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Abstract
What is themaximumnumber of intersections of the boundaries of a simplem-gon and
a simple n-gon? This is a basic question in combinatorial geometry, and the answer
is easy if at least one of m and n is even: If both m and n are even, then every pair
of sides may cross and so the answer is mn. If exactly one polygon, say the n-gon,
has an odd number of sides, it can intersect each side of the m-gon polygon at most
n − 1 times; hence there are at most mn − m intersections. It is not hard to construct
examples that meet these bounds. If bothm and n are odd, the best known construction
has mn − (m + n) + 3 intersections, and it is conjectured that this is the maximum.
However, the best known upper bound is only mn − (m + �n/6�), for m ≥ n. We
prove a new upper bound ofmn− (m+n)+C for some constant C , which is optimal
apart from the value of C .
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1 Introduction

To determine the union of two or more geometric objects in the plane is one of the
basic computational geometric problems. In strong relation to that, determining the
maximumcomplexity of the union of two ormore geometric objects is a basic extremal
geometric problem. We study this problem when the two objects are simple polygons.

Let P and Q be two simple polygons with m and n sides, respectively, where
m, n ≥ 3. We are interested in the maximum number of intersection points of the
boundaries of P and Q, hence we assume that this number is finite, that is, there are
no sides of P and Q that overlap.

This problem was first studied in 1993 by Dillencourt et al. [3]. The cases when
m or n is even are solved there. If m and n are both even, then every pair of sides
may cross and so the answer is mn. Figure 1a shows one of many ways to achieve
this number. If one polygon, say Q, has an odd number n of sides, no line segment s
can be intersected n times by Q, because otherwise each side of Q would have to flip
from one side of s to the other side. Thus, each side of the m-gon P is intersected at
most n − 1 times, for a total of at most mn −m intersections. It is easy to see that this
bound is tight when P has an even number of sides, see Fig. 1b.

When bothm and n are odd, the situation ismore difficult; the bound that is obtained
by the above argument remains atmn−max {m, n}, because the set ofm intersections
that are necessarily “missing” due to the odd parity of n might conceivably overlap
with the n intersections that are “missing” due to the odd parity of m. However, the
best known family of examples gives only mn − (m + n) + 3 = (m − 1)(n − 1) + 2
intersection points, see Fig. 1c.

Conjecture 1 Let P and Q be simple polygons with m and n sides, respectively, such
that m, n ≥ 3 are odd numbers. If they intersect in a finite number of points, then there
are at most mn − (m + n) + 3 intersection points between sides of P and sides of Q.

In [3] an unrecoverable error appears in a claimed proof of Conjecture 1. Another
attempted proof [8] also turned out to have a fault. The only correct improvement over
the trivial upper bound is an upper bound of mn − (m + �n/6�) for m ≥ n, due to
Černý et al. [2]. We will briefly discuss their proof in Sect. 2. We improve the upper
bound to mn − (m + n) + O(1), which is optimal apart from an additional constant:

Theorem 1 There is an absolute constant C such that the following holds. Suppose
that P and Q are simple polygons with m and n sides, respectively, such that m and n
are odd numbers. If they intersect in a finite number of points, then there are at least
m + n −C pairs of a side of P and a side of Q that do not intersect. Hence, there are
at most mn − (m + n) + C intersections.

The value of the constant C that we obtain in our proof is around 22
67
. We did not

make a large effort to optimize this value, and obviously, there is ample space for
improvement.

A preliminary version of this paper was presented at the 36th International Sym-
posium on Computational Geometry (SoCG 2020) in June 2020 [1].
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Fig. 1 a Optimal construction for m = n = 8, with 8 × 8 = 64 intersections. b Optimal construction for
m = 8, n = 7, with 8 × 6 = 48 intersections. c Lower-bound construction for m = 9, n = 7. There are
8 × 6 + 2 = 50 intersections

2 Overview of the Proof

First we establish the crucial statement that the odd parity of m and n allows us to
associate to any two consecutive sides of one polygon a pair of consecutive sides of
the other polygon with a restricted intersection pattern among the four involved sides
(Lemma 5 and Fig. 5). This is the only place where we use the fact that P and Q are
polygons, rather than merely two sets of pairwise disjoint segments, and that each of
them has an odd number of sides.

A simple observation (Observation 2) relates the bound on C in Theorem 1 to the
number of connected components of the bipartite “disjointness graph” between the
polygon sides of P and Q. Our goal is therefore to show that there are few connected
components.

We proceed to consider two pairs of associated pairs of sides (four consecutive pairs
with eight sides in total). Unless they form a special structure, they cannot belong to
four different connected components (Lemma 7). (Four is the maximum number of
components that they could conceivably have.) The proof involves a case analysis with
amoderate number of cases. This structural statement allows us to reduce the bound on
the number of components by a constant factor, and thereby, we can already improve
the best previous result on the number of intersections (Proposition 9 in Sect. 6).

Finally, to get a constant bound on the number of components, our strategy is to
use Ramsey-theoretic arguments like the Erdős–Szekeres Theorem on caps and cups
or the pigeonhole principle (see Sect. 7) in order to impose additional structure on the
configurations that we have to analyze. This is the place in the argument where we
give up control over the constant C in exchange for useful properties that allow us
to derive a contradiction. This eventually boils down again to a moderate number of
cases (Sect. 8.2).

By contrast, the proof of the bound mn − (m + �n/6�) for m ≥ n by Černý et al.
proceeds in a more local manner. The core of their argument [2, Lemma 3], which
is proved by case analysis, is that it is impossible to have six consecutive sides of
one polygon together with six distinct sides of the other polygon forming a perfect
matching in the disjointness graph. This statement is used to bound the number of
components of the disjointness graph. (Lemma 8 below uses a similar argument.)
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3 General Assumptions and Notations

Let P and Q be two simple polygons with sides p0, p1, . . . , pm−1 and q0, q1, . . . ,
qn−1. We assume that m ≥ 3 and n ≥ 3 are odd numbers. Indices are taken modulo
m or n, respectively. We consider the sides pi and q j as closed line segments. The
condition that the polygon P is simple means that its edges are pairwise disjoint
except for the unavoidable common endpoints between consecutive sides pi and pi+1.
Throughout this paper, unless stated otherwise, we regard a polygon as a piecewise
linear closed curve, and we disregard the region that it encloses. Thus, by intersections
between P and Q, we mean intersection points between the polygon boundaries.

General Position. The basic assumption that is made throughout the paper is that
P and Q have only finitely many intersection points, i.e., there are no overlapping
edges. In addition, we will assume from now on that no vertex of one polygon lies
on the other polygon. This assumption will be justified in Sect. 9 by a non-trivial
perturbation. Thus, every intersection point between P and Q is an interior point of
two polygon sides.

Furthermore, we assume for convenience that no three vertices of P and Q com-
bined lie on a line, and no two sides of P and Q combined are parallel. Indeed, given
that no vertex of one polygon lies on the other polygon, this can be achieved easily by
another small perturbation of the sides without changing the intersection pattern.

TheDisjointnessGraph.As in [2], our basic tool of analysis is the disjointness graph
of P and Q, which we denote by GD = (VD, ED). (Its original name in [2] is non-
intersection graph.) It is a bipartite graph with node set VD = {p0, p1, . . . , pm−1} ∪
{q0, q1, . . . , qn−1} and edge set ED = {(pi , q j ) | pi ∩ q j = ∅}. (Since we are
interested in the situation where almost all pairs of edges intersect, the disjointness
graph is more useful than its more commonly used complement, the intersection
graph.) Our goal is to bound from above the number of connected components of GD:

Observation 2 If GD has at most C connected components, then GD has at least
m + n−C edges. Thus, there are at least m + n−C pairs of a side of P and a side of
Q that do not intersect, and there are at most mn − (m + n) + C crossings between
P and Q.

For a polygon side s of P or Q, CC(s) denotes the connected component of the
disjointness graph GD to which s belongs.

Geometric Notions. Let s and s′ be two line segments. We denote by �(s) the line
through s and by I (s, s′) the intersection of �(s) and �(s′), see Fig. 4.We say that s and
s′ are avoiding if neither of them contains I (s, s′). (This requirement is stronger than
just disjointness.) If s and s′ are avoiding or share an endpoint, we denote by rs′(s)
the ray from I (s, s′) to infinity that contains s, and by rs(s′) the ray from I (s, s′) to
infinity that contains s′. Moreover, we denote by Cone(s, s′) the convex cone with
apex I (s, s′) between these two rays.

Observation 3 If a segment s′′ that does not go through I (s, s′) has one of its end-
points in the interior of Cone(s, s′), then s′′ cannot intersect both rs′(s) and rs(s′). In
particular, it cannot intersect both s and s′.
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L (e2) = a

L (e1) = ∗

L (e5) = b

L (e4) = a

L (e3) = b

Fig. 2 The edge-labeled multigraph G0 in Proposition 4

Ib

II

Ia

IV

L (e2) = a

L (e1) = ∗

L (e5) = b L (e4) = a

L (e3) = b

IIIaIIIb

Fig. 3 The unfolded graph G′
0

4 Associated Pairs of Consecutive Sides

We begin with the following seemingly unrelated claim concerning a specific small
edge-labeled multigraph. Let G0 = (V0, E0) be the undirected multigraph shown in
Fig. 2. It has four nodes V0 = {I, II, III, IV} and five edges E0 = {e1 = {II, IV}, e2 =
{I, IV}, e3 = {I, II}, e4 = {I, III}, e5 = {I, III}}. Every edge ei ∈ E0 has a label
L(ei ) ∈ {a, b, ∗} as follows: L(e1) = ∗, L(e2) = L(e4) = a, L(e3) = L(e5) = b.

Proposition 4 If W is a closedwalk in G0 of odd length, thenW contains two cyclically
consecutive edges of labels a and b.

Proof Suppose for contradiction that W does not contain two consecutive edges of
labels a and b. SinceW cannot switch between the a-edges and the b-edges in I or III,
we can split I (resp., III) into two nodes Ia and Ib (resp., IIIa and IIIb) such that every
a-labeled edge that is incident to I (resp., III) in G0 becomes incident to Ia (resp.,
IIIa) and every b-labeled edge that is incident to I (resp., III) in G0 becomes incident
to Ib (resp., IIIb). In the resulting graph G ′

0, which is shown in Fig. 3, we can find a
closed walk W ′ that corresponds to W and that uses the edges with the same name
as W . Since G ′

0 is a path, every closed walk has even length. Thus, W cannot have
odd length. ��
Lemma 5 Let pa and pb be two sides of P that are either consecutive or avoiding
such that CC(pa) = CC(pb). Then there are two consecutive sides qi , qi±1 of Q
such that (pa, qi ), (pb, qi±1) ∈ ED and (pa, qi±1), (pb, qi ) /∈ ED. Furthermore,
I (pa, pb) ∈ Cone(qi , qi±1) or I (qi , qi±1) ∈ Cone(pa, pb).

The sign ‘±’ is needed since we do not know which of the consecutive sides intersects
pi and is disjoint from pi+1.
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pa

pb
I = Cone ( pa , pb)

II

III

IV

Q
I (pa , pb)

�rpa ( pb)

s s ′

I (s, s ′)�rpb (pa )

�(s)
�(s ′)

Fig. 4 How an odd polygon Q can intersect two segments. The segments pa and pb are avoiding, whereas
s and s′ are disjoint but non-avoiding. In this situation, we say that s stabs s′

Proof We may assume without loss of generality that I (pa, pb) is the origin, pa lies
on the positive x-axis and the interior of pb is above the x-axis. The lines �(pa)
and �(pb) partition the plane into four convex cones (“quadrants”). Denote them in
counterclockwise order by I, II, III, IV, starting with I = Cone(pa, pb), see Fig. 4.

Every side of Q must intersect pa or pb (maybe both), since CC(pa) = CC(pb).
One can now check that traversing the sides of Q in order generates a closed walk W
in the graph G0 of Fig. 2. For example, a side of Q that we traverse from its endpoint
in I to its endpoint in III and that intersects pa corresponds to traversing the edge
e4 = {I, III} from I to III, whose label is L(e4) = a. We do not care which of pa and
pb are crossed when we move between II and IV.

It follows from Proposition 4 that Q has two consecutive sides qi , qi±1 such that
qi intersects pb and does not intersect pa , while qi±1 intersects pa and does not
intersect pb. Hence, (pa, qi ), (pb, qi±1) ∈ ED and (pa, qi±1), (pb, qi ) /∈ ED. Fur-
thermore, I (qi , qi±1) must be either in I or III as these are the only nodes in G0
that are incident both to an edge labeled a and an edge labeled b. In the latter case
I (pa, pb) ∈ Cone(qi , qi±1), and in the former case I (qi , qi±1) ∈ Cone(pa, pb). ��
Let pi , pi+1 be two sides of P such that CC(pi ) = CC(pi+1). Then by Lemma 5
there are sides q j , q j±1 of Q such that (pi , q j ), (pi+1, q j±1) ∈ ED. We say that
such a pair q j , q j±1 is associated to pi , pi+1. By Lemma 5 we have I (q j , q j±1) ∈
Cone(pi , pi+1) or I (pi , pi+1) ∈ Cone(q j , q j±1). If the first condition holds we say
that pi , pi+1 is hooking and q j , q j±1 is hooked, see Fig. 5. In the second case we say
that pi , pi+1 is hooked and q j , q j±1 is hooking. Note that it is possible that a pair
of consecutive sides is associated with several pairs and that it is both hooking and
hooked (with respect to two different pairs from the other polygon or even with respect
to a single pair, as in Fig. 5c).

Observation 6 (Axis Property) If the pair pi , pi+1 and the pair q j , q j±1 are asso-
ciated such that (pi , q j ), (pi+1, q j±1) ∈ ED, then the line through I (pi , pi+1) and
I (q j , q j±1) separates pi and q j±1 on the one side from pi+1 and q j on the other side.

We call this line the axis of the associated pairs. In our figures it appears as a dotted
line when it is shown.
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pi

pi+1

qj

qj±1 pi

pi+1

qj

qj±1
pi

pi+1

qj

qj±1

(a) (b) (c)

Fig. 5 Hooking and hooked pairs of consecutive sides. a The pair pi , pi+1 is hooking and the associated
pair q j , q j±1 is hooked. b Vice versa. c Both pairs are both hooking and hooked

pi+1

pj +1

pj

qj ′

qi ′

qi ′±1

qj ′±1

pi

Fig. 6 The pair pi , pi+1 is hooking with respect to the pair qi ′ , qi ′±1, and p j , p j+1 is hooked with respect
to q j ′ , q j ′±1

5 The Principal Structure Lemma About Pairs of Associated Pairs

Lemma 7 Let pi , pi+1, p j , p j+1 be two pairs of consecutive sides of P that belong to
four different connected components of GD. Then it is impossible that both pi , pi+1
and p j , p j+1 are hooked or that both pairs are hooking.

Figure 6 shows a scenario with four different components, together with the associ-
ated pairs of Q. The combinatorial structure of such a configuration is unique up to
relabeling.

Proof Suppose by contradiction that both pairs pi , pi+1 and p j , p j+1 are hook-
ing or both of these pairs are hooked. Let qi ′ , qi ′±1 and q j ′, q j ′±1 be associ-
ated (hooked or hooking) pairs of pi , pi+1 and p j , p j+1, respectively, such that
(pi , qi ′), (pi+1, qi ′±1) ∈ ED and (p j , q j ′), (p j+1, q j ′±1) ∈ ED. Recall that the exis-
tence of such pairs follows from Lemma 5.

For better readability, we rename pi , pi+1 and qi ′ , qi ′±1 as a, b and A, B, and we
rename p j , p j+1 and q j ′ , q j ′±1 as a′, b′ and A′, B ′. The small letters denote sides of
P and the capital letters denote sides of Q. In the new notation, a, b are consecutive
sides of P with an associated pair A, B of consecutive sides of Q, and a′, b′ are two
other consecutive sides of P with an associated pair A′, B ′ of consecutive sides of Q.
The disjointness graph GD contains the edges (a, A), (b, B), (a′, A′), (b′, B ′). Since
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F1

F2

F3

F4

F5

F6

a

b

B ′

A ′b

a

A ′

B ′

I (A ′ ,B ′)

I (a, b)

I (A ′, b)

b

a

A′

B ′

(a) (b) (c)

Fig. 7 Normalizing the position of a, b, A′, B′

a, b, a′, b′ belong to different connected components of GD, it follows that the nodes
A, B, A′, B ′, to which they are connected, belong to the same four different connected
components. There can be no more edges among these eight nodes, and they induce
a matching in GD. One can remember as a rule that every side of P intersects every
side of Q among the eight involved sides, except when their names differ only in their
capitalization.

Suppose first that both a, b and a′, b′ are hooking. Hence, I (A, B) ∈ Cone(a, b)
and I (A′, B ′) ∈ Cone(a′, b′). Since each of A′ and B ′ intersects each of a and b they
must lie as in Fig. 7a. To facilitate the future discussion, we will now normalize the
positions of these four sides.

We first ensure that the intersection I (A′, b) is directly adjacent to the two polygon
vertices I (a, b) and I (A′, B ′) in the arrangement of the four sides, as shown in Fig. 7b.
This can be achieved by swapping the labels a, Awith the labels b, B if necessary, and
by independently swapping the labels a′, A′ with b′, B ′ if necessary. Our assumptions
are invariant under these swaps.

By an affine transformation we may finally assume that I (A′, b) is the origin; b
lies on the x-axis and is directed to the right; and A′ lies on the y-axis and is directed
upwards. Then a has a positive slope and its interior is in the upper half-plane, and B ′
has a positive slope and its interior is to the right of the y-axis, see Fig. 7c.

The arrangement of the lines through a, b, A′, B ′ has 11 faces, some of which are
marked as F1, . . . , F6 in Fig. 7. Our current assumption is that both a, b and a′, b′ are
hooking: The hooking of a, bmeans that I (A, B) ∈ Cone(a, b) = F1∪F2∪F3. By the
Axis Property (Observation 6), the line through I (A′, B ′) and I (a′, b′) must separate
A′ from B ′. Therefore, the vertex I (a′, b′) can lie only in F2 ∪ F4 ∪ F5 ∪ F6. Thus,
based on the faces that contain I (A, B) and I (a′, b′), there are 12 cases to consider.
Some of these cases are symmetric, and all can be easily dismissed, as follows.

In the figures, the four sides a′, b′, A′, B ′, which are associated to the second asso-
ciated pair are dashed. All dashed sides of one polygon must intersect all solid sides
of the other polygon.

1. I (A, B) ∈ F1 and I (a′, b′) ∈ F2, see Fig. 8 (symmetric to I (A, B) ∈ F2 and
I (a′, b′) ∈ F4). Let ra (resp., rb) be the ray on �(a) (resp., �(b)) that goes from
the right endpoint of a (resp., b) to the right. Since a′ is not allowed to cross b, the
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ra

F1

F2

F3

F4

F5

F6

a

b

B ′

A ′

B

a′

A

rb

Fig. 8 Case 1: I (A, B) ∈ F1, I (a′, b′) ∈ F2

F1

F2
F3

F4

F5

F6

a

b

B ′

A′

B

a′b′A

rb

Fig. 9 Case 2: I (A, B) ∈ F1, I (a′, b′) ∈ F4

only way for a′ to intersect A is by crossing rb. Similarly, in order to intersect B,
a′ has to cross ra . However, it cannot intersect both ra and rb, by Observation 3.
Since we did not use the assumption that A, B are hooked, the analysis holds for
the symmetric case 6, I (A, B) ∈ F2 and I (a′, b′) ∈ F4, as well.

2. I (A, B) ∈ F1 and I (a′, b′) ∈ F4, see Fig. 9. Since a′ is not allowed to cross b, the
only way for a′ to intersect B is by crossing rb. However, in this case a′ cannot
intersect A.

3. I (A, B) ∈ F1 and I (a′, b′) ∈ F5, see Fig. 10 (symmetric to I (A, B) ∈ F3 and
I (a′, b′) ∈ F4). Both a′ and b′ must intersect A, and they have to go below the line
�(b) to do so. However, a′ can only cross �(b) to the right of b, and b′ can only
cross �(b) to the left of b, and therefore they cross A from different sides. This is
impossible, because a′ and b′ start from the same point.

4. I (A, B) ∈ F1 and I (a′, b′) ∈ F6. If one of the polygon sides a′ and b′ has
an endpoint in F4 (see Fig. 11a), then this side cannot intersect B. So assume
otherwise, see Fig. 11b. The side a′ intersects B ′ and is disjoint from A′, while b′
is disjoint from B ′ and intersects A′. (Due to space limitation some line segments
are drawn schematically as curves.) Thus, each of a′ and b′ has an endpoint in
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F1
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F3

F4

F5

F6

a

b

B ′

A′

B

a′

A

b′

Fig. 10 Case 3: I (A, B) ∈ F1 and I (a′, b′) ∈ F5

F1

F2

F3

F4

F5

F6

a

b

B ′

A ′

B

a′
A

b′

(a) At least one of the sides a and b has

an endpoint in F4 .

F1

F2

F3

F4

F5

F6

a

b

B ′

A ′

B

a′

A

b′

(b) None of the sides a and b has an endpoint

in F4 .

′ ′ ′ ′

Fig. 11 Case 4: I (A, B) ∈ F1 (or I (A, B) ∈ F2, which is similar) and I (a′, b′) ∈ F6

F2 ∪ F5. But then I (A, B) ∈ Cone(a′, b′) and it follows from Observation 3 that
neither A nor B can intersect both a′ and b′.

5. I (A, B) ∈ F2 and I (a′, b′) ∈ F2, see Fig. 12. Since a′, b′ is hooking, I (A′, B ′) ∈
Cone(a′, b′), and the line segments a′, b′, A′, b, B ′ enclose a convex pentagon.
The polygon side A must intersect b, a′, and b′, but it is restricted to F2 ∪ F4.
It follows that A must intersect three sides of the pentagon, which is impossible.
(This is in fact the only place where we need the assumption that a′, b′ is hooking.)

6. I (A, B) ∈ F2 and I (a′, b′) ∈ F4. This is symmetric to case 1.
7. I (A, B) ∈ F2 and I (a′, b′) ∈ F5, see Fig. 13 (symmetric to I (A, B) ∈ F3 and

I (a′, b′) ∈ F2). Then A is restricted to F2 ∪ F4, while a′ and b′ do not intersect
F2 and F4. Therefore A can intersect neither a′ nor b′.

8. I (A, B) ∈ F2 and I (a′, b′) ∈ F6. This case is very similar to case 4, where
I (A, B) ∈ F1 and I (a′, b′) ∈ F6, see Fig. 11. If one of the polygon sides a′
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F1

F2

F3

F4

F5

F6

a

b

B ′

A′

Ab′ a′

Fig. 12 Case 5: I (A, B) ∈ F2, I (a′, b′) ∈ F2

and b′ has an endpoint in F4, then it cannot intersect B. Otherwise, I (A, B) ∈
Cone(a′, b′) and therefore, neither A nor B can intersect both a′ and b′.

9. I (A, B) ∈ F3 and I (a′, b′) ∈ F2. This is symmetric to case 7.
10. I (A, B) ∈ F3 and I (a′, b′) ∈ F4. This is symmetric to case 3.
11. I (A, B) ∈ F3 and I (a′, b′) ∈ F5, see Fig. 14. Then the intersection of b′ and A

can lie only in the lower left quadrant. It follows that the triangle whose vertices
are I (a′, b′), I (a′, A), and I (A, b′) contains a and does not contain I (A, B). This
in turn implies that B cannot intersect both b′ and a, without intersecting B ′.

12. I (A, B) ∈ F3 and I (a′, b′) ∈ F6, see Fig. 15. As in case 4, we may assume that
neither a′ nor b′ has an endpoint in F4, since then this side could not intersect B.
We may also assume that I (A, B) /∈ Cone(a′, b′) for otherwise neither A nor B
intersects both of a′ and b′, according to Observation 3. If a′ has an endpoint in F2,
then it cannot intersect B (see Fig. 15a). Otherwise, if a′ has an endpoint in F5,
then B cannot intersect b′ (Fig. 15b).

We have finished the case that a, b and a′, b′ are hooking. Suppose now that a, b
and a′, b′ are hooked with respect to A, B and A′, B ′, respectively. Then A, B is
hooking with respect to a, b and A′, B ′ is hooking with respect to a′, b′. Recall that
A, B, A′, and B ′ belong to four different connected components. Hence, this case can
be handled as above, after exchanging the capital letters with the small letters (i.e.,
exchanging P and Q). ��

6 AWeaker Bound

The principal structure lemma is already powerful enough to get an improvement over
the previous best bound:

Lemma 8 GD has at most (n + 5)/2 connected components.
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Fig. 13 Case 7: I (A, B) ∈ F2, I (a′, b′) ∈ F5
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F3

F4

F5

F6

a

b

B ′

A′

A

a′

B

b′

Fig. 14 Case 11: I (A, B) ∈ F3 and I (a′, b′) ∈ F5

Proof Partition the sides q0, q1, . . . , qn−1 of Q into (n−1)/2 disjoint pairs q2i , q2i+1,
discarding the last side qn−1. Let H+ denote the subset of these pairs that are hooked.
Suppose first that this set contains some pair q2i0 , q2i0+1 of sides that are in two
different connected components. Combining q2i0 , q2i0+1 with any of the remaining
pairs q2i , q2i+1 of H+, Lemma 7 tells us that the sides q2i and q2i+1 must either
belong to the same connected component, or one of them must belong to CC(q2i0)
or CC(q2i0+1). In other words, each remaining pair contributes at most one “new”
connected component, and it follows that the sides in H+ belong to at most |H+| + 1
connected components. This conclusion holds also in the case that H+ contains no
pair q2i0 , q2i0+1 of sides that are in different connected components.

The same argument works for the complementary subset H− of pairs that are not
hooked, but hooking. Along with CC(qn−1) there are at most (|H+|+1)+(|H−|+1)+
1 = (n − 1)/2 + 3 = (n + 5)/2 components. ��
Together with Observation 2, this already improves the previous bound of mn −
(m + �n/6�) for a large range of parameters, namely when m ≥ n ≥ 11:
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(a) If a has an endpoint in F2 , then it cannot

intersect B.

F1
F2
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F4
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F6
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b

B ′A ′

b′

a′

B

(b) If a has an endpoint in F5, then B cannot

intersect b .

′ ′
′

Fig. 15 Case 12: I (A, B) ∈ F3 and I (a′, b′) ∈ F6

Proposition 9 Let P and Q be simple polygons with m and n sides, respectively, such
that m and n are odd and m ≥ n ≥ 3. Then there are at most mn − (m + (n − 5)/2)
intersection points between P and Q.

7 Ramsey-Theoretic Tools

We recall some classic results. A tournament is a directed graph that contains between
every pair of nodes x, y either the arc (x, y) or the arc (y, x) but not both. A tournament
is transitive if for every three nodes x, y, z the existence of the arcs (x, y) and (y, z)
implies the existence of the arc (x, z). Equivalently, the nodes can be ordered on a
line such that all arcs are in the same direction. The following is easy to prove by
induction.

Lemma 10 (Erdős and Moser [5]) Every tournament on a node set V contains a
transitive sub-tournament on 1 + �log2 |V |� nodes.

Proof Choose v ∈ V arbitrarily, and let N ⊆ V − {v} with |N | ≥ (|V | − 1)/2 be the
set of in-neighbors of v or the set of out-neighbors of v, whichever is larger. Then v

together with a transitive sub-tournament of N gives a transitive sub-tournament of
size one larger. ��

A set of points p1, p2, . . . , pr in the plane sorted by x-coordinates (and with distinct
x-coordinates) forms an r-cup (resp., r-cap) if pi is below (resp., above) the line
through pi−1 and pi+1 for every i with 1 < i < r .

Theorem 11 (Erdős–Szekeres Theorem for caps and cups in point sets [6]) For any
two integers r ≥ 2 and s ≥ 2, the value ES(r , s) := (r+s−4

r−2

)
fulfills the following

statement:
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Suppose that P is a set of ES(r , s) + 1 points in the plane with distinct x-
coordinates such that no three points of P lie on a line. Then P contains an
r-cup or an s-cap.

Moreover, ES(r , s) is the smallest value that fulfills the statement.

A similar statement holds for lines by the standard point-line duality. A set of lines
�1, �2, . . . , �r sorted by slope forms an r-cup (resp., r-cap) if �i−1 and �i+1 intersect
below (resp., above) �i for every 1 < i < r .

Theorem 12 (Erdős–Szekeres Theorem for lines) For the numbers ES(r , s) from
Theorem 11, the following statement holds for any two integers r ≥ 2 and s ≥ 2:

If L is a set of ES(r , s) + 1 non-vertical lines in the plane no two of which are
parallel and no three of which intersect at a common point, then L contains an
r-cup or an s-cap.

Theorem 13 (Erdős–Szekeres Theorem formonotone subsequences [6]) For any inte-
ger r ≥ 0, a sequence of r2 + 1 distinct numbers contains either an increasing
subsequence of length r + 1 or a decreasing subsequence of length r + 1.

8 Proof of Theorem 1

8.1 ImposingMore Structure on the Examples

Going back to the proof of Theorem 1, recall that in light of Observation 2 it is enough
to prove that GD, the disjointness graph of P and Q, has at most constantly many
connected components.

We will use the following constants: C6 := 6; C5 := (C6)
2 + 1 = 37; C4 :=

ES(C5,C5) + 1 = (70
35

) + 1 = 112,186,277,816,662,845,433 < 267; C3 := 2C4−1;

C2 := C3 + 5; C1 := 8C2; C := C1 − 1 < 22
67
.

We claim thatGD has atmostC connected components. Suppose thatGD has at least
C1 = C + 1 connected components, numbered as 1, 2, . . . ,C1. For each connected
component j , we find two consecutive sides qi j , qi j+1 of Q such that CC(qi j ) = j
and CC(qi j+1) = j . We call qi j the primary side and qi j+1 the companion side of
the pair. We take these C1 consecutive pairs in their cyclic order along Q and remove
every second pair. This ensures that the remaining C1/2 pairs are disjoint in the sense
that no side of Q belongs to two different pairs.

We apply Lemma 5 to each of the remaining C1/2 pairs qi j , qi j+1 and find an
associated pair pk j , pk j±1 such that (qi j , pk j ), (qi j+1, pk j±1) ∈ ED. Therefore,
CC(qi j ) = CC(pk j ) and CC(qi j+1) = CC(pk j±1) = CC(qi j ). Again, we call pk j
the primary side and pk j±1 the companion side. As before, we delete half of the pairs
pk j , pk j±1 in cyclic order along P , along with their associated pairs from Q, and thus
we ensure that the remaining C1/4 pairs are disjoint also on P .

At least C1/8 of the remaining pairs qi j , qi j+1 are hooking or at least C1/8 of
them are hooked. We may assume that at least C2 = C1/8 of the pairs qi j , qi j+1 are
hooking with respect to their associated pair, pk j , pk j±1, for otherwise, pk j , pk j±1 is
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hooking with respect to qi j , qi j+1 and we may switch the roles of P and Q. Let us
denote by Q2 the set of C2 hooking consecutive pairs (qi j , qi j±1) at which we have
arrived. (Because of the potential switch, we have to denote the companion side by
qi j±1 instead of qi j+1 from now on.)

By construction, all C2 primary sides qi j of these pairs belong to distinct compo-
nents. We now argue that all C2 adjacent companion sides qi j±1 with at most one
exception lie in the same connected component, provided that C2 ≥ 4.

We model the problem by a graph whose nodes are the connected components
of GD. For each of the C2 pairs qi j , qi j±1, we insert an edge between CC(qi j ) and
CC(qi j±1). The result is a multigraph with C2 edges and without loops. Two disjoint
edges would represent two consecutive pairs of the form (qi j , qi j±1) whose four sides
are in four distinct connected components, but this is a contradiction toLemma7. Thus,
the graph has no two disjoint edges, and such graphs are easily classified: they are the
triangle (cycle on three vertices) and the star graphs K1t , possibly with multiple edges.
Overall, the graph involves at least C2 ≥ 4 distinct connected components CC(qi j ),
and therefore the triangle graph is excluded. Let v be the central vertex of the star.
There can be at most one j with CC(qi j ) = v, and we discard it. All other sides qi j
have CC(qi j ) = v, and therefore CC(qi j±1) must be the other endpoint of the edge,
that is, v.

In summary, we have found C2 − 1 adjacent pairs qi j , qi j±1 with the following
properties.

• The primary sides qi j belong to C2 − 1 distinct components.
• All companion sides qi j±1 belong to the same component, distinct from the other
C2 − 1 components.

• All 2C2 − 2 sides of the pairs qi j , qi j±1 are distinct.
• Each qi j , qi j±1 is hooking with respect to an associated pair pk j , pk j±1.
• All 2C2 − 2 sides of the pairs pk j , pk j±1 are distinct.

Let us denote by Q′
2 the set of C2 − 1 sides qi j .

Proposition 14 There are no six distinct sides qa, qb, qc, qd , qe, q f among the C2 −1
sides qi j ∈ Q′

2 such that qa, qb are avoiding or consecutive, qc, qd are avoiding or
consecutive, and qe, q f are avoiding or consecutive.

Proof Suppose for contradiction that six such sides exist. It follows from Lemma 5
that there are two consecutive sides pa′ and pb′ of P such that CC(pa′) = CC(qa)
and CC(pb′) = CC(qb).

Similarly, we find a pair of consecutive sides pc′ and pd ′ of P such that CC(pc′) =
CC(qc) and CC(pd ′) = CC(qd), and the same story for e and f . By the pigeon-
hole principle, two of the three consecutive pairs (pa′, pb′), (pc′, pd ′), (pe′ , p f ′) are
hooking or two of them are hooked. This contradicts Lemma 7. ��
Define a complete graph whose nodes are the C2 − 1 sides qi j ∈ Q′

2, and color
an edge (qi j , qik ) red if qi j and qik are avoiding or consecutive and blue otherwise.
Proposition 14 says that this graph contains no red matching of size three. This means
that we can get rid of all red edges by removing atmost four nodes. To see this, pick any
red edge and remove its two nodes from the graph. If any red edge remains, remove its
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�2

�3

�4

�5

�6

�1

�0

a3
a4

a1

a2

a5

a6

a0

Fig. 16 The seven sides a0, a1, . . . , a6. The lines �0, . . . , �6 form a 7-cap. The side a0 could be between
any two consecutive intersection points of l0 with the rest of the lines

two nodes. Then all red edges are gone, because otherwise we would find a matching
with three red edges.

We conclude that there is a blue clique of size C3 = C2 − 5, i.e., there is a set
Q3 ⊂ Q′

2 of C3 polygon sides among the C2 − 1 sides qi j ∈ Q′
2 that are pairwise

non-avoiding and disjoint, i.e., they do not share a common endpoint.
Our next goal is to find a subset of seven segments in Q3 that are arranged as in

Fig. 16. To define this precisely, we say for two segments s and s′ that s stabs s′ if
I (s, s′) ∈ s′, see Fig. 4. Among any two non-avoiding and non-consecutive sides s
and s′, either s stabs s′ or s′ stabs s, but not both. Define a tournament T whose nodes
are the C3 sides qi j ∈ Q3, and the arc between each pair of nodes is oriented towards
the stabbed side. It follows from Lemma 10 that T has a transitive sub-tournament of
size 1 + �log2 C3� = C4.

Furthermore, since C4 = ES(C5,C5)+ 1, it follows from Theorem 12 that there is
a subset of C5 sides such that the lines through them form a C5-cup or a C5-cap. By
a vertical reflection if needed, we may assume that they form a C5-cap.

We now reorder theseC5 sides qi j of Q in stabbing order, according to the transitive
sub-tournament mentioned above. By the Erdős–Szekeres Theorem onmonotone sub-
sequences (Theorem 13), there is a subsequence of size C6 + 1 = √

C5 − 1 + 1 = 7
such that their slopes form a monotone sequence. By a horizontal reflection if needed,
we may assume that they have decreasing slopes.

We rename these seven segments to a0, a1, . . . , a6, and we denote the line �(ai )
by �i , see Fig. 16. We have achieved the following properties:

• The lines �0, . . . , �6 form a 7-cap, with decreasing slopes in this order.
• The segments ai are pairwise disjoint and non-avoiding.
• ai stabs a j for every i < j .

These properties allow a0 to lie between any two consecutive intersections on �0. There
is no such flexibility for the other sides: Every side a j is stabbed by every preceding
side ai . For 1 ≤ i < j , ai cannot stab a j from the right, because then a0 would not
be able to stab ai . Hence, the arrangement of the sides a1, . . . , a6 must be exactly as
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ai

bi

Ai

Bi

aj

bj

Aj

Bj

PQ

Fig. 17 The subgraph of GD induced on two pairs of consecutive sides ai , bi and a j , b j of P and their
associated partner pairs Ai , Bi and A j , B j of Q. Parts of P and Q are shown to indicate consecutive sides.
The dashed edges may or may not be present

shown in Fig. 16, in the sense that the order of endpoints and intersection points along
each line �i is fixed. We will ignore a0 from now on.

8.2 Finalizing the Analysis

Recall that every ai is the primary side of two consecutive sides ai , bi of Q that are
hooking with respect to an associated pair Ai , Bi of consecutive sides of P . The sides
ai and Ai are the primary sides and bi and Bi are the companion sides. All these 4×6
sides are distinct, and they intersect as follows: ai intersects Bi and is disjoint from Ai ;
bi intersects Ai and is disjoint from Bi ; and I (Ai , Bi ) ∈ Cone(ai , bi ).

Figure 17 summarizes the intersection pattern among these sides. A side Ai must
intersect every sidea j with j = i and every sideb j sinceCC(Ai ) = CC(ai ) = CC(a j )

and CC(Ai ) = CC(ai ) = CC(bi ) = CC(b j ). (Recall that all companion sides bi
belong to the same component.) Similarly, every side Bi must intersect every side a j .
We have no information about the intersection between Bi and b j , as these sides belong
to the same connected component. We will now derive a contradiction through a series
of case distinctions.

Case 1: There are three segments Ai with the property that Ai crosses �i to the
left of ai . Without loss of generality, assume that these segments are A1, A2, A3, see
Fig. 18. The segments A1, A2, A3 must not cross because P is a simple polygon.
Therefore A1 intersects a2 to the right of I (a1, a2) because otherwise A1 would cross
A2 on the way between its intersections with �2 and with a1. A3 must cross �3, a2, a1
in this order, as shown. But then A1 and A3 (and a2) block A2 from intersecting a3.

Case 2: There at most two segments Ai with the property that Ai crosses �i to
the left of ai . In this case, we simply discard these segments. We select four of the
remaining segments and renumber them from 1 to 4. From now on, we can make the
following assumption:

General Assumption: For every 1 ≤ i ≤ 4, the segment Ai does not cross �i
at all, or it crosses �i to the right of ai .
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Fig. 18 The assumed intersection points between Ai and �i are marked

a4

b3

a3

A3

B3

�3

a1

�2

�1

a2

�4

A2

I (a3 , a4)I (A3 , B3)

Fig. 19 Case 2.1, I (A3, B3) = left(A3) and I (a3, b3) = right(a3). A hypothetical segment A2 is shown
as a dashed curve. The side a2 and the part of �2 to the left of a2 is blocked for A2

This implies that A3 must intersect the sides a2, a1, a4 in this order, and it is deter-
mined in which cell of the arrangement of the lines �1, �2, �3, �4 the left endpoint of
A3 lies (see Figs. 16 and 19). For the right endpoint, we have a choice of two cells,
depending on whether A3 intersects �3 or not.

We denote by left(s) and right(s) the left and right endpoints of a segment s. We
distinguish four cases, based on whether the common endpoint of A3 and B3 lies at
left(A3) or right(A3), and whether the common endpoint of a3 and b3 lies at left(a3)
or right(a3).

Case 2.1: I (A3, B3) = left(A3) and I (a3, b3) = right(a3), see Fig. 19.
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a2

�2

�4

�(A3)

Fig. 20 Case 2.2. I (A3, B3) = left(A3), I (a3, b3) = left(a3), �(A3) does not intersect a3

As indicated in the figure, we leave it open whether and where A3 intersects �3. We
know that b3 must lie below �3 because I (A3, B3) ∈ Cone(a3, b3). We claim that A2
cannot have the required intersections with a1, a3, and b3. Let us first consider a1: It
is cut into three pieces by A3 and B3.

If A2 intersects the middle piece of a1 in the wedge between A3 and B3, then A2
intersects exactly one of a3 and b3 inside the wedge, as these parts together with a1
are three sides of a convex pentagon. If A2 intersects a3, then it has crossed �3 and
it cannot cross b3 thereafter. If A2 intersects b3, it must cross �4 before leaving the
wedge, and then it cannot cross a3 thereafter.

Suppose now that A2 crosses the bottom piece of a1. Then it cannot go around A3
and B3 to the right in order to reach a3 because it would have to intersect �4 twice.
A2 also cannot pass to the left of A3 and B3 because it cannot cross �2 through a2 or,
by the general assumption, to the Suppose finally that A2 crosses the top piece of a1.
Then it would have to cross �3 twice before reaching b3.

Case 2.2: I (A3, B3) = left(A3) and I (a3, b3) = left(a3).
If �(A3) does not intersect a3, we derive a contradiction as follows, see Fig. 20. We

know that the sides a2, a3, a4 must be arranged as shown. The segment A3 crosses
a2 but not a3. Now, the parts of a3 and A3 to the left of �2 form two opposite sides
of a quadrilateral, as shown in the figure. If this quadrilateral were not convex, then
either �(A3) would intersect a3, which we have excluded by assumption, or �3 would
intersect A3 left of a3, contradicting the General Assumption. Thus, the sides a3 and
A3 violate the Axis Property (Observation 6), which requires a3 and A3 to lie on
different sides of the line through I (A3, B3) and I (a3, b3).

Lookingback at the proofs so far,wehave seen that the configurationof the segments
a1, a2, a3, a4 according to Fig. 16 in connection with the particular case assumptions
make the situation sufficiently constrained that the case can be dismissed by looking
at the drawing. The treatment of the other cases will be proofs by picture in a similar
way, but we will not always spell out the arguments in such detail.

If �(A3) intersects a3, the situation must be as shown in Fig. 22: the pair A3, B3 is
hooked by a3 and b3. The analysis of Case 2.1 (Fig. 19) applies verbatim, except that
the word “pentagon” must be replaced by “hexagon”.

Case 2.3: I (A3, B3) = right(A3) and I (a3, b3) = right(a3).
If A3 lies entirely below �3, then A3 together with a3 violates the Axis Property

(Observation 6), see Fig. 21.
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Fig. 21 Case 2.3. I (A3, B3) = right(A3), and I (a3, b3) = right(a3), A3 lies below �3
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Fig. 22 Case 2.2, I (A3, B3) = left(A3), I (a3, b3) = left(a3), and �(A3) intersects A3. A hypothetical
segment A2 is shown as a dashed curve
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b3

a3

a4

A3
�3
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A3?

(b)(a)

A2

a4

Fig. 23 Case 2.3. A3 intersects �3

Let us therefore assume that A3 intersects �3 (to the right of a3), and thus
right(A3) = I (A3, B3) lies above �3, see Fig. 23a. Then b3 must also lie above �3,
because a3, b3 is supposed to be hooking, that is, I (A3, B3) ∈ Cone(a3, b3).

It follows that A3 cannot intersect �3 to the right of I (a3, a4) (the option shown as
a dashed curve), because otherwise it would miss b3: b3 is blocked by a4.
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Fig. 24 Case 2.4. A3 intersects �3
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�(A3)
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Fig. 25 Case 2.4. A3 lies below �3

Therefore, the situation looks as shown in Fig. 23a. Figure 23b shows the position
of the relevant pieces. The segments a4, B3, a3, b3, A3 enclose a convex pentagon.
Now, the segment A2 should intersect a3, b3, and a4 without crossing A3 and B3, like
the dashed curve in the figure. This is impossible.

Case 2.4: I (A3, B3) = right(A3) and I (a3, b3) = left(a3).
If A3 intersects �3 (to the right of a3), then A3 together with a3 violates the Axis

Property (Observation 6), see Fig. 24. We thus assume that A3 lies entirely below �3.
If �(A3) passes above I (a3, b3) = left(a3), the sides a3 and A3 violate the Axis

Property, see Fig. 25a. On the other hand, if �(A3) passes below I (a3, b3) = left(a3),
as shown in Fig. 25b, then b3 must cross �1 to the right of a1 in order to reach A2. Again
by the Axis Property, B3 must remain above the dotted axis line through I (A3, B3) =
right(A3) and I (a3, b3) = left(a3). On �1, b3 separates a1 from the axis line, and hence
a1 lies below the axis line. Therefore B3 and a1 cannot intersect. This concludes the
proof of Theorem 1.

9 Degenerate Cases

We will now justify our general-position assumption that we introduced in Sect. 3
stating that no vertex of one polygon lies on the boundary of the other polygon. That
is, we will show that one can get rid of such degenerate cases without decreasing the
number of intersection points. There are two types of degenerate cases:

vertex-vertex: Two vertices from different polygons coincide.
vertex-side: A vertex of one polygon lies on a side of the other polygon.
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Fig. 26 The dependence graph may contain cycles

We will first use a global perturbation governed by a parametric system of linear
equations to get rid of vertex-vertex degeneracies. Vertex-side degeneracies can then
be treated locally by shifting sides one by one.

9.1 Coincident Vertices

Finding a good perturbation is delicate because a side may be involved in multiple
degeneracies. We will simultaneously perturb all vertex-vertex degeneracies while
leaving vertex-side degeneracies intact.

For each vertex-side degeneracy, some point A of one polygon lies on a side BC
of the other polygon: There is a ratio λ = λABC ∈ (0, 1) such that

A = λB + (1 − λ)C . (1)

Our perturbation will maintain this relation, with the same value λ. We say that A
depends on B and C . We can set up a dependence graph that has arcs (A, B) and
(A,C), for each such vertex-side degeneracy. This graph may contain cycles. The
polygon vertices that don’t depend on other vertices are called free.

We specify the movement of the free vertices as follows: Free vertices that are not
involved in a degeneracy stay where they are. For each pair (Pi , Q j ) of coincident
vertices, we leave Q j stationary but we move Pi = Pi (α) := P0

i + αEi linearly,
with constant speed in an appropriate direction Ei . We choose each direction Ei

independently so that the two polygons have at least one nondegenerate intersection
in the neighborhood of the original configuration, assuming that all other points stay
where they are.

Theorem 17 below shows that we can perform such a motion in a continuous way
while simultaneously maintaining all vertex-side degeneracies (1).

In this theorem, we consider a general system of finitely many points A1, A2, . . . ,

AN , which are partitioned into dependent points and free points.We denote the indices
of the dependent points by D ⊆ [N ] and those of the free points by F = [N ] \ D.
Each dependent point Ai is a convex combination of other points:

Ai =
∑

j∈[N ]\{i}
λi j A j (2)
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with
∑

j∈[N ]\{i}
λi j = 1,

whereas each free point Ai is given “externally”, depending linearly on some param-
eter α:

Ai = A0
i + αEi , i ∈ F . (3)

We will use the following simple observation.

Observation 15 If (2) holds for a dependent point Ai , then either

(i) all points A j on which Ai depends coincide with Ai , or
(ii) some point A j on which Ai depends is strictly larger than Ai , in the lexicographic

order according to the coordinates (x, y).

The dependence graph contains a node for every point Ai , and contains the arc (i, j)
whenever λi j > 0. The next lemma and theorem hold for a general system of the form
(2)–(3), under the following assumption about the dependence graph: From every
dependent point, one must be able to reach a free point. In other words, there must be
no component of dependent points that depend only on each other. It is easy to show
that this condition is fulfilled in our setting, see Lemma 18.

Lemma 16 Suppose that from every dependent point, one can reach a free point in the
dependence graph. Then, in every solution of the system of equations (2), all points
lie in the convex hull of the free points.

Proof We start with some dependent point Ai . Our first goal is to reach a free point
that is lexicographically at least as large as Ai . We apply Observation 15 to Ai . In
case (i), we repeatedly apply Observation 15 to all points A j on which Ai depends.
Eventually, we conclude that all points that are reachable from Ai coincide with Ai ,
or we get a point Ak that is lexicographically strictly larger. In the first case, there is,
among the points that coincide with Ai , a free point, by assumption. In the second
case, we repeat the process with Ak until we eventually arrive at a free point.

Thus, we conclude that the x-coordinate of Ai is not larger than the largest x-
coordinate of the free points. Since the proof is not affected by rotations, (or in fact,
arbitrary affine transformations) we obtain the claimed result. ��
Theorem 17 Suppose that from every dependent point, one can reach a free point in
the dependence graph. If the system of equations (2)–(3) has a solution for α = 0,
then it has a unique solution for all α, and the solution depends linearly on α.

Proof The system of equations (2)–(3) actually decomposes into two independent
systems of linear equations: one for the x-coordinates, and one for the y-coordinates.
(In d dimensions, there would be d such systems.)

If we substitute the explicit values from (3) into (2), we get a |D| × |D| system
of linear equations with parametric right-hand sides where the unknowns are the x-
coordinates (resp., y-coordinates) of the |D| dependent points.We are done if we show

123



Discrete & Computational Geometry

that the coefficient matrix of this system, whose entries are the coefficients λi j , has
non-zero determinant. A system of linear equations with zero determinant has either
no solution or infinitely many solutions that form an affine subspace. Let us look at
the set of solutions for α = 0. We can exclude the first possibility, because we have
assumed a solution for α = 0. To exclude the second possibility, assume that there are
infinitely many solutions. Since they form an affine subspace, there must be solutions
where some coordinate of some point takes arbitrarily high values. This contradicts
Lemma 16. ��
In order to apply Theorem 17, we have to show that the assumption is fulfilled in our
system:

Lemma 18 In the dependence graph derived from the system of dependencies (1)
describing the vertex-side degeneracies, one can reach a free point from every depen-
dent point.

Proof We look at our given (initial) configuration. We take some dependent point Ai

and apply Observation 15 to it. We know that the points on which Ai depends don’t
coincide with Ai , and thus we find a lexicographically strictly larger point. Repeating
the argument as long as necessary, we must eventually arrive at a free point that is
reachable from Ai . ��
One final point: We have chosen each movement Pi = P0

i + αEi of a free point that
is involved in a vertex-vertex degeneracy in such a way that there are no degeneracies
in the vicinity of Pi , assuming that the other points do not move. In reality, the other
endpoints of the four involved sides may move on linear trajectories. However, as we
start from coinciding points, the movement of the other endpoints has a lower-order
effect. To see this, consider the marked distance from Q j to the intersection between
Q j−1Q j and Pi Pi−1 in Fig. 27. Pi and Q j are free, and Q j remains stationary. If
Pi moves linearly as αE1, the marked distance changes like kα + O(α2) for some
constant k > 0 if all other points remain fixed, see Fig. 27b: The distance would have
a linear growth of the form kα if the sides would undergo a parallel shift, but in fact
the sides are rotated. If one or both endpoints of an edge move by a distance O(α), the
rotation angle is bounded by O(α). Since the leading side αEi of the shaded triangle is
of length O(α), the effect of the rotation on the side lengths of the triangle is of order
O(α2). (This can be checked by using the sine law.) An additional linear movement
of Pi−1 (see Fig. 27c) or Q j−1 by a distance O(α) will cause an additional change of
direction by O(α). Still, the side lengths of the triangle change only by O(α2). Thus,
for small enough α, the linear growth kα dominates, and there will be no degenerate
situations.

Themorphing procedure goes back to Floater andGotsman [7]. The idea for proving
unique solvability in Theorem 17 was used, in a different context, in [4].

9.2 Vertex-Side Degeneracies

Once there are no more coincident vertices, it is easy to get rid of the remaining
degeneracies by looking at the sides one by one, see Fig. 28.
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Fig. 27 Lower-order effects due to movement of endpoints

(a) (b)

Fig. 28 Perturbing a blue polygon side to get rid of collinear vertices without decreasing the number of
intersection points: a before, b after

If we perform a small parallel shift of a side, an intersection point may disappear or
multiply into two intersection points, depending on the direction of the shift. However,
the average number of intersections over the two possible directions is always the same
as before. Thus, there exists a small parallel shift that does not decrease the number
of intersection points.

9.3 The Combinatorial CountingModel

Instead of counting intersection points, one could count pairs of sides that intersect.
A vertex-side degeneracy is then counted twice, and a vertex-vertex degeneracy is
counted four times. We leave this variation for future research.

In [3], a more refined counting model is used: a further distinction is made for
vertex-side degeneracies, in accordance with the number of intersection points that
can be achieved by perturbation: if one polygon touches the other (i.e., two adjacent
sides lie on the same side of the side of the other polygon), the intersection is counted
twice. If one polygon crosses the other, it is counted as one intersection. In vertex-
vertex degeneracies, depending on the angles in which the sides meet, the number of
intersections that one can get after perturbation can be any number between 1 and 4.
With this type of accounting, our results carry over.
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10 Discussion

We have shown that the number of intersections of a simple n-gon and a simplem-gon,
for odd n and m, is at most mn − (m + n) + C , for some constant C . This bound
matches the best lower bound mn − (m + n) + 3 up to a constant. However, our
constant C is huge, and we have not made much effort to improve it. For example, it
can be improved by replacing Lemma 10 with a less general result which suffices for
our purposes. Recall that we use Lemma 10 to obtain a transitive sub-tournament in
a tournament whose vertices represent pairwise disjoint segments and whose edges
represent stabbing relations. Instead of the logarithmic-size transitive sub-tournament
obtained using Lemma 10, one can get a polynomial-size transitive sub-tournament
using Dilworth’s Theorem as follows (see [9] for a similar argument): Let s and s′ be
two disjoint segments such that s stabs s′ or vice versa. Let s ≺1 s′ (resp., s ≺2 s′) if
s stabs s′ such that the right extension of s intersects s′ and the slope of s is smaller
(resp., larger) than the slope of s′. Similarly, let s ≺3 s′ (resp., s ≺4 s′) if s stabs s′
such that the left extension of s intersects s′ and the slope of s is smaller (resp., larger)
than the slope of s′. Every pair of segments is comparable by exactly one of these four
relations and this implies that each relation ≺i is transitive. From Dilworth’s Theorem
it follows that the above-mentioned tournament has N 1/4 vertices such that the relation
between each pair of their corresponding segments is ≺1, or N 3/4 vertices such that
the relation between each pair of their corresponding segments is not ≺1 (where N is
the size of the tournament). In the second case we can apply Dilworth’s Theorem once
or twice more in a similar way, and conclude that there are always i ∈ {1, 2, 3, 4} and
N 1/4 vertices such that the relation between each pair of their corresponding segments
is ≺i . Hence, the tournament has a transitive sub-tournament of size N 1/4.1

This gives C < (267)4 = 2268, which is obviously still very far from the truth, so
determining the exact answer for this very basic question remains an interesting open
problem.We believe that our approach to bound the number of connected components
of the disjointness graph is a right approach, that is, we conjecture:

Conjecture 2 Suppose that P and Q are simple polygons with m and n sides, respec-
tively, such that m and n are odd numbers. Then there are at most three connected
components in the disjointness graph of the sides of P and Q.

If both polygons are allowed to self-intersect, then a simple construction shows that
the upper bound mn − max {m, n} is the correct one [3, 8]. However, if only one of
the polygons is allowed to self-intersect then we do not know of such a construction.

Our results should carry over to pseudolinear polygons, that is, polygons whose
sides can be extended to an arrangement of pseudolines, but we did not check the
details of this extension. In fact, we already used the freedom to draw curved edges
in our schematic drawings, like in Figs. 11b, 14, and 15. Moreover, the computer
verifications mentioned below in Sect. 10.2 use none of the properties of straight

1 It may be interesting to determine the maximum size of such a sub-tournament that one can guarantee
for every set of N disjoint segments where for each pair of them one segment stabs the other. A recursive
construction startingwith three segmentswhose corresponding tournament is a directed cycle, then replacing
each segment with the same “flattened” construction shows that this number is at most O(N log3 2) ≈
O(N0.631).
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Fig. 29 A best lower bound construction for m = n = 7. It is symmetric with respect to the horizontal
green axis. In the left drawing of the disjointness graph, the nodes are arranged in the natural order as the
edges appear along the polygon boundaries. The right drawing makes the structure as a forest clearer

lines, as opposed to pseudoline arrangements. Obviously, Conjectures 1 and 2 extend
to pseudolinear polygons as well.

10.1 Alternative Lower-Bound Constructions

Studying the best lower bound constructions (conjectured to be optimal) may provide
insights that may help to improve the upper bound. For example, the disjointness graph
of the construction on Fig. 1c has three components: one edge and two stars. If we
replace a side that corresponds to a leaf in the disjointness graph by a narrow zigzag of
three sides, the number of intersections increases by 2(m−1) or 2(n−1), depending of
which polygon side is replaced. This way we can get a best lower bound construction
for m, n + 2 or m + 2, n from a best lower bound construction for odd m and n.
Therefore, there are many ways to create best lower bound constructions. Note that
each step as above replaces one leaf by three leaves in the disjointness graph, and thus
repeating it would yield the existence of large-degree vertices and constantly many
vertices that dominate the disjointness graph. Thus, it is tempting to conjecture that an
optimal construction must posses these properties apart from having three connected
components (which are necessarily trees). However, this does not seem to be true. We
have a construction for m = n = 7 which is significantly different from the one on
Fig. 1c and whose disjointness graph has maximum degree 3, see Fig. 29. We believe
that this construction can be extended for greater values of m = n while maintaining
maximum degree 3, but the figure becomes too complicated to draw, so we do not go
into further details.
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10.2 Computer-Supported Proofs

We have independently confirmed Lemma 7 concerning the intersection structure of
pairs of associated pairs of sides, which is our principal workhorse, by a computer
enumeration.

Lemma 7 involves eight polygon sides. Thus, we enumerated all 158830 arrange-
ments of eight lines. Actually, we enumerated pseudoline arrangements, but it is
known that all pseudoline arrangements with less than nine lines are stretchable to
line arrangements. For each arrangement, we tried all possible ways of assigning
the sides pi , pi+1, p j , p j+1 and qi ′ , qi ′±1, q j ′ , q j ′±1 (in the notation of Lemma 7) to
these lines. Since there are symmetries in the configuration of the eight sides, we did
not have to try all 8! = 40320 assignments, but only 840. Once this assignment is
given, we know where the vertices between consecutive sides, like pi , pi+1, are in the
arrangement. This specifies one endpoint of each side. It is then easy to check whether
it is possible to realize the required intersection pattern of a perfect matching among
the eight involved sides. We first took into account the required intersections among
the sides, for example, between pi and q j ′ . On each line, these required intersection
points must lie on one side of the vertex that we already know. If this is the case, we get
a minimum range on the line that the side must cover. We then check if all forbidden
intersections (for example, between pi and qi ′ , or between pi and p j ) are avoided.

After a few days of computing (and several weeks of programming), the result was
that there were, up to isomorphism, 14 configurations with the required intersection
pattern. In 13 of them, some associated pair did not conform to the hooking/hooked
pattern of Lemma 5. The remaining configuration is the one in Fig. 6.

We had some hope to attack the case of three pairs of associated pairs of sides and
obtain a more powerful statement than Proposition 14. However, since there are too
many (pseudo-)line arrangements with 12 lines, this is out of reach for the simple
approach outlined above.

10.3 The Union of the Polygon Areas

Instead of polygon boundaries, we can consider polygons as regions and ask about the
complexity of the union of the polygon areas. The bound on boundary intersections
gives an upper bound on the boundary of this union: Every boundary intersection
contributes to the complexity of the union, and in the worst case all them + n vertices
of the two polygons contribute to the complexity of the boundary in addition.

In the examples of Fig. 1, this worst case arises: all polygon vertices contribute to
the boundary of the union of the polygon areas. This gives a lower bound ofmn−3 for
the maximum complexity of the union of an m-gon and an n-gon and it is conjectured
that mn − 3 is in fact the exact value. Theorem 1 implies the upper bound mn +C for
some absolute constant C .

One can also ask about the intersection of the polygon areas. Here, the relation to
our problem is not clear.
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5. Erdős, P., Moser, L.: On the representation of directed graphs as unions of orderings.Magyar Tud. Akad.
Mat. Kutató Int. Közl. 9, 125–132 (1964)

6. Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)
7. Floater,M.S., Gotsman, C.: How tomorph tilings injectively. J. Comput. Appl.Math. 101(1–2), 117–129

(1999)
8. Günther, F.: The maximum number of intersections of two polygons (2012). arXiv:1207.0996
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