
Optimal Resource Provisioning for Data-intensive
Microservices

Roland Mark Erdei, Laszlo Toka
MTA-BME Network Softwarization Research Group, Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics, Hungary
erdeiroland@edu.bme.hu, toka.laszlo@vik.bme.hu

Abstract—With the continuous progress of cloud computing,
many microservices and complex multi-component applications
arise for which resource planning is a great challenge. For
example, when it comes to data-intensive cloud-native applica-
tions, the tenant might be eager to provision cloud resources
in an economical manner while ensuring that the application
performance meets the requirements in terms of data throughput.
However, due to the complexity of the interplay between the
building blocks, adequately setting resource limits of the com-
ponents separately for various data rates is nearly impossible.
In this paper, we propose a comprehensive approach that
consists of measuring the resource footprint and data throughput
performance of such a microservices-based application, analyzing
the measurement results by data mining techniques, and finally
formulating an optimization problem that aims to minimize
the allocated resources given the performance constraints. We
illustrate the benefits of the proposed approach on Cortex, an
extension to Prometheus for storing monitored metrics data. The
data-intensive nature of this illustrative example stems from real-
time monitoring of metrics exposed by a multitude of applications
running in a data center and the continuous analysis performed
on the collected data that can be fetched from Cortex. We present
Cortex’s performance vs resource footprint trade-off, and then
we build regression models to predict the microservices’ resource
consumption and draw a mathematical programming formula-
tion to optimize the most important configuration parameters.
Our most important finding is the linear relationship between
resource consumption and application performance, which allows
for applying linear regression and linear programming models.
After the optimization, we compare our results to Cortex’s
recommendation, leading to a CPU reservation reduced by 50-
80%.

Index Terms—cloud-native, microservices, performance, re-
source footprint, optimization

I. INTRODUCTION

Cloud computing is widely used in the digital industry as
a technology that enables cheap and easy deployment not
only for online web services but also for big data processing,
machine learning, and storing data for the long term. The cloud
is backed by physical data centers worldwide that host virtual
machines offered to customers and users. The cloud concept
empowers users to replace their hardware with cloud server
instances and creates a new economic model where the cus-
tomer pays only for the usage and not for the entire hardware
itself. However, decision-making in cloud environments can
be complex due to the diversity in pricing models and service
offerings. There are no rules of thumb as each customer could

have a specific set of constraints and requirements of their
cloud application when it comes to selecting the perfect cloud
environment [1].

Microservices have recently gained striking popularity
due to being highly maintainable and easy to develop.
Microservices-based applications allow the deployment of
each microservice (or component) to be in physically separated
virtual machines if needed. Microservices, being separately
manageable, have a massive advantage in scaling, which is
one of the most critical features of the cloud context. Instead
of launching multiple instances of a whole application, there
is a possibility to only scale in or scale out a specific
microservice component [2]. Hence creating microservices
with the help of container technologies can result in robust
and easy deployment with a small footprint. However, the
goal is not only to create a small footprint application, but
also to match the Quality of Service (QoS) of the original
monolith performance-wise. When it comes to data-intensive
applications, data throughput is the most crucial aspect. The
components of the application communicate with each other
via APIs. Wrongly configuring a microservice component
where the data throughput is consequently low can result in a
bottleneck in terms of the whole application’s performance.
Scaling the bottleneck components until the QoS is met
will mitigate the issue. The problem we tackle is how to
correctly configure the resource provisioning of each and
every microservice component so that the overall application
performs as required.

To create a resource-efficient microservice, the most critical
settings to tune are the CPU and memory limits that control
the resource usage of a microservice instance. These limits can
prevent components from using more resources than needed,
and with the help of these limits, the app provider or operator
makes sure in a private cloud that concurrent applications use
the cluster as efficiently as possible, whereas, in a public cloud,
limits help to pre-estimate costs. Setting the limits for several
components at once raises a complex optimization problem
when it comes to microservices. Application components have
their tasks while working closely with other components, and
if one of the components lags, the whole microservices-based
application will suffer. On the other hand, resource provi-
sioning must consider the shared resources: over-provisioning
one component can cause starvation at other components.
Furthermore, each component may have several configuration978-1-6654-0601-7/22/$31.00 © 2022 IEEE

parameters which need to be tested in terms of resource usage
to find the optimal limit values making the specific component
work as efficiently as possible.

In this paper, we tackle this exact challenge: we propose
an optimization framework that estimates resource usage vs
performance of microservices-based, data-intensive applica-
tions with the help of machine learning, then minimizes the
allocated resources given the QoS constraints. The rest of the
paper is organized as follows. Section II presents the related
work, and in Section III we propose the methodology to solve
the problem at hand. In Section IV we introduce an illustrative
example for microservice-based applications, Cortex, then we
train regression models on the performance and resource con-
sumption measurements data and create a linear programming
formula for resource optimization, completed with numerical
analysis. Section V concludes our findings.

II. RELATED WORK

Performance modeling of microservices-based applications
allows us to determine the capacity distribution among each
microservice. This enables planning for applications and the
detection of the bottleneck in microservices. [3] proposes to
apply statistical models, e.g., Theil-Sen estimator or Support
Vector Regression, for this purpose. After analyzing the data
acquired by their approach on the example applications, it was
identified that the microservices follow a typical performance
versus workload relationship pattern, which suggests the per-
formance degrading with the increase of workload up until a
certain point when all the virtual resources are used. In all
tests, the CPU utilization increased linearly with the number
of requests sent to the microservices. The approach was tested
on several test applications, including a compute-intensive
application, a database accessing an application, and a web
accessing application. Similarly to [3] we also want to create
a model to detect and avoid bottlenecks; however, we want
to provision the resources individually for each microservice
using as minimal resources as possible.

Zhang et al. [4] presented Sinan, a machine learning- driven
resource manager for microservice-based applications. Sinan
presents the challenges of managing complex microservices
and leverages a set of scalable and validated models to reduce
resource usage while meeting the end-to-end QoS. Sinan trains
two models with the traces: a CNN (Convolutional Neural
Network) model for short-term performance prediction and a
Boosted Trees model to evaluate long-term performance evo-
lution. Combining the two models allows Sinan to be effective
in both near-future and distant future resource management.
Similarly to [4], our goal is to meet the QoS requirements with
an analytical model which can predict the expected average
resource usage.

The detection of a bottleneck component is important if
we want to increase the performance of a complex application
deployed in the cloud. [5] presents an analytical model that can
detect bottlenecks and predict the performance of a multi-tier
application. The suggested approach consists of two resource
provisioning steps: a predictive one for long-term scales and

Fig. 1. Methodology diagram for the thought process.

a reactive one for short timescales. Long-term prediction is
useful when the load can be predicted, e.g., a typical daily
pattern, but only reactive provisioning can handle unexpected
high workloads. Using both and combining them can create
an effective provisioning scheme. With this approach in a
scenario where the workload of a three-tier application has
been doubled, the technique showcased in [5] was able to
double the application capacity within five minutes while
maintaining the QoS targets. Unlike [5], our focus is to predict
and create resource limits for the average resource usage of
microservices of any cloud-native application.

Our model shows similarities to CostHat [6], an approach
to model the deployment costs, including compute and IO
costs. CostHat is a graph-based model of the deployment costs
and can be used for applications implemented on top of AWS
Lambda. Just like our results, [6] demonstrates that between
the used features, there are linear dependencies. Similarly to
[6] we focus on reducing costs if the model is used in a public
cloud environment. However, our model calculates CPU usage
as output, which is extremely useful for private clouds.

III. METHODOLOGY AND MODEL

Our goal is to minimize the CPU limit provisioned for each
component in a microservice-based application for a static
load. To this end, we formulate mathematical programming
problems with user-defined constraints. Then the result of the
optimization yields the expected CPU usage based on which
the resource limits of each microservice can be appropriately
set. In order to formulate the optimization model, first, we
need to find the most important features of the operation of
the microservices, as well as their coefficients. Our approach
is to build a regression model from a measurement dataset
that incorporates the inference between configuration settings,
application performance and resource footprint. Fig. 1 shows
the steps of our proposed approach.

The measurement dataset contains the monitored microser-
vices’ resource usage. Assuming a data-intensive application
at hand, there are typically two paths that must be monitored:

the writing path (data ingestion) and the reading path (data
retrieval). The cloud-native application is typically constituted
by various microservices which are closely coupled together.
These microservices (or components) can be customized with
configuration parameters and settings. While measuring the
effects of these settings and scaling in and out the components,
a data collector pipeline stores the microservices’ resource
usage and performance indicators. The important features that
are later used in the data mining step can be, for example, the
replica number of each component, the number of incoming
service requests, or the number of served queries per second.
After measuring several scenarios with various settings and
analyzing the key differences between each setup, we propose
to train a regression model.

We create a separate regression model for every main
component of the application. Feature selection is important
for keeping the model simple. Most of the potential features
show linear dependencies with the resource usage, as pointed
out in [3] and [6], therefore in this paper, we make a case
for linear relationships so that we can later formulate the
optimization with linear programming. By keeping only the
highly correlating features, the linear programming solvers can
find the solution quickly even if some variables are integers,
turning the problem into non-deterministic polynomial-time
(NP) complexity [7]. After training the regression model on the
measurement dataset, given the coefficients of the regression,
we can continue with linear programming. Note that in case
the features exhibit a non-linear effect on the resource usage
or on the application performance, then polynomial regression
might be used, but then the respective optimization problem
will not be a linear programming instance.

The decision variables are the important features from the
regression model. Using these variables, one must create the
algebraic expression which describes the target function; in
our case, we strive to minimize the CPU resource usage. As
the regression model is trained for precisely that dependent
variable, the target function is produced by the regression for-
mula: features as variables, their coefficients and the intercept.
Based on the measurement data, one can create constraints
on the features to be taken into account in the optimization
problem. Typical constraints include but are not limited to high
availability requirements on microservice instances, maximal
memory consumption, application performance in terms of
data throughput or rate of requests served. In general, it is
beneficial to minimize the search space as much as possible,
resulting in faster optimization. Non-negativity constraints can
be applied for most of the features.

With the optimization model formulated, any solver can
optimize the problem with the given user inputs and suggest
the best possible setup for all the features. In the next section,
we illustrate how this approach can save resources for the
operation of a cloud-native microservices-based application.

IV. ILLUSTRATIVE EXAMPLE OF CORTEX

Cortex [8] is a horizontally scalable, multi-tenant, long term
storage for Prometheus [10] written in Go. It is a Cloud

Fig. 2. Cortex’s architecture including the external applications [8]

Fig. 3. Write path CPU usage vs. number of Ingesters used with the various
numbers of time series stored by Cortex.

Native Computing Foundation (CNCF) project [11]. Cortex
can receive metrics from multiple Prometheus servers and
serve aggregated queries across all data in a single place which
is useful when the cloud application operator wants to get
an overview of all the metrics and data collected by these
Prometheus servers. Our long-term storage choice was MinIO
[12]. Fig. 2 illustrates our setup with Cortex components.

A. Cortex measurements

We deployed Cortex in a Kubernetes [13] cluster and mon-
itored the CPU usage of each component. We ran data writing
measurement experiments for various configuration scenarios
for a couple of hours each in order to measure the whole
pipeline’s CPU usage. Some components are only active at the
beginning or at the very end of the pipeline. Also, we tested
query performance multiple times and created a data retrieval
application to perform different queries to avoid serving data
from the cache. Based on our experiments, we selected the
most important parameters of the Cortex microservices in
order to find the features which accurately infer total resource
usage. Our target function is the overall CPU usage, including
every component of Cortex and Prometheus.

During our data ingestion experiments, we wrote several
blocks into MinIO to make sure we tested the whole data write
pipeline numerous times for all tested settings. We generated

Fig. 4. Histogram of measurements for the average CPU used. The number
of time series ingested by Cortex is illustrated by coloring.

60,000-300,000 time series to be ingested and deployed 1-5
replicas of each microservice on the write path of Cortex.
We found the number of time series continuously written
into Cortex and the number of Nginx [14], Distributor and
Ingester components to be the most important features affect-
ing CPU consumption. These components contribute majorly
to the write path performance of Cortex; scaling out other
components does not change the CPU usage or the ingestion
capacity. Fig. 3 shows the relationship between the CPU usage
and the number of Ingesters used, while the coloring indicates
the number of time series ingested by Cortex. The histogram
of measurements, distinguished again by colors for various
numbers of time series ingested by Cortex, against the average
CPU usage, can be seen in Fig. 4.

For testing the query performance, we fetched 60,000-
300,000 time series with various time aggregation levels
(between 10 seconds and 1 hour) from Cortex. With every
test, we queried the last 4 hours of data from Cortex while
continuously writing data to ensure we always have data both
in the long term storage and in the Ingesters’ memory. The
requests were sent to Nginx ingress; it forwarded those to
the Query frontend, which could optionally transform a query
into smaller queryset batches and send it to the Querier that
performed the data retrieval and aggregation. From the read
(query) path, we found the number of time series queried
in Cortex and the aggregation (or step as in Prometheus’
nomenclature) to be the important features. Fig. 5 presents
the measured CPU usage of the microservices and the level
of data aggregation in seconds.

The correlation matrix shown in Fig. 6 shows the most
dominant features of both paths. The write path model includes
the number of ingested time series and the number of required
components of Nginx, Distributors and Ingesters. The read
path model uses the number of time series and the aggregation
used while querying the data stored in MinIO. The conclusion
from the measurements is that the resource footprint of the data
ingestion pipeline of Cortex is mainly affected by the number
of time series stored and later queried. Using several Ingester
instances increases the capacity of the write path but also
induces higher resource consumption: this component stores

Fig. 5. Read path CPU usage vs. level of data aggregation in seconds.

Fig. 6. The two paths’ correlation matrix.

TABLE I
REGRESSION COEFFICIENTS.

Features Coefficients
Number of time series 9.28
Number of Distributors 32.54
Number of Ingesters 24.21
Number of Nginx 1.91
Query aggregation -0.182

Intercept 129.3

the metrics and time series before those get written into the
long term storage, e.g., MinIO. On the read path, higher data
aggregation leads to less CPU usage.

B. Linear regression models

After the measurements had been performed, we created
different regression models for the CPU usage of each com-
ponent and trained them. We used linear regression models
because the chosen features showed linear dependencies with
the target-dependent variable, i.e., CPU consumption. The
models are trained on data from the two paths: write path and
read (query) path for each microservice, as a component might
be used continuously by both paths, so creating an aggregate
model which takes features and information about the different
paths at the same time is important.

Table I shows the coefficients of the features used in the
model. The performance of the regression model is best

Fig. 7. The two paths combined CPU usage by the number of time series
used by Cortex.

reflected by R2 - the coefficient of determination - which was
around 0.75. The Mean Absolute Error (MAE) is around 58.2
[millicores]. For bringing the coefficients to the same order of
magnitude, we divided the number of time series by 10,000.
With this data transforming step, the coefficient (9.28) is for
every 10,000 time series used. Fig. 7 shows all the data points
used for this model: the overall CPU consumption against the
stored and queried number of time series.

C. Integer linear programming for optimization

With a complex regression model including both the read
and write paths in our hand, we created an integer linear pro-
gramming (ILP) optimization for the application with specific
constraints. Finally, we configured the microservices based on
the results of the optimization.

We minimize CPU usage for the user inputs, i.e., the number
of time series used in the system, the available memory for
the microservices, and the data aggregation given in seconds
for the query part. The output is the average CPU utilization
expected by components, the number of Ingesters, Nginx, and
Distributors suggested to use, and whether the given memory
is enough for the microservices.

We use the following notation:
• T = number of time series used [10,000]
• I = number of Ingester instances
• D = number of Distributor instances
• N = number of Nginx instances
• Q = level of data aggregation [sec]
• M = memory resource available [MB]
The ILP minimization target is:

9.28T + 32.54D + 24.21I + 1.91N − 0.182Q, (1)

subject to
I > 1 (2)

D > 1 (3)

N > 1 (4)

T > 0 (5)

TABLE II
THE COMPONENTS’ CPU CONSUMPTION SHARES.

Component % of total CPU usage
Ingester 32 %
Distributor 26 %
Querier 14 %
Query frontend 13 %
Store gateway 9 %
Nginx 6%

Q > 0 (6)

1500 + 128N + 512D + 1500I + 1000T/10 < M (7)

I − T/10 > 0. (8)

The objective function (1) stands to minimize the CPU re-
source given by the user’s input and the regression coefficients.
We use (2), (3), (4) constraints for high availability of the com-
ponents: multiple replicas are helpful for load balancing on the
write path but are also important for providing reliability, e.g.,
a Distributor failure may result in a temporary halt on the
write path. It can potentially lead to data loss if not handled
correctly. As for (5) and (6), we assume that T,Q are provided
by the user, currently set to be non-negative. We also assume
that the memory limit M is also provided by the user. From
the measurements, we managed to formalize the main Cortex
components’ memory consumption, and we formalized it in
Constraint (7). For the components which are not incorporated
in the model, the total memory need is approximately 1,500
MB, not significantly varied by the load on the application. As
for the three components used in the model, an Ingester needs
approximately 1,500 MB memory when used by both paths
parallel, an Nginx only needs 128 MB memory, while the
Distributor needs approximately 512 MB. Furthermore, from
the tests, we can confirm that not only the CPU usage is being
influenced by the number of time series but also the memory
usage: for every 100,000 metrics, there is a need for another
1,000 MB by the microservices in total. Constraint (8) stands
to ensure high availability: from the measurements, we found
that launching an additional Ingester replica for every 100,000
time series provides a safe operation with the load balance
applied.

When the optimization yields the minimal CPU usage
results with the optimal I, D, N replica numbers, one must
translate the results to resource limits for every microservice
instance. In the Cortex case, Table II indicates the fraction of
the total CPU usage among the respective microservices.

D. Illustrative user input examples and optimization results

In order to demonstrate the applicability of the suggested
optimization, we created a few user input examples and
calculated the respective results. We used PuLP [15] for the
ILP optimization. We used the COIN-OR Branch and Cut
Solver (CBC), which is an open-source mixed-integer linear
programming solver written in C++. Other available solvers
include GNU Linear Programming Kit (GLPK), LP Solve,
Coin-or linear programming (Clp). Given the size of the

TABLE III
ILLUSTRATIVE EXAMPLES SUMMARY TABLE WITH CORTEX’S RECOMMENDATION.

Time series
used

[1,000]

Memory
available

(GB)

Aggregation
(sec)

Ingester
replica
number

Distributor
replica
number

Nginx
replica
number

Predicted
CPU usage
(millicores)

Cortex
planned

CPU
(millicores) [9]

Relative
saving

300 12 10 3 2 2 1,300 6,000 78%
400 16 60 4 2 2 1,405 8,000 82%
120 9 15 2 2 2 1,105 2,400 54%
250 8 120 Infeasible 5,000 -
250 12 120 3 2 2 1,218 5,000 76%

problem space and the carefully crafted constraints, the ILP
examples were solved in seconds.

In the first example, the inputs are 300,000 time series with
12 GB memory, and the aggregation should be 10 seconds.
In the second example, the inputs are 400,000 time series
with 16 GB memory available, and the aggregation should
be 60 seconds. In the third example, the inputs are 120,000
time series with 9 GB memory available, and the aggregation
should be 15 seconds. In the fourth example, the inputs are
250,000 time series with 8 GB memory available, and the
aggregation should be 120 seconds. Here the model shows that
using 8 GB memory will not be enough, so we should solve
the problem by reducing the number of time series ingested
or by using more memory, just as it is shown in the fifth
example. We summarized these examples in Table III. These
tests show that the Distributor and the Nginx replica should
be 2 for such inputs. We ourselves set the minimum value
for them to be 2 because of high availability, but using more
replicas for these components will not give significant benefits
performance-wise, so the optimization effort results in the
lowest number of instances possible in the presented cases.
The Ingester number depends on the number of ingested time
series and on the available memory.

Although Cortex’s documentation recommends capacity
planning [9], those resource figures are not optimal when
we strive to reduce and keep the resource usage as low as
possible. Along with the illustrative examples, in Table III we
also show the recommended CPU provisions based on Cortex’s
documentation and the relative saving which we managed to
achieve with the regression and optimization models. In the
examples, this saving ranges from 54-82%. If we translate
these numbers to cost, i.e., we deploy these microservices in
a public cloud and pay for the reserved resources, then we can
save significant amounts by applying the proposed method.

V. CONCLUSION

In this paper we argued that resource provisioning is es-
sential and, in fact, possible to perform scientifically when
using cloud-native microservices. We proposed an approach
that we demonstrated on a data ingestion and storage cloud-
native application, Cortex. After measuring the performance vs
resource footprint trade-offs with several configuration settings
and creating a regression model for resource usage, we showed
the most critical features and their quantitative effects on CPU
utilization, which proved to be linear. Then we introduced an

integer linear programming formulation that can be solved to
minimize the expected CPU usage for given user inputs. With
some illustrative examples, we showed that a prudent resource
reservation might halve the costs paid for cloud resources
while meeting the QoS constraints set for the application.

ACKNOWLEDGMENT

This work was supported by the Ministry of Innovation and
Technology of Hungary from the National Research, Develop-
ment and Innovation Fund through projects i) no. 135074 un-
der the FK 20 funding scheme and ii) 2019-2.1.13-TÉT IN-
2020-00021 under the 2019-2.1.13-TÉT-IN funding scheme.
L. Toka was supported by the János Bolyai Research Scholar-
ship of the Hungarian Academy of Sciences. Supported by the
ÚNKP-21-5 New National Excellence Program of the Ministry
for Innovation and Technology from the source of the National
Research, Development and Innovation Fund.

REFERENCES

[1] Faiza Samreen, Yehia Elkhatib, Matthew Rowe, Gordon S. Blair. Daleel:
Simplifying cloud instance selection using machine learning NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Sym-
posium

[2] Chris Richardson, What are microservices?, https://microservices.io Ac-
cessed 28 Oct 2021.

[3] Anshul Jindal, Vladimir Podolskiy, Michael Gerndt, Performance Mod-
eling for Cloud Microservice Applications. ICPE ’19: Proceedings of the
2019 ACM/SPEC International Conference on Performance Engineering

[4] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Edward Suh, Christina
Delimitrou, Sinan: Data-Driven Resource Management for Interactive
Multi-tier Microservices, Workshop on ML for Computer Architecture
and Systems (MLArchSys), 2020

[5] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, Dynamic Provisioning
of Multi-tier Internet Applications, Second International Conference on
Autonomic Computing (ICAC’05), 2005

[6] P. Leitner, J. Cito and E. Stöckli, Modelling and Managing Deployment
Costs of Microservice-Based Cloud Applications, 2016 IEEE/ACM 9th
International Conference on Utility and Cloud Computing (UCC), 2016

[7] Madhu Sudan, The P vs. NP problem, https://madhu.seas.harvard.edu/
papers/2010/pnp.pdf, 2010

[8] Cortex, https://cortexmetrics.io, Accessed 28 Oct 2021.
[9] Capacity Planning https://cortexmetrics.io/docs/guides/

capacity-planning Accessed 30 Oct 2021.
[10] Prometheus, https://prometheus.io, Accessed 28 Oct 2021.
[11] Cloud Native Computing Foundation, https://www.cncf.io, Accessed 28

Oct 2021.
[12] MinIO, https://min.io, Accessed 28 Oct 2021.
[13] Kubernetes, https://kubernetes.io, Accessed 28 Oct 2021.
[14] Nginx, https://www.nginx.com Accessed 28 Oct 2021.
[15] PuLP, https://pypi.org/project/PuLP, Accessed 28 Oct 2021.

https://microservices.io
https://madhu.seas.harvard.edu/papers/2010/pnp.pdf
https://madhu.seas.harvard.edu/papers/2010/pnp.pdf
https://cortexmetrics.io
https://cortexmetrics.io/docs/guides/capacity-planning
https://cortexmetrics.io/docs/guides/capacity-planning
https://prometheus.io
https://www.cncf.io
https://min.io
https://kubernetes.io
https://www.nginx.com
https://pypi.org/project/PuLP

	Introduction
	Related work
	Methodology and model
	Illustrative example of Cortex
	Cortex measurements
	Linear regression models
	Integer linear programming for optimization
	Illustrative user input examples and optimization results

	Conclusion
	References

