Optimizing Performance and Resource Consumption
of Cloud-Native Logging Application Stacks

Gergb Csatil, Istvan Pelle2, Laszl6 Toka?
IEricsson Hungary, 2MTA-BME Network Softwarization Research Group,
Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Hungary
gergo.csati@ericsson.com, pelle.istvan@vik.bme.hu, toka.laszlo@vik.bme.hu

Abstract—Nowadays cloud-based applications and Internet of
Things use-cases are becoming more and more common in the
field of IT benefiting from the virtually limitless resources and
microservice-based deployment options available in the cloud.
Observability in such environments is key for tracing application
execution to detect possible malfunctions and anomalies. Collect-
ing logs can greatly help in this regard, however, a high volume
of logging data can add huge costs for the maintenance of the
infrastructure gathering monitoring data. In order to increase the
profitability of the application, monitoring-related infrastructure
needs to have the lowest cost possible while still being able to
fully serve the application’s monitoring needs. In this work, we
investigate this aspect and provide an evaluation of the resource
footprint of one of the most prominent log collection services,
Elastic Stack, from the perspective of its write path.

I. INTRODUCTION

The popularity of cloud-native (CN) and Internet of Things
(IoT) applications has increased significantly recently and this
trend is likely to continue. Microservice-based cloud architec-
tures and on-demand scaling provide a good foundation for
the former, while the latter can leverage data aggregation and
analysis deployed to cloud resources. As cloud infrastructures
substitute on-premises resources, many formerly non-CN ap-
plications are getting transitioned to CN environments today.

To achieve high reliability, applications running in cloud
environments need to employ robust logging procedures as
logs are generated for every important event during the op-
erations of an application. Analyzing application logs can
help to discover workflow characteristics, detect anomalies and
malfunctions, and identify root causes of errors. Components
of the Elastic Stack (ES) [4], one of the most popular logging
frameworks, perform well in IoT-related CN logging. The
stack’s ability to process large amounts of data is demonstrated
by Talas et al. [2] on a Smart City use-case. Beyond the
features of a simple search engine, the stack provides powerful
tools for management and monitoring that are particularly
important for IoT systems, as demonstrated by Calderon et
al. [5] in a generic setting and by other works [3], [12] in
a cloudified smart building scenario. As avoiding security
threats is also a cornerstone in IoT, logging needs to align
with this aspect as well. A robust implementation of security
logging leveraging the ES is provided by Noura et al. [6] while
others [14] investigate the capabilities of the stack regarding
the security analysis of security-related logs.

978-1-6654-0601-7/22/$31.00 © 2022 IEEE

Although logging is often mandatory for microservices, it
is always subordinate to application components. As CPU,
memory, and disk resources should be used for the primary
task of the application, heavy resource-optimization should be
performed for logging solutions. Myriads of different logging
scenarios make the optimization of such solutions not at all
trivial. To help plan the logging stack backing up CN IoT ap-
plications, we investigate optimization possibilities within the
stack. We create a controlled environment where emulated load
is sent to the stack and we evaluate the stack’s performance
under varying configuration options. Thus, our contributions
are threefold: i) we shortly review CN execution environments
and the ES, our chosen logging solution, ii) we present
measurement setups for evaluating the resource footprint of
the ES for storing and querying logs, and iii) we evaluate
its write-path-performance. According to these, we structure
the rest of the paper in the following manner. In §II we
paint a general picture of the background of the CN logging
framework. In §III we discuss related work from the field
of logging framework performance testing. Then we describe
our measurement methodologies and setup in §IV and discuss
measurement results in §V before closing our paper with §VI.

II. BACKGROUND

The CN environment: Diverse services can be implemented
and accessed through the network in a fast, flexible way
exploiting the CN concept. One of the most efficient ways to
utilize resources in the cloud is to use containerized systems.
Docker [8] is an open-source containerization service with
operating system-level virtualization. Containerization is espe-
cially useful when working with microservices and is essential
in the CN world. To manage the multitude of containers in a
large cluster, an orchestration system is required. The most
popular of these is Kubernetes [16] which orchestrates the
placement, resource assignment, and life cycle of application
containers running in pods on cluster nodes.

ES — The logging framework: Thanks to the CN revolution,
logging frameworks have transformed into robust systems with
complex pipelines for handling all logging-related activities
ranging from collecting through processing to storing. The
Elastic Stack [4], [11], also known as the ELK Stack, is one of
the most advanced log collection systems that consists of four
main components: collectors (Beats), a router and processor
engine (Logstash), a store and search engine (Elasticsearch)

and a visualization component (Kibana) that combine into
a feature-rich log processing pipeline. Filebeat (one of the
Beats services) specializes in low resource footprint file-
based log aggregation and shipping. Logstash ingests data
simultaneously from multiple sources in multiple formats and
transforms them on-the-fly before routing them to log storage
services. Elasticsearch stores, searches, and analyzes multi-
format logging data. When the engine ingests a record, it
indexes it in a document by assigning types to record fields
dynamically or according to the set configuration. Indices
organize data both physically and logically and are mapped
to primary and replica shards. According to guidelines, these
need to be kept between 10-50 GB in size and below 20 in
number for every GB of heap memory configured, to provide
good performance. Shards are automatically distributed among
data nodes and rebalanced when nodes are added or removed
(e.g., on failure) or in case of high disk usage. Data nodes
are tied to physical hardware and handle CPU, RAM, or 10-
intensive operations. While data nodes serve ingestion and
queries, master nodes control the cluster, and ingest nodes help
in data preprocessing, monitoring, and in securing connections
with other components of the stack. Although one node can
fill multiple roles, for reliability purposes these are best kept
separately, ideally on separate hardware as well. Kibana is
a GUI for the stack that provides pipeline and ingested data
management, monitoring, and visualization. It offers various
metrics regarding the Elasticsearch nodes, e.g., resource con-
sumption, shard, and index information.

III. RELATED WORK

For logging stacks, resource cost awareness and minimiza-
tion of overhead are well-studied aspects. Log4Perf [7] acts
at the application level and provides suggestions on where to
insert logging statements. Log2 [10] optimizes log ingestion
and storage by providing a cost-aware logging mechanism that
uses a multi-level filtering mechanism: redundant, irrelevant
logs are dropped while still adhering to a storage cost budget.
Contrary to these, Wiriya et al. [15] investigate the scaling
behavior of logging stacks in an environment utilizing virtual
machines. Moving closer to our chosen logging platform, ES is
evaluated against CouchDB by Gupta et al. [13]: they analyze
the advantages and disadvantages of each platform. One of the
main advantages of the CN concept, the possibility for auto-
scaling, is investigated by Cholomskis et al. [1] with respect
to logging stacks, where the ES handles the collection and
aggregation of metrics.

Contrary to the above works, our investigation fully fo-
cuses on the ES components themselves and places them
in a containerized, CN environment utilizing different setups
and configurations to map resource utilization. In this sense,
it is closest to Rally [9] and Elastic’s own blog post on
Elasticsearch sizing [17]. The former gives a benchmark tool
for measuring deployments, albeit without publishing any
comparison cases, while the latter investigates only throughput
aspects without looking into compute resource utilization
characteristics.

IV. MEASUREMENT SETUP

Depending on the log shipping method, we create multiple
pipelines to mimic real-life cases. In each case, the pipeline
starts with an emulated application component that generates
synthetic log records.

Application emulation: We use a purpose-built Python appli-
cation for generating lines of text with randomized content in a
structured or unstructured format. The configurable application
is deployed as a Kubernetes pod.

Pipelines: Our first log ingestion pipeline originates with
Filebeat. As shown in Fig. 1, the tool is deployed as a sidecar
container. In this case, the application appends its output into a
file located on an emptyDir volume that is shared with Filebeat
which reads the shared logs and forwards them to Logstash
from where they arrive in Elasticsearch.

Pod Pod Pod Pod
Log . . .
Filebeat Logstash Elasticsearch Kibana
generator

Fig. 1. Pipeline involving Filebeat

In our second pipeline setup, depicted in Fig. 2, we connect
our application directly to Logstash and send log records via
the HTTP protocol.

Pod Pod

Kibana]

Fig. 2. Pipeline with direct HTTP connection to Logstash

Pod (" Pod
e

Logstash

Tiog HTTP
generalor

Elasticsearch

.

Deployment and methodology: We deploy our pipelines to
a Kubernetes cluster having 10 nodes each with 32 CPU cores
and 64 GB of memory. For both Filebeat and the application,
we allocate 1 CPU core, and 1 GiB of memory respectively.
We set Logstash up with 2 CPU cores and 6 GiB of RAM
with its JVM heap set to 4 GB according to guidelines. For
Elasticsearch we use a setup of three nodes all with master,
ingest, and data roles, having 1 CPU core, 2 GiB of RAM,
with the JVM heap set to 1GiB and 400 GB of persistent
volume storage. Kibana is added to the pipeline to provide
the necessary security configurations for Elasticsearch and
monitoring. We track the volume and intensity of the ingested
data, the throughput of the different scenarios, and potential
log loss using the tool. We use the latest completely license-
free versions of the ES components, i.e., version 7.10.2.

Measurements are started by reinstalling the collector com-
ponents in the pipeline and deploying the application compo-
nent that immediately starts generating log records. In certain
cases, we use multiple application components to increase the
load on the stack. We use Kubernetes’ monitoring to query
CPU and memory footprint having an averaging window of
30 and collect peak and steady-state values. We supply CPU
usage in percentage, where 100% is equivalent to 1 CPU core
fully utilized.

V. MEASUREMENTS AND EVALUATION

While multiple factors contribute to the resource footprint
of the ES, here we focus on three of them.

Log record sizes and distributions: We experiment with two
log record size distribution combinations: i) 0.5-5kB /event,
uniformly distributed, and ii) 10-64kB/event having an ex-
ponential distribution with a decay factor of 17. The latter is
selected to reduce load and resource consumption at the log
generator. Using this distribution, out of 5 million log entries,
on average, there are only 5 records sized approximately
64 kB, and the first 1 million log records are below 11 kB.

Load: In our experiments, we aim to reach loads that can
be considered very high in real environments. To reach this,
we use multiple instances of the generator application and set
the log generation intensity to its technical maximum.

Sharding: We also evaluate different shardings in Elastic-
search to observe their effects in the various ingestion plans.

A. Ingesting high intensity 0.5-5 kB-sized logs with Filebeat

In this scenario, we measure the pipeline under heavy load
and compare it to the lighter load case. We use Filebeat
for this case, as it proved to be stable and reliable with the
other ES components. The utilization of Filebeat also mimics
real-life cases more realistically and has low overall footprint
implications.

Our setup consists of two emulated application pods each
containing one log generator container connected to one in-
stance of Filebeat. We set the individual application containers
to create 12.5 million log entries. Because of this large amount
of data, we increase the number of shards in Elasticsearch to
12. This setup is motivated by the Elasticsearch guidelines,
as it is recommended to not have shards greater than 50 GB.
A summary of setup parameters and detailed results of this
measurement can be observed in Tab. L.

It takes 417 minutes overall to ingest all 25million log
entries. The pipeline remains stable during the process and
manages to ingest everything without any significant delays.
Fig. 3 visualizes a summary of the peak CPU loads of each
component in the stack. The larger intensity of logs results in
a larger footprint, as can be expected. Filebeat’s peak CPU

TABLE I
SUMMARY OF CASES USING VARYING LOG INGESTION INTENSITIES

Low intensity

High intensity

Generation period 0.02 “max”

Ingestion time 10 min 417 min

Log size 0.5-5kB 0.5-5kB
evenly distributed evenly distributed

Logs generated 29,834 25,000,000

Logs ingested 29,834 25,000,000

Logs lost 0% 0%

Average throughput ~2,983/min ~59,952 /min

Peak CPU - Filebeat 1.4% 17% (avg. 13%)

Peak RAM - Filebeat 37MiB 134 MiB

Peak CPU - Logstash 16% 78% (avg. 55%)

Peak RAM - Logstash 1GiB 4.3GiB

Peak CPU - ES nodes 7% 100% (avg. 91%)

Peak RAM - ES nodes 1.6 GiB 1.8GiB

Log generation intensity: E, Low E, Maximum

. \ | 100
Elasticsearch
A7
\ 78
Logstash
B A 16
Log forwarder]1:| K
0 20 40 60 80 100

Peak CPU usage [%]

Fig. 3. Effect of different log intensities on peak CPU usage

usage is 17% percent while its RAM consumption peaks at
134 MiB. The CPU usage of Logstash peaks at 78% and it uses
a maximum of 4.3 GiB of memory, which means it uses up all
of the allocated JVM heap. The data nodes of Elasticsearch
are working on full load. Each data node reaches its capacity
in terms of CPU with an average usage of 91%. Elasticsearch
can handle the load without any failures or lags.

Checking the rate of the ingestion throughput (in Kibana)
shows that for approximately an hour the throughput remains
stable around 60,000 logs/minute, but after that it starts to
fluctuate. In our assessment this can be attributed to the data
nodes getting really close to their limits. For intense loads like
this, a three-node setup seems to be sufficient, but in an ideal
case Elasticsearch should have more nodes to work with, in
order to reach a more consistent ingestion rate.

B. Ingesting 10-64 kB-sized logs with Logstash via HTTP
using different sharding plans

In this case, we measure the pipeline’s footprint and per-
formance under the load of 10-64 kB-sized logs. We compare
measurements using different sharding plans, to see the effect
of these different scenarios. With larger logs, the size of the
storage becomes much more crucial. By using different shard-
ing configurations, we can greatly influence Elasticsearch’s
storage management.

For these measurements, we deploy two application in-
stances that create exponentially distributed log entries with
maximum intensity. As per §IV, logs are directly sent from the
application to Logstash via HTTP. In the following, we discuss
the measurement results attained by utilizing two different
setups that are also summarized in Tab. II.

In the first case, we aim to ingest 2 million logs into a single
shard, with each data node having access to 100 GB of storage.
Similarly to the previous measurement of §V-A, the load is
significant on Logstash and the data nodes, as results shown
in Fig. 4 attest. Logstash’s peak CPU usage is 11% lower than
in the case of the ingestion of the smaller logs with maximum
intensity. The throughput is approximately a tenth of what we
saw in §V-A, which is not surprising since the average size
of an ingested log is also significantly larger, although not ten
times larger.

As data nodes have 100 GB of storage allocated for them,
the ingestion stops after 300 minutes because the single shard

g 12 shards/index g 1 shard/index

| 99
| 100

Elasticsearch

| 67

Logstash
¢ | 86

|

|

|

| ,

0 20 40 60 80 100
Peak CPU usage [%]

Fig. 4. Effect of sharding when ingesting 10-64 kB-sized records

is unable to allocate any more storage for the incoming logs.
This illustrates why it is crucial to have more shards for large
amounts of data as well as an issue where a low number
of shards makes the complete Elasticsearch cluster get stuck
while only the storage of a single node is filled up.

For the second measurement, we delete all the data from
the nodes and redeploy them each with 400 GB of allocated
storage. We set the number of shards for the index to 12 and
start ingesting 5 million logs. This time the pipeline manages
to ingest all the data in 919 minutes. The load on the data
nodes and Logstash is similar to the load in the 1-shard-setup.
The ingestion is slower overall because the increased number
of shards also increases the overhead of the ingestion process.
The average load on the data nodes is lower altogether, which
indicates that in the ingestion’s case, the size of the logs
matters less than the amount of the logs.

VI. SUMMARY

For CN IoT systems, a proper logging implementation is
essential. IoT systems tend to generate a significant amount
of logs, hence the optimization of the logging solutions behind
these systems is a crucial, often non-trivial task. Elastic Stack
can be a good solution in many use-cases, with a low resource
cost when optimized properly.

Although our measurements are not exhaustive in terms
of configuration options, we gathered important takeaways.
These can be applied to the myriads of different use-cases
that can be performed leveraging the ES while still keeping a
low resource footprint in order to raise the profit realized on
IoT or CN applications. First, the size of log records matters
less than their aggregate number. This is most noticeable
when it comes to the Elasticsearch data nodes, where CPU
usage is significantly higher, and the ingestion happens with
greater intensity, using smaller log entries. Second, sharding
is very important for the indices. In order for the cluster to
stay healthy, it is mandatory to have good shard management.
Third, Logstash is one of the most demanding components
in terms of resource consumption. In large systems, Logstash
can be convenient to use for routing or to aggregate logs from
disparate sources, but in simpler environments substituting it
with Elasticsearch’s ingest node pipeline can lead to lower
overall resource consumption.

ACKNOWLEDGMENT

This work was supported by the Ministry of Innovation and
Technology of Hungary from the National Research, Development

TABLE II
SUMMARY OF CASES USING DIFFERENT SHARDING SETUPS

Setup with 1 shard Setup with 12 shards

Generation period “max” “max”

Ingestion time 300 mins 919 mins

Log size 10-G4kB 10-64kB
exp. distribution exp. distribution

Logs generated 2,000,000 5,000,000

Logs ingested 1,424,547 5,000,000

Used up storage 73.4GiB 235.5GiB

Average throughput ~5,700/min ~5,440/min

Peak CPU - Logstash 67% 86% (avg. 70%)

Peak RAM - Logstash 4GiB 4GiB

Peak CPU - ES nodes 99% 100% (avg. 60%)

Peak RAM - ES nodes 1.9GiB 1.7 GiB

and Innovation Fund through projects 7) no. 135074 under the FK_20
funding scheme and 47) 2019-2.1.13-TET_IN-2020-00021 under the
2019-2.1.13-TET-IN funding scheme. L. Toka was supported by the
Janos Bolyai Research Scholarship of the Hungarian Academy of
Sciences. Supported by the UNKP-21-5 New National Excellence
Program of the Ministry for Innovation and Technology from the
source of the National Research, Development and Innovation Fund.

REFERENCES

[11 A. Cholomskis et al. Cloud software performance metrics collection
and aggregation for auto-scaling module. In Information and Software
Technologies, pages 130-138, Cham, 2018. Springer.

[2] A. Talas et al. Elastic stack in action for smart cities: Making sense of
big data. In ICCP, pages 469-476, 2017.

[3] M. Bajer. Building an IoT Data Hub with Elasticsearch, Logstash and
Kibana. In FiCloudW, pages 63-68, 2017.

[4] Elasticsearch B.V. Elastic Stack: Elasticsearch, Kibana, Beats &
Logstash. Elasticsearch B.V. 2022. Accessed on: 20 January 2022.
[Online]. Available: https://www.elastic.co/elastic-stack/, 2022.

[5] G. Calderon et al. Management and Monitoring IoT Networks through
an Elastic Stack-based Platform. In FiCloud, pages 184-191, 2021.

[6] H. N. Noura et al. DistLog: A distributed logging scheme for IoT
forensics. Ad Hoc Networks, 98:102061, 2020.

[71 K. Yao et al. Logdperf: Suggesting and updating logging locations
for web-based systems’ performance monitoring. Empirical Software
Engineering, 25(1):488-531, 2019.

[8] D. Merkel. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal, 2014(239):2, 2014.

[9] D. Mitterdorfer. ~ Announcing rally: Our benchmarking tool for
Elasticsearch. Accessed on: 20 January 2022. [Online]. Available:
https://www.elastic.co/blog/announcing-rally-benchmarking-for-
elasticsearch, Apr 2016.

[10] R. Ding et al. Log2: A Cost-Aware logging mechanism for performance
diagnosis. In USENIX ATC 15, Santa Clara, CA, 2015.

[11] R. K. Gupta et al. Mastering elastic stack: Get the most out of the
elastic stack for various complex analytics using this comprehensive
and practical guide. Packt, 2017.

[12] S. Dharur et al. Efficient surveillance and monitoring using the ELK
stack for IoT powered smart buildings. In ICISC, pages 700-705, 2018.

[13] S. Gupta et al. A comparative study of Elasticsearch and CouchDB
document oriented databases. In ICICT, pages 1-4, 2016.

[14] S. J. Son et al. Performance of ELK stack and commercial system in
security log analysis. In MICC, pages 187-190, 2017.

[15] S. Wiriya et al. The enhancement of logging system accuracy for
infrastructure as a service cloud. Bulletin of Electrical Engineering and
Informatics, 9(4):1558-1568, 2020.

[16] The Kubernetes Authors. Kubernetes: Production-grade container or-
chestration. The Linux Foundation. 2022. Accessed on: 20 January 2022.
[Online]. Available: https://kubernetes.io/, 2022.

[17] Y. Younes. Benchmarking and sizing your Elasticsearch clus-
ter for logs and metrics. Accessed on: 20 January 2022. [On-
line]. Available: https://www.elastic.co/blog/benchmarking-and-sizing-
your-elasticsearch-cluster-for-logs-and-metrics, Oct 2020.

