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Abstract: Hydrothermal systems are integral to mid-ocean ridge activity; they form massive seafloor
sulfide (SMS) deposits rich in various metallic elements, which are potential mineral resources. Since
2007, many hydrothermal fields have been discovered along the ultraslow-spreading Southwest
Indian Ridge (SWIR). The Duanqiao hydrothermal field is located at segment 27’s axis between the
Indomed and Gallieni transform faults; tomography models reveal an obvious low-velocity anomaly
beneath it, indicating a possible axial magma chamber (AMC). However, confirmation of an AMC’s
existence requires further study and evidence. In this study, we first calculated the gravity effect to
identify the heterogeneous distribution of crustal density beneath segment 27 and the surrounding
area. Next, we used the gravity-inversion method to obtain the crustal density structure beneath the
study area. The results indicate that a thickened crust and low-density crustal materials exist beneath
segment 27. The low-density anomaly in the lower crust beneath the Duanqiao hydrothermal field
suggests the existence of an AMC covered with a cold and dense upper crust. The density results
identify several faults, which provide potential channels for magma migration. In addition, the melt
migrates westward and redistributes laterally toward the segment’s western end. However, when
migrating toward the segment’s eastern end, the melt is affected by a rapid cooling mechanism.
Therefore, the segment’s ends present different density features and morphologies of nontransform
discontinuities (NTDs).

Keywords: Southwest Indian Ridge; gravity inversion; density structure; segment 27; Duanqiao
hydrothermal field; axial magma chamber

1. Introduction

The mid-ocean ridge is a spreading boundary in plate tectonic theory and a significant
channel for studying the Earth’s interior and deep activities. Hydrothermal systems are
important components of mid-ocean ridge activity; they are influenced by magmatism,
tectonism [1], and biogeochemistry [2]. A comprehensive study method on the seafloor
hydrothermal system was firstly constructed in the Salton Sea by geological, geophysical,
and thermal data [3]. The heat flux from seafloor hydrothermal systems accounts for 20% to
25% of the total global heat flux. The polymetallic sulfide formed by the mid-ocean ridge’s
hydrothermal system is rich in multiple metallic elements [4] and will become a significant
domain for resource exploration. More than half of global seafloor hydrothermal fields are
located on the mid-ocean ridge, mostly on the East Pacific Rise (EPR) and Mid-Atlantic
Ridge (MAR). The extensive investigation of these ridges includes studies of the TAG [5],
Rainbow [6], Lost City [7], and Logatchev [8] hydrothermal fields.

The hydrothermal systems of ultraslow-spreading ridges are characterized by a deep
thermal source and hydrothermal circulation [9]; they have not been as extensively in-
vestigated [10] as fast- and slow-spreading ridges. As the largest and most completely
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developed ultraslow-spreading ridge, the Southwest Indian Ridge (SWIR) has complex
structural characteristics, special crustal accretion patterns, and frequent hydrothermal
activities. Therefore, several China DAYANG cruises have been organized to investigate
and study the SWIR’s hydrothermal activities. In 2007, the first active hydrothermal field
(Longqi hydrothermal field) was discovered off the SWIR at 49◦39′ E, 37◦47′ S by D/V
Dayang Yihao using water column surveys, deep-tow video imaging, and an autonomous
benthic explorer (ABE) [11]. Subsequently, seismic data were collected using ocean bottom
seismometers (OBSs), which provide images of the velocity structure beneath segments
27, 28, and 29. Velocity variation confirms the existence of a detachment fault [12] near
the Longqi hydrothermal field that has a penetration depth deeper than the fault near the
TAG hydrothermal field [13]. In addition, recent research analyzed deep hydrothermal
circulation in a detachment faulting system on the ultraslow-spreading ridge using different
methods [14–16]. Segment 27 includes the inactive Duanqiao hydrothermal field [4,11]
and several hydrothermal plume anomalies [17,18]. The velocity structure obtained using
wide-angle seismic reflection data from OBS indicates different lateral velocity variations
and crust thicknesses beneath segments 27 to 29 [19]. The thickened crust beneath segment
27 reveals the existence of a high-temperature mantle and enriched melt. To confirm the
existence of melt beneath segment 27, a seismic tomography model of the crust beneath
segment 27 was constructed using OBS data, which revealed an anomalously thick crust of
about 10 km and a low-velocity anomaly of −0.6 km/s [19–21] in the lower crust beneath
the central volcanoes. This model also confirms the existence of an axial magma chamber
(AMC) beneath segment 27 [22].

In this study, we first determined the gravity effect to identify the heterogeneous dis-
tribution of crustal density beneath segment 27 and the surrounding area through various
corrections to and processing of the original ship-borne gravity and multi-beam bathymetry
data. Next, we constructed a model of the crustal density structure beneath segment 27
using the three-dimensional gravity inversion method to discuss the heterogeneous dis-
tribution characteristics of crustal density and their geological implications. Finally, we
provide gravity evidence to confirm the existence of an AMC beneath segment 27.

2. Geological Background

The SWIR extends east to west from the Rodrigues Triple Junction (RTJ) to the Bouvet
Triple Junction (BTJ) and is approximately 8000 km long. It is a significant boundary
between the African and Antarctic plates [4]. It belongs to an ultraslow-spreading ridge
with an approximate spreading rate of 1.4~1.6 cm/a. Some segments are characterized
by a high degree of oblique spreading, including the western segment, which spreads
at a slightly faster rate than the eastern segment [23,24]; there is little variation in the
spreading rate along the ridge axis [25]. Topographic and geophysical data indicate an
obvious difference in the central rift morphology [26,27], topographic characteristics [28],
crust thickness [29], magmatic activity [30,31], and mantle composition [32,33] along the
SWIR from the BTJ to the RTJ. The ridge’s axis is segmented by a series of N–S transform
faults (Figure 1a). The basement rocks consist mainly of basalts, peridotites, and gabbros,
with serpentinized peridotites exposed near transform fault areas and gabbros exposed
near large fault areas [34,35].
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Figure 1. (a) Seafloor topographic map from ETOPO1 global topography data [36] in the Southwest 
Indian Ocean. Solid red lines represent the SWIR’s spreading center. Solid black lines represent 
transform faults (TFs). Red triangles represent hotspots. The blue square refers to the study area. 
Tectonic unit names are abbreviated. TFs include the Indomed (ID) and Gallieni (GA) TFs. 
Hotspots include the Marion and Crozet hotspots. Main structures include the Madagascar Plateau 
(MADP), Del Cano Rise (DCR), Crozet Plateau (CP), Madagascar Basin (MADB), Natal Basin (NB), 
and Crozet Basin (CB). (b) Bathymetry map from ship-borne multi-beam seafloor topography data 
in segment 27 and the surrounding area. The solid white line and dotted white lines represent 
segment 27’s axis and two NTDs, respectively. The red star denotes the Duanqiao hydrothermal 
field. Yellow stars represent several hydrothermal plume anomalies [17]. Solid black lines represent 
all surveyed lines. 

The SWIR segment between the Indomed (ID) and Gallieni (GA) transform faults 
(TFs) has been investigated more than others. The bathymetry of the axial rift is relatively 
shallow and even disappears in some areas, with a relatively thick oceanic crust and en-
riched magma supply [19,37,38]. Related studies attribute this segment’s unique phe-
nomenon to the interaction between the Crozet hotspot and the SWIR [38–41]. The 
Duanqiao hydrothermal field is in the high relief area (Figure 1b) in segment 27’s axial 
volcanic ridge (AVR) between the ID and GA TFs. The bathymetry is approximately 1700 
m with densely distributed seamounts and axial volcanoes [4,42]. The surrounding ter-
rain is smooth. Previous research suggests that segment 27’s low mantle Bouguer gravity 
anomaly (MBA) and Na8.0 content value indicate a thickened oceanic crust and relatively 
robust melt supply [37]. However, no temperature or turbidity anomalies were reported, 
which indicates that the Duanqiao hydrothermal field is currently inactive [4]. 

3. Data and Methods 
3.1. Gravity Data 

In this study, gravity and bathymetry data were derived using ship-borne gravity and 
multi-beam seafloor topography data collected by the 30th China DAYANG cruise in the 
SWIR segment between the ID and GA TFs, including four navigation sections during six 
months. The L&R S II-162 air–sea gravimeter (LaCoste Romberg Company, Lafayette, CO, 

Figure 1. (a) Seafloor topographic map from ETOPO1 global topography data [36] in the Southwest
Indian Ocean. Solid red lines represent the SWIR’s spreading center. Solid black lines represent
transform faults (TFs). Red triangles represent hotspots. The blue square refers to the study area.
Tectonic unit names are abbreviated. TFs include the Indomed (ID) and Gallieni (GA) TFs. Hotspots
include the Marion and Crozet hotspots. Main structures include the Madagascar Plateau (MADP),
Del Cano Rise (DCR), Crozet Plateau (CP), Madagascar Basin (MADB), Natal Basin (NB), and Crozet
Basin (CB). (b) Bathymetry map from ship-borne multi-beam seafloor topography data in segment 27
and the surrounding area. The solid white line and dotted white lines represent segment 27’s axis
and two NTDs, respectively. The red star denotes the Duanqiao hydrothermal field. Yellow stars
represent several hydrothermal plume anomalies [17]. Solid black lines represent all surveyed lines.

The SWIR segment between the Indomed (ID) and Gallieni (GA) transform faults
(TFs) has been investigated more than others. The bathymetry of the axial rift is rela-
tively shallow and even disappears in some areas, with a relatively thick oceanic crust
and enriched magma supply [19,37,38]. Related studies attribute this segment’s unique
phenomenon to the interaction between the Crozet hotspot and the SWIR [38–41]. The
Duanqiao hydrothermal field is in the high relief area (Figure 1b) in segment 27’s axial
volcanic ridge (AVR) between the ID and GA TFs. The bathymetry is approximately 1700 m
with densely distributed seamounts and axial volcanoes [4,42]. The surrounding terrain is
smooth. Previous research suggests that segment 27’s low mantle Bouguer gravity anomaly
(MBA) and Na8.0 content value indicate a thickened oceanic crust and relatively robust
melt supply [37]. However, no temperature or turbidity anomalies were reported, which
indicates that the Duanqiao hydrothermal field is currently inactive [4].

3. Data and Methods
3.1. Gravity Data

In this study, gravity and bathymetry data were derived using ship-borne gravity and
multi-beam seafloor topography data collected by the 30th China DAYANG cruise in the
SWIR segment between the ID and GA TFs, including four navigation sections during six
months. The L&R S II-162 air–sea gravimeter (LaCoste Romberg Company, Lafayette, CO,
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USA) was used for measurement of gravity data during this cruise. It is one of the most
advanced ocean gravimeters with measurement accuracy of 1 mGal, static sensitivity of
0.01 mGal, measurement range of 12000 mGal, and linear drift of less than 3 mGal/month.
The maximum operating angle of the gyro-stabilized platform is ± 25◦. The navigation
measurement method was used for the collection of gravity data. Surveyed lines are shown
in Figure 1b as solid black lines. In every surveyed line, the resolution of original ship-borne
gravity and multi-beam seafloor topography data was 100 m. The free air gravity anomaly
was obtained via zero-drift correction, draft correction, Eötvös correction, normal field
correction, and free air correction on the original gravity data [42].

Next, we used the Kriging method to remesh a 500 m × 500 m data grid. The sim-
ple Bouguer gravity anomaly is calculated by Bouguer correction on the free air gravity
anomaly. The complete Bouguer gravity anomaly is usually calculated by both Bouguer cor-
rection and terrain correction on the free air gravity anomaly. However, ref. [43] suggested
the Bouguer correction has not been made in a “free air” map on the ocean. In this study,
we used the generalized terrain correction method (also called external correction). The
generalized terrain correction is based on the reference ellipsoid to calculate the influence of
the global continent and seafloor topography on the gravity value. It integrates the Bouguer
correction and the terrain correction into a whole. For marine gravity, the generalized
terrain correction is more simple, convenient, practical, and feasible than the separate
Bouguer correction and terrain correction [44]. For the generalized terrain correction, the
terrain correction range is divided into near, junction, and far zones [45].

The near and junction zone’s range is 0 to 50 (or 100) m and 50 (or 100) to 2000
m, respectively, and the terrain correction was calculated using the upright prismatic
formula [46]. As shown in Figure 2a, the terrain of the near and junction zones is assumed
to be an upright prism with a bottom surface of 100 m × 100 m and a height of the average
bathymetry of four corner points. Taking the measurement point as the origin, the gravity
effect value of the prism on the measurement point is deduced. As shown in Figure 2b,
assuming that the residual density of the upright prism is ρ, the gravity anomaly at the
origin of coordinates is

∆g = Gρ

∣∣∣∣∣∣∣∣∣x ln(y + r) + y ln(x + r)− z · arctan( xy
zr )
∣∣x2
x1

∣∣∣y2

y1

∣∣∣∣z2

z1

r =
√

x2 + y2 + z2
(1)

where G is the gravitational constant (6.67 × 10−11 m3/(kg·s2)), ρ denotes the density of ter-
rain correction (1.64 g/cm3), and r is the distance between the calculated and measurement
points (in m).
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Figure 2. Schematic diagram of the upright prismatic method. (a) Measurement point and surround-
ing terrain blocks and (b) upright prismatic model.
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The far zone is further divided into first and second far zones [45]. The first and
second far zone’s range is 2 to 20 km and 20 to 166.7 km, respectively, and the terrain
correction was calculated using the spherical coordinate method [47]. As shown in Figure 3,
the terrain correction in a single ring can be calculated using

∆g = Gρ
∫ h

0

∫ θ2

θ1

∫ 2π

0

(R + Z)− (R + h) cos θ[
(R + Z)2 + (R + h)2 − 2(R + Z)(R + h) cos θ

]3/2
× (R + h)2 sin θdφdθdh (2)

where G is the gravitational constant (6.67 × 10−11 m3/(kg·s2)), ρ is the average crustal
density (2.67 g/cm3), R is the average radius of the Earth (6371.025 km), Z is the elevation
of calculated points (in m), and h is the average elevation of ring (in m).
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In all calculations, we used a seawater density of 1.03 g/cm3 and an oceanic crustal
density of 2.67 g/cm3. As seen in Figure 4a, segment 27, where the Duanqiao hydrothermal
field is located, has a relatively high free air gravity anomaly value compared to the
NTD on both of segment 27’s flanks, reflecting the topographic contrast between the axial
volcano and axial valley. High free air gravity anomaly values on both the north and south
sides, away from segment 27’s axis, indicate the existence of high topographic structures.
Following this, we removed the gravity effect of terrain from the free air gravity anomaly to
obtain the complete Bouguer gravity anomaly. Figure 4b illustrates a high positive Bouguer
gravity anomaly value in most of the study area. Specifically, the Bouguer gravity anomaly
value is lower in segment 27 compared to NTDs. The Duanqiao hydrothermal field and the
areas surrounding it have the lowest Bouguer gravity anomaly values. The areas to the
north and south, away from segment 27’s axis, have a low Bouguer gravity anomaly with
an almost symmetric distribution center on the axis.

3.2. Anomaly Separation

The Bouguer gravity anomaly reflects the density contrast between subsurface materi-
als and normal earth. Matched filtering technology has been widely used to process gravity
and magnetic data to separate the deep and shallow source fields [48]. In this study, the
matched filtering method was used to separate the shallow source field from the Bouguer
gravity anomaly. The shallow source field anomaly is regarded as a gravity anomaly that
can reflect the heterogeneous distribution of crustal density; it was used in the crustal
density structure imaging in the study area. The radial logarithmic power spectrum of
the Bouguer gravity anomaly is shown in Figure 5a. Figure 5b shows the low value of the
shallow source anomaly in the Duanqiao hydrothermal field and the surrounding area.
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3.3. Inversion Method

According to [49]’s proposal, we added a model objective function to solve the opti-
mization problem [50,51]. The total objective function of the inversion Φ is defined as

Φ = Φd + µΦm (3)

where Φd is the data misfit, Φm denotes the model objective function, and µ is the balance
factor (also called the regularization parameter) that determines the trade-off between the
two objective functions. Φd and Φm can be expressed in matrix form as follows

Φd = ‖Wd(Gm− dobs)‖2
, Φm = ‖Wm(m−mre f )‖2 (4)

where G is the kernel matrix or the integral operator for converting the density into the
gravity field; Wd is the diagonal matrix; Wm is the weighting matrix, one of the most
important parameters in the model objective function; dobs is observed data; and m and
mref represent the pending density and reference (or initial) density vectors, respectively.
Therefore, the final inversion objective function is converted as

Φ = ‖Wd(Gm− dobs)‖2
+ µ‖Wm(m−mre f )‖2 (5)

after which we take the derivative of m using Equation (5), obtaining

(GTWT
d WdG+µWT

mWm)m = GTWT
d Wddobs + µWT

mWmmre f (6)

and use the conjugate gradient method to resolve Equation (6) in the actual inversion
application process.

Next, we use the generalized cross-validation (GCV) method [52–54] to choose a suit-
able regularization parameter. Using GCV in inverse problems with inequality constraints,
such as positivity, requires solving a number of auxiliary optimization problems, which
in turn requires a significant amount of computation. If no other information is available,
the value of µ obtained in this manner can be used directly in the final inversion that
has positivity imposed. In this case, only one logarithmic barrier solution is required.
Numerical tests indicate that this simplistic use of GCV is, in fact, surprisingly effective
unless the data have a large negative bias or are distributed too sparsely [52]. Therefore, the
GCV curve is obtained using the relationship between different µ and the corresponding
correlation functions V(µ) as

V(µ) =
‖Wd(Gm− dobs)−WdJM−1B‖2

[N − trace
(

WdJM−1JTWT
d

)
]
2 (7)

where the implication in Equation (7) is same as above, N is the number of data; and trace
represents the matrix trace operation. Meanwhile,

M = JTWT
d RdWdJ+µWT

mRmWm (8)

B = JTWT
d RdWd(G m− dobs)+µWT

mRmWm(m−mre f ) (9)

where J is the Jacobian matrix; Rd and Rm represent the diagonal matrix of Φd and Φm, respec-
tively, whose diagonal elements are determined by the choice of general measures [55,56].
In general, the inflection point of the GCV curve is chosen as the suitable regularization
parameter.

In this study, we did not use a seismic tomography model or other data as our initial
density model in the process of gravity inversion because we hoped the AMC could be
presented only using gravity data. The constrained model is the smoothest model. We need
to set the inversion parameters. The inversion area is segment 27, and the surrounding area
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in the SWIR is between 50.2◦ E and 50.7◦ E and between 37.9◦ S and 37.5◦ S. The depth
ranges from 0 to 18 km. The lateral and vertical grid sizes are 0.5 km and 1 km, respectively.
We consider the inversion result of the regularization parameter at the inflection point (µ =
8.8) of the GCV curve (Figure 6) to be the final result.
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4. Inversion Results

We obtained the final density anomaly imaging result using the inversion method
noted above, with appropriate parameters. The inverted density model produces the
predicted gravity anomalies, which are very close to the observed gravity data with data
misfit ± 1 mGal (Figure 7).

Minerals 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

[55,56]. In general, the inflection point of the GCV curve is chosen as the suitable regu-
larization parameter. 

In this study, we did not use a seismic tomography model or other data as our initial 
density model in the process of gravity inversion because we hoped the AMC could be 
presented only using gravity data. The constrained model is the smoothest model. We 
need to set the inversion parameters. The inversion area is segment 27, and the sur-
rounding area in the SWIR is between 50.2° E and 50.7° E and between 37.9° S and 37.5° S. 
The depth ranges from 0 to 18 km. The lateral and vertical grid sizes are 0.5 km and 1 km, 
respectively. We consider the inversion result of the regularization parameter at the in-
flection point (μ = 8.8) of the GCV curve (Figure 6) to be the final result. 

 
Figure 6. The GCV curve of gravity inversion. The horizontal axis represents regularization, and 
the vertical axis represents GCV function. The inflection point’s μ is 8.8. 

4. Inversion Results 
We obtained the final density anomaly imaging result using the inversion method 

noted above, with appropriate parameters. The inverted density model produces the 
predicted gravity anomalies, which are very close to the observed gravity data with data 
misfit ± 1 mGal (Figure 7). 

 
Figure 7. (a) Predicted data of inverted density model and (b) data misfit between the observed and 
predicted data. The solid white line and dotted white lines represent segment 27’s axis and two 
NTDs, respectively. The red star denotes the Duanqiao hydrothermal field [17]. 

Figure 7. (a) Predicted data of inverted density model and (b) data misfit between the observed and
predicted data. The solid white line and dotted white lines represent segment 27’s axis and two
NTDs, respectively. The red star denotes the Duanqiao hydrothermal field [17].

The inverted density model demonstrates the three-dimensional density variation in
the observed gravity anomaly (Figure 5b). In Figure 8, we present slices of lateral density
anomaly distribution at depths of 5 km, 9 km, 13 km, and 17 km. At 5 km deep, the density
anomaly’s amplitude is large. A low-density anomaly and a high-density anomaly appear
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beneath both the south and north sides of segment 27’s axis. In addition, high-density
anomaly characteristics start to appear beneath NTDs on segment 27’s west and east flanks
(Figure 8a). As depth increases from 5 to 9 km, a low-density anomaly starts to appear
beneath the Duanqiao hydrothermal field, reaching a minimum value of −0.2 g/cm3 at
9 km (Figure 8b). High-density anomalies beneath NTDs also reach the maximum at this
depth. In this depth range, areas with low- and high-density anomalies are distributed
at intervals on segment 27’s axis. As depth increases from 13 to 17 km in the uppermost
mantle, the low-density anomaly characteristic beneath the Duanqiao hydrothermal field
starts to weaken (Figure 8c). Similarly, the density anomaly characteristics beneath other
areas weaken as depth increases, and the western NTD retains a high-density anomaly at
17 km (Figure 8d). In general, the study area presents a variation in density with depth
beneath different areas. Density anomaly variation characteristics are more obvious in the
crust than they are in the upper mantle.
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Figure 8. Inverted density variations at depths of (a–d). Locations of four cross-sections are shown in
(d): AA′, CC′, and DD′ are across segment 27’s axis, and BB′ is along segment 27’s axis. The solid
white line and dotted white lines represent segment 27’s axis and two NTDs, respectively. The red
star denotes the Duanqiao hydrothermal field. Yellow stars represent several hydrothermal plume
anomalies [17].

5. Discussion
5.1. Artifacts in the Data Misfit

The data misfit is less than 1 mGal between the observed and predicted gravity data,
indicating the data can be fitted well. However, the ~5 km-large artifacts are shown in the
data misfit (Figure 7b), which are not consistent with the 0.5 km-large horizontal inversion
cell. We consider these ~5 km-large artifacts are probably from the originally collected data.
Although the interval of measure point in every line is 100 m, the interval of surveyed lines
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is relatively large and approaches 5 km, as shown in Figure 1b. Therefore, in the collection
of ship-borne gravity and multi-beam bathymetry data, the interval between surveyed
lines should also be considered. Reducing the interval between surveyed lines can not only
improve the data resolution but also make the subsequent data processing and calculation
more reliable.

5.2. Heterogeneous Distribution of Crustal Density and Its Implications

In general, gravity-inversion results indicate that segment 27 has low-density anomaly
characteristics and that high-density anomaly characteristics occur beneath NTDs, which
correspond to the shallow source field anomaly (Figure 5b) that was identified using
matched filtering on the Bouguer gravity anomaly, indicating the heterogeneous lateral
distribution of crustal density beneath segment 27 and the surrounding area. Different
tectonic units also have different density anomaly variation characteristics at different
depths, indicating the vertical heterogeneous distribution of crustal density beneath the
study area.

In a given region, a low Bouguer gravity anomaly value can indicate a relatively
thickened crust compared with a normal crust, or a decrease in density. The Bouguer gravity
anomaly (Figure 4b) indicates that segment 27, especially the Duanqiao hydrothermal field,
has the most obvious low Bouguer gravity anomaly; this possibly indicates a thickened
crust beneath segment 27, which is consistent with the seismic imaging results [19]. The
gravity inversion results demonstrate that there is a deep low-density anomaly beneath
the Duanqiao hydrothermal field and the surrounding area, indicating that a low Bouguer
gravity anomaly value is possibly an effect of a thickened crust and low-density materials.
Figure 9 shows four extracted density anomaly profiles with cross-sections AA′, CC′, and
DD′ across segment 27’s axis and BB′ along segment 27’s axis. The AA′ profile (Figure 9a)
suggests that the Duanqiao hydrothermal field has a low-density anomaly in its lower
crust, indicating the existence of melts, whereas its upper crust shows no obvious low-
density anomaly features. Meanwhile, low- and high-density anomalies both north and
south of segment 27 are alternately distributed, centered on the axis of profile AA′. This
corresponds with the lateral density anomaly slices at depths of 5 to 9 km, which reveal
a multi-period topographic difference formed by the ridge’s symmetric spreading. Such
symmetric topographic and density features can also reflect the crustal accretion pattern of
a ridge. During the process of mid-ocean ridge spreading to form a new oceanic crust, the
older oceanic crust is pushed away from the spreading center. A similar symmetric feature
is also shown in magnetic anomaly [57] and crustal age [58].

Figure 9c also illustrates a similar density anomaly. The AA′ and CC′ profiles present
different density features beneath segment 27’s axis in the upper crust. The profile of CC′

shows low density beneath segment 27’s axis, whereas the Duanqiao hydrothermal field
presents high density at shallow depths. Moreover, many boundaries between low- and
high-density anomalies are evident in both profiles. Such boundaries indicate the probable
existence of massive fault structures, which can provide channels for magma migration. In
addition, density anomalies primarily accumulate in the crust, whereas the amplitude is
relatively low in the upper mantle, indicating that the crust is more heterogeneous than the
upper mantle.
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Figure 9. Vertical density anomaly profiles of (a) AA′, (b) BB′, (c) CC′, and (d) DD′ across or along
segment 27’s axis; locations are shown in Figure 8d. Bathymetry variations are shown at the top of
these density anomaly profiles. The red star represents the Duanqiao hydrothermal field. Yellow
stars indicate plume anomalies (see Figure 1). In these four profiles, the boundaries between low-
and high-density anomalies are marked with red curves and regarded as possible fault structures.

5.3. Axial Magma Chamber beneath Segment 27

The segment between the ID and GA TFs has a thicker crust compared with other SWIR
segments [38,59]. SWIR segments 27, 28, and 29 have been extensively investigated. China’s
DAYANG cruises have already discovered Duanqiao, Longqi, and Yuhuang hydrothermal
fields, at the axis or surrounding areas of the segments, respectively. Unlike segments
28 and 29, segment 27 is characterized by a shallow average bathymetry and a dense
distribution of axial seamounts and volcanoes. Low MBA and Na8.0 contents indicate a
relatively thick crust and robust melt supply beneath segment 27 [37]. The velocity structure



Minerals 2022, 12, 1221 12 of 16

obtained using OBS wide-angle seismic reflection data confirms the existence of thickened
oceanic crust [19].

A high-temperature mantle or deep magma chamber is the main requirement for
a robust melt supply beneath a ridge. The crustal velocity structure beneath segment
27 [21] was reconstructed using seismic tomography based on OBS data, which was used
to study magmatism beneath the ultraslow-spreading ridge in previous research. The
velocity anomaly profile along segment 27’s axis presents an obvious low-velocity anomaly
with -0.5 km/s in the lower crust at depths of 5 to 9 km below the seafloor, suggesting
the presence of an AMC beneath segment 27 [20–22]. In our gravity inversion results,
Figure 9b illustrates the density anomaly profile BB′ along segment 27’s axis. A low-density
anomaly with approximately −0.2 g/cm3 is evident beneath the Duanqiao hydrothermal
field at depths of 5 to 11 km. This result is almost consistent with seismic imaging and
also confirms the existence of an AMC beneath segment 27, suggesting that an AMC in the
lower crust is a dominant factor for both the robust melt supply and several hydrothermal
plume anomalies in the study area. Otherwise, an AMC in this depth range indicates a
thickened crust beneath segment 27, which is thicker than the crust beneath some MAR
segments that also have magma chambers [60]. This kind of thickened oceanic crust is
related to the robust melt supply, which is mainly affected by the AMC. However, besides
the AMC or mantle upwelling beneath segment 27, the distant Crozet hotspot could also be
the reason for the enriched melt supply due to the migration of hotspot materials [38–41].

Additionally, beneath segment 27 in profile BB′, an upper crust with a high-density
anomaly covers a lower crust with a low-density anomaly, indicating that cold, dense
materials overlay the high-temperature AMC, possibly impeding the upwelling of hot
materials. This may be one reason why active hydrothermal vents were not explored in the
Duanqiao hydrothermal field [4,11].

The density profile BB′ indicates that, although the AMC is mainly located beneath
the Duanqiao hydrothermal field, its horizontal and vertical range presented by the gravity
model is not completely the same as what is imaged by the seismic model. The AMC
shown in the gravity model is approximately 5 km wide from west to east, which is a little
narrower than that in the seismic model. Moreover, its vertical range in the gravity model
is larger than that in the seismic model [21]. To better understand the AMC’s features,
profile DD′ was extracted across the eastern region of the Duanqiao hydrothermal field.
In the lower crust corresponding to the AMC’s eastern boundary, a low-density anomaly
with small amplitude is visible (Figure 9d), indicating that the AMC’s influence is relatively
weak here. However, the low-density feature is also apparent in the upper crust beneath the
axis of profile DD′; this differs from the high-density anomaly in the upper crust beneath
the Duanqiao hydrothermal field. Profiles BB′ and DD′ reveal many boundaries between
low- and high-density anomalies, indicating that faults are widely distributed beneath
segment 27’s axis and the surrounding area. These faults mainly extend from the top of
the AMC to the seafloor, and most of them appear to be inclined (Figure 9a,c,d), while a
few are relatively vertical (Figure 9b). In addition, these faults’ positions approximately
correspond to explored plume anomalies (Figure 9b–d).

In order to confirm these faults, the boundary recognition method Total Horizontal
Derivative (THDR) [61] was used in the study area. Figure 10 shows the THDR of the
observed gravity anomaly, and the solid black lines covering it denote the boundary
detection results of the Canny operator [62]. In Figure 10, we can see the boundaries
identified by the Canny operator also exist near the Duanqiao hydrothermal field and
several plume anomalies involved in density profiles. Moreover, the positions of boundaries
recognized by the boundary detection method are consistent with the boundaries between
low- and high-density anomalies, which can indicate the existence of these fault structures.
Therefore, the AMC provides a hydrothermal source; meanwhile, many faults provide
channels for magma migration. Under this hydrothermal system, hydrothermal plume
anomalies are not only limited along the axis but also found away from segment 27’s
axis [17,18].
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Figure 10. Total Horizontal Derivative (THDR) of the observed gravity anomaly. The solid black
lines are boundary detection results of Canny operator. Four solid red lines represent the boundaries
related to the Duanqiao hydrothermal field and plume anomalies studied in density profiles (Figure 9).
The solid white line and dotted white lines represent segment 27’s axis and two NTDs, respectively.
The red star denotes the Duanqiao hydrothermal field. Yellow stars represent several hydrothermal
plume anomalies [17].

5.4. Differences between NTDs on Segment 27’s Flanks

NTDs are significant structures and segmented units in an ultraslow-spreading ridge.
The dislocation of the ridge can be accommodated in the form of an oblique spreading
NTD. Oblique spreading can reduce the effective spreading rate of the mid-ocean ridge,
further weakening the magma supply [23]. The crusts of large (over 15 km) NTDs are
thinned significantly and accompanied by decreased volcanism and increased tectonic
activity; however, small (less than 15 km) NTDs do not have these characteristics [37].

We studied differences between NTDs on both flanks of segment 27 using our density
feature (Figure 9b). Density anomaly characteristics differ beneath segment 27’s western
and eastern ends. The low-density anomaly with a small amplitude in the upper crust
beneath the western end probably indicates that magma has migrated westward during
upwelling and redistributed laterally toward the segment’s western end [21]. The high-
density anomaly beneath the eastern end suggests that a rapid cooling mechanism affected
hot materials as they migrated toward the segment’s eastern end. Therefore, an asymmetric
density structure, with a low-density anomaly beneath the western end and a high-density
anomaly beneath the eastern end, exists in the upper crust of segment 27. This asymmetry
possibly played a significant role in the topographic formation of NTDs on both flanks of
segment 27, resulting in deeper bathymetry and more oblique spreading of the eastern
NTD compared with the western one [37]. The density features beneath the NTDs are also
consistent with the bathymetry. The eastern NTD presents a higher density anomaly in its
crust than the western NTD (Figure 8a,b).

6. Conclusions

We calculated the gravity effect of the crust beneath segment 27 and the area surround-
ing it (between the ID and GA TFs in the SWIR) using several corrections and processing
on ship-borne gravity data. Next, we obtained the crustal density structure beneath the
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study area using the gravity inversion method. Our findings, together with the findings of
previous research, lead to the following conclusions:

(1) Crustal density is heterogeneously distributed beneath segment 27 and the surround-
ing area, whereas the upper mantle density is relatively homogeneous. The low Bouguer
gravity anomaly value indicates a thickened crust and low-density crustal materials.

(2) Low- and high-density anomalies are alternately distributed both north and south
of segment 27, reflecting multi-period topographic differences formed by the symmetric
spreading of the ridge.

(3) The obvious low-density anomaly in the lower crust beneath the Duanqiao hy-
drothermal field indicates the existence of an axial magma chamber beneath segment 27.
A high-density upper crust covers the magma chamber, indicating that the upper crust is
cold and dense compared with the lower crust. Widely distributed fault structures provide
channels for magma migration, thus producing many hydrothermal plume anomalies in
segment 27.

(4) Density anomaly characteristics differ beneath the western and eastern ends of
segment 27. Low-density anomaly characteristics beneath the western end indicate that
magma migrates westward and redistributes laterally toward the segment’s western end
during its upwelling. High-density anomaly characteristics beneath the eastern end indicate
that a rapid cooling mechanism affects hot materials as they migrate toward the segment’s
eastern end. This asymmetric structure plays a role in the formation of the NTDs on both
of segment 27’s flanks.
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