
 
 
 

 
 

 

 
 
 
 
 

 

 
 
 

 
 
 
  

Variational quantum architectures 
 

Applications for noisy intermediate-scale  
quantum computers 

 
Carlos Bravo Prieto 

 
 
 
 

 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative 
Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento 4.0.  España de Creative 
Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License.  
 



TESI DOCTORAL

Carlos Bravo Prieto

Variational quantum architectures
Applications for noisy intermediate-scale quantum computers

Departament de Física Quàntica i Astrofísica

Director de tesi: Dr. José Ignacio Latorre

Barcelona, Abril de 2022





Variational quantum architectures
Applications for noisy intermediate-scale quantum computers

Memòria presentada per optar al grau de doctor per la

Universitat de Barcelona

Programa de doctorat en Física

Autor: Carlos Bravo Prieto

Director: José Ignacio Latorre Sentís

Tutor: Joan Soto Riera



IMPRINT

Variational quantum architectures: applications for noisy intermediate-scale
quantum computers
Copyright © 2022 Carlos Bravo Prieto (CC-by).
Printed in Spain.

COLOPHON

This thesis was typeset using LATEX and the memoir documentclass. It is based
on Aaron Turon’s thesis Understanding and expressing scalable concurrency1,1https://people.mpi-sws.org/

~turon/turon-thesis.pdf itself a mixture of classicthesis2 by André Miede and tufte-latex3,
2https://bitbucket.org/amiede/
classicthesis/

3https://github.com/Tufte-LaTeX/
tufte-latex

based on Edward Tufte’s Beautiful Evidence.

The bibliography was processed by Biblatex. The body text is set 10/14pt
(long primer) on a 26pc measure. The margin text is set 8/9pt (brevier) on
a 12pc measure. Matthew Carter’s Charter acts as both the text and display
typeface. Monospaced text uses Jim Lyles’s Bitstream Vera Mono (“Bera
Mono”).

https://people.mpi-sws.org/~turon/turon-thesis.pdf
https://people.mpi-sws.org/~turon/turon-thesis.pdf
https://bitbucket.org/amiede/classicthesis/
https://bitbucket.org/amiede/classicthesis/
https://github.com/Tufte-LaTeX/tufte-latex
https://github.com/Tufte-LaTeX/tufte-latex


Agradecimientos

Primero de todo, me gustaría dar las gracias a José Ignacio Latorre, supervi-
sor de mi tesis doctoral. Le agradezco todas las horas invertidas discutiendo
sobre tantos y variados temas. Para mí ha sido un modelo a seguir, especial-
mente por su perseverancia, inteligencia y empatía. Su enorme experiencia
y valores me han ayudado sin duda a crecer; espero ser capaz de transmitir
lo mismo en el futuro. Estaré siempre en deuda con él por haberme dado la
oportunidad de recorrer este camino.

During my Ph.D. I had the opportunity to work in many different places
around the globe. I want to thank Lukasz Cincio and Patrick J. Coles for
giving me the opportunity to work at Los Alamos National Laboratory for a
summer internship. I am also grateful for their mentorship and for teaching
me that hard work always pays off.

I am thankful to all the people in Barcelona for their friendship and
fruitful conversations: Jorge Cortada, Pol Forn, Artur Garcia, Elies Gil, David
López, Josep Lumbreras, Jordi Planagumà, Luca Tagliacozzo, and Chris
Warren. Special thanks to Alba Cervera, Diego García, Adrián Pérez, and
Sergi Ramos, with whom at some point I shared the sorrows and glories of
doing a Ph.D.

After my first two years of Ph.D. in Barcelona, I moved to Abu Dhabi for
another two years to continue my research at the Technology Innovation
Institute. I was lucky to find that it was full of brilliant researchers who now I
can consider colleagues, including (but not limited to) Luigi Amico, Leandro
Aolita, Ben Blain, Giancarlo Camilo, Wayne Chetcuti, Stavros Efthymiou,
Thais de Lima, Ruge Lin, Marc Manzano, Giampiero Marchegiani, Claudia
Núñez, Álvaro Orgaz, Juan Polo, Ingo Roth, and Javier Serrano. Thanks for
the fun times and for sharing your knowledge.

I am grateful to Leandro Aolita, Stefano Carraza, Artur Garcia, and Luca
Tagliacozzo for mentoring and guiding me at different stages of my Ph.D.

Furthermore, I want to acknowledge my collaborators for their work,
inspiring discussions, and great ideas: Najwa Aaraj, Luigi Amico, Tony J. G.
Apollaro, Julien Baglio, Emanuele Bellini, Stefano Carrazza, Marco Cè, Marco
Cerezo, Wayne Chetcuti, Lukasz Cincio, Patrick J. Coles, Mirko Consiglio,
Stavros Efthymiou, Andre Esser, Anthony Francis, Diego García, Dorota
M. Grabowska, Ryan LaRose, Ruge Lin, Josep Lumbreras, Marc Manzano,
Adrián Pérez, Sergi Ramos, Yiğit Subaşı, and Luca Tagliacozzo.

Gracias a todos los amigos de fuera de la investigación con los que
he podido compartir momentos de felicidad y desconexión: Adrià Bonet,
Xavi Casals, Robert Fonoll, Pere Gironella, Jorge Molina, Carles Moreno,
Laura Rabanal, Albert Rodríguez, Joshua Rodríguez, Oscar Romero, Samuel
Rosende, Carlos Sánchez, Juan Telechea, Isaac del Toro y David Vázquez.

No quisiera olvidarme de quién posiblemente fue mi primera inspiración
para hoy estar aquí; gracias Adolf Cortel por ser el primero que confió en
mí, y por enseñarme la belleza de la física.

v



vi

Me gustaría también dar las gracias a mi familia, en especial a mis padres,
Juan Carlos Bravo y Antonia Prieto, y a mi hermana, Laida Bravo, por todo
el cariño y apoyo incondicional recibido. Por último, quiero dar las gracias a
Anastasia Nikulina, la cual ha sido una pieza fundamental para que yo haya
podido completar esta tesis. Sin ti no hubiera sido posible.



Author publications

Publications sorted in chronological order.

▶ PUBLICATIONS INCLUDED IN THIS THESIS

• C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subaşı, L. Cincio, and P. J.
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Abstract

Quantum algorithms showing promising speedups with respect to their clas-
sical counterparts already exist. However, noise limits the quantum circuit
depth, making the practical implementation of many such quantum algo-
rithms impossible nowadays. In this sense, variational quantum algorithms
offer a new approach, reducing the requisites of quantum computational
resources at the expense of classical optimization. Disciplines in which
variational quantum algorithms may have practical applications include
simulation of quantum systems, solving large systems of linear equations,
combinatorial optimization, data compression, quantum state diagonaliza-
tion, among others.

This thesis studies different variational quantum algorithm applications.
In Chapter 1, we introduce the main building blocks of variational quantum
algorithms. In Chapter 2, we benchmark the seminal variational quantum
eigensolver algorithm for condensed matter systems. In Chapter 3, we ex-
plore how the task of compressing quantum information is affected by data
encoding in variational quantum circuits. In Chapter 4, we propose a novel
variational quantum algorithm to compute the singular values of pure bipar-
tite states. In Chapter 5, we develop a new variational quantum algorithm
to solve linear systems of equations. Finally, in Chapter 6, we implement
quantum generative adversarial networks for generative modeling tasks.
The conclusions of this thesis are exposed in Chapter 7. Furthermore, sup-
plementary material can be found in the appendices. Appendix A provides
an introduction to Qibo, a framework for quantum simulation. Appendix B
presents some results related to the Solovay-Kitaev theorem. Extra results
from Chapter 5 and Chapter 6 can be found in Appendix C and Appendix D,
respectively.
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Part I

INTRODUCTION





1
Variational quantum algorithms

“A classical computation is like a solo voice;
one line of pure tones succeeding each other.
A quantum computation is like a symphony;

many lines of tones interfering with one
another.”

—Seth Lloyd

Quantum computing is a new paradigm whereby quantum phenomena are
harnessed to perform computations. Quantum computers are expected to be
able to perform computational tasks with a broad range of applications, such
as quantum simulation [BN09; GAN14], search and optimization [Gro97;

[BN09] Buluta and Nori, “Quantum simula-
tors”

[GAN14] Georgescu et al., “Quantum simu-
lation”

[Gro97] Grover, “Quantum mechanics helps
in searching for a needle in a haystack”

Bra+02], or tackle math-related problems [Sho99; Kup05; Hal07; HHL09].

[Bra+02] Brassard et al., “Quantum ampli-
tude amplification and estimation”

[Sho99] Shor, “Polynomial-Time Algorithms
for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer”

[Kup05] Kuperberg, “A subexponential-time
quantum algorithm for the dihedral hidden
subgroup problem”

[Hal07] Hallgren, “Polynomial-time quan-
tum algorithms for Pell’s equation and the
principal ideal problem”

[HHL09]Harrow et al., “Quantum algorithm
for linear systems of equations”

Most of the aforementioned quantum algorithms are likely to outperform
any existing classical algorithm [San08; CVD10; Mon16]. However, they
cannot be implemented on current quantum computers without quantum
error correction. Reducing errors on physical qubits beyond the required
fault tolerance is a cornerstone in experimental quantum computing, yet
scaling these systems up to the level required for large-scale computations, at
the present day, is still far from current experimental capabilities [Fow+12;
Bar+14].

Large-scale fault-tolerant quantum computation is, therefore, a rather
distant dream, typically estimated to be at least two decades ahead. A
reasonable question then is whether we can do something useful with the
existing noisy intermediate-scale quantum (NISQ) devices [Pre18]. In such

[Pre18] Preskill, “Quantum Computing in
the NISQ era and beyond”

near-term devices, i.e., of a few tens or hundreds of qubits, noise limits
the problem size to be considerably small. An emerging paradigm to make
use of NISQ computers is to implement variational quantum algorithms
(VQAs) [End+21; Cer+21a], which manage to reduce the requisites of

[End+21] Endo et al., “Hybrid quantum-
classical algorithms and quantum error mit-
igation”

[Cer+21a] Cerezo et al., “Variational quan-
tum algorithms”

quantum computational resources, that is, circuit depth, coherence, and
connectivity between the qubits, at the expense of classical computation.
In particular, these algorithms leverage the power of classical optimization
methods while still employing quantum computers for, ideally, speedups. The
action of the algorithm is characterized by a shallow sequence of parameter-
ized quantum gates with a trainable set of classical parameters and then an
optimization procedure to minimize a cost function with machine-learning
techniques.

Due to the optimization procedure, all VQAs are heuristic algorithms,
making rigorous complexity analysis difficult. In addition, one is not guaran-
teed to reach the optimal solution due to the existence of local minima, and
we can not ensure that the procedure yields better approximations to the
solution than current classical methods. Serious efforts are put into this field
to obtain new theoretical and experimental ideas and practical applications.

3



4 VARIATIONAL QUANTUM ALGORITHMS

FIGURE 1.1: General schematic diagram of a VQA. The input of a VQA is a quantum circuit U
parameterized by a set of classical parameters φ⃗, and a cost function C that characterizes the
problem we aim to solve. The task of the QPU is to prepare a quantum state U(φ⃗) |0〉 = |ϕ(φ⃗)〉.
Once this trial quantum state has been prepared, measurements are performed in order to
evaluate the cost function C(φ⃗). The result of this evaluation is fed into the CPU, where
parameters φ⃗ in the ansatz U(φ⃗) are adjusted. This quantum-classical optimization loop is
repeated until the cost C(φ⃗) is below a user-specified threshold. When this loop terminates
and the optimal parameters φ⃗opt are found, the resulting quantum circuit U(φ⃗opt) prepares the
solution of the problem. Figure adapted from Ref. [BK21].

A variational quantum algorithm is a hybrid approach in which a quan-
tum computer, sometimes referred to as Quantum Processing Unit (QPU),
cooperates with a Classical Processing Unit (CPU)1 to solve a particular1Notice that, in general, the CPU may be

composed of several central processing units,
combined with dedicated Graphical Process-
ing Units (GPUs) or Tensor Processor Units
(TPUs).

problem. A graphical depiction of the general scheme followed by VQAs is
shown in Figure 1.1. It can be broken down into the following steps:

▶ The task of the QPU is to prepare a trial state wavefunction |ϕ(φ⃗)〉 by
applying a unitary quantum circuit U(φ⃗) that depends upon a set of
classical parameters φ⃗, typically characterizing angles of single-qubit
rotations or parameterized two-qubit gates.

▶ Once the trial state |ϕ(φ⃗)〉 has been prepared, measurements are
performed on one or more qubits. This process is repeated in order
to accumulate statistics and evaluate a classical cost function C(φ⃗)
defined in terms of quantum observables (i.e. hermitian operators).
This evaluation may involve some classical post-processing, such as
e.g. computing a weighted sum of mean values for observables coming
out of the QPU.

▶ The result of this evaluation is fed into the CPU, which then uses some
classical minimization routine to adjust the circuit parameters φ⃗ and
return a new set of values, which are employed in the preparation of
the next trial state. This step may involve new calls to the QPU, for
instance, to compute quantum gradients.

▶ This quantum-classical loop is repeated until user-specified conver-
gence criteria for the minimization of the cost function are fulfilled.
Once this loop is terminated and the optimal parameters φ⃗opt are
found, the resulting quantum circuit U(φ⃗opt) prepares the solution to
the problem, |ϕ(φ⃗opt)〉.
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The procedure sketched above is the basic common strategy for all VQAs.
Different VQAs that solve different problems will differ in the architecture
of the quantum circuit they apply or in the cost function definition. Indeed,
the VQA framework provides the tools to tackle a wide variety of prob-
lems [Bha+22], and in fact, it has been shown that VQAs admit a universal [Bha+22] Bharti et al., “Noisy intermediate-

scale quantum algorithms”model of quantum computation [Bia21].
[Bia21] Biamonte, “Universal variational
quantum computation”

Several important topics deserve consideration concerning VQAs, and
we will treat them separately in the following sections. In the first place, one
has to define a particular structure for the parameterized quantum circuit,
often referred to as ansatz. Then, one also has to define a cost function
whose minimization below a certain threshold solves the problem. As we
shall see, this cost function needs to meet specific requirements to be of
practical use. Lastly, one has to choose an optimization strategy, and we
shall see that the exponential size of the Hilbert space and the problem of
vanishing gradients directly impact the choice of all these three components
of VQAs.

1.1 ANSATZ FOR STATE PREPARATION

One of the main ideas behind VQAs is to retain the advantage of prepar-
ing classically inaccessible states despite the low coherence times. Indeed,
the parameterized quantum circuits provide access to a manifold of quan-
tum states over an exponentially large Hilbert space. Consequently, the
flexibility of the VQA to approximate the solution heavily depends on the
choice of ansatz. In general, constructing an arbitrary n-qubit quantum state
requires exponential resources in terms of gates and classical parameters.
The complete rationale of this argument is just a matter of counting de-
grees of freedom. Regardless, we usually deal with problems with a strong
relation with physical systems, where the number of classical parameters
that characterize such quantum states may be polynomially large instead of
exponential. This is because physical Hamiltonians are usually described by
local interactions, which means that each qubit mostly communicates with
other nearby qubits.

We thus are in the framework of finding the best approximation U(φ⃗)
to a unitary transformation V given an elementary set of quantum gates,
being V |0〉⊗n the solution of the problem. This framework has analytical
bounds on the error induced by approximating a unitary transformation with
a finite number of elementary gates. The Solovay-Kitaev theorem states that
an arbitrary unitary acting on n qubits can be approximated with an error
ϵ by using at most O (logc(1/ϵ)) elementary gates chosen appropriately
from a universal set of quantum gates closed under inversion, where c ∼ 4
[DN06; NC11]. Alternative versions of the theorem have lowered the value
of c [Kit+02], however there is an optimal value of c = 1 [HRC02; NC11]. [Kit+02] Kitaev et al., Classical and Quan-

tum Computation

[HRC02] Harrow et al., “Efficient discrete
approximations of quantum gates”

[NC11] Nielsen and Chuang, Quantum Com-
putation and Quantum Information: 10th
Anniversary Edition

This theorem suggests that if the ansatz of our VQA is built from a set of
universal gates, then by increasing the number of gates, we will be able to
arbitrarily reduce the error between our approximation and the solution of
the problem.

From the practical point of view of building the variational quantum
circuit U(φ⃗) that best approximates V from a given number of gates, the
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Solovay-Kitaev theorem is not very useful. For example, it does not specify
on which constituents each of the elementary gates should act and how
elementary gates should be concatenated. Indeed, there is no general recipe
for constructing an ansatz for a VQA that will universally work on every
problem. Yet, we may classify different designs of variational circuits in two
main categories, namely, hardware efficient ansatz and physically-motivated
ansatz.

▶ HARDWARE EFFICIENT ANSATZ. At the time of writing, this is the most
commonly used ansatz architecture. The original motivation of this type of
parameterized circuit is to overcome the existing limitations of the quantum
hardware [Kan+17] by designing the ansatz so it can be adapted to the chip[Kan+17] Kandala et al., “Hardware-

efficient variational quantum eigensolver for
small molecules and quantum magnets” architecture and accommodate the quantum gates for maximizing the fidelity

of the output state. The general construction of a hardware efficient ansatz
comprises L entangling blocks (or layers) acting on the qubits, consisting of
parameterized single-qubit rotations and entangling gates, usually given by

U(φ⃗) =
L
∑

k=1

Uk(φk)Wk , (1.1)

where Uk are the parameterized unitaries, and Wk represent non-parameterized
quantum gates.

The main advantages of the hardware efficient ansatz, that is, entangle-
ment production, expressibility, and accuracy, are studied in Refs. [SJAG19;[SJAG19] Sim et al., “Expressibility and en-

tangling capability of parameterized quan-
tum circuits for hybrid quantum-classical
algorithms”

Woi+20; BP+20]. It also has been shown this ansatz can accommodate

[Woi+20]Woitzik et al., “Entanglement pro-
duction and convergence properties of the
variational quantum eigensolver”

[BP+20] Bravo-Prieto et al., “Scaling of vari-
ational quantum circuit depth for condensed
matter systems”

problem symmetries to improve the optimization convergence [Bar+18;

[Bar+18] Barkoutsos et al., “Quantum al-
gorithms for electronic structure calcula-
tions: Particle-hole Hamiltonian and opti-
mized wave-function expansions”

Gan+19; Gar+20; Bar+21]. Although the hardware efficient ansatz is very

[Gan+19] Ganzhorn et al., “Gate-efficient
simulation of molecular eigenstates on a
quantum computer”

[Gar+20] Gard et al., “Efficient symmetry-
preserving state preparation circuits for the
variational quantum eigensolver algorithm”

[Bar+21] Barron et al., “Preserving symme-
tries for variational quantum eigensolvers
in the presence of noise”

suitable to be implemented in current NISQ computers, this ansatz has no
structure. It can lead to trainability issues when randomly initialized, and
therefore, is not expected to work that well for large systems, as we will
discuss in Sec. 1.3.

▶ PHYSICALLY-MOTIVATED ANSATZ. In general, an arbitrary unitary operation
can be generated as a time evolution operator such as

U(t) = ei ĝ t , (1.2)

where t defines the time evolution and ĝ is a hermitian operator, usually
referred to as the generator. Physically-motivated ansatzë are constructed
following time evolutions in the form of Eq. 1.2, where the generator ĝ is
derived from physical properties of the system of interest. The main example
of physically-motivated ansatz is the unitary coupled-cluster ansatz [HS88;
TB06], where the generators are elementary fermionic excitations, and it
is mainly used for quantum chemistry applications [McC+16; Rom+18;
Oll+20; Miz+20; Wan+21a].

Another prominent example is used in the Quantum Approximate Op-
timization Algorithm (QAOA), which was originally introduced to solve
combinatorial optimization problems [FGG14]. The ansatz used in QAOA[FGG14] Farhi et al., “A quantum approxi-

mate optimization algorithm” involves an alternating structure usually referred to as quantum alternating
operator ansatz [Had+19]. This ansatz is inspired by a Trotterized adiabatic
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evolution [Suz76; Far+00], and reads

U(λ⃗, β⃗) =
p
∏

l=1

e−iβl HM e−iλl HP , (1.3)

where the order p of the Trotterization determines the precision of the
solution, λ⃗ and β⃗ are the tunable parameters, and HP and HM are hermitian
operators known as the problem Hamiltonian and the mixer Hamiltonian,
respectively. The goal of this ansatz is to map an input state |Ψ0〉, typically
prepared by acting with Hadamard gates on every qubit, to the ground state
of the problem Hamiltonian HP .

Notice that the ansatzë mentioned above keep the circuit structure fixed.
At the same time, the optimization is done over a continuous set of variables,
typically encoded as the angle of single-qubit rotations. However, one can
optimize the circuit structure itself instead, adding and removing quantum
gates. This is known as variable structure ansatz, which has also shown
promising performance [Gri+19; Rat+19; Bil+21; Tan+21]. [Gri+19] Grimsley et al., “An adaptive vari-

ational algorithm for exact molecular simu-
lations on a quantum computer”

[Rat+19] Rattew et al., “A domain-agnostic,
noise-resistant, hardware-efficient evolu-
tionary variational quantum eigensolver”

[Bil+21] Bilkis et al., “A semi-agnostic ansatz
with variable structure for quantum machine
learning”

[Tan+21] Tang et al., “Qubit-ADAPT-VQE:
An adaptive algorithm for constructing
hardware-efficient ansätze on a quantum
processor”

1.2 CHARACTERIZING THE PROBLEM WITH THE COST FUNCTION

The cost function is an essential constituent of every VQA, as it completely
characterizes the target problem. As a consequence, the cost function has
to be carefully designed. To do so, there exist certain criteria that any such
function should ideally fulfill [Kha+19b], namely:

[Kha+19b] Khatri et al., “Quantum-assisted
quantum compiling”

▶ FAITHFULNESS. The global minimum is achieved if and only if the state
|ϕ(φ⃗opt)〉 corresponds to the exact solution to the problem.

▶ EFFICIENTLY COMPUTABLE. This means that the number of quantum
gates and measured observables needed to evaluate the cost function
has to scale at most polynomially with the system size.

▶ OPERATIONAL MEANING. That is, we should be able to quantify how
close we are to the exact solution by looking at the value of the cost
function.

▶ TRAINABLE. This implies that the cost function needs to be “well-
behaved” as we increase the size of the problem. We discuss this in
more detail in Sec. 1.3.

Every quantum computation involves measurements of observables to
extract information from the quantum computer, and so do VQAs. This
implies that the cost function of a VQA can always be ultimately defined in
terms of the expectation value of a certain Hamiltonian, which we call prob-
lem Hamiltonian HP . The cost function then reads C ≡ 〈ϕ(φ⃗)|Hp|ϕ(φ⃗)〉,
and the solution to the problem is the ground state itself or otherwise it
is encoded in it. Recall that VQAs rely upon the Rayleigh-Ritz variational
principle. Namely, we know that the expectation value of the Hamiltonian
is the sum of the eigenenergies En, each weighted by their corresponding
amplitudes. When deriving the variational principle, we replace all the En

by E0, i.e. the ground state energy. This results in the following bound

E0 ≤
〈ϕ(φ⃗)|Hp|ϕ(φ⃗)〉

〈ϕ(φ⃗)|ϕ(φ⃗)〉
≡ C , (1.4)
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where E0 = C if and only if |ϕ(φ⃗)〉 is the ground state of the Hamiltonian
Hp, and therefore the solution of the problem. Otherwise, the cost function
is always larger than E0. This, of course, does not mean that a VQA needs
always be defined in Hamiltonian form, for other alternative definitions
may, in some cases, be conceptually more appealing and thus help algorithm
design.

A class of problems for which the cost function defined in terms of Hp

appears naturally are those related to physical systems. The Hamiltonian
collects all the contributions to the total energy from the different interacting
particles or elements in the system. A straightforward manner of expressing
this type of Hamiltonian is expanding it as a sum of Pauli operators, i.e.
tensor products of Pauli matrices, {1,σx ,σy ,σz} acting on different qubits,
and then measuring in the corresponding bases to estimate the expectation
values of all the terms [MF19]. Recall that, in general, measurements on[MF19] Mitarai and Fujii, “Methodology for

replacing indirect measurements with direct
measurements” available quantum computers can only be done on the σz basis, but they

can be simulated on another basis with the help of additional gates, namely
an H-gate for σx and an S†-gate followed by an H-gate for σy . However, no
trivial decomposition might be obtained for a large number of qubits and
arbitrary Hamiltonians. In such a case, alternative methods can be used to
compute the cost function. The common way of proceeding is using the stan-
dard Hadamard test [AJL09], or Swap test [Buh+01; GC01], depending on[AJL09] Aharonov et al., “A polynomial

quantum algorithm for approximating the
Jones polynomial”

[Buh+01] Buhrman et al., “Quantum finger-
printing”

[GC01] Gottesman and Chuang, “Quantum
digital signatures”

whether one wants to explicitly obtain the expectation value of an observable
or measure the overlap between two quantum states. Nevertheless, several
techniques more suited to NISQ devices have been proposed recently, such
as the Bell-Basis algorithm [Cin+18], the Hilbert-Schmidt test [Kha+19b],

[Cin+18] Cincio et al., “Learning the quan-
tum algorithm for state overlap”

[Kha+19b] Khatri et al., “Quantum-assisted
quantum compiling”

or the Hadamard-Overlap test [BP+19]. These methods avoid using as many

[BP+19] Bravo-Prieto et al., “Variational
quantum linear solver”

gates in exchange of e.g. more qubits or classical post-processing.
Finally, it is noteworthy to mention that VQAs offer a “cost-function

robustness” against coherent errors [McC+16]. Specifically, when trying to

[McC+16] McClean et al., “The theory of
variational hybrid quantum-classical algo-
rithms”

implement a unitary U(φ⃗), it may happen that, given coherent errors in the
physical implementation, the applied unitary is instead Ũ(φ⃗). The VQA may
variationally suppress these errors by applying Ũ(φ⃗+ α⃗) = U(φ⃗). Therefore,
the optimal value of the cost function may still be found without detailed
knowledge of the error mechanism.

1.3 PARAMETER OPTIMIZATION

Machine-learning methods heavily rely on optimal performance of parameter
optimization, and VQAs are not an exception. Indeed, their performance
depends on the optimization efficiency and reliability. Notice, however, that
current quantum computers are noisy, and the stochastic nature coming from
the finite amount of measurements makes the optimization even harder in
practice. Furthermore, it has been shown that the classical optimization of
VQAs is an NP-hard problem [BK21].[BK21] Bittel and Kliesch, “Training varia-

tional quantum algorithms is NP-hard” Among many of the aforementioned inherent challenges, the main obsta-
cle VQAs have to deal with is the barren plateau phenomenon [McC+18]. It[McC+18] McClean et al., “Barren plateaus

in quantum neural network training land-
scapes” has been shown that cost function gradients vanish to almost zero in every

direction of the Hilbert space when using randomly initialized ansatzë, which
becomes exponentially worse as we increase the circuit depth and the num-
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ber of qubits. Besides the barren plateau phenomenon introduced by choice
of ansatz, other physical phenomena can generate them. For instance, noise
and decoherence also generate this problem [Wan+21b]. Entanglement- [Wan+21b]Wang et al., “Noise-induced bar-

ren plateaus in variational quantum algo-
rithms”induced barren plateaus have also been reported in Ref. [MKW21]. Lastly, it

[MKW21] Marrero et al., “Entanglement-
induced barren plateaus”

has been shown as well that the choice of cost function influences the appear-
ance of barren plateaus [Cer+21b; UB21]. Although further work is needed

[Cer+21b] Cerezo et al., “Cost function
dependent barren plateaus in shallow
parametrized quantum circuits”

[UB21] Uvarov and Biamonte, “On barren
plateaus and cost function locality in varia-
tional quantum algorithms”

on this topic, some interesting proposals can be found in literature, such as
strategies for parameter initialization [GSL18; Gra+19; CLKAG21; Zha+22],
correlation between parameters [VC21], filtering operators [Ama+22] or
exploring circuit architectures [Sha+20a; Wie+20; Pes+21; Hol+22].

Let us briefly review in the following the common optimization strategies
for VQAs. For convenience, we present two classes of optimization, gradient-
based and gradient-free approaches.

▶ GRADIENT-BASED METHODS. Gradient-based approaches make iterative
steps in the directions indicated by the gradient. Common methods im-
ported from the classical machine learning community are ADAM [KB14], [KB14] Kingma and Ba, “Adam: A method

for stochastic optimization”
ADADELTA [Zei12], or ADAGRAD [DHS11], which differently adapt the size

[Zei12] Zeiler, “Adadelta: an adaptive learn-
ing rate method”

[DHS11] Duchi et al., “Adaptive subgradient
methods for online learning and stochastic
optimization”

of the steps taken. Inspired by these methods, some resource-aware opti-
mization strategies have also been proposed [Küb+20; Swe+20]. Another
interesting approach is based on quantum imaginary time evolution to up-
date the parameters [McA+19]. Similarly, another approach called quantum

[McA+19] McArdle et al., “Variational
ansatz-based quantum simulation of imagi-
nary time evolution”

natural gradient descent has been proposed [Sto+20], which is based on

[Sto+20] Stokes et al., “Quantum natural
gradient”

notions of information geometry and has also been extended to incorporate
noisy environments [KB19].

▶ GRADIENT-FREE METHODS. Gradient-free approaches are those that do not
directly rely on gradients to update the parameters. For instance, popular
methods are based on evolutionary strategies [BS02], which are black-box [BS02] Beyer and Schwefel, “Evolution

strategies–a comprehensive introduction”optimization tools that use search distributions, and have shown promising
results [Zha+20], especially when dealing with the barren plateau phe- [Zha+20] Zhao et al., “Natural evolution

strategies and variational Monte Carlo”nomenon [ADAG21]. Encouraged by successful results in classical machine
[ADAG21] Anand et al., “Natural evolution-
ary strategies for variational quantum com-
putation”

learning, reinforcement learning techniques have also been increasingly pop-
ular for the context of VQAs [GSR19; Kha+19a; Wau+20; YBL20; HM21]. Fi-
nally, another noteworthy approach is the simultaneous perturbation stochas-
tic approximation, or SPSA method [Spa+92]. Its main peculiarity is that it [Spa+92] Spall et al., “Multivariate stochas-

tic approximation using a simultaneous per-
turbation gradient approximation”requires only two measurements of the objective function to update the pa-

rameters, and therefore, it reduces the expense of computing many gradient
components at each iteration.
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2
Scaling of variational quantum circuit
depth for condensed matter systems

“Nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by

golly it’s a wonderful problem, because it
doesn’t look so easy.”

—Richard P. Feynman

Future large-scale fault-tolerant quantum computers will allow to simulate
quantum systems made by a large number of constituents, thus providing
important insight on their properties [BN09; BMK10; GAN14]. In particular,

[BN09] Buluta and Nori, “Quantum simula-
tors”

[BMK10] Brown et al., “Using quantum com-
puters for quantum simulation”

[GAN14] Georgescu et al., “Quantum simu-
lation”

they will allow to characterize ground and equilibrium states of those systems
through appropriately designed quantum algorithms such as those proposed
in Refs. [AL99; VCL09; Tem+11; JLP12; Ber+18; Cao+19]. However,

[AL99] Abrams and Lloyd, “Quantum Algo-
rithm Providing Exponential Speed Increase
for Finding Eigenvalues and Eigenvectors”

[VCL09] Verstraete et al., “Quantum circuits
for strongly correlated quantum systems”

[Tem+11] Temme et al., “Quantum
Metropolis sampling”

[JLP12] Jordan et al., “Quantum Algorithms
for Quantum Field Theories”

[Ber+18] Berry et al., “Improved techniques
for preparing eigenstates of fermionic Hamil-
tonians”

[Cao+19] Cao et al., “Quantum Chemistry
in the Age of Quantum Computing”

as of today, such large-scale fault-tolerant quantum computers still do not
exist. Currently, noisy intermediate-scale quantum (NISQ) [Pre18] devices
are already available in the labs. It seems natural then to explore how
these machines can provide an understanding of the properties of quantum
systems.

In this chapter, we present the Variational Quantum Eigensolver (VQE)
[Per+14; Til+21], a variational quantum algorithm that is designed to

[Per+14] Peruzzo et al., “A variational eigen-
value solver on a photonic quantum proces-
sor”

[Til+21] Tilly et al., “The Variational Quan-
tum Eigensolver: a review of methods and
best practices”

provide an approximation to the ground state of many-body quantum systems
using NISQ devices. We benchmark the accuracy of a VQE based on a finite-
depth quantum circuit encoding the ground state of local Hamiltonians.
Specifically, we study condensed matter Hamiltonians. We consider a special
class of quantum circuits made by several layers of unitaries that act on a
pair of contiguous qubits. The unitaries are chosen from a simple set of
gates. We review the reason why we use such a structure and characterize
its power numerically. For gapped Hamiltonians, we can make a direct
connection between our quantum circuit and perturbation theory and show
how the accuracy of the ansatz increases exponentially with the number of
layers. For critical systems, we observe the appearance of two regimes, one
where the physics is dictated by an effective correlation length induced by
the number of layers of the circuit and another one where the correlation
length is actually set by the system size as expected. In particular, we discuss
how the tension between the finite speed of propagation of the correlations
consequence of Lieb-Robinson bounds and the growth of entanglement in
critical systems is responsible of the linear scaling, with system size n, of the
critical number of layers l∗(n) that determines the location of the cross-over
between the two regimes.

13
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2.1 VARIATIONAL QUANTUM EIGENSOLVER

Estimating low-lying eigenstates of Hamiltonians and their corresponding
eigenvalues is a relevant problem in many fields of physics, ranging from
condensed matter physics [Bau+12; Orú14] to classical combinatorial opti-[Bau+12] Baumgärtner et al., The Monte

Carlo method in condensed matter physics

[Orú14] Orús, “A practical introduction to
tensor networks: Matrix product states and
projected entangled pair states”

mization [LK75; Tov84]. Quantum computers are not likely to efficiently

[LK75] Lenstra and Kan, “Some simple appli-
cations of the travelling salesman problem”

[Tov84] Tovey, “A simplified NP-complete
satisfiability problem”

solve the hardest instances of this problem since it is known to be QMA-
hard [Osb12]. However, it is expected that approximate solutions of the

[Osb12] Osborne, “Hamiltonian complexity”

ground state could be obtained, especially those related to physical systems.
In this sense, the VQE was proposed to provide a near-term solution to

finding the ground state of a particular Hamiltonian H. We denote by Ũ
the approximation of the unitary U that should rotate the initial product
state into the desired ground state of H. Ũ is obtained as a quantum circuit
with finite depth that depends on a set of parameters φ⃗. As discussed in
Chapter 1, for any choice of φ⃗, the quantum circuit Ũ(φ⃗) acting on the
product state |0〉⊗n generates a trial wave-function |ϕ̃(φ⃗)〉 = Ũ(φ⃗) |0〉⊗n.
Using a NISQ computer we can compute the expectation value of the energy
on that wave-function Eφ⃗ = 〈ϕ̃(φ⃗)|H |ϕ̃(φ⃗)〉. At this stage, we can use a
classical optimization algorithm in order to find the values of the parameters
φ⃗ that minimize the energy, thus providing an approximation to the ground
state. The classical optimization allows us to extract

φ⃗opt = argminφ⃗ 〈ϕ̃(φ⃗)|H |ϕ̃(φ⃗)〉 . (2.1)

In this way we can identify |ϕopt〉 ≡ Ũ(φ⃗opt) |0〉
⊗n with the best possible ap-

proximation to the ground state of H, given the architecture of the quantum
circuit we can implement on a NISQ device that approximates U .

In order to make contact with practical implementations of VQE, here
we will consider unitaries built from a finite set of gates, namely single-qubit
rotations and two-qubit controlled operations. We thus are working in the
framework of finding the best approximation to a unitary transformation
given an elementary set of quantum gates. Given indeed, e.g., m two-body
gates that are supposed to act on arbitrary pairs of two qubits out of the
n qubits of the systems, we can generate n(n − 1)m in principle distinct
quantum circuits.

In order to overcome this exponential scaling, here we take inspiration
from perturbation theory. It is known that perturbation theory can be re-
cast in terms of continuous unitary transformations [GW93; Weg94; Gla94;[GW93] Głazek and Wilson, “Renormaliza-

tion of Hamiltonians”

[Weg94]Wegner, “Flow-equations for Hamil-
tonians”

[Gla94] Glazek, “Perturbative renormaliza-
tion group for Hamiltonians”

DU04]. In the context of topological order, these continuous unitary transfor-

[DU04] Dusuel and Uhrig, “The Quartic Os-
cillator: a Non-Perturbative Study by Con-
tinuous Unitary Transformations”

mations have been used to define the quasi-adiabatic continuation [HW05].

[HW05] Hastings and Wen, “Quasiadiabatic
continuation of quantum states: The stabil-
ity of topological ground-state degeneracy
and emergent gauge invariance”

Two states are in the same phase if a sequence of gapped local Hamiltonians
allows one state to evolve into the other in a finite time. The evolution oper-
ator generated by these Hamiltonians, at least in a Trotter approximation,
can be represented by a finite-depth quantum circuit [HC15]. These ideas

[HC15] Huang and Chen, “Quantum circuit
complexity of one-dimensional topological
phases”

have also been put on firm ground in Ref. [Cir+17], where general theorems
about the properties of such unitaries, including their causal cones, have
been obtained.

For these reasons, we focus on a fixed geometry of the network repre-
sented in Figure 2.1. It can either be interpreted as the Floquet evolution of
a local Hamiltonian [KLP18] or as a Trotter approximation of continuous
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evolution by a local Hamiltonian defined on a line. In 1D, we can separate
the terms of the Hamiltonian that act on even and odd links and obtain
two sets, each made of mutually commuting gates. A full evolution step
involves acting with both sets, and we identify the step with a layer of the
circuit. The full ansatz involves concatenating several layers of these unitary
gates. As for the particular set of unitaries we consider, they are made out
of single-qubit rotations R y(θ), and control-Z gates (C Z) that act on two
contiguous qubits as shown in Figure 2.1.

A legitimate question is thus how accurate this geometry can be and
how close can the state we extract by running a VQE on our set of quantum
circuits get to the exact ground state of the system. Since we are dealing
with finite systems, the Hamiltonians we are considering always have a gap
(at least proportional to 1/n). If E is the expectation value of the energy on
our trial wave-function, its distance from the ground state can be bounded
as δ ≤ ε

∆E with ε = E − E0 and ∆E being the gap of the Hamiltonian. We
will use the error in the ground state energy ε to measure the quality of our
circuit.

FIGURE 2.1: Variational quantum ansatz for Ũ(φ⃗) employed in our simulations. As indicated
by the red box, each layer is composed of C Z gates acting on alternating pairs of neighboring
qubits which are preceded by R y (θi) qubit rotations, R y (θi) = e−iθi Y /2. After implementing
the layered ansatz, a final layer of R y (θi) qubit gates is applied. Here, it is shown the case of
two layers and n= 8 qubits.

2.2 NUMERICAL CHARACTERIZATION

In order to characterize the computational power of the quantum circuit
presented in Figure 2.1, as the encoder of the unitary that rotates the initial
product state |0〉⊗n into the ground state of a given local Hamiltonian, we
need to discuss its entangling power.

In the context of many-body quantum systems, we typically characterize
the goodness of a given variational ansatz in terms of how much entan-
glement it can support. The maximal amount of entanglement that can
be generated by our variational quantum circuit acting on a product state
depends on its depth. The quantum circuit is indeed built from native unitary
gates. Besides single-qubit rotations that do not entangle different partitions,
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we have one C Z gate per pair of spins at every layer. The C Z is able to
create a maximally entangled state between the pair it acts on. For example
when acting on |++〉 it transforms it to 1p

2
(|0+〉+ |1−〉). As a result, and as

expected, our unitary quantum circuit can create one bit of entanglement
per pair and layer. This fact agrees with the known fact that unitary circuits
are able to generate entanglement linearly in their depth as a consequence
of Lieb-Robinson bounds [LR72]. A circuit with the structure of the one in[LR72] Lieb and Robinson, “The finite group

velocity of quantum spin systems” Figure 2.1 acting on n constituent made by l layers, indeed could generate
up to min(n/2, l) entanglement between two complementary halves of the
system made of spins [Cir+17].[Cir+17] Cirac et al., “Matrix product uni-

taries: structure, symmetries, and topologi-
cal invariants” In the context of ground-state physics, this is a considerable entangling

power. In 1D, indeed, ground states of local gapped Hamiltonians full-fill
the area-law of entanglement [Has07; ECP10; Laf16], meaning that the[Has07] Hastings, “An area law for one-

dimensional quantum systems”

[ECP10] Eisert et al., “Colloquium: Area
laws for the entanglement entropy”

[Laf16] Laflorencie, “Quantum entangle-
ment in condensed matter systems”

entanglement of a block of spins does not grow with the size of the block
but rather with the size of its boundaries. In the 1D case we are considering
here, no matter how large the bipartition is, if it involves consecutive spins,
the boundary is made by just the two sites at each end of the block. As a
result, the entanglement of a region of n spins in the ground state of a 1D
gapped system asymptotically saturates to a value independent of n. We
thus expect that a finite number of layers should be enough to encode the
ground state of gapped Hamiltonians of arbitrary number of constituents.

When the Hamiltonian is gapless, much less is known since there are theo-
rems stating that the complexity of finding ground states of local translational
invariant quantum Hamiltonians is QMA-complete [Aha+09]. However, a[Aha+09] Aharonov et al., “The power of

quantum systems on a line” special case is the one of gapless Hamiltonians whose ground state can be
described by Conformal Field Theories (CFT). In that specific case, we know
that the entanglement of a region of n/2 contiguous spins in an infinite
chain scales asymptotically as

S(n/2) =
c
3

log(n/2) + d , (2.2)

where c is the central charge of the corresponding CFT and d is a non-
universal constant [HLW94; CW94; LRV04; CC04]. In the case of conformally[HLW94] Holzhey et al., “Geometric and

renormalized entropy in conformal field the-
ory”

[CW94] Callan and Wilczek, “On geometric
entropy”

[LRV04] Latorre et al., “Ground state entan-
glement in quantum spin chains”

[CC04] Calabrese and Cardy, “Entanglement
entropy and quantum field theory”

invariant gapless Hamiltonian, we thus expect that the number of layers of
our ansatz in Figure 2.1 needs to increase with the size of the system to have
a uniform approximation of the system as we increase n, that is in order to
accommodate the logarithmic growth of the entropy.

2.2.1 The models

In order to test these expectations, we benchmark the VQE in the case of
two paradigmatic quantum spin chains, the Ising model in transverse field
and the XXZ chain. Both spin chains are exactly solvable, and we can thus
characterize the error in the ground state energy we extract E knowing
the exact result for the ground state energy E0 as |E − E0|= ε. Prior work
benchmarking the Quantum Approximate Optimization Algorithm [FGG14][FGG14] Farhi et al., “A quantum approxi-

mate optimization algorithm” in the Ising model case can also be found in Ref. [MFS19].
[MFS19]Mbeng et al., “Quantum annealing:
A journey through digitalization, control,
and hybrid quantum variational schemes”

The 1D Ising model is described by the following Hamiltonian

HIsing = −
∑

j

σz
jσ

z
j+1 +λ

∑

j

σx
j , (2.3)
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where λ is the disordering field. For small λ, the system is in a ferromagnetic
phase, where all the spins are aligned along the z direction. As λ increases,
the system tends to disorder and goes to a paramagnetic phase for large λ.
The two phases are separated by a quantum critical point, exactly at λ= 1.
The system has indeed a Z2 symmetry generated by

∏

j σ
x
j that flips all the

spins. The Z2 symmetry breaks spontaneously at the quantum critical point.
In both phases, the elementary excitations are gapped and are spin flips
in the paramagnetic phase and domain walls in the ferromagnetic phase.
At the critical point, the correct variables to describe the systems are the
product of spin and domain walls, giving rise to free Majorana Fermions
[SML64]. At the critical point, the system becomes gapless, and the low [SML64] Schultz et al., “Two-Dimensional

Ising Model as a Soluble Problem of Many
Fermions”energy dispersion relation is linear, inducing an emerging Lorentz invariance.

The large distance behavior of the transverse field Ising model is described by
a CFT with central charge c = 1/2, one of the well-known minimal models
[BPZ84; Hen99]. [BPZ84] Belavin et al., “Infinite conformal

symmetry of critical fluctuations in two di-
mensions”

[Hen99] Henkel, Conformal Invariance and
Critical Phenomena

From the point of view of entanglement, the ground states of the Ising
model in both ferromagnetic and paramagnetic phases are shortly correlated
and full-fill the area law. We thus expect that they can easily be generated
by a finite-depth quantum circuit, such as the one we are using here.

At the quantum critical point, on the other hand, the ground state violates
the area law displaying logarithmic scaling of the entanglement entropy.
We thus expect that the number of layers of the circuit needed to keep the
accuracy constant increases as we consider increasingly large systems.

The XXZ model is slightly more complicated, and the Hamiltonian reads

HX X Z =
∑

j

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1

�

+∆σz
jσ

z
j+1 , (2.4)

where ∆ is the spin anisotropy. From the point of view of a Fermionic
model, ∆ induces a density-density interaction, and thus the model, even
if still exactly solvable via the Bethe ansatz, is not anymore a model for
free fermions [Ess+05]. For ∆ ≫ 1 and ∆ ≪ −1 the system is gapped, [Ess+05] Essler et al., The One-Dimensional

Hubbard Modeland the spins eventually align either ferromagnetically for ∆ < −1 and
anti-ferromagnetically for ∆ > 1 along the z-direction, indicating a Mott-
insulating phase for the fermions with either unity filling or checkerboard
filling. For values of −1+ ≤ ∆ ≤ 1 the system is critical, and it describes
the physics of a compactified boson, where the radius of compactification
depends on ∆. This region is described by a CFT with c = 1, and differently
from the Ising theory, this one is interacting. Once more, the entropy of
a region of consecutive spins in the ground state increases logarithmically
with the number of spins in that region, meaning that we expect that the
depth of our circuit will have to increase with the system size in order to
obtain a uniform accuracy.

2.2.2 Gapped Hamiltonians, the perturbative regime

We now start considering the performance of the VQE in the case of a gapped
Hamiltonian. For every realization of the quantum circuit, we run our VQE
that selects the optimal values for the free parameters in the circuit that
encode the single-qubit rotations around the Y -axis. We have 2n param-
eters per layer that are optimized using a gradient descent method. In
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particular, the classical method employed in the optimization loop was L-
BFGS-B [Byr+95]. This classical method is gradient-based and involves[Byr+95] Byrd et al., “A Limited Memory

Algorithm for Bound Constrained Optimiza-
tion” the estimation of the inverse Hessian matrix. We utilized the implemented

version of the open-source Python package SciPy Optimize [Vir+20], and
[Vir+20] Virtanen et al., “SciPy 1.0: funda-
mental algorithms for scientific computing
in Python”

QuTiP [JNN13] for the simulation of the quantum circuits. Parameters are

[JNN13] Johansson et al., “QuTiP 2: A
Python framework for the dynamics of open
quantum systems”

iteratively changed until we reach convergence in the ground state energy.
That is, after one iteration, the energy decrease is smaller than a given
threshold (typically of the order 10−12).

Furthermore, we employed standard optimization techniques from tensor
networks. In particular, we optimized single-parameters and single-layers,
fixing the rest of the trainable elements of the ansatz. We repeated these
single-parameter and single-layer optimization cycles until we reached con-
vergence. In addition, we used a recently proposed technique for variational
quantum algorithms, called Adiabatically Assisted Variational Quantum
Eigensolver (AAVQE) [GSL18].[GSL18] Garcia-Saez and Latorre, “Address-

ing hard classical problems with adiabat-
ically assisted variational quantum eigen-
solvers”

We begin by considering the results for λ = 10 in Eq. 2.3. We can
obtain the ground state in this regime in perturbation theory. We start with
the ground state of Eq. 2.3 when λ =∞, as the unperturbed state. The
Hamiltonian simplifies to H0 =

∑

i σ
x
i , whose ground state is a product state

in the x basis. We then reduce λ to a finite value, and we can express the
ground state of Eq. 2.3 for finite λ perturbatively. The full Hamiltonian
can be written as H = H0 +

1
λ

∑

i σ
x
i σ

x
i+1. Using the perturbation theory in

the form of a continuous unitary transformation [DU04], we immediately[DU04] Dusuel and Uhrig, “The Quartic Os-
cillator: a Non-Perturbative Study by Con-
tinuous Unitary Transformations” realize that the l order in the perturbative expansion requires l layers of the

quantum circuit. We thus expect that the precision of our ansatz will scale
exponentially with the number of layers. Our expectations are confirmed in
the numerical results presented in Figure 2.2 where we see very mild size
dependence but a clear exponential increase of the accuracy of the VQE with
the number of layers for λ= 10 and n= 8,10, 12.
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FIGURE 2.2: The error of the ground state energy in logarithmic scale as a function of the
number of layers (depth) in the quantum circuit, for the optimal encoding of the ground state
of the Ising model in Eq. 2.3 with λ = 10 for different system sizes n = 8, 10, 12. The results lie
on straight lines, unveiling an exponential increase of the precision with the number of layers,
as expected from a perturbative calculation. For example, with 5 layers, we expect our network
could include effects up to λ−5 ≃ 10−5.
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In Figure 2.3 we repeat the same analysis as we decrease λ towards
the phase transition. For λ= 2, we still appreciate an exponential scaling
of the accuracy, but as expected, the slope of the semi-logarithmic plot is
lower since it increases from 1/10 to 1/2. For λ = 1, we appreciate that
the behavior of the VQE ground state energy accuracy as a function of the
number of layers changes drastically from the behavior observed at larger
λ. In the thermodynamic limit, λ= 1 is the location of the phase transition
between the two gapped phases.
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FIGURE 2.3: We benchmark our VQE on a chain of n = 12 spins for values of λ = 2, 10 that are
deep in the perturbative regime where the accuracy increases exponentially with the number
of layers. At λ = 1, the Hamiltonian is gapless in the thermodynamic limit. There the accuracy
behaves differently as a function of the number of layers, unveiling two regimes.

2.2.3 Scaling of the accuracy at criticality, the two regimes

At λ= 1, the Hamiltonian of a finite length of size n has a gap that closes
as 1/n and thus becomes gapless in the thermodynamic limit. From the
previous discussion about the entangling power of our ansatz, we thus expect
that in order to obtain the same accuracy for increasingly large systems, we
will need to consider increasingly deep quantum circuits. The amount of
entanglement can grow linearly with the depth of the circuit [Cir+17], and in [Cir+17] Cirac et al., “Matrix product uni-

taries: structure, symmetries, and topologi-
cal invariants”the critical ground state, we only need a logarithmic increase of the entropy.

We could thus expect that a number of layers growing logarithmically with
the system size could provide a uniform approximation to the ground state
of increasingly large systems.

In order to verify this expectation, we perform numerical simulations of
quantum circuits of several layers (from l = 1 to l = 11) that are optimized
to encode the ground state of systems with different sizes from n = 6 to
n = 16 with periodic boundary conditions. We use the two Hamiltonians
in Eqs. 2.3 and 2.4. The Hamiltonians are tuned to a critical point in both
cases, choosing λ= 1 for the Ising model and ∆= 1/2 for the XXZ model.
For ∆ = 1/2, we are far enough at the same time from the Heisenberg point
(where marginally relevant operators tend to make finite-size scaling harder)
and from the gapped phases.
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In Figure 2.4 we plot the logarithm of the inverse error ε = |E − E0|
versus the depth of the circuit for the Ising model (left) and XXZ model
(right). In these plots, the best approximations are points on the far top side
of the plot. The accuracy clearly shows two different regimes. Initially, the
accuracy varies very little as we increase the number of layers, and hence the
number of variational parameters and the entangling power of the circuit.
The error indeed stays of the order 10−2 from one to several layers for the
Ising model and of the order of 10−1 for the XXZ model. This behavior seems
to be completely independent of the system size since curves obtained by
optimizing the energy almost coincide.

In the inset of the two panels of Figure 2.4 we zoom-in in this first regime
and plot the same results on a linear scale, that is, we plot 1/ε versus l. We
can now appreciate that the improvement in accuracy in this regime is a
power law of the depth of the circuit, rather than exponential.

We thus seem to observe a finite-depth regime, where the precision of
the variational scheme depends very little on the number of layers and
improves very slowly. This regime changes drastically at a critical number
of layers l = l∗(n) that strongly depends on the size of the system. At that
critical number of layers, the precision improves several orders of magnitude
abruptly. This improvement is particularly abrupt in the case of the Ising
model, whereby just adding one layer, the accuracy can improve several
orders of magnitude. For the XXZ model, we see similar features though
the overall accuracy is lower as a consequence of the higher amount of
entanglement in the ground state.

It is interesting to notice that in the finite-depth regime, the accuracy in the
energy does not depend on the size of the system, differently from what we
would expect for finite-size systems, where the energy should approach the
thermodynamic limit from below with a correction proportional to ε∝ 1/n2

[Aff86; Car86] for systems with periodic boundary conditions as are the ones[Aff86] Affleck, “Universal term in the free
energy at a critical point and the conformal
anomaly”

[Car86] Cardy, “Operator content of two-
dimensional conformally invariant theories”

we consider here. As the number of layers becomes larger than a critical
value of l∗(n) (which once more strongly depends on the system size n),
the precision starts to improve exponentially fast with the number of layers.
This is consistent with the appearance of a finite correlation length of order
n, which is ultimately responsible for the exponential scaling of the energy.

In the XXZ model, the improvement of the energy accuracy when transi-
tioning from the finite-depth to the finite-size regime is not as sharp as for
the Ising model. However, the two regimes are still clearly visible. The first
finite-depth regime, where the improvement is slow and does not depend on
the size of the system but instead on the number of layers, and a finite-size
regime where the improvement is exponential, and where the slope is differ-
ent for different system size, revealing the presence of a correlation length
that is proportional to the system size. The finite-size dominated regime can
also be interpreted as a refinement regime, since there, with the help of a
few additional layers, we typically obtain improvements on the ground state
energy of several orders of magnitude.

These two regimes seem to be reminiscent of the finite-entanglement
and finite-size regime observed in Matrix Product State (MPS) simulations
of the critical systems [Tag+08; Pol+09; Pir+12; Sto+15]. Thus, in order
to get a better quantitative characterization of the two regimes, we go back
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FIGURE 2.4: Error of the ground state energy in logarithmic scale vs. number of layers in the variational ansatz, for the Ising model (left)
and XXZ model (right). Different colors encode systems made by a different number of qubits n. Better results are encoded by points on
the top of the plot, where log10(1/ε) is large, and hence ε is small. As we increase the depth of the circuit, the error initially improves
very slowly, as shown by the almost horizontal behavior of the curves. It then suddenly starts to increase several orders of magnitude.
This very sharp change of behavior identifies two regimes, namely, finite-depth regime, where the energy accuracy does not depend on
the size of the system but only on the number of layers and increases slower than exponentially with it, and the finite-size regime where
the energy accuracy increases exponentially. The insets show a power-law increase of the accuracy in the finite-depth regime.

to studying the entanglement entropy of half of the system of the wave-
functions obtained as a result of the VQE.

2.2.4 Scaling of the entanglement entropy at criticality

In order to compute the entanglement entropy of the states we obtain from
our VQE, we partition the system in two halves each made by n/2 contiguous
spins. Calling A one of the two halves, we construct the reduced density
matrix of A as ρA = trB |ϕopt〉 〈ϕopt|. The Von Neumann entropy of the
eigenvalues of ρA encodes the entanglement entropy, SA = −t rρA log(ρA).

Our results for SA are reported in Figure 2.5. On the left panel, we
represent the entropy computed for a bipartition in two halves of the ground
state of the Ising model at the critical point. This is obtained by fixing
λ = 1 in the Hamiltonian in Eq. 2.3. We compute the half chain entropy for
increasingly large systems from n= 6 to n= 14 qubits. The entropy shows
two regimes. In the first regime, the entropy increases as the number of
layers increases. The increase is compatible with being logarithmic in the
number of layers, being definitely slower than the linear increase with the
number of layers that the circuit could support.

At a critical value of l, l∗(n) that coincides with the critical value observed
in the scaling of the energy error, the entropy jumps and saturates to a value
that depends on the system size. For values of l larger than l∗(n) the entropy
is roughly constant. We can thus fit the entropy as a function of l∗(n), and
obtain a good agreement with a scaling of the type SA = α log(l∗(n)) + β .
The value of α extracted from a numerical fit to the data is αIsing = 0.18(2).
This should be compared with the value of pre-factor that rules the scaling
of the entanglement entropy with the size of the system at criticality that
only depends on the central charge and is 1/6. The fact that α is very close
to 1/6 suggests that l∗(n) scales as l∗(n) = γn where γ is a constant.

In the finite-depth regime, the entropy of a bipartition is ruled by the
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number of layers of the VQE rather than by the size of the bipartition. We
observe a logarithmic increase of the entropy with the number of layers. The
entropies of sub-regions with a very different number of constituents are
very similar. A fit of the data using a logarithmic increase of the entropy as a
function of the number of layers is plotted in black, both for the Ising and for
the XXZ model, in Figure 2.5. Even if the corresponding curve significantly
deviates from the numerical value for large depths, it correctly reproduces
the average values of the entropies for different systems sizes obtained with
VQE having the same number of layers l in the regime where l ≪ l∗(n). It
is important to notice that obtaining accurate values for the entropy in the
finite-depth regime is very challenging. We are indeed optimizing the energy
in a manifold of excited states, where the energy is still considerably higher
than the energy of the ground state. As a result, there are many states with
roughly the same energies but very different entropies, as observed in the
context of MPS simulations [Tag+08]. The fit to the entropy as a function[Tag+08] Tagliacozzo et al., “Scaling of

entanglement support for matrix product
states” of the logarithm of the depth of the circuit, in the finite-depth regime, that is

for l ≪ l∗(n) provides a value for α= 0.13(4). The number is compatible
with the expected scaling of the entropy of the system that deviates from
the CFT due to the presence of a finite correlation length

ξ(l)∝ l . (2.5)

The right panel of Figure 2.5 presents a similar study of entanglement
entropy in the ground state of the XXZ model described by the Hamiltonian
in Eq. 2.4. The behavior is similar to the one observed in the case of the
Ising model at the critical point. However, we appreciate a much larger
entropy as expected from the fact that the central charge of this model is
twice the one for the Ising model, i.e., c = 1. Once more, we observe two
regimes, one regime where the entropy is roughly independent on the size
of the partitions but depends strongly on l and seems to follow a logarithmic
increase. At the values of l = l∗(n) already identified in Figure 2.4, we
see that the entropies jump to values that depend on the size of the block.
For larger values of l, the entropy remains almost constant. We identify
l∗(n) with the last point of each numerical series presented in Figure 2.5.
We can fit a logarithmic growth of the entropy at that specific value of
l∗(n), obtaining for the coefficient of the logarithmic scaling αX X Z = 0.37(9).
This value is compatible with c/3 = 1/3. Comparing this result with the
expected scaling for the entropy of a bipartition made by n/2 spin in Eq.
2.2, we have a further indication that l∗(n) = γn with γ constant. Further
confirmation of this identification can be obtained by fitting the lower part
of the numerical sequences for the entropies as a function of log(l). In these
regions, for l ≪ l∗(n), the entanglement entropy depends only mildly on
n/2, the size of the partitions. The result of the best fit tells us once more
that SA = α log(l) + β with αX X Z = 0.24(16). Once more, this result is
compatible with the 1/3 expected for a system having effective length l
rather than n/2 thus providing further confirmation of Eq. 2.5.
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FIGURE 2.5: Von Neumann entropy of the bipartition vs. the number of layers in the variational ansatz, for the Ising model (left) and
XXZ model (right), and for increasing number of qubit n. Black lines represent logarithmic fits of the data. Once more, the sudden
growth of the entropy coincides with the change of regime.

2.3 OUTLOOK

In the previous sections, we have unveiled that a VQE that uses the structure
of the quantum circuit presented in Figure 2.1 is able to accurately describe
the ground state of local Hamiltonians both in gapped regimes and in those
gapless regimes that can be described by a CFT. This, by itself, is an important
observation given the current availability of NISQ devices in the labs.

As we have discussed, the circuit structure in Figure 2.1 is inspired by
the idea of quasi-adiabatic continuation [HW05], a set of analytical results [HW05] Hastings and Wen, “Quasiadiabatic

continuation of quantum states: The stabil-
ity of topological ground-state degeneracy
and emergent gauge invariance”

that tell us that whenever two states belong to the same phase, we can
transform one into the other by evolving it using a local gapped Hamiltonian
for a finite amount of time. The resulting finite time evolution, at least in a
Trotter approximation, takes the form of the tensor network in Figure 2.1.
Analogously when two states are in the same phase, we can build one from
the other by applying to it a perturbation. The corresponding perturbative
expansion can also be casted as a continuous unitary transformation [GW93; [GW93] Głazek and Wilson, “Renormaliza-

tion of Hamiltonians”Weg94; Gla94; DU04] that can be discretized and expressed as the circuit in
[Weg94]Wegner, “Flow-equations for Hamil-
tonians”

[Gla94] Glazek, “Perturbative renormaliza-
tion group for Hamiltonians”

[DU04] Dusuel and Uhrig, “The Quartic Os-
cillator: a Non-Perturbative Study by Con-
tinuous Unitary Transformations”

Figure 2.1 [Van+17]. From this perspective, the results we have presented

[Van+17] Vanderstraeten et al., “Bridging
Perturbative Expansions with Tensor Net-
works”

concerning the performances of the VQE in the gapped regime are not
surprising. However, they confirm that whenever we can rotate the ground
state of a gapped Hamiltonian into a product state, our circuit, made of
simple elementary gates, does it optimally, with a precision that improves
exponentially with its depth, as expected from perturbation theory.

The results in the critical regime are much more interesting. First of
all, by definition, the critical point is not connected to a product state via a
perturbative expansion. However, there is no true critical point in a finite-
size system; thus, the fact that we can encode faithfully pseudo-critical finite
systems has to be expected. Our results go beyond this expectation and
allow us to identify the minimum depth of the circuit required to represent
the pseudo-critical grounds state of a finite system faithfully.

Our numerical results for critical systems point to the existence of two
different regimes. A regime that we have called finite-depth in which l < n/2
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where the precision of the results only depends on the number of layers and
a refinement, or finite-size regime. In the finite-depth regime, the accuracy
of the ground state energy increases very slowly with the number of layers,
only polynomially. The entanglement entropy of a region that, in CFT,
should increase logarithmically with the number of spins in that region
only increases logarithmically with the number of layers of the circuit. Two
half-system bipartitions taken from systems with different sizes (and hence
containing a different number of spins) have roughly the same entropy
when they are computed from a quantum circuit with depth smaller than
l ≪ l∗(n).

In the refinement regime, the results acquire the expected finite-size
dependence. In that regime, the precision increases exponentially with the
number of layers, as seen from straight lines in Figure 2.4. The slope of the
straight lines allows us to define a correlation length ξ as ε∝ exp(−l/ξ)
that as clear from the plots depends on n, as ξ∝ n. As expected in the
finite-size regime, the entanglement of a region made by n/2 spins increases
logarithmically with n/2.

The logarithmic increase of the entropy in the finite-depth regime with a
pre-factor that is numerically compatible with the ones dictated by the CFT
and the location of the jump between the two regimes at a value l∗(n)∝ n
are compatible with the following analysis. The finite depth of the system
induces an effective correlation length ξl ∝ l as described by our main
result in Eq. 2.5. Since the finite size of the system also induces a finite
correlation length ξn∝ n we can expect a cross-over phenomenon when
l ≃ n, where the system transition from a regime in which the shortest
length is the one induced by l to a regime where finite-size effects become
dominant since the shortest correlation length is the one induced by the size
of the system.

Possibly the most interesting observation is the fact that in the finite-depth
regime, the correlation length is proportional to l as encoded by Eq. 2.5. This
is a direct consequence of Lieb-Robinson bounds [LR72; BHV06]. Indeed if[LR72] Lieb and Robinson, “The finite group

velocity of quantum spin systems”

[BHV06] Bravyi et al., “Lieb-Robinson
Bounds and the Generation of Correlations
and Topological Quantum Order”

we think of l as the computation time, we immediately understand that, as
a consequence of the existence of a finite speed of propagation, in order to
build up correlations at a distance l, we need to wait for times proportional to
l. This simple explanation is compatible with what we observe numerically.
This behavior was further verified in Refs. [Con+21; JSP22].



3
Data encoding in quantum
autoencoders

“With four parameters I can fit an elephant,
and with five I can make him wiggle his

trunk.”
—John von Neumann

A limiting factor for most of the near-term quantum computing applications is
the amount of quantum resources that can be realized in current experiments.
Indeed, for noisy intermediate-scale quantum (NISQ) [Pre18] devices, any [Pre18] Preskill, “Quantum Computing in

the NISQ era and beyond”tool that can reduce the amount of quantum resources can be considered
especially valuable. For classical data processing, autoencoders are standard
tools used to reduce the resources [Kra91]. [Kra91] Kramer, “Nonlinear principal com-

ponent analysis using autoassociative neural
networks”A classical autoencoder is an artificial neural network used to learn a

representation of a data set in a lower-dimensional space, typically known as
latent dimension. This encoding is validated by attempting to reproduce the
input data from the lower-dimensional data. If the autoencoder successfully
achieves this task, at least approximately, the network has learned to encode
the original information into the smaller, latent space.

In the following section, we introduce the concept of a quantum au-
toencoder (QAE) [ROA17], which is inspired by the classical autoencoder [ROA17] Romero et al., “Quantum autoen-

coders for efficient compression of quantum
data”design. The motivation for a QAE is to be able to recognize patterns beyond

the capabilities of a classical autoencoder, given the different properties of
quantum mechanics, namely, superposition and entanglement. This model
will allow us to perform analogous machine learning tasks for quantum
systems and reduce the required quantum resources when dealing with
quantum data. For instance, quantum autoencoders could be used as a state
preparation engine in the context of variational quantum algorithms. That is,
we could combine, say, a Variational Quantum Eigensolver (VQE) [Per+14] [Per+14] Peruzzo et al., “A variational eigen-

value solver on a photonic quantum proces-
sor”with a quantum autoencoder, where now the only active VQE parameters

are associated with the latent space.

3.1 QUANTUM AUTOENCODERS

The quantum autoencoder model is analogous to that of a classical au-
toencoder. The QAE network is designed to compress the input quantum
information through a smaller latent space. In this scheme, we look for a
parameterized quantum circuit U(θ⃗ ) that encodes an initial input state into
an intermediate latent space, after which the action of the decoder, U†(θ⃗ ),
attempts to reconstruct the input. Indeed, for a quantum circuit to resemble
an autoencoder network, the information contained in some of the qubits

25
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FIGURE 3.1: Circuit implementation of a 6-qubit quantum autoencoder with a 2-qubit latent
space, that is, n = 2 and k = 4. The unitary U(θ⃗) encodes a 6-qubit input state ρin into a
2-qubit intermediate state, after which the decoder U†(θ⃗) attempts to reconstruct the input,
resulting in the output state ρout .

must be discarded after the initial encoding U(θ⃗). New qubits, which are
initialized to some reference state, are then used to implement the decoding
action U†(θ⃗ ). A graphical depiction can be seen in Figure 3.1.

Let us be more specific with the quantum autoencoder formulation. Let
ρin be an ensemble of pure states on n+k qubits, where k qubits are going to
be discarded after the action of the encoder. Let U(θ⃗ ) be a unitary operation
acting on the n+ k qubits, where θ⃗ is a set of classical parameters defining
the quantum circuit. Also let |0〉⊗k the pure reference state of k qubits. Using
machine-learning techniques, we want to find the best unitary U(θ⃗ ) which,
on average, best preserves the input state ρin. The cost function to minimize
is

C(θ⃗ ) = 1− F(ρin, ρout) , (3.1)

where F(ρin, ρout) is the fidelity of the input and output state after the
action of the decoder. Notice that if C(θ⃗) = 0, then we accomplished
the learning task of finding the ideal U(θ⃗), and therefore, we achieved a
lossless compression, i.e., ρin = ρout . For readers interested in experimental
applications, a QAE implementation in a photonic device can be seen in Ref.
[PTP19].[PTP19] Pepper et al., “Experimental real-

ization of a quantum autoencoder: The com-
pression of qutrits via machine learning” Recently, much attention has been paid to data encoding in variational

quantum algorithms [Llo+20; LC20] since it was proven that data encoded
[Llo+20] Lloyd et al., “Quantum embed-
dings for machine learning”

[LC20] LaRose and Coyle, “Robust data en-
codings for quantum classifiers”

into the model alters the expressive power of parameterized quantum cir-
cuits [SSM21; GTN21]. Specifically, this idea has been implemented for

[SSM21] Schuld et al., “Effect of data encod-
ing on the expressive power of variational
quantum-machine-learning models”

[GTN21] Goto et al., “Universal Approxima-
tion Property of Quantum Machine Learn-
ing Models in Quantum-Enhanced Feature
Spaces”

classification of data [Hav+19; PS+20a], and to study energy profiles of
quantum Hamiltonians [CLKAG21]. The following sections explore how data
encoding influences a quantum autoencoder by introducing the enhanced
feature quantum autoencoder. As we will see, its key ingredient is to include
a feature vector into the variational quantum circuit that characterizes the
model we aim to compress.



ENHANCED FEATURE QUANTUM AUTOENCODER 27

FIGURE 3.2: Schematic representation of the EF-QAE. The input to EF-QAE is a set of initial states ρin, a feature vector x⃗ that characterizes
the initial states, and a shallow sequence of quantum gates U . The feature vector x⃗ is encoded together with the variational parameters
θ⃗ , where the latter are adjusted in a quantum-classical optimization loop until the local cost C(θ⃗ ) converges to a value close to 0. When
this loop terminates and the optimal parameters θ⃗opt are found, the resulting circuit U(θ⃗opt , x⃗) prepares compressed states |φ〉 of a

particular model. Moreover, we may apply U†(θ⃗opt , x⃗) |0 . . . 0〉 ⊗ |φ〉 to recover ρout ≈ ρin.

3.2 ENHANCED FEATURE QUANTUM AUTOENCODER

3.2.1 Overview

Here, we present the enhanced feature quantum autoencoder (EF-QAE). A
schematic diagram of the EF-QAE can be seen in Figure 3.2. The algorithm
can be initialized with a set of initial states ρin

i , a feature vector x⃗ , and a
shallow sequence of quantum gates U . In this scheme, we define a unitary
U(θ⃗ , x⃗) acting on the initial state ρin

i , where x⃗ is a feature vector that
characterizes the set of input states. For instance, as we will see in Section
3.3, x⃗ may be the transverse field λ of the 1D Ising spin chain. Once the
trial state is prepared, measurements are performed to evaluate the cost
function C(θ⃗ ). This result is then fed into the classical optimizer, where the
parameters θ⃗ are adjusted. This quantum-classical loop is repeated until
the cost function converges to a value close to 0. When the loop terminates,
U(θ⃗opt , x⃗) prepares compressed states |φ〉 of a particular model.

A summary comparing EF-QAE and QAE proposed in Ref. [ROA17] can [ROA17] Romero et al., “Quantum autoen-
coders for efficient compression of quantum
data”be seen in Table 3.1. Note that the main difference between EF-QAE and

QAE is the presence of a feature vector x⃗ in the sequence of gates U . This
will allow us to study and explore how data encoding influences the behavior
of a quantum autoencoder.

QAE EF-QAE

Quantum resources
(circuit depth)

Equal

Unitary operation U(θ⃗ ) U(θ⃗ , x⃗)

No. trainable parameters
(in each rotation gate)

1 2

Classical optimization
EF-QAE generally needs
additional optimization

Compression
performance

EF-QAE has always higher
compression performance

TABLE 3.1: Summary for QAE and EF-QAE similarities and differences.
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3.2.2 Cost function

The goal of a quantum autoencoder is to store the quantum information of
the input state through the smaller latent space. Therefore, it is important to
quantify how well the information is preserved. This, in general, is quantified
by a cost function that one has to minimize. As we discussed in Section 3.1,
in Ref. [ROA17], this cost function evaluates the fidelity of the input and[ROA17] Romero et al., “Quantum autoen-

coders for efficient compression of quantum
data” output states, and it is constructed from global operators. However, it is

known that global cost functions lead to trainability issues even for shallow
depth quantum circuits [McC+18; Cer+21b].[McC+18] McClean et al., “Barren plateaus

in quantum neural network training land-
scapes”

[Cer+21b] Cerezo et al., “Cost function
dependent barren plateaus in shallow
parametrized quantum circuits”

To address this issue, we use a cost function designed from local operators
as proposed in Ref. [Cer+21b]. There is a close connection between data
compression and decoupling. That is, if the discarded qubits, from now on
referred to as trash qubits, can be perfectly decoupled from the rest, the
autoencoder reaches lossless compression. For instance, if the output of the
trash subsystem is a fixed pure state, say |0〉⊗k, then it is decoupled, and
consequently, the input state has been successfully compressed.

A figure of merit to quantify the degree of decoupling, or data compres-
sion, when training is simply the total amount of non-zero measurement
outcomes on the k trash qubits, which will be minimized. To design the cost
function to be local, different outcomes may be penalized by their Hamming
distance to the reference |0〉⊗k state, which is just the number of symbols
that are different in the binary representation. Thus, the local cost function
C to be minimized is

C ≡
∑

m, j

dH j Mm, j ≡
1
2

k
∑

m=1

(1− 〈Zm〉) , (3.2)

where dH j denotes the Hamming distance and Mm, j are the results of the j-th
measurement on the m trash qubit in the computational basis. Equivalently,
it can also be defined in terms of local Z Pauli operators. Notice that this cost
function delivers direct information on how the compression of the trash
qubits is performed and has a zero value if and only if lossless compression
is achieved.

3.2.3 Ansatz

To implement the EF-QAE model on a quantum computer, we must define the
form of the parametrized unitary U(θ⃗ , x⃗), decomposing it into a quantum
circuit suitable for optimization. Recall that a quantum autoencoder may
be thought of as a disentangling unitary. The complexity of the circuit
thus limits this property. Given the limited available quantum resources
in practice, due to the coherence times and gate errors, we will look for a
circuit structure that maximally exploits entanglement while maintaining a
shallow depth.

A primitive strategy to construct a variational circuit in a more general
case may consist of building a circuit of arbitrary 2- and 1-qubit gates
characterized by some parameters. However, this is a naive approach. The
action of the EF-QAE on the original state is

U |ψ〉= |0〉 ⊗ . . .⊗ |0〉 ⊗ |φ〉 . (3.3)
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FIGURE 3.3: Variational quantum ansatz employed for the EF-QAE model. As indicated by the
dashed box, each layer is composed of C Z gates acting on the trash qubits preceded by R y

qubit rotations, R y (θ j) = e−iθ j Y /2. A cascade of C Z gates is then applied between the trash
qubits and the qubits containing the final compressed state. After implementing the layered
ansatz, a final layer of R y qubit gates is applied to the trash qubits. Note that the sequence of
entangling gates can be applied mostly in parallel.

Thus, it is clear that the entangling gates should primarily act between each
of the trash qubits, and between the trash qubits and the qubits containing
the final compressed state. Subsequently, we may avoid using entangling
gates between the qubits that are not trash while maximizing the entangling
gates on the ones of interest. This could be done using a similar structure to
that depicted in Figure 3.3. Notice that most of the sequence of entangling
gates can be applied in parallel at the same step and that the number of
quantum gates is linear with the number of qubits and layers.

The feature vector x⃗ is encoded into each of the single R y qubit rotations
by using a linear function as

R y

�

θ⃗ , x⃗
�

= R y

�

θ (i)x ( j) + θ (i+1)
�

, (3.4)

where i, j indicates a component of the vector, and θ⃗ are the parameters
adjusted in the optimization loop. The rationale behind choosing this kind of
encoding is that it has been shown to provide universality, provided enough
layers, and with a single qubit [PS+20a]. Although we use multiple qubits, [PS+20a] Pérez-Salinas et al., “Data re-

uploading for a universal quantum classi-
fier”and entanglement is allowed, we expect a similar behavior as the number

of layers increases. Note that this encoding is analogous to that used in
classical neural networks. That is, θ⃗ plays the role of the weights and biases,
while the rotation gate plays the role of the non-linear activation function.
On the other hand, the role of the feature vector x⃗ is inspired by feed-
forward classical neuronal networks. Specifically, in this type of classical
network, data is reintroduced and processed by many layers of neurons,
similar to what our quantum circuit is doing. Other encoding strategies
of the feature vector can be considered, for instance, using a non-linear
encoding [CLKAG21]. [CLKAG21] Cervera-Lierta et al., “Meta-

variational quantum eigensolver: Learning
energy profiles of parameterized hamiltoni-
ans for quantum simulation”

From a quantum mechanical perspective, let us provide the mathematical
intuition on why the EF-QAE may achieve a better compression performance.
Consider a set of states, ρ =

∑

i pi |ψi〉, with support on a subset of a Hilbert
space S ⊂H. Note that the dimension of S is dictated by the rank of the
matrix ρ. The action of a standard QAE is to apply an encoding scheme that
employs only log2 |S | qubits to represent the states instead of log2 |H|, with
a trash state of size log2 |H− S |. It is key to note that unitary operations (the
action of the encoder) do not modify the rank of the matrix ρ, and therefore,
the compression is initially limited by its rank. In contrast, the action of the
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EF-QAE can be seen overall as a non-unitary operation in ρ, since the action
of the encoder is tailored to a particular input |ψi〉, informed by the feature
vector x⃗ . That is, EF-QAE is applying different unitary operations U(θ⃗ , x⃗) to
different input states |ψi〉, depending on the extra information delivered by
the feature vector x⃗ , and by doing so, modifying the rank of the matrix ρ.
This allows the EF-QAE to improve the compression performance.

3.3 NUMERICAL SIMULATION: 1D ISING SPIN CHAIN

The EF-QAE can be verified on simulations. We utilized the open-source
Python API Qibo [Eft+20; Eft+21b] for the simulation of the quantum[Eft+20] Efthymiou et al., “Quantum-

TII/qibo on Github”

[Eft+21b] Efthymiou et al., “Qibo: a frame-
work for quantum simulation with hardware
acceleration”

circuits. Here, we benchmark both the EF-QAE and the standard QAE in the
case of a paradigmatic quantum spin chain with 6 qubits, the transverse field
Ising model. The 1D Ising model is described by the following Hamiltonian

HIsing =
∑

j

σz
jσ

z
j+1 +λ

∑

j

σx
j , (3.5)

where λ is the transverse field. In the thermodynamic limit, the system has
a quantum phase transition exactly at λ= 1.

The EF-QAE and QAE are optimized over a training set of ground states of
the Ising model. Specifically, we have considered N=20 equispaced ground
states in between λ= 0.5 and λ= 1.0, with initial random parameters. For
the cost function, we computed Eq. 3.2 for each training state and then
averaged them as

CN =

∑N
i Ci

N
. (3.6)

Nonetheless, notice that for other models, sophisticated cost functions could
be more convenient to implement. We have considered the variational
quantum circuit in Figure 3.3 with 3 layers, and therefore, the resulting
compressed state contains 4 qubits. Here, the feature vector x⃗ for the EF-QAE
is a scalar that takes the value of the transverse field λ.

The classical technique employed in the optimization loop is the BFGS
method, which is gradient-based and involves estimation of the inverse
Hessian matrix [NW06]. Let us also briefly comment here on the training[NW06] Nocedal and Wright, Numerical op-

timization required for both QAE and EF-QAE. Indeed, although the depth of the circuit
is equivalent, the number of trainable parameters is not. In this sense, QAE
has 1 trainable parameter on each rotation-gate, whereas EF-QAE has 2
trainable parameters. This may imply the computation of extra gradients for
gradient-based optimizers and, therefore, extra cost function evaluations.
Recall, however, that this possible classical overhead is only present during
the training procedure, and hence, we will not face any overhead when using
a pretrained EF-QAE in combination with other machine learning tasks.

In Figure 3.4, we show the cost function value as a function of the
number of evaluations. The EF-QAE* is the EF-QAE initialized with the
optimal parameters of QAE. This way, the EF-QAE* will always improve
the QAE performance. As can be seen, the EF-QAE achieves almost twice
the compression of the QAE. Nevertheless, notice that for the EF-QAE, the
number of function evaluations required to achieve higher compression is
larger. Recall that this is simply a trade-off between classical and quantum
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FIGURE 3.4: Cost function value as a function of the number of evaluations. Here, we consider
the standard QAE, EF-QAE, and EF-QAE*. The EF-QAE* is the EF-QAE initialized with the
optimal parameters of QAE. The EF-QAE achieves almost twice the compression of the QAE
using the same quantum resources, at the expense of additional classical optimization.

FIGURE 3.5: Visualization of the trash space for the EF-QAE and QAE, considering two different
test ground states of the 1D Ising model corresponding to (a) λ= 0.60 and (b) λ= 0.75. The
size of the register is two qubits. The space is characterized as the density matrix of the trash
state. Integer labels denote the binary representation of the computational basis states.

resources. Using the same quantum resources, we improve the compression
performance at the expense of additional classical optimization.

To quantify these expectations, we assess both EF-QAE and QAE with
the optimal parameters against two test ground states of the Ising model,
specifically, with λ = 0.60 and λ = 0.75. The results are shown in Figure 3.5.
Here, we show a density matrix visualization of the trash space. The EF-QAE
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achieves better compression to the |00〉 trash state and, therefore, higher
fidelity on the output state. As we change the values of the transverse field,
we note that compression differs. In Figure 3.6 we show the output fidelities
of 20 training and 60 test Ising ground states. As can be seen, the output
fidelities of the EF-QAE are higher, except for a few outlier values around
λ = 0.7. This could be improved, for instance, by simply increasing the
number of training states or by populating values around λ = 0.7 taking
nonequispaced training ground states.
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FIGURE 3.6: Fidelity of the output state for Ising ground states with different transverse field λ,
using the EF-QAE and QAE. We have considered 20 training and 60 test ground states.

3.4 OUTLOOK

We have presented a variational quantum algorithm called EF-QAE capable of
compressing quantum data of a parameterized model. In contrast to standard
QAE, EF-QAE achieves this compression with higher fidelity. Its key idea is
to define a parameterized quantum circuit that depends upon adjustable
parameters and a feature vector that characterizes such a model. In this way,
the data compression can be tailored to the particular input, informed by
the feature vector, and the compression performance is enhanced.

We have validated the EF-QAE in simulations by compressing ground
states of the 1D Ising spin chain. We compared the results with the standard
QAE. The results show that EF-QAE achieves better compression of the initial
state, and therefore, the final output state is recovered with higher fidelity.
Moreover, the learning task of EF-QAE can be initialized with the optimal
QAE parameters. In this manner, EF-QAE will always improve the QAE
performance. The encoding strategy of the feature vector is amenable to be
improved, for instance, using a non-linear encoding. We leave the study of
encoding strategies for future works.

The EF-QAE may need additional classical optimization compared to
QAE. In contrast, we increase the compression performance using the same
amount of limited quantum resources. In this sense, EF-QAE is a step toward
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what could be done on NISQ computers, shortening the distance between
current quantum devices and practical applications.





4
Quantum singular value
decomposition

“If I feel unhappy, I do mathematics to
become happy. If I am happy, I do

mathematics to keep happy.”
—Alfréd Rényi

Much progress has been made towards a better understanding of bipar-
tite and multipartite entanglement of quantum systems in the last decades.
Among the many figures of merit that have been put forward to quantify
entanglement, the von Neumann entropy stands out as it finely reveals
the quantum correlations between subparts of the system. Yet, the explicit
computation of this entropy and many other bipartite measures of entangle-
ment rely on a clever decomposition of the tensor that describes a two-party
system. On the experimental side, although entropies remain elusive as no
direct observable straightforwardly describes them, a few approaches have
been proposed in ultracold atoms [AD12; Isl+15]. [AD12] Abanin and Demler, “Measuring en-

tanglement entropy of a generic many-body
system with a quantum switch”

[Isl+15] Islam et al., “Measuring entangle-
ment entropy in a quantum many-body sys-
tem”

The fundamental mathematical tool to analyze bipartite entanglement is
the so-called Schmidt decomposition [EK95; Per06], also named as Singular

[EK95] Ekert and Knight, “Entangled quan-
tum systems and the Schmidt decomposi-
tion”

[Per06] Peres, Quantum theory: concepts and
methods

Value Decomposition (SVD). Given the knowledge of a bipartite state in
its tensor form, the SVD casts this tensor onto a simpler diagonal form,
which unveils the entanglement structure of the original state. In practice,
the SVD requires the knowledge of the coefficients of the state and needs
further computational effort to get the eigenvalues and eigenvectors that
fully characterize the state.

A few proposals have been put forward for diagonalizing a matrix on
a quantum computer. One of them relies on exponentiation of the matrix,
and subsequent application of the Quantum Phase Estimation procedure
[Reb+18]. The second proposal [LaR+18] is a variational algorithm that [Reb+18] Rebentrost et al., “Quantum

singular-value decomposition of nonsparse
low-rank matrices”

[LaR+18] LaRose et al., “Variational quan-
tum state diagonalization”

seeks to directly diagonalize a density matrix ρ by simultaneously acting
on two copies of the quantum state described by ρ. In this case, the cost
function to be minimized quantifies how far the state is from being diagonal
in terms of purity. There also exist quantum algorithms [JST17; SCC19] that [JST17] Johri et al., “Entanglement spec-

troscopy on a quantum computer”

[SCC19] Subaşı et al., “Entanglement spec-
troscopy with a depth-two quantum circuit”

compute Rényi entropies, and from them, the largest eigenvalues of reduced
density matrices. Finally, a different approach using a continuous-variable
quantum computer is considered in [DSW18].

[DSW18] Das et al., “Continuous-variable
quantum gaussian process regression and
quantum singular value decomposition of
nonsparse low-rank matrices”

In this chapter, we present a quantum circuit that produces the elements
of the SVD of a pure bipartite state that we shall call QSVD for Quantum
Singular Value Decomposer. As discussed in the following sections, the
proposed circuit is made of two unitaries, each acting on a separate subpart
of the system that can be determined in a variational way. The frequencies

35
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of the outputs of the final state in the circuit deliver the eigenvalues of
the decomposition without further treatment. Also, the eigenvectors of the
decomposition can be recreated from direct action of the adjoint of the
unitaries that conform the system on trivial states.

The key ingredient of the algorithm is to train the circuit on the exact
coincidence of outputs. This is a subtle way to force a diagonal form onto
the state. It also provides an example of a quantum circuit that is not
trained to minimize some energy but rather to achieve a precise relation
between the superposition terms in the state (other examples can be found
in Refs. [ROA17; Car+20; PS+20b; Szo+22]). We further verify the QSVD[ROA17] Romero et al., “Quantum autoen-

coders for efficient compression of quantum
data”

[Car+20] Carolan et al., “Variational quan-
tum unsampling on a quantum photonic pro-
cessor”

[PS+20b] Pérez-Salinas et al., “Measuring
the tangle of three-qubit states”

[Szo+22] Szołdra et al., “Unsupervised de-
tection of decoupled subspaces: many-body
scars and beyond”

algorithm on simulations.
A peculiar bonus of this approach is that the QSVD provides a means to

perform a SWAP between parties without ever having quantum communi-
cation between them. Another one is that the QSVD can be turned into an
encoder of quantum information.

Indeed, this proposal is a variational quantum algorithm, much in the
spirit of recent developments in the field of quantum computation for the
noisy intermediate-scale quantum era [Pre18]. This, as discussed in previous

[Pre18] Preskill, “Quantum Computing in
the NISQ era and beyond”

chapters, means that the basic circuits may be shallow (accuracy can be in-
creased by increasing the depth) and therefore amenable to implementation
on near-term quantum computers without error correction.

4.1 CLASSICAL SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition is a powerful mathematical technique
ubiquitously used to analyze tensors with two indices. It simply says that
any such tensor can be cast onto a diagonal form using two unitary matrices
that act on each of its indices.

Let us briefly review how the SVD is computed. Consider a bipartite pure
state |ψ〉AB ∈HA⊗HB,

|ψ〉AB =
dA
∑

i=1

dB
∑

j=1

ci j |ei〉A|e j〉B , (4.1)

where dA,B are the dimensions of the susbsystems Hilbert spaces HA,B ,
{|ek〉A,B} are the computational-basis states in HA,B , and the complex coef-
ficients ci j obey a normalization relation. This state can be written in its
Schmidt form,

|ψ〉AB =
χ
∑

i=1

λi |ui〉A|vi〉B , (4.2)

where χ is the Schmidt rank (i.e. the number of Schmidt coefficients different
from zero), which is always equal or smaller than the minimum of dA and
dB; λi are real positive eigenvalues that can be sorted in decreasing order,
and {|ui〉A} and {|vi〉B} form a orthonormal basis for subsystems A and B
respectively.

The analytical way to find the SVD of a given vector as in Eq. 4.1 needs to
start from the tensor ci j , then compute the reduced density matrix for each
subsystem, ρA = TrB|ψ〉AB〈ψ| and ρB = TrA|ψ〉AB〈ψ|, and then perform
two diagonalizations, ρA =

∑χ

i=1λ
2
i |ui〉A〈ui | and ρB =

∑χ

i=1λ
2
i |vi〉B〈vi |. As a
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result, the original vector can be cast in the basis of the eigenvectors {|ui〉A}
and {|vi〉B} of both diagonalizations that share the same eigenvalues. The
sign of each λi can be taken positive as a phase can always be absorbed into
either |ui〉A or |vi〉B.

Note that the Schmidt rank χ is in itself a first measure of entangle-
ment. Furthermore, the usefulness of the SVD can be illustrated by com-
puting the von Neumann entropy S of this state for the A-B bipartition:
S = −Tr (ρA logρA) = −Tr (ρB logρB) = −

∑χ

i=1λ
2
i logλ2

i . It also follows
that all Rényi entropies can be computed once the eigenvalues of the SVD
are known [Rén61]. [Rén61] Rényi, On measures of entropy and

informationThe classical construction of the SVD can only be used on an actual
quantum state after performing its full tomography. Indeed, for a state made
out of n qubits it is necessary to perform measurements in 3n different settings
(i.e. one for each non-commuting combination of tensor products of Pauli
operators {σx ,σy ,σz}) to reconstruct the original tensor ci j [MRL08], and [MRL08] Mohseni et al., “Quantum-process

tomography: Resource analysis of different
strategies”then perform all the computations sketched above. Furthermore, the classical

computation of the entropy to be performed from the tensor describing the
state may get out of reach for large systems since it scales exponentially with
the number of qubits.

4.2 CIRCUIT FOR THE QUANTUM SINGULAR VALUE DECOMPOSITION

In this section, we present a novel way to compute the eigenvalues and
obtain the physical eigenvectors of the SVD of a pure state |ψ〉AB using
a quantum circuit that we shall name QSVD for Quantum Singular Value
Decomposer. Our technique needs copies of the original state.

The key idea of our method is to find a circuit that provides the following
transformation of the original state:

UA⊗ VB |ψ〉AB =
χ
∑

i=1

λi eiαi |ei〉A|ei〉B , (4.3)

where UA|ui〉A = eiβi |ei〉A and VB|vi〉B = eiγi |ei〉B, with αi = βi + γi ∈ [0, 2π);
the i in the exponent is the imaginary unit.

The way to find the desired circuit emerges from the following obser-
vation. Given that the new Schmidt bases for the two subsystems are right
away the computational-basis vectors (up to individual global phases), each
time we perform a measurement, we should find exact output coincidence
between the respective observations in A and B (Figure 4.1). Let us consider
the example of two subspaces of two qubits. Then, if the result in the first
subsystem turns out to be e.g. 00, the result in the second subsystem should
also be 00. There is always a pair of unitaries UA and VB achieving this exact
output coincidence since they simply correspond to a change of basis from
the Schmidt eigenvectors.

Note that the entanglement spectrum between A and B (i.e. the eigenval-
ues {λi} of the reduced density matrices ρA,ρB) has not changed, nor has the
von Neumann entropy. This allows to obtain an estimation of the Schmidt
coefficients {λi}, which will just be the observed, normalized probabilities
for each possible coincident outcome for the two subsystems, obtained from
repeated preparation of the state, application of the QSVD and measurement.
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FIGURE 4.1: Parametrized unitary transformations implementing the Quantum Singular Value
Decomposer (QSVD). Training is based on demanding exact output coincidence for both parties
and for every measurement.

In turn, these coefficients provide several entanglement figures of merit,
such as the von Neumann entropy.

Once the two unitaries UA and VB have been obtained, it is now possible
to reconstruct the vectors that would be needed in the original SVD, up to a
complex phase. They simply correspond to

e−iβi |ui〉A = U†
A |ei〉A , e−iγi |vi〉B = V †

B |ei〉B , (4.4)

where |ei〉 can be created by applying X-gates onto the initial |00...00〉
state at the beginning of the computation. The algorithm has taken the
original state to a very specific form, the one of exact output coincidence, to
determine the unitaries, and then the adjoint of the same unitaries are used
to reconstruct the eigenvectors. The global phases {βi ,γi} are irrelevant in
the characterization of the individual eigenvectors, but if one is interested
in the relative phases between these vectors in the original |ψ〉AB, then one
may need to resort to tomography.

The algorithm we have presented has some extra degrees of freedom.
For the sake of clarity, we explicitly demanded exact output coincidence.
Nevertheless, this is not necessary in a strict sense. It suffices that each
unique output from subsystem A is matched by some other unique output
from subsystem B. This means that there is freedom of permutation for,
say, output from B. Such a permutation is just another unitary on the B
side. However, freedom of permutation (i.e. alternative training) must be
avoided in two further applications of the QSVD (SWAP without quantum
communication and quantum encoder), which we present below. Freedom
of phase, in contrast, does not have any effect on them.

Another obvious comment of the algorithm is related to the possibility
of having partitions with different dimensions. In such a case, the larger
subsystem will have some irrelevant elements in its basis that will never tick
on measurement.



VARIATIONAL QUANTUM SINGULAR VALUE DECOMPOSER 39

4.3 VARIATIONAL QUANTUM SINGULAR VALUE DECOMPOSER

The key role of the exact output coincidence is the guide to construct a quan-
tum circuit to perform this task. Indeed, it is possible to train a variational
version of the QSVD that will approximate the exact QSVD.

We first need to construct the two needed unitaries as a quantum circuit
made of entangling gates and single qubit rotations. This circuit is thus
characterized by a set of classical parameters. We may choose for instance the
architecture shown in Figure 4.2, where all the free parameters correspond to
angles of rotation for single qubits Θ⃗ and Ω⃗ for subsystem A and B respectively.
The variational form of the QSVD reads now

|ψ〉AB
QSV D
−−−→ UA(Θ⃗)⊗ VB(Ω⃗) |ψ〉AB =

χ
∑

i=1

λi eiαi |ei〉A|ei〉B . (4.5)

FIGURE 4.2: Architecture of the variational circuit employed in the QSVD. Several layers of
gates are applied consecutively in order to improve accuracy, and the circuit always ends with
a final set of single-qubit rotations prior to measurement. The notation stands for R(θα,β ,γ)≡
Rz(θα)Rx(θβ )Rz(θγ). If the number of qubits is odd in a given subsystem, then an extra CZ
between the first and last qubit of the subsystem is added after each complete rotation.

At the outset, random values for the parameters might be used, and
the circuit does not issue states that show exact output coincidence for
all measurements. A figure of merit for the wrong answer is simply the
total amount of non-coincidental measurement outcomes, which shall be
minimized. In order to help accelerate convergence, different outcomes for
each subsystem may be penalized by their Hamming distance, which is just
the number of symbols that are different in the binary representation of the
two results. Thus, the cost function C to be minimized simply is

C ≡
∑

j

dH(M
A
j , M B

j )≡
∑

q

1− 〈σq,A
z σ

q,B
z 〉

2
, (4.6)

where dH denotes the Hamming distance and MA,B
j are the results of the j-th

measurement in the computational basis for A and B, respectively. Equiva-
lently, it can also be defined in terms of 2-local σz Pauli operators, where
the index q runs over all the qubits in the smallest subsystem. We may
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now apply machine learning techniques to find the optimal parameters that
provide exact output coincidence. Notice that this cost function has a value
of zero if and only if the Singular Value Decomposition is successfully com-
pleted. Note as well that it is defined in terms of 2-local observables, and
therefore, it does not suffer, for shallow quantum circuits, from the problem
of exponentially vanishing gradients [Cer+21b]. We emphasize that there[Cer+21b] Cerezo et al., “Cost function

dependent barren plateaus in shallow
parametrized quantum circuits” is no need to perform any tomography nor to involve any measurement of

non-trivial observables. This simplification is related to the fact that there
is no need to measure any relative phase. Therefore, the QSVD implies an
exponential reduction in the number of measurement settings compared to
state tomography, which requires 3n.

The convergence of the method depends on two distinct elements. First,
the potential convergence of a variational QSVD to the exact QSVD is con-
trolled by the Solovay-Kitaev theorem [Kit+02]. Indeed, we are just looking[Kit+02] Kitaev et al., Classical and Quan-

tum Computation for an approximation to a unitary using a complete set of gates. This means
that there exists a quantum circuit that approximates the desired unitary
with error δ, i.e., |Uexact−U(Θ⃗)|< δ, with a number of gates k that scales as
k ∼ logc 1

δ , with 1≤ c < 4, for a fixed number of qubits [HRC02]. In other[HRC02] Harrow et al., “Efficient discrete
approximations of quantum gates” words, the error in the unitary may potentially decrease exponentially with

the depth of the circuit for a fixed number of qubits. This, in practice, will
depend on the circuit ansatz and the success of the optimization procedure.
The number of layers of the variational circuit has to increase polynomially
with the system size. Under these conditions, a classical search algorithm
needs only to explore a polynomial number of dimensions. Finding the
optimal parameters may nonetheless encounter exponentially vanishing
gradients [McC+18] or local minima for deep quantum circuits, that need to[McC+18] McClean et al., “Barren plateaus

in quantum neural network training land-
scapes” be circumvented using appropriate optimization strategies [WHT15; GSL18;

[WHT15]Wecker et al., “Progress towards
practical quantum variational algorithms”

[GSL18] Garcia-Saez and Latorre, “Address-
ing hard classical problems with adiabat-
ically assisted variational quantum eigen-
solvers”

Mol+18; Gra+19; Küb+20].

[Mol+18] Moll et al., “Quantum optimiza-
tion using variational algorithms on near-
term quantum devices”

[Gra+19] Grant et al., “An initialization
strategy for addressing barren plateaus in
parametrized quantum circuits”

[Küb+20] Kübler et al., “An adaptive opti-
mizer for measurement-frugal variational
algorithms”

Second, the QSVD samples from a multinomial distribution. As such, the
additive error for each output probability pi scales as

p

pi(1− pi)/s, where
s is the number of samples. The total number of measurements is related to
the error which is aimed at, which in turn will depend on the Schmidt rank.
We may then consider two different cases: (i) the Schmidt rank increases
polynomially with the number of qubits, and (ii) the Schmidt rank increases
exponentially with the number of qubits. In the first case (i), only a poly(n)
number of measurements is needed to achieve a low relative error, whereas,
in a worst-case scenario (ii), this number is exponential if one is to estimate
all eigenvalues with a low relative error. The latter case follows naturally
from the fact that we are asking for an exponential amount of information.
However, many physically relevant states, e.g. in condensed matter systems,
do not exhibit an exponentially large Schmidt rank [Ami+08].[Ami+08] Amico et al., “Entanglement in

many-body systems” The variational approach to the QSVD can be verified on a simulation.
For instance, we have considered random states with ci j = ai j + i bi j such
that ai j and bi j are random real numbers between -0.5 and 0.5, further
restricted by a global normalization. These states tend to have very large
entanglement [BŻ17]. We have simulated states with a total number of 6[BŻ17] Bengtsson and Życzkowski, Geom-

etry of quantum states: an introduction to
quantum entanglement qubits and natural bipartition, disregarding the presence of experimental

noise and the impact of finite sampling. We have analyzed 500 instances for
the 1 and 2 layers case and 200 instances for the 3, 4, and 5 layers case. The
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classical method employed in the optimization loop was L-BFGS-B, which is
gradient-based and involves the estimation of the inverse Hessian matrix.
We utilized the implemented version of the open-source Python package
SciPy Optimize [Vir+20]. The mean number of optimization steps is of the [Vir+20] Virtanen et al., “SciPy 1.0: funda-

mental algorithms for scientific computing
in Python”order of a few hundred.

The basic unit-cell or layer of the variational ansatz employed in the
simulations is shown in Figure 4.2. These layers are used as buildings blocks
to construct deeper circuits by consecutively applying the architecture of the
single layer, followed by a final set of single-qubit rotations. The number
of layers on a circuit controls the accuracy of the estimation, as previously
discussed. One layer has depth 8 (10 if the number of qubits of a subsystem
is odd), so the depth of the circuit as a function of the number l of layers is
8l + 3 (10l + 3). The total number of 1-qubit gates is 6ln+ 3n, where n is
the number of qubits, and that of 2-qubit gates is ln (ln+ 2l). Therefore,
depth and number of gates are efficient in both the number of qubits and
the number of layers.

Figure 4.3 left shows the entanglement entropy computed from the
trained QSVD circuit vs. the exact entropy. As suggested by the Solovay-
Kitaev theorem, we observe fast convergence of results for every instance
we have analyzed (Figure 4.3 right). The variational circuit approaches the
exact result as we increase the number of layers, whatever the entanglement
is. In this respect, it is worth mentioning that we have also analyzed Absolute
Maximally Entangled (AME) states [CLLG19], for which the convergence of [CLLG19] Cervera-Lierta et al., “Quantum

circuits for maximally entangled states”the variational QSVD is fast and faithful.

FIGURE 4.3: Left: Von Neumann entropy computed from the variational form of QSVD vs. exact entropy, for random states (including a
product state and AME state) of 6 qubits and natural bipartition. As the number of layers increases, we observe convergence towards
the exact entropy. Right: Mean relative error in the estimation of the entropy vs. number of layers (error bars represent the standard
deviation). The error decreases exponentially with the depth of the circuit, as suggested by the Solovay-Kitaev theorem.

4.4 ADDITIONAL APPLICATIONS

4.4.1 SWAP with classical communication

A peculiar spinoff of the QSVD circuit is the possibility of performing a SWAP
operation between parties A and B without using any gate that connects
both subsystems. This is in contrast with the standard SWAP, where each
pair of swapped qubits would need a series of CNOT gates.
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FIGURE 4.4: Application of the QSVD followed by the adjoint U† and V † gates acting on opposite
subsystems, mediated by classical communication (CC) of the optimal parameters, allows to
perform a long-distance SWAP operation without the need of any quantum communication
between subsystems.

The idea is shown in Figure 4.4. It is enough to apply the QSVD to |ψ〉AB ,
then apply the adjoint U† and V † gates but acting on the opposite subsystem.
That is:

(V †
A ⊗ U†

B) (UA⊗ VB) |ψ〉AB = |ψ〉BA . (4.7)

The implementation of the adjoint unitaries only needs classical communi-
cation between parties A and B since each unitary is characterized by a set
of classical parameters. Notice as well that none of the gates will ever cross
the barrier between the two systems.

Performing a SWAP without quantum communication opens the possi-
bility of swapping at long distances. Let us imagine Alice and Bob received
their pieces of a given common state. They can then measure their copies
and notify their results publicly. Without further communication, they can
improve their variational QSVD. After several iterations, they will observe
exact coincidence. Both parties can then communicate the characterization
of their respective unitaries classically and run once more the QSVD adding
the adjoint exchanged gates at the end. They will then have achieved a long-
distance SWAP without quantum interaction. Of course, standard SWAP is
much more powerful as it acts on a single copy of any unknown state. The
price to be paid is the need for entangling gates across the two subsystems.

4.4.2 Quantum singular value decomposer as an encoder

The QSVD algorithm has a further spinoff. Let us consider, for the sake of
simplicity, a system of n qubits where we apply the QSVD algorithm to a given
bipartition. If we consider the final state of the circuit, the exact coincidence
of the parties can be used to set to |0〉 all the qubits of e.g. party A. It is only
needed to apply a CNOT between each pair of coincident qubits controlled
at A and targeted to B, as illustrated in Figure 4.5. The QSVD plus a series of
CNOTs corresponds to a quantum encoder designed to compress the initial
state onto (CNOT1 . . . CNOTn/2) (UA ⊗ VB) |ψ〉AB = |00 . . . 0〉A |φ〉B , where
|φ〉B =

∑χ

i=1λi eiαi |ei〉B . All the information of the original state has been
packed into one subsystem. The circuit being unitary, this encoding can be
exactly decoded back onto the total system.

The same idea can be reversed. Let us imagine that we are interested in
creating a random state that displays a very precise entanglement structure.
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FIGURE 4.5: Further use of CNOT gates makes QSVD an encoder of the original quantum state
|ψ〉AB onto one of its parts |φ〉B .

The procedure would be to first manage to create the following superposition
on a subsystem |ψ〉A =

∑

i λi eiαi |ei〉A. Then a series of CNOTs connecting
each qubit to an ancilla would lead to |ψ〉AB =

∑

i λi eiαi |ei〉A|ei〉B. Finally,
the state can be randomized by taking arbitrary unitaries on A and B.

4.5 OUTLOOK

We have presented a novel algorithm, QSVD, that provides Schmidt eigen-
values and eigenvectors of any bipartite pure state, given many copies of
it. Its key idea can be traced to demand exact output coincidence on any
measurement of the two parties that make the system.

The QSVD can be used to analyze the entanglement which is present in
the result of any algorithm. For instance, if a variational quantum circuit is
trained to minimize the energy of e.g. the Ising model, the final result can
be run with the addition of the variational form of QSVD. The results would
then allow to check the logarithmic growth of the entropy at criticality.

The QSVD seems to be a natural structure to achieve a number of quan-
tum tasks. Here we have analyzed the possibility to achieve a SWAP op-
eration without any gate that connects qubits from both sides of the state.
We have also shown that QSVD plus a series of CNOTs is tantamount to a
quantum encoder.

Finally, let us mention that after the realization of this work, other
variational quantum algorithms have been proposed. On the one hand,
Ref. [Cer+20a] addresses the general case when the quantum states are [Cer+20a] Cerezo et al., “Variational Quan-

tum State Eigensolver”described as density matrices. On the other hand, in Ref. [WSW21], the
[WSW21]Wang et al., “Variational quantum
singular value decomposition”

authors propose a different loss function inspired by properties of singular
values.





5
Solving linear systems of equations

“It does not say in the Bible that all laws of
nature are expressible linearly!”

—Enrico FermiLinear systems of equations play an important role in many areas of science
and technology, including machine learning [Bis06; Alp10], solving partial

[Bis06] Bishop, Pattern Recognition and Ma-
chine Learning

[Alp10] Alpaydin, Introduction to Machine
Learning

differential equations [Eva10], fitting polynomial curves [Bre95], and ana-

[Eva10] Evans, Partial differential equations

[Bre95] Bretscher, Linear Algebra With Ap-
plications

lyzing electrical circuits [SS11]. In the past decade, significant attention has

[SS11] Spielman and Srivastava, “Graph
Sparsification by Effective Resistances”

been given to the possibility of solving linear systems on quantum computers.
Classically solving an N × N linear system (N equations for N unknowns)
scales polynomially in N . In contrast, Harrow-Hassidim-Lloyd (HHL) intro-
duced a quantum algorithm that scales logarithmically in N , suggesting that
quantum computers may provide an exponential speedup for certain linear
system problems [HHL09]. More precisely, the HHL algorithm treats the

[HHL09]Harrow et al., “Quantum algorithm
for linear systems of equations”

Quantum Linear Systems Problem (QLSP), where the goal is to prepare a
quantum state |x〉 that is proportional to a vector x⃗ that satisfies the equation
Ax⃗ = b⃗. If both A and b⃗ are sparse, then for a fixed precision ε in the solution,
the complexity of HHL scales polynomially in log N and κ, where κ is the
condition number of A, i.e., the ratio of the largest to the smallest singular
value. Further improvements to HHL have reduced the complexity to lin-
ear κ scaling [Amb10; SSO19] and polylogarithmic scaling in 1/ε [CKS17; [Amb10] Ambainis, “Variable time ampli-

tude amplification and a faster quantum al-
gorithm for solving systems of linear equa-
tions”

[SSO19] Subaşı et al., “Quantum Algorithms
for Systems of Linear Equations Inspired by
Adiabatic Quantum Computing”

[CKS17] Childs et al., “Quantum Algorithm
for Systems of Linear Equations with Expo-
nentially Improved Dependence on Preci-
sion”

CGJ18], as well as improved the sparsity requirements [WZP18].

[CGJ18] Chakraborty et al., “The power of
block-encoded matrix powers: improved re-
gression techniques via faster Hamiltonian
simulation”

[WZP18] Wossnig et al., “Quantum Linear
System Algorithm for Dense Matrices”

The aforementioned quantum algorithms hold promise for the future
when large-scale quantum computers exist with enough qubits for quantum
error correction. The timescale for such computers remains an open ques-
tion but is typically estimated to be on the order of two decades. On the
other hand, commercial quantum computers currently exist with ∼ 50 noisy
qubits, with the number of qubits rapidly increasing. A crucial question is
how to make use of such noisy intermediate-scale quantum (NISQ) comput-
ers [Pre18]. In principle, one can implement the aforementioned quantum
algorithms on NISQ devices; however, noise limits the problem size to be
extremely small. For example, the HHL algorithm has been implemented
with superconducting qubits [Zhe+17; LJL19], nuclear magnetic resonance
(NMR) [Pan+14], and photonic devices [Cai+13; Bar+14], but these experi-
ments were limited to a problem size of 2× 2. More recently, an alternative
approach based on an adiabatic-inspired quantum algorithm [SSO19] was [SSO19] Subaşı et al., “Quantum Algorithms

for Systems of Linear Equations Inspired by
Adiabatic Quantum Computing”implemented with NMR for an 8×8 problem, and this appears to be the cur-

rent record for the largest linear system solved with a gate-based quantum
computer [Wen+19].

45
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As discussed in previous chapters, an interesting strategy to make use
of NISQ devices is to employ variational quantum algorithms (VQAs). Re-
call that VQAs manage to reduce quantum circuit depth at the expense
of additional classical optimization. Specifically, VQAs employ a short-
depth quantum circuit to efficiently evaluate a cost function, which de-
pends on the parameters of a quantum gate sequence and then leverage
well-established classical optimizers to minimize this cost function. For
example, while Shor’s algorithm for factoring is not a near-term algorithm,
recently, a VQA for factoring was introduced, potentially making factor-
ing nearer term [Ans+19]. Other VQAs have been proposed for chem-[Ans+19] Anschuetz et al., “Variational

quantum factoring” istry [Per+14; Cao+19; HWB19; Jon+19; Pra+21], simulation [LB17;
Kok+19; Hey+19; Yua+19; Cî+20; BVC21; Tan+22], compiling [Kha+19b;[Kha+19b] Khatri et al., “Quantum-assisted

quantum compiling” JB22], quantum foundations [Arr+19], anomaly detection [Kot+21], error
[JB22] Jones and Benjamin, “Robust quan-
tum compilation and circuit optimisation via
energy minimisation”

[Arr+19] Arrasmith et al., “Variational con-
sistent histories as a hybrid algorithm for
quantum foundations”

[Kot+21] Kottmann et al., “Variational quan-
tum anomaly detection: Unsupervised map-
ping of phase diagrams on a physical quan-
tum computer”

correction [Joh+17; LCM22], fidelity estimation [Cer+20b; Che+21], and

[Joh+17] Johnson et al., “QVECTOR: an al-
gorithm for device-tailored quantum error
correction”

[LCM22] Locher et al., “Quantum Error Cor-
rection with Quantum Autoencoders”

[Cer+20b] Cerezo et al., “Variational quan-
tum fidelity estimation”

[Che+21] Chen et al., “Variational quantum
algorithms for trace distance and fidelity es-
timation”

metrology [Koc+20].

[Koc+20] Koczor et al., “Variational-state
quantum metrology”

In this chapter, we propose a VQA for solving the QLSP. This algorithm,
called the Variational Quantum Linear Solver (VQLS), employs a cost func-
tion that quantifies either the global or local closeness of the quantum states
A |x〉 and |b〉, where the latter is a normalized version of b⃗. We also provide
efficient quantum circuits to estimate the cost functions. Furthermore, we
derive operational meaning for our cost functions, as upper bounds on ε2/κ2.
This is crucial since it gives a termination criterion for VQLS that guarantees
a desired precision ε.

It is important to emphasize that all VQAs are heuristic algorithms,
making rigorous complexity analysis difficult. Nevertheless, our numerical
simulations (without finite sampling, and both for specific A and for randomly
chosen A) indicate that the run time of VQLS scales efficiently in κ, ε, and
N . Namely, we find evidence of (at worst) linear scaling in κ, logarithmic
scaling in 1/ε, and polylogarithmic scaling in N .

We employ Rigetti’s Quantum Cloud Services1 to implement VQLS. With

1Rigetti’s cloud access through Amazon
Web Services, Feb. 2022.

their quantum hardware, we were able to successfully solve a particular
linear system of size 1024× 1024. We are therefore optimistic that VQLS
could provide a near-term approach to the QLSP.

5.1 VARIATIONAL QUANTUM LINEAR SOLVER

Figure 5.1 shows a schematic diagram of the VQLS algorithm. The input to
VQLS is: (1) an efficient gate sequence U that prepares a quantum state |b〉
that is proportional to the vector b⃗, and (2) a decomposition of the matrix A
into a linear combination of L unitaries of the form

A=
L
∑

l=1

clAl , (5.1)

where the Al are unitaries, and the cl are complex numbers. The assumption
that A is given in this form is analogous to the assumption that the Hamilto-
nian H in the variational quantum eigensolver [Per+14] is given as a linear[Per+14] Peruzzo et al., “A variational eigen-

value solver on a photonic quantum proces-
sor” combination of Pauli operators H =

∑L
l=1 clσl , where naturally one makes

the assumption that L is only a polynomial function of the number of qubits,

https://aws.amazon.com/es/braket/quantum-computers/rigetti/
https://aws.amazon.com/es/braket/quantum-computers/rigetti/
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Quantum computer Classical computer

Input
Output

and

FIGURE 5.1: Schematic diagram for the VQLS algorithm. The input to VQLS is a matrix A written as a linear combination of unitaries Al
and a short-depth quantum circuit U which prepares the state |b〉. The output of VQLS is a quantum state |x〉 that is approximately
proportional to the solution of the linear system Ax⃗ = b⃗. Parameters α⃗ in the ansatz V (α⃗) are adjusted in a hybrid quantum-classical
optimization loop until the cost C(α⃗) (local or global) is below a user-specified threshold. When this loop terminates, the resulting gate
sequence V (α⃗opt) prepares the state |x〉= x⃗/|| x⃗ ||2, from which observable quantities can be computed. Furthermore, the final value of
the cost C(α⃗opt) provides an upper bound on the deviation of observables measured on |x〉 from observables measured on the exact
solution.

n. Additionally, we assume κ <∞ and ||A|| ≤ 1, and that the Al unitaries
can be implemented with efficient quantum circuits.

With this input, the Quantum Linear Systems Problem (QLSP) is to
prepare a state |x〉 such that A |x〉 is proportional to |b〉. To solve this
problem, VQLS employs an ansatz for the gate sequence V (α⃗) that prepares
a potential solution |x(α⃗)〉 = V (α⃗) |0⃗〉. The parameters α⃗ are input to a
quantum computer, which prepares |x(α⃗)〉 and runs an efficient quantum
circuit that estimates a cost function C(α⃗). The precise details of the cost
function and its estimation are discussed below. We simply remark here that
C(α⃗) quantifies how much component A |x〉 has orthogonal to |b〉. The value
of C(α⃗) from the quantum computer is returned to the classical computer
which then adjusts α⃗ (via a classical optimization algorithm) in an attempt
to reduce the cost. This process is iterated many times until one reaches
a termination condition of the form C(α⃗) ≤ γ, at which point we say that
α⃗= α⃗opt.

VQLS outputs the parameters α⃗opt, which can then be used to prepare the
quantum state |x(α⃗opt)〉 = V (α⃗opt) |0⃗〉. One can then measure observables
of interest on the state |x(α⃗opt)〉 in order to characterize the solution vector.
Due to the operational meaning of our cost function (discussed below), one
can upper bound the deviation of observable expectation values for |x(α⃗opt)〉
from those of the true solution, based on the value of the cost function.
Hence, before running VQLS, one can decide on a desired error tolerance ε,
where

ε= (1/2)Tr | |x0〉〈x0| − |x(α⃗opt)〉〈x(α⃗opt)| | (5.2)

is the trace distance between the exact solution |x0〉 and the approximate
solution |x(α⃗opt)〉. This ε then translates into a threshold value γ that the
final cost C(α⃗opt) must achieve (see Eq. 5.10 for the relation between ε and
γ).

5.1.1 Cost functions

For simplicity, we write |x(α⃗)〉 as |x〉 henceforth. Here we discuss several
reasonable cost functions. A simple, intuitive cost function involves the
overlap between the (unnormalized) projector |ψ〉〈ψ|, with |ψ〉 = A |x〉, and
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the subspace orthogonal to |b〉, as follows:

bCG = Tr(|ψ〉〈ψ| (1− |b〉〈b|)) = 〈x |HG |x〉 . (5.3)

We note that one can view this cost function as the expectation value of an
effective Hamiltonian

HG = A†(1− |b〉〈b|)A , (5.4)

which is similar to the final Hamiltonian in Ref. [SSO19]. The bCG function is[SSO19] Subaşı et al., “Quantum Algorithms
for Systems of Linear Equations Inspired by
Adiabatic Quantum Computing” small if |ψ〉 is nearly proportional to |b〉 or if the norm of |ψ〉 is small. The

latter does not represent a true solution, and hence to deal with this, one
can divide bCG by the norm of |ψ〉 to obtain

CG = bCG/〈ψ|ψ〉= 1− |〈b|Ψ〉|2 , (5.5)

where |Ψ〉= |ψ〉/
p

〈ψ|ψ〉 is a normalized state.
We emphasize that global cost functions such as those in Eqs. 5.3 and

5.5 can exhibit barren plateaus, i.e., cost function gradients that vanish
exponentially in the number of qubits n, see Ref. [Cer+21b]. To improve[Cer+21b] Cerezo et al., “Cost function

dependent barren plateaus in shallow
parametrized quantum circuits” trainability for large n, one can introduce local versions of these costs, as

follows:

bCL = 〈x |HL |x〉 , CL = bCL/〈ψ|ψ〉 , (5.6)

where the effective Hamiltonian is

HL = A†U

 

1−
1
n

n
∑

j=1

|0 j〉〈0 j | ⊗1 j

!

U†A , (5.7)

with |0 j〉 the zero state on qubit j and 1 j the identity on all qubits except
qubit j. One can show that

bCL ≤ bCG ≤ nbCL , CL ≤ CG ≤ nCL , (5.8)

which implies that bCL = 0↔ bCG = 0 and CL = 0↔ CG = 0. We assume
that κ is not infinite (i.e., that A is full rank) and hence that 〈ψ|ψ〉 ≠ 0.
This implies that all four cost functions vanish under precisely the same
conditions, namely, when |ψ〉 ∝ |b〉, which is the case when |x〉 is a solution
to the QLSP.

Let us provide a proof for Eq. 5.8. For the lower bound, letΠG = 1−|0⃗〉〈0⃗|
and ΠL = 1−

1
n

∑n
j=1 |0 j〉〈0 j | ⊗1 j . Using the fact that |0 j〉〈0 j | ⊗1 j ≥ |0⃗〉〈0⃗|,

we have ΠG ≥ ΠL and hence HG ≥ HL . This implies that bCG ≥ bCL and
CG ≥ CL .

For the upper bound, note that ΠG =
∑

z⃗ ̸=0⃗ |z⃗〉〈z⃗|. Let S j denote the set
of all bitstrings that have a one at position j, and let S =

⋃

j S j denote the
union of all of these sets. Then

nΠL =
∑

j

∑

z⃗∈S j

|z⃗〉〈z⃗| ≥
∑

z⃗∈S
|z⃗〉〈z⃗|=

∑

z⃗ ̸=0⃗

|z⃗〉〈z⃗|= ΠG . (5.9)

Hence we have nHL ≥ HG , which implies nbCL ≥ bCG and nCL ≥ CG .
Equation 5.8 implies the faithfulness of the cost functions as follows.

Because ΠG ≥ 0 and ΠL ≥ 0, we have that all four cost functions are
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FIGURE 5.2: Comparison of local CL and global CG cost performance. Here we consider the QLSP
of Eq. 5.28 for different system sizes. In all cases κ = 20. For each n ∈ {10, . . . , 50}, we plot the
cost value versus the number of cost function evaluations. As n increases it becomes increasingly
hard to train to global cost function. At n = 50, our optimization cannot significantly lower CG
below a value of one. On the other hand, we are able to train CL for all values of n considered.

non-negative. Furthermore, it is clear that if A |x〉 = |b〉, then we have
bCG = CG = bCL = CL = 0. Conversely, assuming that A |x〉 ≠ |b〉 implies that
CG > 0 and hence that all four cost functions are positive. Therefore, all
four cost functions are faithful, vanishing if and only if A |x〉= |b〉.

For illustrative purposes, in Figure 5.2 we show that, as n increases, it
becomes increasingly hard to optimize the global cost function CG . On the
other hand, the local cost function CL performs significantly better, as we
are able to train CL for systems of size up to 250 × 250 (i.e., with 50 qubits).
These results show that the vanishing gradients of global cost functions
could make them untrainable for large n, and hence we propose using our
local cost functions for large-scale implementations.

5.1.2 Operational meaning of cost functions

Here we provide operational meanings for the aforementioned cost func-
tions. These operational meanings are crucial since they allow one to define
termination conditions for VQLS in order to achieve a desired precision. In
particular, we find that the following bounds hold in general:

bCG ≥
ε2

κ2
, CG ≥

ε2

κ2
, bCL ≥

1
n
ε2

κ2
, CL ≥

1
n
ε2

κ2
. (5.10)

Note that one can take the right-hand-sides of these inequalities as the γ
quantity shown in Figure 5.1.

We remark that, for CG and CL , the bounds in Eq. 5.10 can be tightened
(by using the bounds on bCG and bCL in Eq. 5.10) as follows:

CG ≥
ε2

κ2〈ψ|ψ〉
, CL ≥

1
n

ε2

κ2〈ψ|ψ〉
. (5.11)

Here, 〈ψ|ψ〉 is experimentally computable (see Eq. 5.15 below) and satisfies
〈ψ|ψ〉 ≤ 1. Hence, when training CG or CL , one can employ the right-
hand-sides of Eq. 5.11 as opposed to those of Eq. 5.10 as the termination
condition γ.
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Furthermore, one can employ the operational meaning of the trace
distance [NC11] to note that, for any POVM element M , we have ε≥ D(M),[NC11] Nielsen and Chuang, Quantum Com-

putation and Quantum Information: 10th
Anniversary Edition where

D(M) = |〈x |M |x〉 − 〈x0|M |x0〉| (5.12)

measures the difference between expectation values on |x〉 and |x0〉.
Let us now provide a proof for Eq. 5.10. Consider first that bCG = 〈HG〉,

with the eigenstates and eigenvalues of HG denoted by {|x i〉} and {Ei},
respectively for i = 0,1, . . . . By construction |x0〉 is the ground state of HG

with E0 = 0. In what follows we assume for simplicity that |x1〉 is non-
degenerate, although the same proof approach works for the degenerate
case.

It is clear that for a given ε, the smallest energy 〈HG〉 (hence cost)
is achieved if the state |x〉 is a superposition of |x0〉 and |x1〉 only. One
can see this by expanding an arbitrary state |x〉 in the energy eigenbasis,
|x〉 =

∑

i χi |x i〉, and noting that ε depends only on the magnitude of χ0.
Hence for a fixed ε, one is free to vary the set of coefficients {χi}i ̸=0, and the
set that minimizes the energy corresponds to choosing χi = 0 for all i > 1.

So we take:

|x〉= cos(θ/2) |x0〉+ eiφ sin(θ/2) |x1〉 , (5.13)

and the associated energy is given by

〈x |HG |x〉= E1 sin2(θ/2)≥
sin2(θ/2)
κ2

, (5.14)

where we used the fact that E0 = 0, and that the first excited state energy
satisfies E1 ≥ 1/κ2 (which was shown in Ref. [SSO19]). The trace distance[SSO19] Subaşı et al., “Quantum Algorithms

for Systems of Linear Equations Inspired by
Adiabatic Quantum Computing” between |x〉 and |x0〉 can be easily computed as

p

1− |〈x |x0〉|2, which
results in ε = | sin(θ/2)|. Inserting this into Eq. 5.14 yields bCG ≥ ε2/κ2. The
remaining inequalities in Eq. 5.10 follow from Eq. 5.8 and from the fact
that 〈ψ|ψ〉 ≤ 1, which implies CG ≥ bCG .

5.1.3 Cost evaluation

In principle, all the aforementioned cost functions can be efficiently evalu-
ated using the Hadamard Test circuit and simple classical post-processing.
However, in practice, care must be taken to minimize the number of con-
trolled operations in these circuits. Consider evaluating the term 〈ψ|ψ〉,
which can be written as

〈ψ|ψ〉=
∑

l l ′
cl c
∗
l ′βl l ′ , (5.15)

with

βl l ′ = 〈0⃗|V †A†
l ′Al V |0⃗〉. (5.16)

There are L(L − 1)/2 different βl l ′ terms that one needs to estimate and
which can be measured with Hadamard Tests. The Hadamard Test involves
acting with V on |0⃗〉, and then using an ancilla as the control qubit, applying
CAl

followed by CA†
l′
, where CW denotes controlled-W (see Figure 5.3 for

precise circuits).
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FIGURE 5.3: a) Circuit for the Hadamard Test used to compute the coefficients βl l′ = 〈0⃗|V †A†
l′Al V |0⃗〉 and calculate the inner product 〈ψ|ψ〉

of 5.15. The phase gate in the colored box is excluded when calculating the real part of βl l′ and included when calculating its imaginary
part. b) Hadamard-Overlap Test used to compute the coefficients γl l′ defined in 5.18. The Overlap circuit of Refs. [GECP13; Cin+18]
is indicated in the dashed box. Here, the Rz gate in the colored box denotes a rotation about the z axis of an angle −π/2. Excluding
(including) this rotation allows one to calculate the real (imaginary) part of γl l′ . As explained in the text, additional post-processing is
required. c) Hadamard Test circuit for computing δ( j)l l′ as defined in 5.21. Shown here is case when j = 1.

In addition, for bCG and CG , one needs to evaluate

|〈b|ψ〉|2 = |〈0⃗|U†AV |0⃗〉|2 =
∑

l l ′
cl c
∗
l ′γl l ′ , (5.17)

with

γl l ′ = 〈0⃗|U†Al V |0⃗〉〈0⃗|V †A†
l ′U |0⃗〉. (5.18)

The γl l terms are easily estimated by applying U†Al V to |0⃗〉 and then mea-
suring the probability of the all-zeros outcome. For the L(L − 1)/2 terms
with l ̸= l ′, there are various strategies to estimate γl l ′ . For example, one
could estimate the L terms of the form 〈0⃗|U†Al V |0⃗〉 with a Hadamard Test,
but one would have to control all of the unitaries: V , Al , and U†. Instead,
we introduce a novel circuit called the Hadamard-Overlap Test that directly
computes γl l ′ without having to control V or U at the expense of doubling
the number of qubits. This circuit is shown in Figure 5.3.

Finally, for bCL and CL , one needs to estimate terms of the form

δ
( j)
l l ′ = 〈0⃗|V

†A†
l ′U(|0 j〉〈0 j | ⊗1 j)U

†Al V |0⃗〉 . (5.19)

These terms can either be estimated with the Hadamard-Overlap Test or
with the Hadamard Test, which are discussed below.

▶ HADAMARD TEST. Figure 5.3(a) shows a Hadamard Test which can be used to
measure the coefficients βl l ′ defined in 5.16, and used to compute Eq. 〈ψ|ψ〉
as in Eq. 5.15. When the phase gate is excluded, the probability of measuring
the ancilla qubit in the |0〉a state is P(0) = (1 + Re[βl l ′])/2, while the
probability of measuring it in the |1〉a state is P(1) = (1−Re[βl l ′])/2. Hence,
by means of the Hadamard Test we can compute the real part of βl l ′ as

Re[βl l ′] = P(0)− P(1) . (5.20)

With a similar argument, it can be easily shown that by including the phase
gate, one can compute Im [βl l ′].

As we now show, in order to compute the coefficients δ( j)l l ′ in Eq. 5.19 we
can use the previous result combined with those obtained by means of the
Hadamard test of Figure 5.3(c). In particular, since |0 j〉〈0 j |= (1 j + Z j)/2,
then we can express

δ
( j)
l l ′ = βl l ′ + 〈0⃗|V †A†

l ′U(Z j ⊗1 j)U
†Al V |0⃗〉 . (5.21)
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Hence, in order to calculate δ( j)l l ′ one only needs to measure the real and
imaginary parts of the matrix elements 〈0⃗|V †A†

l ′U(Z j ⊗1 j)U
†Al V |0⃗〉, which

can be accomplished by means of the circuit in Figure 5.3(c).

▶ HADAMARD-OVERLAP TEST. Consider the circuit in Figure 5.3(b), which we
refer to as the Hadamard-Overlap Test. A nice feature of the Hadamard-
Overlap Test is that it only requires one application of both U and V , and
these unitaries do not need to be controlled, in contrast to the Hadamard
Test. As explained below, the circuit for the Hadamard-Overlap Test can
be obtained by combining the Hadamard Test with the Overlap circuit of
Refs. [GECP13; Cin+18]. This circuit requires 2n+ 1 qubits and classical[GECP13] Garcia-Escartin and Chamorro-

Posada, “Swap test and Hong-Ou-Mandel
effect are equivalent”

[Cin+18] Cincio et al., “Learning the quan-
tum algorithm for state overlap”

post-processing (which scales linearly with n) similar to that of the Overlap
circuit, except that here we add a conditional statement.

When the Rz gate in Figure 5.3(b) is excluded, and conditioning the
measurement on the ancilla qubit to yield the |0〉a state, we can perform the
depth-two Overlap circuit between registers S1 and S2 to get

P(0) =
1
2
(〈0⃗|U†V |0⃗〉〈0⃗|V †U |0⃗〉

+ 〈0⃗|U†Al ′Al V |0⃗〉〈0⃗|V †A†
l A

†
l ′U |0⃗〉 (5.22)

+Re
�

〈0⃗|U†Al V |0⃗〉〈0⃗|V †A†
l ′U |0⃗〉

�

) .

On the other hand, by conditioning the ancilla qubit being measured in the
state |1〉a, we perform the Overlap circuit between subsystems S1 and S2 to
obtain

P(1) =
1
2
(〈0⃗|U†V |0⃗〉〈0⃗|V †U |0⃗〉

+ 〈0⃗|U†Al ′Al V |0⃗〉〈0⃗|V †A†
l A

†
l ′U |0⃗〉 (5.23)

−Re
�

〈0⃗|U†Al V |0⃗〉〈0⃗|V †A†
l ′U |0⃗〉

�

) .

Then, combining Eqs. 5.22 and 5.23 yields

Re[γl l ′] = P(0)− P(1) . (5.24)

Following a similar procedure, it can be shown that including the Rz gate
allows us to calculate Im [γl l ′].

Note that the Hadamard-Overlap test can also be used to compute the
real and imaginary parts of δ( j)l l ′ in Eq. 5.19. In this case an additional random
unitary R j must be initially applied to the qubits in register S2 in order to
generate the input state |0 j〉〈0 j | ⊗ 1 j . Specifically, R j randomly applies a
bit-flips to all qubits except qubit j:

R j = X r1
1 ⊗ X r2

2 ⊗ · · · ⊗1
r j

j ⊗ · · · ⊗ X rn
n , (5.25)

with r⃗ = r1, r2 . . . , rn a random bitstring of length n.

5.1.4 Ansatz

In the VQLS algorithm, |x〉 is prepared by acting on the |0⃗〉 state with
a trainable gate sequence V (α⃗). Without loss of generality, V (α⃗) can be
expressed in terms of L gates from a gate alphabet A = {Gk(α)} as

V (α⃗) = GkL
(αL) . . . Gki

(αi) . . . Gk1
(α1) . (5.26)
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FIGURE 5.4: Fixed-structure layered Hardware-Eficient Ansatz for V (α⃗). As indicated by
the dashed box, each layer is composed of controlled-Z gates acting on alternating pairs of
neighboring qubits which are preceded and followed by single qubit rotations around the
y-axis, R y (αi) = e−iαi Y /2. Shown is the case of four layers and n= 10 qubits. The number of
variational parameters and gates scales linearly with n: for n= 50, four layers of this ansatz
consist of 640 gates and 440 variational parameters.

Here k⃗ = (kL , . . . , k1) identifies the types of gates and their placement in the
circuit (i.e., on which qubit they act), while α⃗ are continuous parameters.
When working with specific quantum hardware, it is convenient to choose a
Hardware-Efficient Ansatz [Kan+17], where A is composed of gates native [Kan+17] Kandala et al., “Hardware-

efficient variational quantum eigensolver for
small molecules and quantum magnets”to that hardware. This reduces the gate overhead that arises when imple-

menting the algorithm in the actual device. We use the term “fixed-structure
ansatz” when the gate structure of V (α⃗) is fixed (i.e., when k⃗ is fixed), and
when one only optimizes over α⃗. Figure 5.4 shows an example of such an
ansatz, with A composed of single-qubit y-rotations and controlled-Z gates.
We employ the ansatz in Figure 5.4 for the heuristics in Section 5.2.1. Let
us remark that this ansatz can have trainability issues [McC+18; Cer+21b] [McC+18] McClean et al., “Barren plateaus

in quantum neural network training land-
scapes”

[Cer+21b] Cerezo et al., “Cost function
dependent barren plateaus in shallow
parametrized quantum circuits”

for large-scale problems.

Strategies such as layer-by-layer training [Gra+19] and correlating the

[Gra+19] Grant et al., “An initialization
strategy for addressing barren plateaus in
parametrized quantum circuits”

α⃗ parameters [VC21] have been shown to be effective in addressing these

[VC21] Volkoff and Coles, “Large gradients
via correlation in random parameterized
quantum circuits”

trainability issues. In addition, trainability could be further improved by
combining these strategies with more advanced ansatz architectures, and we
now consider two such architectures. First, we discuss a “variable structure
ansatz” [Cin+18; LaR+18], where one optimizes over the gate angles and

[Cin+18] Cincio et al., “Learning the quan-
tum algorithm for state overlap”

[LaR+18] LaRose et al., “Variational quan-
tum state diagonalization”

the gate placement in the circuit, i.e., where one optimizes over α⃗ and also
over k⃗. We employ such ansatz for our heuristics in Section 5.2.2. We refer
to the section below for a discussion of the optimization method employed
for a variable structure ansatz.

In addition to the aforementioned ansatz, one can also employ the Quan-
tum Alternating Operator Ansatz (QAOA) [FGG14; Had+19] to construct the

[FGG14] Farhi et al., “A quantum approxi-
mate optimization algorithm”

[Had+19] Hadfield et al., “From the quan-
tum approximate optimization algorithm to
a quantum alternating operator ansatz”

unitary V (α⃗). As we discussed in Chapter 1, the QAOA consists of evolving
the H⊗n |0⃗〉 state (where H denotes the Hadamard unitary) by two Hamilto-
nians for a specified number of layers, or rounds. These Hamiltonians are
conventionally known as driver and mixer Hamiltonians, and respectively
denoted as HD and HM . Since the ground state of both HG and HL is |x0〉, we
can either use 5.4 or 5.7 as the driver Hamiltonian HD. Evolving with HD for
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a time αi corresponds to the unitary operator UD(αi) := e−iHDαi . Moreover,
one can take the mixer Hamiltonian to be the conventional HM =

∏n
i=1 X i ,

where X i denotes Pauli X acting on the ith qubit. Accordingly, evolving
with HM for a time α j yields the unitary operator UM (α j) := e−iHMα j . The
trainable ansatz V (α⃗) is then obtained by alternating the unitary operators
UD(αi) and UM (α j) p times:

V (α⃗) = e−iHMα2p e−iHDα2p−1 · · · e−iHMα2 e−iHDα1 . (5.27)

In this ansatz, each αi is a trainable continuous parameter. We note that
QAOA is known to be universal as the number of layers p tends to infin-
ity [FGG14; Llo18], and that finite values of p have obtained good results[FGG14] Farhi et al., “A quantum approxi-

mate optimization algorithm”

[Llo18] Lloyd, “Quantum approximate opti-
mization is computationally universal”

for several problems [Wan+18; Cro18; Zho+20b]. In the Appendix C we

[Wan+18]Wang et al., “Quantum approxi-
mate optimization algorithm for MaxCut: A
fermionic view”

[Cro18] Crooks, “Performance of the quan-
tum approximate optimization algorithm on
the maximum cut problem”

[Zho+20b] Zhou et al., “Quantum approxi-
mate optimization algorithm: Performance,
mechanism, and implementation on near-
term devices”

present results of a small-scale implementation of VQLS with a QAOA ansatz.
Let us remark that Ref. [HHL09] showed that it is possible to efficiently

[HHL09]Harrow et al., “Quantum algorithm
for linear systems of equations”

generate an accurate approximation to the true solution |x0〉, i.e., with a
number of gates that is polynomial in n, assuming certain constraints on
A and b⃗. Therefore, in principle, one may efficiently approximate these
solutions with a universal variational ansatz, such as the ones discussed
above.

5.1.5 Training algorithm

Several classical optimizers may be employed to train V (α⃗) and minimize
the cost functions of VQLS. For example, our heuristics in Section 5.2.1
employ an optimization method that, at each iteration, chooses a random
direction w⃗ in the parameter space along which to perform a line search, i.e.,
to solve mins∈R C(α⃗+ sw⃗). On the other hand, in Section 5.2.2 we perform
an optimization where all the parameters in α⃗ are independently optimized
at each iteration.

Let us discuss in more detail the optimization method employed for
the heuristics in Section 5.2.2. As mentioned previously, we employed a
variable-structure ansatz where the gate placement and the type of gates in
V (α⃗) can change during the optimization. Our approach here is similar to
the variable-structure ansatzes employed in Refs. [Cin+18; LaR+18].[Cin+18] Cincio et al., “Learning the quan-

tum algorithm for state overlap”

[LaR+18] LaRose et al., “Variational quan-
tum state diagonalization”

First, the gate structure and the angles of V (α⃗) are randomly initialized.
That is, one randomly chooses k⃗, and α⃗ in Eq. 5.26. Then, the optimization is
performed in two alternating loops: an inner loop and an outer loop. During
the inner loop, k⃗ is fixed, and one optimizes over α⃗. Once a local minimum is
reached, the outer optimization loop changes the circuit layout. In this outer
loop, the circuit is randomly grown by inserting into V (α⃗) a sequence of
parametrized gates which compile to identity, such that they do not change
the cost value. The previous process is then repeated by alternating between
the inner and outer loops until the optimization termination condition is
met.

Here we remark that the goal of the outer loop is to enhance the ex-
pressivity of V (α⃗) and lead to smaller cost values during the next inner
loop. However, it may happen that after growing the circuit, the optimizer
is not able to minimize the cost function. This is due to the fact that some
gate insertions do not lead to more expressive circuits. In order to avoid



HEURISTIC SCALING 55

such unnecessary circuit growth, one can then accept the parametrized gate
insertion conditioned to lead to smaller cost values.

5.2 HEURISTIC SCALING

Here we study the scaling of VQLS with the condition number κ, error
tolerance ε, and number of qubits n. First, we consider a specific QLSP for
which |x0〉 admits an efficient matrix-product-state representation, allowing
us to simulate large values of n. We then consider QLSPs where the matrix
A is randomly generated. In both cases, we restrict A to be a sparse matrix,
which is standard for QLSPs [HHL09], and we simulate VQLS without finite [HHL09]Harrow et al., “Quantum algorithm

for linear systems of equations”sampling. Moreover, we quantify the run time of VQLS with the time-to-
solution, which refers to the number of exact cost function evaluations
during the optimization needed to guarantee that ε is below a specified
value. In practice, for large-scale implementations where the true solution
|x0〉 is unknown, ε cannot be directly calculated. Instead, one can use the
operational meaning of our cost function in Eq. 5.10 to upper-bound ε.
Hence, we take this approach in all of our heuristics, i.e., we use the value
of the cost, combined with Eq. 5.10 to determine the worst-case ε. We
emphasize that, while it is tempting to directly compute ε from Eq. 5.2 in
one’s heuristics, this is essentially cheating since |x0〉 is unknown, and this
is why our certification procedure is so important.

5.2.1 Ising-inspired quantum linear system problem

Here we numerically simulate VQLS to solve the QLSP defined by the sparse
matrix

A=
1
ζ

 

n
∑

j=1

X j + J
n−1
∑

j=1

Z j Z j+1 +η1

!

,

|b〉= H⊗n |0⃗〉 ,

(5.28)

where the subscripts in 5.28 denote the qubits acted upon non-trivially by
the Pauli operator. Here, we set J = 0.1. The parameters ζ and η are chosen
such that the smallest eigenvalue of A is 1/κ and its largest eigenvalue is 1,
which involves analytically computing [HG17] the smallest eigenvalue of the [HG17] He and Guo, “The boundary effects

of transverse field Ising model”first two terms of A and then re-scaling A. As previously mentioned, this QLSP
example is motivated from the fact that for J = 0 the solution is given by
|x0〉= |b〉. Hence for small J , |x0〉 admits an efficient matrix-product-state
representation.

▶ DEPENDENCE ON κ. Figure 5.5 shows our results, plotting time-to-solution
versus κ for the QLSP in 5.28. Our numerical results were obtained by
employing the layered Hardware-Efficient Ansatz of Figure 5.4, and by
training the local cost CL for different values of n. Figure 5.5 shows that as
the condition number κ is increased, the time-to-solution needed to achieve
a given ε increases with a scaling that appears to be sub-linear. Hence VQLS
scales efficiently with κ for this example. It is known that linear scaling is
optimal [HHL09]. Hence we expect that the scaling observed here is specific
to this example, and indeed the example in the next subsection shows scaling
that is closer to linear.
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FIGURE 5.5: Scaling with κ for the Ising-inspired QLSP. The time-to-solution is the number of
executions needed to guarantee a precision of ε = 0.002 (solid line) and ε = 0.01 (dashed
line). Curves are shown for n= 10,20,30 qubits. In each case, we averaged over 30 runs of
the VQLS algorithm with four layers of the Layered Hardware-Efficient Ansatz of Figure 5.4,
and we trained the gate sequence by minimizing CL of Eq. 5.6. While the κ scaling appears to
be sub-linear here, it is known that linear scaling is optimal in general, and hence the observed
scaling is likely specific to this example.

▶ DEPENDENCE ON ε. To study the scaling of VQLS with ε, we numerically
solved the QLSP in 5.28 for different values of κ and n. In all cases, we
trained the gate parameters by optimizing the CL cost function. Figure 5.6
shows the time-to-solution versus 1/ε. These results show that as 1/ε grows,
the time-to-solution exhibits a logarithmic growth.

FIGURE 5.6: Scaling with 1/ε for the Ising-inspired QLSP. Curves are shown for n= 10, 20, 30
qubits, with κ= 60 (solid line) or κ= 200 (dashed line). In all cases V (α⃗) was composed of
four layers of the Layered Hardware-Efficient Ansatz of Figure 5.4, and we trained the local
cost CL . The time-to-solution was obtained by averaging over 30 runs of the VQLS algorithm.
The inset depicts the same data on a logarithmic scale. The dependence on 1/ε appears to be
logarithmic, i.e., linear on a logarithmic scale.
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▶ DEPENDENCE ON n. The QLSP of 5.28 allows us to increase the number
of qubits and analyze the scaling of VQLS with n. Here we implemented
VQLS with n = 6,8, . . . , 30 and for κ = 60,120,200 by training the local
cost function CL . Figure 5.7 shows time-to-solution versus n. As the number
of qubits increases, the time-to-solution needed to guarantee a particular
ε with κ fixed appears to increase linearly with n. This corresponds to
logarithmic scaling in the linear system size N , analogous to that of the HHL
algorithm [HHL09]. [HHL09]Harrow et al., “Quantum algorithm

for linear systems of equations”

FIGURE 5.7: Scaling with n for the Ising-inspired QLSP. Curves are shown for ε = 0.01 and
for κ= 60,120,200. In all cases we trained the local cost CL with four layers of the Layered
Hardware-Efficient Ansatz of Figure 5.4. The dependence on n appears to be linear (logarithmic
in N) for this example.

5.2.2 Randomly-generated quantum linear system problem

In this section, we present scaling results for the case when the matrix A is
randomly generated with the form

A= ξ1

�

1+ ξ2

∑

j

∑

k ̸= j

pa j,kσ
α
j σ

β

k

�

. (5.29)

FIGURE 5.8: VQLS heuristic scaling for random matrices generated according to 5.29. The time-to-solution is the number of executions
needed to guarantee a desired precision ε. In all cases we employed a variable-structure ansatz V (α⃗), and we trained the local cost CL of
Eq. 5.6. a) Time-to-solution versus κ for a system of n= 4 qubits. Axes are shown on a log-log scale. For each value of ε the data were
fitted with a power function κm and in all cases m< 1, suggesting that the κ scaling appears to be sub-linear. b) Time-to-solution versus
1/ε for a system of n = 4 qubits. The x axis is shown in a log scale. Each curve corresponds to a different condition number. For all
values of κ, the data were fitted with a linear function, implying that the 1/ε scaling is logarithmic. c) Time-to-solution versus n needed
to guarantee ε= 0.3. All matrices had a condition number κ= 10. The plot employs a log-log scale. The data were fitted with a power
function y ∼ n8.5, suggesting that the N dependence is polylogarithmic.
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Here p is either 0 or 1 according to a fixed binomial distribution, a j,k are
random weights in (−1, 1), and σαj is the Pauli matrix acting on qubit j with
α = x , y, z. For each j, k = 1, . . . , n in 5.29, α and β are randomly chosen.
Finally, we remark that ξ1, and ξ2 are normalization coefficients that rescale
the matrix so that its largest eigenvalue is 1 and its smallest is 1/κ (where κ
is fixed).

For a given number of qubits n, we randomly created a matrix A according
to 5.29, and we ran four independent instances of VQLS. We then selected
the best run, i.e., the instance that required the smallest number of cost
function evaluations to reach a specified value of guaranteed ε (guaranteed
via Eq. 5.10). This procedure was then repeated for 10 independent random
matrices A, and the time-to-solution was obtained as the average of the best
run for each matrix.

▶ DEPENDENCE ON κ. In Figure 5.8(a) we show the time-to-solution versus κ
for matrices randomly generated according to 5.29, and for n= 4. Here we
employed a variable-structure ansatz as described in Section 5.1.5, and we
trained the local cost in Eq. 5.6. Different curves represent different desired
precision ε. The data were plotted in a log-log scale, and each curve was
fitted with a power function κm. In all cases, we found m < 1, indicating
that the scaling in κ for these examples is at worst linear. Linear scaling in
κ is known to be optimal [HHL09].[HHL09]Harrow et al., “Quantum algorithm

for linear systems of equations”

▶ DEPENDENCE ON ε. Let us now analyze the scaling of VQLS with respect
to ε for matrices with different condition numbers. Figure 5.8(b) depicts
the time-to-solution versus ε for matrices randomly generated according
to 5.29, and for n = 4. All curves were fitted with a linear function, and
since the x axis is in a logarithmic scale, the dependence on 1/ε appears to
be logarithmic.

▶ DEPENDENCE ON n. In Figure 5.8(c) we present the time-to-solution versus
n needed to guarantee ε= 0.3 for QLSPs with n= 2, . . . , 7. All matrices A
had condition number κ= 10. The data were fitted with a power function,
and we obtained the relation y ∼ n8.5. This corresponds to polylogarithmic
scaling in N , which is the standard goal of quantum algorithms for the
QLSP [Amb10; CKS17; CGJ18; SSO19].[Amb10] Ambainis, “Variable time ampli-

tude amplification and a faster quantum al-
gorithm for solving systems of linear equa-
tions”

[CKS17] Childs et al., “Quantum Algorithm
for Systems of Linear Equations with Expo-
nentially Improved Dependence on Preci-
sion”

[CGJ18] Chakraborty et al., “The power of
block-encoded matrix powers: improved re-
gression techniques via faster Hamiltonian
simulation”

[SSO19] Subaşı et al., “Quantum Algorithms
for Systems of Linear Equations Inspired by
Adiabatic Quantum Computing”

We refer to the Appendix C for additional numerical simulations of VQLS
for other QLSP examples, both with a Hardware-Efficient Ansatz and with a
QAOA ansatz. These examples also exhibit efficient scaling behavior.

5.3 IMPLEMENTATION ON QUANTUM HARDWARE

Here we present the results of a 1024×1024 (i.e., 10-qubit) implementation
of VQLS using Rigetti’s 16Q Aspen-4 quantum computer. Specifically, we
solved the QLSP defined by the matrix A in 5.28, with ζ = η = 1, and where
the vector |b〉 = |0〉 was the all-zero state. The ansatz consisted of R y(αi)
gates acting on each qubit. To adapt to hardware constraints, we computed
the cost function CG in Eq. 5.5 by expanding the effective Hamiltonian HG

in terms of Pauli operators and then employing Rigetti’s quantum computer
to estimate the expectation values of these terms.
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FIGURE 5.9: Implementation of VQLS on Rigetti’s quantum hardware. Cost function CG is
plotted against the number of optimization steps, where A is defined in 5.28. One can observe
that for each QPU run the cost function is reduced to a value below 10−1. Due to noise present
in the quantum device the cost does not go to zero.

The results of two representative VQLS runs are shown in Figure 5.9. As
shown, the cost function data obtained by training in a quantum computer
closely matches the one obtained from training on a noiseless simulator. For
each run on the QPU, the cost function value approaches zero, indicating
that a good solution to the linear system was found.

Additional experiments performed on quantum hardware are presented
in the Appendix C.

5.4 OUTLOOK

This chapter presented a variational quantum algorithm called VQLS for
solving the quantum linear systems problem. On the analytical side, we
presented four different faithful cost functions, we derived efficient quantum
circuits to estimate them while showing that they are difficult to estimate
classically, and we proved operational meanings for them as upper bounds
on ε2/κ2. On the numerical side, we studied the scaling of the VQLS run
time by solving non-trivial problems of size up to 250 × 250. We found VQLS
to scale efficiently for the examples considered, namely, at worst linearly in
κ, logarithmically in 1/ε, and polylogarithmically in the linear system size
N .

It remains to be seen how the VQLS training is affected by finite sam-
pling, which is not accounted for in our heuristics. Our solution verification
procedure in Section 5.1.2 will require the shot noise to appropriately scale
with ε and κ as dictated by Eq. 5.10. Namely, the number of shots would
need to scale as (κ/ε)4, although this complexity might be reduced if one
does not require solution verification.

Furthermore, we utilized Rigetti’s Quantum Cloud Services to implement
VQLS for a particular problem up to a size of 1024× 1024, which to our
knowledge is the largest implementation of a linear system on quantum
hardware. Interestingly, with our implementation on Rigetti’s hardware, we
noticed some preliminary evidence of noise resilience, along the same lines
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as those discussed in Ref. [Sha+20b] for a different variational algorithm.[Sha+20b] Sharma et al., “Noise resilience
of variational quantum compiling” Namely, we noticed optimal parameter resilience, where VQLS learned the

correct optimal parameters despite various noise sources (e.g., measurement
noise, decoherence, gate infidelity) acting during the cost evaluation circuit.

Finally, we discuss how VQLS fits into the larger literature on quantum
algorithms for linear systems. Most prior algorithms rely on time evolutions
with the matrix A [HHL09; Amb10; CKS17] or a simple function of it [SSO19].[HHL09]Harrow et al., “Quantum algorithm

for linear systems of equations”

[Amb10] Ambainis, “Variable time ampli-
tude amplification and a faster quantum al-
gorithm for solving systems of linear equa-
tions”

[CKS17] Childs et al., “Quantum Algorithm
for Systems of Linear Equations with Expo-
nentially Improved Dependence on Preci-
sion”

[SSO19] Subaşı et al., “Quantum Algorithms
for Systems of Linear Equations Inspired by
Adiabatic Quantum Computing”

In these algorithms, the duration of the time evolution is O(κ) in order to
prepare a state |x〉 that is ε-close to the correct answer. In general, this
can only be achieved with a quantum circuit of size linear in κ as per the
“no fast-forwarding theorem” [Ber+07; AA17]. This is even true if there

[Ber+07] Berry et al., “Efficient quantum
algorithms for simulating sparse Hamiltoni-
ans”

[AA17] Atia and Aharonov, “Fast-forwarding
of Hamiltonians and exponentially precise
measurements”

exists a very short quantum circuit that prepares the desired state |x〉. The
non-variational algorithms simply cannot exploit this fact. On the other
hand, a variational algorithm with a short-depth ansatz might be used to
prepare such a state.

This does not mean, however, that the overall complexity of the varia-
tional algorithm does not depend on the condition number. This dependence
enters through the stopping criteria given in Eq. 5.10. As the condition num-
ber increases, the cost has to be lowered further in order to guarantee an
error of ε. This will undoubtedly require more iterations of the variational
loop to achieve. In effect, our variational approach trades the gate complex-
ity of non-variational algorithms with the number of iterations for a fixed
circuit depth. This trade-off can be useful in utilizing NISQ devices without
error correction.

We remark that other variational approaches to the QLSP distinct from
this one were very recently proposed [Xu+21; HBR21]. Relatively speaking,[Xu+21] Xu et al., “Variational algorithms

for linear algebra”

[HBR21] Huang et al., “Near-term quantum
algorithms for linear systems of equations
with regression loss functions”

the distinct aspects of this work include: (1) our quantitative certification
procedure for the solution, (2) our clear approach to improve trainability
for large-scale problems, (3) our novel circuits for efficient cost evaluation,
(4) our large-scale heuristics demonstrating efficient scaling, and (5) our
large-scale implementations on quantum hardware. Finally, it is exciting that
after the realization of this work, Refs. [PJ+21a; PJ+21b; PWK22] studied[PJ+21a] Pellow-Jarman et al., “A compari-

son of various classical optimizers for a vari-
ational quantum linear solver”

[PJ+21b] Pellow-Jarman et al., “Near Term
Algorithms for Linear Systems of Equations”

[PWK22] Patil et al., “Variational quantum
linear solver with a dynamic ansatz”

the VQLS performance with different ansatz architectures and classical
optimizers. Moreover, two independent tutorials for the VQLS algorithm
were created and added to IBM’s open-source Qiskit textbook [Asf+19], and
to Xanadu’s PennyLane library [Mar19].
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QUANTUM GENERATIVE MODELING





6
Quantum generative adversarial
networks for Monte Carlo events

“It was the great multiplicity of the hadrons
that led to the formulation of the quark

model. Without some organizing principle
such a large collection of particles seemed

unwieldy, and the possibility that they might
all be elementary offended those who hold

the conviction, or at least the fond wish, that
nature should be simple.”

—Yoichiro Nambu

The current availability of noisy intermediate-scale quantum (NISQ) comput-
ers [Pre18], and recent advances towards quantum computational supremacy
[Aru+19; Zho+20a], have led to a growing interest in these devices to per-

[Aru+19] Arute et al., “Quantum supremacy
using a programmable superconducting pro-
cessor”

[Zho+20a] Zhong et al., “Quantum compu-
tational advantage using photons”

form computational tasks faster than classical machines. Among many of the
near-term applications [Cer+21a; Bha+22], the field of Quantum Machine
Learning (QML) [Bia+17; SP18] is held as one promising approach to make

[Bia+17] Biamonte et al., “Quantum ma-
chine learning”

[SP18] Schuld and Petruccione, Supervised
learning with quantum computers

use of NISQ computers.

Early work in QML was mostly focused on speeding up linear algebra sub-
routines [WBL12; LMR13; RML14; KP20], widely used in classical machine

[WBL12] Wiebe et al., “Quantum algorithm
for data fitting”

[LMR13] Lloyd et al., “Quantum algorithms
for supervised and unsupervised machine
learning”

[RML14] Rebentrost et al., “Quantum Sup-
port Vector Machine for Big Data Classifica-
tion”

[KP20] Kerenidis and Prakash, “Quantum
gradient descent for linear systems and least
squares”

learning, by leveraging the Harrow-Hassidim-Lloyd algorithm [HHL09].

[HHL09]Harrow et al., “Quantum algorithm
for linear systems of equations”

This approach is promising, though its utility depends on the existence of
large-scale quantum computers with low gate errors and enough qubits to
perform quantum error correction. As discussed in previous chapters, more
recent proposals focus on defining a quantum neural network (QNN), or
parameterized quantum circuit [Ben+19c; SJAG19; BP+20; Lar+21], which
then can be trained to implement a function class [SSM21; GTN21; PS+21a];
these proposals can be implemented on current NISQ-era devices. For exam-
ple, several QNNs have been proposed for pattern classification [Hav+19;
Sch+20; PS+20a; Dut+21] or data compression [ROA17; BP21; CW21;
DT21]. This QML approach to quantum computing is a research topic that
can be adapted, improved, and tested on many research problems in dis-
parate scientific fields. Motivated by this idea, we propose to investigate
the possibility of using QNNs for generative modeling [Ben+19a; HDP19;
Coy+20; Coy+21]. More specifically, we explore the uses of QNNs for the
generation of Monte Carlo events through quantum generative adversarial
networks (qGANs) [DDK18; LW18]. [DDK18] Dallaire-Demers and Killoran,

“Quantum generative adversarial networks”

[LW18] Lloyd and Weedbrook, “Quantum
generative adversarial learning”

The generative adversarial framework employs two competing networks,
the generator and the discriminator, that are trained alternatively [Goo+14].

[Goo+14] Goodfellow et al., “Generative
adversarial nets”

The generator produces candidates while the discriminator evaluates them.
The objective of the discriminator is to distinguish the real samples from the
generated ones. That is, the discriminator plays the role of the generator’s
adversary, and therefore, their competition is a zero-sum two-player game.
By substituting either the discriminator, the generator, or both with quantum

63
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systems, we translate the scheme to quantum computing.
Recently, the spreading interest in QML has led to different qGAN imple-

mentations [ZLW19; Zen+19; Hu+19; Ben+19b; Sit+20; RAG21; Niu+21].[ZLW19] Zoufal et al., “Quantum genera-
tive adversarial networks for learning and
loading random distributions”

[Zen+19] Zeng et al., “Learning and infer-
ence on generative adversarial quantum cir-
cuits”

[Hu+19] Hu et al., “Quantum generative
adversarial learning in a superconducting
quantum circuit”

[Ben+19b] Benedetti et al., “Adversarial
quantum circuit learning for pure state ap-
proximation”

[Sit+20] Situ et al., “Quantum generative
adversarial network for generating discrete
distribution”

[RAG21] Romero and Aspuru-Guzik, “Varia-
tional quantum generators: Generative ad-
versarial quantum machine learning for con-
tinuous distributions”

[Niu+21] Niu et al., “Entangling Quantum
Generative Adversarial Networks”

The contribution here can be summarized in three distinct aspects. (1) Pre-
vious proposals employed toy data for their qGAN training. In contrast, we
test our model using data for a quantum scattering process. In particular,
we first train and validate our qGAN model with artificial data from known
underlying probability density functions. Then, in order to test our model
in a realistic set-up, we use as training sets simulated Monte Carlo events
for particle physics processes at the Large Hadron Collider (LHC) at CERN.
(2) We propose an alternative quantum generator architecture. Traditionally,
the prior noise distribution, or latent dimension in the language of generative
models, is provided to the quantum generator through its first quantum
gates. We instead embed it on every layer of the network. This allows us to
achieve improved state-of-the-art results with shallow QNNs. In particular,
with a binning density that is at least an order of magnitude higher, we
achieve significantly smaller Kullback-Leibler (KL) divergences, even when
working with a realistic dataset. Note that a similar concept was introduced
in the classical context [KLA21], coined as style-based generative adversarial

[KLA21] Karras et al., “A Style-Based Gener-
ator Architecture for Generative Adversarial
Networks”

network (GAN), which was proven to be useful in facial recognition tasks.
Given this analogy with the classical literature, from now on we refer to our
qGAN model as style-qGAN. (3) We validate and assess our style-qGAN in
quantum hardware. Specifically, we successfully implement our model in
two different quantum architectures, namely ion traps and superconducting
qubits.

It is important to highlight that several research groups from the high-
energy physics (HEP) community are investigating potential applications
of quantum technologies in HEP applications and obtaining interesting
results [PS+21b; Gua+21; Cha+21a; Cha+21b; Bel+21; Agl+22; AS22;[PS+21b] Pérez-Salinas et al., “Determining

the proton content with a quantum com-
puter”

[Gua+21] Guan et al., “Quantum machine
learning in high energy physics”

[Cha+21a] Chang et al., “Dual-
Parameterized Quantum Circuit GAN
Model in High Energy Physics”

[Cha+21b] Chang et al., “Quantum Genera-
tive Adversarial Networks in a Continuous-
Variable Architecture to Simulate High En-
ergy Physics Detectors”

[Bel+21] Belis et al., “Higgs analysis with
quantum classifiers”

[Agl+22] Agliardi et al., “Quantum integra-
tion of elementary particle processes”

[AS22] Araz and Spannowsky, “Classical ver-
sus Quantum: comparing Tensor Network-
based Quantum Circuits on LHC data”

DH22; Del+22]. Therefore, the study presented in this chapter should be

[DH22] Delgado and Hamilton, “Unsuper-
vised Quantum Circuit Learning in High En-
ergy Physics”

[Del+22] Delgado et al., “Quantum Com-
puting for Data Analysis in High-Energy
Physics”

considered as proof-of-concept, providing a robust and reproducible starting
point for future investigations. In particular, the introduction of GAN models
in HEP Monte Carlo simulation has been discussed extensively in the last
years, see Refs. [BPW19; BPW20; Bel+20; BP20; Bal+21; Bac+21; But+21].
In this chapter, we consider the possibility to use a qGAN model in a data
augmentation context, where the model is trained with a small amount of
input samples and it learns how to sample the underlying distribution.

6.1 GENERATIVE ADVERSARIAL LEARNING

The classical implementation of a GAN model [Goo+14] involves at least
three components: the discriminator model, the generator model, and the
adversarial training procedure. Here we consider a hybrid quantum-classical
system, where the generator model has a quantum representation through
a QNN while the discriminator is a classical neural network model. This
choice is motivated by the practical positive implications of a hardware-
based generative model, in particular the possibility to obtain performance
improvements in a real quantum device. The idea of using a quantum device
for the generation of samples is very attractive because the complicated
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aspects of density modeling and sampling are delegated to a hardware
architecture.

There are alternative approaches where both models could be repre-
sented by a QNN [DDK18; Hu+19; Ben+19b; RAG21; Niu+21]. However, [DDK18] Dallaire-Demers and Killoran,

“Quantum generative adversarial networks”

[Hu+19] Hu et al., “Quantum generative
adversarial learning in a superconducting
quantum circuit”

[Ben+19b] Benedetti et al., “Adversarial
quantum circuit learning for pure state ap-
proximation”

[RAG21] Romero and Aspuru-Guzik, “Varia-
tional quantum generators: Generative ad-
versarial quantum machine learning for con-
tinuous distributions”

[Niu+21] Niu et al., “Entangling Quantum
Generative Adversarial Networks”

after testing some prototype architectures, we have observed faster conver-
gence when using a classical discriminator.

In Figure 6.1 we schematically show the steps involved in the style-qGAN
presented here. The procedure starts from the preparation of reference
samples from a known distribution function that we would like to encode in
the quantum generator model. At the same time, we define a QNN model
where we inject stochastic noise in the latent space variables; these are used
to define all the quantum gates of the network. The generator model is then
used to extract fake generated samples that, after the training procedure,
should match the quality of the known input distribution. Lastly, both sets
of samples are used to train the discriminator model. The quality of the
training is measured by an appropriate loss function which is monitored and
optimized classically by a minimization algorithm based on the adversarial
approach. The training process consists of simultaneous stochastic gradi-
ent descent for both models which, after reaching convergence, delivers a
quantum generator model with realistic sampling.

Quantum
Generator

Classical
Discriminator

Generated
samples

Loss

Reference
samples

Input 
distribution

Real Fake

Classical optimization

Latent 
variables

Quantum neural network model

FIGURE 6.1: Schematic steps involved in the style-qGAN training.

In the following paragraphs, we first introduce the optimization pro-
cedure and the quantum generator network, and validate the procedure
by using reference samples from known distribution functions to train the
model on a quantum simulator. We then train the style-qGAN model with
Monte Carlo-generated LHC events using again a quantum simulator. Finally,
the best-trained model is deployed on real quantum hardware devices based
on superconducting and trapped-ion technologies.

All calculations involving quantum circuit simulation are performed
using Qibo v0.1.6 [Eft+21b; Eft+21a] on classical hardware. For this par-
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ticular implementation, we have used the tensorflow [Aba+15] backend[Aba+15] Abadi et al., TensorFlow: Large-
Scale Machine Learning on Heterogeneous Sys-
tems which provides the possibility to use gradient descent optimizers during the

training step. The style-qGAN model is publicly available through the Qibo
framework and the code repository in [hep+21].

6.2 OPTIMIZATION PROCEDURE

As previously discussed, the style-qGAN comprises of a QNN for the genera-
tor G(φg , z) and a classical network for the discriminator D(φd , x), where
φg and φd are the parameters of the corresponding networks. The quantum
generator transforms samples from a prior standard Gaussian noise distri-
bution z ∼ pprior(z), also called latent variables, into samples generated by
G(φg), thus mapping pprior(z) to a different distribution pfake of generated
data. On the other hand, the discriminator takes as input samples x and
tries to distinguish between fake data from the generator and real data from
the reference input distribution preal. The training corresponds to an adver-
sarial game, where we alternate between improving the discriminator to
distinguish fake and real data, and the generator to cheat the discriminator
with new fake data.

In this implementation, we consider the binary cross-entropy for the
optimization objective. The generator’s loss function can be defined as

LG(φg ,φd) = −Ez∼pprior(z)[log D(φd , G(φg , z))] , (6.1)

while the discriminator’s loss function can be defined as

LD(φg ,φd) = Ex∼preal(x)[log D(φd , x)]

+Ez∼pprior(z)[log(1− D(φd , G(φg , z)))] .
(6.2)

Notice that the adversarial training corresponds to a minimax two-player
game,

min
φg

LG(φg ,φd) , (6.3)

max
φd

LD(φg ,φd) , (6.4)

where the optimum uniquely corresponds to the Nash equilibrium between
the loss functions.

The optimization of the parameters φg and φd is done alternatively by
updating the quantum generator and classical discriminator. The optimizer
used to update the steps is the ADADELTA [Zei12], which is a stochastic[Zei12] Zeiler, “Adadelta: an adaptive learn-

ing rate method” gradient descent method that monotonically decreases its learning rate. The
starting learning rates utilized are 0.1 for the classical discriminator and 0.5
for the quantum generator.

6.3 STYLE-BASED QUANTUM GENERATOR ANSATZ

The quantum generator is implemented by a QNN with trainable parameters.
In particular, we employ the architecture shown in Figure 6.2. We consider
a layered QNN, where each layer is composed of a set of entangling gates
Uent preceded by two alternating R y and Rz single-qubit rotations. After
implementing the layered network, a final layer of R y gates is applied. Note



STYLE-BASED QUANTUM GENERATOR ANSATZ 67

|0〉 Ry Rz Ry Rz

Uent

. . . Ry

|0〉 Ry Rz Ry Rz . . . Ry

...
...

...
...

...

|0〉 Ry Rz Ry Rz . . . Ry

1 layer

1

FIGURE 6.2: Quantum neural network employed for the qGAN model. As indicated by the
dashed box, each layer is composed of a set of entangling gates Uent, to be specified for each
example, preceded by two alternating R y and Rz single-qubit rotations. After implementing
the layered network, a final layer of R y gates is applied.

that Uent is specific to each example and R j(θk) = e−iθkσ j/2, where σ j are the
Pauli operators. The number of layers can be modified to tune the capacity
of the quantum generator. However, in the following we improve upon
state-of-the-art results with shallow QNNs that contain one and two layers.

Let us emphasize here the novelty of the quantum generator architecture
used for the style-qGAN model, where the action of each qubit rotation is
parameterized by the set of trainable parameters φ⃗g and, most importantly,
the latent vector ξ⃗. Specifically, we encode them by using a linear function
as

R y,z

�

φ⃗g , ξ⃗
�

= R y,z

�

φ(i)g ξ
( j) +φ(i+1)

g

�

, (6.5)

where i, j indicates the component of the vector. The length of the latent
vector ξ⃗ will depend on the choice of latent dimension Dlatent for each
implementation. Notice that our quantum generator embeds the input latent
variables into all the quantum gates of the network, in contrast to previous
qGAN proposals. This permits the new architecture to process and decide in
which parts of the QNN the latent variables should play a relevant role.

Recall that the quantum generator’s task is creating fake samples to fool
the classical discriminator. The fake samples are prepared by acting with the
parameterized QNN on the initial n-qubit state |0〉⊗n, and then measuring
in the computational basis. For our implementations, each qubit delivers
one sample component. That is, the sample x ∈ Rn is generated as

x =
�
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, (6.6)

with



σi
z
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=



Ψ(φ⃗g , ξ⃗)
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�σi
z

�

�Ψ(φ⃗g , ξ⃗)
�

, (6.7)

where
�

�Ψ(φ⃗g , ξ⃗)
�

is the output state from the quantum generator. Notice,
however, that for other models, more sophisticated ways of generating fake
samples could be more convenient to implement. For instance, one could gen-
erate a sample component by computing expectation values involving several
qubits or generate samples directly from the distribution of computational-
basis states. Finally, let us briefly comment that we used a deep convolutional
neural network for the discriminator. More details about the classical dis-
criminator implementation can be found in the code [hep+21].
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6.4 VALIDATION EXAMPLES

In this section, we show examples of style-qGAN models obtained for known
prior distribution functions in one and three dimensions. The results pre-
sented here have been obtained after a systematic process of fine-tuning and
manual hyper-optimization of the training and quantum generator model.

6.4.1 1D Gamma distribution

In order to test the framework proposed above, we consider the sampling of
a 1D gamma distribution with probability density function given by

pγ(x ,α,β) = xα−1 e−x/β

βαΓ (α)
, (6.8)

where Γ is the Gamma function. In this example we take pγ(x , 1, 1) as the
input distribution and train a style-qGAN with 1 qubit, 1 latent dimension
and 1 layer using 104 samples from the input distribution. The total number
of trainable parameters is 10. We perform a linear pre-processing of the data
to fit the samples within x ∈ [−1, 1]. We undo this transformation after the
training. In Figure 6.3 we show the evolution of the loss function for the
generator and discriminator models in terms of the number of epochs. We
observe the typical behavior of GAN training and a convergence region after
15000 epochs. The style-qGAN is trained with batch sizes of 128 samples.

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

0.692

0.693

0.694

0.695

Lo
ss

Loss function
Generator
Discriminator

FIGURE 6.3: Example of loss function convergence. After an initial warm-up phase, the loss
function of both models converges. This indicates that the style-qGAN has been successfully
trained.

A necessary property of this framework is that the style-qGAN model
learns the underlying distribution from a small data set. To demonstrate this,
we train a style-qGAN model with a set number of reference samples and
then use it to generate two sample sets of different size. In particular, we
train the style-qGAN with 104 reference samples and then use it to generate
sets of 104 and 105 samples.

The top of Figure 6.4 shows the smaller sample distribution generated by
the style-qGAN model in blue and a sampling of the reference distribution
of the same size in red. This enables a comparison also using the Kullback-
Leibler divergence (KL) [KL51]. In both cases, the 104 samples have been[KL51] Kullback and Leibler, “On informa-

tion and sufficiency” transformed into histograms with 100 bins linearly spaced on the x-axis of
the figure. We observe that the distributions are statistically similar even
for this high-density binning choice. The KL divergence of two displayed
distributions is 0.141, which entails a high degree of similarity.
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FIGURE 6.4: Examples of 1D gamma distribution sampling for the reference underlying
distribution (red) and a style-qGAN model (blue) that has been trained with 104 reference
samples. The top plot compares 104 generated samples. The bottom compares 105 samples
generated from a style-qGAN model trained with 104 reference samples. We observe a good
level of agreement between both distributions with low values of the KL distance, despite the
model being trained on a small training set.

Going further in the bottom of Figure 6.4 we show the same results
as in the top on the larger set containing 105 samples. Again, we use for
comparison a re-sampling of the reference distribution at the same size as
the generated set and show both distributions on a grid with 100 linearly
spaced bins. Having generated an order of magnitude more samples than
the training set we observe that the style-qGAN model performs well. Both
distributions are visually very close to each other and the KL divergence of
0.041 signals a high degree of similarity.

In order to compare the two KL divergences, note that they are computed
on discrete histograms. Therefore, for an honest comparison, the number
of bins for the larger sample set has to be increased proportionally to the
increase in generated sample size, i.e. to compare with 100 bins for the
104 sample size we need to set 1000 bins for the 105 sample size. In this
case, for a style-qGAN that provides an equally good description of the
underlying distribution function, the KL divergence will stay constant or
decrease. Here, with this change in binning, we find the KL divergences are
0.141 and 0.112, respectively. This behavior confirms that the style-qGAN
model is able to learn the underlying distribution function even if trained
with a small training sample set. Such a feature is particularly interesting in
the context of data augmentation applications [FA+18; TA19], where few
samples are available, nonetheless the style-qGAN model can generalize and
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learn the underlying distribution with satisfactory outcome.

6.4.2 3D correlated Gaussian distribution

The previous test shows that a style-qGAN model implemented on a single
qubit can be trained and produce acceptable results. However, this particular
set-up does not include entanglement between qubits. In order to study the
impact of the entanglement term Uent in the considered QNN, we select as
an underlying distribution a 3D correlated Gaussian distribution centered at
µ= (0,0, 0) with covariance matrix

σ =





0.5 0.1 0.25
0.1 0.5 0.1

0.25 0.1 0.5



 . (6.9)

For this specific set-up, we consider a 3-qubit model with 3 latent di-
mensions and 1 layer. The Uent consists of two controlled-R y gates acting
sequentially on the 3 qubits. The total number of trainable parameters is 34.
As in the previous example, we perform a linear pre-processing of the data
to fit the samples within x ∈ [−1, 1], and then we undo this transformation
after the training. In Table 6.1 we summarize the style-qGAN configurations
obtained for both examples discussed in this section.

1D gamma 3D Gaussian

Qubits 1 3
Dlatent 1 3
Layers 1 1
Epochs 3× 104 1.3× 104

Training set 104 104

Batch size 128 128
Parameters 10 34
Uent None 2 sequential CR y gates

TABLE 6.1: Summary of the style-qGAN set-up for the 1D gamma distribution and the 3D
correlated Gaussian distribution.

Following the same training procedure employed in Section 6.4.1 and
again using 104 reference samples to train the style-qGAN model, we test
how well our model samples this specific 3D correlated Gaussian distribution.
The results are shown in Figure 6.5. In the top row, we compare the one-
dimensional cumulative projections of samples generated by the style-qGAN
model with the reference input distribution function for 105 samples. We
again use a grid of 100 linearly spaced bins per dimension in order to
highlight small differences between the prior reference distribution and the
artificial samples. For this example, we also observe that the distributions
are statistically similar as the corresponding KL distances are quite small
and close to each other. In the second row, we show 105 samples produced
by the style-qGAN model in two-dimensional projections.

To further study the features of the style-qGAN model in the third row
of plots in Figure 6.5 we show the two-dimensional projections of the ratio
between samples generated from the prior reference distribution and the
style-qGAN model. In this way, we can visualize how well the model learns
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FIGURE 6.5: Marginal samples distributions for each dimension x , y, z of the 3D correlated Gaussian distribution for the style-qGAN
model trained with 104 samples (top row), together with the corresponding two-dimensional sampling projections (middle row) and the
ratio to the reference underlying prior distribution (bottom row). The style-qGAN generator model learns the correlations and provides
acceptable samples when compared to the reference distribution. Note that we choose a grey background for the plots at the bottom row
to more clearly highlight a ratio of one between reference and generated samples, indicated by white.

not only the distributions but also the correlations between the dimensions of
the problem. A ratio of one, given by a white coloring of the corresponding
bin in the figure, would imply the reference and generated samples are
identical. Note that we aim to generate unseen samples, not an identical
copy of the reference set. However, at the same time, the model should
not diverge significantly, depicted by deep blue and red in the figure, nor
occupy space in the grey area of the figure. We observe a good level of
agreement, in particular in those regions where the sampling frequency is
higher. The largest deviations are seen at the edges of the distributions,
where the sampling frequency is lower. These deviations are evidence of
the limitations in our model, common to the GAN method; however, their
severe appearance is an artifact of visualization due to data augmentation.

To better quantify how well the correlations have been learned, we study
the covariance matrices defined by the reference and the generated samples.
The summed eigenvalues of the reference and generated covariance matrices
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give a means to estimate the similarity between the learned underlying
correlations. We find agreement between the reference and generated
eigenvalues to the better of 10% for style-qGAN set-ups with equal and more
than 3 latent dimensions. Recall that the latent variables are introduced in
every gate of the circuit, including the entangling ones Uent. With Dlatent < 3
we observe significant deviations of factors O(10) while for Dlatent ≥ 3 no
further significant improvement is seen. The same holds for increasing the
number of layers in the style-qGAN model. This suggests that the number
of latent dimensions introduced is a key hyperparameter once the number
of layers allows a sufficient complexity. However, training success also
depends on the convergence of the GAN parameters through optimization.
This means that, in practice, having more layers and parameters than the
minimal set might be a better choice.

Since the eigenvalues are known also exactly through Eq. 6.9 we fur-
thermore can compare the performance of the style-qGAN with increased
generation sample size. We find that the style-qGAN with 3 latent dimen-
sions and 1 layer (shown here) generates sets that reproduce the exact
eigenvalues of the input covariance matrix to better than ≲ 6% for 103,
≲ 1.3% for 5× 103 and ≲ 0.8% for 2× 104 samples.

This analysis demonstrates a key property of a functioning GAN model –
that the larger set of generated samples more closely agrees with the refer-
ence input distribution function. The observation that the style-qGAN fulfils
this property confirms its viability as a functioning quantum implementation
of the generative adversarial network idea for multi-dimensional correlated
data.

6.5 GENERATING LHC EVENTS

After the validation of the style-qGAN model presented in the previous sec-
tion, let us consider a training dataset from HEP. One of the big challenges
involving Monte Carlo (MC) event generation is the large number of statis-
tics required to reconstruct events with high accuracy in order to compare
predictions of physical observables to experimental data. Ideally, we could
try to learn how a specific physical process generates events.

In this context, we have generated 105 MC events for pp→ t t̄ production
at LHC with

p
s = 13 TeV with MadGraph (MG5_aMC [Alw+14; Fre+18]) at[Alw+14] Alwall et al., “The automated

computation of tree-level and next-to-
leading order differential cross sections, and
their matching to parton shower simula-
tions”

[Fre+18] Frederix et al., “The automation
of next-to-leading order electroweak calcu-
lations”

leading order in the strong coupling constant. From this simulated events

pp→ t t̄ LHC events

Qubits 3
Dlatent 5
Layers 2
Epochs 3× 104

Training set 104

Batch size 128
Parameters 62
Uent 2 sequential CR y gates

TABLE 6.2: Summary of the style-qGAN set-up for the LHC events distribution.
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FIGURE 6.6: Marginal samples distributions for the physical observables s, t, y in pp→ t t̄ production at the LHC for the style-qGAN
model trained with 104 samples (top row), together with the corresponding two-dimensional sampling projections (middle row) and
the ratio to the reference underlying prior MC distribution (bottom row). The style-qGAN generator model learns the correlations and
provides acceptable samples when compared to the reference distribution. Note that we choose a grey background for the plots at the
bottom row to more clearly highlight a ratio of one between reference and generated samples, indicated by white.

we sample the Mandelstam variables (s, t) and the rapidity. Here, s and t
are understood as the local partonic variables, s = (p1+ p2)

2, t = (p1− p3)
2,

where p1 and p2 are the four-momenta of the incoming quarks within the
proton that collide to produce a top quark with four-momentum p3 and an
anti-top quark with four-momentum p4. Note that all momenta are given in
the center-of-mass frame.

We consider a 3-qubit model with 5 latent dimensions and 2 layers.
Again, Uent consists of two controlled-R y gates acting sequentially on the
3 qubits. The total number of trainable parameters is 62. The style-qGAN
model has been trained on 104 samples. See Table 6.2 for more details. In
this case, we perform a linear pre-processing of the data to fit the samples
within x ∈ [−1, 1] after a power transform [YJ00] from the Python package [YJ00] Yeo and Johnson, “A new family of

power transformations to improve normality
or symmetry”ScikitLearn [Ped+11]. As previously, we undo this transformation after

[Ped+11] Pedregosa et al., “Scikit-learn: Ma-
chine Learning in Python”

the training.

Following the same training procedure employed in the previous section,
in the top row of Figure 6.6 we compare the one-dimensional cumulative
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projections of samples generated by the style-qGAN model with the reference
input distribution function for 105 samples. We use a grid of 100 linearly
spaced bins for y and 100 log-spaced bins for s and t. For this example,
the distributions are again statistically similar, with the corresponding KL
distance being small and close to each other. In the second row of Figure 6.6
we show 105 samples produced by the style-qGAN model in two-dimensional
projections.

The bottom row of plots in Figure 6.6 shows the ratio between samples
generated from the prior original MC distribution and the style-qGAN model.
Again, even for this physically-realistic model, we observe a remarkable
level of agreement, especially in those regions where the sampling frequency
is higher. Most importantly, we observe that the style-qGAN learns the
correlations between the three dimensions.

Applying the same reasoning as in the previous section we compute
the eigenvalues of the covariance matrices derived from the reference and
generated data sets. To this extent we use the larger sized reference data set
calculated previously using MadGraph (MG5_aMC). We find that the summed
eigenvalues of the covariance matrices derived from samples generated by
the shown style-qGAN with 5 latent dimensions and 2 layers agree with
the corresponding reference to ∼ 9− 13% for 103, ∼ 8− 15% for 5× 103

and ∼ 7 − 14% for 2 × 104 samples. Here the quoted range originates
from comparing different samples of the reference data. Furthermore, we
suppress effects from the inverse transformation that converts the generated
sample and instead focus on the learning capability of the style-qGAN model
by estimating the covariances on the transformed reference data sets. It
should be stressed that this test is slightly different from the one in the
previous section since the exact eigenvalues are not known. As a result, the
sampling error of the reference enters and an agreement at the previous
level should not be expected as too close of an agreement would indicate the
model is overfitted. However, our model exhibits the expected and necessary
behaviour, even when applied to real data.

6.6 SAMPLING FROM QUANTUM HARDWARE

In order to benchmark our style-qGAN model on real quantum hardware, we
performed several runs on two different types of architectures. This allows
us to qualitatively assess the impact of decoherence and noise, issues that
are typical for NISQ computers, and to check whether the model can already
give good results without waiting for error-corrected machines. The first
quantum architecture we used is based on superconducting transmon qubits
as provided by IBM Q quantum computers 1. The second is based on trapped1IBM’s roadmap for scaling quantum tech-

nology, Sept. 2020. ion technology as provided by IonQ quantum computers 2 and accessible to
2Scaling IonQ’s Quantum Computers: The

Roadmap, Dec. 2020.
us using cloud resources from Amazon Web Services (AWS).

Implementing the style-qGAN onto real quantum hardware introduces
a new parameter into the model: the number of shots done for each calcu-
lation. Specifically, we now perform a quantum experiment each time we
measure the three-qubit state, and we collect the results after a set number of
experiments (shots) have been carried out. These then build up expectation

https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap
https://IonQ.com/posts/december-09-2020-scaling-quantum-computer-roadmap
https://IonQ.com/posts/december-09-2020-scaling-quantum-computer-roadmap
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FIGURE 6.7: Marginal samples distributions for the physical observables s, t, y in pp→ t t̄ production at the LHC using the style-qGAN
generator model trained with 104 samples on ibmq_santiago (top row), together with the corresponding two-dimensional sampling
projections (middle row) and the ratio to the reference underlying prior MC distribution (bottom row). Note that we choose a grey
background for the plots at the bottom row to more clearly highlight a ratio of one between reference and generated samples, indicated
by white.

values that are used to create generated samples. In this implementation
we typically perform a number of 1000 shots per sample.

Prior to running on actual quantum hardware, we performed noise
simulations using the IBM Q simplified noise model, which provides an
approximation of the properties of real device backends, and enables us
to test how well the results presented in Section 6.5 would be preserved
in the noisy environment. Results are provided in Appendix D and show
that the impact of the noise is expected to be visible to a degree. We leave
noise mitigation to further work. For the noise simulation as well as the
actual runs on IBM Q quantum devices, we have selected in particular the
ibmq_santiago 5-qubit Falcon r4L quantum processor. For our circuit, we
need only three qubits with at least one directly connected to the other two.
We use a translation layer written in Qiskit [Ale+19] to implement the [Ale+19] Aleksandrowicz et al., Qiskit: An

Open-source Framework for Quantum Com-
putingcircuit in Figure 6.2 and automatically select the three qubits out of the five

that have the best noise properties. Note that this also allows us to test the
impact of potential interference between qubits, as IonQ qubits are fully
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connected while those of IBM Q are not.
We present in Figure 6.7 examples of samples that have been generated

using the ibmq_santiago machine on IBM Q. We use a 3-qubit model with
5 latent dimensions and 1 layer and for which the hyperparameters are
the same as the ones used in Section 6.5 and trained on 104 samples. In
contrast to the previous Section 6.5, for this implementation in the quantum
hardware we reduced the number of layers to one. This means that we
have trained a different style-qGAN with only one layer and then deployed
the model to the quantum architecture. This change is motivated by the
desire to diminish the effect of noise by reducing the depth of the circuit.
Note, the analysis presented in Appendix D shows little deviation between
the one- and two-layer result ratios, further strengthening this choice. To
compute each fake sample, we have performed 1000 shots on the quantum
circuits. In the top row of Figure 6.7, we compare the one-dimensional
cumulative projections of samples generated by the style-qGAN model with
the reference input distribution functions for 105 samples. The binning
choice is equivalent to that used in Figure 6.6. In the middle row, we
display the generation of 105 samples in two-dimensional projections. In
the bottom row of plots in Figure 6.7, we show again the ratio between
the reference samples, generated using the MC event generator, and the
samples generated by the style-qGAN on the ibmq_santiago quantum
hardware. As expected, the agreement is worse than in Figure 6.6 because
of the noise and reduced capacity of the quantum generator, nevertheless
the results are reasonable. The style-qGAN generator model deployed in
this NISQ hardware still manages to capture the correlations and provides
reasonably good samples when compared to the reference distribution. The
KL distances reported in the top row of plots are still relatively small, at most
one order of magnitude larger than the KL distances reported in Figure 6.6.

During the current NISQ-era, the different quantum hardware architec-
tures are not standardized and can have limits on the potential applications
of the machines. As part of the implementation of our model onto quantum
hardware, we were also able to study how the style-qGAN performs across
different platforms. The aim is to understand whether and to what extent the
style-qGAN’s performance is hardware-dependent and also its potential hard-
ware transferability. In view of this study of different quantum technologies,
we have also performed a run with 103 samples only, on IonQ machines and
separately on IBM Q machines. We have selected this fairly small amount
of samples mainly due to external constraints on IonQ machine access on
AWS. Note that the purpose of these tests is not to compare the two different
hardware technologies, but instead to test whether the style-qGAN model
works well on different quantum architectures. We use again a translation
layer, written in Python with the BraketSDK from Amazon, between our
circuit and the quantum hardware, and we have also performed around
1000 shots for the measurement of the generated samples. We stress again
that although the amount of samples is quite low, the purpose of this test
is to assess how the algorithm performs on different quantum technologies
using the same amount of samples, not to obtain fine-grained results.

We show in Figure 6.8 the two-dimensional projections using IBM Q
ibmq_santiago machine (upper row) and IBMQ machine (lower row). It
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FIGURE 6.8: Example of two-dimensional sampling projections for pp → t t̄ production using the style-qGAN generator model on
ibmq_santiago (top row) and IonQ (bottom row) trained with 104 samples.

is clear that the sampling is sparser than in Figure 6.7, due to the lower
number of samples; nonetheless, the style-qGAN captures the underlying
distribution and correlations. This is particularly visible on the left plots
for the t − s correlation. The comparison between the upper row and the
lower row also indicates that both architectures obtain similar results. This
demonstrates that the style-qGAN can give good results on two different
quantum hardware architectures.

6.7 OUTLOOK

This chapter explores the use of quantum neural networks (QNNs) for
Monte Carlo event generation, specifically for scattering processes at the
Large Hadron Collider (LHC). We focus specifically on quantum generative
adversarial networks (qGANs), which employ two competing networks,
the generator and the discriminator, that are trained alternatively. Here
we propose a novel quantum generator model that does not follow the
traditional path where the prior noise distribution is provided to the quantum
generator through its first quantum gates. We instead choose to embed it
on every single-qubit and entangling gate of the network. This allows for
improvement on state-of-the-art results with a shallow QNN. As a similar
concept has been utilized in the classical context, coined as style-GANs, we
choose to call our novel architecture a style-qGAN.

As this is a new quantum generative architecture, the body of this work
focused on validating and assessing our methodology on various data sets
and hardware architectures. In particular, we not only trained our model on
toy data, namely 1D gamma and 3D correlated Gaussian distributions, but
also on data for real quantum processes at the LHC, generated via MadGraph.
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For both toy data and real data, we saw strong evidence that the style-qGAN
model could be used for data augmentation, as it was able to reproduce
known reference distributions from small sample sets. Additionally, we
deployed the models on two different quantum hardware architectures –
superconducting qubits (IBM Q) and trapped ions (IonQ). Despite working
with a small sample set, we observed that the style-qGAN works well on
different hardware architectures. This points to its hardware-independent
viability.

The results presented here should be considered as a proof-of-concept,
providing a robust and reproducible starting point for future investigations.
Nevertheless, this is a first attempt to bridge the power of quantum machine
learning algorithms into the complexity of Monte Carlo simulation in HEP.
Hopefully, the approach presented here will inspire new HEP applications
that may benefit from quantum computing in the future.



Part IV

CONCLUSION





7
Final remarks

“The end of a melody is not its goal: but
nonetheless, had the melody not reached its

end it would not have reached its goal either.
A parable.”

—Friedrich Nietzsche

Many of the proposed applications for quantum computing, such as sim-
ulating quantum systems or solving large linear systems of equations, are
very challenging for current quantum devices, given the limited number
of qubits and circuit depth. Variational quantum algorithms (VQAs) have
emerged as a leading strategy to address some of these constraints. This
thesis has covered several aspects of VQAs, from developing new applications
to benchmarks and implementations on real quantum hardware. Chapter 1
is devoted to reviewing the main building blocks of VQAs.

In Chapter 2, we benchmark the accuracy of the variational quantum
eigensolver on a finite-depth quantum circuit encoding the ground state of
condensed matter systems. For gapped Hamiltonians, we show how the
accuracy of the ansatz increases exponentially with the number of layers.
For critical systems, however, we observe the appearance of two regimes; a
regime that we have called finite-depth where the precision of the results only
depends on the number of layers and increases very slowly, and the finite-
size regime where the precision increases exponentially with the number of
layers and depends on the system size. This is likely a direct consequence of
Lieb-Robinson bounds and the finite speed propagation of the entanglement.

Chapter 3 studies and explores how data encoding influences the behavior
of a quantum autoencoder. We show that data encoding helps in the learning
task of compressing quantum information. In particular, we compress 1D
Ising ground states with higher fidelity by using the same amount of quantum
resources as a standard quantum autoencoder. This is, indeed, a step towards
what could be done in near-term quantum devices, shortening the distance
to practical applications.

In Chapter 4 it has been presented a quantum circuit that produces the
elements of a singular value decomposition of pure bipartite states. Its key
idea is to demand exact output coincidence on any measurement of the two
system parties. We successfully assess the performance of the circuit using
random quantum states. Two peculiar spin-offs are as well presented. On
the one hand, this circuit can be used to perform the task of a quantum
autoencoder. On the other hand, it also can be used to achieve a SWAP
operation without any quantum gate that connects the parties.

We continue the study of new applications for VQAs in Chapter 5 present-
ing the variational quantum linear solver, a VQA for solving linear systems of

81
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equations. We provide different cost functions, efficient circuits to estimate
them, and an optimization-stopping criterion. On the numerical side, we
studied the heuristic scaling of the algorithms by solving non-trivial problems
of size up to 250 × 250, and we found scalings at worst linearly in the condi-
tion number, logarithmically in the precision, and polylogarithmically in the
linear system size. Furthermore, we implemented a particular problem up
to a size of 1024× 1024 on quantum hardware, which to our knowledge, is
the largest implementation at present.

Finally, in Chapter 6, we explore the use of quantum generative adversar-
ial networks for Monte Carlo event generation. We propose a novel quantum
generator model that embeds the prior noise distribution on every circuit
gate. We validate and assess our generative architecture in toy models, that
is, 1D gamma distribution and 3D correlated Gaussian distribution. Then,
we train our model on data for real quantum processes at the Large Hadron
Collider. For both toy data and real data, we observe strong evidence that
the architecture could be used for data augmentation, as it was able to
reproduce the reference distributions from a small sample set. Moreover,
we successfully deployed the model on two different quantum hardware
architecture, namely, superconducting qubits and trapped ions.

The algorithms presented here are examples of potential applications for
noisy intermediate-scale quantum computers. Soon, variational quantum
algorithms will likely shift from the proposal and development phase to
an application phase, with more complex and larger problems being imple-
mented. This thesis paves the way towards new applications and strategies
to push the boundaries of near-term quantum devices, with the far-reaching
ambition of obtaining quantum advantage.
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[SCC19] Y. Subaşı, L. Cincio, and P. J. Coles. “Entanglement spectroscopy with a depth-two quantum circuit”. Journal
of Physics A: Mathematical and Theoretical 52, 044001 (2019) (cit. on p. 35).

[DSW18] S. Das, G. Siopsis, and C. Weedbrook. “Continuous-variable quantum gaussian process regression and quan-
tum singular value decomposition of nonsparse low-rank matrices”. Physical Review A 97, 022315 (2018)
(cit. on p. 35).

[Car+20] J. Carolan, M. Mohseni, J. P. Olson, M. Prabhu, C. Chen, D. Bunandar, M. Y. Niu, N. C. Harris, F. N. Wong,
M. Hochberg, et al. “Variational quantum unsampling on a quantum photonic processor”. Nature Physics
16, 322–327 (2020) (cit. on p. 36).

[PS+20b] A. Pérez-Salinas, D. García-Martín, C. Bravo-Prieto, and J. I. Latorre. “Measuring the tangle of three-qubit
states”. Entropy 22, 436 (2020) (cit. on p. 36).

[Szo+22] T. Szołdra, P. Sierant, M. Lewenstein, and J. Zakrzewski. “Unsupervised detection of decoupled subspaces:
many-body scars and beyond”. arXiv preprint arXiv:2201.07151 (2022) (cit. on p. 36).

[Rén61] A. Rényi. On measures of entropy and information. University of California Press. (1961) (cit. on p. 37).

[MRL08] M. Mohseni, A. T. Rezakhani, and D. A. Lidar. “Quantum-process tomography: Resource analysis of different
strategies”. Physical Review A 77, 032322 (2008) (cit. on p. 37).

[WHT15] D. Wecker, M. B. Hastings, and M. Troyer. “Progress towards practical quantum variational algorithms”.
Physical Review A 92, 042303 (2015) (cit. on p. 40).

[Mol+18] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta,
M. Ganzhorn, et al. “Quantum optimization using variational algorithms on near-term quantum devices”.
Quantum Science and Technology 3, 030503 (2018) (cit. on p. 40).

[Ami+08] L. Amico, R. Fazio, A. Osterloh, and V. Vedral. “Entanglement in many-body systems”. Reviews of Modern
Physics 80, 517 (2008) (cit. on p. 40).
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Part V

APPENDIX





A
Qibo: a framework for quantum
simulation

The quantum computer simulation on classical hardware is still quite rele-
vant in the current research stage. Thanks to simulation, researchers can
prototype and study a priori the behavior of new algorithms on quantum
hardware. In this appendix, we present Qibo, a framework for quantum
simulation. Specifically, Qibo is an open-source software for fast evaluation
of quantum circuits and adiabatic evolution, which takes full advantage of
hardware accelerators.

The Qibo framework is designed to delegate all complicated aspects
of hardware or platform implementation to the library so researchers can
focus on the problem and quantum algorithms at hand. This software is
designed from scratch with simulation performance, code simplicity, and a
user-friendly interface as target goals. The high-level API receives instruc-
tions from the user and automatically allocates and executes the code on
specific, optimized backends. The API can receive simple instructions, e.g.
quantum gates or circuits, and also more sophisticated models, such as a
variational quantum algorithm. In the following, a short review of the Qibo

basics for gate-based applications is presented.

CIRCUITS

▶ INITIALIZATION. Qibo simulates the behavior of quantum circuits using dense
complex state vectors ψ(σ1,σ2, . . . ,σN ) ∈ C2N

in the computational basis
where σi ∈ {0,1} and N is the total number of qubits in the circuit. The
initialization of a quantum circuit is the following:

from qibo.models import Circuit

# create a circuit for N=2 qubits
qubits = 2
circuit = Circuit(qubits)
state = circuit().numpy()

print(state)
>>> array([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j])
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▶ GATES. Quantum gates are added to the circuit by acting on the state vector
via matrix multiplication. Gates can be defined as acting on one or several
qubits.

import numpy as np
from qibo import gates

qubits = 2
circuit = Circuit(qubits)

# add some gates in the circuit
circuit.add([gates.H(0), gates.X(1)])
circuit.add(gates.RX(0, theta=np.pi/6))
circuit.add(gates.CNOT(0, 1))

print(circuit.draw())
>>> q0: -H-RX-o-
>>> q1: -X----X-

▶ MEASUREMENTS. The measurement step is used to retrieve information from
the quantum computation. Measurements can be allocated at any part of
the circuit.

qubits = 2
circuit = Circuit(qubits)

circuit.add(gates.X(0))
circuit.add(gates.H(1))
circuit.add(gates.CNOT(1, 0))
circuit.add(gates.M(0)) # measurement in qubit 0
circuit.add(gates.H(1))
circuit.add(gates.M(1)) # measurement in qubit 1

print(circuit.draw())
>>> q0: -X-X-M---
>>> q1: -H-o-H-M-

▶ CALLBACKS. The callback functions allow the user to perform calculations on
intermediate state vectors during a circuit execution. A callback example that
is implemented in Qibo is entanglement entropy. This allows the user to track
how entanglement changes as the state is propagated through the circuit’s
gates. Other callbacks implemented in Qibo include the callbacks.Energy

which calculates the energy (expectation value of a Hamiltonian) of a state.

from qibo import callbacks

qubits = 2
circuit = Circuit(qubits)

# create entropy callback where qubit 0 is one subsystem
entropy = callbacks.EntanglementEntropy([0])

circuit.add(gates.CallbackGate(entropy)) # entropy calculation |00> state
circuit.add(gates.H(0))
circuit.add(gates.CallbackGate(entropy)) # entropy calculation |+> state
circuit.add(gates.CNOT(0, 1))
circuit.add(gates.CallbackGate(entropy)) # entropy calculation Bell state

final_state = circuit()
print(entropy[:])
>>> [0.0 0.0 1.0]
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HAMILTONIANS

The Hamiltonian of a system is an operator corresponding to the total
energy of that system. As we have seen in different chapters, Hamiltonians
play a relevant role in variational quantum algorithms since cost functions
can be defined as expectation values of such operators. Qibo users have
to define Hamiltonians based on qibo.core.hamiltonians.Hamiltonian

which uses the full matrix representation of the corresponding operator
or qibo.core.hamiltonians.SymbolicHamiltonian which uses a more
efficient term representation. Qibo provides pre-coded Hamiltonians for
some common models, such as the transverse field Ising model and the
Heisenberg model. In order to explore other problems, the user needs to
define the Hamiltonian objects from scratch.

from qibo.hamiltonians import Hamiltonian
from qibo import matrices

# ZZ terms
matrix = np.kron(np.kron(matrices.Z, matrices.Z), np.kron(matrices.I,

matrices.I)),→
matrix += np.kron(np.kron(matrices.I, matrices.Z), np.kron(matrices.Z,

matrices.I)),→
matrix += np.kron(np.kron(matrices.I, matrices.I), np.kron(matrices.Z,

matrices.Z)),→
matrix += np.kron(np.kron(matrices.Z, matrices.I), np.kron(matrices.I,

matrices.Z)),→
# X terms
matrix += np.kron(np.kron(matrices.X, matrices.I), np.kron(matrices.I,

matrices.I)),→
matrix += np.kron(np.kron(matrices.I, matrices.X), np.kron(matrices.I,

matrices.I)),→
matrix += np.kron(np.kron(matrices.I, matrices.I), np.kron(matrices.X,

matrices.I)),→
matrix += np.kron(np.kron(matrices.I, matrices.I), np.kron(matrices.I,

matrices.X)),→

# Create Hamiltonian object
ham = Hamiltonian(4, matrix)

from qibo.hamiltonians import SymbolicHamiltonian
from qibo.symbols import X, Z

# define Hamiltonian using Qibo symbols
# ZZ terms
symbolic_ham = sum(Z(i) * Z(i + 1) for i in range(3))
# periodic boundary condition term
symbolic_ham += Z(0) * Z(3)
# X terms
symbolic_ham += sum(X(i) for i in range(4))

# define a Hamiltonian using the above form
ham = SymbolicHamiltonian(symbolic_ham)
# this Hamiltonian is memory efficient as it does not construct the
# full matrix

# the corresponding dense Hamiltonian which contains the full matrix can
# be constructed easily as
dense_ham = ham.dense
# and the matrix is accessed as ``dense_ham.matrix`` or ``ham.matrix``.
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MODELS

Qibo provides several application-specific models, which are pre-defined
architectures to implement seminal algorithms such as the variational quan-
tum eigensolver [Per+14] or the quantum approximate optimization algo-[Per+14] Peruzzo et al., “A variational eigen-

value solver on a photonic quantum proces-
sor” rithm [FGG14].

[FGG14] Farhi et al., “A quantum approxi-
mate optimization algorithm” from qibo.hamiltonians import XXZ

from qibo.models import VQE

qubits = 2
circuit = Circuit(qubits)
circuit.add(gates.RY(0, theta=0))
circuit.add(gates.RY(1, theta=0))

# define XXZ Hamiltonian
hamiltonian = XXZ(qubits)

# define VQE model
vqe = VQE(circuit, hamiltonian)

initial_parameters = np.random.uniform(0, 2*np.pi, 2)
result = vqe.minimize(initial_parameters)
print('Found energy:', result[0])
>>> Found energy: -1.9999976950940028

ADVANCED EXAMPLES AND APPLICATIONS

Qibo aims to be a community-driven open project. As a starting point,
several advanced examples and implementations were created to trigger
contributions from users around the globe. Let us mention below a few of
them:

▶ Scaling of variational quantum circuit depth for condensed matter
systems explored in Chapter 2.

▶ Quantum autoencoder for data compression and Quantum autoen-
coders with enhanced data encoding, both explored in Chapter 3.

▶ Quantum singular value decomposer explored in Chapter 4.

▶ Class that implements the style-based quantum generative adversarial
model explored in Chapter 6.

▶ Data reuploading for a universal quantum classifier [PS+20a].[PS+20a] Pérez-Salinas et al., “Data re-
uploading for a universal quantum classi-
fier” ▶ Quantum unary approach to option pricing [RC+21b].
[RC+21b] Ramos-Calderer et al., “Quantum
unary approach to option pricing”

▶ Shor’s factorization algorithm [Sho99].

[Sho99] Shor, “Polynomial-Time Algorithms
for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer”

▶ Grover’s Algorithm for solving a Toy Sponge Hash function [RC+21a].

▶ Adiabatic evolution for solving an Exact Cover problem.

https://qibo.readthedocs.io/en/stable/code-examples/tutorials/aavqe/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/aavqe/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/autoencoder/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/EF_QAE/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/EF_QAE/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/qsvd/README.html
https://github.com/qiboteam/qibo/blob/master/src/qibo/models/qgan.py
https://github.com/qiboteam/qibo/blob/master/src/qibo/models/qgan.py
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/reuploading_classifier/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/reuploading_classifier/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/shor/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/hash-grover/README.html
https://qibo.readthedocs.io/en/stable/code-examples/tutorials/adiabatic3sat/README.html


B
Solovay-Kitaev theorem

One of the significant challenges of quantum computation is to implement
quantum algorithms efficiently. Mathematically, the complexity of an algo-
rithm can be defined in the context of differential geometry relating distances
in the manifold of unitary operations with the circuit complexity [Nie+06; [Nie+06] Nielsen et al., “Quantum Compu-

tation as Geometry”DN08]. In quantum computing, we are limited to a specific set of quantum
[DN08] Dowling and Nielsen, “The Geome-
try of Quantum Computation”

gates to perform arbitrary unitary operations. Thus, we have to find optimal
combinations of these gates that approximate the desired operation. Approx-
imating a unitary operation U , given a set of gates G, means that we have to
find g1 · · · gl ∈ G such that ∥U − g1 · · · gl∥ is sufficiently small (∥ · ∥ denotes
a distance in the manifold of unitary operations such as the operator norm
or the trace norm).

GROUND STATE ENERGY ERROR

In the following, we are going to relate the error ϵ between an approximated
quantum circuit Ũ and the exact one U that produces a ground state |ψ0〉 of
some Hamiltonian H, with the error of the ground state energy. The error of
the ground state energy may be defined as |Ẽ0 − E0|, where E0 is the lowest
eigenvalue of H, and Ẽ0 is the expectation value 〈ψ̃0|H |ψ̃0〉, being |ψ̃0〉
the approximated state given by Ũ . We may assume as well that exists an
ideal circuit U that maps our initial state to the exact ground state of a given
Hamiltonian, although implementing U may not be efficient in terms of the
number of qubits n.

Lemma 1. Given a universal set of quantum gates G closed under inversion, a
Hamiltonian H, and error ϵ > 0 it is possible to find a quantum circuit Ũ such
that it can simulate an approximation for the ground state |ψ̃0〉, with an error
of the energy of O(ϵ2) in a gate complexity of

O(logc(1/ϵ)) , (B.1)

for some constant c, c ≤ 4

Proof. To prove this result we use the Solovay-Kitaev theorem and standard
perturbation theory. Suppose that exists a quantum circuit U such that

U |0〉⊗n = |ψ0〉 . (B.2)

101



102 SOLOVAY-KITAEV THEOREM

Then, from the Solovay-Kitaev theorem it is possible to find an ϵ-approximation
Ũ for U using O(log c(1/ϵ)) gates from our set G. The approximated Ũ
can be expressed as Ũ = e−iϵAU for some bounded Hermitian matrix A
(∥A∥< 1). Expanding Ũ with the usual definition of the matrix exponentia-
tion to the first order on ϵ, we compute the approximated state |ψ̃0〉 of the
exact groundstate

|ψ̃0〉= Ũ |0〉⊗n = |ψ0〉 − iϵA |ψ0〉+O(ϵ2). (B.3)

Recall that since A is bounded, |ψ̃0〉 is ϵ-close to |ψ0〉. Finally, it suffices
to compute the energy of the state |ψ̃0〉 as Ẽ0 = 〈ψ̃0|H |ψ̃0〉. Given that
E0 = 〈ψ0|H |ψ0〉, then

Ẽ0 = E0 + ϵ
2 〈ψ0|AHA |ψ0〉 . (B.4)

The terms O(ϵ) have canceled due to the hermicity of A and the change of
sign produced by the conjugation of the imaginary unit i. Thus, the result
|Ẽ0 − E0|=O(ϵ2) follows.

VON NEUMANN ENTROPY ERROR

This result can be extended also to the Von Neumann entropy. Recall the
definition of the Von Neumann entropy. Let H be a bipartite Hilbert space
for two subsystems A and B, i.e H =HA⊗HB, then, ρA

0 the reduced density
matrix of a state |ψ0〉 reads

ρA
0 = TrB |ψ0〉 〈ψ0| . (B.5)

The Von Neumann entropy of the bipartition can be computed as

S0 = −TrρA
0 log2ρ

A
0 = −

χ
∑

i

λi log2λi , (B.6)

where λi are the eigenvalues of ρA
0 , and χ is the Schmidt rank.

The following result will extend the relationship between the error ϵ
of the approximated quantum circuit Ũ with the entropy error |S̃0 − S0|,
where S0 corresponds to the entropy of the exact ground state and S̃0 to the
approximated one.

Lemma 2. Given a universal set of quantum gates G closed under inversion, a
Hamiltonian H, and error ϵ > 0 it is possible to find a quantum circuit Ũ such
that it can simulate an approximation for the ground state |ψ̃0〉, with an error
of the Von Neumann entropy of O(ϵ) in a gate complexity of

O(logc(1/ϵ)) , (B.7)

for some constant c, c ≤ 4.

Proof. Using the same construction as in Lemma 1, we may find an ϵ-
approximation Ũ of the ideal circuit, that produces an approximated state
|ψ̃0〉. In order to compute S̃0 it is useful to compute the density matrix of
|ψ̃0〉,

ρ̃A
0 = ρ

A
0 + iϵTrB(−A |ψ0〉 〈ψ0|+ |ψ0〉 〈ψ0|A) +O(ϵ2) . (B.8)
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Note that the terms of O(ϵ) does not cancel, thus ∥ρ̃A
0 −ρ

A
0∥ = O(ϵ). Let

λ0, ...,λm and λ̃0, ..., λ̃m be the eigenvalues of ρA
0 and ρ̃A

0 , respectively. Then,
the eigenvalues can be related as

λ̃i = λi + ϵci +O(ϵ2) , (B.9)

where ci is some constant such that |λ̃i−λi | =O(ϵ), and the terms of higher
order on ϵ are ignored. Finally, it suffices to compute the terms λi log2λi .
Expressing log2 λ̃i = log2 (λi(1+ ϵci/λi)), and using the Taylor expansion
for the logarithm, we obtain that

λ̃i log2 λ̃i = λi log2λi + ciϵ log2λi + ciϵ +O(ϵ2) . (B.10)

Then, summing over all the terms λ̃i log2 λ̃i , the result |S̃0 − S0| = O(ϵ)
follows.

Hence, we may conclude that if some unitary U accepts a polylogarithmic
approximation Ũ up to some error O(ϵ), then we can approximate as well
the ground state energy and the Von Neumann entropy up to O(ϵ2) and
O(ϵ), respectively.





C
Small scale implementations of the
linear system problem

SCALING HEURISTICS FOR 8× 8 SYSTEMS

Here we study the scaling of the variational quantum linear solver (VQLS)
algorithm of Chapter 5 for 8× 8 systems. For this purpose, we employed
the ansatz of Figure C.1 (with randomly initialized parameters), and we
numerically implement VQLS to solve the three different QLSPs with different
degeneracy g in the minimum eigenvalue of A defined by:

A1 =
1

8κ
[4(κ+ 1)1+ (κ− 1)(Z3 + Z2 + 2Z1)] (C.1)

A2 =
1

4κ
[2(κ+ 1)1+ (κ− 1)(Z3 + Z2)] (C.2)

A3 =
1

2κ
[(κ+ 1)1+ (κ− 1)Z3] . (C.3)

FIGURE C.1: Hardware-Efficient Ansatz used to solve the QLSPs in Eqs. C.1–C.4. Since A and
|b〉 are real, V (α⃗) contains only rotation around the y-axis R y (αi) = e−iαi Y /2, and control-Z
gates.

FIGURE C.2: Time-to-solution versus condition number κ. The time-to-solution is the mean number of executions needed to guarantee a
desired precision ε. The QLSP is determined by |b〉 of C.4, and A given by: Left: Matrix A1 of C.1. Center: Matrix A2 of C.2. Right:
Matrix A3 of C.3. For each data point we ran and averaged 1000 instances of the VQLS algorithm. In all cases we trained the gate
sequence by minimizing bCG , CG , bCL , and CL . As can be seen, the scaling in terms of the condition number κ appears to be efficient for
all A matrices and for all cost functions.
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The degeneracy of each matrix is g = 1,2,4, respectively. We remark that
we considered different values of g to analyze if this parameter affects the
VQLS performance. The state |b〉 is

|b〉= H⊗3 |000〉 . (C.4)

Figure C.2 shows results plotting time-to-solution versus κ for the afore-
mentioned A matrices by training bCG , CG , bCL , and CL . In all cases we
employed the operational meanings of our cost functions in Eqs. 5.10 and
5.11 of the main text for our certification procedure, i.e., to upper-bound the
quantity ε. For each data point in Figure C.2, we implemented and averaged
over 1000 runs of VQLS.

These results show that the κ scaling is efficient for the problems consid-
ered (regardless of the value of g considered). This is in agreement with the
scaling observed in Chapter 5. It is worth noting that this efficient scaling
holds for all of our cost functions. The unnormalized cost functions have
slightly better performance for the A1 and A2 matrices, although all four
cost functions perform similarly for A3, indicating that the performances of
different cost functions are problem-dependent.

IMPLEMENTATION WITH QAOA ANSATZ

We numerically analyze the VQLS scaling with κ when employing the QAOA
ansatz. Since poorly conditioned matrices (i.e., large κ) are more difficult to
invert, we expect that for fixed ε, the number of layers p must increase with
κ. While this is generally true, we can also alleviate this issue by evolving
with the driver Hamiltonian HD for a longer time. This corresponds to scaling
the parameters αi for odd i in Eq. 5.27 of the main text by some value that
grows with κ. As shown in Figure C.3(a) and (b), this scaling can indeed
transform the cost landscape such that it contains more regions of low cost
and thus makes optimization more likely to be successful.

In Figure C.3(c), we show the time-to-solution versus the condition
number. Here, we consider the QLSP on three qubits defined by the A2

matrix of C.2 and with |b〉 given by C.4. For this small scale-implementation
we obtained the time-to-solution be exactly computing ε. The condition
number was varied from κ = 100 to κ = 103. For each κ, VQLS was
implemented 100 times with the parameters randomly initialized. For each
of the three values of ε considered, the scaling with κ is sub-exponential.
Hence, these results indicate that VQLS with QAOA also scales efficiently
in the condition number κ. Finally, we emphasize that these results were
obtained with only p = 1 round of QAOA and remark that additional rounds
p > 1 may lead to better performance.
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FIGURE C.3: (a) Landscape for bCG with a QAOA ansatz of p = 1 layer and unscaled parameters
α1 and α2. Here, α1 (α2) corresponds the the parameter in the driver (mixer) Hamiltonian.
(b) Landscape for bCG with a QAOA ansatz of p = 1 layer where α1 was scaled by the condition
number κ. In both cases the QLSP is defined by a randomly generated 4 × 4 matrix with
condition number κ ≈ 11, and with |b〉 given by C.4. The scaled landscape contains more
regions of low cost and thus makes optimization more likely to be successful. (c) Time-to-
solution versus condition number κ for the QLSP on three qubits defined by the A2 matrix
of C.2 and with |b〉 given by C.4. Three curves are shown for ε2 = 0.10,0.02, and 0.01. The
inset depicts the same data on a logarithmic scale. As can be seen from the inset, the scaling in
κ is sub-exponential for each ε considered.

IMPLEMENTATIONS ON RIGETTI’S QUANTUM COMPUTER

Here we present additional implementations performed on Rigetti’s quantum
device 16Q Aspen-4. We have considered different problem sizes, from 2× 2
up to 32× 32. We additionally recall that the matrices A and states |b〉 in
these QLSP are such that the ansatz and the cost computing circuits are
simplified.

First we present the results of a 32×32 (i.e., 5-qubit) implementation of
VQLS using Rigetti’s quantum chip 16Q Aspen-4. We considered the QLSP
defined by

A= 1+ 0.2X1Z2 + 0.2X1 , (C.5)

and |b〉= H1H3H4H5 |0〉
⊗5. This particular choice of A and |b〉 is motivated

from the fact that they lead to simplified ansatz and cost evaluation circuits.
In particular, the ansatz considered consists of R y(αi) gates acting on each
qubit.

The results are shown in Figure C.4. At each run of the VQLS algo-
rithm, the parameters were initialized to random angles, and the classical
optimization was performed with the Powell method [Pow78]. For every [Pow78] Powell, “A fast algorithm for nonlin-

early constrained optimization calculations”run, the local cost function CL of Eq. 5.6 achieved a value of ∼ 7× 10−2

(hardware noise prevented further cost reduction). While this cost value led



108 SMALL SCALE IMPLEMENTATIONS OF THE LINEAR SYSTEM PROBLEM

FIGURE C.4: Implementation of VQLS on Rigetti’s quantum hardware. Cost function CL is
plotted versus number of optimization steps, where A is given by C.5. One can observe that for
every run the cost function is reduced to a value of ∼ 7 × 10−2. Due to noise present in the
quantum device the cost does not go to zero.

to a trivial bound on ε via Eq. 5.10, we nevertheless found the solution |x〉
to be of high quality. We verified this by measuring the expectation value of
different Hermitian observables M on the state |x〉 prepared on the quantum
computer. According to Eq. 5.12, we can use D(M)2 as a figure of merit to
quantify the quality of our solution. For all M we considered, D(M)2 was
no larger than 0.01, and hence the results have a good agreement with the
exact solution. See Table C.7 for all values of D(M)2.

Figure C.5 shows the value of the cost function versus the number of
optimization steps for different linear systems and several runs. It is worth
mentioning that the cost function is reduced to values ≲ 0.1 for every
example, except for the case depicted in panel (b). In this particular case,
the solution of the 2×2 linear system is |x0〉 = |1〉. Therefore, one may note
the effect of relaxation to the state |0〉 in the quantum device, which likely
significantly affected the result quality. The Tables C.1, C.2, C.3, C.4, C.5
and C.6 correspond to the examples shown in Figure C.5. In the tables we
show the expectation values of several observables M , obtained from the
output of the VQLS and we compare them to the exact ones.

M 〈M〉exact 〈M〉exp D(M)2

Z 0 0.04 ± 0.02 0.002 ± 0.002

TABLE C.1: Expectation value of an observable M computed with the exact solution, and with
the output solution of VQLS. D(M) measures the difference between these two results. The
linear system considered is A2×2 = H, and |b〉= X |0〉 .

M 〈M〉exact 〈M〉exp D(M)2

Z -1 -0.819 ± 0.005 0.032 ± 0.002

TABLE C.2: Expectation value of an observable M computed with the exact solution, and with
the output solution of VQLS. D(M) measures the difference between these two results. The
linear system considered is A2×2 = 1 + 0.25 Z , and |b〉= X |0〉.
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FIGURE C.5: Cost function versus number of optimization steps. The classical optimization
algorithm employed is the Powell method which uses an unconstrained bi-directional search.
Randomization in this algorithm occasionally leads to spikes in the cost function, visible in
the plots, which quickly deteriorate as the optimizer reverts back towards better parameters.
(a) A2×2 = H, and |b〉 = X |0〉. (b) A2×2 = 1 + 0.25Z , and |b〉 = X |0〉. (c) A4×4 = X1H2,
and |b〉 = H1H2 |0⃗〉. (d) A4×4 = 1+ 0.25Z2, and |b〉 = H1 |0⃗〉. (e) A8×8 = 1+ 0.25Z3, and
|b〉= H1H2 |0⃗〉. (f) A32×32 = 1+ 0.25X5, and |b〉= H⊗5 |0⃗〉.

M 〈M〉exact 〈M〉exp D(M)2

Z2 1 0.943 ± 0.003 0.0032 ± 0.0003

Z1 0 0.02 ± 0.04 0.000 ± 0.002

Z1Z2 0 0.02 ± 0.04 0.000 ± 0.002

TABLE C.3: Expectation value of observables M computed with the exact solution, and with the
output solution of VQLS. D(M) measures the difference between these two results. The linear
system considered is A4×4 = X1H2, and |b〉= H1H2 |0⃗〉.

M 〈M〉exact 〈M〉exp D(M)2

Z2 1 0.930 ± 0.004 0.0047 ± 0.0005

Z1 0 0.00 ± 0.02 0.00000 ± 0.00006

Z1Z2 0 0.00 ± 0.02 0.00000 ± 0.00009

TABLE C.4: Expectation value of observables M computed with the exact solution, and with the
output solution of VQLS. D(M) measures the difference between these two results. The linear
system considered is A4×4 = 1+ 0.25Z2, and |b〉= H1 |0⃗〉.
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M 〈M〉exact 〈M〉exp D(M)2

Z3 1 0.88 ± 0.01 0.013 ± 0.002

Z2 0 0.00 ± 0.04 0.0000 ± 0.0001

Z2Z3 0 0.00 ± 0.03 0.0000 ± 0.0002

Z1 0 0.04 ± 0.05 0.002 ± 0.003

Z1Z3 0 0.04 ± 0.04 0.002 ± 0.004

Z1Z2 0 -0.002 ± 0.009 0.00000 ± 0.00004

Z1Z2Z3 0 -0.004 ± 0.009 0.00002 ± 0.00009

TABLE C.5: Expectation value of observables M computed with the exact solution, and with the
output solution of VQLS. D(M) measures the difference between these two results. The linear
system considered is A8×8 = 1+ 0.25Z3, and |b〉= H1H2 |0⃗〉.

M 〈M〉exact 〈M〉exp D(M)2

Z5 0 0.180 ± 0.030 0.030000 ± 0.01000
Z4 0 0.000 ± 0.100 0.000000 ± 0.00400

Z4Z5 0 0.000 ± 0.020 0.000000 ± 0.00040
Z3 0 0.000 ± 0.100 0.000000 ± 0.00900

Z3Z5 0 0.000 ± 0.020 0.000000 ± 0.00040
Z3Z4 0 -0.006 ± 0.009 0.000000 ± 0.00010

Z3Z4Z5 0 0.000 ± 0.001 0.000000 ± 0.000001
Z2 0 0.100 ± 0.020 0.010000 ± 0.00500

Z2Z5 0 0.019 ± 0.009 0.000300 ± 0.00030
Z2Z4 0 0.000 ± 0.010 0.000000 ± 0.00004

Z2Z4Z5 0 -0.001 ± 0.009 0.000000 ± 0.00003
Z2Z3 0 0.000 ± 0.010 0.000000 ± 0.00002

Z2Z3Z5 0 0.005 ± 0.004 0.000020 ± 0.00004
Z2Z3Z4 0 -0.007 ± 0.006 0.000050 ± 0.00009

Z2Z3Z4Z5 0 -0.002 ± 0.008 0.000000 ± 0.00004
Z1 0 0.010 ± 0.020 0.000200 ± 0.00070

Z1Z5 0 0.005 ± 0.008 0.000030 ± 0.00009
Z1Z4 0 0.003 ± 0.005 0.000010 ± 0.00003

Z1Z4Z5 0 -0.002 ± 0.007 0.000000 ± 0.00004
Z1Z3 0 0.000 ± 0.010 0.000000 ± 0.00001

Z1Z3Z5 0 -0.002 ± 0.005 0.000000 ± 0.00002
Z1Z3Z4 0 0.000 ± 0.008 0.000000 ± 0.00001

Z1Z3Z4Z5 0 -0.001 ± 0.004 0.000000 ± 0.00004
Z1Z2 0 0.006 ± 0.004 0.000040 ± 0.00005

Z1Z2Z5 0 0.000 ± 0.010 0.000010 ± 0.00007
Z1Z2Z4 0 -0.002 ± 0.001 0.000000 ± 0.00001

Z1Z2Z4Z5 0 0.002 ± 0.005 0.000000 ± 0.00002
Z1Z2Z3 0 0.001 ± 0.007 0.000000 ± 0.00002

Z1Z2Z3Z5 0 0.000 ± 0.006 0.000000 ± 0.00001
Z1Z2Z3Z4 0 0.001 ± 0.002 0.000001 ± 0.000006

Z1Z2Z3Z4Z5 0 0.002 ± 0.001 0.000004 ± 0.000007

TABLE C.6: Expectation value of observables M computed with the exact solution, and with the
output solution of VQLS. D(M) measures the difference between these two results. The linear
system considered is A32×32 = 1+ 0.25X5, and |b〉= H⊗5 |0⃗〉.
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M 〈M〉exact 〈M〉exp D(M)2

Z5 0 0.1 ± 0.1 0.01 ± 0.04
Z4 0 0.00 ± 0.04 0.0 ± 0.0005

Z4Z5 0 0.00 ± 0.01 0.0 ± 0.00007
Z3 0 0.0 ± 0.1 0.0 ± 0.004

Z3Z5 0 0.01 ± 0.02 0.0002 ± 0.0009
Z3Z4 0 -0.002 ± 0.007 0.0 ± 0.00003

Z3Z4Z5 0 0.000 ± 0.005 0.0 ± 0.000009
Z2 1 0.971 ± 0.002 0.0008 ± 0.0001

Z2Z5 0 0.1 ± 0.1 0.01 ± 0.04
Z2Z4 0 0.00 ± 0.04 0.0 ± 0.0004

Z2Z4Z5 0 0.00 ± 0.01 0.0 ± 0.00006
Z2Z3 0 0.0 ± 0.1 0.0 ± 0.003

Z2Z3Z5 0 0.01 ± 0.02 0.0002 ± 0.0009
Z2Z3Z4 0 -0.002 ± 0.006 0.0 ± 0.00003

Z2Z3Z4Z5 0 0.001 ± 0.005 0.0 ± 0.00001
Z1 0 -0.02 ± 0.04 0.0 ± 0.001

Z1Z5 0 0.000 ± 0.007 0.0 ± 0.0006
Z1Z4 0 0.000 ± 0.004 0.0 ± 0.0000006

Z1Z4Z5 0 0.000 ± 0.006 0.0 ± 0.00001
Z1Z3 0 -0.002 ± 0.006 0.0 ± 0.00003

Z1Z3Z5 0 -0.001 ± 0.004 0.0 ± 0.00001
Z1Z3Z4 0 0.004 ± 0.005 0.00001 ± 0.00004

Z1Z3Z4Z5 0 0.003 ± 0.004 0.00001 ± 0.00003
Z1Z2 0 -0.02 ± 0.03 0.0 ± 0.001

Z1Z2Z5 0 0.000 ± 0.008 0.0 ± 0.0000004
Z1Z2Z4 0 0.000 ± 0.005 0.0 ± 0.000004

Z1Z2Z4Z5 0 0.000 ± 0.006 0.0 ± 0.000006
Z1Z2Z3 0 -0.001 ± 0.007 0.0 ± 0.00002

Z1Z2Z3Z5 0 0.000 ± 0.004 0.0 ± 0.000008
Z1Z2Z3Z4 0 0.004 ± 0.003 0.00001 ± 0.00003

Z1Z2Z3Z4Z5 0 0.004 ± 0.003 0.00001 ± 0.00003

TABLE C.7: Expectation value of observables M computed with the exact solution, and with the
output solution of VQLS. D(M) measures the difference between these two results. The linear
system considered is A32×32 = 1+ 0.2X1Z2 + 0.2X1, and |b〉= H1H3H4H5 |0⃗〉.





D
Generative modeling with a noisy
simulation

We have performed a noise simulation of the style-qGAN presented in Chap-
ter 6 on an IBM Q device, taking as a device baseline the ibmq_santiago

5-qubit Falcon r4L quantum processor that we have used for our runs on
real IBM Q hardware.
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FIGURE D.1: Marginal samples distributions for the physical observables s, t, y in pp→ t t̄ production at the LHC using the style-qGAN
generator model in a noise simulation of ibmq_santiago device (top row), trained with 104 samples (top row), together with the
corresponding two-dimensional sampling projections (middle row) and the ratio to the reference underlying prior MC distribution
(bottom row). Note that we choose a grey background for the plots at the bottom row to highlight when the reference and generated
samples are identical.
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FIGURE D.2: Ratio of two-dimensional sampling projections using the noise simulation of
ibmq_santiago device to the corresponding noiseless simulation.

The noise model takes into account the readout error probability of
each qubit (mean value of the probability of reading |1〉 while being in the
state |0〉, and the probability of reading |0〉 while being in the state |1〉), the
relaxation time constants of each qubit (relaxation time and dephasing time),
the gate error probability of each basis gate, and the gate length (timing
of the gate) of each basis gate. The values are taken from the calibration
information of the selected device for the noise simulation. Note that this
calibration is performed at regular intervals. The generation of 105 samples
on the actual machine took about one week, implying that the calibration
parameters may have varied significantly during the full run.

We show in Figure D.1 the result of the noise simulation. The KL distances
displayed in the top row are comparable to the KL distances reported in
Figure 6.7. We also compare our noise simulation to the run on actual IBM Q
hardware, the latter being reported in Section 6.6; this is shown in the
bottom row. The plots show a significant amount of white points, signalling
that the noise simulation seems to capture most of the errors induced by
running on actual quantum hardware and that errors beyond the parameters
reported in the previous paragraph are subdominant.

We also compare our noise simulation to the noiseless simulation. The
results shown in Figure D.2 indicate that while the noise has an impact, as
expected, there are still many points close to the ratio of one; therefore the
style-qGAN still performs fairly well in a noisy environment. This led us
to believe that running on actual quantum hardware will give reasonable
results.
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