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RÉSUMÉ 
 

Le lymphome folliculaire (LF) est le 2ème type de lymphomes non Hodgkiniens (LNH) le plus 

fréquent, dont le traitement a largement bénéficié de l’introduction de l’anticorps monoclonal anti-

CD20, le rituximab, en combinaison avec une polychimiothérapie. Malgré ces progrès thérapeutiques 

considérables, de nombreux patients rechutent et certains patients ne répondent pas aux traitements 

standards. Ainsi, il est primordial d’identifier de nouvelles cibles thérapeutiques à l’aide de modèles 

d’études pertinents. Ces dernières années ont vu émerger de nouveaux traitements anti-cancéreux « 

chemo-free ». Dans ce contexte, l’immunothérapie a bénéficié d’un puissant développement 

permettant ainsi, par différentes approches, de stimuler le système immunitaire afin qu’il puisse 

reconnaître les cellules tumorales et les éradiquer. Le microenvironnement ou la cellule tumorale elle-

même sont donc devenus des cibles privilégiées de molécules thérapeutiques.  

Parmi celles-ci, les molécules ciblant à la fois des récepteurs à l’adénosine ou la génération de 

son métabolite sont prometteuses. Les modèles 3D représentent un outil d’étude clé dans ce projet car 

ils reflètent la pathologie en terme : i) d’architecture tridimensionnelle, ii) de profils transcriptomique 

et protéique et enfin iii) de réponse aux traitements. Les objectifs spécifiques de ma thèse ont été de: 

(i) Mettre au point la culture en 3D à partir de lignées cellulaires (MALC, multicellular aggregates of 

lymphoma cells) et de cellules de patients atteints de LF (PDLS, patient-derived lymphoma spheroids), 

(ii) Caractériser les PDLS sur le plan transcriptomique et phénotypique (composition cellulaire, 

expression des récepteurs à l’adénosine et ses métabolites, récepteurs d’immune checkpoint…), (iii) 

tester l’efficacité d’immunothérapies sur les PDLS et (iv) Identifier de nouvelle(s) cible(s) 

thérapeutique(s). 

Ainsi, ce travail a permis d’identifier CD39, une endoectonucléotidase impliquée dans la voie 

adénosinergique, comme nouvelle cible thérapeutique dans le LF, une pathologie qui reste à l’heure 

actuelle considérée comme incurable. 
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ABSTRACT 
 

Follicular lymphoma (FL) is the second most frequent non-Hodgkin’s lymphoma (NHL), which 

benefited greatly from anti-CD20 monoclonal antibody (rituximab) introduction in combination with 

chemotherapy in first-line therapy. Despite this huge therapeutic progress, numerous patients relapse 

and some are refractory to first-line treatments. Thus, it is essential to identify new therapeutic targets 

using relevant models.  

Recently, new anti-cancer treatments called “chemo-free” has emerged. In this context, 

immunotherapy has benefited from a powerful development allowing, by different approaches, to 

stimulate the immune system in order to recognize tumoral cells and eradicate them. Tumor 

microenvironment or even tumor cells themselves have become key targets for these therapeutic 

approaches.  

Among them, molecules targeting adenosine receptors or its metabolites generation are 

promising. 3D models represent a key element in this project as they reflect the pathology in term of: 

(i) spatial architecture, (ii) transcriptomic and protein profiles and (iii) treatment responses. The specific 

objectives of my PhD were to: (i) establish 3D cultures from FL cell lines (MALC, multicellular aggregates 

of lymphoma cells) and FL patient samples (PDLS, patient-derived lymphoma spheroids), (ii) 

characterize the transcriptomic and phenotypic profiles of PDLS (including: immune cell, adenosinergic 

pathway, immune checkpoint receptors), (iii) test efficacy of immunotherapies on PDLS and (iv) identify 

new therapeutic targets.  

Thus, this work allowed the identification of CD39, an endoectonucleotidase implicated in 

adenosine generation, as a new therapeutic target in FL, a pathology that still remains incurable. 
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I. INTRODUCTION 
 

1. Lymphopoiesis and lymphomagenesis: from order to anarchy  
 

In vertebrates, genesis of lymphocytes starts in the bone marrow (BM) from multipotent 

hematopoietic stem cells (HSCs). Differentiation of lymphocyte (B or T) from HSCs, requires tightly 

orchestrated steps, which constitute a branch of hematopoiesis system1. This system allows the 

formation of all types of blood cellular components starting from two main progenitors: the common 

myeloid progenitor (MMP) that gives rise to megakaryocytes (thrombocytes), erythrocytes, mast cells, 

myeloblasts (basophils, neutrophils, eosinophils, monocytes and then macrophages) and the common 

lymphoid progenitor (CLP) that gives rise to natural killer cells (NK cells) and small lymphocytes (T cells 

and B cells differentiating in plasma cells) (Figure1). We will focus the rest of this first introductory part 

on the CLP and the genesis of B and T lymphocytes. These cell types differentiate and proliferate in 

specialized structures. Their precursors express a large repertoire of random receptors deriving from 

somatic recombination and must follow steps of positive and negative selection to select the 

appropriate amount of affinity to ensure self-tolerance and sufficient immune response. These steps 

occur mainly in primary lymphoid organs (bone marrow and thymus) and then B and T cells are 

matured in secondary lymphoid organs (SLOs) (lymph nodes(LN) , spleen, or mucosa-associated 

lymphoid tissues MALTs) 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HSC, multipotent hematopoietic stem cells; MPP, common myeloid progenitor; LMPP, lymphoid-primed 
multipotent progenitors; CLP, common lymphoid progenitor; ETP, early T-cell-lineage progenitor; NK, natural 
killer. From Nagasawa, Nature immunolology reviews, 2006 2.  

 
 

Figure 1 : Hematopoiesis and detailed B cell differentiation with associated markers and genetic features 
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1.1 B cell differentiation: from HSC to plasma and memory cells 
 

B cells are responsible for specific immune humoral response through the production of 

antibodies. They also play the role of antigen-presenting cells (APC). To obtain functional B cells, many 

genetic and epigenetic mechanisms must occured and specific microenvironment interactions are 

needed (Figures 2 and 3). Lymphopoiesis is a gradual and hierarchical process in which cells 

progressively lose their stem cell differentiation capacity to gain more specialized features. Several 

subtypes of B cells can be distinguished in this process also according to their locations. First in the BM, 

HCS differentiate in pro-B cell. These pro-B cells enter the blood circulation to differentiate into pre-B 

cell, then immature and naïve B cells. Subsequently, in the germinal center (GC) B cells undergo their 

ultimate differentitation steps (first centroblast and then centrocyte) to give birth to memory B cells 

and plasma cells in the blood circulation again (Figure 2).  

Various soluble factors are necessary for orchestrating B-cell differentiation and trafficking. For 

instance, CXC-chemokine ligand 12 (CXCL12) is an important chemokine for differentiation of B-cell 

progenitor’s subtypes and afterwards for homing of plasma cells to the BM. FLT3 ligand (FLT3L) allows 

differentiation of CLP and pre-pro-B cells. Interleukin 7 (IL-7) is required for generation of pro-B and 

pre-B cells. Stem-cell factor (SCF) is essential in adults for differentiation of pro-B-cells. Receptor 

activator of nuclear factor- κB ligand (RANKL) is important at late stage of differentiation: from pre-B 

cell to mature B cell (Figure 1).   

 

 

 

 

 
 
 
 
 
 
 
 
 
First steps occur in the bone marrow (HSCs) then progress to circulation and finally to germinal center to reenter 
the circulation and the bone marrow once fully differentiated into plasma cells or memory B cells. During their 
transit in the germinal center, they undergo clonal expansion and somatic hypermutation (SMH) in the dark zones 
(DZ). Inefficient B cells undergo apoptosis whereas B-cell with efficient BCR (B-cell receptor) receive survival 
signals to differentiate into plasma cells or memory B cells. From Patel et al, frontiers in immunology, 20213. 

Figure 2 : Detailled markers and subtypes upon B cell differentiation 
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At each step of B cell differentiation key transcriptional factors, epigenetic modulators and miRNAs are involved 
in this process. In green is indicated epigenetic enzymes and chromatin remodeling complex; in red miRNAs and 
in black transcriptional factors. From Bao et al, Clin Rev Allergy Immunol, 2016 4. 
 

 

1.1.1. From HSC to Pro-B cell: V(D)J happens 

 

HSCs cells are present in the BM, more accuretly in the central BM cavity, and posses the capacity 

of self-renewal. Differentiation of HCS into lymphoid-primed multipotent progenitors (LMPPs) and 

then into CLPs leads to B and T cell generation. B cell precursors rise from CLPs 5. These different 

progenitors are categorized in 4 distinct subpopulations named (fraction A,B,C,D) or alternatively pre-

pro B, pro-B and pre-B cells (Figure 1). These subpopulations can be distinguished by their differential 

expression of specific surface markers. By extension, pre-pro B cells are B220+, KIT-, CD19-, FLT3+, 

CD24-, CD43+, IgM-; pro-B cells express in addition KIT+, CD19+, CD24+ and lose FLT3 and finally, pre-

B cells lose KIT and CD43 (Figure 1) 6.  

The BM microenvironment and cell interaction are essential for B cell differentiation process. 

Indeed, intercellular contacts, growth factors and cytokines are necessary for triggering and regulate 

the activity of transcription factors responsible for the expression of the immunoglobulin (Ig) and other 

surface molecules by B cells. For example, CXCL12 and IL-7 secreted by stromal cells in the BM niche 

are key in early B cell differentiation steps by participating to B cell trafficking and antigenic 

presentation (Figure 4) 2.  

Figure 3: Principal known transcriptional factors, epigenetic regulator of B cell development 



19 
 

 

Figure 4 : Illustration of bone marrow cell niche and B cell movement upon B cell differentiation  
In this model, pre-pro B cells are attracted by CXCL12hi secretion by reticular cells. Pro-B cells first join IL-7 
expessing cells and pre-B cells leave them. Finally, immature B cells expressing IgM at their surface, exit the bone 
marrow to mature into the periphery. Once fully differentiated into plasma cell, B cell are attracted again by 
CXCL12hi reticular cells in the bone marrow. From Nagasawa, Nature immunolology reviews, 2006 2. 

V(D)J recombination is one of the most important steps in early B cell development leading to Ig 

expression at their surface and allows antibody diversity. This discovery of this process by Tonegawa 

et al was rewarded by a Nobel price in 1987 7. VDJ stands for Variable (Diversity) Joining and consists 

of the assembling of gene segments V, D and J (Figure 5). Thanks to the specific sites called 

recombination signal sequences (RSS), recombination sites are defined. Recombination-activating 

gene 1 and 2 (RAG1 and RAG2) are encoding key proteins for recombination initiation.  Indeed, they 

induce double strand breaks in DNA between gene segments and RSS sequences 8–10. These breaks, 

are further ligated by non-homologous end-joining, a repair mechanism. This event first occurs on the 

immunoglobulin heavy chain (IgH) of the CLP leading to the pro-B cell. It is important to notice that 

recombination occurs in a controlled step-by-step manner. Indeed, in pro-B cells, the heavy-chain (H) 

gene domain that includes the DH, JH, constant-µ (Cµ) and Cδ segments is accessible for 

rearrangement, thereby allowing D-to-J recombination to occur before V-to-DJ recombination. At the 

pro-B cell step, the light-chain (L) gene segments are not accessible for rearrangement. This is allowed 

at the pre-B cell stage where the germline VH gene segments are activated for rearrangement of the 

DJ junctions. Nevertheless, the -locus remains inaccessible for rearrangement. This occurs at the late 

stage of pre-B cell differentiation where the Ig heavy chain is produced 11.   
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Figure 5 : Multistep VDJ recombination in the immune system.  
This process requires several steps starting with RAG enzymes to create breaks in the DNA allowing reassembling 
of each gene segments followed by NHEJ DNA repair mechanism to reassemble new arrangement gene. From 
Kaeser and Chun, JBC review, 2020 12.  

This V(D)J recombination is also finely regulated by epigenetic changes allowing the accessibility in 

a stepwise manner (Figure 6). Indeed, in B cell progenitor K-alleles are positioned away from 

heterochromatin domains. Then in pro-B cell, they are joining the center, still away from 

heterochromatic regions. In early pre-B cells, one -allele is getting closer to the heterochromatin 

where histone hyperacetylation occurs. In late pre-B cells, this hyperacetylated allele undergoes a 

demethylation process allowing rearrangement.   

Representation of an epigenetic modulation possible model allowing k-chain gene rearrangement. At the 
progenitor stage, two alleles are unarranged, methylathed and away from the heterochromatin. Step by step, 
alleles are acetylated and get closer to the heterochromatin to undergo recombination. From Bergman and 
Cedar, nature immunology reviews, 2004 11. 
 

1.1.2. From pro to pre-B cell and immature B cells: allelic exclusion happens 

 

Once the V(D)J recombination is accomplished, the Igµ chains are generated allowing pre-BCR 

complexes assembly and expression by pre-B cells. During the pre-B cell phase of differentiation, one 

Figure 6 : Epigenetic modulation upon B cell differentiation. 
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of the main event is the occurrence of allelic exclusion 13. This event occurs when only one allele of a 

gene is expressed while the other is silenced. To prevent more rearrangement, RAG proteins are 

downregulated. This process allows the generation of a specific B-cell receptor (BCR). After 

rearrangement, B cells express a BCR with recombined heavy and light chains characteristic of 

immature B cells. If rearrangement induces an autoreactive receptor, another V(D)J is stimulated to 

eliminate and replace it. If needed, the second allele become accessible and undergoes further editing, 

in order to reach a productive rearrangement (Figure 7). 

 

Figure 7 : B- cell receptor editing during B cell differentiation.  
During early pre-B cell stage only one heavy chain alleles follow V-to-DJ rearrangement. Next, during late pre-B 
cell stage, µ-chain pairs with surrogate light chains and with Iga and Igb, form a complex. If the first 
rearrangement is non-productive, another rearrangement occurs leading to a productive one. From Bergman 
and Cedar, nature immunology reviews, 200411. 

 

1.1.3. From immature B cells to naïve B cells  

 

Before migrating to SLOs such as LN, immature B cells undergo negative selection to suppress by 

apoptosis cells with self-reactive BCR (Figure 8). Other cells receive prosurvival signals to continue their 

differentiation.  
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From Tak W. Mak, Mary E. Saunders and Bradley D. Jett, 

Book Primer to the Immune Response 2014 

 

 

 

 

 

 

 

 

Then, alternative splicing occurs during the transition from BM to SLOs allowing the expression of 

IgD and IgM at the cell surface 14 (Figure 9). These cells are called B mature naïve cells and are ready 

to migrate to SLOs. 

 

Figure 9 : Alternative splicing in immature B cells.  
Depending on the splicing it can lead to either secreted or transmembrane IgM or IgD. From Chen and Cerutti, 
Immunol Rev, 2010 15 

 

1.1.4. From naive B cell to GC B cells 

 

Further B cell maturation occurs once the cells reach the LN. In contrast to the previous stages of 

differentiation, this phase is antigen dependent. CD40+ naive B cells are attracted in the paracortex of 

LN called T cell zone by cytokines secretion where they can interact with helper T cells expressing 

Figure 8 : Negative selection of reactive B-cells 
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CD40L. T cells and B cells interaction leads to their proliferation and GC formation with centroblasts 

forming the dark zone (DZ) and the light zone composed by centrocytes, follicular dendritic cells (FDC), 

T cells and macrophages (Figure 10). FDC act as antigen-presenting cells (APC) for B cells. This step is 

crucial for the B cell affinity selection. Only B cells with high affinity BCR receive prosurvival signals, 

while the others undergo apoptosis and are eliminated by macrophages to avoid auto-immune 

reactions 16,17.  

 

Figure 10 : Germinal center interactions implicated in B cell differentiation.  
Lymph nodes are important sites in proliferation and selection of B cells. After contact with antigens, B cells are 
activated and proliferate to form germinal centers.  

 

After B cell selection and activation, additional modifications to increase Igs diversity occur and 

are gathered in two main mechanisms: the hypersomatic mutation and class switching (Figure 11). The 

hypersomatic mutation is a process where point mutations are introduced in the variable regions of 

heavy and light BCR chains. This mechanism leads to the maturation and diversification of antibody 

repertoire. This step occurs in the DZ of GC by the action of centroblasts, that express activation-

induced cytidine deaminase (AID), an enzyme important for DNA damage repair after substitution, 

deletion, insertion due to V(D)J rearrangement 18,19. Moreover, during the DNA repair process, the 

additional point mutations are introduced into DNA coding variable regions of Ig, thus further 

increasing diversity of antibody repertoire 20. Altogether, hypersomatic mutation allows B cell selection 

based on their BCR increasing affinity to antigens.  

The other mechanism, class switching, uses AID enzyme to induce an irreversible DNA 

rearrangement. During this process, the type of cytokines and co-stimulatory receptors will guide Ig 
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isotype. Indeed, through this step, switch sequences upstream each gene led to bring closer IgM and 

IgD. This step is also under the control of IRF4 capable of regulating indirectly AID expression 20.   

 

Figure 11 : Remodeling of Immunoglobulin during somatic hypermutation and class-switch recombination.  
V(D)J occurs in bone marrow when somatic hypermutation and class-switch recombination occurs in germinal 
centers. Somatic hypermutation promote mutations in the rearranged V exon to provide diversity in B cell 
antigen specificity. Class-switch recombination induces a deletion between Su and another S region to bring 
closer constant C region exon and V exon.  

 

1.1.5. What do you want to be when you grow up? Plasma cell or memory B cells 

 

The final step in B cell differentiation is to guide to become either a plasma cell or a memory B 

cell. This mechanism is not well known, nonetheless some genes have been identified. One of the 

example is paired box 5 (PAX5) gene, which inactivation is important for the differentiation step into 

plasmocytes cells. This is followed by BCL-6 inhibition, leading to the formation of plasmocytes capable 

of secreting antibodies with high affinity. Plasmocytes localization define their life expectancy. Indeed, 

short living plasmocytes stay in the LN where long living plasmocytes transit to the blood circulation 

and then to the BM where they can remain for years. B memory cells present a high life expectancy 

both in the blood circulation and in various tissues, where they act as immune guardians. If needed, 

they are able to detect specific antigens and be the first cells on the site to provide a response through 

massive differenciation into plasmocytes (Figure 12). 
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Figure 12 : The fate of mature B cells: Plasma cells or memory B cells.  
Mature B cells are located in follicles characterized by expression of paired box protein 5 (PAX5), interferon-
regulatory factor 8 (IRF8) and BTB and CNC homologue 2 (BACH2). Upon activation, B cell proliferate and can 
differentiate into short-lived plasmablasts expressing IRF4 and X-box binding protein 1 (XBP1). Follicular B cells 
during the GC reaction can upregulate BCL-6 and IRF4. After selection of high affinity receptors mature B cell exit 
the GC to become memory B cells or plasma cells expressing high level of BLIMP1, IRF4 and XBP1 and are able to 
produce numerous antibodies. From Nutt et al nature review 2015 21. 

 

1.2 Immune effectors differentiation and mechanism of action: the example of  T cells 
 

In addition to B cells differentiation, CLP cells give rise to T cells. These two components of the 

immune system belong to the adaptive immunity that trigger a low but specific and efficient response 

toward threats. On the opposite, the innate immunity, composed mainly by myeloid cells, allows a 

rapid but less specific response. In between, two classes of T cells, NK cells and gamma delta T cells ( 

T cells) are at the frontier of innate and adaptive immunity (Figure13).  

From Dranoff, 

Nature Cancer 

Review, 2004 22.  

 

 

 

 

Figure 13 : Immune cell 
composing innate and 
adaptive immunity 
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1.2.1. Innate and adaptive immunity: two interconnected systems 

 

Our body is systematically under the attack from exogenous (micro-organisms, 

macromolecules) or endogenous threats (cancer). In order to protect from these aggressions, our 

immune system is in charge of monitoring, recognizing and eliminating these exogenous agents, 

pathogens or damaged cells. There are two types of immunity responsible for maintainence of 

homeostasis: innate immunity able to provide a fast response but not specific without memory and 

adaptive immunity, that takes much longer to act but is very specific and provide memory against 

future attacks. Even if these mechanisms are described separately, they are interconnected all along 

the span of immune response, in order to maximize its efficiency (Figure 14). 

 

 

 

 

 

 

 

 

 

From https://www.creative-diagnostics.com/innate-and-adaptive-immunity.htm 

Innate immunity is known as the first line of defense. Its main actors are myeloid cells,  T 

cells and NK cells. The innate immunity response is activated by the detection of danger signal, 

including pathogen-associated microbial patterns (PAMP) or damage-associated molecular patterns 

(DAMP). These signals can be sensed by so-called pattern recognition receptors (PRR) present on the 

surface of various immune cells. For instance, the PRR family is composed of TLR toll-like receptor 

(TLR), C-type lectin receptor (CTLR) and nucleotide binding oligomerization domain – like receptor 

(NLR). After the binding of danger signal to PRR, an inflammatory environment composed of a ballet 

of secreted cytokines appears. If TLRs are activated, MyD88 or TRIFF pathways are triggered, leading 

to secretion of IL-12, that in turn can activate NK cells. In the next step, NK cells can secrete IFN, that 

Figure 14 : Innate and adaptive immunity, actors and interactions 
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among others leads to recruitment and polarization of macrophages. In turn, activated macrophages 

produces IL-8, that induces chemotaxis of neutrophils.  

On the other hand, NLR stimulation can lead to inflammasome establishment, activation of 

caspase 1, and further secretion of pro-inflammatory cytokines, including IL-1b and IL-18 by 

macrophages23. Attraction of macrophages then induces phagocytosis of bacteria, cell debris which 

are internalize in an internal compartment called phagosome, where they are degraded.  

Another mechanism that can be used during innate immunity is dependent on the 

complement. It involves the sequential proteolysis of proteins to generate enzyme complexes with 

proteolytic activity 24. Three different pathways can trigger this system: classical (activated by certain 

antibodies bound to antigens), lectines (activated by plasma lectin that binds to mannose residues on 

microbes) or alternative (activated on microbial cell surfaces without antibodies). Once the 

complement system is triggered, the cascade of subsequent cleavages of proteins begins, leading to 

membrane attack complexes formation in the targeted pathogen, resulting in lysis. The remaining 

cellular debri is further phagocyted by specialized cells. These innate immune mechanisms can be 

active within the span of minutes and then last for days (Figure 14).  

Adaptive immunity, in opposition to the innate immunity, requires time to recruit all the 

necessary actors (mainly B and T cells) in order to develop a specific response. This specific response 

can be further preserved by specific memory cells, allowing a quick response in case of subsequent 

encounter of the same antigen. Innate and adaptive immunity are linked as the chemokines and 

cytokines secreted by cells from the innate compartment trigger and attract cells from the adaptive 

compartment. T cell activation goes through a process of different steps: first, antigen presentation by 

APC via the interaction with major histocompatibility complex (MHC)/peptide/T-cell receptor (TCR); 

second, the co-stimulation of CD28 and finally, cytokine-induced signals. Depending on the cytokine 

signal received, CD4+ naïve T cells can differentiate into different actors of the immune system: Th1 

(cellular response), Th2 (humoral response), Th9 (tissue inflammation), Th17 (extracellular pathogens), 

Th22 (skin infections) and iTreg (self tolerance) 25.  
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Figure 15 : Polarization of naive T cells upon cytokines exposure.  

From Lee et al, Front Immunol, 2021 25. 

In cancer, immune cell effectors are the main actors in elimination of malignant cells. These 

effector immune cells belong to the branch of Th1 cellular response which involves for example APC, 

CD4+ and CD8+ T lymphocytes. Indeed, Th1 cells produce IFN, IL-2 and TNF, which activate 

macrophages and are responsible for cell-mediated immunity and phagocyte-dependent protective 

responses. After binding of MHCII, expressed on naïve CD4+ T cells, to APC through antigen and in 

presence of IL-12, differentiation into effector Th1 CD4+ T cells able to secrete IFN, TNF and IL-2 

occurs. This secretion helps in the differentiation of CD8+ naive T cells into activated CD8+ T cells. 

Indeed, besides the interaction of MHCI/antigen/APC, they need cytokines secreted by Th1 to finalize 

their maturation process and become CTLs. CTLs exhibit the capacity to eradicate target cells through 

the action of granzymes and perforins. A fraction of CD8+ T cells constitute a pool of memory cells, 

ready for any second exposure to the same threat thus triggering a more efficient response 25. 

As represented in figure 13, NK cells and  T cells are particular cell types as they are at the 

frontier of innate and adaptive immunity. These cells can be recruited at the first sign of danger and 

do not require MHCI or II interaction with TCR to trigger their cytotoxic action. Although the role of NK 

cells is important in cancer immune response 26,  T cells are no less important and their function in 

tumor immune escape (IE) in B-NHL is particularly important 27,28. Thus, we will focus the next part of 

this introduction on this cell population.   

1.2.2. / T cells lymphopoiesis and focus on  T cells plasticity 

 

In the BM, HCS cells will differentiate into lymphoid precursors that transit from the thymic cortex 

to the thymic medulla to process to further T cell differentiation. The first steps of differentiation are 
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common between  and  T cells. At the stage of double negative (DN) progenitor, these cells do 

not express TCR, CD4 or CD8, but do express CD117, CD44, CD25 and CD24. Separation between  T 

cells and  T cells happens during the phase DN3a characterized by a loss of CD44 and CD117 markers 

(Figure 16) 29. Melichar et al demonstrated that an inhibition of the transcription factor SOX13 leads to 

 T cell differentiation 30. Another important actor involved is Notch receptor that when highly 

expressed, directs into  T cell lineage, whereas when weakly expressed, induces a  T cell 

differentiation 31.  

 

Figure 16 : Differentiation step of T cells,  and  selection.  
From Ciofani et al, Nat Rev Immunol 29 

 

TCR diversity for  and  T cells depends on the somatic recombination V(D)J of different 

segments composing  or  chains. This mechanism has been described before in BCR 

rearrangement (Figure 17). Gene coding for  chain is constituted of segments V and J and for  chain 

is constituted of V, D and J.  
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This recombination leads to different subtypes of  T cells which vary in proportion, function and 

localization in the body. Indeed, three main classes of  T cells are described in human and two in 

mouse (Figure 18). In humans, V1 T cells are located in musocal epithelial tissues, V2 T cells are 

preferentially in peripheral blood and V3 T cells mainly in the liver 33–35. 

 

 

(a) TCR-alpha chain, (b) TCR-beta chain (c) TCR-gamma chain, (d) TCR-delta chain. From Attaf et al, Clin Exp 

Immunol, 2015 32. 

 

 

 

 

 

 

Figure 18 :  T cells subtypes localization in human and mouse.  
From Ma et al, Front Immunol, 202036 

 

Figure 17 : Somatic recombination of TCR 
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In human, the subpopulation TCR V9V2 represents only 1 to 5% of total PBMC (peripheral blood 

mononuclear cells), whereas V1  T cell can represent up to 50% of lymphocytes in the intestines 37.  

In addition to their different subpopulation’s types and localization in the body,  T cell display an 

impressive phenotypic plasticity depending on the signals they receive. For example, by the action of 

IL-12 and IL-18, V9V2 T cells can be polarized into Th1 types of cells, able to secrete IFN and 

TNF On the other hand, IL-1b, IL-6 or IL-23 will orient these cells into Th17 side 38,39 (Figure 19).  

 

Figure 19 :  T cell plasticity.  
From Paul et al, International reviews of immunology, 2013.39 

 

This ability to differentially respond to cytokines allowed  T to display diverse functions, from: lysis 

of infected or stressed cells, cytokine production, cooperation with B cells and help for IgE production, 

priming of  T cells via antigen presentation, dendritic cell (DC) maturation or regulation of stromal 

cell function via growth factor production 40. Depending on their polarization, they can be involved in 

immune responses related to bacteria, virus and parasites, as well as in anti-tumoral actions through 

cytokines secretion (IFN, TNF, IL-17, IL-13), chemokines secretion (MIP-1A, RANTES) and cytotoxic 

function (Fas ligand, TRAIL, granzyme, perforin,). Interestingly, they can also play the role of APC, just 

like mature DC, by recognizing soluble protein antigens, processing them and inducing proliferation of 

cells from the adaptive immunity branch, such as CD4 T cells 41. Thus,  T cells are able to interact with 

many other cells type to provide an efficient immune response.  

Among V2 T cells, the ones co-expressing V2 and V9 chain, V9V2 T cells, are the most 

abundant. These cells mediate Th1 and cytolytic activities in response to stimulation by soluble 

phosphoantigens (PAgs) or cancer cells. They can be divided in the four subtypes, depending on their 

differentiation status following CD27 and CD45RA expression markers (Figure 20): naives (TN) 

CD27+CD45RA+ presenting a potent proliferation but no capacity to secrete cytokines or lytic activity; 
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central memory (TCM) CD27+CD45RA- that display high proliferation and low cytokine secretion 

capacity; effector memory (TEM) CD27-CD45RA- presenting no proliferation but high cytokine secretion 

and low potential lytic and finally, effector memory re-expressing CD45RA (TEMRA) CD27-CD45RA+ that 

are not able to proliferate but present a high lytic potential 42. 

 

Figure 20 :  T cell differentiation from TN to TEMRA.  
From Catros et al, Med Sci, 2010 42 
 

Their activation and mechanisms of action, in particular in cancer, are developed in the next part. 

1.2.3.  T cell pro and anti-tumoral activity: focus on V92 T cells activation and function 

 

T cells present an unique role in the immune surveillance and also an advantage over  Tcells 

as they can directly recognize molecules that are expressed on cancer cells without needing antigen 

processing and presentation 43,44. Moreover, many studies have demonstrated their capacity to 

infiltrate solide tumors 45, recognize and eliminate in vitro tumor cells from myeloma 46,47, non-hodgkin 

lymphoma 48, prostate cancer 49 and colon cancer 50 for instance. Interestingly, Catros et al showed 

that isolated autologous Vγ9Vδ2 T cells from hepatocarcinoma patients were able to kill tumor cells 

without affecting normal cells 51. Thus, this  T cell subtype became of great interest in cancer therapy.     

Circulating V9V2T cells are present in a small proportion in healthy PBMC (1 to 5%) but exhibit 

rapid proliferation, cytokine secretion and cytolytic action after activation via PAgs that are expressed 

by tumor cells or induced by amino bisphosphonates treatment 52–54. PAgs are metabolites composed 

of an alkyl radical and a pyrophosphate. They are deriving either from the methyl erythritol phosphate 

pathway in microbial pathogens, or from eukaryotic mevalonate pathway in tumors cells 55,56. On the 

basis of their structural conformation, synthetic PAg such as bromohydrine pyrophosphate (BrHPP) 



33 
 

have been generated, showing an efficient activation of  T cells in vitro and in vivo 57. Other PAgs 

have been reported to activate  T cells such as natural ones (isopentenyl pyrophosphate IPP, 

dimethylallyl pyrophosphate DMAPP, hydroxyl dimethylallyl pyrophosphate HDMAPP) or synthetic 

ones (C-HDMAP and BrHPP) 58. 

Even if  T cells do not need any MHC interaction to be activated, TCR is still essential following 

PAgs recognition, in order to initiate their activation (Figure 21). BTN3A butyrophilin-3 (BTN3A) is a key 

element in PAg recognition and its binding to TCR induces V9V2 T cell activation 59. Indeed, Scotet et 

al discovered that BTN3A is capable of activating TCR to induce cytokines secretion and cytolytic 

function. RHOB has also been identified recently, as to be important for interaction with PAgs thus 

inducing conformation modification in the membrane bound BTN3A1 that in turn activates Vγ9Vδ2 

TCR 59. 

 

Figure 21 : Partners important for  T cells activation.  
Adapted from Yazdanifar, Cells, 202057 

 

Natural killer cell receptors (NKRs) represent the important partners in Vγ9Vδ2 T cell activation. 

Among them, NKG2D, a lectine-C receptor binding MICA/MICB and ULBPs molecules, are a major co-

stimulatory receptor for Vγ9Vδ2 T cells. This receptor is recruited after formation of the immunological 

synapse between Vγ9Vδ2 T cells and target cells and will trigger the cytotoxic signals towards target 

cells. Because Vγ9Vδ2 T cell activation does not depend on MHC interaction, they need other control 

mechanism to avoid self-immunity. To do so, there is an equilibrium between activator receptors 

(NKG2C/CD94) and inhibitor receptors (NKG2A/CD94).  
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In the tumoral context,  T and Vγ9Vδ2 T cell  can provide an anti-tumoral or a pro-tumoral effect 

(Figure 22) 37. It is well-known that  T cells and in particular Vγ9Vδ2 T cell play an important role in 

immune response against several tumor types (lymphoma, myeloma, breast cancer, colon, lung…) 

through their cytotoxic activity and by stimulating other cell types such as DC and cytotoxic CD8+ T 

cells 51,60,61. This process starts with the capacity of  T cell to recognize tumor cells through interaction 

with various molecules such as PAgs, BTN3A1, endothelial protein C receptor (EPCR), as presented in 

Figure 22 left A. Once  T cells recognize a malignant cell, they become activated and trigger their 

direct cytotoxic functions based on : perforin/granzyme secretion, death receptor in response to TRAIL 

or Fas-L expression and antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of 

tumor-specific antibodies. Moreover, they can have indirect effect on tumor cells by secreting TNF 

and IFN and they promote DC maturation and T cell differentiation towards Th1 cells that will in turn 

display anti-tumor function (Figure 22 left B). Anti-tumor T cell response is also increased by the  T 

cell property to capture and express CD1b molecules able to promote iNKT cell activation.  T cells 

present also APC capacity through the expression of MHCI and II, CD40, CD83 and CD86 to activate T 

cells presenting cytotoxic activity against tumor cells (Figure 22 left C). With CD137L expression,  T 

cells provide a co-stimulatory signal to CD137+ NK cells and increase their cytotoxic effect (Figure 22 

left D).  T cells are able to support B cell antibody production responsible for humoral anti-tumor 

response (Figure 22 left E). On cancer patient sample, Tosolini et al by using a deconvolution of human 

cancers microarrays, showed that CRC patients presenting a high infiltration of Vg9V2 cells revealed 

a higher overall survival (OS) 62.   

In contrast, some recent studies highlighted that the increased level of tumor infiltrating  T cells, 

was associated with poor prognosis in some cancers, such as breast and colon cancer 63. These 

contradictory observations opened a new perspective for research on pro-tumoral function of  T 

cells. Thus, it has been shown that  Th17 and Treg-like cells producing IL-17 and TGF can favor 

tumor cell proliferation and dissemination and are implicated in chemoresistance (Figure 22 right A). 

Moreover,  T cell can abort DC maturation, thus impairing their APC function and further T cell 

differentiation and activation 64 (Figure 22 right B). Recruitment of myeloid-derived suppressor 

cells (MDSC) and small peritoneal macrophages by  Th17 is another example of their pro-tumoral 

role (Figure 22 right C). Finally,  Treg produce immunosuppressive factors such as IL-4, IL-10 and TGF-

 cytokines, which show broad immunosuppressive activity, impairment of cytotoxic activity of CD8 T 

and NK cells 65 (Figure 22 right D).  
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From Lafont et al, frontiers in immunology, 2014 37. 
 

The advantages conferred by the lack of MHC restriction, their capacity to recognize a large panel 

of antigens, trigger a rapid and efficient anti-tumor response drew the curiosity of researchers to use 

Vγ9Vδ2 T cells in therapeutic strategies, involving : monoclonal antibodies (mAbs), adoptive cell 

transfer, or treatment with cytokines and PAgs in order to stimulate their anti-tumoral action.  

Adoptive cell transfer is an elegant strategy, in which cells from patient are cultivated ex vivo with 

the intent to amplify  T cells which are then reinjected to patient in order to excert their anti-tumoral 

effect 66. Among them, new sophisticated immunotherapies using  T cells have seen the light of the 

day in these past few years, including : delta one T cells (DOT cells) consisting of 1-oriented  T cell 

repertoire, characterized with a good migratory potential and high level of NKG2D and cytotoxic 

receptors, that are able to reach tumor cells and eliminate them 67; Chimeric antigen receptors 

expressing T cell (CAR  T cells), consisting of V9V2 T cells genetically modified to force expression 

of CAR reactive against tumors 68 and finally T cells engineered with a defined  TCR (TEGs), for which 

the concept is to force genetical expression of TCR  into  T cells, in order to gain capacity of  

reactivity against tumors combined with capacity to proliferate and acquire memory functions from 

 T cells 69 (Figure 23).  

Figure 22 : anti and pro-tumoral activity of  T cells.  
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No clinical trials are using these approaches for now, but nonetheless they represent very 

interesting and promising new strategies. 

 

Figure 23 : New adoptive cell transfert concept using  T cells.  
From Sebestyen, Nature drug discovery review 2020 66 

 

 Over the years, many evidences showed the interest in enhancing  T cell activity in 

lymphoma. In B-NHL,  T cells and more specifically V9V2 T cells have shown their potent capacity 

in elimating tumor cells. Braza et el conducted a study where they compared frequency and 

distribution of  T cell in 51 LN from patients with FL (FL-LNs) and 28 patients with inflammatory LN 

(I-LNs) and found that they were less abundant in FL-LNs than I-LNs 70. In FL-LNs, most of  T cells were 

found outside of the tumor follicles and expressed CCR7 in contrast to peripheral blood  T cells. 

Interestingly,  T cells isolated from FL patients and healthy donors presented the same expansion 

capacity in vitro, opening perspectives for adoptive cell transfert in FL patients. Targeting  T cells 

capacity to infiltrate the tumor and kill cancer cells is an interesting therapeutic strategy. Moreover, 

anti-CD20 mAbs, a gold standard used in almost all B-NHL treatment strategies, is known to trigger 

ADCC by  T cells. Indeed, Braza et al, have demonstrated that GA101 (type II targeting CD20 mAb) is 

able to potentiate  T cell killing of tumor cells through ADCC48. This results were also demonstrated 

by my team who described a potentialization of  T cells ADCC activity upon anti-CD20 treatment by 
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blocking PD-1 in a 3D in vitro models of FL cell line co-cultured with  T cell primary cell line and in 

vivo in FL xenograft models 71. 

Another interesting way to benefit from  T cells anti-tumoral action in therapeutic strategies, is 

to promote their proliferation and activation by PAgs and IL-2 72. This strategy was tested in 

hematological malignancies with a pilot study in 2003 associating low-dose of IL-2 in combination with 

pamidronate in nineteen patients with relapsed/refractory low-grade non-Hodgkin lymphoma (NHL) 

or multiple myeloma (MM) 73. They demonstrated that response to treatment was obtained in patients 

exhibiting a proliferation of  T cells. This was the first clinical trial showing that  T cell mediated-

immunotherapy was possible 73. In FL, a study enrolling patients with low tumor burden were included 

in a treatment associating rituximab, IPH-1101 and IL-2. Unfortunately, the results were desapointing 

with only 26% complete response (CR) and 18% partial response (PR). This result could be explained 

by tumor IE mechanisms as described later 74. 

Foregoing examples present,  T cells as an attractive tool in immunotherapy (IT) strategies for B-

NHL. However, further investigations are needed to find new targets to unleash anti-tumoral potential 

and to improve their adoptive cell transfert therapy use.  

1.3 Lymphomagenesis: B-NHL genesis 
 

As presented in the previous part, lymphopoiesis is a strictly regulated process, where 

accumulation of dysregulation in epigenetic, genetic or B cell migration can leads to neoplastic cells 

and lymphoma genesis. Hematological malignancies can be divided into: leukemias, including acute 

lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), 

chronic myeloid leukemia (CML); lymphomas, including Hodgkin and Non-Hodgkin lymphomas and 

myelomas represented for instance by multiple myeloma (MM).  

In particular, B-lymphomas are characterized by an anarchic accumulation of B cells and 

differentiation blockage in LN. They represent the seventh most common types of cancer in occidental 

population, with a higher incidence rates in men than women, in adults than children and in 

industrialized countries compared to developed countries 75. They are categorized into precursor or 

mature cell neoplasms by the world human organization (WHO) classification 75. Mature cell neoplasms 

comprise of B cell lymphomas, T cell lymphomas and Hodgkin lymphoma (HL). Lymphomas are 

historically distinguished in Hodgkin and non-Hodgkin lymphoma in the behalf of the first lymphoma 

discovered by Thomas Hodgkin in 1832 76. HL are characterized by the presence of giant cells called 

Reed Sternberg cells. Lymphomas that lack these cells are, by opposition, called non-Hodgkin 

lymphoma (NHL). More than 35 subtypes of NHL have been identified so far, with follicular lymphoma 
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(FL) and diffuse large B cell lymphoma (DLBCL) representing the most frequent cases of B-NHL. B-NHL 

comprise of indolent (FL or Marginal zone lymphoma MZL, Mantle cell lymphoma MCL) or aggressive 

disease entities (DLBCL and Burkitt lymphoma BL) (Figure 24). 

 

Figure 24 : Subtypes of NHL divided by incidence.  
From https://slideplayer.com/slide/12844767/ 

  

Genetic alterations and TME modelling are two main features implicated in B-NHL genesis and 

progression.  

1.3.1 Main oncogenic pathways described in B-NHL 

 

Each B-NHL subtype can be assigned to a unique stage of B-cell differentiation and harbors a panel 

of genetic alterations sustaining specific transformation pathways and disease evolution (Figure 25). 

These specific features will be briefly described for two aggressive B-NHL (DLBCL and BL) and one 

indolent B-NHL (MCL). A specific part will be dedicated to FL. 

Figure 25 : Origin of 
B-NHL subtypes at 
various stages of 
ontogeny and their 
associated oncogenic 
hit.  
Loss of function 
mutations are 
represented in blue, 
and gain of function 
mutations are 
represented in red. 

https://slideplayer.com/slide/12844767/
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Immunohistochemical biomarkers used for diagnosis are represented in green. From Sun et al, modern 
pathology, 2016.77 

 

BL is classified as an aggressive B-NHL, and commonly contains genetic alterations leading to MYC 

overexpression and to the activation of PI3K signalling pathway 78. MYC is a nuclear phosphoprotein 

controlling proliferation, cell growth, differentiation and apoptosis, all being involved in cancer 

genesis. All BL present translocation of the MYC oncogene into the Ig loci leading to constitutive 

expression of the MYC proto-oncogene, that in healthy B-cells is suppressed by BCL-6 79. The second 

most common mutations in BL is TCF3 mutation (encoding E2A transcription factor) impeding its 

regulation by ID3 leading to promotion of antigen-independent activation of BCR signalling. Moreover, 

this mutation leads to PI3K pathway dysregulation, that is also implicated in BCR signalling 80. HIV-

associated BL is a well-known disease that is characterized in part by AID aberrant expression, required 

for IgM class switching, and contributing to MYC translocation 79. 

DLBCL is the most frequent B-NHL representing around 30% of all cases. This highly heterogenous 

lymphoma is characterized by a diffuse proliferation of B cells with a high mitotic rate. Additionnaly, it 

can be classified based of variable numbers of normal T cells in the biopsy 81. Historically, Alizadeh et 

al used a gene expression profiling (GEP) to divide DLBCL in two disease entities called cell of origin 

(COO) 82:  the first subtype called GC B cell-like (GCB) presents an expression profile resembling to 

normal GC but exhibiting an intraclonal heterogeneity ongoing somatic hypermutation and presenting 

CD10, BCL6 high expression in B cells; the second type called activated B cell-like (ABC), presents gene 

expression profile of activated B cells with high expression and constitutive activity of NF-B and 

expression of IRF4 and BCL2. The rest of cases are named “unclassified group”. This classification is 

important as prognostic is different depending on the subtypes. Indeed, ABC type represents a poorer 

prognosis 83,84. However, with huge advances in transcriptomic technologies, the molecular 

classification of DLBCL evolved into a more complex subclassification proposed by several algorithm 

such as LymphGen which proposes eight subgroups 85. The classical COO classification has evolved to 

separate subtypes with gene expression profiles resembling double-hit lymphoma (DHITsig+) or not 

(DHITsig-) and subtypes resembling BL (MHG). 

MCL is characterized mutationally by a translocation between chromosomes 11 and 14 leading to 

cyclin D1 overexpression. Histologically, cancer cells in MCL express CD5 and in some cases overexpress 

SOX11 leading to a poorer prognosis 86. Different subtypes of MCL are defined as follows: classical MCL 

located in LN, blastoid and pleomorphic MCL in the circulation and leukaemic non-nodal MCL in the 

spleen. This lymphoma is heterogeneous, with some patients presenting an aggressive disease and 

others having a more indolent course. Indeed, these malignancies are prone to acquisition of 
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additional abnormalities in the cell cycle dysregulation, DNA damage response, or cell survival 

pathways, leading to more aggressive disease. For instance, TP53 mutations, result in more aggressive 

disease associated with poor outcomes. 

Interestingly all these phenotypic features are used in immunohistochemical (IHC) analysis by 

pathologist to confirm diagnosis as presented in figure 25 and 26.  

From Hassler et al, epigenomics, 2013 87 

 

 

 

 

 

 

 

 

 

 

1.3.2. Lymph node organization and cell microenvironment: B-NHL’s nest 

 

LN are organized in three compartments: the cortex (outer region), paracortex and the medulla 

(inner region). Follicles containing GCs are located within the cortex (Figure 27) 88. Different types of 

cells preferentially reside in the separate areas of these compartments. B cells are usually found in the 

follicles within the outer cortex, while T cells are mainly present within the paracortex and medulla.  

After antigen stimulation mediated by APC, T and B cells undergo a clonal expansion. FDC are 

the main APC present in follicles and playing an important role for B-cell maturation. Indeed, after 

antigen stimulation, follicles develop to a GC phenotype where B cells differentiate to Ig-secreting 

plasma cells. Most T cells such as CD8+ T cells are present outside of the follicle, except for an 

important subtype of CD4+ T cells called follicular T helper (TFh) that are specialized in antigen- 

Figure 26 : 
immunohistochemistry from 
several B-NHL subtypes with 
their respective localization. 
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dependent activation of B cells in the follicle. Diffuse macrophages are present in GC and their main 

function is to remove debris from apoptotic cells 88.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 : Illustration of the lymph node different compartiments and cell population distribution.  
C (Cortex), PC (Paracortex), M (Medulla). FDC (Follicular dendritic cells), FRC (follicular reticular cells). From Gillot 
et al, Cell Mol Life, 2021 88 

 

In B-NHL, all these cellular actors are present but in a different proportion and a few changes 

in phenotype can also be observed. Scott and Gascoyne, proposed a classification in three categories 

of NHL depending on their dependency on the microenvironment: recruitment (HL), re-education (FL) 

and effacement (BL) (Figure 28) 89.  In the re-education model, cell composition and spatial 

arrangement are similar to the healthy LN. In addition, B cells are dependent on their 

microenvironment for survival and proliferation. The recruitment model is highly dependent on 

supportive non-malignant cells from the microenvironment and tumor cells are in minority. Finally, in 

the effacement model a majority of tumor cells show self-dependency, while the presence and role of 

TME is limited. 
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Figure 28 : B-cell lymphoma microenvironment differential composition among subtypes.  
From Scott et al, nature review cancer, 2014 89 
 
 

Summary lymphopoiesis and lymphomagenesis (1) 

Hematopoiesis in general and lymphopoiesis in particular are very strictly regulated mechanisms 

giving rise to the numerous immune actors of innate and adaptive immunity. Any changes or 

dysregulation of lymphopoiesis can lead to abnormal proliferation of malignant cells or blockade at a 

certain stage of differentiation responsible for the genesis of lymphomas. Among hematological 

diseases, non-Hodgkin lymphomas are heterogenous tumors originated from T or B lymphocytes, 

mainly located in LN and circulating through the blood and lymphatic system. B-NHL are the most 

frequent and present, immunohistological, genetic landscape and microenvironment features specific 

to each subtype.  
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2. Focus on follicular lymphoma: indolent but not innocent 
 

2.1. Incidence, epidemiology and diagnosis 
 

Among lymphoid malignancies, the indolent B-NHL, FL, is the second most frequent subtype in 

Western Europe, representing 22% of all NHL. Incidence raised up from 2-3/100 000 in 1950 to 5/100 

000 in recent years 90,91, which is attributed to, pesticides exposure and life style factors such as 

nutrition and alcohol consumption 92. The EUROCARE-5 study evaluated the 5-year OS of FL patients 

in 20 European countries, and showed an increase from 64.1% in 2000-2002 to 69% in 2003-2005 and 

to 74.3% 2006-2008 93. This increase of OS is mostly due to introduction of rituximab in first-line 

treatment, as described by the Sweden study 94. The tumors usually present a slow progression and 

the most of patients respond well to first-line therapy, leading to long-term survival 95. However, 

approximately 45% of patients develop an aggressive form by transformation into DLBCL and the 5-

year survival rate drop to 50% for these patients 96–98. The median age at diagnosis is around 60 years 

old 99. 

FL diagnosis is obtained after surgical excision of LN biopsy. IHC analysis of CD20, CD79b GC 

and CD10 tumoral markers on mature B cells, Bcl6, GCET1, LMO2, HGAL and BCL2 GC (overexpression 

in 85% of cases) and markers of FDC network CD21, CD23 and CD35 markers are needed to confirm 

the diagnosis (Figure 29).  

 

 

 

 

 

 

 

 

Figure 29 : FL biopsy immunohistochemistry of several important markers for diagnosis. 
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a. Lymph node biopsy showing cells arranged in follicular pattern with closely packed follicles (Hematoxylin and 

Eosin staining (H&E) x100). b. Higher magnification of the same picture showing centroblasts (6 -8/ HPF) (H&E 

x400). c. The neoplastic cells are positive for CD20 (IHC x100). d. CD3 has stained the reactive cells (IHC x100). 

e. BCL2 positivity in follicles (IHC x 100). f. High Ki67 index (60%) in neoplastic cells IHC x100. From Das et al, 

Indian J Pathol Microbiol 2012 100. 

According to the histological report following the WHO classification, grading is carried out by 

determining average number of centroblasts (Table 1 left): grade 1 corresponds to less than five blasts/ 

high power field (HPF, referring to the field of view in the microscope), grade 2 from six to fifteen 

blasts/HPF, grade 3A up to 15 blasts/HPF and centroblasts with intermingled centrocytes and finally 

grade 3B present up to fifteen blasts structured like sheets. Grades 1 to 3A are categorized as indolent 

diseases whereas grade 3B is classified as aggressive lymphoma. BM aspirate and computed 

tomography scan of neck, thorax and abdomen are also required to confirm the diagnosis 91. Ann Arbor 

classification is also essential to determine the stage of the disease based on number of lymphoid 

structures affected and their localization (Table 1 right). Briefly, classification relies on the following 

criterias: stage I that presents no LN areas or extralymphatic site; stage II which displays two or more 

LN regions or at least, one and in addition extralymphatic site; stage III that exhibits LN regions on both 

sides of the diaphragm with possible localised extranodal site and finally, stage IV that corresponds to 

diffuse or disseminated extralymphatic organ involvement.  

 

 

 

 

 

 

 
From Dreyling et al, Annals of oncology, 2021.91 

 

2.2. FL genetic and epigenetic ground 
 

 2.2.1. BCL2 overexpression: first FL oncogenic hit 

 

FL lymphomagenesis is a complex multistep process that occurs at stages of B cell 

differentiation, led by genetic and epigenetic alterations. 

The t(14;18)(q32,q21) translocation in B cells, which occurs in the BM during the V(D)J 

recombination at the pre B-cell stage, is a genetic hallmark of FL (up to 85% of patients present this 

translocation) leading to BCL2-IGH fusion and constitutive expression of the anti-apoptotic protein 

Table 1 : Grading of FL and Ann Arbor classification.  
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BCL2 95. This overexpression is responsible for the accumulation of abnormal B cells in the GC. 

Nevertheless, it is now well-established that this translocation is not sufficient to induce FL as it is also 

being found in healthy adults who will never develop FL (50 to 70%) 101. However, the presence of this 

genetic characteristic is associated with a 23-fold higher risk of developing FL.  

There are accumulating evidences, that other genetic hits are required for complete 

transformation into FL. With next generation sequencing technologies, the knowledge of the genetic 

landscape of FL has dramatically increased drawing a more precise picture. GC is a fertile ground for B 

lymphocytes differentiation and evolution but can provide also dangerous acquisition of oncogenic 

mutations leading to lymphomagenesis. Early pre-follicular lymphoma lesions arising from 

differentiation blockage of B cell in the GC, presenting normal GC B cell features, such as BCL-6 and a 

follicular structure with important interactions with the surrounding microenvironment 102. At this 

stage, the cells are called follicular lymphoma-like cells (FLLCs) and they may undergo many re-entries 

into the GC where they potentially accumulate other genomic alterations to evolve as FL precursors. 

FL initiation has also been proposed to come from single-nucleotide polymorphisms in the genomic 

region encoding HLA I and II antigens, CXCR5 protein, ETS1 LPP transcription factor and BCL-2 protein 

103. FL genetic landscape comprises many other mechanisms such as epigenetic dysregulation, survival 

pathways overactivation and immune evasion which are going to be detailed in the following parts.  

Figure 30 : Follicular lymphoma genesis and accumulation of genetic alterations, from bone marrow to GC 
center. 
From Huet et al, nature reviews cancer, 2018 104 
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2.2.2. Epigenetic dysregulations 
 

Epigenetic is the study of inheritable changes that do not involve alterations in the DNA 

sequence. Epigenetic alterations are at the heart of follicular lymphomagenesis. A dynamic equilibrium 

of chromatin conformation is determined by the introduction of activating and repressing histone 

modifications that in turn influence gene expression of given part of the genome under the influence 

of gene promoters and enhancers to control them. This dynamic is important in B cell differentiation 

4. Different types of epigenetic dysregulations have been depicted, such as alterations of chromatin-

modifying genes and aberrant DNA methylation (Figure 31).  

 

 

 

 

 

 

 

 

 

Figure 31 : Illustration of main epigenetic alterations consequences in proliferation, differentiation and MHC 
expression by FL cells. 
From Kumar et al, Br J Haematol, 2021 105 

 

Table 2 summarizes the main epigenetic alterations encountered in FL 104. Among them, genes 

encoding histone-lysine N-methyltransferase 2D (KMT2D), KMT2C, the Polycomb-group catalytic 

protein histone-lysine N-methyltransferase EZH2 and the histone acetyltrans- ferases CREB-binding 

protein (CREBBP) and EP300 are the most frequent. Inactivation of KMT2D, CREBBP and EP300 after 

mutation causes a loss of function of transcription activating marks H3K4me and H3K27ac 106,107. On 

the opposite, gain of function mutations in EZH2 leads to increase of repressive mark H3K27me3 108. 

Dysregulation in BCL-6, a transcriptional repressor is a key in the pathology progression. So far, severals 

alterations of this process have been described in FL 104. For example, it can recruit HDAC3 that will 

inactivate B cell enhancers by H3K27 deacetylation, canceling the effect of CREBBP and EP300. BCL-6 
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can also cooperate with EZH2 to stop genes implicated in cell cycle checkpoints and plasma cell 

differentiation. MEF2B mutations are occurring in 15% of FL patients leading to increased expression 

of BCL-6 and MYC oncogene.  

Thus, combination of BCL-2 overexpression and alterations in epigenetic regulation are 

necessary for FL genesis and progression. Moreover, in most of the cases, several mutations are 

observed suggesting a cooperation to build a regulation loops. For example, Béguelin et al showed that 

EZH2 and BCL6 genes can cooperate with PRC1-BCOR-BCX8 complex to increase histone modifications 

109. DNA aberrant methylation is also an epigenetic mechanism involved in FL development 105. It occurs 

at promoters of tumor suppressor genes and targets genes such as BCL6 and EZH2. Thus, 

hypermethylation and chromatin modifiers cooperate to block GC B cells in their differentiation and 

favor malignant transformation. Consequently, the identification of such alterations encourages the 

development of epigenetic-targeted therapies for FL such as tazemetostat, an EZH2 inhibitor. These 

therapies have already presented promising results by reversing abnormal methylation profiles and 

increasing tumor cell sensitivity to chemotherapy 110. 

 

From Huet et al, nature reviews cancer, 2018 104 

 

2.2.3. Signaling pathway dysregulation 

 

Antigen-independent BCR signaling pathways dysregulation is also at the heart of FL 

pathogenesis 104 (Figure 32 and Table 3). Its constitutive activation leads to induction of many other 

pathways such as NF-B, MAPK and PI3K-AKT, all of which are involved in proliferation and survival of 

malignant B cells 111. Around 30% of patients present mutations in genes encoding proteins in BCR-NF-

B pathway such as BTK and CARD11 112,113. Other mechanisms leading to constitutive BCR signaling 

have been proposed such as mutation in variable regions of Ig heavy and lights chain genes responsible 

Table 2 : Recurrent epigenetic and transcriptional mutations in FL.  
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for N-glycosylation site. This leads to increased interaction of B cells with TME such as stromal cells, 

DC and macrophages, all of which are further responsible for BCR signaling activation 114,115.  

Other signaling pathways are involved in sustaining proliferation and survival of tumor cells 

such as JAK-STAT and NOTCH pathways 116,117. 18% of patients with harbor mutations in NOTCH coding 

gene such as the mutation disrupting the C-t PEST domain of the NOTCH1 and NOTCH2 proteins 104 or 

mutation in DTX1 and SPEN regulators of the NOTCH pathways 118.   

Another important pathway in FL is the mTORC1 pathway which is dysregulated in around 15% 

of FL patients 119. mTORC1 is a master regulator of protein synthesis integrating the responses to 

growth factors and overall energetical level of the cell 120. In FL we usually observe mutations leading 

to constitutive activation of this pathway leading to increased proliferation of the cancer cells, even in 

the unfavourable metabolic conditions. For example, active RAG GTPase hetero-dimers recruit 

mTORC1 to the lysosomal membrane. Thus, activating mutations targeting RRAGC activate mTORC1. 

From Huet et al, nature reviews cancer, 2018 104 

 

 

Figure 32 : Signalling pathway affected by genetic and epigenetic mutations in FL 
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Finally, one last pathway involved in GC B cells differentiation blockage, is the S1PR2-G13 

pathways 104. Indeed, S1P binds to S1PR2 on GC B cells and then downstream G13 effectors, ARHGEF1 

and RHOA inhibit cell migration, favoring GC homeostasis.   

From Huet et al, nature reviews cancer, 2018 104  
  

Table 3 : Recurrent mutations in FL inducing signalling pathway alterations. 
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2.2.4. Genes involved in immune evasion 

 

Genetic alterations can also affect tumor cell interaction with their microenvironment. Tumor 

cells “use” these mutations to remodel the microenvironment to their advantages. Among these 

mechanisms, IE allows tumor cells to survive. Two main mutations impacting immune cell interaction 

with FL cells are well described: CREB-binding protein (CREBBP) and Herpesvirus entry mediator A 

(HVEM) 104 (Figure 33). 

 

 

 

 

 

 

 

 

 

 
Figure 33 : Microenvironment diversion toward B cell survival through genetic alterations. 
From Huet et al, nature reviews cancer, 2018 104 
 

 Around 50% of FL patients harbor a loss of function mutations in CREBBP. This mutation 

controls MHC expression by downregulating it 121, thus reducing the capacity to stimulate T cell 

proliferation and infiltration.  

 Cathepsin S (CTSS) mutation (activating point or amplification) appears in 20% of FL patients. 

This mutation has opposite effect of CREBBP mutations in terms of antigen presentation as it will 

increase MHC binding to antigenic peptides 122. Indeed, an hyperactivation of cathepsin S leads to 

increase in substrate cleavage such as CD74, inducing an upregulation of MHC classe II genes and CD4+ 

T cell infiltration 123,124. It has been shown that patients carrying CTSS mutations present high level of 

IFN- and IFN-R1 and a better outcome following chemoimmunotherapy treatment 123. Moreover, 

Dheilly et al, using CTSS KO mice model showed a modification in antigen repertoire towards CD8+ 

CTLs expansion and they also highlighted an inverse correlation between PD-1 and CTSS expression 124.  
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HVEM, presents at B cell surface, binds BTLA expressed in T cells surface leading to inhibitory 

signals to T cells and also to inhibit BCR signaling 104. In up to 50% of FL patients a point mutation or 

1p36 deletions in HVEM gene is detected. Deficiency in HVEM, increases the secretion of activating 

cytokines such as TNF, LT and LT creating a supportive tumor environment containing more TFh. 

In turn, TFh cells secrete IL-4 and IL-21 that bind to receptor expressed at the B cell surface thus 

inducing mitogenic signals and tumor cell survival.  

Altogether, FL genetic landscape exhibits many cancer hallmarks in terms of genetics, 

epigenetics, cell signaling and microenvironment interactions. A better understanding of their 

implication in FL progression and transformation is a key element to develop new and efficient 

therapeutic strategies. Nevertheless, it is important to understand that each mutation induces a 

specific cellular effect that also depends on the molecular context of other existing alterations and 

surrounding cells. In consequence, combining therapeutic strategies targeting both tumoral cells and 

TME is an encouraging perspective to target FL genetic landscape in an efficient and global manner.    

2.3. FL microenvironment: a heterogeneous and plastic microenvironment  
 

First steps of FL development occur in the BM with the translocation t (14;18) in around 80% 

of patients. Nevertheless, the further disease progression occurs in the GC where B cells acquire other 

genetic alterations. The LN is the main organ in which lymphoma cells reside. Structurally and in terms 

of cell composition, LN microenvironment from healthy and FL patients are similar but display different 

features in terms of supportive niche and immunosuppressive cells. 

2.3.1 FL microenvironment composition 

 

As represented in figure 34, FL microenvironment is composed by numerous actors that 

support tumor, through a complex set of cytokines, receptors, immune modulators and pro-angiogenic 

factors: FDCs, fibroblastic reticular cells (FRCs), mesenchymal stromal cells (MSCs) and tumor-

associated macrophages (TAMs), together with a rich T cell infiltrate composed of CD4+ T follicular 

helpers (TFh) cells, CD4+ T follicular regulatory cells (TFr), CD4+ T regulatory cells (Treg) and CD8+ cells. 

Here is a brief overview of their function and clinical impact. Their crosstalk and involvement in FL 

progression will be discuss in the next parts depicting the supportive niche and IE mechanisms.  
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Figure 34 : FL microenvironment main actors 
From Carbone et al, Nat Rev Dis Primers., 2019125 

 

FDC are stromal cells specialized in presenting antigens to B cells in the GC 126. Their main 

function is mediated through CD40L interaction and cytokines release such as IL-15, to ensure GC B-

cell proliferation and survival. They are characterized by CD14+CD21+ and CD23+ markers and are 

localized in the intrafollicular zone. In clinic, patients with a predominance of mature FDC often show 

advanced clinical stages (III or IV) whereas patients with immature FDC predominance present with 

localized clinical stage (I or II) 127.  

FRCs are stromal cells located in the T cell zone of the LN and their main action is to secrete 

components of the extracellular matrix (ECM), including laminin, fibronectin and collagen IV 128. They 

are able to secrete cytokines such as CCL2 that were detected in high amount in LN and BM sample 

from FL patients 129.  

 MDSC represent an heterogenous group of immature myeloid cells that are characterized by 

their extreme immunosuppressive potential. These cells have been extensively investigated in the 

context of solid tumors and a few studies exists in hematologic malignancies. Nevertheless, Lin et al 

identified a CD14+ subtype presenting low HL human leukocyte antigen DR (HLA-DR) expression in 

peripheral blood of B-NHL patients. These cells are able to elicit T-cell anergy, promoting tumour IE via 

several mechanisms including depletion of tryptophan, arginine and cysteine due to the high 
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expression level respectively of 2,3 indoleamine dioxygenase and arginase, nytrosylation of TCR and 

increased production and release of reactive oxygen species. Moreover, increase in this cell frequency 

correlates with PFS (progression free survival) and OS 130 mainly due to their anergy action on T cells.  

TAMs originate from the myeloid lineage and present highly plastic characteristics 131. 

Depending on the signals present in their proximity macrophages can acquire a specific polarization 

state, fitting between, M1 (pro-inflammatory phenotype) and M2 (anti-inflammatory phenotype) 

extremes of the spectrum. M2 macrophages have a role in B cell survival through crosstalk with other 

cells from the microenvironment that will be discussed in the part 2.3.2. In a Spanish study, FL patients 

presenting high percent of CD68+ cells localized in the follicles exhibit a shorter OS 132. M2 polarization 

of macrophages is associated with tumor dissemination, immunosuppression and angiogenesis 133. 

Clear et al observed a positive correlation between macrophages infiltration and  angiogenic sprouting, 

leading to a poorer outcome in FL 134. Interestingly, prognostic impact of TAM infiltration depends on 

the applied treatment. Indeed, some studies showed that anthracyclines were able to modulate the 

differentiation and function of TAM towards a tumoricidal phenotype 135. PFS was increased in 

rituximab maintenance arm displaying an elevated CD163 staining136. This could be explained by the 

antibody-dependent cellular phagocytosis (ADCP) mechanism of action displayed by rituximab, as 

macrophages are one of the main effector cells in this process. Moreover, Taskinen et al showed that 

elevated numbers of macrophages correlated with favorable PFS in patients treated with R-CHOP but 

not with CHOP alone 132. 

Considering the T cell compartment, the main population is represented by TFh cells. TFh cells 

are a subpopulation of CD4+ T cells that specifically help GC B-cell maturation and differentiation 126. 

In terms of phenotype, they express CD3+CD4+CXCR5+ICOS+CD25- and PD-1+ and are located in the 

follicles 137. In the study of Ame-thomas et al, it was observed that FL patients exhibit high number of 

CD3+ CD4+CXCR5+ICOS+ TFh cells compared to DLBCL or reative LN. In this study, they also identified 

another population called Tfr expressing CD3+ CD4+ CXCR5+ ICOS+ CD25+ FoxP3+. Even if phenotype 

between TFh and Tfr is quite similar their functions are different. Indeed, TFh support FL B-cells 

avoiding their apoptosis whereas Tfr have a regulatory function towards CD4+CD25- cell proliferation 

leading to their inhibition thus participating in an immunosuppressive microenvironment. Treg are 

another subset of CD4+ T cells that harbor CD3+ CD4+ CXCR5- ICOS- FOXP3+ CD25+ phenotype. In FL, 

Treg are known as immunosuppressive cells, that inhibit CD8+ T cell proliferation and cytotoxic action 

by decreasing their granule production. For example, Yang et al demonstrated an abrogation of 

degranulation and cytotoxicity of CD8+ T cells towards B-NHL cells, that was mediated by Treg cells 

when the three cell types were co-cultured 138. Moreover, in this study, they showed increased Treg 

infiltration in biopsy from B-NHL but so far, no clear conclusions were available on the OS or PFS 
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parameters. Nevertheless, some studies showed no impact of Treg on OS and PFS 139 and others 

presented positive impact depending on their localization138.  Indeed, Farinha et al showed that patient 

with diffuse pattern of infiltrating FOXP3+ T cells have a more favorable OS than patients with 

infiltration in follicles.  

Finally, in FL, infiltration of CD8+ T cells is associated with a higher OS. Indeed, Wahlin et al  

showed that patient with higher CD8+T cell number, as evaluated by IHC, presented a higher PFS 140 

and this was confirmed by another group for OS 141. Indeed, patients with more than 8% of CD8+ T cells 

presented a fivefold lower risk of death than patients with less than 4%. My group investigated CD8+ 

T cell infiltration by IHC and confocal microscopy on pretreated LN from FL patients 142. This study 

revealed an important level of CD8+ granzyme B cells in the interfollicular spaces where they formed 

lytic synapse-like structures with FL B cells showing an in situ cytotoxic function of these cells 142. 

Moreover, it has been observed that PFS was increased in patients presenting high CTLs expressing 

granzyme B. Altogether, these observations highlighted the anti-tumoral effect of CD8+ T cells in FL. 

Nevertheless, some studies demonstrated that TILs in FL were able to impair recruitment of signaling 

proteins important for immunologic synapse 143. Global gene expression analysis performed by Kiaii et 

al allowed to explain this phenomenon by the impaired motility of FL purified CD8+ T cells compared 

to healthy CD8+ T cells 144. By clustering gene expression dependently on CD8+ T cell localization 

(interfollicular or intrafollicular area), they were able to observe different OS. Thus, patients with high 

number of intrafollicular ETV1-expressing TILs presented a poor OS 144. In contrast, patients with high 

number of interfollicular ETV1-expressing TILs exhibited a higher OS. These observations demonstrate 

that not only gene expression but also the localization of CD8+ T cell are important in FL progression.   

The innate immune lymphoid compartment is also well-represented in the FL 

microenvironment mainly with NK cells and  T cells and it plays a major role in treatment efficacy 

65,145,146. Gibson et al analyzed NK cells and their subtypes in FL patients. They observed a cell number 

variation depending on tissue site and in peripheral blood of FL patients and that their number 

predicted the outcome 147. Enqvist et al, published recently a study where they followed the dynamic 

of NK cell repertoire in LN and peripheral blood during rituximab therapy in FL patients. First, they 

observed that NK cells present a naive phenotype in LN with a slight increase in CD56dim NK cells 

compared to control tonsils. After rituximab therapy, this repertoire evolved to Ki67+ NK cells with an 

increase in CD16, CD57, granzyme A and perforin 148. Braza et al compared  T cell infiltration in FL 

and reactive LN and found that these TILs were less abundant in FL. They were located outside the 

follicles, in the perifollicular zone 70. The same team evaluated the cytotoxic activity of Vγ9Vδ2 T cells 

against FL cells by measurement of perforin/granzyme release and IFN secretion. They found that 

these immune cells efficiently kill primary FL cells and that their effect was potentiate by anti-CD20 
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mAbs therapy 48. My team also observed the same result with 3D FL models in co-culture with primary 

Vγ9Vδ2 T cell lines 71.  

As presented here, LN microenvironment and consequently FL microenvironment is a complex 

and well-organized structure where many partners interact together. Dave et al demonstrated by gene 

expression profiling,  that FL patients’ survival correlates with molecular features of non-malignant 

immune cells present in the tumor at diagnosis149. The most common cellular alterations in FL 

microenvironment are: Treg number increase, T cell effector decrease with an exhausted phenotype, 

immature immune-suppressive macrophages increase. All the recent studies highlight the influence of 

microenvironment towards two main directions: first, a supportive niche that promotes B cell survival 

and proliferation and second, evasion from immune antitumor signals.  

Thus, understanding cell interaction and implication in FL progression is essential for the 

development of new therapeutic strategies. 

2.3.2. A supportive niche for B cell survival and proliferation 

 

FL progression is associated with an intensified crosstalk between cells from the FL 

microenvironment and FL B cells, which also involves activation of numerous signaling pathways 

(Figure 35). To survive in this microenvironment, tumor cells have to circumvent mechanisms able to 

eradicate them and receive protective mechanisms through survival and proliferative signals. FL 

microenvironment is composed by a rich compartment of lymphoid cells (CD8+ T cells, Treg, TFr, TFh, 

CD4+ T cells, TAM, M2 macrophages), stromal cells (FDC, FRC, mesenchymal stromal cells (MSCs)) and 

ECM resembling normal GC B cells microenvironment 150. Work from K. Tarte’s group, allows a deep 

understanding of FL microenvironment interactions.  
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Figure 35 : Complex crosstalks between FL cells and their microenvironment.  

From Mourcin et al, frontiers in immunology, 2012 151 

 

One of the main crosstalk occurs between TFh, FDC and FL B cells. Indeed, FL B cells express 

CD40 receptor that binds to TFh expressing CD40L 152,153. This binding increases secretion of IL-4 and 

IL-21 by TFh that in turns binds to dedicated receptors expressed by FL cells thus providing growth and 

survival signals.  IL-4 is able to activate STAT-6 responsible for FL cell survival. Even if FL TFh resemble 

healthy TFh, they present differential gene expression profile with overexpression of TNF, LTA, IL-4 and 

CD40LG. A study demonstrated that IL-4 and CD40L are able to protect B cells from rituximab-induced 

apoptosis 137. Moreover, stromal cells and FDC secrete chemokines (CXCL12 and CXCL13) that bind TFh 

and FL cells. IL-4 has a role in stimulating stromal cells (FDC) to increase their CXCL12 secretion that in 

turns helps B cell trafficking between the GC dark and light zone. This is also a possible mechanism for 

FL cells to disseminate to other organs. An interesting study, from Haebe et al, demonstrated by single 

cell RNA seq that depending on patient, site-to-site heterogeneity and TFh abundance can be different 

154. FRC are also implicated in immune cell trafficking, differentiation and migration through IL-

4/CXCL12 interaction with TFh 155. They are implicated in B cell activation and survival by activating 

BAFF signaling 128. MSCs, by secreting many factors such as BAFF, TNFα and lymphotoxin α (LTα) for 

example, support B cell survival 129. In their study, Amé-thomas et al described an interaction between 

BM-MSCs and primary FL cells, that helps their migration and adhesion thanks to the secretion of 
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CXCL12 in combination with CCL2. Both chemokines were detected at high levels in LN and BM derived 

stromal cells 129.   

TAM are also deeply involved in many crosstalks with other cell types. For example, TFh help 

in the polarization of FL TAM and FL CAF. Indeed, TFh CD40L+ stimulates crosstalk between B cells and 

TAM secreting IL-15 156. Moreover, TFh secreting IL-4 induce CAF CXCL12 expression. My PhD-co 

director group in Barcelona, have highlighted in FL patients that M2 macrophages are promoted after 

FDC secretion of CCL2 and CSF-1 157. This pro-tumoral phenotype favors angiogenesis, dissemination 

and immunosuppression 158. For example, macrophages present IL-15 to B cells, to cooperate with T 

cells expressing CD40L such as TFh to increase B cell proliferation 156. Moreover, binding of 

macrophages DC-SIGN (C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing 

non-integrin) to mannosylated BCR triggers B cell survival in a independent antigen manner 115,159,160.  

2.3.3. Immune evasion  

 

In order to survive, tumor cells apply a pressure on innate and adaptive immune response to 

downregulate its response through the establishment of IE mechanisms. IE relies on the concept of the 

3E: elimination, where immune cells are able to take charge of tumor cells and eliminate them; 

equilibrium, where tumor cells gain capacity to escape immune cells recognition; and finally, escape 

where immune cells are not able to exercise their killing actions and tumor cells are taking the 

advantage over them (Figure 36). 

From Sjoerd H van der Burg, et al Nat Rev Cancer 2016161 

Classical T cell response requires several steps: immunogenic tumor antigens presentation by 

APC cells, recognition by MHC, effective co-stimulation signals and cytokine secretion. Any changes in 

these basic mechanism of  T cell activation can lead to an immunosuppressive microenvironment. In 

B-NHL, the most frequent aberrations are lack of immunogenic tumor antigens, loss of MHC molecules 

expression, interruption of co-stimulatory signals and immunosuppression through overexpression of 

Figure 36 : Immune evasion 3E concept: elimination, equilibrium and escape. 
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immune checkpoint (ICP) 162.  All these features are known to regulate FL initiation, evolution and 

response to treatment. Even if innate and adaptive immune cells such as CD8 T cells,  T cells, NK cells 

and M1-like TAM are efficient in their effector functions, B cells are able to downregulate their action 

through several mechanisms. Indeed Andor et al, demonstrated at a single-cell level, that MHC class I 

expression was downregulated in FL 163 and MHC class II was known to be associated with loss-of-

function CREBBP mutations as described before 121. Downregulation of co-stimulatory receptors such 

as CD27 and CD28 have also been described in the literature 164. Kiaii et al, demonstrated that T cells 

presented an impaired LFA-1 dependent motility 144 and Ramsay et al showed a disruption to mobilize 

F-actin to the immunological synapse with B cells 143. Moreover, efficient effector cells such as CD8+ T 

cells are retained at the periphery of tumor follicles as demonstrated by my team 142.  

 Here we present an overview of ICPs present in FL microenvironment and their action 

165(Figure 37). ICP are another important key element of FL IE. T cell activity homeostasis depends on 

an equilibrium between ICP activatory (CD40L, OX40, CD27, CD28 and CD137) and inhibitory (CTLA-4, 

PD-1, LAG-3, TIM-3 and TIGIT) receptors 166. In particular, LAG-3, TIM-3 and TIGIT are CD4+ and CD8+ 

T cell exhaustion markers 167–171.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Armengol et al, Cancers, 2021 165 

 

Figure 37 : ICP interaction with B-lymphoma microenvironment 
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One of the most spectacular beackthrough of IT so far, was associated with targeting of ICP, 

more precisely the PD-1/PDL1 axis. Briefly, the main interactions between ICP and their ligands will be 

detailled. After binding to its ligands PDL1 or PDL2, expressed at the surface of B cells and 

macrophages, PD-1 intracellular signaling is activated leading to a reduction of T cell activation. CTLA-

4 expressed by Treg binds to CD80/CD86 present at DC surface. LAG-3 is upregulated on CD4+ and 

CD8+ T cells and NK cells after binding to MHC class II leading to lymphocytes anergy 172. Yang et al 

found a high proportion of T cells in FL biopsies displaying exhausted phenotype and functional 

characteristics such as TIM-3 overexpression 169.  TIM-3 is expressed on TFh, CTL and NK cells and 

represent the most exhausted stage of CD8+ T cells. Indeed, TIM-3 is often co-expressed with PD-1, 

LAG-3 and TIGIT 173. TIGIT is expressed at the surface of APC, CTL and Treg and can be further 

upregulated by IL-10.  

Thus, the interactions of ICP and their corresponding ligands confer a potent IE effect in FL. It is 

important to underline that some ICP interaction with their ligands are not always occurring between 

B cells and T cells. For instance, PD-1 and TIGIT are detected on TAM and FDC respectively, to exert 

their immunosuppressive function towards cells from the microenvironment 168,174. In FL, CD4 and 

CD8+ T cells express PD-1 but at different level. Indeed, CD4+ T cells presenting a PD-1hi TIM3low 

phenotype are known as TFh in the follicles and have a B-cell supportive function whereas CD4+ PD-

1low TIM3hi, in interfollicular areas, present an exhausted phenotype. CD8+ T cells are PD-1low and 

express a higher level of TIM-3 then CD4+ T cells. These studies indicate that PD-1 is not sufficient to 

distinguish exhausted or activated status. Thus, expression profiles of other ICP are needed to better 

understand FL microenvironment exhaustion. In this context, my team established a signature called 

immune escape gene set (IEGS) composed by genes involved in IE. By analysing of 38 FL samples, it 

was observed that this IEGS score was upregulated compared to normal tonsils 175. Among these genes, 

BTLA, CD80, CD86, CTLA4, LAG3, PDCD1, CD274, PDCD1LG2 and TIGIT are particularly interesting as 

they can be targeted by ICP blockers. Moreover, 1446 transcriptome microarrays were analyzed from 

public GEO datasets and an enrichment of 33 IE genes in DLBCL, FL and a few MCL and MZL samples 

was found 28. A large-scale microarray profiling revealed four stages of IE in B-NHL: stage I represented 

by non-immunogenic tumors, stage II represented by immunogenic tumors without IE, stage III 

represented by immunogenic tumors with IE and stage IV represented by fully immune-edited tumors 

(Figure 38 left). 73% of FL exhibit a stage III or IV showing a strong level of IE mechanism in these 

tumors 28. Tosolini et al also correlated each stage with OS and observed that stages I and IV presenting 

decreased T cell activation were associated with the poorest OS. On the opposite, stages II and III 

presenting T cell activation exhibited a higher OS (Figure 38 right). 
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From Tosolini et al, oncoimmunology, 201628 

 

IE mechanisms affect also innate immune cells such as  T cells and NK cells. For instance, FL 

B cells block  T cells proliferation through the inhibitory receptor BTLA-4 176. An action towards NK 

cells was also described, where overexpression of the inhibitory receptor CD161 and LLT1 (lectin-like 

transcript 1) led to downregulation of NK cytotoxic activity 177. In silico, analysis of FL samples revealed 

that FL tumors are also characterized by an abundant infiltration of PD-1+ CD16+  T cells. To study 

the IE mechanism, my team modeled PD-1+  T cells and FL B cells interaction in presence of anti-

CD20 mAbs and demonstrated potentialization of mAb efficacy against B cells by blocking PD-1 on  

T cells 71. 

Moreover, CD47 is a known ICP expressed at the surface of TAM, that reduce phagocytosis 

capacity implicated in efficiency of anti-CD20 mAbs leading to a “don’t eat me” signal 178. 

In addition to their T cell cytotoxic downregulation, B cells have another string in their bow.  

Indeed, they are able to recruit Treg cells displaying immunosuppressive actions towards cytotoxic 

cells such as CD8+ T cells. Indeed, overexpression of ICOS-L, CD70 and CCL22 on Treg leads to T cells 

polarization to a regulatory phenotype 179–181. In clinic, Amé-Thomas et al and others observed an 

amplification of Treg CXCR5-CD25+cells and Tfr CXCR5+CD25+ in FL patients biopsies 137,182,  thus, 

demonstrating their contribution in the FL immunosuppressive microenvironment. 

 2.3.4. CD39: a potential new target in FL immunosuppressive microenvironment 

 

 Physiologically, CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1) encoded by 

ENTPD-1 gene is an ectonucleotidase implicated in the equilibrium between ATP (adenosine-

triphosphate) and adenosine accumulation in the extracellular compartment 183 (Figure 39). Indeed, to 

obtain a homeostasis between activated and resting immune cells, an equilibrium between these two 

Figure 38 Immune escape stages in B-NHL based on T cell activation and IEGS33 
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metabolites is necessary. ATP and adenosine are abundant intracellular metabolites but also important 

autocrine/paracrine messengers 184–186. In the immune response homeostasis context, ATP, released 

after a cellular stress, acts as a danger signal able to activate immune cells through purinergic receptors 

such as P2Y2 and P2X7 whereas adenosine acts as an immunosuppressive metabolite able to limit 

immune cell activity after binding to adenosine receptors (A2aR and A2bR). CD39 catalyzes the 

degradation of ATP into adenosine di-phosphate (ADP) and then adenosine mono-phosphate (AMP) 

and CD73 hydrolyses AMP into adenosine 187. This pathway is called adenosinergic pathway (Figure 

39).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 39 : Homeostasis of immune response by ATP and adenosine equilibrium 
From Allard et al, Current Opinion in Pharmacology, 2016 187 

 

CD39 and adenosine receptors are known to be upregulated after stress such as hypoxia, tissue 

damage or in chronic inflammation 188. In a tumor context, cellular stress of hypoxic tumor core cause 

ATP accumulation. It is therefore processed by CD39 and CD73 thus inducing the accumulation of the 

immunosuppressive adenosine that can signals to other immune cells (Figure 40). In solid cancer, the 

impact of this accumulation is well-documented. Indeed, high levels of CD39 were measured in several 

cancers such as pancreatic cancer, lung cancer and sarcoma 187. CD39 have been reported to be 

overexpressed on many cells of the microenvironment such as fibroblasts, myeloid cells, vascular 

endothelial cells, T regs and CTLs 189.  

Adenosine mediates an immunosuppressive microenvironment through several mechanisms. 

For instance, on DC, activation of CD39 impairs DC antigen presentation leading to decreased T cell 

activation 190. Generation of adenosine will signal through A2aR on CD4+ T cell to promote Treg 

phenotype by activating FOXP3 and LAG3 on these cells 191,192. Treg present high level of CD39 and 

CD73 thus increasing the amount of immunosuppressive adenosine in the microenvironment. 

Expression of CD39 on B cells suppresses T effector function and induces secretion of IgA and IgG type 
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antibodies 193. On cytotoxic cells such as CD8+ T cells and NK cells, A2aR activation impairs their killing 

capacity 194–196. A2bR expressed on MDSCs can induce VEGF secretion, stimulating the angiogenesis 197. 

Moreover, A2bR stimulation in TAMs favors their anti-inflammatory M2 polarization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

From Vijayan, nature cancer reviews, 2017 198 

 

CD39 is implicated in all aspects of cancer-immunity cycle, including: restriction of leukocyte 

migration; enhancement of tumor angiogenesis; increase in fibroblast barrier function; inhibition of 

effector T cells and NK cells; enhancement of suppression by Tregs; B cells and macrophages; inhibition 

of NLRP3 inflammasome and pyroptosis; suppression of antigen presentation and inhibition of T cell 

activation (Figure 41). Thus, this ectonucleotidase appears from several years as a very interesting 

target for anti-cancer therapy 189,199,200. 

 

 

Figure 40 : Immunosuppressive microenvironment mediated by adenosine production 
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From Allard et al, J Immunother Cancer, 2020 199 

 

 In B-NHL, only few studies have investigated the role of CD39. Cardoso et al using flow 

cytometry analyses determined a high expression of CD39 in eleven DLBCL (four GCB type and seven 

ABC type) and nine FL samples originating from LN biopsies or BM aspirates (Figure 42 A) 201. Hilchey 

et al also found an increased expression of CD39 in CD3+ FL patient cells in comparison to normal LN, 

reactive LN and PBMC from healthy donors (Figure 42 B) 202. Moreover, after blocking CD39 with a non-

specific inhibitor (ARL67156), they succeeded to induce T cell IFN secretion in one patient (Figure 42 

C) showing the possibility to reverse T cell anergy following CD39 blocking.  

 

Figure 42 : Studies highlighting 
CD39 expression in B-NHL 
A. Cardoso et al analyzed 
expression of CD39 (MFI mean 
fluorescence intensity) by flow 
cytometry in 4 GCB-DLBCL, 7 
Non-GCB DLBCL, 9 FL and 7 BL 
patients samples (lymph node or 
bone marrow biopsies) 201 B. 
Hilchey et al analyzed by flow 
cytometry CD39 expression on 
CD3+ cells isolated from FL lymph 
nodes, normal lymph nodes 
(NLN), reactive lymph nodes 
(RLN) and PBMC from healthy 
donors. They also analyzed 

IFN expression after using 
ARL67156 CD39 inhibitor or 
not.202 

Figure 41 : Impact of CD39 in tumor immunity 
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Another interesting study showed that after stimulation with PAgs,  T cells express higher 

level of CD39. Moreover,  Gruenbacher et al highlighted that CD39 can use PAgs as substrate to impede 

their action on  T cells activation thus underlying a new mechanism of  T cell activation 

homeostasis 203. This was described in a physiological context but one could speculate that increased 

CD39 expression on  T cell surface could cause their anergy in a tumoral context. Nakamura et al 

investigated resistance to rituximab in a lymphoma mouse model expressing high level of CD39 leading 

to the accumulation of the immunosuppressive molecule adenosine 204. Interestingly, using public data 

set from the European Genome-phenome Archive (EGA), they studied survival probability on the basis 

of ENTPD-1 expression. Thus, they found that DLBCL patients expressing high level of ENTPD-1 

presented a lower survival than patients with low ENTPD-1 (Figure 43 A). To investigate further the 

role of aberrant expression of ENTPD-1, Raji cells were transfected with a vector allowing 

overexpression of CD39. As control, they used Raji cells transfected with vector allowing 

overexpression of CD38, another enzyme responsible for adenosine generation through NAD+ 

catalyzation in contrast to CD39 that uses ATP (Figure 43 B). Transfected cells were then injected in 

NRG mice which were treated or not with rituximab. As shown in figure 43C, an increase of tumor 

growth after rituximab treatment was observed demonstrating the negative impact of CD39 

overexpression on rituximab efficacy.  

 

Figure 43 : Study of CD39 
impact in rituximab 
resistance from Nakamura 
et al204  
A. Kaplan–Meier survival 

curves showing overall 

survival in patients with 

DLBCL based on ENTPD-1 

(CD39) mRNA expression (n = 

753). The stratification into 

low and high CD39 

expression groups was based 

on an optimal threshold. B. 

FACS plots showing the 

expression levels of CD38 

and CD39 in control Raji cells 

and Raji cells transfected 

with CD39 (Raji-ENTPD-1 

cells). C NRG mice were 

subcutaneously challenged 

with control Raji cells, left 

panel). 
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 In this study, they also investigated the role of A2AR in the generation of adenosine responsible 

for the negative regulation of ADCC induced by NK cells and ADCP induced by macrophages, two key 

processes important in anti-lymphoma immunity. In KO Adora2a-/- mice, they demonstrated an 

increase of macrophages co-expressing MHC-II and B7-1, suggesting that the absence of adenosine 

signaling favored generation of macrophages with higher antigen presentation capacity. This result 

showed the negative role of adenosine in macrophages proliferation and function called the “don’t eat 

me signal”. Moreover, absence of A2AR in myeloid cells in mice demonstrated a better anti-lymphoma 

control.  

All of these studies highlighted the important role of CD39 in IE of cancers in general but also 

in B-NHL. These last few years, interest in inhibiting this enzyme has grown as revealed by the recent 

development of CD39 antagonists 189. In table 4 six antagonists currently used in preclinical or clinical 

stages of development are listed: TTX-030 antibody in phaseI/IIb clinical trial for solid tumors and 

lymphoma in combination with pembrolizumab, doxetaxel, gemtamicine, nab-paclitaxel; IPH5201 

antibody in phase I clinical stage for solid tumors in association with duvalumab and/or oleclumab; 

SFR-617 antibody in phase I for advances solid tumors with gemcitabine/abraxane in pancreatic cancer 

and anti-PD-1 in gastric cancer; ES002 antibody in preclinical stage and one antibody called 9-8B and 

one antisense oligonucleotide under development. For now, no results from these clinical trials are 

available but for sure, they will bring new datas on the interest of targeting CD39 in cancer, giving a 

great promise. 

Table 4 : CD39 antagonists in preclinical or clinical development 
From Mosta et al, cancer review immunology, 2020 189 
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Summary focus on follicular lymphoma (2) 

 The understanding of FL genesis and progression by deciphering FL genetic landscape 

progressed these past few decades and highlighted the role and complexity of TME (Figure 44). High-

content analysis at the genomic and cellular levels, allowed to draw a clearer picture of FL. FL 

progression clearly depends on epigenetic mutations and is influenced by immune and stromal 

populations present in FL TME. A better understanding of the TME crosstalk and kinetic of genetic 

aberrations during disease progression are still needed to improve the efficiency of treatment and to 

discover new therapeutic strategies which have to target both tumoral cells and cells composing FL 

microenvironment.  

 

 

From Watanabe, Int J Mol Sci, 2020 205 

 

 

 

 

 

Figure 44 : FL microenvironment, a complex network 
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3. Follicular lymphoma treatments: the more the better 
 

3.1. Therapeutic standards: anti-CD20 mAb, FL treatment backbone 
 

As treatment depends on the stage of the disease, initial classification is essential to better 

categorize patients. Staging is determined based on the Ann Arbor classification system (Table 5). 

Prognosis factors also has been established such as FLIPI, FLIPI2, GELF, BNLI and they present different 

criteria such as age, level of serum lactate dehydrogenase, hemoglobin level or beta-2 microglobulin 

level. These factors help to evaluate the responses of treatment but most of them are based on 

demographic and clinical informations, rather than molecular ones. Another index, which seems to be 

more powerful, is called m7-FLIPI which proposes in addition to FLIPI score, a mutation status of seven 

candidate genes (EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP and CARD11). However, none of these 

indexes are used in clinical practice because of conflicting data. 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

From Dreyling et al, Annals of oncology, 2021 91. 

 

Table 5 : Available prognostic scores for FL management 
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Regarding the treatment, different options are possible depending on patients’ stages. FL Patients 

exhibiting early stage FL associated with a good prognosis benefit from a “watch and wait” therapy 

which consists in an active monitoring without treatment until is needed. For the others, stages 

stratification determines the treatment regimen 206. 

For localized stage I-II (around 5 to 15% of patients), different curative strategies can be 

proposed. Single therapy with a radiotherapy (RT) based treatment (ISRT), or rituximab single-agent 

can be considered.  In some cases, combination strategies with RT and rituximab chemotherapy can 

be applied. Indeed, its efficacy has been demonstrated on PFS compared to rituximab alone 207. 

Moreover, a study showed that a localized irradiation combined with rituximab as single agent 

represent a good side-effects/efficacy balance therapeutic strategy 208.    

For advanced stages (III-IV) of FL, representing around 50 to 60% cases, different lines of 

treatment exist, but they are unfortunately not curative. As FL exhibits an indolent course, majority of 

patients do not require any treatment until symptom development. Before rituximab era, some studies 

showed that therapy in asymptomatic patients did not improved OS 209. After rituximab introduction, 

early treatment initiation resulted in improved PFS but not OS. Nevertheless, many studied showed 

that rituximab combined with chemotherapy improved OS 210–214. Rituximab can be combined with 

several poly-chemotherapies such as CHOP (cyclophosphamide, doxorubicin, vincristine and 

prednisone), bendamustine, CVP (cyclophosphamide, vincristine and prednisone). Another anti-CD20 

antibody, Obinutuzumab, displays increased PFS in comparison to rituximab but no difference was 

observed for OS 215. Interestingly, the combination of rituximab and lenalidomide showed similar 

efficacy compared to immunochemotherapy 216. A rituximab maintenance treatment is recommended 

during 2 years and has shown improved PFS 217. 

For relapsed disease, “watch and wait” approach can be considered in asymptomatic patients 

with a low tumor burden91. In other cases, the choice of treatment depends on efficacy and duration 

of response of the first line therapy and age of patients. Indeed, for high tumor burden category, 

different strategies are applied for patients under or over 65 years old (Figure 45) 91. Briefly, different 

polychemotherapy approaches can be proposed in combination with rituximab (R-CHOP: rituximab-

cyclophosphamide, hydroxydaunorubicine, oncovin, prednisone; R-CVP: rituximab, 

cyclophosphamide, vincristine sulfate and prednisone), or monotherapy with rituximab and in some 

selected cases, rituximab associated with lenalimodide, radioimmunotherapy or others. 
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From Dreyling et al, Annals of oncology, 2021.91 

3.1.1 Anti-CD20 mAbs mechanisms of action 

 

As presented in the figure 45, mAbs targeting CD20 (GA101 or rituximab) are at the center of 

FL patients’ treatment regimen. Indeed, since its development in the 1990s, rituximab has become 

rapidly a key therapy in FL treatment. The addition of rituximab to conventional polychemotherapy 

tremendously increased patient OS.  

Even if its structure is well known, CD20 cellular function is poorly understood. Except its role 

in intracellular calcium signaling associated with BCR, no other evidence about its function has been 

clearly described 218,219. Experiments on KO mice for CD20 encoding gene (MS4A1) did not show 

deficiency in B cell differentiation, maturation, localization and function 220. Targeting CD20 with 

antibodies was one way to try to decipher its cellular function.  

Targeting CD20 in B-cell malignancies appeared to be very encouraging as malignant B cells 

also express CD20. Nevertheless, expression of CD20 on cancer B cells is not the only reason making it 

an interesting therapeutic target. For example, first CD20 does not circulate in the plasma. Second, 

CD20 displays an elimination and finally an internalization limited after antibody binding prolonging its 

effect. Based on this rationale, the number of mAbs targeting CD20 has significantly grown in the last 

decade. It is important to keep in mind that each mAb responds to a specific nomenclature: -momab 

for murin, -ximab for chimeric, -zumab for humanized and -mumab for full humans mAb (Figure 46 

Figure 45 : Therapeutic management guidelines in FL 
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left). Since rituximab revolution in 1997, various changes in the monoclonal antibody technologies 

were introduced. We can differentiate multiple: means of a new antibody generation (including: 

hybridoma, phage display, mRNA display); antibody formats with unique characteristics associated 

with their size, functionality and valency (monospecific antibodies, antibody fragments, multispecific 

antibodies); strategies to improve already generated antibodies, including: tailoring of Fc region, 

glycoengineering, affinity optimization and conjugation of specific molecules 221. To measure up to this 

diversity of antibodies the INN (International Nonproprietary Names) revised the monoclonal antibody 

nomenclature (Figure 46 right).  

From Parren et al, mAbs, 2017 221 

Monoclonal antibodies targeting CD20 are divided into two types, I and II, according to 

different modes of action 222,223. Both of these antibodies present direct and indirect effects against 

their target (Figure 47).  

 

Figure 47 : Type I and type II anti-CD20 mAb and their mechanism of action 
From Klein et al, Expert Opin Biol Ther 2021 223 

Figure 46 : Antibodies nomenclature before 2017 (left) and 2017 revised one (right)  
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Type I mAbs, such as rituximab and ofatumumab, attach to CD20 oligomers, creating inter-

tetrameric complexes followed by a migration into lipid rafts. About their direct mechanisms of action,  

CD20-mAb complex favors co-localization with Cbp (or CREBBP) proteins and to induce a calcium signal 

leading to a caspase-dependent apoptosis of target cells. Another important effect of rituximab is the 

chemosensitization 224. The p38MAPK, PI3K, RKIP and Ras pathway have been demonstrated in BL to 

be involved in this phenomenon. Chemosensitization induced by rituximab was also reported through 

BCL2 and BclXL dependently of NF-B, AP1 and SP1 224. Rituximab also sensitized B-NHL cell lines to 

TRAIL and FasL through YY1 and NF-B transcription factors 225,226. Thus, the inhibition of NF-B or YY1 

by anti-CD20 mAb induced a sensitization to TRAIL-induced apoptosis. Beside direct mechanisms, 

rituximab is also able to induce indirect mechanisms of action such as complement-dependent cell 

cytotoxicity (CDC) and antibody-dependent cell cytotoxicity (ADCC) or phagocytosis (ACDP). First, due 

to its inter-tetrameric attachment to CD20 and the following migration into lipid raft, rituximab is able 

to link the C1q and to activate complement cascade. This mechanism called, CDC allies innate and 

adaptive immunity (Figure 48). Second, owing to the fact that most mAbs developed are IgG1, they 

can recruit FcRIII expressing effector cells through their Fc portion and induce ADCC or ADCP when 

macrophages are recruited. Briefly, for ADCC, after binding of antibody Fc portion to FcR present on 

effector cells, a lytic synapse is formed and triggers a degranulation leading to death of tumor cells. 

For ADCP the mechanism is quite similar, except that binding with the FcRIIIa expressed on 

macrophages thus leading to phagocytosis and elimination of the tumor cell (Figure 48). Many studies 

pointed out that NK cells are the major effectors of ADCC 227 and in particular by the subpopulation 

CD56dim NK cells that express higher levels of FcγRIII receptor (CD16) 228.  As NK cells do not need 

priming to start a rapid immune response, they are key element in initiating anti-tumor response. 

Moreover,  T cells have been depicted in many studies as a great boost for anti-CD20 induced ADCC 

against tumor cells 229–232. ADCC has been modeled in vitro on 3D culture and in vivo on xenograft 

models by my team with NK cells and   T cells 71,233. Altogether, as ADCC represents one of the most 

potent mode of action of therapeutic mAbs, newly developed immunoglobulins, such as GA101, are 

usually characterized by an increased potential to induce ADCC.   

Type II mAbs such as GA-101 (obinutuzumab) present an intra-tetrameric binding to CD20 and 

do not induce CD20 migration into lipid rafts induce CDC. Changes in the VH-CH1 angle of GA-101, 

confers a higher direct effect in terms of cytotoxicity by promoting cell-cell adhesion leading to a 

caspase-independant cell death and more protein phosphorylation downstream the BCR. Moreover, 

studies from my team and others have shown different types of cell death after GA-101 treatment 

such as lysosomal cell death, senescence and inhibition of signaling pathways including : AKT, ERK, Syk 
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and mTOR 234–239. About indirect effect, GA-101 afucosylation in its Fc portion allows a higher affinity 

to FcRIIIa, thus a higher ADCC capacity 234,240 (Figure 48).  

 

Figure 48 : anti-CD20 mAbs  mechanism of action 
From Maloney DG, NEJM 2012 241 
 
 

3.1.2 mAb anti-CD20 mechanism of resistance 

 

Despite, its undeniable efficacy, some patient remains refractory to rituximab leading to 

further relapse. Understanding the mechanism of resistance is one of the main challenges in FL 

research. Over the past few years, many mechanisms have been depicted such as FcR polymorphism 

242, rituximab dosing 243, dose-density 244, loss of CD20 expression, antigenic modulation and survival 

pathway overactivation 224 impacting both direct and indirect effects of anti-CD20 mAbs.  

For instance, rituximab resistant cell lines show an overactivation of survival pathways such as 

NF-B leading to BCL2 anti-apoptotic protein overexpression. Thus, altered apoptotic effect of 

rituximab could explain resistance 245 246 247 248. Another obvious mechanism of resistance to anti-CD20 

is the loss of the target itself, which has been observed in patients. Moreover, loss of CD20 was 

observed in rituximab resistant cell lines and this was due to altered lipid rafts organization and altered 

signaling 249. One mechanism that could explain this CD20 loss, is the shedding which is caused by an 
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effector cells such as macrophages 250. This mechanism called shedding induces the elimination of 

extracellualar rituximab/CD20 complex on the target cells.   

Indirect mechanism of action can also be affected. Resistance to CDC has been reported to be 

induced mainly due to the expression of the complement regulatory protein (mCRP) such as CD46, 

CD55, CD35 and CD59 by tumor cells. Preclinical studies showed that blocking these proteins could 

enhance rituximab efficacy 251. Another explanation of this resistance is the long term use which can 

induce an exhaustion of complement resources 252. For ADCC, one of resistance mechanism is the 

modulation of membrane conformation that confers a decreased efficacy of effector cell recognition. 

For example, inhibition of cholesterol synthesis which induces a modification of lipid raft composition, 

was shown to decrease rituximab induced ADCC in vitro. Another important mechanism of resistance 

is FcR polymorphism. Indeed, many in vitro and in vivo studies have been conducted to support this 

mechanism of action 242,253,254. It has been shown that genotype homozygous for FgRIIIa-158V (VV) was 

associated with higher clinical response to rituximab 253. 

Another mechanism of resistance can be attributed to the TME. Indeed, tumor cells are 

surrounded by other cells and components that can act on rituximab efficacy by affecting their 

signaling. For instance, galectin-1 expression in local microenvironment was showed to induce 

resistance through blocking macrophages activation leading to a reduced ADCP 255. Tumoral volume is 

also important to consider as it may affect rituximab penetration into the tumor. This was shown in a 

mouse model 256 but also in FL patients using computed tomography 213 (ct scan) or positron emission 

tomography 257 (PET scan).   

Altogether, numerous mechanisms of resistance can impede mAbs efficacy. Thus, discovering 

novel targets and establishing new therapeutical strategies are necessary.   

3.2 Novel agents under clinical development 
 

Even if anti-CD20 based therapy associated to chemotherapy represents an efficient 

therapeutic strategy, alternatives are needed to overcome resistance and to offer new perspectives to 

relapsed and refractory patients. Among myriads of newly developed therapeutic strategies, it was 

decided to review closer to following ones: BCL2 inhibitors, immunomodulatory molecules, inhibitors 

targeting BCR signaling, molecules targeting epigenetic alterations, antibody drug conjugates and 

cellular therapy. 

  3.2.1. BCL2 inhibitory molecules  
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 The rationale of targeting BCL2 was quite evident with the presence of t (14;18) translocation 

in 80% of FL patients. Nevertheless, venetoclax (ABT-199), a BCL2 inhibitor, in monotherapy showed 

limited results in FL with 17% CR 258. A long term follow-up of this study showed interesting 

maintenance in few patients treated during 5 years who presented stable disease 259. Nevertheless, 

majority of patients did not respond sufficiently to the single agent, suggesting that combination with 

other therapies could enhance the effectiveness of response. Other clinical trials combining venetoclax 

with other agents such as rituximab or bendamustine were also tested, exhibiting promising results in 

phase I & II 260,261. In the phase II study, a CR of 75% has been shown in the arm treated with 

bendamustine + rituximab + venetoclax and a CR of 17% for patients treated with venetoclax + 

rituximab 231.  

3.2.2. Immunomodulatory molecule: Lenalidomide 

 

 Lenalidomide, is an immunomodulatory drug that exhibits two types of mechanisms of action. 

First, a direct cytotoxic effect against lymphoma cells by inducing degradation of IKZF1 and IKZF3 

through its binding to E3 ligase Cereblon. After Cereblon degradation, p21 is increased, leading to IRF4 

decrease and consequently to inhibition of proliferation 262. Second, an indirect effect of lenalidomide 

consist in increase in proliferation and activation of NK cells, resulting in increased ADCC against tumor 

cells. This molecule is also able to act on T cell stimulation and cytotoxicity and dendritic cell 

presentation 262. Lenalidomide has proven its efficacy in FL in different clinical trials. Indeed, a phase 

III study showed a synergy of combining rituximab with lenalidomide in comparison to rituximab alone 

(39.4 months versus 14.1 months) but unfortunately more side effects were observed 263. In GALEN 

trial, phase I/II study showed that obinutuzumab and lenalidomide combination, led to an increased 

response rate from 38% with obinutuzumab alone to 79% with the combination 264. As there are no 

randomized studies showing benefits of obitunutuzumab over rituximab in combination with 

lenalidomide, only the rituximab combined with lenalidomine obtained the FDA approval in May 2019.  

3.2.3. Targeting BCR signaling with inhibitory molecules: PI3K and BTK inhibitors 

 

PI3K signaling pathway is a well-known regulator of cell metabolism, growth and cell division 265. 

Three classes of PI3K exist, class I (PI3K   ); II, III according to their regulation, structure and lipid 

substrates 266. PI3K pathway plays an important role in BCR signaling and B cell activation 267. Class I is 

most relevant for cell growth and survival and it has been the target of anti-cancer drug development. 

PI3Kδ and -γ expression is largely limited to leukocytes, while PI3K-α and -β are ubiquitously expressed 

268. PI3Kδ and -γ regulate leukocyte trafficking and cell proliferation 269. There are several studied 

mechanisms of PI3K signaling upregulation in human cancers, including somatic mutations 
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and PI3K activation via the receptor tyrosine kinase and RAS pathways 270. To date, a limited number 

of studies have investigated these events specifically in the context of FL. Among them Yahiaoui et al 

showed that PI3K-δ may also play a role in activating AKT in FL. Thus, therapies including PI3K inhibitors 

has been developed and approved in FL with four different molecules: idelalisib (PI3K inhibitor), 

copanlisib (PI3Ki), duvelisib (PI3Ki) and umbralisib (PI3Ki). Idelalisib, a specific PI3K inhibitor, 

was the first drug approved in FL therapy, and results from a phase II study showed a median PFS of 

11 months 271. Unfortunately, this therapy used in long term can confer a risk of auto-immune toxicity 

and infectious disease complications. In this context, novel PI3Ki are under development to lower the 

risk of these side effects. For example, parsaclisib, a selective PI3K inhibitor is a promising new 

molecule exhibiting better specificity and less toxicities than other PI3Ki. This drug is still under phase 

II clinical trials but the phase I showed promising results in terms of monotherapy response 272.    

Another class of molecules targeting the BCR signaling are BTK inhibitors. The most renowned one 

– Ibrutinib, showed already impressive results in CLL and MCL. This allowed to develop a clinical trial 

in FL called DAWN, which did not bring the expected results as seen in other diseases 273. Nevertheless, 

pre-selection of patients on the basis of CARD11 mutation showed increased efficacy of BTKi in FL. 

Moreover, the combination of ibrutinib and rituximab showed promising results in a phase II study 

with efficient activity in first-line therapy in FL 274. Another promising combination is the one 

associating ibrutinib with ABT-199 275.  

 3.2.4. Targeting epigenetic alterations  

 

 FL cells epigenetic regulators are known to undergo mutation and dysregulation in GC. The 

main mutations are KMT2A (histone methyltransferase, lysine methyltransferase 2A) and CREBBP 

(acyltransferase). To restore epigenetic balance, many therapeutic strategies are ongoing such as EZH2 

and HDAC inhibitors. As EZH2 is mutated in around 20% of FL, its targeting represents an interesting 

strategy to affect the main driver of FL pathogenesis and also to induce immune modulatory effects. 

In contrast to most epigenetic alterations of FL that present loss of function, EZH2 mutation results in 

a gain of function of methyltransferase activity. Thus EZH2 inhibitors were developed and the first one, 

tazemetostat, showed promising results in phase I and II studies 276. 

Taken into account the frequent acetyltransferase loss of function mutations in FL, targeting HDAC to 

restore epigenetic homeostasis is another potential therapeutic approach. Interestingly, Vorinostat in 

a phase II study showed a response of 49% 277. In combination with rituximab, vorinostat showed a PFS 

of 41% 278.     
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 3.2.5. Antibody drug conjugates (ADC)  

  

The approach of ADC brings new insight in FL treatment. Indeed, the concept is to combine the target-

specificity of monoclonal antibody which is chemically linked to a cytotoxic drug. In FL, inotuzumab 

ozoguamicin (INO), an mAb anti-CD22 conjugated to the cytotoxic antibiotic from the class of 

calicheamicin is under investigation. Phase I-II study showed promising results in association with 

rituximab with 87% response 279 with a 2 years PFS of 68%. Pinatuzumab vedotin is another example 

of CD22 targeting ADC. This ADC is linked to microtubule agent, monomethyl auristatin E (MMAE) and 

showed interesting results in a phase II study, with 62% monotherapy response 280. Another target of 

ADC in FL is CD79b which can be targeted by the polatuzumab vedotin (POLA) associating an anti-CD79 

and MMAE agent. In a phase I/II, combination of GA-101 and lenalidomide, showed potent effects with 

around 76% response but unfortunately, associated with severe toxicity (grade 3 and 4) in 63% of 

patients 281. 

 3.3.6. Immune checkpoint inhibitors  

  

IE is one of the main mechanisms leading to NHL pathogenesis 282. Overexpression of ICP such 

as PD-1, represents a key mechanism in the process of tumor induced-immunosuppression. Indeed, in 

a physiologic context, PD-1 links to PDL-1 to suppress T cell activity and restore T cell homeostasis. In 

a tumor context, this pathway is overactivated and T cells present an exhausted profile and 

consequently their cytotoxic activities are compromised. From this rationale, ICP blockade became a 

key strategy in cancer therapy armamentarium. Given the great results obtain in solid cancer and HL, 

clinical trials have been developed in FL as well 283–285. Unfortunately, mitigated results were obtained. 

The first development aimed to target the PD-1/PDL1 axis as preclinical studies showed an 

upregulation of PD-1 expression in intratumoral TILs and that DP-1 blockade, enhanced T cell function 

286. Moreover, numerous PD-1+ infiltrating T-cells were shown in FL 287. Nivolumab (anti-PD-1 antibody) 

was tested in monotherapy but showed disappointing results with only 4% ORR (overall response rate) 

288. Thus, combination with other immune stimulatory therapies were tested. Evaluation of 

pembrolizumab (anti-PD-1 antibody) and rituximab in a phase II showed an interesting ORR of 64% and 

48% CR 289. Other ICP targeting were also tested such as the promising combination of anti-PD-1/anti-

CTLA4 which was successful in some malignancies. Unfortunately combination of nivolumab and 

ipilimumab did not exhibit efficiency in phase Ib 290. PI3Ki combination with ICP is of interest because 

of the immunomodulatory effect of PI3Ki that could be potentially enhanced with ICP therapy. Many 

ongoing clinical trials are pointing towards this direction. Another interesting IT targeting is the 

protective “don’t eat me” signal. Indeed, Hu5F9-G4, an anti-CD47, stimulates tumor cell phagocytosis 
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and induces an antitumor T cell response. A phase I/II study that evaluates the combination of anti-

CD47 / rituximab showed promising results with an ORR of 71% and 43% CR in FL associated with no 

severe adverse events 291. Table 6 presents a list of some checkpoint inhibitor tested in B-NHL patients 

162.  

Table 6 : Checkpoint inhibitors evaluated in clinic for patients with NHL 
From Pytlik et al, Vaccines, 2020 162 

 

 3.3.7 Cellular therapy: CAR-T cell and BiTE  

 

CAR-T cells are autologous T-cells transduced with a chimeric antigen receptor (CAR) which 

targets the modified T-cell against a specified cancer antigen. A CD19 CAR-T cells therapy is one of the 

main revolutions in the field since rituximab introduction. Indeed, this treatment has tremendously 

changed the management of relapsed lymphoid malignancies giving a chance of remission to patient 

that were impossible to cure. The first FDA approval was in 2017 for axicabtagene ciloleucel that 

exhibited an ORR of 83% in ZUMA-1 trial. Another CAR-T, tisagenlecleucel, was approved in 2018 after 

the JULIET trial showing an ORR of 52%. Now, these therapies are under investigation in FL. For 

axicabtagene ciloleucel, the ZUMA-5 trial showed an impressive 94% ORR and 60% CR. For 

tisagenlecleucel, the ELARA study presented an ORR of 82,7% and a CR of 65,4% in FL patients. Thus, 

both of these strategies seem to be extremely efficient for FL R/R (relapse/refractory) patients.  

Another promising strategy called BiTE for Bi-specific T-cell engagers was developed in the last 

decade. Here, the concept is to bring closer tumor and effector cells to exercise their cytotoxic role.  

To do so, BiTEs antibodies are composed of two antibody chains, one to recognize an epitope present 

on T cells and the other one to target an epitope on the target cell of interest. Some of these 

compounds have shown promising results in FL. Mosunetuzumab is a CD20 directed BiTE that have 

been tested in phase I with a 68% ORR and 50% CR. Odronextamab a CD20/CD3 BiTE, have a phase II 

ongoing in FL but higher side effects seem to appeared with this compound. Epcoritamab, a CD20/CD3 
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BiTE, showed impressive results in phase I with 100% ORR and 25% CR with no severe side effects. To 

finish, glofitamab present a particular conformation with a bivalency for CD20 and monovalency for 

CD3. In a phase I study, this compound showed interesting results with 69% ORR and 58,6% CR in FL 

patients but some severe adverse events appeared.  

Summary follicular lymphoma treatments (IV) 

FL patients have benefited from immunochemotherapy treatments such as R-CHOP and have relatively 

good long-term outcomes. Nonetheless, there is no consensus in the protocol to follow in first-line 

therapy and even less in R/R FL patients. Moreover, 20% FL patients are refractory and need new 

therapeutic strategy to increase their life expectancy. For this purpose, the range of therapeutic 

strategies in FL has exploded from targeting the TME (Table 7), BCR signaling or the immune system 

(Table 8). With these approaches, some new promising agents emerged, such as: immune modulators, 

ICP inhibitors, BCR signaling inhibitors, CAR-T cell and BiTE. Another important point to take into 

account in FL treatment, is finding the right sequence of therapy in the R/R setting. Moreover, finding 

personalized approach that balances patient-specific factors such as preferences and comorbidities 

with treatment-related factors such as known response rates and toxicity profiles are needed. In 

conclusion, with so many promising novel treatment options offering a favorable toxicity profile and 

durable responses, the future of FL management seems hopeful (Figure 49).  

 

 

 

 

 

 

 
 
 
 
 

From Cahill et al, Oncology, 2022292 

 

Figure 49 : Novel agents in FL overview 
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From Dobaño-López et al, Cancers, 2021 293 

 

 

 

 

Table 7 : Therapies in FL targeting TME crosstalk 
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From Anastasia et al, Mediterr J Hematol Infect Dis, 2016294 

 

 

 

 

Table 8 : Ongoing clinical trials with novel therapeutic approaches in FL 
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4. Goodbye Flat Lymphoma Biology 
 

4.1. Models’ evolution in cancer research  
 

The classical research pattern in oncology starts with in vitro studies followed by in vivo 

confirmations studies which can be transferred into clinical trials, the so called from “bench to 

bedside”. However, many factors led to reconsider this model, such as ethics, the 3Rs principle 

(replacement, reduction and refinement), costs, complexity and laborious techniques requiring 

dedicated technicians and engineers295. In this context, 3D models appeared to fill the gap between 

easy to handle but less relevant in vitro models and relevant but time consuming and costly in vivo 

models.    

4.1.1. In vitro studies: HeLa legacy 

 

In vitro studies are one of the gold standards models in biology to understand cancer 

progression and/or identify new therapeutics targets. Cell lines cultured in 2D are largely used in 

cancer research for their straightforward use and well-established cultivation conditions. Thanks to 

advances defining the best conditions for growing transformed cells by Dr. George Otto Gey at Johns 

Hopkins Hospital in Baltimore, the first famous human cell line derived from cervical carcinoma cell 

was born in 1951: HeLa. “HeLa” is an acronym for Henrietta Lacks, a woman affected by cervical 

carcinoma 296. Her incredible destiny was written by Rebecca Skloot in The immortal life of Henrietta 

Lacks.  Since this milestone event in cell biology history, many other cell lines were developed. 

Establishing a new cell line is not an easy task as some cell type need their microenvironment and cell 

interaction to be kept in vitro. To help in this process, guidelines for establishment and characterization 

of new cell lines have been proposed in 1999 by Drexler and Matsuo297. In these guidelines, many 

features are recommended to be confirmed such as cell culture immortality, proof of neoplasticity, 

authentication of the true origin of the cells, scientific significance and availability for the community.   

In hematology, the first cell line RAJI, was established in 1963 from BL patient’s cells 298. A few 

decades after, the use of recombinant growth factors and conditioned media allowed during the 80s 

and 90s, the establishment of other cancer cell lines of FL, such as RL or DOHH-2. These scientific 

advancements helped in deciphering molecular mechanisms of key events such as tumor growth, 

metastasis, drug resistance and aspects of immune evasion. They were also used for anti-cancer drug 

development and screening. For example, K562 leukemic cell line establishment was a key element in 

BCR-ABL fusion protein study. Indeed, this model was crucial in imatinib development, the first tyrosine 

kinase inhibitor 299. Another important development using cell lines is the NCI60 screening project that 
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used 60 different human tumor cell lines to screen up to 3000 small molecules for potential anti-cancer 

activity 300. Thanks to this project, many important anti-cancer drugs were discovered such as 

paclitaxel, cisplatin, fludarabine and more. It would be wrong to say that cell lines are not part of 

modern cancer research anymore. Indeed, based on advances performed in omics and highthroughput 

data generation, recent studies allowed a more in depth cell lines characterization. In particular, the 

work of two groups, Barretina et al and Garnett et al, provided a large scale genetic and 

pharmacological characterization of around 900 cell lines to the community, which was brought 

together in a public collection called Cancer Cell Line Encyclopedia (CCLE). Some important events of 

cancer cell line generation from 1907 to 2019 are summarized in figure 50 301. 

From Mirabelli et al, Cancers, 2019. 301 

B-NHL cell lines were used for better understanding of B cell biology and physiology. For 

example, FL cell lines represent an excellent model to mimic B cell differentiated in GC. Indeed, primary 

GC cells are difficult to maintain in culture. Eray et al established three FL cell lines in order to study 

antigenic selection and cytokines-mediated growth regulation of human GC B cells 302. They fully 

characterized the B-cell lymphoma cell lines used (HF-1A3, HF-4.9, HF-28) by identifying specific 

markers of GC B-cell subset (IgM+, I+, CD23+, CD38+, CD44+), centroblasts markers (CD38+, CD39-

CD77+) or centrocytes (CD38+, CD39-, CD77-) 302. They also found differences in co-stimulatory 

molecule CD80 expression, which was higher in HF-1A3 and HF-28 cell lines. In addition, they studied 

the effect of cytokine incubation one these cell lines and found for instance that IL-6, IL-15 and IFN 

protected HF-1A3 cells from apoptosis. The characterization in terms of differentiation markers, co-

stimulatory molecule expression and cytokine impact allowed to classify HF-4.9 as a model of 

Figure 50 : Summary of historical major events in cancer cell lines progress 
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centroblasts, HF-1A3 as representative of centrocytes during selection stage and HF-28 as 

representative of centrocytes at late stage during transition to plasma cell stage 302. B-NHL cell lines 

are also used to understand and discover new therapeutic targets. For example, in FL, in vitro studies 

helped in deciphering rituximab mechanism of action. For instance, my team and others have 

demonstrated that rituximab, an anti-CD20 monoclonal antibody, acts on B cells by indirect 

mechanisms of action, such as CDC and ADCC and direct mechanisms of action involving cell signaling 

pathways inducing cytotoxicity or inhibition of FL cell survival, as observed in vivo 222,242,303. 

Although cell lines are important to decipher biological mechanisms, these models lack tumor 

heterogeneity and can dedifferentiate after several passages thus losing characteristics of tissue of 

origin. Sandberg and Ernberg showed in their study that 34 to 60 NCI60 cell lines displayed the same 

tissue-specific genes upregulation 304. Another limitation is related to cross-contamination and 

mycoplasma infection that lead to false and non-reproducible data.  

Advances in patient sample processing, opened a possibility to in vitro culture of tumor cells 

from blood or biopsies from various tumors. Moreover, high performance technologies such as single 

-cell RNA sequencing, promote a depp molecular characterization of tumor heterogeneity and permit 

to correlate it with drug response. In B-lymphoma, an elegant study analyzed malignant and non-

malignant lymphocytes from twelve donors (nine with lymphoma: FL and DLBCL and three reactive LN) 

305. It resulted in detecting up to four transcriptionally distinct subpopulations of lymphoma cells, 

responding differently to in vitro treatments. Thus, these types of studies help to highlight new 

signatures of resistant subclones necessary to develop new therapies.  

Nevertheless, 2D culture implies cell exposure to an uniform environment with sufficient 

nutriment and oxygen, whereas tumor cells growing in mass are exposed to a gradient of oxygen, 

chemical compounds and cell to cell signaling 306. Thus, 3D models better recapitulate these important 

tumor features.  

 4.1.2. In vivo studies: bringing life to tumors 

 

To overcome these limitations, in vivo models are essential in biology in order to mimic more 

closely cell-cell interactions and integrate the microenvironment surrounding tumor cells. Due to 

similar genomic and physiological characteristics between mice and human tumor biology, mice 

models are the main in vivo models used in cancer research.  

Commonly used, xenograft models with tumor cell line transplanted subcutaneously or 

orthotopically into immunocompetent or immunodeficient mice, have been used for their availability 

and lower cost than other mice models such as transgenic mice. These models contributed 
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considerably and are still viable in discovery, characterization and validation of many drugs. For 

example, Mossner et al showed that anti-CD20 antibody (GA101) exhibits an enhanced direct and 

immune effector cell-mediated B-cell cytotoxicity by xenografting DLBCL cell line (SU-DHL4) into SCID 

Beige mice 235. They demonstrated a higher tumor volume decrease with GA101 compared to 

rituximab. My team also used SCID Beige mice to characterize the mechanism of action of anti-CD20 

mAb 71,233. For this, SCID Beige mice were engrafted subcutaneously with RL cells, injected 

intraperitoneally with immune cells (NK or  T cells) and treated with anti-CD20 mAbs (GA101 and 

Rituximab). Tumor size was strongly reduced in mice injected with immune cells in presence of 

rituximab. These results validate in vitro observations and allow to better understand the indirect 

mechanisms of action of these therapeutic Abs. However, this model exhibits a main limitation with 

the lack of relevance to pathology due to several factors: (i) a cell line was used thus not representing 

patients’ heterogeneity; (ii) subcutaneous injection which is not the localization of FL cells (normally 

lymph node); (iii) administration of therapeutic antibody intraperitoneally is different from infusion in 

patients and (iv) poor projection of FL TME, which normally plays a critical role in the development of 

the pathology and is implicated in response to treatment 293.  

As oncogenes and tumor suppressors genes are the main actors in oncogenesis, the need to 

modify gene expression in an in vivo model is essential. For this purpose, several genetically engineered 

mouse models (GEMMs) were established. For instance, transgenic mice were established to 

constitutively or conditionally express oncogene or silence tumor-suppressor genes in order to 

investigate oncogenic contribution of several genetic alterations in both solid and hematological 

cancers 307–309 . The conventional methods of GEMMs generation are retroviral infection, 

microinjection of DNA constructs and gene-targeted transgene. When the aim of the model is to 

inactivate a specific gene they are called knock-out. On the opposite, when the objective is to modify 

mice genetic sequence to add foreign genetic material, in a specific locus, they are called knock-in. 

Adoptive transfer of manipulated HPC is a rapid and highly controlled gain and loss of function model. 

Indeed, after isolation of HPC from BM or from fetal liver, cells can be for example cultured in vitro 

and following the gene modification using reroviruses, they can be reinjected into irradiated mice to 

recapitulate pathology specific gene modifications 310.  

Thanks to use of transgenenic murine models, it was possible to explain numerous gene 

mutations involved in B-cell lymphomagenesis. Berg et al demonstrated the cooperation between MYC 

and EZH2 in the lymphomagenesis by crossing mice bearing EZH2 mutation and mice bearing MYC 

mutation 311. Beside, many prevalent genetic alterations have been successfully modeled in mice 

models to mimick B-NHL pathologies including BCL2 translocation 312, alterations in histone 
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modification genes 106,107, TNFRSF14 loss, missense RRAGC mutations 313 or MEF2B-activating 

mutations 314 (Table 9).  

 

From Pasqualucii and Klein, Cold Spring Harb Perspect Med, 2020 315. 

 
 

 

 

 

 

 

 

 

 

 

Targeted alleles and experimental design are summarized. From Pasqualucii and Klein, Cold Spring Harb Perspect 
Med, 2020 315. 
 

Table 9 : Summary of existing genetically engineered mouse models (GEMMs) to mimic mature B-cell 

Figure 51 : Illustration of different GEMMs methods to generate B-cell malignancies mice models 
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Figure 51 summarizes strategies used to generate genetic alterations associated with human B-cell 

lymphomas (GEMMs): transgenic, knock-in mouse model, conditional knock-out or conditional knock-

in adoptive transfer of manipulated HPC.  

Although GEMMs provide more accurate modelling of tumor development as they are not 

transplanted but appear spontaneously, few limitations such as expression of target genes under 

strong and non-physiological promoters exist.  

Among in vivo models, the patient-derived tumor xenograft (PDTX) model represents an 

attractive strategy to overcome previous described limitations. To establish PDTX, patient cells are 

directly implanted into immunodeficient mice to recreate an environment enabling tumor growth and 

drug effect monitoring. These models represent well the patient cells heterogeneity and genetic 

instability, relevant to identify mechanisms which drive tumorigenesis and to evaluate the efficacy of 

potential therapeutic candidates 316–318. They exhibit remarkable similarities with donor samples by 

sharing genomic features and treatment efficacy. For example, in CRC, the success rate of PDTXs 

establishment is around 75% and they recapitulate the genetic alterations and histology of the fresh 

tumours 319,320. Guenot et al did a comparative genome hybridization showing alterations stability 

between the xenograft and the initial CRC tumor 319. In another study, Fichtner et al established a panel 

of 15 PDTX exhibiting maintenance of the histology and expression of tumor-associated markers such 

as EpCAM even after numerous passages 320. Moreover, in this study, they demonstrated that response 

to chemotherapy was similar in PDTXs and CRC patients.  

Lymphoma PDTXs represent a powerful model to investigate pathologies’ biology and discover 

new targets. Nevertheless, the success of engraftment depends on many technical variables and on 

each neoplasm. Indeed, it has been shown that high grade lymphoma is easier engrafted than low 

grade lymphomas, such as FL, that rarely implant well 321. However, few teams succeeded to create 

PDTXs from FL cell isolated from patients LN or BM 321–323. Burack et al successfully engrafted low grade 

FL patient thawed cells isolated from LN, into mice to create so called OTX (omental tumor xenograft) 

and to study neoplastic cell proliferation, their dependency on TME and patient’s variability 321. 

Surprisingly, they found in some cases a supportive effect of CD4+ T cell not on expected neoplastic B 

cells, but on non-neoplastic B cells. Thus, with this study, they emphasize the importance of TME in 

maintaining survival and control of differentiation of neoplastic cells in comparison to normal cells. 

Gerstein et al succeeded to engraft two patient samples isolated from FL and DLBCL LN and one from 

BL BM in NSG mice 322. The purpose of this study was to generate mouse “avatars” of patients to 

provide platform designed for drug response evaluation. Finally, Zhang et al, established sixteen PDTXs 

models originated from peripheral blood, apheresis, LN or spleen of different B-NHL such as DLBCL, 
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MCL, FL, MZL and BL323. Interestingly, in this study they investigated ibrutinib resistance after relapse 

and found that idelalisib (PI3Ki) was efficient in inhibiting tumor growth. Thus, these models represent 

powerful tools to study treatment resistance and discover new therapeutic strategies.  

In consequence, to centralize all data obtained, international repositories of PTDXs such has 

PRoXe (Public Repository of Xenografts) for leukemia and lymphoma were created. This  encourages 

the scientific community to use these relevant models for preclinical studies 324. However, some 

disadvantages have to be considered including clonal drifting and evolution or loss of heterogeneity in 

immunocompromised animals lacking the host immune system. In order to produce a more human-

relevant model, humanized mouse strains have been created where human hemopoietic precursors 

are engrafted. Nevertheless, they present the same economical, technical and ethical challenges than 

other models. In addition, they still do not reproduce the full human immune system and some 

mismatches between the host and human cells are still present. All benefits and limitations from mice 

models in preclinical research are listed in table 10.  

 

Approach Benefits Limitations Refs 

GEMM 

Spontaneous or directed 

genetic modification on 

different levels of the 

murine organism 

(proteins, tissues, whole 

mouse) 

Various established molecular tools and 

transgene delivery methods.  

Inducible and conditional models with 

temporal and spatial control.  

Functional immune system.  

No interspecies incompatibilities. 

Time consuming (generation time and 

screening).  

Costly. 

Genetic heterogeneity and lack of 

reproducible gene expression and 

phenotypes (random transgenesis).  

Off-target effects and lethality of 

mutations. Single human proteins in a 

fully murine system (e.g. RANKL). 

Wu et al 2015 

Kostenuik et al 2009 

Suri et al 2016 

Xue et al 2014 

CDX and PDX  

Subcutaneous 

implantation of human 

cells or tissue into 

immunodeficient mice 

Well-established cell lines for various 

diseases.  

PDXs commercially available (champions 

Oncology, CrownBio).  

Hight-thoughput applications. Easy and 

quick generation of models.  

Applicable in personalized medicine. 

Immunodeficient host.  

Mainly ectopic/subcutaneous 

implantation. 

Interspecies incompatibilities. 

Limited genetic heterogeneity (CDX). 

Genetic and phenotypic alteration of 

transplant in host (PDX). 

Krepler et al 2016 

Gao et al 2015 

Kemper et al 2015 

Girotti et al 2016 

Humanized 

Humanization of the 

immune system and 

selected mouse organs 

using orthotopic 

implantations/injections 

and TE & RM methods 

Humanized immune system and 

humanized microenvironment in organs 

of interest. 

Reduced interspecies incompatibilities. 

Modular generation of models. 

High-throughput applications 

Applicable in personalized medicine. 

Degree of humanization limited. 

Expertise in various fields needed. 

Complex surgical procedures for some 

applications. 

Baldwin et al 2017 

Wagner et al 2016 

Holzapfel et al 2015 

Hesami et al 2014 

Table 10 : Preclinical mouse models in research: benefits and limitations 
Adapted from Landgraf et al, Trends in Biotechnology, 2018 325 
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4.1.3. 3D models: a bridge between in vitro and in vivo models 

 

4.1.3.1. History  

 

As previously described, in vitro and in vivo models present many benefits but also some 

serious limitations. Thus, 3D models appear to feel the gap as they present advantages of both models 

such as reproducibility, screening perspectives and above all, they mimic the pathology. 

The first 3D models developed in preclinical studies were established in 1970. Radiobiologists 

used spheroids to better mimic tumoral architecture and study treatment’s effect 326,327. A few years 

later, in the field of oncology, Mina Bissell was a pioneer in thinking that context and cell architecture 

were one of the main drivers of cancer development 328–331. To explore this concept, her team 

investigated the function of acinus, the basic unit of a mammary gland. They separated epithelial cells 

that produce milk in mammary glands and cultured them in a petri dish. They observed that without 

their surrounding microenvironment and scaffold, they were not functional. In contrast, by adding 

scaffold such as matrigel, they observed milk production, showing that the adjacent microenvironment 

was able to send signals to epithelial cells in order to drive functionality. “We got milk!” is the favorite 

sentence of M. Bissel when she gives conferences. Moreover, she was one of the first to highlight the 

importance of the ECM in cell function. Indeed, many studies determined ECM involvement in different 

processes in breast cancer such as differentiation, organ function, progression and metastasis 332. 

Moreover, studies from Bissel’s team showed that once tumor cells are cultured in a “healthy” 

scaffolding, they are able to revert their malignant phenotype to a normal one, bringing evidence that 

microenvironment is a crucial driver in cancer development 333.  Thanks to the work of this team and 

many others, 3D models started to gain credibility and begin to be more often used in cancer research 

(Figure 52).  

From Martinez-Pacheco and 
O’Driscoll, Cancers, 2021. 334 

 

 

 

 

Figure 52 : Increasing number 
of published articles 
containing the terms “3D in 
vitro tumor models” from 
1987 to 2020 
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4.1.3.2. Methodology and nomenclature description: welcome to the jungle 

 

Since that discovery and paradigm change, many technics were applied to culture cells in 3D 

and they can be categorized as followed: microfluidic device (tumor-on-chip), scaffold-based method 

and scaffold-free method335. From these procedures, different nomenclatures emerged such as 

spheroid, multicellular tumor spheroid (MCTS), multicellular layer models, organoids, tumoroid, organ-

on-chip... To clarify all of these terms, here are some definitions:  

- spheroids are a type of three-dimensional cell modeling that better simulate a live cell’s 

environmental conditions compared to a two-dimensional cell model 336.  

- organoids are “mini-organs” produced in vitro in 3D that derived from one or a few cells 

from a tissue, embryonic stem cells or induced pluripotent stem cells 337.  

- finally, tumor organoids or tumoroids are 3D primary tumor cell cultures with histological 

and mutational features of the original tumor 338.  

It is important to note that even if these methods and nomenclatures can be distinguished, 

some of them can be at the frontier of each other (Figure 53). 

 

 

 

 

 

 

 

 

 

 

 

Figure 53 : 3D models definition entanglement 
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Once the nomenclature is defined, it is important to describe the technics used to generate 

them. 

Microfluidic devices or organ/tumor on chip are micro-engineered biomimetic models that 

allow co-culture of tumor cells (cell line or primary cells) with other relevant cell types placed 

strategically in order to recreate a tumor microenvironment (TME). The advantage of this method is 

that all physical parameters can be strictly controlled and monitored thanks to micro-channels 

mimicking vasculature. These micro-channels are embedded in inert materials like glass, silicon and 

polydimethylsiloxane (PDMS).  Usually, tumor cells are in layers containing matrix and endothelial cells 

while immune cells (macrophages, T cells) travel through the dedicated microchannels 339,340. In figure 

54 is representing an illustration of a study that investigated breast tumor cells circulation and 

involvement in metastasis. Song et al established a chip composed by two layers of porous PDMS 

containing an endothelium channel to mimic vasculature. The porous composition of PDMS allows 

chemokine to diffuse and to study their interaction with cancer cells 341.  

 

Figure 54 : Illustration of tumor-on-a-chip presenting an endothelium channel allowing perfusion of chemokine 
through a porous membrane 
From Esch et al, Nat Rev Drug Discov, 2015 339. 

 

These models represent potent devices to study physiological processes and also to perform 

preclinical drug screening in a complexified and relevant microenvironment. For example, with a 

glioblastoma on-a-chip, Cui et al integrated the immune TME to study PD-1 IT 342. Over the last decade, 

many models helped in studying tumorigenesis processes such as intravasation 343, extravasation 344, 

angiogenesis 345, invasiveness 346, migration 347 and adhesion 341.  Moreover, this method allows a real 

time imaging of these processes. For example, Zhang et al created a multi-organoid platform composed 

of liver cancer and cardiac organoids 348. With multiple sensors (optic, biochemical, physical), the 

dynamic monitoring of organoid morphology, temperature, oxygen and pH was possible. After 

treatment with doxorubicin, they were able to monitor and mimic drug efficacy and cardiac toxicity. 
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Even if this method presents increasing potential, some limitations need to be emphasized. Indeed, 

PDMS structure have physicochemical properties that are far from ECM. For instance, PDMS exhibit 

the disadvantage to absorb small hydrophobic molecules and this may affect drug concentration and 

its effect 349. To overcome this issue, other materials are under development such as poly(methyl 

methacrylate), polystyrene, polycarbonate and cyclic olefin copolymer 350. Another important problem 

in the field is the standardization and automatization of chip manufacturing, as for the most, they are 

not suitable for industrial large-scale manufacturing. Finally, low culture volumes and cell number used 

in these models can cause some detection sensitivity problem 335. Measurement technics need to fit 

clinical methods to be able to enroll them in clinical settings 351. This field evolves with body-on-chip 

that aim to integrate and connect different organ on-a-chip together, in order to assess interaction 

between them. However, the challenge to develop a common culture media that can support various 

types of cells and mediate their biochemical communication still remains unsolved.  

Scaffold-based methods provide structural and physical support to mimic cell interactions and 

aggregation. They are usually composed of natural hydrogels and ECM components and are covalently 

modified with synthetic hydrogels often based on polyethylene glycol (PEG). Hydrogels are used for 

their water-insoluble and synthetic or natural polymers properties that mimic tissue elasticity 352. One 

of the most common hydrogels commercially available is matrigel, an ECM-based natural hydrogel 

derived from secreted basement membrane extracts of Engelbreth-Holm-Swarm mouse sarcoma cells. 

It is composed of laminin, collagen, heparin sulfate proteoglycans, entactin and other soluble factors 

such as chemokines and growth factors. Scaffold-based methods can be categorized as matrix 

embedded or not 353, matrix encapsulation 354, bioreactors (including spinner flasks) 355 or 

micropatterned plate 335,356,357. Addition of ECM helps in deciphering importance of cell-ECM 

interactions in cell organization and function and to evaluate its consequence in drug response. For 

example, Ingeson-Carlsson et al used a 3D collagen embedded model to study RAF and MEK inhibitors 

on tumor cell migration with two cell lines mutated for BRAF (BCPAP and SW1736). They found that 

depending on cell culture conditions (2D or 3D), the response to anti-tumor drug was different 353. 

Great advances have been made in bioprinting which allows an unlimited access to a large variety of 

scaffolds. Some of them directly integrate cells with bioinks, mainly composed with hydrogels and 

other are used to only support surrounding cells 358. Although these technologies present high 

potential in terms of ECM mimicking and drug testing, the main limitation of scaffold are their: batch-

to-batch variability (matrigel), difficulty to automate, gel’s opacity which prevents imaging and 

alteration of drug and compound penetration. In summary, the main issue in these models is to choose 

the appropriate 3D scaffold materials on the basis of the desired application. 

 



92 
 

 Scaffold-free approaches are produced with different technics such as: soft agar colony 

formation 359, spontaneous aggregation, hanging drop (HD) 360, spinner flask rotary cell cultures, ultra-

low attachment plates (ULA), and magnetic levitation methods 335. In these methods, no artificial 

material is added to support cell growth and shaping, allowing an easier process, image and 

reproducibility. Thus, they are commonly used for drug screening studies. However, besides these 

great advantages, the main limitation is the lack of TME mimicking matrices. Altogether, most of these 

technics aim to generate spheroids which are the most well characterized and widely applied models 

(Figure 55). They all present advantages and disadvantages summarized in table 11.  

A) Matrix on-top and matrix-embedded, the spheroid is placed above or is included in a matrix; B) Ultra low 
Attachment plates, thanks to its composition cells stay in suspension and aggregate; C) Spinner flasks, cells are 

Figure 55 : Scaffold-based and Scaffold-free methods description 
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in movement thanks to a rotation allowing their aggregation, D) micropatterned plate, cells are stuck in small 
pattern to force their aggregation; E) Hanging drop, thanks to gravity forces cells in droplets aggregates; G) 
Magnetic levitation and 3D bio-printing, cells are mixed with bead and in contact with magnet to force their 
aggregation. From Nath and Devi, Pharmacology & Therapeutics, 2016 335. 

 

From Nath and Devi, Pharmacology & Therapeutics, 2016 335 

4.1.3.3. Focus on spheroid and organoids/tumoroids in cancer research 

 

4.1.3.3.1 Bringing the missing dimension to preclinical studies 

 

Spheroids are established with one or multicellular mixture from cell lines or primary cells and 

are referred as “micro-tumors”. Their aggregation can be promoted with several methods such as 

forced-floating method with specific plates allowing spheroid formation completed with a 

centrifugation or not in order to help cell aggregation (ULA plates for commercially available plates), 

or with gravity methods such as HD where cells contained in a small volume are disposed on a lid 

allowing aggregation and then transferred to wells containing a higher volume of medium allowing cell 

proliferation and 3D growth (Figure 55). It is important to underline that the cell type co-cultured, the 

3D method used and the addition of ECM, may influence the cellular morphology and physiology. Thus, 

Table 11 : Spheroid generation methods advantages and disadvantages 
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these parameters need to be taken into account in cell growth influence and cell-cell interaction. 

Moreover, depending on cell type, different behavior of spontaneous aggregation, proliferation and 

shape can be observed.  

Spheroids rapidly became one of the most commonly models used in cancer research due to 

their properties to recapitulate cancer features such as proliferation, differentiation, motility and 

metabolism 361. Spheroids allow to study mechanisms such as hypoxia, cell migration, invasion, ECM 

and, TME implication and treatment sensitivity in a more relevant models than in conventional 2D 

culture and easier workflows than in case of in vivo models 306. To obtain a spheroid from 2D cultures, 

cells need to go through a spheroidization process composed by different steps with a high cell 

proliferation rate followed by a stabilization that allows the shaping of the spheroid (Figure 56 A) 362. 

Because of their 3D structuration, spheroids can, contain different phenotypes, functions and 

metabolic behaviors depending on the cell layer. In general, spheroids display spherical shape 

composed by an external layer of proliferative cells, an intermediate zone with quiescent and 

senescent cells and an inner apoptotic and necrotic core (Figure 56 B). Riffle et al characterized in a 

A673 spheroid (Human Ewing Sarcoma cell line) distribution of Ki67 proliferative cells and caspase 3 

dead cells respectively located in the periphery and the inner part of the model, reflecting the different 

cell behavior depending on cell layer 363. Changes in nutrients, oxygens and drug diffusion dependent 

on the cell layer explains these different features of proliferation and death 364. This has been 

demonstrated in many models since the importante studies from Carlsson et al in 1988 that explained 

the relation between pH, oxygen pressure and growth of spheroids 353. They established the pO2/pH 

coefficient to present metabolic differences between the spheroids derived from different cell types. 

In a more recent and sophisticated study using phase fluorimetry on oxygen-sensor microbeads, the 

oxygen measurements were performed in various spheroid culture environment 365. Interestingly, 

spatial oxygen mapping enabled to create a computational model of oxygen diffusion. Hypoxia, or 

oxygen deficiency, is a well-known hallmark of tumors that modify cell metabolism from oxidative 

phosphorylation to anaerobic glycolysis leading to lactate release responsible for the inner cell 

acidification 366. 3D structures are interesting models to understand hypoxia impact on tumor 

progression and drug resistance. Indeed, acidification has been shown to be involved in 

immunomodulation and chemotherapy resistance 367. Efficacy treatment is observed to be decreased 

in poor oxygenated and proliferative layers for cytostatic drugs such as rapamycin or chemotherapy 

that preferentially target proliferative cells. Oloumi et al showed that V79 (Chinese Hamster cells) 

spheroid were 10 times more resistant than monolayers culture to etoposide (topoisomerase II 

inhibitor) 368. Imamura et al compared the efficacy of paclitaxel and doxorubicin on 2D and 3D cultured 

cells 369. They showed that 3D models are more accurate in displaying tumor features such as : hypoxia, 
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dormancy, anti-apoptotic features and displayed drug resistance compared to 2D cultures. 

Nevertheless, in some cases, drugs are more efficient in 3D than in 2D as demonstrated in a study 

performed by Doh et al where 60 drugs were tested 370. They observed for 28.3% of drugs, a higher 

efficacy in 3D than 2D. Among the drugs used, the ones targeting mTOR were more efficient in 3D 370. 

In addition to oxygen gradient, gradient of lactate, glucose, ATP and DNA strand breaks are also been 

described to affect drug response 361.   

Another spheroid feature that can affect cell behavior in terms of proliferation, survival and 

response to therapy is cell-cell interaction 361. The cell cohesiveness is dependent among others on on 

desmosomes, dermal junctions 371 and ECM secreted proteins. This latter called matrisome is 

composed by glycoproteins, glycosaminoglycans, proteoglycans, ECM-sequestered growth factors, 

vascular endothelial growth factor, platelet derived growth factor or hepatocyte growth factor 372 

(Figure 56). Thus, even without adding any ECM scaffold, some ECM component can be secreted by 

tumor cells themselves (including : collagens, fibronectin, laminine, elastin) and support some tumor 

features 373,374. The importance of cell-cell interactions and cell-matrix adhesions in gene expression, 

activation of downstream signaling pathway and influence drug sensitivity has been reported in many 

studies. For example, two teams using pancreatic tumor spheroids showed an increase of 

chemotherapeutic resistance when the cell-adhesion molecules, SNED1, DARP32 and miR-146a, were 

overexpressed 375,376. Moreover, it has been reported in breast and lung cancer spheroids, that 

interaction between β1-integrin with collagen I, collagen IV, laminin and fibronectin induces a 

protective effect against chemotherapeutic drugs 377. On the opposite side, inhibition of β1-integrin 

allows an increase in trastuzumab and pertuzumab (anti-HER2) sensitivity of tumor cells in a model of 

breast cancer spheroids 378.  Moreover, many studies have depicted differential gene expression profile 

concerning cellular processes, such as: proliferation, hypoxia, ECM secretion or cell cycle between 3D 

models and 2D culture. The similar profiles observed in 3D culture and patients strongly support the 

relevance of these models compared to conventional 2D cultures 379–381. Altogether, spheroids, by 

recapitulating many tumor features, including spatial distribution and ECM, appear as relevant models 

for preclinicals studies in cancer researchs.  
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A. The spheroidization process composed by three steps: high proliferation, stabilization, model shaping, 
proliferation decrease. B. Several metabolic, oxygen, cell proliferation status depending on the layer and 
different cell-to-cell and cell-ECM interactions. From Zanoni et al, J Hematol Oncol, 2020 306 

 

With all the features recapitulated by 3D models, preclinical studies gain another dimension. 

Indeed, these models allow to monitor local drug penetration, tissue distribution and binding in a 

medium-high throughput manner. Huge development in imaging technics (confocal microscopy and 

light sheet microscopy) permit to monitor drug penetration 382. Even if spheroids can be composed by 

only one type of cells, it is possible to complexify the 3D structure by adding other cell types such as 

fibroblasts, immune cells or endothelial cells to partially recreate the TME. For example, to study in 

depth drug resistance due to ECM it is interesting to perform co-culture of spheroids with cancer 

associated fibroblasts (CAF), which produce large amounts of ECM. Cavaco et al used a pancreatic 

spheroid model co-cultured with CAFs deficient or not for integrin-3 and demonstrated a decrease 

of invasion in comparison to the WT CAFs 383. Jeong et al, showed that CAF confer resistance to 

Figure 56 : Illustration of spheroid spatial organization composed by layers with differential 
phenotypic, metabolic and functional features 
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paclitaxel when co-cultured with a CRC spheroid 384. Immune cells are also important actors in tumor 

progression. To explore their role, many studies integrate them in co-cultures with different cancer 

cell types. For example, in a study using spheroids of CRC, Courau et al targeted NKG2D axis and 

showed an increase in NK cell infiltration followed by a higher cytotoxicity 385. They were also able to 

highlight an interesting synergic effect towards primary colorectal cancer-derived spheroids by 

combining anti-MICA/B and anti-NKG2A antibodies. In parallel to the IT revolution, co-culture of 

spheroids with immune cells gained great interest in the area of preclinical studies 386. The study of 

such mechanisms in vivo involves the use of complex mice models. On the other hand, classical 2D 

cultures are also used but without the consideration of cell architecture and spatial organization of 

cells within a tumor which can also play a key role. For example, in the clinic, it has been observed that 

the lack of CD8+ T cell infiltration in the tumor is a mechanism of resistance to IT 387. Peranzoni et al 

showed that CD8+T exclusion is correlated in human lung squamous-cell carcinomas with poor clinical 

outcome and low lymphocyte motility 388. Another interesting application appears with the huge 

development of CAR-T cell-based therapies, where 3D models appear also as relevant models to study 

their efficacy. This therapeutic approach had great success in hematological malignancies leading to 

CD19 CAR-T cell approval by the FDA. Nevertheless, in solid cancer, the results are less encouraging 

and led researcher to identify several blocking elements such as heterogenous antigen expression, 

limited T cell survival before reaching tumor sites or immunosuppressive TME. These immunological 

and physical barriers can be investigated in 3D models as they exhibit spatial organization allowing a 

better study of CAR-T cell infiltration and survival. For instance, changing targeted antigen can increase 

CAR-T cell potential. Wallstabe et al established a microphysiologic three-dimensional composed of 

lung and breast cancer cell lines (A549 and MDA-MB-231) models to evaluate ROR1 (receptor tyrosine 

kinase–like orphan receptor 1–) CAR-T cells. With this model, they were able to assess anti-tumor 

activity by measuring apoptosis and IFN- secretion and they observed deep infiltration of CAR-T cells 

389. Zhang et al proposed to target membrane proximal epitope of mesothelin to increase anti-tumor 

function in solid tumors and showed its potential with 3D spheroid cancer cell lines of gastric (HGC-27) 

and ovarian (SKOV-3) cancer cell lines. In these experiments, CAR-T cells were able to secrete high 

amount of IFN and lead to apoptosis of cancer cells.  

4.1.3.3.1 Organoids and tumoroids: heterogeneity and functionality matters 

 

Although spheroids help in deciphering many aspects of cancer biology, they recapitulate only 

some activities of the modeled organs. To overcome this limitation, numerous teams have established 

organoids to better understand tumor development in functional artificial mini-organs. Organoids are 

developed from single adult stem cell (aSC), embryonic stem cell (ESC) or pluripotent stem cells (iPSCs) 
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to recapitulate in vivo micro-architecture of the organ 390. Many protocols exist depending on the cell 

type and supplement of specific growth factors such as cytokines required to obtain the appropriate 

model 391. Hans Clevers’s group was the pioneer to establish such models, firstly on colorectal cancer 

and discovered gut stem cells and their location in intestinal crypts 392. A few years later, they cultured 

these stem cells in a long term fashion and created the first “mini-gut” organoids that structure 

spontaneously similarly to real gut 393. Clevers’s group has also been pioneer in the establishment of 

models developed from patient-derived tumor specimens, called “tumoroid” or “tumor organoids” 

that are 3D primary tumor cell culture with histological and mutational features of the original tumor 

390,394,395. These models present many advantages such as patient specificity, 3D spatial organization, 

possibility to create biobank/library used for preclinical studies 396. They are also largely used for 

immunotherapeutic studies with mainly two approaches: the first one called holistic approach, consists 

of using endogenous immune cells from the patient 397 and the second one called reductionist 

approach, is the co-culture of cancer cells with immune cells isolated and expanded separately from 

the same patient (Figure 57) 395. Both approaches help to better characterize cell-cell interaction and 

enable to create platform for immunotherapeutic drug testing. Since this discovery, a wide variety of 

healthy tissues organoid have been created such as colon 398,399, breast 400, liver 401, lung 402, pancreas 

403, ovary 404, bladder 405 and many others (Figure 58). 

From Bar-Ephraim, Kretzshmar and Clevers, Nat Rev Immunol, 2020 406 

Figure 57 : Illustration of holistic and reductionist approach used in immune-oncology organoid model generation 
with NSCLC example 
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Figure 58 : Existing models of organoids and 
tumor organoids 
From Zanoni et al, J Hematol Oncol, 2020 306 

 

 

 

 

 

 

 

 

 

 

Over the past decade, 3D models such as organoids became essential in immuno-oncology 

studies because of their more accurate TME reconstruction 386.  These models are used to assess 

immune cell infiltration, test immunotherapies such as therapeutic antibodies and discover new 

targets. The main challenge of recreating a TME in a tumoroid is to mimic the tumor of origin 

considering not only the type of cells present but also their proportion and their localization. Despite, 

IT advent, failure of correlation between level of target expression and patient response encouraged 

researchers to investigate IT mechanism of action in relevant model. Even if targeting PD-1/PD-L1 axis 

is known to be efficient in some cancers, it is more difficult to predict its efficiency in some patients. 

Thus, to solve this issue, some teams have established patient derived organoid (PDO) of NSCLC, CCRC 

and melanoma and determined nivolumab efficacy. For instance, Neal et al observed that patients 

responding to treatment presented T cells expressing higher level of IFNG, PRF1 and GZMB transcripts 

407.  

This study highlights the complexity of the IE mechanisms and how important prediction of 

patient response to a specific IT is. Currently, two clinical trials involving cancer organoids to evaluate 

response to IT (NCT03778814, NCT02718235) are ongoing, confirming their great potential as 

preclinical models predicting patient response.  
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For some cancers, it is possible to have an access to healthy and tumor tissues from the same 

patient and grow them in 3D culture to assess drug effect and drug toxicity at the same time. This 

approach leads to select less toxic drugs and propose an efficient treatment associated with less side 

effects. For example, cardiac and kidney organoids are already used for toxicological studies 408,409.  

 

One of the main stakes of cancer research relies on understanding and investigating metastasis 

mechanism and evolution. Approaches combining organoids and organ-on-chip called multi-organ-on-

a-chip will allow to study this process. Recently, one team has engineered an impressive lung-brain-

liver-bone-on-a-chip model to study in the context of lung cancer, metastasis spreading 410. With this 

model, they were able to show different distribution of cancer cells in each organ over time.  

In addition to help scientists to study tumors complex biology, organoids are also interesting 

models to select the most appropriate treatment for patients, opening perspectives to personalized 

medicine. This part will be developed in 4.4. 

4.2. Towards regenerative medicine: the example of artificial lymph node model  
  

 In order to better understand the pathology, it is also important to know more about 

physiological mechanism in healthy organs. Thanks to scientists, engineers and physicians efforts in 

tissue engineering, the field of regenerative medicine is flourishing 411. Regenerative medicine has the 

ambition to replace, regenerate or restore a fully functional tissue, or organ.  

In the case of LN, many studies have tried to recreate artificial LN in the context of regenerative 

medicine, but also in order to increase the knowledge about this organ in more relevant models 

presenting the same architecture complexity as in the body. Indeed, SLO such as LN are 

microarchitectures essential for the immune response initiation. More than one hundred of LN are 

placed strategically all around the body, based on tissues sites they drain such as skin and mucosa, in 

order to readily face any threat 412.  Distinct B and T compartments associated with stromal FDC and 

FRC show a remarkably rich and organized microenvironment. This specific cellular compartment 

organization is maintained by gradient of chemokine secretion by stromal cells, FDC (for B cells) and 

FRC (for T cells) 413. Another important feature of this structure is the presence of specialized blood 

vessels called high endothelial venules (HEV), that facilitate extravasation of circulating lymphocytes 

into the LN. This impressive organization of LN is necessary for efficient antigen screening and 

recognition. The ECM (collagen, glycosaminoglycans, …) plays also an important role in proliferation, 

differentiation and migration of the cells, by mediating cell adhesion and communication such as 

antigens transit for further presentation by specialized cells 414. With the first studies performed with 

conventional 2D culture and in vivo models, our understanding of organogenesis, the cellular and 
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molecular elements essential for the recruitment and organization of lymphocytes into LN are better 

known. Given this spatial complexity, the main challenge of engineering artificial LN is to replicate as 

closely as possible the LN microenvironment into a 3D structured model. Current models mimic only a 

few aspects of this microenvironment complexity. One of the first models of LN was established with 

collagen sponge scaffolds carrying a thymus-derived lymphotoxin-β receptor and a stromal cell line 

expressing vascular cell adhesion molecule-1 (VCAM-1) 415. This model was implanted in mice and 

showed all the features of an organized secondary lymphoid-like structure composed of B and T cell 

zones, GC and networks of FDCs. Another study did a first attempt to create a GC-like model with 

collagen-infused PEG gels. This model was able to foster intra-scaffold migration of encapsulated T 

cells and DCs but no GC formation was observed 416. This was enabled after implantation in mice. 

 A sophisticated model called human artificial LN (HuALN) was engineered with a miniaturized 

membrane-based perfusion bioreactor, containing a hydrogel matrix preloaded with DCs, T and B 

lymphocytes derived from PBMCs 417. The model was further complexified by adding mesenchymal 

cells. In this study, the model was used to simulate the immunological outcomes in response to 

vaccines, pathogens and even pharmaceutical drugs 418,419. Interestingly, Seifert et al, found an increase 

in MSC proliferation when co-cultured with immune cells showing the importance of cell-cell 

interaction in cell behavior 417. Also using HuALN, Giese et al analyzed immune responses to viral 

antigens. In order to do that, researchers used antigen restimulation and measured the response based 

on cytokines released (IL-2, IL-10, IL-6 and TNF) to spent medium 418. They observed early 

proinflammatory response (TNF) that diminished during the first days of culture but after 

restimulation with antigen, they observed a second release of TNF and of Th2 promoting cytokines 

such as IL-6 and IL-10. In addition, they observed donor variability in cytokines response and a 

moderate IL-2 release. In the study of Radke et al, this system was used to test two vaccines presenting 

minor structural differences 419. By the analysis of cytokines in the supernatant, they were able to 

observe the immune responses induced by both vaccines. 

Singh’s lab is one of the most active in the field of LN modelisation. They designed a model 

capable of mimicking the LN GC in vitro, thus providing an interesting tool to understand B cell 

maturation and to design innovative antibody-based therapeutics 420. In this model, murine naive B 

cells and CD40L and BAFF-expressing stromal cells are encapsulated into an arginylglycylaspartic acid 

functionalized gelatin hydrogel where silicate nanoparticules are added to modulate scaffold stiffness 

and porosity. They showed a potentiation of CD40L/BAFF signaling in presence of the 3D structure and 

an increase of GC B cells proliferation and rapid differentiation to the GC phenotype after addition of 

IL-4, a phenomenon difficult to observe in conventional 2D culture 420,421. Further evolution of this 

model made by replacing gelatin with a synthetic polymer containing integrin ligands, allowed to 
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investigate the role of α4β1- and αvβ3 integrins in GC B cells differentiation 422. In this context, Singh’s 

group was able to observe that 41 integrin receptor induces more robust CD19+GL7+ phenotype in 

a ligand concentration dependent manner compared to the previous model. Finally, they developed a 

scaffold made of maleimide (MAL)-functionalized PEG, that modulates B cell differentiation and 

enriches antigen-specific GC B cells in the presence of T-cell like signals 423. Thus, this model represents 

an ex vivo antigen-specific platform offering many biotechnology applications, from antigen testing, to 

vaccine development and to generation of antibodies 423. 

Another model was developed in order to mimick the paracortical region of LN 424. This 

microfluidic system allows to study more specifically the T cell compartment of LN. Moura Rosa et al 

showed that the interaction between DCs and T-cells is dependent on the shear stress applied on the 

subtype of T-cells. Indeed, CD4+ T cells exhibit long and stable contacts with APCs, whereas CD8+ T 

cells present only transient interactions with DCs 425. This interesting microphysiological model allows 

the study of pMHC-TCR binding in a controlled mechanical forces device. With the same concept of 

studying T cells and DC interaction, Mitra et al created a model to investigate DC chemotaxis and T cell 

activation which is composed by two PDMS layers, one representing the chemotaxis compartment and 

the other the T cell compartment 426. By applying a chemokine gradient (CCL19), they were able to 

monitor T cell activation by measuring intracellular calcium levels. Thus, they showed that mature DC 

respond better to chemokine gradient and migrate to the T cell compartment where they can activate 

them. On the opposite, immature DC were not able to respond to chemokine gradient and to activate 

T cells 426. To study both B and T cell zones, Ross et al, created an ex vivo microfluidic device from 

isolated mouse LN slices 424. By using a model composed of a three-layers PDMS with a perfusion 

chamber and microfluidic channels, they were able to show a higher drug retention in the B-cell zone 

than the T-cell zone. 

In the field of regenerative medicine, recreating a functional LN is a great interest. Lenti et al 

succeeded to generate a functional synthetic lympho-organoid (LOs) by using LN stromal progenitors 

and decellularized ECM matrix-based scaffolds 427. After resection of LN, LOs models were transplanted 

allowing the restoration of lymphatic drainage and perfusion. Moreover, after immunization, LOs were 

able to support activation of antigen-specific immune responses as observed in physiology 427.  

 In conclusion, designing an artificial LN is one of the challenges that scientists have tried to 

solved for many years now. Many models have emerged and all have contributed to a better 

knowledge about LN spatial and function complexity. Promising studies in the field of regenerative 

medicine have been established to give more and more hope in the ambitious task of recreating a full 
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functional LN. Moreover, some of the studies can help in designing new models in hematological 

disease emerging from LN in order to better characterize and treat them. 

4.3. Existing 3D models in B-NHL 
 

B-NHL are characterized by tumoral cells growing in dense aggregates with their surrounding 

microenvironment mostly in LN. This feature is not recapitulated in classical cell suspension. 

Subsequently, the need to establish 3D models to better recapitulate the pathology became essential. 

In order to create a relevant 3D model for B-NHL, many criteria need to be taken into account. Among 

them, the model needs to be reproducible and relevant to the pathology by recreating the TME 

suitable for preclinical studies. Each B-NHL subtypes presenting its own genetic and microenvironment 

features, we decided to present in the following part the existing results obtained on two indolent B-

NHL (FL and MCL) and one aggressive B-NHL (DLBCL) (Table 12). 

4.3.1 Follicular lymphoma 3D modelling  

 

Our group was pioneer in the establishment of a 3D model from FL cell line 71,145,234,381,428. This 

model called HD-MALC for multicellular aggregates of lymphoma cells, was obtained by the HD method 

145,381. HD-MALC formed compact ovoid aggregates reaching a diameter of ~1 mm by three weeks of 

culture and exhibiting relevant hallmarks of FL cells. Indeed, gene expression analysis showed 612 

genes differentially expressed. Among them, 451 genes involved in induction of anti-apoptotic 

function, NF-B pathway and response to hypoxia, were significantly upregulated in cells grown as HD-

MALC compared to cell cultured in suspension (2D) and reflected patient gene expression profile 381. 

Following studies explored the mechanisms of action of anti-CD20 mAbs in these 3D organized models 

71,234,428. Thus, it was observed huge differences between the efficacy of drugs in 2D compared to 3D 

models, with higher direct activity towards FL cells in HD-MALC compared to cells in suspension 234. 

Moreover, cell cultured in suspension exhibit the same sensitivity towards two anti-CD20 mAbs, 

whereas once cultured in aggregates, GA101 was more potent compared to rituximab by inducing not 

only apoptosis but also senescence and lysosomal cell death 234. Another antibody-based therapy was 

tested with the daratumumab (anti-CD38 mAb) showing a penetration within the HD-MALC and an 

efficacy towards FL cells 429. Indirect mechanisms of action of anti-CD20 mAbs such as ADCC was also 

detedted with HD-MALC co-cultured with NK or  T cells 71,233. These co-cultures mimic the infiltration 

of immune cells within the FL LN, their activation through the expression of CD69, GrB and perforin 

and the consecutive killing of target FL cells. Characterization of the IE signature expressed in FL 

allowed the identification of PD-1 as an ICP expressed by  T cells infiltrating FL LN 28,71,175. In this 

context, HD-MALC co-cultured with PD-1+  T cells allowed to validate in vivo experiments showing 
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that PD-1 targeting enhances ADCC induced by anti-CD20 mAbs 71. Although the HD method was very 

useful to better understand FL biology and drug responses in more relevant models than cell 

suspension, it was not suitable for drug screening due to the need of manual processing. Moreover, 

one could speculate that methylcellulose added for HD-MALC formation, may induce matrix-driven 

alterations in growth, expression profiles, cell behavior or in drug responses. To circumvent this issue, 

FL cell lines 3D models were established with ULA plates and called ULA-MALC. This study led to my 

first co-author scientific publication and will be developed in the result section of the manuscript. 

Despite the contribution of 3D models established with cell lines in the knowledge of FL 

pathology and the understanding of mAbs mechanisms of action, they lack TME representation. In FL, 

TME is highly heterogeneous by the presence of immune cells, stromal cells, ECM components and 

blood vessels, representing a real niche where all these elements crosstalk and influence drug response 

205,293. Indeed, Dave et al demonstrated that FL patients’ survival correlates with molecular features of 

non-malignant immune cells present in the tumor at diagnosis 149. Thus, relevant models integrating 

FL TME represent necessary preclinical models to predict response to therapy and better model the 

interaction between each component of this heterogeneous milieu.  

For the moment, only two different methods were developed to establish 3D model with cells 

from FL patients. The first one, recently published, was based on FL purified B cells encapsulated with 

matrigel and co-cultured with normal tonsil stromal cells (TSC) to provide pro-survival signals 430. FL B 

cells were found mixed with stromal cells within 3D spheroids and exhibited a good cell viability until 

day 14, higher than the condition where FL cells were cultured in 2D with TSC. Although this study is 

promising and opens new strategies to culture in 3D FL B cells, it was performed with purified FL B cells 

and TME was represented by normal TSC which reflects only partially TME (Figure 59).  
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Imaging after 3 days of encapsulation of purified FL B cells and TSC cells (a) of encapsulation. Multicolor live/dead 
(CalceinRed/NucRed Dead) imaging of patient B cells with GFP-TSC and nuclei counterstaining with Hoechst were 
depicted. Spheroids were imaged on a spinning disk microscope. Individual channels are depicted on the top, 
overlays of NucRed Dead and Calcein Red and of Hoechst and GFP on the lower panels. From Lamaison et al, 
blood advances 2021.430 
 

Another type of method integrating immune TME was recently developed by our group where 

bulk thawed FL cells from FL LN were cultured in 3D during several days in an enriched culture medium 

allowing to maintain cell survivaly (Faria et al, in preparation). These 3D models called PDLS, which 

stands for Patient-Derived Lymphoma Spheroids are mainly composed by B and T cells, allowing a full 

workflow enabling the characterization in depth of patients samples by 2D and 3D imaging, 

immunohistochemistry and multiparametric flow cytometry analyses. This work led to a scientific 

publication in preparation and will be developed in the results section of the manuscript. 

4.3.2 Mantle cell lymphoma 3D modelling  

 

MCL represents an indolent B-NHL which can transform to aggressive B-NHL that ultimately 

leads to unfavorable clinical outcome 431. MCL cells can migrate from blood to multiple tissues. The 

proliferative rate, the molecular signatures and the sensitivity to drugs have been described to be 

different when cells are in the blood compared to cells localized in the BM or LN. Thus, preclinical 

models are needed to better characterize these discrepancies and to propose specific targeting 

strategies 432.  

Only two studies established cell line-based models of MCL. First, a four layers 3D polystyrene 

scaffold model was developed with primary stromal cells that was generated from human neonatal 

skin to be more representative of the lymphoma microenvironment 433. This model exhibits an increase 

in cell proliferation of tumor cells cultured around this stromal cell scaffold, compared to 2D co-culture 

with stromal cells. Interestingly, 3D models established with a cell line derived from LN (HBL2) or cell 

line derived from BM (Z-138), showed different aggregation patterns (clusters developed for HBL2 

cells), a dependence from stromal cells-mediated pro-survival signals for Z-138 cells and proliferation 

rates higher for HBL2. Interestingly, when HBL2 clusters were placed in suspension without the stroma, 

cells stay in the same state and the suspension phenotype was not reverse. Moreover, it has been 

observed that interaction with the stroma cells triggered cellular and signaling modification in the 

tumor cells. Thus, this 3D polystyrene scaffold model represents a relevant model for MCL and should 

be interesting for the development of patient-derived cells 3D models which have not yet been 

published.  

Figure 59 : Primary FL cell survival in cellular capsules  
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The second model proposed a multicellular spheroid representative of early-stage MCL closer 

to the pathology 434. This model was established with the JeKo-1 cell line in order to study unknown 

polyclonal nature of this disease. After a prolonged culture (10 to 20 passages), cells formed irregular-

shaped multicellular spheroids (Figure 60) 434. After 20 passages, the so called Jeko-1-spheroids 

become regular with a high viability. Interestingly, storage in liquid nitrogen and thawing to perform 

future studies was possible with this method and cell line. Jeko-1-spheroids exhibited expression of 

CD34, CD38, IgM and CD10 with a mixed of pre-B, immature B and mature B cells showing that MCL 

pathogenesis might not be restricted to mature B cells. Moreover, these 3D models present higher 

levels of oncogenes and stem cell markers compared to cell suspension culture suggesting that 

spheroids are more representative of the disease. This was confirmed by JeKo-1-spheroid xenograft 

which fully recapitulate the heterogeneity of polyclone tumors as attested by the total number of 

organs involved, immune phenotypes and the oncogenic capability. Indeed, a higher spreading 

followed by extensive complications was observed attesting the disease progression. In this study, 

Tang et al revealed four subpopulations with CD19+/IgM+, CD19-/IgM-, CD19+/IgM-, CD19-/IgM- in 

healthy donor samples and they observed that the subpopulation CD19+/IgM- was absent in the four 

patients tested and JeKo-1-spheroid cells 434. All four subpopulations from healthy donors were 

cultured and no colonies formation were observed. On the other hand, three subpopulations found in 

patients and spheroid model were able to form colonies with a variability depending on the subclone. 

Furthermore, when the subclones were separately injected into in vivo models, a strongest 

tumorigenic ability with more severe effects was observed, even if the subclone CD19-/IgM+ exhibited 

the highest tumorigenic ability. In perspectives, the authors proposed to use this model to study the 

chemoresistance related to the subclones which could become an interesting approach to predict 

treatment response depending on the presence of these subclones in each patient.  Altogether, this 

model seems to be useful to study the polyclonal nature of MCL disease thus improving diagnosis and 

prognosis. Moreover, further studies to identify new pathways could conduct to develop more efficient 

treatment for MCL. 

Figure 60 : Evolution of biological characteristics between JeKo-1 parental and JeJi-1spheroid cells 
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The growth characteristics of JeKo-1-parental and JeKo-1-spheroid cell lines; there were approximately 1% 
multicellular spheroid in JeKo-1- parental culture (i); irregular multicellular spheroid in JeKo-1-parental prolonged 
culture (ii); death of single cells in JeKo-1- parental prolonged culture (iii); restoration of proliferation (iv); 
establishment of JeKo-1-spheroid culture (v); bar Z 60um. Tang et al, 2019. 434 

4.3.2 DLBCL 3D modelling  

 

In DLBCL, several 3D models partially integrating the TME were developed. One of the first 

model was composed by adhesive peptides comprising integrin specific to B and T cell lymphoma cells 

435. Briefly, PEG-MAL macromers were conjugated with thiolated cell adhesive peptides RGD or REDV 

(peptide: PEG-MAL 1:4). Integrins are known to have an indirect effect on recruiting focal adhesion 

proteins which controls levels of cyclins and genes essential for cell proliferation such as c-Jun and E2F 

436. Tian et al measured the cell-cycle progression in HBL-1 B lymphoma cells and observed a phase S 

reduction when cells were cultured in RGD functionalized 3D models with FDCs, compared to models 

with REDV ligand 435. Thus, this result suggests an enhanced proliferation when cells are exposed to a 

REDV ligands. In this study, authors highlighted how 2D studies can obscure important drug effect 

related to microenvironment such as integrins. On the opposite, they also depicted how 2D culture 

could overestimate the efficacy of certain compounds due to unhindered drug diffusion in suspension. 

When they compared doxorubicin efficacy on 2D and 3D, they observed a resistance in 3D models but 

not in 2D culture. These studies not only allow the characterization of a new model and demonstrate 

the importance of microenvironment in drug response, they also alert the community on the use of 

matrigels or collagens. Indeed, even if it can provide cell support, the lack of batch reproducibility and 

information on exact composition represents a bias in the experiments. Thus, to overcome this 

problem, a synthetic hydrogel was developed containing bio-adhesive ligands and protease degradable 

cross-linkers specific to lymphoma. In more details, maleimide functionalized 4-arm PEG (PEG-MAL) 

that reacts with thiolated peptides to form a bio-adhesive hydrogel was used. Hydrogels were 

functionalized with 25% thiolated peptides presenting αvβ3 binding RGD ligands or α4β1 binding REDV 

ligands and cross-linked using matrix metalloproteinase (MMP) 9 degradable, di-thiolated peptide 

(NH2-GCRDVPMSMRGDRCGCOOH). Integrins are modeling the lymphoma microenvironment by 

mediating adhesion to ECM components (fibronectin and laminin) and in signaling processes. 

Moreover, the supportive FDC were also integrated to the system to better recapitulate the pathology. 

In this context, drug resistance to chemotherapeutics agents such as doxorubicin and histone 

deacetylase inhibitor (HDACi), such as panobinostat, was assessed 437. Although this elegant model is 

promising to study specific biological features of DLBCL, its main limitation is the lack of cells from the 

TME such as T cells and macrophages which play a key role in this pathology 437.  



108 
 

This missing part was added by Mannino et al who developed a DLBCL-on-chip 438. This model 

consists of the embedment of DLBCL cells from a cell line, T cells and macrophages, in hyalyronic acid-

based hydrogel into a PDMS macrostructure 438. Moreover, an “endothelialized channel” was 

integrated, represented by a round transversal punch where endothelial cells were added to create a 

microvessel. Interestingly, this artificial microvasculature allowed to monitor targeted tumor response 

and spatial reagent concentration. In this context, the effect of an anti CSF-1R, an antibody targeting 

macrophages, was evaluated after perfusion in the system and resulted in a significant macrophages 

cell death as expected. Interestingly, this model allows cell collection for further flow cytometry 

investigations. Beside the important knowledge brought by this model, it is important to underline that 

the technology developed is easy to reproduce in any lab without any advanced microfabrication 

facilities. Even though this model presents impressive versability, the authors did not study the 

interactions between all the cell types composing the system and no drug used for patient treatment 

was tested to assess the efficacy againsts B cells. Moreover, although this complex system seems 

interesting to study drug by drug effect, it appears complicated to use in a screening perspective 

(Figure 61).  

A) An overall schematic highlighting the embedded DLBCL hydrogel (Left) within the PDMS macrostructure 
(Right) B) Schematic of the fabrication process. PDMS was molded around a stainless steel wireand a hole was 
punched out. This hole was filled in with the DLBCL hydrogel and allowed to polymerize. The hydrogel was then 
sealed with a plasma bonded glass coverslip. The stainless-steel wire was removed and the resulting 
microchannel was cultured with endothelial cells. From Mannino et al, Lab Chip, 2017.438 

In a more screening reliable method, a droplet microfluidics-based platform was developed to 

generate DLBCL spheroids 439. This model was composed by three cell types with a DLBCL cell line 

(SUDHL-10), a fibroblast cell line (HS-5) and lymphocytes from healthy donors (PBMC), with a ratio of 

1:1:3 respectively 439. The objective was to provide a model to test immunomodulatory drug activity, 

such as lenalidomide, in a high throughput manner thanks to the integrated action of spheroids in a 

Figure 61 : The DLBCL-on-a-chip microvasculature model is fabricated using common laboratory items 
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docking array (250 spheroids). In the first part of the study, rheology was performed on the engineered 

hydrogel composed of alginate (1%) and puramatrix (0.15%) to favor cell adhesion and aggregation 

while allowing cell proliferation. Long-term culture (14 days) was possible with a system of continuous 

perfusion of media which also able to infuse drugs and collect secreted cytokines at giving time points. 

Moreover, cell proliferation and death were compared between 2D culture monolayer and complex 

3D co-culture. 2D monolayers appear more sensitive to cytotoxicity induced by lenalidomide and less 

proliferative than 3D culture. Moreover, it was observed an effect only on B cells after lenalidomide 

treatment and not on T cells and fibroblasts. A reduced secretion of several pro-inflammatory 

cytokines and markers such as CCL2, CCL3, CCL4, IL-6, IL-8, CD137 and ANG-1 was also observed in the 

collected media of treated cells. On the opposite, granzyme B secretion was increased in the condition 

with activated PBMC. Altogether, this study allowed to observe that lenalidomide induced B-cell death 

in the presence of activated immune cells and decrease of pro-inflammatory cytokines, confirming its 

anti-tumor effect. This model offers great opportunity to assess immunomodulatory drug effect in a 

high throughput manner by providing a high number of spheroids. Nevertheless, to be able to assess 

the effect of several drugs, the system needs to be replicable or needs to be improved.   

Another group developed a 3D model with FL (DOHH2) and DLBCL (ABC type HLY1 and GBC 

type SUDHL4) cell lines encapsulated in alginate capsules 430. They showed that DLBCL cell lines were 

able to proliferate and aggregate to form spheroids but not the FL cell line DOHH2, even after 17 days 

of culture. The lack of proliferation and aggregation prompted them to add a supportive 

microenvironment element in the condition of low number of cells seeded in each individual capsule 

(around eighteen cells/ capsule). In this condition, a high viability in the first weeks of culture (70-80%) 

was observed, which significantly decreased after two weeks of culture (around 50%). These models 

were characterized at two stages: a confluence stage and a post-confluence stage when cells disrupt 

alginate wall. Even after capsule dissolution, they observed that the integrity of cell aggregates was 

still present. They showed that cells were able to degrade the alginate wall, strongly supporting the 

action of secreted ECM. To address this question, comparative expression of laminin and collagen I in 

3D and suspension culture was determined by immunofluorescence and RT-qPCR. Interestingly, ECM 

components were increased in 3D compared to 2D culture confirming that the degradation of alginate 

wall observed in this condition was probably due to ECM secretion.   

To finish on DLBCL models, only one team established an ex vivo 3D model from DLBCL patient 

samples 440. The HD method was used to form spheres which were embedded with collagen after 4-5 

days of culture and co cultured with lymphoid-like fibroblasts from adipocyte derived stem cells and 

monocyte-derived macrophages. Such models allowed the study of the influence of cell interactions 

on B cells behavior. Indeed, it was observed an improved viability compared to ex vivo 2D cultures. 
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Moreover, this 3D co-culture system favors the stable expression of lymphoid fibroblast markers, in 

contrast to 2D co-culture in which a drop of expression was observed. Thus, this system allows the 

establishment of a very promising model which permits the study of the pathology in a relevant context 

without addition of exogenous cytokines or agents. Moreover, drug efficacy was determined and 

results obtained showed that rituximab induced a decrease of B-cell number in three out of four 

patients tested. Rituximab is known to act through three main mechanisms: direct cell death, ADCC or 

ADCP and finally CDC. Here, only a moderate phagocytosis was observed after rituximab treatment 

suggesting that the effect observed on B cell was due to a direct mechanism in the absence of immune 

cells. Another mechanism important in cancer development and involved in drug resistance is the 

secretion of ECM. Thus, by decreasing the content in collagen, Foxall et al, observed an increase of 

drug penetration and efficacy 440. However, in this complex system, only B cell originate from DLBCL 

patients sample. Thus, it would be interesting to implement other populations isolated from the 

patient such as T cells to establish 3D models from bulk biopsies samples.    

In summary, the progress in B-NHL modelling allowed many teams to engineer complex 

models integrating at least partially, the complexity of TME coming from FDC to ECM component and 

immune cell compartment (NK cells,  T cells, T cells, macrophages). All these studies applications, 

their advantages and disadvantages are summarized in table 12. In many of these studies, impact of 

spatial organization on gene expression, treatment response and immune cell activity was 

demonstrated. All of these showed that 3D models allow to more closely recreate the complexity of B-

NHL, compared to classical suspension cultures, supporting the importance of conducting studies in 

3D models. Unfortunately, even if many interesting models are available to study B-NHL biology and 

drug effect, a few of them are suitable for drug screening in a high throughput manner. Indeed, it is 

complicated to combine cell complexity, microenvironment and drug screening in one single model. 

For this reason, each model exhibits its own characteristics and allows to answer specific questions 

and altogether these different models will help in a better understanding of these pathologies. Another 

interesting perspective developed by a few teams is to use cells from patient to perform personalized 

medicine. Testing the specific drugs on patient-derived models taking into consideration the 

mutational landscape will allow to predict treatment response and guide clinician in the best 

therapeutic choice for each patient.   
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Table 12 : Summary of available studies on B-NHL 3D models 

B-NHL 
subtype 

Type of 3D 
model 

Method /ECM 
mimicry 
(Yes/No) 

Application or description Advantages Disadvantages Ref 

FL cell line 
(RL) 

Spheroid 
(MALC : 
Multicellular 
Aggregates of 
Lymphoma 
Cells) 

Hanging drop in 
24well plates 
coated with 
agarose 
 
Yes: Methyl 
cellulosis 

- importance of 3D modelling 
over 2D modelling 145,381 

- Reflect anti-CD20 activity in 3D 
(GA101 > RTX) 234 

- Co-culture with NK cells to 
model ADCC 428 

- Co-culture with  T cells to 
increase anti-CD20 responses71 

- Reproducible 
- Co-culture with effector 

cells introduce a part of 
FL microenvironment 

- Difficult to handle 
- No drug screening 

possible 
- Do not recapitulate the 

full microenvironment 
- Do not recapitulate FL 

patient cell 
heterogeneity 

133, 

204, 

334, 

379, 

392 

FL and 
DLBCL cell 
lines (RL, 
SC1, 
DOHH2, 
WSU-NHL) 

Spheroid 
ULA-MALC 

ULA + 
centrifugation 
 
No 

- 3D imaging tools and informatic 
solutions to highlight drug 
efficacy 

- Easy to handle 
- Reproducible 
- Drug screening 
 

- No co-culture, no 
microenvironment 
added 

- Do not recapitulate FL 
patient cell 
heterogeneity 

441 

FL and 
DLBCL 
(DOHH2, 
SUDHL-4, 
HLY1) 
+ 
FL 
biopsies 

3D alginate 
spheroid 
model 

Microfluidic 
device printed in 
glass capillary + 
syringes mounted 
to pumps. 3 
cones: one with 
alginate solution, 
second sorbitol 
solution, last cells 
in sorbitol or 
Matrigel/sorbitol 
solution 
 
Yes: alginate and 
matrigel/sorbitol 

- Co-culture with tonsil stromal 
cells (TSC) isolated from routine 
tonsillectomy 

- Mimick lymphoma cell 
niche thanks to the 
lymphoma B cells and 
stromal cells in co-
culture 

- Suitable for testing new 
therapeutic agents 
thanks to high spheroid 
number generation 

- Depending on the cell 
line, the growth is 
different 

- No drug screening 

430 

MCL cell 
line (HBL2 
and Z138) 

3D 
polystyrene 
(PS) scaffold 

Four layers in a 
90-degree angle 
to its immediate 
adjacent layer 
Yes: polystryrene 

- MCL cells in co-culture with 
neonatal stromal cells in a 
scaffold mimicking ECM 

- Mimic ECM with the 
artificial scaffold 

- Microenvironment 
added with stromal cells 

- Artificial scaffold not 
representative of 
molecular composition 
of ECM 

- No drug screening 
possible 

433 

MCL cell 
line (JeKo-
1) and 
MCL 
patient 
cells 
(blood 
and bone 
marrow) 

Spheroid/ 
aggregates 

Long term culture 
of JeKo-cells (>20 
passages) forms 
spontaneous 
aggregates 
 
No 

- Method for the enrichment of 
early-stage cells and 
experimental basis for the 
polyclonal nature of MCL 
pathogenesis 

- No forced system, cells 
aggregates 
spontaneously 

- Possibility to create a 
reproducible spheroid 
bank 

- Drug screening possible 

- Composed of only on 
cell type 

- No TME consideration 

434 

DLBCL cell 
line 
(HBL-1, 
Ocily-10, 
SC-1, 
DOHH2, 
WSU-
DLCL-2, 
SUDHL-4) 

Integric 
specific ligand 
functionalized 
3D model 

maleimide 
functionalized 4-
arm polyethylene 
glycol (PEG-MAL) 
reacts with 
thiolated peptides 
to form a bio-
adhesive hydrogel 
 
Yes: Hydrogel 

- Co-culture with FDC (HK cell 
line) to mimic supportive cells 
of DLBCL microenvironement 

- Study of drug resistance to 
chemotherapeutics 
(doxorubicin) and histone 
deacetylase inhibitor (HDACi), 
Panobinostat 

- Introduction of integrin 
microenvironment to a 
3D model 

- Reproducible 
- Drug effect study 

- Lack of other important 
microenvironment 
populations: T cells, 
macrophages. 

- Difficult to use drug 
screening 

435 

DLBCL 
A20 
mouse B-
cell 
lymphoma 
cell line 

DLBCL-on-
chip model 

lymphoma-on-
chip model 
 
Yes: hydrogel 

- embedment of DLBCL cells from 
a cell line, T cells and 
macrophages, in hyalyronic 
acid-based hydrogel into a 
PDMS macrostructure 

- Chip easy to reproduce 
with basic lab 
equipment 

- Introduction of an 
artificial vasculature 

- Not suitable for drug 
screening 

- Use of mouse DLBCL 
cell line 

438 

SUDH-L1 
DLBCL B 
cell line (+ 
T cells 
purified 
from 
healthy 
PBMC 
donors + 
HS-5 
fibroblast 
cell line) 

Spheroids 
Microfluidic 

droplet 
microfluidics-
based platform 
 
Yes: hydrogel 
(combination of 
alginate and 
puramatrix) 

- The spheroids consist of three 
cell types (cancer, fibroblast 
and lymphocytes) in a novel 
hydrogel combination of 
alginate and puramatrix, which 
promoted cell adhesion and 
aggregation. 

- Cellular interactions 
between three cell 
types 

- Spatiotemporal 
monitoring and 
secretome profiling in a 
high-throughput 
manner 

- Use of cell lines not 
representative of 
patient heterogeneity 

439 

DLBCL 
(Patient 
cells) 

Spheroids Hanging drop 
method 

- novel 3D spheroid co-culture 
system with ADSC-derived 
stoma cells 

- first DLBCL patient 3D 
model performed with 
patient B cells 

- Test of relevant drugs 
used in the clinic (anti-
CD20 mAb) 

- Other tumor 
microenvironement 
compounds do not 
come from patient 
sample 

440 
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4.4. Personalized medicine era in cancer: 3D models another string to the bow 
 

4.4.1 Definition: the end of “one size fits all” 

 

New technologies such as transcriptomic (next generation sequencing, RNA sequencing, 

CiteSeq…), proteomics (mass spectrometry) and imaging (light sheet microscope, confocal 

microscope…) highlighted inter-individual variability and demonstrated the importance of this 

consideration in new treatment strategies. Since individuals are unique at the molecular, physiological, 

environmental exposure and behavior levels, it seems unappropriate to treat patients exhibiting a 

same pathology with a same molecule. To overcome this paradox, the concept of personalized 

medicine emerged. Personalized medicine includes other sub-concepts, such as: precision medicine 

(molecular features of the tumor), stratified medicine (biomarkers, diagnosis and drugs), P4 medicine 

(prevention), and individualized medicine (using patients own cells) (Figure 62). All of these concepts 

together form the personalized medicine defined by the U.S National Cancer Institute as “a form of 

medicine that uses information about a person's genes, proteins and environment to prevent, 

diagnose and treat disease.”. Clinical applications of personalized medicine are various, from 

screening, diagnosis, prognosis, prediction of treatment efficacy to subgroup stratification of patients. 

The main aim of this concept is to replace the “one size fits all” model of medicine which is based on 

average responses of care, which does not reflect interpatient patient reality. To support this concept, 

combination of high throughput approaches can be used, including whole genome sequencing, single-

nucleotide polymorphism analysis, microarray analysis or mass spectrometry. Moreover, it is 

important to evaluate the pros and cons of personalized medicine in terms of cost, test 

standardizations and ethical issues442. 

From Pkorska-Bocci et 
al, Per Med 2014 443. 

 

 

 

 

 

 

Figure 62 : Personalized 
medicine : one word many 
definitions 
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In this context, the interest in 3D models increased exponentially over the years and they 

became essential model for preclinical studies. Organoids or tumoroids remain the best model to 

perform personalized medicine thanks to their patient similarity in terms of genomic, architecture and 

treatment response.  

4.4.2 Personalized medicine clinical applications 

 

Personalized medicine, combined with other approaches such as histology, aims to better 

stratify patients in order to propose an adapted therapy. Indeed, by using molecular analysis at the 

protein, DNA and RNA levels it is possible to identify novel tumor subclasses and subclones presenting 

different prognostic outcome and predict response to treatment. For example, this molecular 

classification helped in discovering subclasses of cancers such as acute myeloid leukemia 444, breast 

cancer 445 or better differentiate BL and DLBCL 80.  

As genetic alterations are one of the main hallmarks of cancer progression, identification of 

molecular characteristics of each patient allows to stratify them in subgroups of interest for a specific 

molecule or therapeutic strategy. Two main successful stories are exemplified by imatinib (Gleevec) 446 

called “the magic bullet” in chronic myeloid leukemia and trastuzumab (Herceptin)447 in breast cancer, 

both treatment revolutionized patient management in these cancers. Indeed, abnormal protein 

tyrosine kinase activity in chronic myeloid leukemia and overexpression of the HER-2 receptor in breast 

cancer are two predictive markers for treatment responses. Thus, only patients with these alterations 

are eligible for imatinib and trastuzumab treatments. Although biomarkers are at the heart of 

personalized medicine, it is important to distinguish predictive and prognostic biomarkers. A predictive 

biomarker helps to predict depending on treatment given whereas prognostic biomarker is not based 

on treatment. A well-known example is the IGHV status prognostic biomarker in patients with CLL. 

Indeed, patients with mutated IGHV present good outcomes with both fludarabine and ibrutinib based 

therapy. On the opposite, patients with unmutated IGHV present shorter PFS with fludarabine-based 

therapy than with ibrutinib 448. In FL, no clearly defined biomarkers are used in the clinic but some 

studies showed that patients with EZH2 mutations may benefit more from CHOP/CVP than 

bendamustine. The opposite is true for patients without the mutation who are more sensitive to 

bendamustine 448. In clinical routine, biomarkers are used with other approaches such as imaging 

features with for instance metabolic tumor volume measurement. This parameter has become 

commonly used to predict response and guide treatments. For example, the use of PET-directed 

therapy in Hodgkin’s lymphoma in dose de-escalation choice after treatment response proved its 

efficacy with minimizing the toxicity 449,450.  
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Personalized medicine uses different levels of tumor features from molecular, to genetics and 

to metabolic parameters. Identifying variation in genes encoding enzymes responsible for drug 

metabolism, drug transporters or drug target is also important to predict treatment dose and safety. 

For example, polymorphisms in cytochrome P450 (CYP450) enzymes can lead to different drugs 

metabolism causing overdose or no drug response 451. Molecular characteristics can also enable to 

identify predisposition genes for certain pathology and a support in patient care. Indeed, higher 

susceptibility to develop breast cancer is observed when mutation are found in BRCA1 and BRCA2 

tumor suppressors genes 452. To overcome this risk, preventive surgical measures, regular screening or 

receiving adjuvant therapies are possible strategies that exemplify personalized medicine approach 

453. Another example is the genetic testing to identify inherited mutations in the DNA mismatch repair 

genes, MLH1 and MSH2, who have a higher risk of developing colon cancer 454. In this case early 

screening colonoscopy enable early cancer detection and treatment.  

4.4.3 Organoids: another string to the bow of personalized medicine 

 

Preclinical models are essential to discover new targets and to understand mechanism of 

action and drug resistance. They are also important to identify new biomarkers to guide treatment 

strategy in a personalized manner. Because genomics alone is not enough to identify therapeutic 

options for the majority of patients with advanced disease, drug screening using 3D cultures are potent 

strategies to evaluate new molecules (Figure 63). 

 

From Pauli et al, Cancer Discov, 2017 455 

 

 

 

 

 

 

 

 

Figure 63 : Possible applications of 

organoids from cancer modelling, 

drug development, regenerative 

medicine and drug testing 
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Many organoids have been established from epithelial tissues such as breast, colon, brain and 

lung as discussed in part 4.1.3.3.1. In order to demonstrate the relevance of these models in preclinical 

settings, patient responses have been compared to the matched PDO response showing their 

robustness and high predictivity. For example, Tiriac et al showed that pancreatic PDO presented 

therapeutic profiles similar to patient outcomes and enable longitudinal chemo-sensitivity and 

evaluation of metastasis 456. They also extracted, based on organoid gene expression, a chemo-

sensitivity signature able to predict responses to chemotherapy from many patients 456. In another 

study, by combining genomic analysis profiling of DNA repair mutational status and functional testing 

on patient-derived high grade serous ovarian cancers organoids, Driehuis et al were able to identify 

targetable DNA damage repair defects with specific therapy 457. For example, PDO with defect in 

homologous recombination correlated with PARP inhibitor sensitivity and a functional defect in 

replication fork protection corresponded to a good response to carboplatin and CHK1 and ATR 

inhibitor. Very interestingly, Driehuis et al, provided guidelines to establish PDO and prepare a drug 

screening platform that could be standardize to offer to the community a reliable general protocol 457. 

They described a semi-automated system where organoids are seeded in 384-well plates and 

chemotherapeutic screens are performed to evaluate their sensitivity 457. An interesting feature of 

organoids, is the possibility to create biobanks to preserve heterogeneity of patient’s tumors and 

increase the possibility to perform various tests on these models. Sachs et al generated more than 100 

breast cancer organoids capturing this cancer heterogeneity 400. However, even if PDO present great 

opportunity for drug discovery, in vivo models are still essential to validate drugs before transferring 

to clinical trials because of their off-target effect assessment that is not possible with organoids. Thus, 

it is important to use PDO as the first preclinical model to identify best agents and test doses in order 

to confirm specificity and sensitivity before going to costly and time-consuming in vivo studies. In this 

context, Pauli et al, implemented an impressive number of organoids (145 specimens from 18 different 

tumor types) in clinical studies with PDX established in parallel to first chose in PDO 455. This platform 

allows, for example, to identify in the endometrial adenocarcinoma patient sample, an efficient 

combination of buparlisib with olaparib.  

So far one of the most impressive forms of personalized approaches developed in cancer 

immunotherapies are the CAR-T cells. Nevertheless, even if this approach resulted in notable 

successes, CAR-T cells failed to induce therapeutic response in some patients, which among others has 

been attributed to patient-specific level of neo-antigens or limited trafficking of CAR-T cells into the 

tumor. The use of 3D models is an opportunity to better understand the barriers impeding CAR-T cell 

efficacy 458,459. For instance, Jacob et al used patient-derived glioblastoma organoids (GBOs) co-

cultured with 2173-BBz anti-EGFRvIII CAR T cells that specifically bind to mutant EGFRvIII commonly 
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found in glioblastomas and recapitulated in GBO. In their protocol, they have optimized the ratio of 

CAR-T cells to tumor cells to model and observe CAR-T cell infiltration and proliferation, target antigen 

loss and tumor cell killing frequency on a clinically relevant timescale. Thus, they were able to monitor 

the efficacy and specificity of engineered CAR-T cells in vitro before initiating therapy in patients, in 

order to stratify patients for clinical trials and to better predict therapeutic responses 410. 

For now, personalized medicine is more of a concept than a highly applicable approach in 

cancer treatment strategies. Indeed, more proofs of concept need to be brought in the existing studies 

to show that this strategy can outperform traditional medicine protocols.  Moreover, it is important to 

emphasize that 3D models are potent tool for personalized medicine and are implemented in larger 

strategies where computational models, animal models, social and political elements need to be 

considered. Thus, interdisciplinary and collaborative works are the key to a successful personalized 

medicine. 
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Summary Goodbye flat lymphoma biology (4) 

In this part, cancer models’ evolution was described and 3D models were presented as 

important tools to better understand solid cancer and in a lower extend hematological malignancies 

such as B-NHL. The third dimension has proven over the years its capacity to recapitulate tumor spatial 

organization, cellular morphology and physiological characteristics better than conventional 2D 

cultures. As presented, 3D models are in constant evolution and are following technology advances to 

continue to overcome their limitations. These models are more and more used in preclinical testing 

and precision medicine. However, we are still far from fully recapitulating all of the patient-specific 

stromal, immune, structural, chemical and molecular aspects of TME that represent cancer evolution 

and complexity. New methods and technologies such as organ-on-a-chip and bioprinting in 

combination with already existing organoid models represent an exciting advance in the field. It is 

important to underline that animal models are still necessary and many efforts are focused on 

development of humanized murine models. Altogether, the use of these 3D models in personalized 

medicine will help clinicians to propose adapted drugs making them transferable from bench to 

bedside (Figure 64). 

 

 

 

 

 

Figure 64 : 3D models at the service of personalized medicine: filling the gap between 2D cell culture 
and animal models 
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II. THESIS OBJECTIVES 
 

FL genesis and progression is highly dependant on many parameters such as epigenetic, genetic 

and microenvironment features that shape tumor capacity to create an immunosuppressive 

environment. The introduction of rituximab in combination with polychemotherapy, has 

revolutionized patients’ OS. Nevertheless, up to 20% are refractory to these treatments and 

unfortunately all FL patients will relapse. This observation led researchers and clinicians to increase FL 

therapeutic armamentarium. In order to control immunosuppressive environment, many chemo-free 

strategies have emerged using IT to eradicate tumor through immune cell cytotoxic activity. Discovery 

of novel therapeutic targets, test of new drugs, and relevant models are needed in this pathology that 

highly relies on its microenvironment and spatial organization. 3D models represent a key tool in 

tailoring new treatment strategies, as they reflect the pathology in term of: (i) spatial architecture, (ii) 

transcriptomic and protein profiles and (iii) treatment responses.  

In this context, IMLINFO’s project was initiated in 2018 to create a repository of NHL associated to 

a 3-dimension (3D) culture platform, that will allow the determination of efficacy of new IT treatments 

such as adenosine inhibitors. This consortium was composed by 7 partners: two research centers 

(CRCT, Toulouse and IDIBAPS, Barcelona), one start-up (IMACTIV3D, Toulouse), hospitals (Toulouse, 

Barcelona and Girona) and one pharmaceutical company developing adenosinergic pathway inhibitors 

(PaloBioFarma, Barcelona). Thanks to this europen consortium and grant, I started my PhD in March 

2019. 

My specific PhD objectives were as following: (i) establishment of 3D cultures from FL cell lines 

(MALC) and FL patient samples (PDLS), (ii) characterization of the transcriptomic and phenotypic profiles 

of PDLS (immune cell population composition, expression of adenosinergic pathway markers and ICP…), 

(iii) test efficacy of IT on PDLS and (iv) identification of new therapeutic targets such as CD39. These 

investigations aim to highlight new therapeutic pathways that were not considered so far and that could 

help in improving patient’s therapeutic choice in a personalized way.  

 

 

 

 

 



119 
 

III. RESULTS 
 

 Although the great advances observed in FL patients’ management after the introduction of 

rituximab-CHOP therapy, 20 to 30% of patients are refractory and relapses are unavoidable. This 

disease presents complex features that need to be taken into account for discovering new therapeutics 

that can target microenvironment, genetic and epigenetic mutations but also IE mechanisms. In this 

context, the need of a relevant in vitro culture model is crucial and 3D models appeared perfectly 

adapted. For this reason, we have focused our work on generating FL 3D models first from cell lines 

and then from patients’ samples in order to better recapitulate FL features and find new therapeutic 

targets.      

1. ULA-MALC: a scaffold-free model adapted for drug screening  
 

1.1. Methodology and study context 
 

 10 years ago, my team developed a FL 3D model to evaluate the impact of spatial organization 

on FL biology and treatment response. MALC were produced by adaptation of the HD method where 

RL cell’s suspension was prepared in complete medium containing 1% methylcellulose (a gelling agent 

that forces cell-cell interaction). 20µL of this suspension were dropped into coverslips of a 24-well 

culture plate and after 24 hours’ incubation, all drops were transferred by returning the coverslip to a 

dish previously coated with 4% agarose. All of the MALC culture medium was then renewed every 5 

days. (Figure 65). 

Figure 65 : Hanging-drop MALC (HD-MALC) method illustration 

Although the HD method allowed a better understanding of FL biology and drug responses in 

a more relevant model than 2D cultures, it was not suitable for drug screening due to the manual 

transfer of neoaggregates into agarose-precoated wells. Moreover, one could speculate that 
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methylcellulose (MC), which is added for HD-MALC formation, may induce matrix-driven alterations in 

growth, expression profiles, cell behavior or in drug responses. This has never been explored. 

Thus, the first part of my PhD was dedicated to develop a new method allowing the production 

of a higher number of spheroids, in a reproducible and easy procedure. In order to fit the scaffold-free 

strategy chosen by my team, the “ultra-low attachment method” was the most adapted. In this 

method, 100µL of cell suspension were placed into 96-wells plate ultra-low attachment plate and a 

centrifugation (1000rpm, 10 min) was than performed to promote cell aggregation. The plate was 

placed into an incubator at 37°C and 5% CO2. 100µL of medium were renewed every 3 days in order to 

provide sufficient nutriments to the cell culture and spheroid growth. 3D culture of several B- NHL cell 

lines were tested and as shown in figure 66. RL MALC were the most compact and spherical models 

obtained. Thus, we in depth characterized this model by 2D and 3D imaging and corrobated the 

observations obtained with flow cytometry analysis. This study was published in Cancers in 2021 where 

I was signed as the first co-author. 

 

Figure 66 : Picture of representative ULA-MALC at day 3 of culture established with different B-NHL cell line 
Pictures were obtained taken with an inversed microscope at 4X equipped with a camera (Nikon Eclipse TE200). 
Scale 500µm 
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1.2. Scientific publication: 3D Model Characterization by 2D and 3D Imaging in t(14;18)-

Positive B-NHL: Perspectives for In Vitro Drug Screens in Follicular Lymphoma 
 

This study, entitled 3D Model Characterization by 2D and 3D Imaging in t(14;18)-Positive B-

NHL: Perspectives for In Vitro Drug Screens in FL, was published in Cancers in 2021 and comprises two 

parts (Figure 67). The first one aimed to characterize biologically the MALC established with a cell 

seeding density defined to be the most suitable to obtain a robust and reproducible model. The second 

one aimed to characterize in depth the effect of different drugs. Morphological features and cell 

growth behavior were evaluated by classical microscopy (2D imaging) and response to different 

treatments was evaluated by a high-content analysis system to determine the robustness of the model. 

We showed that the ULA method allowed the development of regular, spherical and viable ULA-MALC. 

However, discrepancies in the results obtained after 2D imaging analyses on drug-treated ULA-MALC 

prompted us to develop 3D imaging and specific analyses. We showed by using light-sheet microscopy 

and specifically developed 3D imaging algorithms that 3D imaging and dedicated analyses were 

necessary to characterize the real morphological properties of 3D models and drug effects. This study 

proposed a new method but also imaging tools and informatic solutions, developed for FL necessary 

for future preclinical studies. 

 

 

 

 

 

 

 

 

 

 

Figure 67 : Graphical abstract of scientific publication representing the workflow and 
model characterization 
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1.3. Conclusion, complementary results and study perspectives 
 

This study proposed an easy to handle, inexpensive, robust and reliable method to develop 

and analyze in depth 3D model established with FL cell lines. With this simple workflow, the throughput 

drug tested was increased, thus offering new perspectives for drug screening in FL.  

First, we compared three different cell seeding densities and analyze by 2D and 3D imaging the 

ULA-MALC formed. All cell seeding densities allowed a well-shaped 3D model but cell viability was 

higher with the lower density at late days of culture. We then assessed drug efficacy by 2D imaging 

and observed that the level of cell death measured after with PI staining did not correlate with the 

level of cell death measured by flow cytometry. The reason evoked to explain these differences was 

that for flow cytometry analysis, ULA MALC were dissociated and that the percentage of cell death 

corresponded to the mean fluorescence intensity (i.e., 7AAD) per 50 000 cells. In contrast, for 2D 

imaging, columbus analyses determined the level of PI intensity of dead cells localized only on the first 

50 to 100 µm of ULA-MALC. Moreover, although we were able to acquire several images at different 

levels on the z-axis (z-stack) and achieved a maximum projection with the associated software 

(Columbus), we only obtained partial information corresponding to the surface of the sample, leading 

to misinterpretation. The Operetta system is considered to be a high-content imaging system, 

providing high-resolution, high sensitivity and high speed required for 3D cell-culture model imaging. 

However, with our study, we identified two major limitations for ULA-MALC imaging using this 

equipment. First, our system is not equipped with a water immersion objective and second, ULA-MALC 

were not cleared, which strongly limited the full imaging of the sample. 

These discrepancies prompted us to develop 3D imaging and specific analyses’ algorithms to 

better characterize the 3D t (14;18)-positive B-NHL model and drug effects. The quantification of 

morphological properties confirmed that ULA-MALC were not perfect spheres as they exhibited a 

sphericity comprised between 0.72 and 0.78 and roundness between 0.75 and 0.88 from day 1 to day 

4. After 5 days of culture, sphericity and roundness strongly decreased, with mentioned parameter’s 

values dropping down to 0.25 and 0.23 respectively at day 6. With 2D images these values were close 

to 1 for both parameters. We were also able to measure the eccentricity and showed an important 

ellipsoid deformation (very close to 1 at day 5 and day 6), in line with the drop in sphericity and 

roundness. These results showed that both volume and sphericity dramatically changed between day 

4 and day 5 with a huge increase in the real volume measured concomitantly to a potent loss in 

sphericity. Moreover, upon treatment, we showed that in contrast to 2D imaging, GA101 (10µg/mL), 

ABT-199 at 100 nM and rapamycin (10nM) significantly increased sphericity and roundness. In 
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conclusion, 3D characterization of treated ULA-MALC revealed important information about the real 

drug effects on structuration, shape, volume and morphology. Although 2D imaging only allowed the 

observation of cytostatic or cytotoxic effects, 3D imaging highlighted other drug specific 

characteristics. 

Altogether, our study revealed potent discrepancies between the results obtained from 2D 

and 3D imaging and warned the scientific community to possible misinterpretations following 2D 

imaging. Numerous investigations using spheroids are based on 2D imaging performed on uncleared 

samples without any complementary in depth characterization of the model used, nor the drug effect 

induced. We showed here that without 3D imaging and development of specific informatics solutions, 

we could draw wrong conclusions. The perspectives are numerous and particularly one of our 

interests, is to develop cell clearing in plates in order to image the whole MALC in a higher throughput. 

In this context, with Dr Fabien Gava from my team, we obtained preliminary results of different 

clearing methods applied to RL ULA-MALC. As presented in the figure 68, TDE and Scale S4, two 

aqueous clearing agents, are able to clear almost completely the model. With the z-stack galery and 

the orthogonal view, we can appreciate how much deeper we are able to image the model after 

clearing process in comparison with uncleared sample.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 68 : Illustration of aqueous clearing agent efficacy on ULA-MALC model.  
From left to right, brightfield pictures obtained with the inversed microscope Nikon Eclipse TE200, z-stack galery 
and orthogonal view after PI staining analyzed with Imaris after acquisition with confocal microscope Zeiss 880. 
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Clearing was performed after overnight fixation of MALC in 4% PFA, washings, and different bath of TDE or scale 
S4 added directly to the well. 
 

Another perspective opened with the ULA-MALC model and 3D imaging is the localization’s study of 

biological processes such as cell death induced by drug treatment. In this context, we determined the 

localization of caspase 3 positive dead cells on MALC treated by rapamycine, GA101 or bendamustine. 

As shown in figure 69, we were able to visualize the cell death induced by drugs thus allowing a new 

application of the 3D models we developed.  

 

Figure 69 : Caspase 3 visualization in ULA-MALC upon treatment with rapamycin, GA101, bendamustine or 
combination of bendamustine and GA101 
Confocal imaging was performed with the Zeiss 880 and 3D reconstruction with imaris software.  

 

Finally, in a context of IT development and drug testing, our model and the methods of characterization 

associated, appear crucial. Indeed, co-cultures with immune cells such as  T cells allow the 

investigation of mechanisms such as ADCC (Figure 70 left). Moreover, by complexifying the model with 

the addition of other cellular cell types such as FDC (Figure 70 right), it is also possible to render more 

relevant to the pathology. Altogether, such models will open new perspectives of in vitro investigations 

such as immune cell infiltration, FL-FDC interaction or testing drugs targeting both tumoral cells and 

TME. 
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Figure 70 : MALC co-cultured with  T cells or FDC cells (ratio 0,5:1) 

Confocal imaging was performed with the Zeiss 880 and 3D reconstruction with imaris software.  T cells or FDC 
were stained with cell far red dye. 

 

In conclusion, ULA-MALC model is a promising preclinical tool to decipher drug mechanisms and 

discover new therapeutic targets. With this study, we contributed to the development of alternative 

assays to reduce animal testing and costs which is necessary for future preclinical studies. Moreover, 

this study opens encouraging perspectives in terms of model development for the use of co-culture 

with immune cells to explore the activity of IT. Despite these huge improvements and encouraging 

perspectives, ULA-MALC model exhibits a main limitation as it does not recapitulate FL heterogeneity 

observed between patients nor the full interactions with the TME. This was the aim of the second study 

presented in the next part. 

2. Patient-Derived Lymphoma Spheroids: a tool towards personalized medicine 
 

2.1. Model establishment, methodology and study context 
 

 In order to recreate in vitro FL immune TME, we developed a 3D model called PDLS for Patient-

Derived Lymphoma Spheroids established with FL biopsies. First of all, we needed to answer to four 

main questions (Figure 71). 

- Sample type: can we work with fresh or thawed cells from LN biopsies? How the dissociation 

method is affecting cell population composition? 

- Methodology: is ULA-centrifugation suitable for patient cells aggregation? 

- Cell seeding density: do we use the same as for ULA-MALC?  

- Medium: what type of enriched medium and cytokines suitable for maintaining FL cells alive?    
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Figure 71 : Technical questions concerning development of PDLS models 

 About the first issue, we have tested both fresh and thawed samples obtained from IUCT-

Oncopole. Although viability of fresh samples was better, the fact that we did not have the diagnosis 

at the time of 3D culture led us to work with thawed samples. The samples were biobanked after 

mechanical dissociation following surgery and preserved in albumin medium in nitrogen until use.  

Regarding the methodology, we performed assays on reactive LN in order to preserve rare 

patients’ samples that revealed that ULA method was more suitable to obtain a well-structured 3D 

model compared to the HD method, as illustrated in figure 72.  

 

Figure 72 : Morphological comparison of 3D model from reactionnal LN performed with ULA or HD method 
100 000 cells were seeded / model and after 4 days of culture, pictures were obtained with inverted microscope 
equipped with a camera (Nikon Eclipse TE200), magnification 4X.  

 

Then, in collaboration with my PhD codirector’s team (IDIBAPS, Barcelona), we determined the 

most suitable cell seeding density (from 2500 to 100 000 cells/models) and enriched medium to obtain 

viable and aggregated cells. Five different media containing enriched medium, ODN, IL-15, IL-2, IL-4 

and/or CD40L were tested (Table 13).  
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Composition #1 #2 #3 #4 #5 

IMDM + HiCloneI serum + + + + + 

IMDM + HicloneI + Mongini enrichment  - + + + + 

ODN + IL-15 - - + + + 

IL-2+IL-4 - - - + + 

CD40-L - - - - + 

 
Table 13 : Different media tested for PDLS generation 
 

The different media and cytokines were selected according to the following considerations: 

- Mongini et al established a medium which favors survival of primary B cells 460. This medium 

contains apotransferrin (40µg/mL), HEPES (20mM), NE-AA (1X), sodium pyruvate (1mM), 2-β-

mercaptoéthanol (5.10-5M), Gentamicine (50µg/mL) allowing a better survival of primary cultured 

B cells 460.  

- IMDM and Hiclone I serum are used for  T cells culture. Thus, in order to preserve their survival, 

we decided to replace RPMI and FBS serum with mentioned combination 232.  

- IL-15 has been showed to promote in vitro clonal expansion of B-CLL cells461 and is implicated in 

monocytes-T cell interaction which favor FL B cell growth 156. 

- TLR9 promotes in vitro clonal expansion of B-CLL cells and it can be activated by ODN, a CpG 

oligonucleotide, a short synthetic single stranded DNA molecule containing CpG motifs 461. 

- IL-2 is a well-known cytokine that induces T cell proliferation and activation 462.  

- IL-4 is important for TFh cells survival, which play a key role to support FL B cells survival 152.  
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In figure 73, represents an example of PDLS established with thawed LN cells from FL patients with 3 

different seeding densities (2 500, 5 000, 10 000, 25 000 cells and 50 000 cells) with 5 different media 

referred as # 1 to 5 (Table 13).  

 

 
 

After day 3 and 6, pictures were obtained with the Operetta system. Scale = 200µm. 
 

First of all, we observed that PDLS presented a structure composed by two-parts: a dense 3D aggregate 

localized in the center and a thin monolayer around. Both of these parts increase with growing cell 

density. To our opinion, 25 000 and 50 000 cell seeding exhibited the best 3D structuration and 

presented the cell number suitable for flow cytometry analyses. Regarding the media tested, #5 was 

the one leading to the best 3D structuration.  

To better characterize the influence of cell densities and cytokines, we assessed cell viability by trypan 

blue counting and determined B/T ratio by flow cytometry analysis. As shown in figure 74, after 3 days 

of culture, a better viability was obtained with media #3 and #5 for lower densities (2500 and 5000). 

For higher densities, no differences were observed between the media tested. After 6 days of culture, 

25000 cell seeding combined with the medium #5, was the most suitable condition in term of viability 

and cell number necessary for further flow cytometry analysis. 

Figure 73 : PDLS tested with several media and cell seeding densities (patient #19T003217) 
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Figure 74 : Evaluation of cell viability at day 3 and day 6 of 3D culture with different cell seeding densities and 
media 
10 PDLS per conditions were pooled and viable cells were counted by a trypan blue assay at day 3 and 6 of 3D 
culture. 
 

We then evaluated the influence of cell seeding density and medium on the proportion of B and T cells 

(Figure 75). At day 3 of culture no important differences in B and T percentages were observed 

between media, with a percent of B cells around 50 to 60% and a percent of T cells around 15 to 20%. 

Nevertheless, the 50 000 cells seeding density presented a lower percent of CD19 (around -20%) with 

all media compared to 10 000 and 25 000 cell seeding densities. At day 6 of culture, important 

differences were observed between media #1, #2, #3 and #3, #4, #5. Indeed, around 20% less B and T 

cells were observed with media #1, #2, #3. In contrast, media #4 and #5 were the most suitable media 

to keep the highest proportion of alive B and T cells.  
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10 PDLS were pooled, dissociated, stained for CD19 and CD3 and then analyzed by flow cytometry.  

Altogether, the results obtained with 25 000 cells seeding in medium #5 combined all the 

criteria required for PDLS establishment: 3D structuration, high cell viability during culture, high B/T 

cells proportion and high cell number to perfom flow cytometry analyses.  

 Based on these results, we performed a study which fully characterized PDLS from FL biopsies 

by 2D and 3D imaging. Moreover, we aimed to present solid evidences that PDLS could be recognized 

as preclinical models integrating immune microenvironment and useful to identify new therapeutic 

targets.  

 

2.2. Scientific publication (in preparation): Patient-Derived Lymphoma Spheroids integrating 

immune tumor microenvironment as preclinical follicular lymphoma models for personalized 

medicine 

 
 

 

 

 

 

 

Figure 75 : Determination of B and T cell percent in PDLS cultured at different cell seeding densities and 
with different media at day 3 and 6 of 3D culture 
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Introduction 

Cancer is a highly heterogeneous disease and the tumour microenvironment (TME) is complex, 

dynamic and represents a vital component. The importance of the TME in lymphoid malignancies 

varies significantly depending on the lymphoma subtype [1]. For follicular lymphoma (FL), one of the 

two most frequent non-Hodgkin lymphomas (NHL), TME plays a fundamental role in which immune 

and stromal cells support survival, proliferation and migration of tumoural B cells [2]. Its composition 

can be divided into two compartments. A cellular component including CD4+ T cells comprising CD4+ 

T follicular helper (TFh) cells, CD4+ T follicular regulatory (TFr) cells, CD4+ T regulatory cells (Treg) and 

also CD8+ cytotoxic T cells (CTL), follicular dendritic cells (FDC), fibroblastic reticular cells (FRC), 

mesenchymal stromal cells (MSC) and tumour-associated macrophages (TAM). A non-cellular 

compartment composed of cytokines, pro-angiogenic factors and ECM components also plays a key 

role [3],[4],[5]. This rich, well-interconnected and supportive network may account for the incurability 

of this indolent lymphoma. Thus, a better understanding of this pathology with relevant in vitro models 

is essential to identify therapeutic targets and to perform preclinical studies. In the era of personalized 

medicine, our aim was to develop models that can be reliable and representative of both intra- and 

inter-tumour heterogeneity. 

The culture of lymphoma B cells in suspension (2D) is not at all representative of the 3D spatial 

organization and architecture of a lymph node, rendering results obtained, especially for drug efficacy, 

difficult to interpret. Indeed, these models do not mimetize the neoplastic heterogeneity and drug 

response of the parental tumour.   

Three-dimensional (3D) cell cultures are largely used and studied for solid cancers and their 

advantages have been recognized for over 50 years [7],[8]. In contrast to 2D cultures, cell–cell and cell–

matrix interactions, spatial organisation, mechanical constraints, nutrients and O2 gradients, are well-

known parameters that influence disease biology and response to treatments that are recapitulated 

in 3D models. They also offer useful properties for drug screening [9],[10],[11],[12]. In contrast to solid 

cancers, relevant 3D models for B-NHL are poorly described [13]. Amongst them, spheroids/organoids 

from DLBCL cell lines or fresh samples from patients are the most developed [14],[15],[16],[17],[18]. 

We were pioneers in the development of 3D cultures established with FL cell lines 

[19],[20],[21],[22],[23]. The first 3D model called MALC (multicellular aggregates of lymphoma cells) 

was developed based on the hanging drop (HD) method in 24-well plates (HD-MALC) with t (14;18)-

positive B-NHL cell lines. This 3D model exhibits transcriptomic profiles similar to that of FL patients 

with an overexpression of gene families involved in survival pathways including the NF- B pathway, 

cell cycle regulation or hypoxic responses. When co-cultured with immune cells such as NK or gamma 
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delta T cells, this model allowed the study of therapeutic monoclonal antibody responses such as anti-

CD20 and immune escape mechanisms targetable by immunotherapy. It also enabled the visualisation 

of drug penetration and immune cell infiltration within the MALC thus deciphering the mechanisms 

existing in FL biopsies [22],[23],[24].  Another model, which did not exhibit differences in gene 

expression or mutational profiles compared to the HD-MALC, was recently developed to allow drug 

screening [25]. Based on a scaffold-free technique, cells were seeded in ULA plates, avoiding the risk 

of damaging the 3D structure due to transfer when established with the HD method. Moreover, ULA-

MALC was centrally located in a non-agarose precoated well, which facilitated imaging. Thus, we 

characterized this 3D model in depth with 2D and 3D imaging and specific algorithms showing that this 

simple, reliable and robust method could be standardised and easily used for medium/high throughput 

screening for lymphoma therapies as described in solid cancers by others[8],[26]. However, these 

models were not representative of FL heterogeneity observed between patients nor the interactions 

with the TME. One group recently established a 3D model including ECM, tonsil stromal cells and 

isolated primary FL B cells to study the dynamic relationship between lymphoma B cells and their 

microenvironment [18]. Although these models, including mechanical constraints, brought new 

interesting perspectives, they were artificially reconstituted and did not include immune TME, a key 

component in the era of immunotherapeutic strategies and personalised medicine, particularly in FL. 

Thus, we developed a new 3D model called patient-derived lymphoma spheroids (PDLS) 

established from a FL biopsy that recreates in vitro FL immune TME and provides a suitable preclinical 

platform for drug testing and discovery of new therapeutic targets. To this purpose, we decided to 

establish 3D cultures without any scaffold, nor matrix (matrigel, collagen…) in order to attribute the 

results obtained to the PDLS per se and not to the component used to maintain the primary cells in 3D. 

Maintaining primary FL cells in vitro is known to be challenging. Here, we established a simple, robust 

and reproducible workflow allowing the maintenance of viable cells isolated from FL biopsies. We 

characterised in depth PDLS by 2D and 3D imaging but also by multiparametric flow cytometry analyses 

and evaluated their sensitivity towards two monoclonal antibodies (anti-CD20 and anti-PD-1). 

Altogether, our results present a proof of concept for using PDLS as representative preclinical FL 

models integrating patient immune microenvironment heterogeneity and bring strong evidence that 

these models are essential for future investigations in personalised medicine.  
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Materials and Methods 

Drugs and mAbs. Obinutuzumab (GA101) an anti-CD20 mAb was provided by Roche (Basel, 

Switzerland) and used at 10 µg/mL. Anti-PD-1 mAb of class IgG4 (Nivolumab) was obtained from the 

department of Pharmacy at the IUCT (Toulouse) and used at 10 µg/mL. 

Patient samples. Lymph nodes were obtained from 10 patients (see table 1 for patients characteristics 

annotated from #1 to #10) at the department of Hematology (IUC, Toulouse-Oncopole, France), who 

were diagnosed between 2018 and 2021 with FL (Grade II according to the WHO classification [27]). 

Tissue samples were collected and processed following the standard ethical procedures of the Helsinki 

protocol, after obtaining written, informed consent from each donor and local ethical committee 

approval for the study (Comité de Protection des Personnes Sud-Ouest et Outremer II). 

 

Table 1 : FL patient characteristics. PR : partial response, CR : complete response, NA : not applicable. R : rituximab, GA : 

GA101/Obinutuzumab, C : cyclophosphamide, H : hydroxyadriamycin,O : oncovin, P : prednisone, V : vincristine, EPI-R-CHOP protocol : R-

CHOP + TAZEMETOSTAT + 2 RTX + RTX maintenance. tFL : transformed follicular lymphoma 

Primary FL cell culture and PDLS generation. Fresh tissues from lymph nodes were dissociated using 

the gentleMACS™ Octo Dissociator (Miltenyi, Paris, France). Cell suspensions were frozen in 4% human 

albumin (VIALEBEX 40 mg/ml, LFB Biomedicaments)/10% DMSO until FL diagnosis. After diagnosis, 

cells were thawed in complete medium and their phenotypes were analysed by Fortessa X20 (BD 

Biosciences Le Pont de Claix, France) after staining by fluorochrome-labelled antibodies (see flow 

cytometry section). PDLS were established according to the following protocol: 25 000 cells in 100 µL 

of enriched medium supplemented with cytokines (IMDM medium + 10% HiClone serum, 5.10-5M 2-

ME, 50 µg/ml gentamicin, 40 µg/ml apotransferrin, 1 mM sodium pyruvate, 1X nonessential amino 

acids and 20 mM HEPES, 0.2 µM ODN, 15ng/mL IL-15, 10ng/mL IL-2, 50ng/mL IL-4, 50ng/mL CD40L) 

were seeded in 96-well round bottom ULA plates (Corning, Samois sur Seine, France), centrifuged 10 

minutes at 1 000 rpm and cultured at 37 °C in a humidified 5% CO2 atmosphere. At day 3 of culture, 

100 µL of fresh enriched medium containing or not treatments were added and PDLS were cultured at 

37 °C in a humidified 5% CO2 atmosphere until the different time points. 
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PDLS immunohistochemistry. PDLS were fixed at day 6 of culture directly in the wells with 4% PFA 

(Alfa Aesar, Haverhill, MA, USA) overnight at 4 °C. PDLS were then rinsed with PBS and included in 1% 

low-melting agarose (Life Technologies, Villebon sur Yvette, France), quickly labelled with China ink 

before being included in paraffin. Automated classical immunohistochemistry (IHC) was performed 

using the Benchmark ULTRA (Roche, Ventana Medical Systems, Innovation Park Drive Tucson, Arizona, 

USA) on FFPE tissue sections (3µm). After dewaxing, tissue slides were heat pre-treated using a CC1 

(pH8) buffer (Roche) at 98°C. The slides were blocked for endogenous peroxidase activity and 

incubated with primary antibodies (see table 2). The target was then visualised using the OptiView DAB 

detection kit (Roche). The tissue slides were counterstained using hematoxylin (Roche) for 8 minutes 

followed by post-coloration using Bluing reagent for 4 minutes at room temperature (Roche). The 

slides were then dehydrated (ethanol and xylene) and mounted using xylene-based mounting. The 

antibodies used for IHC labelling are listed in table 2. 

Antibody Species Clone Supplier 

BCL2 Rabbit SP66 ROCHE 

CD10 Rabbit SP67 ROCHE 

CD20 Mouse L26 ROCHE 

CD21 Rabbit EP3093 ROCHE 

CD3 Rabbit 2GV6 ROCHE 

CD79a Rabbit SP18 ROCHE 

Ki67 Rabbit 30-9 ROCHE 

Table 2: Primary antibodies used for IHC labelling 

PDLS characterisation by 2D imaging. After 72 hrs of treatment, PDLS were visualized by brightfield 

illumination (BF) on a high throughput microplate imager for high-content analyses device equipped 

with a 5X objective (Operetta, Perkin Elmer, Villebon sur Yvette, France). Morphological parameters 

(BF area, roundness) were analysed by the Columbus software associated.  

Visualisation of cell aggregation by live-cell imaging. After centrifugation in ULA plate, PDLS were 

imaged from D0 to D6 (D = day) with Incucyte S3 Live-Cell Analysis System (Sartorius, Göttingen, 

Germany), placed in a standard tissue culture incubator to acquire automatically phase images at 4X 

magnification.   

PDLS characterisation by 3D imaging. PDLS were fixed at different days of culture directly in the wells 

with 4% PFA overnight at 4 °C and rinsed with PBS. Nuclei were labelled with 10 µg/mL Propidium 

Iodide (PI) (Life technologies) for 4 hrs at room temperature under agitation. PDLS were then rinsed 
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with PBS and included in 1% low-melting agarose (Life Technologies). 8 mm disks were punched and 

cleared with the methanol-benzyl alcohol/benzyl benzoate (BABB) technique as previously described 

[28],[29]. Acquisitions were performed with an 880 confocal microscope (Zeiss, Oberkochen, Germany) 

at 10X magnification. IMARIS 7 software (BitPlane, South Windsor, CT, USA) was used for PDLS 3D 

representations.  

Image analyses (volume, sphericity, eccentricity and roundness quantification) were performed using 

the processing pipeline described in [25]. As compared to the ULA-MALC samples analysed therein, 

the PDLS samples were more irregular in terms of shape and were frequently associated with 

surrounding artefactual cellular residues. A pre-processing stage based on watershed segmentation 

and morphological parameter selection was implemented for this purpose in order to get rid of all the 

unwanted residues. 

Flow cytometry analyses. After 3 days of treatment, PDLS (n=10 of each FL sample) were mechanically 

dissociated, pooled, washed and stained with combinations of fluorochrome-labelled antibodies (see 

the table 3). Immune cell composition of PDLS was determined as follows: for T cell populations 

(CD3+CD4+ cells for CD4+ T cells, CD3+CD8+ for CD8+ T cells, CD56+CD3- for NK cells, gamma9+CD3+ 

for gamma delta T cells, CD3+CD4+CXCR5+ICOS+ for TFh/TFr, CD3+CD4+CXCR5-ICOS- for non-TFh), for 

B cell populations (CD10+CD19+ for B tumoural cells, CD10-CD19+ for healthy B cells) and immune 

checkpoint on T cells (CD39, CD73, PD-1, BTLA, LAG-3, TIGIT, TIM-3) and immune checkpoint on B cells 

(CD39, CD73, PDL1, PDL2, PD-1). B cell depletion was determined by flow cytometry and normalised 

by untreated condition percentage. 5 µl of 7-aminoactinomycin D (7AAD, BD Biosciences, Le Pont de 

Claix, France) were then added according to the manufacturer’s instructions and dissociated cells were 

analysed on a Fortessa X20 flow cytometer (BD Biosciences). Dead cells (7AAD+) were excluded from 

the analyses with Cytobank. Cytokine release was determined by measuring TNF , IFN , Granzyme B, 

IL-6, IL-8, IL-10 concentrations in the supernatant of PDLS at day 6 of 3D culture using a BD cytometric 

bead array (CBA) human soluble protein master kit following provider’s instructions (BD Biosciences).  

 



159 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Primary antibodies, dye for viability and kit for cytokines used for flow cytometry analyses 

Determination of cell number by trypan blue assay. After 3, 4 and 6 days of culture, PDLS (n=10 of 

each FL sample) were mechanically dissociated and cells were counted by trypan blue assay on a 

Malassez cell. Cell viability was determined according the formula: % of viability = [number of live cells/ 

(number of live cells + number of dead cells)] × 100. 

3’mRNA sequencing. After thawing, cells from FL biopsies were cultured in suspension overnight in 

RPMI medium supplemented with FBS and the next day RNA was extracted (Direct-zol RNA Minipep 

kits – Zymo Research). In parallel, cells from the same sample were cultured in 3D in an enriched 

medium supplemented with cytokines and after 3 days, PDLS were mechanically dissociated and RNA 

extraction was performed. Libraries were prepared with 500 ng of RNA using the QuantSeq 3’mRNA-

Seq Library Prep Kit-FWD (Lexogen, Vienna, Austria) and UMI Second Strand Synthesis Module 

(Lexogen) following the manufacturers’ instructions. 13 cycles of library amplification were performed. 

The libraries were quantified using the Qubit™ dsDNA HS Assay Kit (Invitrogen, Life Technologies) and 

equimolar pooling was performed at 8nM. The pooled libraries were sequenced on single read 75 pb 

run, on an Illumina NextSeq550DX instrument (Illumina). Expected read depth was 15 millions of 

Provider Antibody Chanel Clone Isotypes 

BD CD19 APC HIB19 Mouse IgG1, κ 

BD CD10 BV605 HI10a Mouse BALB/c IgG1, κ 

Biolegend CD3 APC-Fire UCHT1 Mouse IgG1, κ 

BD CD4 BUV395 RPA-T4 Mouse IgG1, κ 

BD CD8 BV510 RPA-T8 Mouse IgG1, κ 

BD CD56 PerCP-

Cy5.5 
B159 Mouse IgG1, κ 

BD Vd2g9 FITC B3 Mouse IgG1, κ 

BD CXCR5 BV650 Clone 

RF8B2 
Rat LOU 

BD CD25 BV421 M-A251 Mouse BALB/c IgG1, κ 

BD ICOS BV605 DX29 Mouse IgG1, κ 

BD CD39 PE TU66 Mouse IgG2b, κ 

BD CD73 BUV737 AD2 Mouse IgG1, κ 

BD PD-1 PE-Cy7 EH12.1 Mouse IgG1, κ 

BD PDL2 BV650 MIH18 Mouse IgG1, κ 

BD 7-AAD PE-Cy5   
BD CD107a PE H4A3 Mouse BALB/c IgG1, κ 

BD CD69 APC FN50 Mouse IgG1, κ 

BD IFN BV711 B27 Mouse IgG1, κ 

BD TNF PE-Cy7 MAb11 Mouse IgG1, κ 
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uniquely mapped reads per sample. The data analyses were performed by the pipeline on the 

BlueBee® Genomics Platform. 

Correlogram & correlation curves. Correlogram was obtained with Open source Rstudio (RStudio 

Team (2020), PBC, Boston, MA URL http://www.rstudio.com/) and corrplot package. For each variable, 

the values of the 7 PDLS were used to calculate side-by-side correlation coefficients and correlation 

matrix (non-parametric Spearman’s correlation). Associated Correlation curves were generated based 

on the same data set with GraphPad Prism 9. 

Statistics. For all the results obtained and presented in figures 1 and 9, we applied various statistical 

analyses. For comparing three or more parameters, one-way ANOVA was used in figure 1B (see table 

4), whilst t-tests were used to compare each day 3 to day 6 culture for each patient in figure 1B and 

each treatment with untreated condition in figure 9A and B. All tests were performed with GraphPad 

Prism software. p values: **** = p < 0.0001, *** = p < 0.0005, ** = p < 0.01 and * = p < 0.05.  
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Table 4: Statistics for figure 1B 

AREA CENTER 

 Day 3 Day 6 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #1 #2 #3 #4 #5 #6 #7 #8 #9 

#1  

ns **** **** ** **** ns ns **** 

 

ns ns ** ns ns ns ns ** 

#2 

 

 

**** **** ns *** ns **** ****  

 

ns ns ns ns ns ns ns 

#3    **** **** **** **** * ****    

ns ns ns ns ns ns 

#4     

**** 

ns **** 

**** 

ns     

ns ns 

**** 

** 

ns 

#5      ns **** **** ****      ns ** ns ns 

#6       **** 

**** ns 

      ** ns ns 

#7        ns  

**** 

 

       ns 

**** 

#8         ****         ** 

#9                   

AREA PERIPHERY 

 Day 3 Day 6 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #1 #2 #3 #4 #5 #6 #7 #8 #9 

#1  

ns ns ns ns ns ns ns ns 

 

ns ns ns ns * ****  ns 

#2 

 

 

ns ** ns ns ns ns ns  

 

ns ns ns * ****  ns 

#3    ns *** 

ns ns ns 

*    

ns ns ns ****  ns 

#4     

**** ns ns ns 

****     

ns ns 

**** 

 

ns 

#5      **** **** * ns      *** ****  ns 

#6       

ns ns ** 

      ****  ns 

#7        ns 

** 

        

**** 

#8         ns          

#9                   

ROUNDNESS 

 Day 3 Day 6 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #1 #2 #3 #4 #5 #6 #7 #8 #9 

#1  

* ** **** ns **** **** ns **** 

 

** ns * ns *** ns * ns 

#2 

 

 

ns **** ** **** **** ns ****  

 

* ns * ns * ns ns 

#3    **** *** 

**** **** ns 

****    

ns ns *** ns ns ns 

#4     

**** ns ns **** 

****     

ns ns ns ns 

ns 

#5      **** **** * ****      *** 

 

ns ns 

ns 

#6       

ns **** ns 

      

** ns ns 

#7        **** 

ns 

       

ns ns 

#8         ****         ns 

#9                   
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Results 

PDLS morphologically mimetize FL lymph nodes 

In order to establish viable PDLS with FL lymph nodes, the first step aimed to determine the 

most suitable cell seeding densities and culture medium conditions. 10 000, 25 000 and 50 000 cells 

seeding densities were tested in different media (see supplemental Fig. 1) containing or not various 

cytokines supporting the survival/proliferation of B cells and T cells such as IL-15 [30],[31], ODN [31], 

CD40L [30], IL-4 [32], IL-2 [33],[34]). Based on a viability of up to 70%, 25 000 cells per well was the 

optimal cell seeding concentration to obtain spheroids and the enriched medium contained all 

cytokines (IL-15, ODN, CD40L, IL-4, IL-2).  

Global morphology was examined by 2D imaging with a high throughput imaging confocal 

system (Fig. 1). We observed 3 different patterns (morphotypes) across the PDLS established from 9 

different FL biopsies (Fig. 1A and supplemental figure 2). Most of them (patients #2, #4, #6, #7, #8 and 

#9) presented a thin monocellular layer and a round and dense cell aggregate in the clearly delineated 

center. For patient #5 we observed a second pattern with a thin layer that was more or less enlarged 

and the central aggregate was less structured and looked less dense. Finally, a third pattern exhibited 

a reduced and destructured thin layer and a large and disorganized central structure with no clear 

delimitation between monocellular layer and aggregated parts (#1 and #3). 

In all cases, cell aggregation was very fast and dynamic as attested by live-cell imaging (video 

1). After 6 days of culture, we observed a significant global increase of the PDLS size for most patients 

(6 out of 9). No strong variation of morphotype was observed compared to day 3 of culture, except for 

the patient #1 for which the aggregated part was enlarged. For patient #8, the inform aggregated 

central part became rounder and denser, and more predominant over the monolayer. Different 

parameters of spheroid morphology were determined (Fig.1B). With regard to the PDLS area, two 

criteria were measured: the center/core, composed of viable cells and the periphery/thin layer, 

composed mainly of dead cells (data not shown). Most PDLS presented an increase in the central area 

between day 3 and day 6 ranging from 13 to 152% corresponding to patient #5 and #7 respectively 

(Fig. 1B). For the periphery areas, 3 different profiles were observed (Fig. 1B). For PDLS established 

from patients #3 and #7, we observed a significant increase of the area between day 3 and day 6 of 

culture, whereas for patients #5 and #9 a decrease was measured. In contrast, for PDLS established 

from patients #1 and #2, no variation was observed. Similar to the area increase, roundness of 

core/center for most PDLS increased between day 3 and day 6 of cultures ranging from 22% to 115% 

for patients #3 and #2 respectively. We only observed a decrease in PDLS for patients #7 and #9. There 
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was an important variation in roundness observed from 0.2 (#5 at D3) to 0.8 (#6 at D6) according to 

the different types of morphology (Fig. 1A). 
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Figure 1: PDLS characterization by 2D imaging. A) Global morphology observed by brightfield (Operetta, 5X, scale: 200 m) of PDLS from each 

patient in untreated condition at D3 and D6. B) 2D imaging parameters. Graphs representing center/core and periphery areas ( m2) and 

roundness quantification (Columbus software) at D3 and D6 based on 2D brightfield images, with means +/- SD of up to 10 PDLS replicates 

for each patient. C) Cell number counting determined by Trypan blue assay during 3D culture. 
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Viable cell number was determined during the 3D culture from the thawing (day 0) up to day 

6 of culture (Fig.2A). At day 3 of culture, a drop in the total cell number was observed compared to day 

0, with an inter-patient variability ranging from 39.2% for #4 to 62% for #5. Except for one patient (#1) 

for which the total cell number increased between day 3 and day 6 of culture, in all PDLS tested (n=9), 

we noticed a decrease with a maximum of 62% for patient #4. However, viability was highly maintained 

for all PDLS (>60%) during this time course, but no longer at 9 days, where viability reached 

approximately 40% (data not shown).  

IHC and FISH were then performed to determine the distribution of different immune cell types 

composing these PDLS and the bcl2 translocation (Fig.2A and Fig. 2B). Setting up of these experiments 

on PDLS samples was challenging due to their frailty. Thus, a protocol was set up to allow the inclusion 

of these samples in paraffin, which consisted in a first pre-inclusion step in agarose. This allowed a 

protection of the model, but it also facilitated the localisation of PDLS in paraffin thanks to a China ink 

coloration of agarose before the cutting of sections. The obtention of robust IHC and FISH results 

validated this pre-analytic process. On IHC (Fig.2A), a majority of B cells (CD20, CD79) was observed. 

On this FL case, CD10 staining was diffuse. T cells were present and mainly localised around PDLS, like 

a surrounding crown. No FDC were observed, potentially due to the non-enzymatic dissociation and 

freezing cycle. Proliferation was assessed by Ki-67 staining, which corresponded mainly to proliferative 

T cells. A FISH experiment was performed with a “break apart” probe to assess BCL2 rearrangements 

in PDLS. As shown in Figure 2B, both normal B cells (green arrow) and lymphomatous B cells (yellow 

arrows), characterised by a BCL2 split, were present. Altogether, these results confirmed that PDLS are 

structured models containing both tumour B cells and microenvironment cells.  

Finally, RNA extractions and 3’mRNA sequencing were performed on 3 patient samples after 

thawing and after 3 days of 3D culture. Differential expression analyses between patient cells and 3D 

PDLS showed an enrichment of pathways and genes involved in cell cycle in the 3D models (Fig. 2C and 

Fig. 2D) which can be, in part, explained by favourable culture conditions. Comparison of these 

transcriptomes in view of several gene signatures involved in immune escape and outcome to validate 

the relevance of our model is currently under investigation in the laboratory. 
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Figure 2: Global PDLS characterization by different approaches. A) IHC on sliced PDLS #4. B) FISH on sliced PDLS#4. C) RNA seq on thawed 

lymph node FL biopsies cultured in suspension and in 3D analysed at day 3. D) Volcano plot of genes significantly regulated in 3D model 

compared to initial FL biospies (log2 fold change threshold = 1, -log10 (FDR) threshold = 1). 

 

Although 2D imaging provided us with important information with regard to  aggregation, 

morphological patterns and parameters during the time of culture, this method is not suitable for in 

depth characterisation [25]. Thus, PDLS from 6 patients were imaged by 3D imaging (Fig. 3A) and 

morphological parameters such as real volume, sphericity and roundness were extracted (Fig. 3B). 3D 

imaging confirmed the above-depicted morphological patterns (See supplemental Fig. 2 for PDLS 

structure classification): Pattern #P1 that corresponded to a monocellular layer (in 2D) surrounding a 

compact, ovoid and well 3D-structured PDLS for patients #2, #4 and #6. Pattern #P2 that corresponded 

to a monocellular layer (2D) surrounding an irregular and poorly 3D-structured PDLS for patient #5. 

Finally, Pattern #P3 that corresponded to scrambled aggregates with no clear delimitation between 2D 

and 3D parts for patients #1 and #3.  

For all the PDLS imaged in 3D, real volume increased between day 3 and day 6 of culture with 

the highest difference observed for patient #3 (Fig.3B). In contrast, sphericity and roundness did not 

mirror volume variation, but both exhibited same profiles and range of values, with an increase 

observed in 3 out of 6 patients (#1, #2, #4) (Fig.3B). For the others, patient #3 exhibited no sphericity 

and roundness variation, patient #5 exhibited no sphericity variation but displayed a decrease in 

roundness and finally patient #6 exhibited a decrease in both parameters. Moreover, we noticed a 

large scale of volume variation (0.0045 mm3 to 0.05mm3), sphericity (0.004 to 0.83) and roundness 

(0.03 to 0.88).  Thus, PDLS displayed 3 patterns (#P1, #P2 and #P3) of distinct sphericity, roundness 

and volume. 
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Figure 3: PDLS 3D imaging. A) 3D reconstruction by IMARIS from 880 confocal acquisitions at 10X magnification of PDLS labelled with PI and 

cleared by BABB for patients #1 to #6 at D3. B) Volume and morphology 3D quantification. Based on 3D acquisitions (A), Volume (mm3), 

roundness and sphericity were calculated for each patient and represented as graphs. Mean +/- SD of up to 3 replicates per condition. 
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In total, FL biopsies can be cultured in 3D with an enriched medium which maintains a high viability. 

Moreover, 2D and 3D imaging analyses highlighted the inter-patient variability in terms of 

aggregation dynamics, morphology and behaviour during the time of culture. Very importantly, 

PDLS exhibited FL features as revealed by IHC and RNA sequencing, demonstrating that these 3D 

models closely represent their source biopsies. 

 

PDLS Immune tumour microenvironment composition 

FL TME is mainly composed of CD21+/CD35+ FDC, CD21+/CD35- FRC, CD68-CAF, CD4+ T,  CD8+ T, 

gamma delta T and NK cells[2],[22],[35],[36]. We therefore performed multiparametric flow cytometry 

analyses to determine the composition of PDLS established from 9 different FL biopsies after 3 and 6 

days of 3D culture and compared them to the initial biopsies (day 0). Unexpectedly, stromal cells were 

not detected in the biopsies after thawing and after 3D cell culture. On average, B lymphocytes (60% 

of total cells) were the prominent population composing the thawed samples, followed by CD4 (13%), 

CD8 (3%), NK (0.2%) and gamma delta T (0.07%) cells (Fig. 4A). Importantly, 3D cultures did not affect 

the percentage of each cell subtype at day 3 and only a slight decrease was observed for B cells with 

44% of CD19+ cells at day 6. More precisely, biopsies and PDLS exhibited an inter-patient variability 

with regard to their content. B cells at day 0 ranged from 25% for the minimum (#5) to 84% for the 

maximum (#8) with a relatively stable percentage during the time of culture except for the patient 

exhibiting the lower level. In that case, percentage of B cells increased at day 3 (54%) and decreased 

at day 6 (12%). This variability was also observed for patient #6 for which the CD19+ cell rate decreased 

by 40%. Concerning the conventional T lymphocytes, the mean percentage of CD4+ and CD8+ cells for 

all patients was around 13% and 3% respectively at day 0 and day 3. At day 6, we observed an increase 

in the percentage of CD4+ for patients #5, #6 and #8 and of CD8+ cells for patients #5 and #6 (Fig. 4A). 

Phenotyping of CD3+CD4+CXCR5+ICOS+ and CD3+CD4+CXCR5-ICOS- cells revealed that 40% of 

CD4+ T cells were TFh and 20% were non-TFh (Fig. 4B left). Individually, 3 profiles of patients were 

distinguished with a high percentage of TFh (more than 50% of CD4+ cells for patients #2 and #8), 

medium expression (around 30 % for patients #1, #3, #5, #7 and #9) and low percentage of TFh (less 

than 10% for patient #4). Regarding non-TFh cells, 3 different profiles also appeared with a high 

percentage (around 36% for patients #3 and #7), medium expression (around 20% for patients #1, #2, 

#4, #9) and low percentage (<10% for patients #5 and #8) (for more details, see supplementary results).  

For innate immune cells, the percentage was very low ranging for NK cells between 0% for 

patient #5 and 1% for patient #7 and for gamma delta T cells, the percentage was quite similar between 

each PDLS of approximately 0.1% (Fig. 4B right).  
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The exact number of each immune cell sub-type was determined and presented at day 3 for 

each patient separately (Fig. 4C). Except for patient #2 who exhibited an equivalent number of CD4+T 

and CD19+ cells, for all other PDLS, B lymphocytes were the major cell population (range: n=3 000- 

7 000 cells over 10 000 total cells). PDLS were also composed of CD4+T (n=275-2300), to a lesser extent  

CD8+ T (n=61-250) cells but very few NK (n=39) and gamma delta T (n=11) cells. 

Finally, we determined the basal level of T cell activation in 3 patients by measuring the amount 

of cytokines and granzyme B in the culture medium (Fig. 4D). Here again, 3 different profiles were 

observed: high (patient #7) intermediate (patient #9) or very low level of secreted cytokines (patient 

#8) (for more details, see supplementary results).  
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Figure 4:  Immune cell distribution and cytokine release A) Percentage of immune cell evaluated by flow cytometry at day 0, day 3 and day6 

of 3D culture. B) Percentage of TFh (CD3+CD4+CXCR5+ICOS+), non-TFh (CD3+CD4+CXCR5-ICOS-), NK (CD3-CD56+) and gamma delta T cells 

(CD3+TCRgamma9+) in PDLS at day 3 evaluated by flow cytometry. C) Cell count evaluated by flow cytometry at day 3 of PDLS immune cell 

composition. D) Cytokine release (Granzyme B, IFNg, TNFa, IL-10, IL-8, IL-6) were evaluated by flow cytometry at day 6 of culture.  
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Altogether, these results highlighted PDLS as a relevant model exhibiting similar features to FL 

patients such as proportion of B/T cells and variability of immune cell composition. Moreover, these 

results also showed that PDLS culture conditions maintained the viability of cells composing the 

immune TME during the cell culture.   

 

Immune escape characterisation 

To further characterise PDLS, we investigated in detail the profile of immune checkpoint 

expression on different cell subtypes. BTLA-4, TIGIT, LAG-3, PD-1, TIM-3, CD39 and CD73 expression 

was determined at the cell surface of CD4 T and CD8 T cells after thawing (day 0, supplemental Fig. 3) 

and at day 3 and 6 of 3D culture (Fig. 5). Globally, no variation was observed during the culture (data 

not shown) and as presented in figure 5A, three different patterns of expression were observed. A high 

proportion (50-55%) of CD4+ cells expressed BTLA-4, TIGIT and PD-1, a medium (around 20%) 

percentage expressed CD39 and less than 10% expressed LAG-3, TIM-3 and CD73. On CD8+ 

lymphocytes, TIGIT and PD-1 were expressed by approximately 50% of cells, then TIM-3, CD39 and 

BTLA-4 by roughly 20-30% and less than 20% expressed LAG-3 and CD73. We also determined ICP 

expression on tumoural B cells (CD19+CD10+) and observed that PD-1 expression was less than 10% 

and CD39 around 20%. No CD73, PDL1 and PDL2 expression was measured. In healthy B cells 

(CD19+CD10-), the percentage of CD39 and CD73 was higher with approximately 50% and 30% 

respectively (Fig. 5B). 
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Figure 5: PDLS immune checkpoint characterization 10 PDLS from 8 different FL patients at day 3 of culture were pooled and the percentage 
of ICP was analysed by flow cytometry. A) percent of BTLA-4, TIGIT, LAG-3, PD-1, TIM-3, CD39, CD73 on CD4+ and CD8+ T cells. B) Percent of 
PD-1, CD39, CD73 on tumoural cells (CD10+CD19+) and healthy B cells (CD10-CD19+).  

 

FL is characterised by the co-expression of ICP such as PD-1/TIM-3 [37], PD-1/TIGIT [38], PD-

1/LAG-3 [39], PD-1/BLTA4 [40] which predicts patient outcome. Thus, we determined the level of 

double ICP expression on both CD4+ and CD8+ cells by applying different gating strategies (Fig.6A-E) 

and observed that globally, CD4+ were mainly PD-1+TIM-3- (48%) (Fig. 6A), PD-1+TIGIT+ (46%) (Fig. 

6B), PD-1+BTLA-4+ (44%) (Fig. 6C) and PD-1+LAG-3- (48%). CD8+ were mostly PD-1-TIM-3- (42%) 

(Fig.6A) and PD-1+TIGIT+ (42%) (Fig.6B). Regarding BTLA-4 and PD-1, the percentage of PD-1-BTLA-4-, 

PD-1+BTLA-4- or PD-1+BTLA-4+ CD8+ cells were quite similar (30, 28 and 23% respectively) (Fig. 6C). 

For LAG-3 and PD-1, we observed 37% of PD-1-LAG-3- and 39% of PD-1+LAG-3- CD8+ cells. Finally, we 

determined the level of PD-1/CD39 as CD39 appeared to be an important marker in NHL [41],[42] and 

its co-expression with PD-1 was recently described in exhausted TIL in epithelial malignancies [43]. 

PDLS analyses revealed that CD39+ CD4+ or CD8+ cells were mainly PD-1+ with 16 and 21% respectively 

compared to 3.8 and 5.6% for PD-1- CD4+ and CD8+ cells (Fig. 6E). 
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Figure 6: PDLS immune checkpoint characterization. 10 PDLS from 8 different FL patients at day 3 of culture were pooled and the 

percentage of ICP was analysed by flow cytometry. Left panel present gating strategies. Right panels represent percentage of CD4+ and 

CD8+ T cells expressing double ICP. PD-1/ TIM-3 (A), PD-1/TIGIT (B), PD-1/BTLA-4 (C), PD-1/LAG-3 (D) an PD-1/CD39 (E). 
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Co-expression of TIGIT and PD-1 on intratumoural T cells from FL has been described and this 

accounts for hyporesponsive T cells [38]. Thus, we further characterized the ICP expressing cells by 

analysing the percentage of CD4+ and CD8+ cells expressing one, two, three or four ICP (ie: PD-1, TIGIT, 

BTLA-4, TIM-3) (Fig. 7) according to [44]. LAG-3 was not included in this analysis as it was expressed by 

less than 3% of cells. Thus, the most frequent subpopulation in PDLS at day 3 of culture was PD-

1+TIGIT+BTLA-4+TIM-3- cells with a mean of 31% for CD3+ and 34% for CD4 TILs. PD-1-TIGIT-BTLA-

4+TIM-3- cells as well as the quadruple negative population were also largely represented with 12% 

and 20% respectively. The other populations were less than 3%. In more detail, the most frequent 

CD8+ TILs were PD-1-TIGIT-BTLA-4+TIM-3- with 11% and the quadruple negative with 14%. 13% were 

PD-1+TIGIT+BTLA-4+TIM-3- and 10% PD-1+TIGIT+BTLA-4-TIM-3+. For CD4+ cells, PD-1+TIGIT+BTLA-

4+TIM-3- was the most frequent subpopulation with 34%, then PD-1-TIGIT-BTLA-4+TIM-3- with 18% 

and the quadruple negative population with 20%. The rest was less than 5%. 

 

Figure 7: simple, double, triple and quadruple immunecheckpoint characterization. Gating strategy used for determining simple, double, 

triple and quadruple ICP populations (upper panel) and simple, double, triple and quadruple positive percent of cells expressing ICP (BTLA-4, 

TIGIT, PD-1, TIM-3) on CD3+, CD4+ and CD8+ T cells of 9 different FL patients at day 3 of culture (lower panel). 
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Altogether, these flow cytometry analyses highlighted the inter-patient variability in terms of ICP co-

expression and unveiled PD-1+TIGIT+BTLA-4+TIM-3- as the main T cell phenotype in FL tumours. 

Moreover, CD39+PD-1+ TILs also appeared as an interesting population infiltrating FL tumours. Thus, 

these results strongly support the use of PDLS for testing immunotherapy in a context of personalised 

medicine. 

 

PDLS as preclinical FL models 

Finally, we aimed to determine whether PDLS could represent preclinical models for drug 

screening. For this purpose, we tested an anti-CD20 mAb used for FL therapy, obinutuzumab (GA101) 

combined or not with the anti-PD-1 mAb, nivolumab. We established a workflow adapted for medium 

throughput screening in 96-well plates and developed specific tools to study the effect of therapies on 

PDLS morphology and behaviour as well as B cell depletion. 2D imaging allowed a global 

characterisation of PDLS by BF microscopy and the observation of different patterns after drug 

treatment (Fig. 8A and 8B). Anti-CD20 mAb induced a decrease of the PDLS center area, which 

represents the zone where viable cells aggregate, in 3 out of 8 patients (#1, #5, #9) and an increase in 

2 patients (#4 and #3). Anti-PD-1 mAb induced different morphological behaviours with an increase in 

3 PDLS (#1, #2, #3) and a decrease for patients #4, #9 and especially #5. However, combination 

treatment did not enhance the effect induced by anti-CD20 mAb as a single drug (Fig. 8B left graph). 

BF periphery area (grey zone) representing dead cells (not shown) was measured (Fig 8B, right graph). 

No potent variation was observed after anti-CD20 treatment except for two patients (#4 and #7) where 

a decrease was observed. In contrast, anti-PD-1 mAb treatment induced a slight increase in the BF 

periphery area in 4 out of 8 patients and a really potent increase for patient #4, while the 2 other 

patients displayed a small decrease. Anti-CD20 and anti-PD-1 mAbs combination did not modify the 

effects induced by single drugs except for patients ##6 and #9 where combination induced a larger 

periphery area. 

We next investigated in depth by 3D confocal imaging the effect of these therapeutic 

antibodies (Fig. 8C). First, we observed the already described 3D shape differences between patients 

in untreated condition (UT). Anti-CD20 alone or in combination with anti-PD-1 seemed to strongly 

modify #3 and #2 PDLS morphology. 

As for Fig. 3B, volume, sphericity and roundness extracted from 3D imaging were determined 

by specific algorithms developed for ULA-MALC [25] and PDLS (Fig. 8D). We observed a decrease of 

PDLS volume in the 3 patients tested after anti-CD20 treatment and two of them were also sensitive 

to anti-PD-1 treatment (#4 and #2). Combination seemed to enhance the volume decrease in the 
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patients’ sensitive to single drugs. Sphericity and roundness were also determined but exhibited 

potent inter-patient variation. For patient #4, both sphericity and roundness decreased after anti-CD20 

or anti-PD-1 mAbs treatment and combination did not enhance these effects. For patient #2, anti-PD-

1 mAb alone affected sphericity, whereas roundness was decreased by both single drugs, but 

surprisingly not with the combination where an increase was observed. Finally, for patient #3, which 

was the most non spherical model (sphericity= 0.07 in untreated condition), anti-CD20 mAb increased 

the sphericity and roundness, whereas anti-PD-1 mAb decreased sphericity and increased roundness. 

The combination did not modify the effect of single drugs on sphericity or roundness (Fig. 8D).  
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Figure 8: Drug effect on PDLS 3D morphology and volume. A) Global morphology with BF images (Operetta, 5X, scale: 200 m) of PDLS from 

each patient in untreated (UT) condition and treated conditions (anti-CD20, anti-PD-1, anti-CD20+anti-PD-1) at D6 of culture after 72h of 

treatment. B) 2D imaging parameters. Graphs representing center/core and periphery areas ( m2) quantification (Columbus software) based 

on 2D BF images in (A), with mean +/- SD of the 8 patients pooled (for each condition, the value for each patient correspond to the mean of 

up to 10 PDLS replicates). C) 3D reconstruction by IMARIS from 880 confocal acquisitions at 10X magnification of PDLS labeled with PI and 

cleared by BABB for patients #2, #3 and #4 at D6 in untreated and treated conditions. D) Volume and morphology 3D quantification. Based 

on 3D acquisitions (C), Volume (mm3), roundness and sphericity were calculated for each patient and each condition and represented as 

graphs. Mean +/- SD of up to 3 replicates per condition. 
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Altogether, these results showed the ability to assess the effect of immunotherapies on the 

volume and the morphology of PDLS and the inter-patient variability. It also underlined the 

importance of studying therapeutic efficacy beyond 2D imaging.  

 Flow cytometry analyses were then performed on dissociated PDLS to evaluate the effect of 

treatment on target cells based on B cell depletion. Thus, we observed that in 8 out of 9 PDLS tested, 

anti-CD20 mAb induced a potent CD19+ B cell depletion (up to 80%) in a similar fashion at 24 hrs and 

72 hrs of treatment (Fig. 9A), which correlated with a decrease in the B cell number (Fig. 9B). Regarding 

anti-PD-1, only 3 out of 9 PDLS responded to treatment. Interestingly, 2 out of 9 patients exhibited an 

increase of B cell depletion once anti-CD20 was combined to anti-PD-1 mAb as early as 4 hrs of 

treatment (Fig.9C). For PDLS from patients #2, #3 and #4 the B cell depletion observed was correlated 

with 3D volume variation in response to treatments (Fig. 8D). 
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Figure 9: B cell depletion evaluation upon anti-CD20 and anti-PD-1 mAb treatments Flow cytometry analyses were performed after pooling 

10 PDLS from 6 to 9 different FL patients 24 hrs and 72 hrs after treatment with anti-CD20 (GA101 10µg/mL) and/or anti-PD-1 (10µg/mL). A) 

Depletion in percentage of CD19+ B cells at 24 hrs and 72 hrs post-treatments. B) Event counting by flow cytometry upon treatments 24 hrs 

and 72 hrs post-treatment. C) CD19+ B cell depletion measured after 4 hrs of treatment with anti-CD20 combined or not with anti-PD-1 mAb.   
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Based on results obtained by flow cytometry (Fig.5, 6, 7 and 9), a correlogram was established 

to assess potential correlations between B depletion and ICP expression on CD4+ and CD8+ 

populations. To do so, double positive (PD-1+/TIM-3+, PD-1+/TIGIT+, PD-1+/BTLA+, PD-1+/LAG-3+) and 

triple positive (PD-1+/TIM-3+/LAG-3+) population percentage and B cell depletion percentage 

obtained after 72 hrs of treatment with anti-CD20 and anti-PD-1 alone or in combination were used to 

generate a matrix of correlation represented as a correlogram (Fig. 10A). With this side-by-side 

comparison, we observed notably that the percentage of PD-1+/TIM-3+ double positive CD8+ 

population only was negatively correlated with the B depletion after 72 hrs of treatment with anti-PD-

1, anti-CD20 and combination of both (detailed in Fig. 10B). PD-1+/BTLA+ percentage in CD4+ 

population was negatively correlated with B depletion but only in response to anti-PD-1 treatment. 

PD-1+/LAG-3+ percentage in both CD4+ and CD8+ populations were negatively correlated with B cell 

depletion in response to the two single treatment (anti-CD20 and anti-PD-1) but not to the combo, 

with a higher score for CD4+ populations after treatment with anti-CD20 mAb (-0.68). Interestingly, it 

seemed to be the same tendency for triple positive PD-1+/TIM-3+/LAG-3+ percentage but to a lesser 

extent. 

 

 

Figure 10: Correlations between ICP expression and B cell depletion A) Values from PDLS (7 different FL patients) gathered for all the 

parameters listed: percentage of PD-1+/TIM3+/LAG3- and PD-1+/TIM3+/LAG3+ CD4+ and CD8+ cells and percentage of B cell depletion 

(normalized by untreated condition) after 72 hrs of treatment by anti-CD20, anti-PD-1 and combination. Matrix of correlation based on 

correlation coefficients (non-parametric Spearman’s correlation) of side-by-side represented as a graph. Correlation coefficients represented 

by squares where values and colour were determined according to correlation coefficients values. B) Correlation curves of percentage of 
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PD1+TIM3+ expressing CD8+cells (X axis) and percentage of B cell depletion after 72 hrs of treatment (Y axis) with correlation coefficients (r) 

extracted from correlogram in A. 

 

Altogether, these correlations suggested a potential link between the expression of ICP and 

the response to anti-PD-1 and anti-CD20 mAbs and suggested PD-1+TIM-3+ expression on CD8+ cells 

as a marker of lower response to both single or combo treatment. 

Discussion  

PDLS are of particular relevance to understand FL biology and immune cell distribution. Indeed, 

IHC analyses revealed that the 3D FL model reproduces the same pattern of expression as observed in 

biopsies with CD79a, BCL2, CD10 and CD20 labelling and peripheral distribution of T cells. Moreover, 

with 3D imaging and specific algorithms developed recently for ULA-MALC [25], we were able to 

observe an inter-patient variability of shape with 3 different patterns of aggregation and different 

profiles of response to treatment. Indeed, PDLS from patient #3, which was not well structured and 

exhibited the least roundness and sphericity, was the one   that responded better to mAbs. This could 

be explained by the fact that it is easier for the mAb to penetrate the 3D structure when it is less 

compact. Although the number of samples could not allow us to draw clear conclusions, these results 

highlight another application based on the use of PDLS as in vitro models to characterise the 

mechanisms of action of anti-lymphomatous drugs and model volume, aggregation, ECM production 

or mechanical constraints, parameters which can influence sensitivity to drugs. Obviously, we have to 

move on from PDLS towards tumouroids for a more optimal mimicry of the pathology. Thus, co-culture 

of FL samples with FRC, FDC, monocytes and/or endothelial cells from the same donor are needed to 

recreate in vitro, to some degree, a complete FL TME. Moreover, integration of microchannels could 

be of particular interest to study immune cell migration or drug perfusion.  

We developed PDLS models from FL biopsies without any sorting in order to keep B cells 

and the TME. Unfortunately, we were faced with a major limitation due to the absence of FRC, 

FDC, MSC and TMA which are key actors in the supportive FL niche [3][5]. This was certainly 

due to the biopsy’s mechanical dissociation and/or the freezing/thawing cycle needed to 

obtain the diagnosis in order to culture FL samples in an appropriate enriched medium. Our 

observation that primary FL cell viability increases when medium was supplemented (59% in 

medium #1, 64% in medium #2, 67% % in medium #3, 75% % in medium #4 and 79% in medium 

#5) indicates that these cells require a culture medium that mimics pro-survival signals 

provided by supportive missing cells from the TME. Thus, we defined an enriched medium 

supplemented with different cytokines (IL-15 [30],[31], ODN [31], CD40L [30], IL-4 [32], IL-2 
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[33],[34]) providing B cell survival or T cell proliferation. We are aware that these cytokines 

can induce a bias in the interpretation and to deal with this issue, we are currently performing 

experiments to improve the obtention of full FL TME with enzymatic FL biopsy dissociation 

that could avoid the use of cytokines in the medium. Unfortunately, until now, no convincing 

results have been obtained. Working on fresh samples would be the most appropriate but the 

feasibility of the global workflow could not be performed and the 3D culture would most likely 

not be optimal in a non-specific medium for FL.  

The clinical development of effective cancer immunotherapies has allowed the 

identification of tumour environmental features that could predict for sensitivity to ICP 

blockade. While impressive efficacy was observed in Hodgkin and primary mediastinal-B cell 

lymphomas, disappointing results were obtained in FL or DLBCL [45]. NHL are categorised as 

inflamed or non-inflamed tumours [45]. Large-scale microarray profiling revealed four stages 

of IE in B-NHL: stage I represented by non-immunogenic tumours, stage II represented by 

immunogenic tumours without IE, stage III represented by immunogenic tumours with IE and 

stage IV represented by fully immune-edited tumours [36]. 73% of FL exhibit a stage III or IV 

showing a strong level of IE mechanism in these tumours. Tosolini et al also correlated each 

stage with OS and observed that stages I and IV presenting the least T cell activation presented 

the poorest OS. On the opposite, stages II and III presenting T cell activation exhibited a higher 

OS. This immune landscape of lymphoma is a critical point to predict the response to 

immunotherapy and to design new therapeutic approaches [45],[46]. FL is an indolent 

lymphoma with abundant levels of PD-1-positive infiltrating T-cells [47] that can co-express 

other exhausted markers such as TIM-3 [37], TIGIT [38], LAG-3 [39] or BTLA-4 [40] that predict 

patient outcome. Thus, it is becoming clear that FL specific features must be taken into 

account in pre-clinical studies to predict patient response. As characterised by 

multiparametric flow cytometry analyses, PDLS have similar and relevant inter-patient 

variability as that observed in the biopsy from which they originate. Indeed, the immune cell 

population characterisation revealed not only that PDLS were mainly composed, as expected, 

of B cells and T cells (CD8+ T cells, CD4+ T cells, TFh, non-TFh, NK and gamma delta T cells) in 

variable proportions amongst patients, but they also exhibited similar ICP expression profiles 

after 3 days of culture compared to day 0 (supplemental Fig.4). Moreover, by determining the 

percentage of ICP expressed on both CD4+ and CD8+ cells and measuring the B cell depletion 
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after anti-CD20 or anti-PD-1 mAb treatment or combination, we observed that the double 

expression of PD-1 and TIM-3 on CD8+ cells negatively correlated with the sensitivity to 

treatments. This is in accordance with clinical results obtained on FL patients where PD-1low 

TIM-3+ CD8+ cells were associated with a poor outcome in FL patients [37]. 

Conclusion 

Altogether, we present evidence that PDLS are relevant pre-clinical FL models that can be used 

to help characterise FL pathology and predict patient response. They are also useful for drug testing, 

new target discovery, characterisation of mechanisms of action and/or resistance to anti-

lymphomatous drugs. As TME can be classified into six specialised microenvironments, namely, 

hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, innervated 

niche, and mechanical microenvironment [48], we firmly believe that PDLS, by modelling all these 

parameters, are powerful theragnostic biomaterials that combine therapy with diagnosis necessary for 

individualised therapies for patients. This is all the more true in the current context of the development 

of CAR-T cells for refractory/relapsed FL. By combining tumour modelling of each patient with medical 

imaging and bioinformatic tools to analyse genomic data, it should be possible to provide a full ID card 

of each patient and to propose personalised therapies in a disease that remains incurable.  
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Supplementary results: 

 

Phenotyping (Fig. 4B) 

Individually, 3 profiles of patients were distinguished with patients #2 and #8 which exhibited 

high percentage of TFh (52.21% and 65.87% respectively), patients #1, #3, #5, #7 and #9 exhibiting a 

medium expression and finally patient #4 presenting a low percentage of TFh (8.95%). Regarding non-

TFh cells, 3 different profiles also appeared with patients #3 and #7 expressing the highest percentage 

(around 36%), patients #1, #2, #4, and #9 with a medium expression (around 20%) and patients #5 and 

#8 exhibiting the lowest percentage (<10%). 

 

Cytokine release (Fig. 4C) 

 

3 different profiles were observed with patient #7 exhibiting the highest levels of GrB, IL-10, 

IL-8 and IL-6 (52.17 pg/mL, 36.18 pg/mL, 69.54 pg/mL and 326.76pg/mL respectively), patient #9 with 

an intermediate level of GrB and IL-6 secretion (10.55 pg/mL and 241.47 pg/mL respectively) and finally 

patient #8 for which almost all cytokines were very low (0 to 3 pg/mL for GrB, TNFa, IFNg, IL-8, IL-10 

and 62.87 pg/mL for IL-6).  

 

Supplemental figures :  
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Supplementary Figure 1: Cell seeding densities and media testing on PDLS A) Table of different media tested. B. Illustration of PDLS from 
one patient cultured at different cell seeding densities and in different media. B) Trypan blue assay counting of living cells with different cell 
densities and media. C) Percentage of B and T cells in the different conditions of cell seeding and media. 
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Supplementary Figure 2: Patterns of PDLS morphology Schematic morphological patterns according to the patients’ PDLS. This classification 

is taking into account the number and shape of phases and the 3D structuration (white to black scale). 

Supplementary Figure 3: PDLS immune checkpoint characterisation. 10 PDLS from 9 different FL patients were pooled and the percentage 

of ICP was analysed by flow cytometry. A. percentage of BTLA-4, TIGIT, LAG-3, PD-1, TIM-3, CD39, CD73 on CD4+ and CD8+ T cells at day 0, 

after sample thawing.  
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Supplementary Figure 4: Relationship between drug response and CD8+ T cells expressing PD-1 and TIM-3. The more CD8+ T cells 

express PD-1 and TIM-3 the less drug response will be efficient. 

2.3. Conclusion, complementary results and study perspectives 

 
Aware of MALC model limitations, the next challenge was to establish a 3D model with LN biopsies. 

Indeed, in vitro FL cell cultures are known to be difficult to maintain without TME 464. So far, no 3D 

models using bulk cells coming from FL LN biopsies exist. A few teams, such as K. Tarte team, have 

started to work on patient cells but they all isolated B cells and did not take into account bulk cells 

from LN 430,440. Thus, with the help of my co-director director’s group, we performed several media 

testing before finding one allowing to develop an simple method to obtain high cell viability and a 3D 

shaping. Indeed, we continued to use the basic scaffold-free ULA method to help PDLS aggregation 

and based on studies from the literature, we supplemented the PDLS medium with cytokines (IL-2, IL-

4, IL-15, ODN, CD40L) to ensure cell survival. Once the methodology was optimized, we characterized 

by multiparametric flow cytometry immune cell population distribution and ICP expression on B and T 

cells and we also performed 3D imaging to visualize PDLS shape. The immune cell population 

characterization revealed that PDLS were mainly composed, as expected, of B cellsand T cells (CD8+ T 

cells, CD4+ T cells, TFh, non-TFh, NK and  T cells) in variable proportion depending on the patients. 

Unfortunately, the mechanical dissociation method used for biopsy biobanking was not suitable to 

keep monocytes and stromal cell populations. Thus, to better integrate FL TME, it would be interesting 

in the future to test other biopsy processing such as enzymatic dissociation to assess if we are able to 

keep these populations that are extremely important in FL pathology.  

In FL, our group and others have highlighted T-cell exhaustion in patients resulting in T-cell 

inhibition and loss of effective immune responses 167,169,175,465–468. As this feature is a landmark of FL, 

we characterized by flow cytometry ICP expression in PDLS. Thus, PDLS reproduced ICP expression 

observed in patients, that correlated also with literature description. We observed that the T cells 

presenting a high triple expression TIGIT+, BTLA+, PD-1+ which was also described by Jossefson et al 
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168,469. Moreover, in their study, Yang et al found similar level of PD-1+ cells than we obtained in our 

study 470. In contrast, we did not find the population PD-1+TIM3+LAG3+ as they depicted. Indeed, only 

few CD8+ cells expressed LAG3.  

To better understand how immune cell population are distributed into PDLS we performed IHC on 

models slices and observed that the 3D FL model reproduces the same pattern of expression as 

observed in biopsies according to CD79a, Bcl-2, CD10 and CD20 labeling. Moreover, T cells exhibited a 

peripheral distribution, which correlated with observations in LN biopsy. With 3D imaging, we were 

able to observe an interpatient variability in shaping and pattern of aggregations. In order to improve 

the imaging of PDLS and characterize the interaction between cells composing FL LN, we are currently 

developing methods to observe by 3D-immunofluorescence the distribution of immune cells (Figure 

76). 

 

Figure 76 : 3D immunofluorescence performed on PDLS imaged with the SPIM 

Left image represents staining of all cells with DAPI (blue) and in white CD3+ cells (alexafluor568) of untreated 
PDLS #20T011829 at day 4 of culture, 10X magnification. Right image represents staining of CD19 in green 
(alexafluor488) and cleaved caspase 3 in red (alexafluor532) of untreated PDLS #19T040344 at day 6 of culture 
at 16X magnification. 

 

Unfortunately, with the low number of PDLS generated it was complicated to perform correlation 

of population distribution, ICP expression or even 3D morphology shaping. Nevertheless, this 

correlative approach is to be considered in the future with increasing number of patient samples in 

order to propose predictive therapy response. Indeed, many studies have already described how T cell 

distribution and number can impact therapy response. For example, Yang et al found that the number 

of PD-1low CD4+ and CD8+ T cells correlated with a poor prognosis in FL patients 470. Nevertheless, 
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CD4+ PD-1high did not correlated with FL survival. Thus, this result indicates that PD-1 is not the only 

actor in FL T-cell mediated tumor immunity. Other studies have depicted that the frequency of 

intratumoral TIM3+ CD4+ T cells predicts a poorer survival of FL patients 167. Thus, PDLS models 

represent promising preclinical model to address biological question of FL progression but also to 

propose a platform for personalized medicine (Figure 77).  

3. ULA-MALC and PDLS at the service of identifying new therapeutic targets in 

follicular lymphoma: the story of CD39 targeting 
 

3.1 PDLS as preclinical models to identify new therapeutic targets 
 

 As described in the previous part, PDLS represent a relevant model to mimic FL pathology and 

to identify new potential targets.  The full characterization of immune population and the expression 

of ICP led us to identify CD39 as a potential new target in FL. CD39 is an ectonucleotidase that catalyzes 

the degradation of ATP into ADP and then AMP, which in turns, is hydrolyzed by CD73 into 

adenosine187. Adenosine is a known immunosuppressive molecule presents in the TME and has 

become a target of recent promising therapeutic strategy 187.  

Dr Juan Garcia from the team of my PhD co-director (IDIBAPS, Barcelona) analyzed the expression of 

CD39 in 75 non-purified tonsil cells (NP-TS) in comparison with 362 non-purified FL patient cells (NP-

FL). These analyses were performed according to GEP public databases (GSE55267, GSE65135, 

GSE65136, GSE7307, GSE71810, GSE12195, GSE12366, GSE12453, GSE99316, GSE39503, GSE38712, 

Figure 77 : PDLS workflow 
After LN cells thawing, cells are cultured in an enriched medium and put into ULA plates to induce cell 

aggregation. After 3 days of 3D culture, drugs or added and immunophenotyping, whole imaging and drug 

efficacy is evaluated after 4h, 24h and 72h post-treatment. 
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GSE31311, GSE15271, GSE10831, GSE3526, GSE21554, GSE53820, GSE12453, GSE93261) all generated 

with Affymetrix Human Genome U133 Plus 2.0, in order to compare, in bulk cells from normal and 

pathological samples expression of adenosine generating enzymes. As illustrated in figure 78 an 

increase of ENTPD-1 expression, the gene coding for CD39, was observed in NP-FL compared to NP-TS.  

 

Figure 78 : Expression of several adenosine generating enzymes, comprising ENTPD-1, the gene encoding for 
CD39 
GEP public databases generated with Affymetrix Human Genome U133 plus 2.0. All data were normalized using 
the expression console software v1.4.1.46 (Affymetrix) and by using the Limma package included in 
transcriptome analysis console (Applied Biosystems).  
  

Analyses of ENTPD-1 expression in centroblast, centrocyte, memory, naive, plasma cells and B 

cells from normal LN and from FL samples were also performed. This analysis revealed that ENTPD-1 

expression was lower in B cells from FL compared to normal LN and its level was similar to centrocytes 

(Figure 79).  
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Figure 79 : Expression of ENTPD-1 on several B cell subtypes 
GEP public databases generated with Affymetrix Human Genome U133 plus 2.0. All data were normalized using 
the expression console software v1.4.1.46 (Affymetrix) and by using the Limma package included in 
transcriptome analysis console (Applied Biosystems). 

 
Although these promising results conferred a strong rationale to point CD39 as an interesting 

target in FL, the technology used could not identify the population expressing CD39. Thus, we therefore 

investigated the profiles of CD39 expression both in B and T cells of PDLS established from FL patients. 

As illustrated in figure 80, an interpatient variability was observed with three different profiles: 

patients #19T040344, #20T04555 presenting high percent of CD39+ CD8+ and CD4+ T cells (around 

60%). Patients #19T0022947, #21T012396 and #21T018902 presenting intermediate percent of CD39+ 

CD4+ and CD8+ T cells (around 20%); and finally, patients #19T043574, #21T011790 and #20T011829 

presenting very low CD39+ CD4+ and CD8+ T cells (<10%). Regarding CD73, expression was only 

observed on CD8+ T cells in a small proportion (around 20%). Interestingly, we observed that almost 

all CD39+ cells were also PD-1+ whereas CD73+ cells did not express this ICP. Moreover, we explored 

more precisely the profile of CD39 expression on the different B cells subtypes according to their 

tumoral (CD10+) or non-tumoral (CD10-) phenotypes. We observed that tumoral cells exhibited a 

lower level of CD39 expression compared to healthy B cells with 20% vs 50% respectively (Figure 80). 

These results were in accordance with the literature showing high levels of CD39 on all these cell types 

189. Nevertheless, it had never been shown that FL tumoral cells exhibit lower CD39 expression than 

healthy B cells.  
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For each patient tested, 10 PDLS were pooled, dissociated and stained with CD4, CD8, CD3, CD19, CD10 markers 

for the different cell populations and CD73, CD39and PD-1 for the ICP and analyzed by flow cytometry. 

These results, with studies from the literature which underline the immunosuppressive action 

of CD39 prompted us to evaluate the effect of CD39 targeting. To do so and in the absence of anti-

CD39 specific mAb at our disposal, we tested POM1 (sodium polyoxotungstate), a non-specific 

NTDPase inhibitor, classicaly used to inhibit CD39 for in vitro studies 471. We designed experiments to 

evaluate the role of CD39 in the mechanisms of IE by combining POM1 with anti-CD20 (GA101) and 

anti-PD-1 (Nivolumab). First, we observed that POM1 at 10µM alone or in combination with either 

anti-CD20 and anti-PD-1 mAbs, or both, did not affect PDLS area (both center and periphery) whereas 

at 100µM, POM1 induced an increase in 2/6 patients and a decrease in 3/6 patients of the periphery 

area (Figure 81). The center area was also impacted with POM1 at 100µM, with 4/8 PDLS presenting a 

center area decreased and 3/8 patients when combined with anti-CD20 or anti-PD-1 or triple targeting 

(Figure 81). 

 

 

 

Figure 80 : Characterization of PD-1, CD39, CD73 expression on CD4+, CD8+ and B cells 
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PDLS were established from 8 different FL patients and after 3 days of culture were treated by GA101 at 10µg/mL 
and/or Nivolumab at 10µg/mL and/or POM1 at 10µM or 100µM A. Brightfield pictures obtained with Operetta 
at 10X magnification after 4h, 24h or 72h post-treatment. B. Quantification of center and periphery areas (µm²) 
was performed with the Columbus software. 

 

 

 

 

 

A 

B 

Figure 81 : PDLS morphology after CD39 targeting 
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Morphological feature is not sufficient to determine drug efficacy. Indeed, a drug can induce 

an increase of area when MALC/PDLS are destructurized or a decrease when it induces cell death or 

3D structure shriking by increasing cell-cell interaction. Moreover, as we previously demonstrated 441, 

only on the morphology criteria, the cytotoxic effect can not be determined. In order to determine 

drug effect, we quantified CD19+ depletion by flow cytometry. First, we evaluated the effect of GA101 

and observed a B cell depletion in all patients tested (10 to 80%) (Figure 82). In contrast, anti-PD-1 

alone did not affect B cell count in a majority of samples. Interestingly, combination of both antibodies 

enhanced slightly the B cell depletion induced by GA101. 10µM, POM1 with or without combination, 

did not induced CD19+ cell depletion 72h post-treatment. Nevertheless, at 100µM, POM1 induced a 

significant CD19+ cell depletion in 5/7 PDLS (from 20 to 80%). In combination with an anti-CD20 mAb, 

depletion was increased in 3/5 responding PDLS and in combination with anti-PD-1 mAb, no additional 

effect was observed. For the triple combination anti-CD20 mAb, anti-PD-1 mAb and POM1, no increase 

in depletion was observed in comparison with double combinations.  

 

 

 

 

 

 

 

 

 

 
PDLS were established from 8 different FL patients and after 3 days of culture were treated by GA101 at 10µg/mL 
and/or Nivolumab at 10µg/mL and/or POM1 at 10µM or 100µM. 10 PDLS were pooled, dissociated, stained and 
analyzed by flow cytometry.  
 
 
 

Altogether, these results showed an expression of CD39 in FL and that its targeting could 

enhance anti-CD20 or ant-PD-1 mAbs effect, supporting the role of this ectonucleotidase in the 

mechanisms of IE in FL.  

D6-72pt 

Figure 82 : CD19+ cell depletion 72h post-treatment 
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3.2 Identification of CD39 role on immune cells 
 

As presented with previous results we observed, that CD39 is expressed on both B and T cells in FL 

PDLS. Thus, in order to decipher its role when expressed by immune cells, we decided to conduct in 

vitro studies with MALC co-cultured with  T cells.  

First of all, we benefited from the analyses of ENTPD-1 expression on 37 B-NHL cell lines provided 

by my PhD codirectors’ group (IDIBAPS, Barcelona). As illustrated in figure 83, different profiles of 

transcriptomic ENTPD-1 expression were observed, with low (SUDHL7, SUDHL16), intermediate (RL, 

DOHH2, HBL2, Ocily10) and high expression (JEKO1, REDC1, Ocily3). In general, most of B-NHL cell lines 

expressed intermediate level of ENTPD-1. 

 

Figure 83 : ENTPD-1 expression on several B-NHL cell lines 

GEP public databases generated with Affymetrix Human Genome U133 plus 2.0. All data were normalized using 
the expression console software v1.4.1.46 (Affymetrix) and by using the Limma package included in 
transcriptome analysis console (Applied Biosystems). 
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Second, we characterized at the protein level, the expression profile on different B-NHL cell 

lines cultured in suspension (2D) and in 3D (ULA-MALC). As illustrated in figure 84, ABC-DLBCL cell lines 

(Ocily-3 and Ocily-10) presented a high CD39 expression level, whereas GC-DLBCL cell lines exhibited 

different patterns with high expression on Ocily19, intermediate expression on Ocily8 and no 

expression on Ocily1. For FL, low expression was found in DOHH2 and almost no expression on WSU-

FSCLL and RL cell lines. No difference was observed between 2D and 3D cultures. We also monitored 

the 3D structuration at day 3 of 3D cultures by an inverted microscope and observed different patterns 

from the less to the most aggregated: WSU-FSCLL > Ocily1 > DOHH2> Ocily10> Ocily8 > Ocily3 > Ocily19 

> RL.  

n=3 independent experiments / cell line was conducted on 2D cell culture and 3D cell culture at day 3. 
 

Next, we determined the expression of CD39 on  T cells derived from healthy donors. Indeed, 

these specific lymphocytes are important effector cells in potential anti-cancer treatment as they 

infiltrate FL and express CD16 and PD-1. Primary  T cells were generated according to Capietto et al  

232. We observed that both expression and % of CD39 expressing cells were strongly increased in the 

first days of culture due PAgs addition as previously described in the literature 203. Although a variability 

between donors was observed, this expression was maintained until 20 days of culture with around 60 

% of  T cells expressing CD39 (Figure 85). 

 Altogether, these results obtained on NHL cells and  T cells support that CD39 appears as an 

interesting target.   

Figure 84 : CD39 expression measurement by flow cytometry on several B-NHL cell lines cultured in 2D and 3D 
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Left panel represents ratio of mean fluorescence and right panel CD39+ percent of expressing  T cells.  

 

So, to better characterize the role of CD39 expression on immune cells, we decided to co-

culture RL cells, which do not express CD39and  T cells which does. In absence of specific anti-CD39 

mAbs, we performed in vitro experiments with POM1 which efficient doses were determined by 

measuring ATP consumption in  T cells. As shown in figure 86, POM1 induced a dose-dependent 

inhibition of ATP consumption reaching a maximum at 500µM without affecting  T cell number. 

Based on these resultsand in accordance with the literature, we decided to use POM1 at 10 and 100µM 

for the co-culture experiments.  

 

 

 

 

 

 

 

 

The number of  T cells was measured by flow cytometry and ATP consumption by the ATPlight kit and analyzed 
with Clariostar. 

 

In order to determine the role of CD39 in IE, we explored the effect of POM1 on ADCC induced 

by GA101 in  T cell-MALC co-culture. By monitoring morphology by Operetta® CLS™, operetta, we 
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Figure 85 : CD39 expression followed by flow cytometry upon  T cell primary cell culture 

Figure 86 : Effect of POM1 in  T cell number and ATP consumption  
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observed that in co-culture, MALC were composed by monolayer surrounding the 3D part that was 

increased after treatment combining GA101+POM1 at 10µM. Area quantification of MALC alone 

showed that: (i) untreated MALC were round (roundness around 1) and presented an area of 250 

000µm²; (ii) treatment by GA101 induced an area decrease of around 8% and iii) POM1 in combination 

or not with GA101 did not induce any changes. In co-culture, only the roundness was impacted with a 

decrease of 31% with GA101 alone, 15% with GA101 + POM1 10µM and 14% for GA101+POM1 100µM 

(Figure 87). 

 

Figure 87 : Effect of POM1 on ADCC induced by GA101 in co-cultured or not with  T cells (0.5:1). 

MALC at day 3 of culture were co-cultured with  T cells or not and treated with GA101 (10µg/mL) and/or POM1 
(10 or 100µM) during 24h. A. Brightfield pictures obtained with operetta (scale = 200µm). B. Measurement of 
area and roundness with columbus software. SD of n=9 MALC independent. Black dotted lines represent MALC 

UT area or roundness and red dotted line represent MALC+  T cells UT area or roundness 

 

To go further in the investigation, we evaluated the effect of POM1 on ADCC induced by mAbs 

determined, by effector  T cell degranulation and by target B cell death. As shown in figure 88, GA101 

did not induced effector cells degranulation compared to untreated cells when cultured without target 

cells.  

However, when co-cultured with ULA-MALC, two different profiles were observed: 
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- Decrease or very weak increase of CD107a+ cells percent observed after GA101 and no 

enhancement when combined with POM1 (#0429B and #0429A). 

- Increase of CD107a+ cells percent after GA101 which was slightly enhanced in presence of POM1 

at 100µM (#0415B). 

Interestingly, when compared to CD39 and CD16 expression profiles, donor responding better to 

GA101 and CD39 targeting in terms of  T cell degranulation, was the one exhibiting the highest 

expression of the ectonucleotidase and FcRIIIa (Figure 88 B).   

 

 

Figure 88 : Effect of POM1 on degranulation of  T cells induced by GA101  

A. % of CD107a+ expressing  T cells analyzed by flow cytometry on  T cell alone (left) or after 4h of co-culture 

with MALC (right) and treatment with GA101 (10µg/mL) and/or POM1 (10 or 100µM). B. Evaluation of CD16 and 

CD39 expression (% and RFI) by flow cytometry on 3 PBMC healthy donors associated with one symbol and color. 

C. CD107a expression measured by flow cytometry after 4h treatment with PMA/Ionomycin for positive control. 

Each color and symbol represent a donor, mean and SD on 3 different donors. 

 

We next determined if  T cell degranulation could induce B cell death. To do so, we evaluated 

by annexin V / 7AAD staining, the level of living, apoptotic and dead cells. Only GA101 induced 

apoptosis in MALC, and this was potentiated in presence of  T cells (Figure 89 A). This was not 

enhanced by POM1 irrespectively the used dose. To determine if this phenomenon was donor specific, 

we analyzed the percentage of AnV+ cells for each donor co-cultured with MALC (Figure 89 B). 
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Moreover, the direct effect of treatment on MALC was also evaluated (ULA-MALC). We observed that 

depending on experiments, MALC presented a basal cell death from 2.55 to 10%. This percent was 

increased in presence of GA101 and a slight potentialization was observed in combination with POM1 

at 10 and 100µM in comparison to single drugs in 2/3 experiments. When MALC were in co-culture, 

basal cell death was increased in comparison to culture without  T cells and even higher in presence 

of GA101 in 2/3 donors (#0415B and #0429B). Nevertheless, no potentialization was observed with 

POM1. In panel C, we represented the ratio of cell death obtained in co-cultures reported to ULA MALC 

alone. We observed that 2/3 donors responded to GA101 (#0429A and #0415B) and only one 

responded to POM1 at 100µM (#0415B). However, no potentialization was observed with 

combination.  
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At day 3 of culture MALC or co-cultured or not with  T cells (0,5/1 ratio) were treated or not with GA101 

(10µg/mL) and/or POM1 (10 or 100µM) during 24h. A. Cellular status of RL cells was evaluated by flow cytometry 

to evaluate the percent of living cells (AnV-/7AAD-), apoptotic cells (AnV+/7AAD-) and dead cells (AnV+/7AAD+). 

Histogrammes represend 3 independent experiments. B. AnV+ cells % was evaluated on MALC alone or in co-

culture with  T cells upon treatment of GA101 and/or POM1 during 24h. C. Ratio of AnV+ cells of MALC+ T 

cells over MALC alone. All graphs represent 3 independent experiments.  

As we were not able to observe a correlation between  T cell degranulation and B cell death 

measured with AnV/7AAD labelling, we decided to assess the biological effect of  T cell activation on 

target cells by determining viability and B cell depletion (trypan blue assay). In figure 90 A, we observed 

that GA101 induced a decrease of 16% viability when MALC were cultured alone and this was not 

affected by POM1. When co-cultured with  T cells, although GA101 induced a decrease of B cell 

viability in the three experiments, no potentialization with POM1 was observed in terms of viability. 

Interestingly, B cell depletion allowed us to observe different patterns of response (Figure 90 B). First, 

when MALC were cultured alone, we observed that GA101 induced a direct effect in 2/3 experiments 

and that the depletion was increased when combined to POM1 100µM for 2/3 experiments. Second, 

in co-culture, except for donor #0429B, we observed a B cell depletion which was potentiated with 

combination of GA101 and POM1 100µM. 

 

Figure 89 : Effect of POM1 effect on apoptosis of RL cells in MALC treated or not with GA101 and in co-culture 

or not with  T cells 
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MALC were co-cutured or not with  T cells (ratio E:T 0.5:1) and treated or not at day 3 by GA101 (10µg/ml) or 

POM1 (10 or 100µM). A. Viability was determined by Trypan blue assay on 5 MALC dissociated and pooled. B. 

Depletion was determined by comparison to cell number of UT condition. Each symbol and color represents a 

donor and an experiment, SD represents 3 independent experiments 

Altogether, we observed that CD39 targeting was able to enhance  T cell cytotoxic effect, 

concomitantly with B cell depletion in 1/3 donors. Although this result seemed to be correlated to the 

level of expression of CD39 and CD16, we need, to increase the number of donors in order to draw 

conclusions.  As POM1 results were ambiguous, we decided to generate CD39 gene KO in primary  T 

cells, using CRISPR Cas9. As shown in figure 91, CD39 expression was totally abolished on  T cells 

with CRISPR-Cas9 guide targeting ENTPD-1 (gENTPD-1) in comparison to non-electroporated (No ELP) 

and control guide (gCtl). 

 

 

 

 

 

 

 

 

 

Non electroporated  T cells (no-ELP), electroporated and receiving a guide RNA ENTPD-1 to deplete the gene 
(gENTPD-1) and electroporated and receiving a guide control (gCtl) were washed and stained with CD39 to 
evaluate CD39 depletion by flow cytometry. Cells were transfected using Neon® Transfection System (MPK5000) 

Then, we explored the effect of ENTPD-1 gene depletion on several read out. First, on 

morphology, we observed that MALC area was decreased by  T cells addition and this was not 

significantly affected by after ENTPD-1 depletion by CRISPR-Cas9 (Figure 92). Second, on ADCC induced 

by GA101 in presence of  T cells, we observed that ENTPD-1 gene depletion did not affect the B cell 

Figure 90 : Effect of POM1 on viability and depletion of RL cells in MALC co-culture or not with  T cell. 

Figure 91 : Depletion of ENTPD1 in one  T cells donor after CRISPR-Cas9 method  
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depletion but seemed to inhibit the GrB secretion. However, the control condition (gCtl) exhibited 

similar results. These results are inconsistent and more experiments are needed to draw conclusions.  

A. Briedfield pictures obtained with the operetta system at 4X magnification. Scale 200µm (left) and area 
quantification by Columbus software (right) B. CD19+ event count by MAQSquant device upon GA101 treatment 

on non electroporated  T cells, electroporated and received a guide RNA ENTPD-1 to deplete the gene 
(gENTPD-1) and electroporated and received a guide control (gCtl). C. Granzyme B release quantified with BD 
CBA beads detection by flow cytometry. 

 

3.3 Conclusions and perspectives on CD39 targeting in FL 
 

In conclusion, we observed that FL TILs express variable but high level of ENTPD-1 gene and 

protein. The targeting with POM1 inhibitor at low doses did not induced detectable effect on MALC 

and PDLS in contrast to high doses that induced significant depletion that could be potentiate with 

GA101 in PDLS. However, POM1 is not a specific CD39 inhibitor and one could speculate that the effect 

observed were not related to CD39 targeting. Thus, in order to verify the role of CD39, we used CRISPR-

Cas9 method. Nevertheless, CD39 depletion seemed to highly diminish  T cells cytokine secretion 

and not affected significantly GA101-induced B cell depletion. This counteracts our hypothesis that 

CD39 is an IE mechanism whose inhibition could potentiate effect of mAbs. However, only three 

Figure 92 : Effect of ENTPD1 depletion by CRISPR-Cas9 on  T cells on morphology, depletion and granzyme 
B release at 72h post-treatment 
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experiments were performed so far and need to be repeated to conclude. Moreover, many pending 

questions remains: 

- Why results obtained with POM1 and CRISPR-Cas 9 are different? Although more experiments are 

needed to confirm these results, it should be interesting to evaluate CD39 inhibition by targeting 

both gene expression and activity. Moreover, it also should be interesting to determined the effect 

of anti-CD39 mAb combined with other mAbs such as anti-CD20 and/or anti-PD-1. Thus, further 

investigations and improvement are needed to understand CD39 implication in IE observed in FL. 

Using more specific mAbs targeting CD39 or other methods such as siRNA could be a way to better 

investigate this pathway. Although CD39 implication in IE was the focus of our preliminary 

investigations, it would also be interesting to evaluate its involvement in the metabolism. Indeed, 

Aroua et al, showed that in AML,  CD39 was upregulated in cytarabine-resistant leukemic cells from 

both AML cell lines and patient samples in vivo and in vitro. Moreover, they demonstrated that 

this resistance was due to an enhanced mitochondrial activity and biogenesis through activation 

of a cAMP-mediated adaptive mitochondrial stress response. In this study they used shRNA to 

downregulate CD39 gene and POM1 to inhibit CD39 activity and showed that both inhibition 

blocked activity of the mitochondrial reprogramming triggered by cytarabine treatment and 

interestingly, potentiated AML cell death in vivo and in vitro upon cytarabine treatment471. Thus, 

these observations revealed CD39 as an even more interesting target that could have a potent 

effect on activating anti-tumoral immune response on the one side and metabolic resistance on 

the other. 

- What is the mechanism responsible for the expression of CD39 on  T cells after BrHPP 

treatment? We could hypothyzed that in a tumoral context, cellular stress can induce secretion of 

PAgs that, in turns, leads to increase CD39 expression. In a physiological context, Gruenbacher et 

al demonstrated that CD39 could also use PAgs as substract, in addition to ATP, in order to impede 

 T cell activation 203. Thus, this mechanism could be a process to control overactivation of  T 

cells in a normal context and be exacerbated in a tumoral context.  

- Does a correlation exist between CD39, CD16 expression and the enhancement of ADCC by POM1 

in presence of GA101? To verify this, it should be interesting to perform experiments with more 

donors. We are currently running experiments on primary cell cultured  T cells to determine 

their stage of differentiation during the culture and correlate these results with existing results on 

 T cells differentiation trajectory by transcriptomic analyses 472.  

- What role does CD39 play when it is expressed on tumoral cells? Indeed, in contrast to RL cells, we 

observed a high expression of CD39 on DLBCL cell lines such as Ocily10. Thus, further experiments 
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are needed using CRISPR-Cas9 or anti-CD39 mAb in order to decipher the role of CD39 expressed 

on  T cell or on NHL cells.  

- Does CD39 expression correlate with the aggressiveness of the pathology? This remains an 

essential issue as we observed by analyzing public transcriptomic datas that FL patient survival is 

inversely correlated with ENTPD-1 expression. Indeed, patients presenting high level of ENTPD-1 

exhibit a poorer survival than patients with low ENTPD-1 expression (Figure 93).  To determine if 

CD39 is a factor of poor prognosis, we will use cohorts of annotated patients whose clinical data 

have been collected by the clinical team of the IUCT Haematology Department and included in the 

regional IALYMPH cohort (CNIL N°2206723v0). A collection of fixed and included paraffin DLBCL 

and LF lymph node samples are available at the IUCT Pathology Laboratory and stored in the 

Toulouse Tumor Library/CRB (BB-0033-00014; DC-2008-463; AC-2008-820) and in the CeVi/CALYM 

living cell collection (DC-2014-2213; AC; 2015-2554; DR-2014-582 with CNIL N°914559) under the 

responsibility of Pr Laurent. Thus, we will assess whether correlations exist between the level of 

expression of CD39 determined by IHC on paraffin block and the history of the patient’s disease. 

In addition, cohorts of FL patients who relapsed within 24 months will allow us to determine if 

CD39 is a biomarker in FL and/or DLBCL. 

 

 

 

 

 

 

 

 

 

 

 

 

CD39 high CD39 low 

Figure 93 : FL patient survival depending on their level of CD39 expression (high or low) 
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In total, this preliminary work on CD39 targeting opens new perspectives in deciphering the IE 

mechanism in FL that could be targeted in order to propose new therapeutic strategies in this disease. 

Moreover, these preliminary results rencently led to a new project called CATALY (Cd39: A new Target 

in LYmphoma) that received a grant from CALYM-Janssen and is carried out by a PhD student, Léa 

Rimailho, in our group.  
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IV. DISCUSSION AND GENERAL PERSPECTIVES 
 

During my PhD I have contributed to the advancement of four main research axis: (i) establishment 

of 3D cultures from FL cell lines (ULA-MALC) and from patient samples (PDLS), (ii) full characterization 

of these models by transcriptomic, phenotypic and imaging methods (immune cell population 

composition, ICP phenotyping, morphology etc...) (iii) IT testing on PDLS (anti-CD20 and anti-PD-1 

mAbs) (iv) discovery of the new therapeutic targets such as CD39.  

Over the years, three-dimensional cultures have made their way into cancer research as they 

allowed to more closely model cellular responses and TME structuration observed in patients, 

compared to classical two-dimensional cultures 473. These features propelled them to the rank of 

powerful tools for studying pathology and drug efficacy. Unfortunately, this outstanding new model 

advancement is stugglying to enter the hematological field. In this context, my team firstly established 

the HD-MALC that I strongly participated to improve into a more robust, reliable and simple model 

with the ULA-MALC. Indeed, we demonstrated that this model could be used in a standardized and 

quick way for medium/high throughput screening of lymphoma therapies as described for solid 

cancers by others474,475. Nevertheless, aware of MALC model’s limitations but taking into account 

methodological settings established, the next challenge of my PhD was the establishment of a 3D 

model from FL LN biopsies. Indeed, in vitro primary FL cell cultures are known to be difficult to maintain 

without TME464. So far, no 3D models using bulk cells coming from FL LN biopsies exist. Few teams 

including K. Tarte group, have started to work on patients’ cells, but using only purified B cells from LN 

430,440. Thus, thanks to all the effort made during the IMLINFO’s project with the group of my co-PhD 

director, we established a method comprising a specific enriched medium allowing the development 

of viable and well-structured 3D models from FL LN. Then, by using anti-CD20 and anti-PD-1 mAbs, we 

brought the proof of concept that PDLS could be used as a preclinical platforme to assess treatment 

efficacy by monitoring morphology, characterizing immune cell distribution and ICPand determining B 

cell depletion. Finally, with the characterization of this model we were able to identify a new potential 

target in FL, CD39. Unfortunately, even if from literature insight, this endonucleotidase seemed 

promising, we were not able to perform enough reliable experiments to conclude any potent effect 

upon POM1 treatment, a non-specific inhibitor. Thus, further investigations are needed with a more 

relevant drugs such as anti-CD39 mAbs in order to target CD39 in a more specific manner and 

demonstrate its role in FL IE. 
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One of the main limitations of PDLS is the absence of stromal cells such as macrophages and 

fibroblast which can produce ECM. This is certainly due to the freezing/thawing step required for the 

diagnosis step, before culturing cells in the appropriate enriched medium. My team is currently 

performing experiments to try to improve the biopsy processing procedure, in order to preserve the 

complete FL TME, but for now, no convincing results were obtained. Working on fresh samples would 

be the most appropriate but unfortunately, the feasilibily of the global workflow could not be realized 

and the 3D culture would likely not be optimal in a non-specific medium for FL. Thus, in order to 

improve 3D cultures and evolve the model towards tumoroid, my co-PhD director established co-

cultures where collagen and monocytes were added to PDLS. Moreover, it would be also interesting 

to add other essential TME elements such as endothelial cells to recapitulate the vasculature. Another 

way to perform this improvement, should be to use microchannels allowing not only the migration of 

immune cells for example, but also allowing the perfusion of tumors with drugs. With the priviledge 

working environment englobing our project, we can combine the tumor modelling of each patient with 

medical imaging and bioinformatics tools to analyses genomic datas in order to provide a complete 

picture of each patient and propose an adapted therapy in a disease that remains incurable. In this 

perspective, PDLS represent a promising preclinical model to address biological questions of FL 

progression but also to propose a platform for personalized medicine (Figure 94). 

 

Figure 94 : Personalized medicine platform for FL patients 
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Personalized medicine is the fruit of cancer research evolution through time thanks to great 

advancement in technology and novel approaches to study and model cancer 442,443,476. Indeed, from 

the first human cancer cell line culture (HeLa) to recent advances in single-cell sequencing technologies 

and organoids, allowing an unprecedented insight into tumor heterogeneity, cancer research has gain 

power to dissect and discover new therapeutic targets. Among the last century main technology 

breakthrough, was made possible thanks to the project of all Human Genome Atlas, allowing to 

suequence the whole-human genome. This huge advancement allowed scientists to believe for a time, 

that curing cancer was possible. Nevertheless, even if we greatly benefited from this achievement in 

the understanding of cancer genetic landmarks, the community quickly realized that it was not enough. 

Indeed, as M. Bissel introduced the concept: “context matters”. This statement summarizes the fact 

that our cells, even if governed by DNA, are interacting with each other in a very complex way that 

could not be modelled only with classical in vitro culture, without taking into account TME. With our 

two feet in the single-cell eraand as we move into spatially resolved single-cell genomics, many 

unresolved questions on cancer development and progression are now within reach. Beyond these 

important biological questions, the challenge of curing FL and other cancers remains the ultimate goal. 

However, to obtain a new drug candidate for patients, a long process needs to be followed with, target 

identification by scientists, validation in preclinical and clinical studies and finally agency validation to 

be used in patients. To accelerate this process that could take decades, many changes can be brought 

and are ongoing in the discipline. These changes can be possible by collaborating and working in an 

interdisciplinary manner, concentrating the efforts of: hematologist, physicians, mathematicians, 

chemists, and bioinformaticians to address together important questions and continue to improve 

technological throughput. As much as COVID-19 pandemic is an unfortunate event, it is also a perfect 

example of how, by joining forces, scientists were able to provide a vaccine to the world in less than a 

year, a process that takes normally around 15 years. The vision of timeconsuming and painful progress 

in science is now changing thanks to this kind of collaborative work that allowed the emergence of 

technologies such as spactial transcriptomic, multiplexed histology, mass cytometry, high-speed 

fluorescence image... Indeed, with one single biopsy, we are now able to extract a huge amount of 

datas, to better understand pathology organization and progression.  

 

Many challenges remain ahead for scientist to meet, including extraction of meaningfull 

informations from the overwhelming stream, of constanly generated big data. One of the main 

messages that single cell RNA seq have brought to us is: we are all different and there is no exception 

for cancers. Thus, medicine needs to adapt to these differences in order to provide more efficient 

treatment approaches for each individual. As Francis Collis, former director of the National Institutes 

of Health (NIH), said “the idea that medicine would be applied in a fashion that ignores those 
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differences, can't be any more correct than going to the shoe store and buying any old pair of shoes 

without checking the size”. This concept, even if existing since over 20 years, has gain insight in 

preclinical and clinical studies recently, thanks to new available in vitro and in vivo platforms such as 

spheroids, organoids/tumoroids, or PDTX. The literature on organoids/tumoroids have exploded 

recently and encouraging results are ongoing in regenerative medicine and in cancer research but 

some technical and conceptual limitations are still to be considered. Indeed, organoids do not always 

recapitulate primary tissue cell types diversity which mostly include a combination of immune cells 

and stromal cells that are sometimes difficult to extract from biopsies. Moreover, organoid is not able 

to reproduce, so far, same environmental exposures as animal models such as aging processes or 

nutrition impact. Thus, the future challenge of organoid research will be to develop robust protocols 

reproducing adequate tissue organization, differentiated cells, vascularization, immune cell infiltration 

and even microbiome for some organs (for instance skin and intestine) 477–479.  With 3D models, new 

technical considerations need to be taken into account, including: penetration of dyes and drugs, 

differences in cell behavior depending on the layer in the model, development of imaging and 

bioinformatic tools to visualize them efficiently.  

 

In this purpose of joining forces, the Human Cell Atlas organization developed a project called 

Organoid Cell Atlas with the goal of combining human organoids with single cell technology. This 

project is an open and collaborative network that follows four directions: (i) improvement in 

standardization of single-cell profiling of human organoids, (ii) establishment of a friendly user acess 

to single-cell organoid data using their infrastructure, (iii) development of computational methods and 

tools for comparing organoid profiles and primary tissue data and (iv) comparison of all these datas in 

order to create comprehensive reference maps of organoids as a basis for understanding human health 

and for diagnosing, monitoring and treating disease. Thus, like the human genome project, this project 

aims to provide substantial biomedical impact, in particular in the field of personalized medicine and 

regenerative biology. This very ambitious and challenging project will certainly take time. 

Nevertheless, as theoretically everything is impossible until it is done, science will have to sacrifice 

sometime so that medicine can win in the future and bring new hope for patients. By creating such 

inspiring projects with inclusive research environment that facilitates collaboration among a broad 

range of interested researchers, bridging communities and integrating expertise in organoids and 

single-cell technology, the translation from bench to bedside is getting real. Now more than ever, 

Marie Skłodowska-Curie’s words make echoes for the next generation of scientists that will have to 

deal with new challenges in cancer research.  

“Nothing in life is to be feared, it is only to be understood.  

Now is the time to understand more, so that we may fear less”. 
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