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ABSTRACT

One of the most important food safety issues is the detection of mycotoxins, the ubiquitous, natural con-
taminants in cereals. Hyperspectral imaging (HSI) is a new method in food science, it can be used to predict
non-destructively the changes in composition and distribution of compounds. That is why, in the last decade,
the potential of HSI has been evaluated in many fields of food science, including mycotoxin research.

The aim of the recent study was to test the feasibility of HSI for the differentiation according to the
toxin content of cornmeal samples inoculated with Fusarium graminearum, Fusarium verticillioides and
Fusarium culmorum and samples with natural levels of mycotoxins. Samples were measured in the near
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infrared wavelength range of 900–1,700 nm and mean spectra of selected regions of interest of each image
were pre-treated using Savitzky-Golay smoothing and standard normal variate (SNV) method. On the
spectra, partial least squares discriminant analysis (PLS-DA) was carried out according to the level of
contamination. Partial least squares regression (PLSR) method was used to predict deoxynivalenol (DON)
content of samples and the cumulative toxin content: the sum of fumonisins (FB1, FB2) and DON content
of samples. Based on the promising results of the study, HSI has the potential to be used as a preliminary
testing method for mycotoxin content in feed materials.
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INTRODUCTION

The detection of fungal infections is of great importance in food science since one of the most
serious problems of food safety is the presence of mycotoxins produced by microscopic fungi.
Molds can grow on many kinds of substrates under different conditions therefore mycotoxins are
unavoidable, ubiquitous natural contaminants of a wide range of food and feed, especially cereals.

Maize is produced in high amounts as food and feed and is consumed all around the world,
the production of maize was in 2018 more than 109 tons in the world and almost 7 $ 107 tons in
the countries of the European Union (FAOSTAT). It plays an important role in the human diet
among others due to its high carbohydrate, especially starch content which builds 72–73% of the
kernel weight (Food and Agriculture Organization of the United Nations, 1992).

Corn can be attacked by many types of molds producing toxigenic secondary metabolites
(mycotoxins) such as aflatoxins, ochratoxin A, fumonisins, zearalenone, Type A and B
trichothecenes like deoxynivalenol (Prieto-Sim�on et al., 2007).

Fusarium species are prevalent pathogens of maize, capable of producing several hundred
compounds that have been described as toxic or potentially toxic secondary metabolites (Moretti,
2017), amongst others fumonisins and deoxynivalenol (DON), whose compounds cause esoph-
ageal cancer, throat irritation, gastrointestinal and abdominal pains, nausea, vomiting, diarrhea,
hemorrhages, dizziness, fever and headache in humans (Prieto-Sim�on et al., 2007).

Trichothecenes such as deoxynivalenol are the most often associated mycotoxins of Fusa-
rium with toxicoses in humans and livestock, second is the group of fumonisins (Moretti, 2017).

The trichothecenes are stable at temperatures of the processing steps of food and feed, therefore,
this group of mycotoxins causes food safety risk even in processed food (Rocha et al., 2005).

In the countries of the European Union maximum levels for certain contaminants in
foodstuffs as regards Fusarium toxins in maize and maize products are set by Commission
Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006.
According to the regulation of the European Union maximum levels of mycotoxins regarding
ground maize, not used for direct human consumption is in the case of deoxynivalenol 750 mg/
kg, in the case of fumonisins (sum of B1 and B2) 1,400 mg/kg (Regulation, 2007).

Since the commonly used analytical methods to determine mycotoxins, such as enzyme-linked
immunosorbentassays(ELISA)andLC-MS/MSarecostly, time-consuming,andcannotbeappliedinthe
field, newmethods appeared todetectmycotoxins and fungal infections recently (McMullin et al., 2014).
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IR spectroscopic approaches are an emerging field of food research as these techniques are
rapid, non-destructive and easy to apply even in high throughput.

However, the currently used near infrared (NIR) based methods – like the applied hyperspectral
imaging (HSI) – cannot determine mycotoxins in food samples directly due to lack of sensitivity.
Instead, the alterations of spectral characteristics of crops upon fungal infections can be assessed. For
instance,Fusariumspeciescausealterations inthecarbohydrateandproteincontent(He&Sun,2015).

Studies dealing with the application of HSI in microbiology have increased rapidly in the past
decade and have been reviewed by Gowen et al. (2015). HSI provides information about
chemical changes in the sample, therefore, it has the potential to be used as a tool to gain
fundamental understanding of microbiological processes (Gowen et al., 2015).

In the last few years, the number of papers dealing with the potential of hyperspectral imaging
in IR for the detection of fungal infection and the presence of toxins in cereals is increasing.

HSI seems to be a promising method for detecting plant stress and disease, there has been a
significant increase in scientific literature focusing on plant stress detection using hyperspectral
image analysis in recent years (Lowe et al., 2017). Xing et al. provide an overview of the recent
literature on the application of hyperspectral imaging for the rapid detection and sorting of
mycotoxins and toxigenic fungi in food products (Xing et al., 2019). Imaging technics, spec-
troscopy, and hyperspectral imaging have been reviewed for the determination of contamination
caused by toxigenic fungi in nuts and dried fruits with regard to aflatoxins (Wu et al. 2018).
Studies have been also published about the detection of ochratoxin A contamination in stored
wheat (Senthilkumar et al., 2016; 2017), barley (Senthilkumar et al., 2016), and about the
detection of Fusarium caused damage on wheat (Barbedo et al., 2015; Bauriegel et al., 2011) and
Italian durum wheat kernels (Serranti et al., 2013), as well as about the feasibility of HSI to detect
DON content and Fusarium damage on single oat kernels (Tekle et al., 2015).

Del Fiore et al. investigated the potential of hyperspectral imaging technique in the wave-
length range of 400–1,000 nm to detect different typical fungal infections of maize using
Aspergillus, Fusarium and Penicillium strains for inoculation. Uninfected maize kernel samples
from artificially infected samples could be discriminated only after 48 hours of inoculation with
A. flavus and A. niger (del Fiore et al., 2010).

Barbedo et al. invented a DON screening algorithm using a few selected bands, which can
classify Fusarium infected wheat kernels with 72 and 81% accuracies to three and two classes,
respectively. They found that the direct estimation of DON content was unfeasible, however, an
indirect method taking into account the correlation between Fusarium damage and DON
content can be accurate enough to improve the process of DON screening (Barbedo et al., 2017).

Earlier experiments showed that fungal infection of Fusarium sp. is detectable using HSI in
NIR region. The aim of this research was to evaluate the applicability of this method in this
practical situation and to explore the boundaries of the usability of this technique.

SAMPLES AND SAMPLE PREPARATION

Sample preparation

Two hybrids of Zea mays were examined in this experiment. One hybrid (SBL) from Saatbau
Linz (Linz Austria) is rather resistant to Fusarium infection, the other examined hybrid from
Cereal Research Institute in Szeged, Hungary (CRC) is very susceptible to Fusarium.
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Since the presence of a low level of fungal toxin in maize is unavoidable, samples were not
disinfected.

The control group of maize samples was not artificially infected and exhibited natural levels
of toxin. Two other groups were infected via injection of the spores through silk with Fusarium
graminearum and Fusarium verticillioides, respectively. One group of samples was treated with
Fusarium culmorum by dipping a toothpick into the spore suspension and afterwards picking
the maize ear with this toothpick.

Determination of mycotoxin content

Toxin content of samples by means of deoxynivalenol, fumonisins – B1 and B2 – and total toxin
content was measured using an LC-MS/MS-based method (Malachov�a et al., 2014). In each
group, different levels of total toxin content were found (Table 1).

Hyperspectral imaging

Samples were put in Petri dishes with a diameter of 5 cm and pressed before the measurements
to reduce scattering effects. In each group, 8 repetitions were measured (8 Petri dishes were
prepared – the total number of the prepared samples was 176).

Hyperspectral measurements were recorded using a pushbroom HSI instrument (Zeutec
GmbH., Rendsburg, Germany, equipped with Xeva-USB-FPA-1.7-320-TE1 camera with
InGaAs sensor (12 bit) 320 3 256 image size, ImSpector N17E spectrograph 5 nm spectral
resolution) in the wavelength range of 900–1,700 nm. The spatial resolution of the optics was
adjusted to 0.172 mm/px. The image processing system and the sensor were controlled by
Argus software (Firtha, 2011).

Table 1. Deoxynivalenol (DON), fumonisin B1 (FB1) and B2 (FB2) content of cornmeal samples (NI: not
infected, G: infected with Fusarium graminearum, V: infected with Fusarium verticillioides, C: infected with
Fusarium culmorum, SBL: hybrid from Saatbau Linz, Linz Austria; CRC: hybrid from Cereal Research

Institute, Szeged, Hungary, LOD: limit of detection)

Hybrid Class DON (mg/kg) FB1 (mg/kg) FB2 (mg/kg) Total (mg/kg)

SBL NI 0.912 0.087 0.030 1.029
NI 0.096 <LOD <LOD 0.096
G 32.160 0.001 0.000 32.161
G 19.040 0.586 0.163 19.789
G 5.632 <LOD <LOD 5.632
V 0.464 20.800 6.000 27.264
V 0.113 4.560 1.504 6.177
V 0.298 0.944 0.286 1.529
C 52.480 3.264 1.136 56.880
C 24.640 0.550 0.263 25.453
C 0.236 0.450 0.208 0.894

CRC NI 1.528 0.187 0.091 1.806
NI 0.215 <LOD <LOD 0.215
G 50.160 0.832 0.262 51.254
G 30.320 0.041 0.020 30.381
G 14.640 0.067 0.027 14.734
V 0.723 52.320 18.400 71.443
V 1.680 22.240 7.616 31.536
V 0.734 7.688 2.280 10.702
C 73.840 2.728 1.032 77.600
C 20.800 2.992 0.976 24.768
C 1.184 1.448 0.669 3.301
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Before the measurement series, a two-point calibration was carried out using a diffuse
reflectance standard containing rare earth elements (Sphereoptics).

Hyperspectral images were segmented, and noise reduction was carried out using MATLAB
(2016. The MathWorks, Inc. Natick, Massachusetts, USA) software. On the hyperspectral
images a 100 3 100 pixel, homogenously illuminated region was selected for further analysis.
This region was split into 5 times 20 3 100 pixel regions, spectra of these regions of interest
were afterwards averaged.

On the raw spectra, a Savitzky-Golay smoothing (2nd order polynomial, 25 points) and
standard normal variate (SNV) transformation was carried out to decrease the unwanted effects
of noise on the spectra (Wise et al., 2006).

Data analysis was carried out using RStudio version 0.99.896. (RStudio, Inc.). The toxin
content of the samples was predicted with Partial least squares regression (PLSR) method (pls
package, version 2.5-0) and the samples of different categories of contamination level were
classified with partial least squares discriminant analysis (PLS-DA) method (mixOmics package,
version 5.2.0).

Cumulated toxin content (sum of DON and fumonisins), the content of DON and fumo-
nisins were predicted based on analytical results and hyperspectral data via PLSR. The 75% of
the data were used for model building and 25% as the validation set.

For the regression, data were randomly selected according to the above-described ratio in
each group for modeling and validation. This procedure was repeated 10 times and afterwards,
the number of latent variables was increased by 5 to approximate the optimal numbers of latent
variables. The same procedure was followed in case of classification with PLS-DA.

RESULTS

There are important differences in the metabolic activity of fungi to consider regarding the data
analysis. In the case of the two studied hybrids, the average toxin content of more susceptible
hybrid (CRC) groups were higher than the values of the more resistant one (SBL), corresponding
to the expectations. Furthermore, there are general differences in toxin production of different
Fusarium species: F. culmorum and F. graminearum produce trichothecenes, including deoxy-
nivalenol (DON), while Fusarium verticilloides produces fumonisins (Jakucs and Vajna, 2003).

On the average reflectance spectra of sample groups (Fig. 1), no clear relationship between
the reflectance values and classes could be detected, although the deviation in toxin content was
significant (Table 1) and, therefore, the degree of infection might have been very different in one
group.

The effect of water absorption was noticeable around 1,440–1,470 nm on the reflectance
spectra (Fig. 1).

Prediction of cumulated toxin content

The best results regarding the root mean square error of validation (RMSEV) to predict the
cumulated toxin content were achieved with 25 latent variables at 13.48 mg/kg while the highest
value among the 10 repetitions was found at 15.12 mg/kg. The average value of the coefficient of
determination after 10 repetitions in the case of 25 latent variables was 0.974. Fig. 2 shows the
prediction plot of PLSR regression of cumulated toxin content in the case of one validation
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sample set. In the case of 25 latent variables the value of root mean square error of calibration
(RMSEC) was 4.22 mg/kg, whereas the value of RMSEV was 13.48 mg/kg.

Prediction of deoxynivalenol content

The production of deoxynivalenol is characteristic in the case of F. culmorum and F. grami-
nearum, therefore, the data of these species were used for the prediction.

The lowest average RMSEV value was achieved using 20 latent variables at 11.95 mg/kg,
while the average value of RMSE was 2.5 mg/kg. On the prediction plot of the PLSR regression
of DON toxin content in the case of one validation sample set (Fig. 3) the deviations from the
predicted values were noticeable. The average value of the coefficient of determination for 10
repetitions, using 20 latent variables in the model building, was 0.985.

Fig. 1. Average reflectance spectra of sample groups samples (NI: not infected, G: infected with Fusarium
graminearum, V: infected with Fusarium verticillioides, C: infected with Fusarium culmorum, SBL: hybrid

from Saatbau Linz, Linz Austria; CRC: hybrid from Cereal Research Institute, Szeged, Hungary)

Fig. 2. Prediction plot of the PLSR regression of cumulated toxin content in case of one validation sample set
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Classification of groups according to mycotoxin contamination levels

In the building of classification models of groups according to mycotoxin levels, the data of each
group were used. Samples were categorized into three classes according to the cumulated toxin
content (DON and fumonisins):

–high level of mycotoxin contamination: above 30 mg/kg (56 samples)
–medium level of mycotoxin contamination: between 30 and 15 mg/kg (32 samples)
–low level of mycotoxin contamination: below 15 mg/kg (88 samples).

Regarding the validation, the best result were achieved using 15 latent variables (Tables 2 and 3).
In this case, the average ratio of the correctly classified samples after 10 repetitions achieved 98.8%.

The lowest value of the ratio of correctly classified samples was given in the case of medium
level of mycotoxin contamination (also the lowest number of samples is in this category). It was
followed by the class of high level of mycotoxin content, and the group with low contamination
level (Table 3).

DISCUSSION

According to the presented results, the examination of mycotoxin contamination in maize
products proved to be possible through the application of a near infrared hyperspectral imaging
system. However, the achieved accuracy was still relatively low, therefore, it should be applied
preferably for a quick screening of feed samples. However, high throughput can be achieved, and

Fig. 3. Prediction plot of the PLSR regression of DON toxin content in case of one validation sample set

Table 2. Average of validation results of PLS-DA classification after 10 repetitions in case of different
numbers of latent variables

Number of latent variables
Average of the ratio of correctly

classified samples (%)

10 90.6
15 98.8
20 96.9
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an installation at site is possible. Our results are in accordance with the conclusion of He and
Sun, (2015) – that the method cannot detect mycotoxins directly, but it provides information
about the chemical changes of the samples due to the metabolic activity of microscopic fungi.

Using this method, a higher amount of maize products can be measured and with appro-
priate calibration, as preliminary testing method to screen suspicious samples it could com-
plement the well established extensively applied analytical measurements, to support the
improvement of feed safety along the production chain.

In the present study, the mycotoxin concentration of inoculated samples was significantly
higher in most cases than the legal maximum limits defined by the commission regulation (EC) No
1126/2007 setting maximum levels for certain contaminants in foodstuffs regarding Fusarium
toxins in maize and maize products. Still, the experiments with these infected samples revealed the
sensitivity and potential application of the method. The measurement could be continued with a
higher amount of samples having mycotoxin levels below the legal maximum limit as well as the
data could be extended with the determination of other regulated mycotoxins such as zearalenone.
Moreover improved hyperspectral imaging systems with higher sensitivities and higher spectral
resolutions like the Specim F17 have become available at much lower costs in the meantime.

CONCLUSIONS

Since mycotoxins are causing extremely serious food safety risk, the application of methods of
high specificity is essential. The application of HSI as complementary method together with the
commonly used and well established analytical techniques could enable the rapid inline mea-
surement of feed material. Therefore, it could contribute to the improvement of feed safety along
the production chain significantly. In future studies so far unexploited potentials of HSI with
regard to the examination of other mycotoxin-producing micromycetes potentially occurring in
feedstuff, and other mycotoxins e.g. zearalenone, should be assessed.

The results show that HSI was able to classify mycotoxin contamination levels in feed with
98.8% accuracy. Optimized HSI was able to reach 2.5 mg/kg accuracy in the quantification of
toxins, but the significant difference between calibration and validation revealed the need for
new measurements to build more robust models.
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