).  

Common AD-induced up-regulated genes are majorly linked to the immune system, 

including genes such as SLAMF9, which regulates lymphocytic activity 190, and CD52 that 

encodes surface proteins 208. Other up-regulated immune genes found for the PSEN coefficient 

were CD86 (whose expression enhances T cells’ activation 209), GFAP (encodes a protein 

highly expressed by reactive astrocytes in response to brain inflammation and injury, which 

suggests that both species have an increase of reactive astrocytes 210) and CST2 (encodes a 

protein abundant in immune cells, especially lymphocytes 211). As seen for the mouse dataset, 

LGALS3BP is up-regulated in common AD, being involved in cellular interactions and cell 

cycle, namely of neuroblasts and oligodendrocytes, as well as in pro-inflammatory immune 

responses 185,186. 

Genes RPH3A, GABRA1, GABRG2 and SULT4A1 appeared down-regulated for common 

AD. As explained above, GABRA1 acts as a GABA receptor, the main inhibitory 

neurotransmitter in mammals, and plays a role in synaptic inhibition 167. Additionally, the 

GABRG2 gene, that plays a role in neuronal development and formation of inhibitory 

GABAergic synapses 167, also appeared down-regulated. GABAergic synapses are the main 
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inhibitory synapses, with GABAergic neurons comprising 10-20% of the cortex brain region 

212. Lastly, SULT4A1 gene encodes a conjugation enzyme entailed in the metabolization of 

hormones, drugs and neurotransmitters 213. 

 

Figure 39 | AD-induced DEG that are common 

to mouse and human (Joint dataset) 

Differentially expressed, i.e. up- (positive logFC) 

and down-regulated (negative logFC), genes in AD 

human and mice, for the PSEN coefficient. Genes 

in orange and green are a sample of the most 

differentially expressed genes, with green-

coloured genes found DEG for the Interaction 

coefficient as well (section 13.3.2). Thresholds of 

magnitude (vertical dashed lines) and significance 

(horizontal dashed line) for the DEG (represented 

in darker colour) were considered according to 

section 8.7.3 (logFC > 1; B > 0). 

 

 

13.3.2. Species-specific AD-induced DEG for mouse models and human patients 

The Interaction coefficient unveils species-specific AD-induced GE changes that go beyond 

the “common” changes, and that will be referred to as “species-specific AD changes”. Positive 

logFC values unveil genes that are more up-regulated or less down-regulated with the disease 

in mouse models compared to human patients (Figure 40A-C). To simplify, these genes will 

be referred to as “mouse-specific genes”. 

On the other hand, negative logFC values unveil genes that are more up-regulated or less 

down-regulated with the disease in human patients compared to mouse models (Figure 40D-

F). As before, these genes will be referred to as “human-specific genes”. The differentially 

expressed genes are displayed in Figure 41. 
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Figure 40 | Interpretation of the Interaction coefficient based on different GE profiles 

Schematic images that represent several GE profiles that might appear in the Interaction coefficient 

with positive (A, B and C) and negative (D, E and F) logFC values. Up-sided arrows represent up-

regulation and down-sided ones represent down-regulation. Thicker arrows signal the differential 

expression where the gene is most up-regulated or less down-regulated. 

 

Figure 41 | AD-induced DEG that are species-

specific – PSEN/Species interaction (Joint dataset) 

Mouse-specific (positive logFC) and human-specific 

(negative logFC) AD-induced DEG in the joint 

dataset (PSEN/Species Interaction coefficient). Genes 

in orange and green are a sample of the most 

differentially expressed and/or statistically significant 

genes, with green-coloured genes having been found 

DE for the PSEN coefficient as well (section 13.3.1). 

Thresholds of magnitude (vertical dashed lines) and 

significance (horizontal dashed line) for the DEG 

(represented in darker colour) were considered 

according to section 8.7.3 (logFC > 2; B > 0). 
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Interestingly, genes commonly down-regulated in AD for both species (RPH3A, SULT4A1, 

GABRA1 and GABRG2) appeared, in the Interaction coefficient, as mouse-specific, i.e. more 

up-regulated or less down-regulated in mouse than in human. Moreover, additional neural-

related genes also appeared as mouse-specific, such as genes CPLX1 (participates in synaptic 

vesicle exocytosis and neurotransmitter release 214), CLSTN3 (localizes in the postsynaptic 

membrane and assists in the presynaptic development and differentiation of inhibitory and 

excitatory synapses 215) and HPCA (regulates calcium intracellular homeostasis, with 

disturbances in this equilibrium having been linked to the development of AD pathology 

216,217). This observation does not directly translate in an inconsistent disturbance of these 

mechanisms in AD mouse models, but rather suggests that these processes are likely more 

prominently down-regulated in human patients than in the murine models. 

Consistently to the previous results for the human dataset, genes ARRDC4 (that participates 

in the internalization of activated G-protein coupled receptors 154, as well as in the 

inflammatory response associated with the innate immune system 155) and LPAR4 (associated 

with cell differentiation, proliferation and migration, and described in neuronal and glial 

alteration in disease conditions 157) also appeared as human-specific in the Interaction 

coefficient. Other human-specific genes include TSPN6 (that encodes a transmembrane protein 

belonging to a family of proteins that have an immunoregulatory role and mediate cell 

interactions, development and migration 218), TRIM59 (is involved in cellular processes, 

similarly to TPSN6, and has been found overexpressed in several tumours 219), and AZGP1 

(important for activation of immune responses, whose lower expression is associated with a 

poorer prognostic in oncologic patients 220). 

Considering that the immune-related pathways have been described as up-regulated in the 

individual human and mouse datasets, those observations suggest that such mechanisms are 

more activated in human patients than in mouse models. This kind of discrepancies might be 

behind the differences in disease development that distinguish the human disease from that 

induced in mouse models. Such differences can be induced by variances in the disease-induced 

immune responses between both species, which have been being identified throughout the 

years 221,222, namely relating to the innate neuroimmune system and neuroinflammation 221. 
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13.4. AD-induced disrupted biological pathways in the joint dataset 

13.4.1. AD-induced alterations common to mouse models and human patients 

To capture the biological alterations associated with the AD-induced GE changes common 

to or specific for human patients and mouse models, GSEA was respectively performed on the 

results obtained for the PSEN and Interaction coefficients through linear modelling. AD-

induced disrupted gene-function pathways, concomitantly altered with the aforementioned 

expression differences, were obtained. 

Similarly to both the human and mouse datasets, the most up-regulated Reactome, KEGG 

and BP pathways (in the joint dataset for the PSEN coefficient), associate with the immune 

system and elastic fibres’ synthesis (Figure 42 and Figure S21). The most down-regulated 

pathways are linked with synaptic and neuronal activity, neurotransmitter trafficking and ion 

channels, resembling the human dataset, as well as with mitochondrial activity and cellular 

respiratory processes, like in the mouse dataset (Figure 42 and Figure S21). 

KEGG pathways related with neuronal disease such as AD, Parkinson’s or Huntington’s 

keep appearing as down-regulated (Figure S21). 

Figure 42 | Reactome pathways differentially expressed for the PSEN coefficient (Joint dataset) 

Representation of the most down- (blue) and up-regulated (magenta) Reactome pathways commonly 

AD-induced in human patients and mouse models, based on DEG regarding the PSEN coefficient. 

Pathways were considered significantly enriched if FDR < 0.05. 
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13.4.2. Species-specific AD-induced alterations for mouse models and human patients 

GSEA performed on the Interaction coefficient unveiled Reactome (Figure 43), KEGG and 

BP (Figure S22) pathways linked to the immune system and GE regulation as being human-

specific, i.e. those down-regulated in the Interaction coefficient. Additionally, sumoylation of 

proteins is unveiled as a more enriched pathway in the human disease compared to mouse, 

corresponding to a post-translational process carried out by small ubiquitin-like modifier 

(SUMO) proteins 1, 2 and 3, that has been implicated in the pathophysiological development 

of neurodegenerative diseases, including AD 223. Increased levels of SUMO1-modified 

proteins have been reported in brains of human AD patients and mouse models, with these 

proteins being known to target both APP and Tau proteins 223. Despite the absence of 

significant differences between species in the expression alterations of the SUMO1 gene 

induced by PSEN1 mutations (Figure 44), it is worth noting that GE, i.e. mRNA levels, do not 

always have a direct correlation with protein levels or activity. 

 

Figure 43 | Reactome pathways differentially expressed for the Interaction coefficient (Joint 

dataset) 

Representation of the most up-regulated Reactome pathways specific for the human AD patients (blue) 

and for the AD mouse models (magenta), in addiction to an overall AD-induced disruption, based on 

DEG regarding the Interaction coefficient. Pathways were considered significantly enriched if FDR < 

0.05. 
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Figure 44 | Gene expression distribution 

for the SUMO1 gene 

SUMO1 expression distribution across 

controls and PSEN1-mutated samples, 

separated by species, in the joint dataset. T-

test comparisons were conducted (∗ 𝑝 <

0.05,∗∗ 𝑝 < 0.01,∗∗∗ 𝑝 < 0.001, ns stands 

for non-significant, for an 𝛼 =  0.05). 

 

 

 

 

Pathways that appeared as more disrupted in AD mouse models, i.e. the up-regulated 

Reactome (Figure 43), KEGG and BP pathways (Figure S22) for the Interaction coefficient, 

majorly associate with signal transmission through neurotransmitters and synaptic functions. 

Moreover, pathways related with neurodegenerative diseases that appeared down-regulated in 

both isolated datasets of human and mouse, are shown as more up-regulated for the mouse 

models, suggesting they might be less affected in those than in human patients. 

As explained for the DE mouse-specific genes, the relative up-regulation of neural pathways 

in mice does not directly translate in an inconsistent disturbance of these mechanisms in the 

murine AD models, but rather suggests that these processes are more prominently down-

regulated in human patients than in the murine models, thus appearing as up-regulated for the 

latter. This explanation is aligned with mouse models showing mild AD pathology in the 

original study 104 that do not truthfully translate the human disease. 
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13.5. Interaction coefficient vs PSEN from the independent datasets 

When comparing t-statistic values of differential expression obtained for the Interaction 

coefficient in the joint dataset and the PSEN coefficients in the independent human and mouse 

datasets, a high anti-correlation with the human PSEN, and a lower correlation with the mouse 

PSEN, are observed (Figure 45). This suggests that the Interaction coefficient of the joint 

dataset mainly translates the AD-induced human transcriptomic alterations. 

 

Figure 45 | Interaction from the joint dataset vs PSEN coefficients from the independent datasets 

Comparison between the t-statistics of differential expression for the Interaction coefficient of the joint 

dataset and PSEN coefficients of (A) the mouse and (B) the human datasets. The colourful quadrants 

represent the possibilities of gene regulation associated with the outlier genes, i.e. genes that deviate 

from the correlation, while an up-sided arrow represents up-regulation and a down-sided arrow 

represents down-regulation (H for human and R for rodent/mouse). If two arrows are on the same 

direction, their relative size specifies in which dataset the gene is more altered. In the case of arrows 

pointing to different direction, that rule does not always apply, but the relevance lies on the opposite 

effects between the two species. Rho and p – Spearman’s rank correlation coefficient and p-value, 

respectively. 

 

In the mouse/joint comparison (Figure 45A), it is possible to find genes that are down- 

(orange quadrant) and up-regulated (green quadrant) in both human and mouse, but always 

more altered in the human patients than in the mouse models. This comparison also informs on 

genes that are more down-regulated in mice, being possible to be either up-regulated or less 

down-regulated in human patients (red quadrant). It also encompasses the opposite situation, 

where genes are more up-regulated in mice (blue quadrant), as already described. Genes in both 

the blue and red quadrants are therefore differently altered in AD conditions between mouse 
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models and human patients and could be potential candidates to manipulate in mice to generate 

a novel and more accurate murine model for the human disease. 

Genes in the orange quadrant include SULT4A1, SH3GL2, ZNF385B, ASNS and CHAC1. 

Both SULT4A1 and SH3GL2 are involved in synaptic and neurotransmitter activity 213,224, with 

SH3GL2 acting upon neurotransmitter release and clearance from the synaptic cleft and having 

been found enriched in synaptic terminals 224. As for ZNF385B, it encodes a protein that 

induces B-cell apoptosis 166, and its down-regulation can be a feedback mechanism to allow 

the action of the immune system in AD conditions (see section 10.2). The remaining genes are 

involved in brain and neuronal development and survival. ASNS encodes a protein vital for the 

making of asparagine synthetase, an enzyme which represents the main source of asparagine 

within the brain, given that asparagine does not physiologically accumulate in the brain when 

synthetized in other regions, nor it transposes brain barriers such as the blood-brain-barrier 225. 

Asparagine is an important amino acid for brain development and neuronal myelination 225. 

CHAC1 gene is up-regulated in stress conditions in an ATF4-dependent manner, hence 

indirectly informs on ATF4 enrichment 226. ATF4 encodes a transcription factor that regulates 

neuronal survival and death through protein synthesis in the endoplasmic reticulum, and which 

is usually enriched in stress conditions 226,227. Overexpression of ATF4 results in ATP 

depletion, oxidative stress and cell death 226,227. The cell death associated with AD can trigger 

a feedback mechanism that results in the down-regulation of ATF4 in order to decrease 

apoptosis rates, thus explaining the down-regulation of CHAC1. 

Genes that are up-regulated in both human and mouse, but more in human, include SQLE, 

ARHGAP17 and NEDD1. SQLE encodes an enzyme that participates in cholesterol 

biosynthesis, a condition that, as aforementioned, has been linked with AD pathology 228. 

ARHGAP17 translates into a Rho GTPase activating protein that activates the RhoA, Rac1 and 

Cdc42 proteins 229, which regulate actin configuration within the pre-synaptic terminal and 

stimulate Ca2+-dependent release of neurotransmitters 230. Lastly, NEDD1 is part of protein 

complexes required for centrosomal microtubule nucleation 231. 

Genes ENOX1, which positively regulates angiogenesis 232, and CD6 appear in the red 

quadrant. CD6 acts upon T-cell activation regulation 197 and is the most AD-induced down-

regulated (in terms of logFC, i.e. magnitude of differential expression) gene in the mouse 

dataset (see section 11.4). 
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In the human/joint comparison (Figure 45B), we are interested in genes with high t-statistics 

for Interaction in the joint dataset and t-statistics close to zero for PSEN in the human dataset, 

which would comprise genes not DE in human but with alterations specific of the mouse 

dataset. Given the absence of such genes (somewhat expected, given that the AD-associated 

variance in the joint data is dominated by the human disease), we focused on genes down-

regulated for PSEN in the human dataset but up-regulated for Interaction in the joint dataset, 

i.e. genes more up-regulated in mouse AD compared with human patients, and therefore 

contrarily regulated between the two species, or genes less down-regulated in mice compared 

to humans (blue quadrant in Figure 45B). SLC15A3, was identified in the green quadrant as 

up-regulated in both the human and joint datasets, suggesting it is enriched in both human and 

mouse datasets, however more in mouse models. Increased expression of the solute-carrier 

encoding gene SLC15A3, is associated with inflammatory immune responses 233. 

As for the most DE genes in the blue quadrant in Figure 45B, two of them (SULT4A1 and 

ZNF385B, described above) are down-regulated in AD in both species but less in the mouse 

model (orange quadrant of Figure 45A). RPH3A, as described above, is involved in synaptic 

vesicle cycle 166.  

SLC6A17, UNC80, SCN8A, ELAVL2, PRMT8 are also genes linked to synaptic and 

neurotransmitter activity, with SLC6A17 participating in the pre-synaptic re-uptake of 

neurotransmitters after signal transmission 234, and UNC80 and SCN8A playing important roles 

in the functioning of sodium channels, thus affecting electrical signal transmissions and 

synaptic activity 235,236. Moreover, ELAVL2 is associated with the transcription and splicing of 

RNA in human neurons, and participates in synaptic activity as well 237; while PRMT8 is 

important for function and plasticity of excitatory synapses as its dysfunction leads to altered 

ene and altered levels of multiple synaptic proteins 238. Also on synaptic plasticity, DGKI 

encoded protein belongs to a family of kinases that regulate diacylglycerol levels, a lipid 

synthetized in synapses during signal transmission which seems to be involved in the recycling 

of presynaptic vesicles at excitatory synapses 239. 
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13.6. Unveiling compounds that replicate human AD transcriptomic changes (cTRAP) 

cTRAP was used in order to unveil compound perturbations with putative ability to induce, 

in a novel mouse model, GE changes recapitulative of those associated with human AD. The 

goal is then to find compounds that recapitulate opposite transcriptomic changes to those seen 

for the Interaction coefficient (Table 7), i.e. compounds that promote the up-regulation of the 

genes that, according to our model, are more disrupted in the human patients than in the mouse 

models (that correspond to the down-regulated genes in the Interaction coefficient). 

Moreover, compound perturbations with the ability to induce GE changes opposite to the 

ones obtained for the disease common to both human and mouse models were also assessed, 

i.e. compounds that recapitulate opposite transcriptomic changes to the ones of the PSEN 

coefficient, with the intent to discover new potential therapies to combat the disease in human 

patients and that could be easily tested in mouse models (Table 8). 

Overall, compounds were selected based on their clinical development phase, where those 

already undergoing phase III of clinical trials or having been launched into the market were 

favoured to facilitate access to the compounds in future work. The 10 most statistically 

significant compounds, with prescription information for (1) neurological conditions and for 

(2) other conditions, were chosen as potential candidates to be considered for future in vitro 

and in vivo testing. 
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Table 7 | Candidate compounds recapitulative of human-specific AD 

Top 10 compounds prescribed for non-neurological (top) and neurological (bottom) conditions, 

inducing of GE alterations, and that most significantly (𝑞 <  0.05) anti-correlate with AD-induced GE 

changes obtained for the Interaction coefficient, i.e. compounds recapitulative of human-specific AD 

induced GE alterations. 
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Considering the information on the compound’s target family, most of the top 10 

compounds act upon a membrane receptor or ionic channel, as the majority of pharmaceutical 

compounds do, which highlights the importance of those channels’ alteration in AD. 

The two compounds, targeting non-neurological conditions, whose induced perturbations 

more significantly anti-correlate with AD-induced human-specific transcriptomic changes are 

formestane 240 and dydrogesterone 241, respectively a steroidal aromatase inhibitor that 

supresses estrogen production 240, and a progesterone stereo-isomer that mimics progesterone 

and is highly selective for its receptors 241. Sex steroid hormones interact with glial cells and 

neurons and physiologically promote neuronal plasticity and survival, thus having a positive 

impact in learning and memory processes 37. Low levels of these hormones, such as those 

reached with menopause, have been considered a risk factor for neurodegenerative diseases, 

namely AD, with estrogen depletion promoting Aβ production and negatively regulating its 

degradation and clearance processes 37. Regarding progesterone, despite its beneficial value 

towards brain health, the activation of one form of progesterone receptors (PR-A) might have 

a negative control effect not only upon the classical progesterone receptor isoform (PR-B) but 

also on  estrogen receptors, and therefore antagonize estrogen beneficial effects and hinder the 

normal activity of the brain 242. The relation between changes in the regulation of these female 

hormones and AD pathology development support the fact that women are more affected by 

the disease than men 6,7,9,31,37, and the upsurge of compounds such as formestane and 

dydrogesterone as potentially replicative of the human disease, given that they directly act upon 

the regulation of those female hormones. Interestingly, the human samples are mostly 

masculine, with only one female patient (out of 6) being included within the AD samples in 

the analysis. 

Of the compounds prescribed for neurological diseases, only clomethiazole is used to treat 

a neurodegenerative disease, which might highlight the fact that some of the different 

neurological diseases may display some common features with AD. The upsurge of compounds 

used in the treatment of those diseases as candidates to replicate human AD does not 

necessarily translate into a possible negative effect of the drug in its original therapeutic 

indication. Alternatively, it is possible for neurologic conditions to have a similar origin and 

deviate during pathological development in terms of GE. 

 

 



 

[88] 

 

Table 8 | Candidate compounds for reverting of non-specific AD 

Top 10 compounds prescribed for non-neurological (top) and neurological (bottom) conditions, 

inducing of GE alterations, and that most significantly (𝑞 <  0.05) anti-correlate with AD-induced GE 

changes obtained for the PSEN coefficient, i.e. compounds that potentially revert species-common AD-

induced GE alterations. 

 

 

Similarly to the compounds putatively able to recapitulate human-specific AD-induced 

expression changes, the unveiled candidate compounds able to generate GE changes opposite 

to the overall disease in both species, predominantly target membrane receptors, namely 

dopamine and tyrosine kinase and cytokine receptors. 
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In the class of drugs that are not prescribed for neuronal disorders, the compound that was 

found to statistically anti-correlate the most with the overall AD-induced transcriptomic 

changes (common to both human patients and mouse models) is used as an anti-parasitic agent 

that acts upon tubulin polymerization disrupting microtubules. However, the repurposing of 

this compound to fight brain tumours has been described 243, which may justify its upsurge, 

given that the Connectivity Map database used to unveil these compound associations is based 

on tumorigenic cells lines 150,151. 

The only compound targeting neurological conditions, amongst the 10 most significant 

selected, whose therapeutic indication is for a neurodegenerative disease, is an NMDA-

antagonist prescribed for Parkinson’s disease. A derivative from these compounds, memantine, 

is one of the approved therapeutics for AD, as mentioned in section 1.5 6,49. 

Overall, and considering that most compounds prescribed for brain diseases have already 

been studied for AD, as it is the case for dantrolene 244 and methylprednisolone 245, we believe 

the compounds with indication for non-neurological conditions hold the highest potential for 

innovation by being repurposed for AD pathology. 
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CHAPTER IV – CONCLUSIONS 

1. Final remarks 

The present study confirmed that GE differences between non-AD and AD human brain 

samples do not correlate with those from the commonly used mouse models. Nonetheless, the 

majority of altered pathways of both the human and mouse datasets are congruent with the 

literature available for AD, as discussed in the Results section.  

The up-regulated mechanisms in human AD samples are associated with the immune and 

cardiovascular systems, cellular differentiation, proliferation and apoptosis, and nucleic acid 

processing; whereas genes involved in ion channels function and/or composition, 

neurotransmitters trafficking, and synaptic activity appeared down-regulated. Regarding the 

mouse dataset, genes linked to immune responses, cellular interactions, diabetes and 

cholesterol were unveiled as up-regulated, whereas spliceosome machinery, cellular respiration 

and mitochondrial processes appear down-regulated, as well as some neurotransmitter 

trafficking processes. It is noteworthy the prevalence of immune system-related mechanisms 

as up regulated in both species, which corroborates already established relevant AD hallmarks, 

such as chronic inflammation. The observed discrepancies in disrupted mechanisms between 

the two species might contribute to the differential AD development and progression. 

Analysis of the joint dataset unveiled neural-related pathways as generally more 

downregulated in human patients than in mouse models. These results suggest that either (1) 

genes are not equally affected between species, thus leading to differences in the most disrupted 

pathways, or/and that (2) the disease dynamics are species-specific. 

The aforementioned lack of correlation in GE alterations between human AD patients and 

AD mouse models, reinforces the need to obtain more trustworthy mouse models able to more 

effectively replicate the human disease. On this note, compounds that recapitulate AD-induced 

GE alterations specific of the human brain were assessed. The goal was to find potential 

candidate compounds to be applied into a novel mouse model that more accurately recapitulates 

human-specific AD-induced GE changes. The potential compounds found include formestane, 

dydrogesterone, triamcinolone and meropenem (prescribed for non-neurological conditions), 

and dosulepin, ibudilast, lobeline and flunarizine (prescribed for neurological conditions).  

Compounds that recapitulate opposite GE alterations to those commonly induced by AD in 

both human patients and mouse models were also chosen as potential new disease-modifying 
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therapeutics. Candidate compounds include mebendazole, daunorubicin, tolazamide and 

quizartinib (prescribed for non-neurological conditions), and amantadine, dantrolene, DPPE 

and methylprednisolone (prescribed for neurological conditions). 

The present approach not only gives insights into the molecular mechanisms disrupted in 

AD and reinforces the differences that exist between the disease developed by animal models 

and humans, but also is refined enough to decouple AD-induced species-specific GE alterations 

from those common to both species. Moreover, candidate compounds able to replicate those 

transcriptomic alterations were also unveiled, which could therefore be used either to express 

the human disease in a novel and improved mouse model or as a therapeutic approach to reverse 

AD-induced GE alterations and disease development. The latter is, to our knowledge, the first 

study of its kind performed in AD. If successfully validated, this approach could revolutionize 

how research on AD is conducted. 

 

 

2. Future perspectives 

In addition to compound information, cTRAP can also inform on genetic perturbations 

(either overexpression or knockdown) that can recapitulate the human-specific and overall-AD 

GE changes. These genetic alterations could also potentially inform on molecular causes 

underlying the transcriptional differences and maybe unveil molecular mechanisms relevant 

for disease development and progression, being therefore a front worthy of future exploration. 

Furthermore, brain tissue samples encompass a multitude of different cell types, namely 

neurons, astrocytes, endothelial cells, microglia and oligodendrocytes 246. Studies have already 

attempted to find GE signatures for each cell type that can be applied to quantify relative cell-

type proportions in brain samples 247,248, and even our lab has some ongoing projects with that 

same end goal. Cellular composition is indeed an important aspect when assessing differential 

GE between conditions, as it can be affected by the condition in study 247. For instance, it is 

possible those AD-induced down-regulated genes associated with neuronal development and 

activity or with synaptic plasticity reflect, to some extent, the decrease in the number of 

neurons, and not necessarily a substantial down-regulation of those neural-specific genes in 

each cell. In future work, it would be interesting to incorporate cell-type composition in the 
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linear models, to decouple cell-type-specific GE alterations from brain cell type composition 

changes. 

As a validation step, the expression of some DEG could be confirmed by RT-PCR in AD 

and control brain samples. Additionally, it would be interesting to quantify the expression of 

those genes across different brain cell types, to gain a better insight on the cell-type specificity 

of the mechanisms underlying their differential expression in a diseased state. 

If the present approach is validated, either in the “wet”-lab through the quantification of 

mRNA of selected genes, or through a bioinformatics analysis of an independent external 

dataset, the same pipeline could be applied to study other AD mouse models. Moreover, 

analysing a human idiopathic AD dataset could also give insight on how well studied mouse 

models emulate the idiopathic AD, therefore contributing to the conception of a novel 

idiopathic model. This would be an interesting approach given that the idiopathic disease is the 

most prevalent form of AD 6,35. However, human controls and patients would need to be 

carefully matched regarding age, to minimize the effect of age-associated confounders. 

After a careful selection of the final candidate compounds and gene perturbations, the goal 

is to test them in vitro and in vivo. Compound selection will not only consider their statistically 

significance, as it was used to select the top 10 most human AD correlated compounds, but 

also their genetic targets. A first approach would be to evaluate compounds with at least one 

of the targets considered as highly differentially expressed, which could be interesting if the 

target influences pathways involved in AD development. Compounds that target lowly DEG 

that are included in disease pathways and interesting gene networks, where other contributing 

genes also appear differentially expressed, could also be of interest. 

The chosen compounds and genetic perturbations would be tested in non-diseased human 

and mouse neural cell lines, with the purpose of developing detectable AD hallmarks, such as 

high of levels of Aβ in the extracellular culture medium or increased presence of Tau protein 

within neurons. Other brain cell types could also be evaluated, especially, but not exclusively, 

if their estimated relative proportions are incorporated in the linear models and inferred to be 

relevant, as well as co-culture of different cell types. The outcomes of these analyses need to 

be interpreted with caution, given that isolated cell lines or even co-cultures of two neural cell 

lines do not effectively replicate the complex cell interactions ongoing in a human brain. To 

validate candidate genetic perturbations, a genomic editing tool like CRISPR 212 could be used. 
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Compound administration and gene editing of mouse models would also be tested, with 

thorough evaluation of AD development and progression. This study could be conducted both 

in healthy mice, to assess the development of the disease de novo, or in the same homozygous 

APP/PSEN1 double-mutant mice used for the present analyses, in order to evaluate the 

improvement of an already existent mouse model. Compound administration in mice is a more 

intricate process compared with that in cell lines, as blood-brain barrier crossing needs to be 

considered, either by choosing drug candidates with characteristics that allow a physiological 

infiltration into the brain, or by adapting the administration method. Drug delivery across the 

blood-brain barrier can be achieved through a diversity of already described methods, including 

nanoparticle delivery (for instance, using the naturally-occurring, non-immunogenic brain-

isolated exosomes 249), intrathecal 250, intraventricular 250 or nasal 249 administration, or by 

chemical or physical disruption of the barrier 250. Moreover, for the AD mouse model, if the 

blood-brain barrier is disrupted at the time of administration, the compound might be able to 

cross it if it is intravenously administered 249. However, we can never discard the presence of 

other brain barriers such as the blood-CSF barrier, which can potentially become a hazard as 

well. 

To sum up, future work should initially focus on selecting potential compound and genetic 

perturbations and validating the approach in silico or in vitro, so its use can be extended to 

testing the unveiled perturbations in what it could be an innovative mouse model able to further 

develop AD research. 
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CHAPTER VII – SUPPLEMENTARY INFORMATION 

A. Methods 

Table S1 | Summary of R functions, and respective packages, used for the analysis 

Package Functions Reference 

oligo 

read.celfiles 

rma 

fitProbeLevelModel 

image 

NUSE 

RLE 

Boxplot 

108 

readr read_delim 110 

Biobase exprs 116 

AnnotationDbi select 119 

hugene11sttranscriptcluster.db - 120 

illuminaMousev2.db - 121 

pls stdize 134 

FactoMineR PCA 135 

factoextra 
get_eigenvalue 

fviz_eig 
136 

ggplot/ggplot2 
stat_density_2d 

ggplot 
130 

stats 

shapiro.test 

cor.test 

dnorm 

106 

ggpubr 

ggqqplot 

stat_compare_means 

ggscatter 

129 

graphics 
smoothScatter 

plot 
106 

limma 

read.idat 

neqc 

lmFit 

eBayes 

topTable 

109 
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B. Quality control and sample removal 

a. Human dataset 

 

 

Figure S1 | Raw chip-images (Human) 

Raw chip images generated for the human samples C3, E2 and P6 



 

[C] 

 

 

Figure S2 | NUSE and RLE plots (Human) 

NUSE (left) and RLE (right) plots after probe level model fitting and before outlier exclusion. FG stands 

for flagged outlier, signalling samples whose distribution most deviates from 1 and from the remaining 

samples. 

 

 

Figure S3 | Intensity distribution boxplots before sample exclusion (Human) 

Intensity distribution boxplots prior to (left) and subsequent to (right) data normalization. 
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Figure S4 | Heatmap on normalized GE (A) before and (B) after sample exclusion (Human) 

Flagged samples before sample removal are marked with an arrow. 

 

 

 

Figure S5 | PCA after sample exclusion coloured by condition (Human) 

Principal components of normalized human GE data, with points coloured by AD condition. 

 

 

b. Mouse dataset 
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Figure S6 | Intensity distribution boxplots prior to outlier exclusion (HO Mouse) 

Intensity distribution boxplots (A) before and (B) after data normalization, before outlier exclusion (HO 

Mouse). 
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Figure S7 | Heatmap on normalized GE before outlier exclusion (HO Mouse) 

 

 

Figure S8 | PCA after outlier exclusion coloured by condition (HO Mouse) 

Principal components of normalized mouse GE data, with points coloured by AD condition. 
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C. Dataset analysis 

a. Human dataset 

 

 

 

 

 

 

 

 

 

 

Figure S9 | Percentage of variance explained by each principal component (Human) 

 

Figure S10 | Normality assessment for age of human samples 

Q-Q plot (left) and Age probability distribution (right) plot to assess normality for human age. The 

dashed line in the distribution plot represents the mean. 
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Figure S11 | Normality assessment for PMI of human samples 

Q-Q plot (left) and PMI probability distribution (right) plot to assess normality for human PMI. The 

dashed line in the distribution plot represents the mean. 
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Figure S12 | Volcano plots that supported PMI exclusion from linear models 

Volcano plots of differentially expressed, i.e. up- (positive logFC) and down-regulated (negative 

logFC), genes in human AD patients compared with non-diseased individuals. Thresholds of magnitude 

(vertical dashed lines) for categorical variables and significance (horizontal dashed line) for both 

categorical and continuous variables, for the DEG (represented in darker colour) were considered 

according to section 8.7.3 (logFC > 2; B > 0). 
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Figure S13 | PSEN disrupted Biological Processes and Kegg pathways (Human) 

Representation of the 10 most significant down- (blue) and up-regulated (magenta) Biological Processes 

(top) and Kegg pathways (bottom), based on DEG regarding the PSEN coefficient, for the human 

dataset. Pathways were considered significantly enriched if FDR < 0.05. 
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Figure S14 | Alzheimer’s disease KEGG pathway 

Schematic image representing the AD pathway from KEGG database, with highlight on the NDUF, 

SDH, UQCR, COX and ATP gene families (in green) that are negatively affected by oligomeric 

intracellular Aβ – based on the online resource 251. 
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b. Mouse dataset 

 

Figure S15 | PCA after outlier exclusion coloured by condition (single-mutant Mouse) 

Principal components of normalized single-mutant mouse GE data, with points coloured by AD 

condition. 

 

Figure S16 | PCA after outlier exclusion coloured by age (single-mutant Mouse) 

Principal components of normalized single-mutant mouse GE data, with points coloured by age. 
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Figure S17 | PCA after outlier exclusion coloured by condition (HET Mouse) 

Principal components of normalized HET mouse GE data, with points coloured by AD condition. 

 

 

Figure S18 | PCA after outlier exclusion coloured by age (HET Mouse) 

Principal components of normalized HET mouse GE data, with points coloured by age. 
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Figure S19 | PCA after outlier exclusion coloured by age (HO Mouse) 

Principal components of normalized HO mouse GE data, with points coloured by age. 

 

Figure S20 | PSEN disrupted Biological Processes and Kegg pathways (Mouse) 

Representation of the 10 most significant down- (blue) and up-regulated (magenta) Biological Processes 

(top) and Kegg pathways (bottom) in mouse PSEN brains (double-mutant homozygous dataset). 

Pathways were considered significantly enriched if FDR < 0.05. 
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c. Joint dataset 

 

Figure S21 | PSEN disrupted Biological Processes and Kegg pathways (Joint dataset) 

Representation of the 10 most significant down- (blue) and up-regulated (magenta) Biological Processes 

(top) and Kegg pathways (bottom) based on DEG regarding the PSEN coefficient, for the joint dataset. 

Pathways were considered significantly enriched if FDR < 0.05. 
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Figure S22 | PSEN/Species Interaction disrupted Biological Processes and Kegg pathways (Joint 

dataset) 

Representation of the 10 most significant down- (blue) and up-regulated (magenta) Biological Processes 

(top) and Kegg pathways (bottom) based on DEG regarding the PSEN/Species Interaction coefficient, 

for the joint dataset. Pathways were considered significantly enriched if FDR < 0.05. 

 

 

 


