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ABSTRACT
SIRSmodels capture transmission dynamics of infectious diseases for
which immunity is not lifelong. Extending thesemodels by aW com-
partment for individuals with waning immunity, the boosting of the
immune system upon repeated exposure may be incorporated. Pre-
vious analyses assumed identical waning rates from R toW and from
W to S. This implicitly assumes equal length for the period of full
immunity andofwaned immunity.We relax this restriction, and allow
an asymmetric partitioning of the total immune period. Stability
switches of the endemic equilibrium are investigated with a combi-
nation of analytic and numerical tools. Then, continuation methods
are applied to track bifurcations along the equilibrium branch. We
find rich dynamics: Hopf bifurcations, endemic double bubbles, and
regions of bistability. Our results highlight that the length of the
period in which waning immunity can be boosted is a crucial param-
eter significantly influencing long term epidemiological dynamics.
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1. Introduction

The susceptible-infectious-recovered (SIR) approach has been widely applied in diverse
forms to understand the transmission dynamics of communicable diseases. For many
infections, immunity is not lifelong, and after some time, recovered individuals may
become susceptible again. Prior to that, repeated exposure to the pathogen might boost
the immune system, thus prolonging the length of immune period. A very general frame-
work of waning-boosting dynamics has been introduced in [2]. Special cases of that are the
SIRWS compartmental models, whereW is the collection of individuals whose immunity
is waning but can be boosted upon repeated exposure without experiencing the disease
again.

SIRWS models formulated as systems of ordinary differential equations were studied
in [5,7,10,12,13]. In these models, the immunity period is divided into two parts: upon
recovery, previously infected individuals move to R, and from there they may transit to
W as time elapses. If they are exposed again while being in W, their immunity can be
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Figure 1. Flow diagram of the SIRWS system (1a).

boosted and they move back R. Otherwise, they eventually lose their immunity, become
susceptible again anmove back to S. The aforementioned studiesmodel these two phases of
the immune period by a symmetric partitioning, by assuming identical rates of transition
from R toW and fromW to S.

In contrast, our work removes this symmetry constraint, and we analyse how the differ-
ent partitioning of the immune period into R andW, and varying boosting rates affect the
dynamics of the model. First, the existence of equilibria and analytic conditions for their
local stability are established. Then, using numerical tools and methods, we observe the
emergence of complex phenomena through various bifurcations, such as endemic double
bubbles, and multiple regions of bistability.

1.1. Modified SIRWSmodel

This section describes the SIRWS compartmentalmodel inwhich the population is divided
as follows. The individuals susceptible to infection are placed in S, those currently infec-
tious in I, and those recovered from infection are divided into two compartments based on
their immunity level. The fully immune are found inR and those with waned immunity are
inW. Figure 1 depicts the flow diagram of our model governed by the system of ordinary
differential equations

dS
dt

= −βIS + ωκW + μ(1 − S), (1a)

dI
dt

= βIS − γ I − μI, (1b)

dR
dt

= γ I − ακR + νβIW − μR, (1c)

dW
dt

= ακR − ωκW − νβIW − μW, (1d)

where β , γ , and μ are referred to as the infection rate, recovery rate, and birth and death
rate, respectively.

Recovered individuals may lose immunity by the chain of transitionsR → W → S. The
average duration of immune protection, that is the average time required to complete both
of these transitions is κ−1 and, hence, κ is the immunity waning rate. Members of W are



598 R. OPOKU-SARKODIE ET AL.

still immune to infection and are subject to immune boosting upon re-exposure. The fre-
quency of that re-exposure is modulated by the boosting force ν. In our analysis, hosts
going through boosting are not infectious, such as in [2,5,10,12], as opposed to [18].

The population is normalized to 1 that is N(t) = S(t) + I(t) + R(t) + W(t) = 1 for all
t ≥ 0. Vital dynamics is modelled with the rateμ for birth and death, and disease-induced
fatality is not considered.

In former SIRWS model studies, e.g. [5,7,10,12,13], the immune waning rates are the
same for individuals who move from the recovered compartment to the waning compart-
ment and for those who transition onward to the susceptible compartment. In contrast,
we consider an asymmetric partition of the immunity period by introducing the param-
eters α > 1 and ω > 1 setting the average time spent in R and W to (ακ)−1 and (ωκ)−1,
respectively. Hence,

1
ακ

+ 1
ωκ

= 1
κ
that is ω = α

α − 1
. (2)

Note that the special case α = ω = 2, representing the symmetric partition of immunity
period, is what was considered in the aforementioned studies.

By considering various limiting scenarios of boosting for (1a), it is apparent that the sys-
tem exhibits SIRS-like dynamics as ν → 0+ and SIR-like dynamics as ν → ∞. In addition,
we observe SIR-like dynamics as α → 1+ (ω → ∞) and SIS-like dynamics as α → ∞
(ω → 1+).

2. Equilibria and stability

This section first investigates system (1a) in order to establish the formulae for the equi-
libria of our SIRWS model. Then, we analyse the transcritical bifurcation where these
equilibria exchange stability in Section 2.1. Finally, we derive the Routh–Hurwitz stability
criterion in Section 2.2.

We begin by utilizing the relation

W(t) = 1 − S(t) − I(t) − R(t),

to obtain the reduced system

dS
dt

= −βIS + ωκ(1 − S − I − R) + μ(1 − S), (3a)

dI
dt

= βIS − γ I − μI, (3b)

dR
dt

= γ I − ακR + νβI(1 − S − I − R) − μR. (3c)

Note that the region relevant for our epidemiological setting

(S(t), I(t),R(t)) ∈ D := {
(s, i, r) ∈ R

3
≥0|0 ≤ s + i + r ≤ 1

}
is forward invariant.
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Now, let us turn our attention to equilibria of (3a) and seek solutions of the steady state
equations

− βI∗S∗ + ωκ(1 − S∗ − I∗ − R∗) + μ(1 − S∗) = 0, (4a)

βI∗S∗ − γ I∗ − μI∗ = 0, (4b)

γ I∗ − ακR∗ + νβI∗(1 − S∗ − I∗ − R∗) − μR∗ = 0. (4c)

From (4b), we obtain that either I∗ = 0 or S∗ = γ+μ
β

. In the first case, R∗ = 0 follows
from (4c) and, finally, S∗ = 1 from (4a). Hence we obtain

ξ0 = (1, 0, 0),

the disease-free equilibrium (DFE) of (3a). In the latter case when

S∗ = γ+μ
β

, (5)

Equation (4a) yields

I∗ = (μ + ωκ)(1 − S∗) − ωκR∗

βS∗ + ωκ
= c0c1

β
− ωκ

γ + μ + ωκ
R∗,

with

c0 = 1
γ + μ + ωκ

·
(
1 + ωκ

μ

)
and

c1 = μ(β − (γ + μ)).

Then, using the formulae for S∗ and I∗, (4c) results in a quadratic equation for R∗. It is
straightforward to verify that the leading term coefficient is positive, hence, the graph of it
is an open up parabola with the y-intercept

γ c0c1
β

(
1 + νc0c1

μ + ωκ

)
.

Moreover, as shown in Appendix A.1, the solutions can be expressed as

R∗± = γ + μ + ωκ

2βωκ

[(
2c0 − 1

γ + μ

)
c1 + 1

ν(γ + μ)

(
c2 ∓

√
(c1ν + c2)2 + c3ν

)]
,

(6)
using c2, c3 given by

c2 = (γ + μ)(ακ + ωκ) + μ(γ + μ) + αωκ2 and

c3 = 4γ (β − (γ + μ))αωκ2.

Finally, substituting (6) into the formula for I∗ results in

I∗± = ±
√

(c1ν + c2)2 + c3ν + (c1ν − c2)
2βν(γ + μ)

. (7)
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Hence, we obtained the two remaining equilibria of (3a), namely the endemic equilibrium
(EE)

ξ+ = (S∗, I∗+,R∗+),

and

ξ− = (S∗, I∗−,R∗−).

Clearly, I∗− ≤ 0 whenever the square root is real as the inequality is readily satisfied for
β < γ + μ (then c1, c3 < 0) and directly follows from√

(c1ν + c2)2 + c3ν ≥ |c1ν − c2| ⇔ 4c1c2 + c3 ≥ 0, (8)

when β ≥ γ + μ (then c1, c3 ≥ 0). Moreover, the condition β ≥ γ + μ is sufficient (but
not necessary) for I∗± ∈ R. Obviously, in the epidemiological setting of this manuscript,
solely ξ+ may be admissible.

Another important implication of (8) is that

I∗+ > 0 ⇔ β > γ + μ and I∗+ = 0 for β = γ + μ.

Observe that, in the case of equality, ξ0 = ξ+ holds. Furthermore, again for β ≥ γ + μ, the
parabola for R∗ has a positive y-intercept, thus, both solutions are either positive or neg-
ative. Moreover, we have R∗− > 0 as 2c0 − 1

γ+μ
> 0 is satisfied and c1 ≥ 0. These imply

the positivity of the other root that is R∗+ > 0.
Now, summing (4a), (4b), and (4c) results in

(ωκ + μ + νβI∗)(1 − S∗ − I∗ − R∗) − ακR∗ = 0,

hence, S∗ + I∗ + R∗ ≤ 1 must hold for non-negative S∗, I∗,R∗ implying ξ+ ∈ D ⇔ β ≥
γ + μ.

Finally, note that the basic reproduction number, see e.g. [2], of the system (3a)– and
of (1a)– is

R0 = β

γ + μ
,

thus, we may rewrite the condition β ≥ γ + μ asR0 ≥ 1.
Before continuing the analysis, let us summarize our findings so far.

• There is a unique DFE ξ0 ∈ D, which exists for all parameter values in the system.
• If R0 ≤ 1, then there is no other equilibrium inD.
• If R0 > 1, then there is a unique, positive EE ξ+ ∈ D.

2.1. Transcritical bifurcation atR0 = 1

For the stability analysis of the disease-free equilibrium ξ0, consider the Jacobian matrix
for our SIRWS system (3a)

J =
⎡
⎣−(ωκ + μ + βI) −βS − ωκ −ωκ

βI −(γ + μ − βS) 0
−νβI γ − 2νβI + νβ(1 − S − R) −(ακ + μ + νβI)

⎤
⎦ (9)
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Figure 2. Transcritical bifurcation of forward type and the appearance of the LAS endemic equilibrium
ξ+ atR0 = 1.

and evaluate at the DFE ξ0

J|ξ0 =
⎡
⎣−(ωκ + μ) −β − ωκ −ωκ

0 −(γ + μ − β) 0
0 γ −(ακ + μ)

⎤
⎦ .

Then, the corresponding eigenvalues are

λ1 = β − (γ + μ), λ2 = −(μ + ακ), and λ3 = −(μ + ωκ).

The two eigenvaluesλ2, λ3 are negative andλ1 < 0 iffβ < γ + μ. Hence, theDFE is locally
asymptotically stable whenR0 < 1 and unstable forR0 > 1.

The following Theorem describes the bifurcation associated with this stability change at
R0 = 1 that is also demonstrated in Figure 2. The proof relies on Theorem 4.1 of [4] based
on centre manifold theory [3,20]. For the sake of completeness, the relevant version of the
original theorem is included in Appendix A.2.

Theorem 2.1: A transcritical bifurcation of forward-type occurs atR0 = 1.

Proof: Fix all parameters but β that will serve as the bifurcation parameter with β∗ =
γ + μ corresponding to the critical caseR0 = 1.

We show that the conditions of Theorem A.1 are satisfied for the system ẋ = f (x, b),
where

f = (f1, f2, f3) ≡ (fS, fI , fR)

is obtained by applying the substitutions β → b + β∗ and (S, I,R) → (xS, xI , xR) + ξ0 to
Equations (3a), (3b), and (3c), with

x = (x1, x2, x3) ≡ (xS, xI , xR).
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ThematrixA = Dxf (0, 0) (= J|ξ0 with β = β∗) has one simple zero eigenvalue and two
eigenvalues with negative real part

λ1 = 0, λ2 = −(μ + ακ), λ3 = −(μ + ωκ).

Now, let us calculate

Z1 =
3∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0) and

Z2 =
3∑

k,i=1

vkwi
∂2fk
∂xi∂b

(0, 0),

where w, v are the right and left eigenvectors of A corresponding to the zero eigenvalue.
Note that we may fix w2 = 1 as Aw = 0 is underdetermined. Then,

w1 = −
[
1 + ακγ

(ωκ + μ)(ακ + μ)
+ γ

ακ + μ

]
and

w3 = γ

ακ + μ

follow. Analogously, we find a left eigenvector v = (0, 1, 0).
As v1 = v3 = 0, the sums get reduced to the terms containing

f2 ≡ fI = (b + β∗)xI(xS + 1) − (γ + μ)xI .

Clearly, the nonzero second order partial derivatives of fI at (0, 0) are

∂2fI
∂xI∂b

(0, 0) = 1 and
∂2fI

∂xI∂xS
(0, 0) = β∗ = γ + μ.

Hence,

Z1 = 2v2w1w2
∂2fI

∂xI∂xS
(0, 0)

= −2
[
1 + ακγ

(ωκ + μ)(ακ + μ)
+ γ

ακ + μ

]
(γ + μ) and

Z2 = v2w2
∂2fI

∂xI∂b
(0, 0) = 1.

As Z1 < 0 and Z2 > 0 for all parameters, we can apply Theorem A.1 noting that even
though w1 < 0, as the first component of ξ0 = (1, 0, 0) is positive, w1 ≥ 0 is not required
actually.

Translating the statement of the aforementioned Theorem to our original system (3a),
we obtain that when R0 increases through 1, a transcritical bifurcation of forward type
occurs with ξ0 losing and ξ+ gaining local asymptotic stability (LAS), respectively. �
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2.2. The Routh–Hurwitz criterion for ξ+
This section analyses the stability of the endemic equilibrium ξ+ for fixed β , γ , κ , and μ,
given thatR0 > 1 holds.

Local asymptotic stability (LAS) is characterized by all eigenvalues of the Jacobian (9)
at ξ+ having negative real part. Therefore, we consider the matrix

J|ξ+ =
⎡
⎣−(ωκ + μ + βI∗+) −(γ + μ + ωκ) −ωκ

βI∗+ 0 0
−νβI∗+ γ − 2νβI∗+ + νβ(1 − S∗ − R∗+) −(ακ + μ + νβI∗+)

⎤
⎦

and, in turn, its characteristic polynomial

a0λ3 + a1λ2 + a2λ + a3 = 0,

with

a0 = 1,

a1 = βI∗+(1 + ν) + (ακ + ωκ + 2μ),

a2 = βI∗+[(ακ + ωκ + 2μ) + γ + βνI∗+ + μν] + (ωκ + μ)(ακ + μ),

a3 = βI∗+[(ωκ + μ)(ακ + μ) + (γ + μ)βνI∗+ + γ (ακ + ωκ + μ)

+ ωκβν(1 − S∗ − I∗+ − R∗+)],

(10)

and S∗, I∗+,R∗+ as given in (5), (6), and (7).
Utilizing the Routh–Hurwitz (RH) criterion [15,16] yields that ξ+ is LAS iff the

following inequalities are satisfied

ai > 0, for i = 0, 1, 2, 3, and

a1a2 > a3.

As the positivity of a0, . . . , a3 is trivial, we are led to analyse the sign changes of the function

yν(α) = a1a2 − a3, (11)

for α > 1 and ν > 0.

2.2.1. Transformation of yν(α)

The formulae in (7) and (10) appear to be (mostly) symmetric with respect to α and ω.
Recall that these two parameters are closely related as

α + ω = αω = α2

α − 1

directly follows from (2). These considerations suggest to introduce the substitution

η = κ(α + ω) = κ(αω) = κ
α2

α − 1
, (12)

with η ∈ [4κ ,∞) and the α = ω = 2 case corresponding to η = 4κ . Nevertheless, in order
to apply (12), we need to establish that a3 in (10) may be considered as a function of η. This



604 R. OPOKU-SARKODIE ET AL.

holds due to the equality

ωκβν(1 − S∗ − I∗+ − R∗+) = βν(γ + μ)I∗+ − c1ν,

see Appendix A.3 for details.
Then, one obtains that

yν(α) ≡ yν(η) = â1â2 − â3,

with

â1 = Î(1 + ν) + (η + 2μ),

â2 = Î[(η + μ) + (γ + μ) + μν + ν Î] + μ(η + μ) + κη,

â3 = Î[2ν Î(γ + μ) − νμ(β − (γ + μ)) + (γ + μ)(μ + η) + κη],

where Î = βI∗+.
Substitution (12) reveals an important feature of yν(α), namely, there is a bijection

(1, 2) � α �→ α′ ∈ (2,∞) such that yν(α) = yν(α
′). In particular, local extrema at α �= 2

appear in pairs.
Furthermore, using the chain rule, we obtain that

∂yν

∂α
= ∂yν

∂η
· dη
dα

= ∂yν

∂η
· κα(α − 2)

(α − 1)2
.

Clearly, α = 2 (that is η = 4κ) is a critical point of yν for all immune boosting parameters
ν. By Lemma A.2, either all derivatives of yν are zero at α = 2 or the first non-vanishing
derivative is of even order. As yν is analytic and not identically zero for any R0 > 1, the
former is not possible, hence, α = 2 is a local extremum for all boosting rates ν.

3. Numerical analysis

This section summarizes the results of our numerical stability and bifurcation analysis of
system (3a) with respect to varying waning and boosting dynamics. In the remaining part
of the manuscript, all other parameters are considered to be fixed following [10] to model
pertussis as

γ = 17,

κ = 1/10,

μ = 1/80,

β = 260,

(13)

corresponding to an average infectious period of 21 days, average life expectancy of 80
years and a basic reproduction numberR0 = 15.28.

First, Section 3.1 discusses how the local stability of ξ+ changes given (13) with varying
α and ν. Then, Section 3.2 analyses these stability changes and the corresponding bifurca-
tions. In addition, using numerical continuation methods, we observe the bistable regions
in the (α, ν)-plane.
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Table 1. Limits of I∗+, R∗+, and the sign of yν(α).

lim I∗+ R∗+ yν(α)

ν → 0+ 4c1c2 + c3
4βc2(γ + μ)

γ (β − (γ + μ))(μ + ωκ)

βc2
> 0

ν → ∞ c1
β(γ + μ)

c1γ

βμ(γ + μ)
> 0

α → 1+ (κ + μ)(β − (γ + μ))

β(γ + μ + κ)

γ (β − (γ + μ))

β(γ + μ + κ)
> 0

α → ∞ (κ + μ)(β − (γ + μ))

β(γ + μ + κ)
0 > 0

∗ The details of the computations are to be found in Appendix A.4.

Figure 3. Heatmap of the Routh–Hurwitz criterion yν(α) capped at [−1, 1] with highlighted zero
contour. Figure 3(b) zooms in on the region close to α = 1.

3.1. Analysis of the Routh–Hurwitz criterion for ξ+
Before carrying out any numerical computations, let us analyse the asymptotic behaviour
of (11) as ν → 0+, ν → ∞, α → 1+, and α → ∞. The results, shown in Table 1, are valid
for all parametrizations of (3a) and do not rely on (13).

As a consequence of these limits, there exists a compact region K in the (α, ν)-plane
such that the endemic equilibrium ξ+ is LAS for (α, ν) ∈ (1,∞) × (0,∞) \ K.

3.1.1. Double bubbles of instability
Section 3.1 has readily established that it is sufficient to consider a compact subset in the
(α, ν)-plane for the stability analysis of ξ+. Based on our experiments, we have restricted
our attention to (α, ν) ∈ [1.01, 18] × [0.01, 18] and obtained the heatmap in Figure 3when
studying the positivity of yν(α).

It is apparent that, for an interval of α values, yν(α) is initially positive for small ν, then,
as the boosting rate increases the RH criterion becomes negative for an interval of ν values,
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Figure 4. Heatmap of y′ν(α) capped at [−1, 1] with highlighted zero contours of yν(α) and y′ν(α).
Figure 4(b) zooms in on the region close to α = 1.

afterwhich, it turns positive again.Now, let us look at the heatmap from the other direction.
Note that for most interesting boosting rates ν, a similar stability switch may be observed
over an α-interval. However, the dynamics is clearly more involved close to boosting rates
around 14 as Figure 3 suggests the presence of multiple stability switches.

It is straightforward to localize such phenomena by finding local extrema of yν(α) (as a
function of α) whose value is zero. Hence, we looked for intersections of the curves

yν(α) = 0 and
∂

∂α
yν(α) ≡ y′

ν(α) = 0

as shown in Figure 4 together with the positivity analysis of the derivative. Our findings
confirm the presence of multiple switches close to ν ≈ 13.7, moreover, they highlight the
existence of similar dynamics close to ν ≈ 2.06362 as well. Note that Figure 3 gives no hint
of the latter.

Recall from Section 2.2.1 that local extrema of yν(α) – other than α = 2 – appear in
pairs. Hence, zooming in on these two regions, shown in Figure 5, reveals double bubbles
of instability for certain boosting rates.

Note that the width of the ν-range where this phenomenon occurs in Figure 5(a) is less
than 2 · 10−5, thus, it should come as no surprise that it was not observable based on the
original heatmap in Figure 3. The coordinates of the highlighted critical points are given
in Table A1.

3.2. Numerical bifurcation analysis

In the following, we present numerical analysis of one parameter (α) and two parameter
(α, ν) bifurcations of the endemic equilibria branch carried out using MatCont [6]. For a
background on bifurcation analysis we refer to [9,19].
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Figure 5. Zoomed-in heatmaps of the Routh–Hurwitz criterion yν(α) with highlighted zero contour
over regions of interest in the (α, ν)-plane. Critical points pi = (α∗

i , ν
∗
i ) on the contour are marked. (a)

ν ≈ 2.06362. (b) ν ≈ 13.7.

Figure 6. Two-parameter (α, ν) bifurcation diagram.

Motivated by the results of Section 3.1, in particular the region depicted in Figure 3(a),
we computed the two parameter (α, ν) bifurcation diagram of system (3a), see Figure 6. To
fully understand the bifurcation diagram, let us denote by� the open domain enclosed by
the purple coloured Hopf curve, which is continuous when supercritical (called H−) and
dashed when subcritical (called H+). A stable limit cycle bifurcates from the equilibrium
if we crossH− from outside to inside �, while an unstable cycle appears if we cross H+ in
the opposite direction.
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Figure 7. Bifurcation diagram w.r.t. α, when ν = 2.06362.

It is apparent that for larger boosting rates (ν between 12 – 15), the local stability analysis
of ξ+ is not sufficient to capture all interesting dynamics.

The twonew critical points identified areGH1 = (α∗
GH1

, ν∗
GH1

) andGH2 = (α∗
GH2

, ν∗
GH2≡ ν∗

GH1
). The approximate coordinates of these generalized Hopf points are listed in

Table A2 and they mark the parameter values where the Hopf bifurcation changes from
supercritical to subcritical. The branch of the limit points of periodic cycles appears in
green, which together with the dashed purple curve H+ enclose a bistability region B,
where there exists a stable periodic solution alongside the LAS endemic equilibrium.

Let us now examine the bifurcation diagram in more detail over regions, characterized
by various levels of boosting rate ν, where the dynamics is similar.

In all bifurcation plots that follow, the endemic equilibria branch (particularly the I com-
ponent) is marked with black curve, solid when LAS and dashed when unstable. Red and
blue curves represent branches of stable and unstable limit cycles, respectively, and Hopf
bifurcation points are marked with purple dots.

Region: 0 ≤ ν < ν∗
1 ≡ ν∗

3 . The system has a stable point attractor for all α > 1.

Region: ν∗
1 ≡ ν∗

3 < ν < ν∗
2 . There are four supercritical Hopf bifurcation points on the

endemic equilibria branch, see Figure 7 for a typical setting. Continuation of (the I-
component of) limit cycles with respect to α starting from two Hopf bifurcation points,
H1 and H2, forms an endemic bubble (the two branches of stable limit cycles coincide),
see [14] for the origin of this concept. The same happens for the H3,H4 pair.

Recall that these double bubbles of instability (endemic bubbles) were readily observed
in Figure 5(a). Such double bubbles have been conjectured in a delay differential model
for waning and boosting [1]. For an overview of similar phenomena, the reader is referred
to [8,11,17].
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Figure 8. (a) Bifurcation diagramw.r.t. α, when ν = 5.8; (b) Zoom of (a) close to the vertical line α = 1.

Region: ν∗
2 < ν < ν∗

GH1
≡ ν∗

GH2
. As the boosting rate increases, the middle supercritical

Hopf points H2 and H3 (observed in the previous region) get closer to each other, finally
collide and we obtain a single endemic bubble, Figure 8.

Region: ν∗
GH1

≡ ν∗
GH2

< ν < ν∗
5 . As ν continues to grow in the two-parameter plane in

Figure 6, two generalized Hopf points, GH1 and GH2, appear. They separate branches of
sub- and supercritical Hopf bifurcations in the parameter plain. The stable limit cycles
survive when we enter region B. Crossing the subcritical Hopf boundary H+ creates an
extra unstable cycle inside the first one, while the equilibrium regains its stability. Two
cycles of opposite stability exist inside the bistable region B and disappear at the green
curve.

Whenwe pass the generalizedHopf points and fix a ν in this region, then Figure 9 shows
a typical bifurcation w.r.t. α. Observe here the two small α-parameter ranges of bistability
where the EE and the larger amplitude periodic solution are both stable. The pointsmarked
with green circle are limit points of periodic orbits. The stable and unstable cycles collide
and disappear on the green curve in Figure 6, corresponding to a fold bifurcation of cycles.

Region: ν∗
5 < ν < ν∗

4 ≡ ν∗
6 . As we increase the boosting value, the dynamics is changing,

as observed on the shape of the subcritical Hopf curve H+ in Figure 10 and the heat map
in Figure 5(b).

In Figure 11, the bifurcation diagram confirms the existence of four subcritical Hopf
bifurcation points. Here a small bubble appears inside the region of stable oscillations,
which leads to an additional bistable region compared to the previous case.

When we increase the boosting in this region, i.e. still intersecting the subcritical Hopf
curve, the Hopf points H1 andH2 as well as H3 andH4 move closer to each other, resulting
in larger bistability regions, see also the heatmap Figure 5(b).
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Figure 9. Bifurcation diagram w.r.t α, with ν = 13.5 (left) and zoom into the bistable region around H1
(right).

Figure 10. Two-parameter (α, ν) bifurcation diagram, bistability region.

Region: ν∗
4 ≡ ν∗

6 < ν. As we enter this region we leave H+ and do not intersect any Hopf
branches, hence, the continuation method utilized so far leaves us with a single stable
equilibrium, Figure 12.

There is however, a range of ν values in this region that belong to B, as observed in
Figure 6. For a better demonstration of the shape of the limit cycle branch, see Figure 13.
The coordinates of the critical points can be found in Table A1.

Considering the heatmaps in Figure 5, it was natural to investigate regions in the two
parameter plane (α, ν) where ν is constant and look at bifurcations with respect to α. To
capture the extension of the bistability region in the ν direction we can investigate the
dynamics for α fixed and consider the boosting rate ν as the bifurcation parameter. For a
typical setting see Figure 14.



JOURNAL OF BIOLOGICAL DYNAMICS 611

Figure 11. Bifurcation diagram w.r.t α, with ν = 13.7 (left) and zoomed into the bubble (right).

Figure 12. There are no bifurcations of equilibria when ν = 14.5.

4. Conclusions

We generalized previous compartmental SIRWSmodels of waning and boosting of immu-
nity by allowing different expected durations for individuals being in the fully immune
compartment R and being in the waning immunity compartment W, from where their
immunity can still be restored upon re-exposure. We proposed an asymmetric division
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Figure 13. Branch of the limit points of periodic solutions.

Figure 14. Bifurcation diagram w.r.t. ν, when α = 4.

of the immunity period in the SIRWS model to these two phases, characterized by a
newly introduced bifurcation parameter. Other parameters were chosen to mimic pertus-
sis. We observed and established a new symmetry in these divisions around the critical
case of equal partitioning when analysing the stability criterion of the endemic equilib-
rium. This, combined with numerical bifurcation methods, enabled us to characterize the
model dynamics for a relevant range of parameter values. We composed global bifurcation
diagrams, and found complex and rich dynamics where stability switches, Hopf bifurca-
tions, folds of periodic branches appeared, forming interesting structures in the parameter
space. We found double endemic bubbles as well as regions of bistability. Note that in our
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model (similarly tomost previous waning-boostingmodels [5,18]), the interesting dynam-
ics occurs in the case ν > 1, which corresponds to the assumption that the probability
of a partially immune person getting boosted is larger than that of a susceptible person
contracting the infection.

This study confirmed that simple looking SIRWS ODE models can have very intricate
dynamics. Our analysis highlighted that the division of the immunity period into maxi-
mally immune and boostable phases is a key parameter, which significantly determines the
dynamics of the system. As a consequence, future epidemiological studies should attempt
to estimate this quantity to have a better description of the influence of waning-boosting
mechanisms on epidemic outcomes.
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Appendices

A.1 Derivation of the formula for R∗±
We now derive the formula for R∗± used in Section 2. As we have seen, substituting the formulae
for S∗ and I∗ into (4c), we obtain the quadratic equation

A(R∗)2 + BR∗ + C = 0,

with coefficients

A = ωκνβ(γ + μ)

(γ + μ + ωκ)2
,

B = ωκν(γ + μ + c0c1) − [(γ + μ)(μ + ακ + ωκ + νc0c1) + ωκ(ακ + βν)]
γ + μ + ωκ

,

C = c0c1
β

[βν + γ − γ ν − μν − c0c1ν].

The y-intercept Cmay be simplified as

C = c0c1
β

(βν + γ − γ ν − μν − c0c1ν) ,

= c0c1ν + c0c1γ
β

− c0c1ν
β

(γ + μ + c0c1) ,

= c0c1ν + c0c1γ
β

− c0c1ν
β

(
β − c0c1γ

ωκ + μ
− c0c1 + c0c1

)
,

= c0c1γ
β

+ c20c
2
1γ ν

β(ωκ + μ)
,

= c0c1γ
β

(
1 + c0c1ν

ωκ + μ

)
.
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Then, the solution formula gives

R∗
± = −B

2A
∓

√
B2 − 4AC
2A

. (A1)

We split (A1) into two parts and evaluate them separately.
−B
2A

= γ + μ + ωκ

2ωκνβ(γ + μ)
((γ + μ)(μ + ακ + ωκ + νc0c1) + ωκ(ακ + βν) − ωκν(γ + μ + c0c1))

= γ + μ + ωκ

2ωκνβ(γ + μ)

×
(

(γ + μ)(ακ + ωκ + μ) + (γ + μ)νc0c1 + ωακ2 + ωκβν − ωκν

(
β − γ c0c1

ωκ + μ

))

= γ + μ + ωκ

2ωκβ

(
(γ + μ)(ακ + ωκ + μ) + ωακ2

ν(γ + μ)
+ (γ + μ)νc0c1

ν(γ + μ)
+ ωκνγ c0c1

ν(γ + μ)(ωκ + μ)

)

= γ + μ + ωκ

2ωκβ

(
c2

ν(γ + μ)
+ c0c1 + ωκγ c0c1

(ωκ + μ)(γ + μ)

)

= γ + μ + ωκ

2ωκβ

(
c2

ν(γ + μ)
+ c0c1 + ωκγ (β − γ − μ)

(ωκ + μ + γ )(γ + μ)

)

= γ + μ + ωκ

2ωκβ

(
c2

ν(γ + μ)
+ c0c1 + c0c1 − c1

γ + μ

)

= γ + μ + ωκ

2ωκβ

(
c2

ν(γ + μ)
+ 2c0c1 − c1

γ + μ

)
.

Then, the other term in (A1) is

∓
√
B2 − 4AC
2A

= ∓ (γ + μ + ωκ)2

2ωκνβ(γ + μ)

×
√

(μ(β − γ − μ))2

(γ + μ + ωκ)2
ν2 + T0

(γ + μ + ωκ)2
ν + ((γ + μ)(ακ + ωκ + μ) + αωκ2)2

(γ + μ + ωκ)2
,

with

T0 = 2(β − (γ + μ))(γμ2 + μ3 + ωκμ2 + ακμ2 + αγ κμ + ωγκμ + 2αωγ κ2 + αωμκ2)

= 4γαωκ2(β − (γ + μ)) + 2μ(β − (γ + μ))[(γ + μ)(ωκ + ακ + μ) + αωκ2]

= c3 + 2c1c2.

Hence,

∓
√
B2 − 4AC
2A

= ∓ (γ + μ + ωκ)2

2ωκνβ(γ + μ)

√
c21

(γ + μ + ωκ)2
ν2 + (2c1c2 + c3)

(γ + μ + ωκ)2
ν + c22

(γ + μ + ωκ)2

= ∓ γ + μ + ωκ

2ωκνβ(γ + μ)

√
c21ν2 + c22 + 2νc1c2 + c3ν

= ∓ γ + μ + ωκ

2ωκνβ(γ + μ)

√
(c1ν + c2)2 + c3ν.
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Recombining the two terms yields the formula

R∗
± = γ + μ + ωκ

2βωκ

[(
2c0 − 1

γ + μ

)
c1 + 1

ν(γ + μ)

(
c2 ∓

√
(c1ν + c2)2 + c3ν

)]
.

A.2 Transcritical bifurcation of forward type

For the sake of completeness, we include a slightly adjusted version of Theorem 4.1. from
Castillo–Chavez and Song [4].

Theorem A.1: Let f ∈ C2(Rn × R,Rn) and consider the system of ordinary differential equations

dx
dt

= f (x, b),

with b as a parameter. Assume that 0 is an equilibrium point, i.e. f (0, b) = 0 for all b ∈ R. In addition,
assume the following:

(i) The linearization of the system at (0, 0)

A := Dxf (0, 0) =
(

∂fi
∂xj

(0, 0)
)n

i,j=1

has zero as a simple eigenvalue and all other eigenvalues of A have negative real parts.
(ii) The matrix A has a non-negative right eigenvector w and a left eigenvector v corresponding to the

zero eigenvalue.

Let fk be the k-th component of f and define

Z1 =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0) and

Z2 =
n∑

k,i=1

vkwi
∂2fk

∂xi∂b
(0, 0).

If Z1 < 0 and Z2 > 0, then as b changes from negative to positive, the equilibrium 0 changes its stability
from stable to unstable. At the same time, a negative unstable equilibrium becomes positive and locally
asymptotically stable. Hence, a forward bifurcation occurs at b = 0.

A.3 Transformation of yν(α)

The alternative, simpler form of ωκβν(1 − S∗ − I∗+ − R∗+), used in Section 2.2.1, is obtained as
follows.

ωκβν(1 − S∗ − I∗+ − R∗+)

ωκβν

(
1 − γ + μ

β

)
− ωκβν

√
(c1ν + c2)2 + c3ν + (c1ν − c2)

2βν(γ + μ)

− ωκβν
γ + μ + ωκ

2βωκ

[(
2c0 − 1

γ + μ

)
c1 + 1

ν(γ + μ)

(
c2 −

√
(c1ν + c2)2 + c3ν

)]

= ωκν
c1
μ

+ ωκ

2
c2 −

√
(c1ν + c2)2 + c3ν

γ + μ
− ωκ

2
c1ν

γ + μ
− ν

2
(γ + μ + ωκ)2c0c1

− ν(γ + μ)

2

[
− 1

γ + μ
c1 + 1

ν(γ + μ)

(
c2 −

√
(c1ν + c2)2 + c3ν

)]
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+ ν · ωκ

2
c1

γ + μ
− ωκ

2
c2 −

√
(c1ν + c2)2 + c3ν

γ + μ

= ωκν
c1
μ

− ν

2
(γ + μ + ωκ)2c0c1 + ν

2
c1 − 1

2

(
c2 −

√
(c1ν + c2)2 + c3ν

)

= ωκν
c1
μ

− ν

(
1 + ωκ

μ

)
c1 + ν

2
c1 − 1

2

(
c2 −

√
(c1ν + c2)2 + c3ν

)

=
√

(c1ν + c2)2 + c3ν − (c1ν + c2)
2

= βν(γ + μ)I∗+ − c1ν.

We now present two Lemmas on derivatives of function compositions. The first is a version of the
classical result by Faà di Bruno generalizing the chain rule.

Lemma A.1 (Faà di Bruno): Let f : I → U and g : U → V be analytic functions, where I,U,V ⊆
R are connected subsets. Consider the Taylor expansions f (t) = ∑∞

k=0
(
f
)
k (t − t0)k centred at t0 ∈

I with t ∈ I and g(x) = ∑∞
k=0

(
g
)
k (x − x0)k centred at x0 = f (t0) for x ∈ U. Then, the composite

function (g ◦ f ) attains the Taylor expansion (g ◦ f )(t) = ∑∞
k=0

(
g ◦ f

)
k (t − t0)k centred at t0 with

the coefficients (
g ◦ f

)
0 = (

g
)
0 and

(
g ◦ f

)
k =

∑
b1+2b2+...+kbk=k
m:=b1+b2+...+bk

m!
b1!b2! . . . bk!

(
g
)
m

k∏
i=1

( (
f
)
i

)bi
,

where k ≥ 1 and b1, . . . , bk are nonnegative integers.

Using the results of LemmaA.1 and assuming that the inner function has a vanishing first deriva-
tive and the outer function has a cascade of vanishing derivatives, the following Lemma establishes
a similar property for the composite function.

Lemma A.2: Assume that f and g are as in Lemma A.1 and that
(
f
)
1 = 0. Then,

(a)
(
g ◦ f

)
2 = 0 ⇔ (

g
)
1 = 0,

(b) if
(
g
)
i = 0 for i = 1, . . . , k − 1, then

(
g ◦ f

)
2k = 0 ⇔ (

g
)
k = 0,

(c) if
(
g
)
i = 0 for i = 1, . . . , k, then

(
g ◦ f

)
2k+1 = 0.

Proof: The claims directly follow from Lemma A.1 by noting that in the formula of
(
g ◦ f

)
k, for

terms with m > k/2, the inequality b1 > 0 must hold, hence, any such term must evaluate to zero.
�

A.4 Asymptotic behaviour of equilibria

The analytic computations of the behaviour of the equilibria of SIRWS system for large and small
boosting (ν)

lim
ν→0+

I∗+ = (ακ + μ)(γ + μ + ωκ)c1c0
βc2

, lim
ν→∞ I∗+ = |c1| + c1

2β(γ + μ)
,

lim
ν→0

R∗+ = γ + μ + ωκ

2βωκ

[(
2c0 − 1

γ + μ

)
c1 − 2c1c2 + c3

2c2(γ + μ)

]
,

lim
ν→∞R∗+ = γ + μ + ωκ

2βωκ

[(
2c0 − 1

γ + μ

)
c1 − |c1|

(γ + μ)

]
.
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Here, we consider the behaviour of the equilibria as α → 1+ and α → ∞

lim
α→∞ I∗+ = 1

β(γ + μ)

[
c1 + γ κ(β − (γ + μ))

γ + μ + κ

]
,

As a remark, the limit as α → ∞ and as α → 1+ are the same.

lim
α→∞R∗+ = 0,

and lastly,

lim
α→1+

R∗+ = 1
β(γ + μ)

[
c1γ
μ

+ γ κ(β − (γ + μ))

γ + μ + κ

]
.

A.5 Numerical values ofmarked bifurcation points

Table A1. Critical points on the contour yν(α) = 0 as marked in Figure 5 and critical points on the limit
cycles branch as marked in Figure 13.

α ν

p1 = (α∗
1 , ν

∗
1 ) 1.864273655292 2.063612920385

p2 = (α∗
2 , ν

∗
2 ) 2.0 2.063623848262

p3 = (α∗
3 , ν

∗
3 ) 2.157040937065 ν∗

1
p4 = (α∗

4 , ν
∗
4 ) 1.366092512212 13.80272643151

p5 = (α∗
5 , ν

∗
5 ) 2.0 13.61692960743

p6 = (α∗
6 , ν

∗
6 ) 3.731549995264 ν∗

4
p7 = (α∗

7 , ν
∗
7 ) 1.5987662507 14.9610290034

p8 = (α∗
8 , ν

∗
8 ) 2 14.936830813

p9 = (α∗
9 , ν

∗
9 ) 2.670631735 ν∗

7

Table A2. Critical GH points as marked in Figure 6.

α ν

GH1 = (α∗
GH1

, ν∗
GH1

) 1.1430260422 12.469198884
GH2 = (α∗

GH2
, ν∗

GH2
) 7.9917337529 12.469198884
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