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ABSTRACT Nowadays the major trend in IT dictates deploying applications in the cloud, cutting the
monolithic software into small, easily manageable and developable components, and running them in a
microservice scheme. With these choices come the questions: which cloud service types to choose from
the several available options, and how to distribute the monolith in order to best resonate with the selected
cloud features. We propose a model that presents monolithic applications in a novel way and focuses on
key properties that are crucial in the development of cloud-native applications. The model focuses on the
organization of scaling units, and it accounts for the cost of provisioned resources in scale-out periods and
invocation delays among the application components. We analyze dis-aggregated monolithic applications
that are deployed in the cloud, offering both Container-as-a-Service (CaaS) and Function-as-a-Service
(FaaS) platforms. We showcase the efficiency of our proposed optimization solution by presenting the
reduction in operation costs as an illustrative example. We propose to group similarly low scale components
together in CaaS, while running dynamically scaled components in FaaS. By doing so, the price is decreased
as unnecessary memory provisioning is eliminated, while application response time does not show any
degradation.
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INDEX TERMS Cloud-native application, container-as-a-service, function-as-a-service, resource footprint,
invocation latency, application scaling, microservice architecture.

I. INTRODUCTION17

Cloud computing has transformed the scene of IT in less18

than two decades. The amazing technological evolution both19

in terms of computing and networking enabled several new20

applications and services running at extremely large scale21

on top of different cloud platforms. Public cloud platforms,22

such as Amazon Web Services [1], Google Cloud Plat-23

form [2] and Microsoft Azure [3] are capable of providing an24

‘‘arbitrary’’ number of virtual resources on demand making25

use of virtualization techniques and resource management26

mechanisms. Well-designed data centers contain all the nec-27

essary physical assets, including thousands of blade servers28
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and network devices, and the burden of operation is delegated 29

to the cloud providers, ensuring high reliability and high 30

performance. The cloud application owner has nothing else to 31

do except for selecting the best-suited cloud service offering 32

and deploying their application in the cloud to go live: this 33

means i) zero initial investment as cloud services offer pay- 34

as-you-go schemes, and ii) that there is no need to plan for 35

maximum capacity as resource provisioning is adaptively 36

flexible, usually automatically scalable, often depicted as 37

being completely elastic. 38

Besides the non-existent capital expenditures into infras- 39

tructure on the cloud tenant’s side, deploying applications 40

into the cloud also has the benefit of low operating costs. 41

The reason behind the effective operation is the economies 42

of scale of compute infrastructure in data centers, and the 43
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shared resources among a myriad of tenants, resulting in a44

time multiplexed usage of resources. On the other hand, the45

downside of the co-location and the relatively complex infras-46

tructure is that extra delay might be introduced in the cloud47

application end-to-end latency due to several reasons. First,48

in case there are not enough resources strictly dedicated to49

the application, its runtime is prolonged. Second, distributed50

applications, often used in a cloud environment, have to count51

with an inter-component invocation delay. Third, the latter52

are exacerbated by the inter-node network latency of the data53

center, if application components are orchestrated to run on54

different compute nodes [4].55

Web services and applications are now mostly deployed56

into cloud. These web applications typically follow the57

microservice architecture, where the monolithic software is58

broken down into smaller, independently managed compo-59

nents, usually realized by software containers that are sepa-60

rately orchestrated and scaled by the cloud platform enabling61

optimal resource utilization [5]. The cloud resource provi-62

sioning is continuously adapted to fit the demand for service,63

e.g., the time varying number of client requests hitting the64

application ingress. Allocating resources dynamically to con-65

stituent containers and scaling them properly on demand is66

a challenging task [6]. The scaling logic can be driven by67

various service management goals, e.g., either minimizing68

resource usage while sustaining a given service quality target,69

or minimizing Service Level Agreement (SLA) violations no70

matter the price paid for the provisioned resources. We argue71

that the application design should be inherently aligned with72

the operational features of the cloud setup: when scaling the73

application carefully to the point (not higher to avoid unnec-74

essary resource costs, not lower to avoid rejected requests,75

i.e., QoS degradation), the cost-aware application designer76

should also account for the overhead that is introduced by77

the polylithic (opposed to monolithic) design in order to min-78

imize the total footprint of a scaled out application. Similarly79

to microservices or service-oriented architecture, we make80

the case of polyliths that cover all the applications consisting81

of granular services.When software is packaged as a polylith,82

its modularity is high, both in terms of development and83

operation. In this work we focus on the latter: during scale84

out regimes separate softwaremodules can be scaled indepen-85

dently of each other, resulting in an optimal cloud resource86

usage scheme. In contrast, if modules are packaged together87

and therefore scaled together, scale-out actions may lead to88

unnecessary resource, e.g., memory, consumption. However,89

the co-location of application components within the cloud90

results in lower operational delays, hence better QoS for the91

application user.92

The cloud-native paradigm [7] aims to build and run93

applications exploiting all the benefits of cloud computing94

service models, but one must be aware of their choices in95

terms of application design and deployment options [8], these96

include several techniques and concepts, from microservices97

across DevOps to serverless architectures. The serverless98

approach allows to shift the focus from ‘‘where to deploy’’ to99

‘‘how to create’’ the applications. It can be realized by follow- 100

ing either the CaaS computing model or the FaaS paradigm, 101

depending on the granularity level that the developer can 102

consider when creating the software. Our contribution in 103

this paper is two-fold: i) we propose a model to define the 104

trade-off between response time performance (i.e., latency) 105

vs. cloud resource footprint when it comes to the decision 106

about designing, packaging and deploying a cloud native 107

application, and ii) we evaluate the model in an illustrative 108

example to provide insights to the extreme sides of this 109

trade-off through a cost analysis of public CaaS and FaaS 110

offerings. 111

This paper is organized as follows: in Section II we present 112

the main differences between cloud services that offer various 113

application deployment options for the cloud tenant and we 114

give an overview of relevant research findings; building on 115

those observations we propose an analytical cost model that 116

accounts for deployment-related costs in Section III; after- 117

wards we analyze illustrative examples with optimized model 118

cost parameters and currently advertised cloud service fees in 119

Section IV; finally, we conclude the paper in Section V. 120

II. RELATED WORK 121

Virtualization techniques have brought abrupt changes not 122

only to web applications, but also to how telecommunica- 123

tions systems are designed. Network Function Virtualization 124

(NFV) offers the opportunity to move the software running 125

on traditionally expensive custom physical nodes into the 126

cheapmulti-purpose cloud, resulting in fast configuration and 127

development cycles and cost-efficient scalability. The emer- 128

gence of concepts like cloud computing, Software-defined 129

Networking (SDN), and, ultimately, NFV, raises new pos- 130

sibilities for the management of telecommunications appli- 131

cations with a positive impact in terms of agility and cost. 132

From a telecommunications viewpoint these concepts can 133

help to both reduce operational expenditure and open the 134

door to new business opportunities [7], [9]. As a specific 135

example, let us take the IP Multimedia Subsystem (IMS) that 136

enables various types of media services to be provided to 137

end-users using common, IP-based protocols. To protect and 138

hide vulnerable details of the mobile operator’s core network, 139

the Border Gateway Function (BGF) is placed between the 140

access and core networks providing pinhole firewall and 141

Network Address and Port Translation (NAPT) functionality. 142

As such, it is responsible for filtering and transferring the 143

RTP (Real-time Transport Protocol) based media streams 144

exchanged by mobile subscribers. Traditional telecommuni- 145

cations nodes couple the states of the user sessions with the 146

physical executors. Accordingly, if a physical entity fails, 147

then the handled user sessions get lost. On the other hand, 148

it is also common that each functionality is implemented 149

on top of a dedicated hardware resource, e.g., board, DSP 150

chip, that overall makes the system distributed and inherently 151

more robust against hardware failures. In case of a failure, 152

only those calls are affected that shared the same resources, 153

which is an insignificant number of sessions. However, this 154
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does not apply to the cloud anymore where a virtual machine155

(VM) can serve tens of thousands of sessions, relying on156

a single hardware infrastructure. In a cloud deployment of157

BGF, each user session is tied to a particular instance, i.e.,158

connected to a particular IP address/port of the BGF VM159

instance. In such a system, if a VM fails all the sessions160

get lost, which impacts a large number of subscribers; this161

is not acceptable [10]. However, the modern NFV ecosystem162

is fundamentally stateless; if the Virtual Network Functions163

(VNFs) do not maintain persistent state on their own, then164

scale-in/scale-out and other fail-over events are less complex165

to handle, improving overall elasticity, scalability, resiliency166

and performance.167

Adopting the stateless design in its core concept, FaaS,168

often referred to as serverless computing, has recently169

become one of the most popular paradigms in cloud comput-170

ing. The paradigm emerged not only as a pricing technique,171

but also as a programming model promising to simplify172

developing for the cloud. Using FaaS, developers do not need173

to care about resource allocation, scaling, or scheduling, since174

the platform handles these. However, the road of an effective175

transition from monolithic applications to the architecture176

most suited to FaaS platforms is by no means trivial. The177

architecture of the applications needs to be changed in order178

to take full advantage of the underlying platforms. Numerous179

projects managed by companies and academic institutions180

have built FaaS platforms, but the most widely used ones181

are underneath the FaaS services offered by IT giants, i.e.,182

Amazon’s AWS Lambda [1], Google Cloud Functions [2]183

and Microsoft Azure Functions [3]. Most of these platforms184

operate with container technologies; the user’s executable185

code is packed into a container that is instantiated when186

the appropriate function call request first arrives. With this187

relatively lightweight technology it is easy to achieve process188

isolation and resource provisioning.189

The evolution from IaaS (Infrastructure as a Service) to190

FaaS did not take too long, and there are pros and cons for191

all types of cloud services. As depicted in Figure 1, there is a192

diminishing burden on cloud tenants in terms of application193

management from IaaS through CaaS to FaaS, although this,194

of course, comes at an increased price of resource units; built-195

in features and their resource usage are incorporated into196

those prices. The higher level the service type, the fewer func-197

tionalities and assets the tenant has to provide for themselves,198

as depicted by the vertical labels in Figure 1. The author199

of [11] suggests an economic packaging of application mod-200

ules in FaaS: function fusion has the disadvantage of making201

the application less modular and maintainable, however, it is202

an effective way to reduce the price tag, when transition cost,203

i.e., an extra cost in AWS Step Functions [1] for each state204

transition during the execution of the predefined workflow,205

dominates the function execution cost.206

Besides the pricing aspects, resource footprint and latency207

overhead have also been in the focus of the research commu-208

nity; particularly the cold-start latency FaaS platforms suffer209

from when a new VM or container has to be launched to run210

the invoked task [12]. The size of the image to mount, the 211

number of libraries and dependencies all have an impact on 212

this latency [4]. Even though communication is significantly 213

faster the closer the parties are (e.g., same data center, same 214

rack, same server machine, same process), currently available 215

platforms miss out on co-locating entities that often commu- 216

nicate with each other [4]. 217

To the best of our knowledge, the trade-off of scale-out 218

footprint and latency has never been addressed within the 219

packaging options of cloud-native microservices. These two 220

important aspects, which are at odds with each other, are 221

tackled in this paper. On one hand, the co-location of applica- 222

tion components within the cloud results in lower operational 223

delays, hence better QoS for the application user.We consider 224

the strictest affinity policy that can be expressed in public 225

clouds today: packaging those components together within a 226

container or a function that must be run on the same hardware. 227

On the other hand, with more packaging comes less mod- 228

ularity, which results in superfluous resource consumption 229

especially during scale-out regimes. Our focus is particular 230

to CaaS and FaaS, therefore, IaaS, Platform- (PaaS), and 231

Software-as-a-Service (SaaS) systems (a high level overview 232

of those is depicted in Figure 1) are out-of-scope. The reason 233

for this is that we are particularly interested in cloud services 234

that offer application-agnostic, automatically scaled deploy- 235

ment options for the tenant. PaaS and SaaS are not well-suited 236

to run proprietary code in the cloud, e.g., telecommunications 237

core functions of a mobile operator. 238

Emerging from the agile practitioner communities, the 239

microservice-oriented architecture emphasizes implement- 240

ing and employing multiple small-scale and independently 241

deployable microservices, rather than encapsulating all func- 242

tion capabilities into one monolithic application. Microser- 243

vices architecture has become enormously popular because 244

traditional monolithic architectures no longer meet the needs 245

of scalability and rapid development cycle. However, per- 246

forming the migration process is not trivial. Most systems 247

acquire too many dependencies between their modules, and 248

thus cannot be sensibly broken apart. It is for this reason that 249

studies that provide information associatedwith themigration 250

process to practitioners are necessary. A key challenge in 251

this context is the extraction of microservices from exist- 252

ing monolithic code bases. While informal migration pat- 253

terns and techniques exist, there is a lack of formal models 254

and automated support tools in that area. Reference [13] 255

tackles that challenge by presenting a formal microservice 256

extraction model to allow algorithmic recommendation of 257

microservice candidates in a refactoring and migration sce- 258

nario. The results show that the produced microservice can- 259

didates lower the average development team size down to half 260

of the original size or lower. Furthermore, the size of rec- 261

ommended microservice conforms with microservice sizing 262

reported by empirical surveys and the domain-specific redun- 263

dancy among different microservices is kept at a low rate. 264

In [14] the authors address the same challenge: they propose 265

a top-down analysis approach and develop a dataflow-driven 266
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FIGURE 1. Relation between various cloud services (vertical labels) and the functionalities (horizontal labels) that are left for the tenant to take care of.

decomposition algorithm. In brief, a three-step process is267

defined: first, engineers together with users conduct busi-268

ness requirement analysis and construct a purified while269

detailed dataflow diagram of the business logic; then, their270

algorithm combines the same operations with the same type271

of output data into a virtual abstract dataflow; finally, the272

algorithm extracts individual modules of ‘‘operation and its273

output data’’ from the virtual abstract dataflow to represent274

the identified microservice candidates. Based on the ambi-275

guity of determining the optimum size of a microservice,276

in [15], the authors propose a conceptual methodology to par-277

tition a microservice based on domain engineering technique.278

Domain engineering identifies the information needed by a279

microservice, services needed for microservice functionality280

and provides description for workflows in the service. In [16]281

the authors report onmigration practices towards the adoption282

of microservices in industry, specifically on (i) the performed283

activities, and (ii) the challenges faced during the migration.284

Daoud et al. [17] proposes an approach combining different285

independent models that represent a business process’s con-286

trol dependencies, data dependencies, semantic dependen-287

cies, respectively. The approach is also based on collaborative288

clustering. Reference [18] analyzes 20 migration techniques289

proposed in the literature. Results show that most proposals 290

use approaches based on design elements as input; 90% of 291

the proposals were applied to object-oriented software (Java 292

being the predominant programming language); and that the 293

main challenge is to perform the database migration. Com- 294

pared to this vast body of research, our work is novel in 295

the sense that it addresses the repercussion of dissecting a 296

monolith into too many microservices: the response time 297

performance of the application potentially worsens due to 298

added delay of inter-microservice communication. There- 299

fore, we propose a model to take such aspects also into 300

account when designing a microservices-based cloud-native 301

application. 302

III. PROPOSED METHOD: THE COST MODEL OF 303

RUNNING A POLYLITH 304

Cloud deployment enables easy scaling to the actual appli- 305

cation load. The cost of scaling is greatly determined by the 306

organization of application into scaling units. In this section, 307

we propose an analytical model to reflect the resource foot- 308

print overhead at scaling, and the latency overhead of organiz- 309

ing application code into several deployment units. We show 310

that these cost terms are opposing forces that steer the 311
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application designer towards organizing the application code312

in an optimal packaging setup for reaching the sweet spot in313

terms of operational expenses and application response time314

performance.315

Let us start by modeling the application as a finite set of316

sub-application parts, called as modules, that can be grouped317

into separate deployment units, e.g., containers or functions,318

denoted as scaling units or groups from now on. We assume319

that any combination of these modules can be packaged320

together, i.e., in case all of them are grouped together,321

we arrive back to the monolithic application (from a cloud322

deployment perspective). We model the modules by their323

average memory consumption over a given time period, e.g.,324

an average of 2396 MB memory footprint integrated over325

1 hour. We denote those values by r1, r2, . . . , rn. Now, for326

each of these modules, let us further define a value s that327

reflects its time-weighted average scaling factor in a steady328

state operation of the deployed application over the given329

time period mentioned above, e.g., an average scaling factor330

of 2.67 due to being scaled to 3 instances for 40 minutes,331

and having 2 instances for the remaining 20 minutes. The332

value si can be interpreted as the number of invocations333

of the respective module i of the application which can be334

run in parallel, i.e., in multiple instances. Application codes335

that have to run sequentially, i.e., no possible way of paral-336

lelism of the module, cannot have a scaling factor s larger337

than 1.338

The problem setup is now translated into dissecting a given339

application into modules such that each module is packaged340

separately, e.g., as one or more containers to be grouped in a341

pod under Kubernetes, the most widely used CaaS manager,342

or a function that will be executed in a FaaS platform. Along343

the process of dissecting a monolithic application into mod-344

ules, then organizing them into scaling units, the application345

designer has to focus on the following operational aspects that346

appear consequently: i) memory footprint of scaling units,347

ii) overhead of invocation latency between scaling units.348

Scaling cost is due to the amount of code that is scaled349

out unnecessarily in case of executing multiple instances of a350

scaling unit.351

Communication cost An extra latency is added to the352

application execution time due to invocations across scal-353

ing units. Furthermore, when breaking modules and putting354

them in parallel resources, the increased network latency,355

as well as reduced reliability, requires careful reasoning about356

consistency.357

We illustrate the scaling cost in Figure 2: we depict the358

modules of an application by 5 rectangles. On the x-axis we359

mark the memory footprint of one instance of each module.360

The ticks represent 200MB of memory, so the leftmost mod-361

ule’s memory footprint is 600MB. We place the modules’362

memory footprint values right next to each other. On the363

y-axis we denote the number of instances that run in parallel364

for each module, i.e., the average scaling factor. If there is no365

parallelization for themodules of a given application, then the366

height of every rectangle is 1. In the illustrative case shown367

FIGURE 2. Illustration of the scaling overhead model through an example
application consisting of 5 modules.

in Figure 2, the scaling factor is 1, 3, 4, 6, and 7 for the 368

individual modules from left to right, respectively. 369

The overall memory footprint of the whole application 370

is the area under the curve, i.e., the sum of the rectangles’ 371

areas. By separating the application into modules and scaling 372

those modules with different factors, the end-to-end applica- 373

tion execution time, e.g., response time for a web request, 374

is greatly reduced, but the price to pay is the above-mentioned 375

overhead: inter-module latency. Let us see how the memory 376

footprint changes if some modules are merged into a joint 377

scaling unit. For example, if the application designer decides 378

to add the module in the middle of Figure 2 to another module 379

which has either a lower or a higher scaling factor.We assume 380

that the designer does not want to make any compromises 381

on the execution speed at scale out regimes, so in the former 382

case, the applied scaling factor will be the one dictated by the 383

middle module; in the latter case it will be that of the other 384

module. In both cases there will be modules to be scaled to 385

an unnecessary extent, leading to an extra scaling cost. In the 386

specific example of Figure 2 the extra cost is represented 387

by the dashed rectangles: if the middle module is packaged 388

together with its left neighbor, then the scaling factor of the 389

merged module will be that of the middle module; similarly, 390

merged with its right neighbor, this latter will dictate the 391

scaling factor. 392

The overall operational cost is therefore increasing by 393

merging different modules of the application that require 394

diverse scaling factors. However, merging them might be 395

necessary to meet the latency requirements dictated by appli- 396

cation SLA. The questions naturally arise: how many scaling 397

units should the application designer account for, and which 398

modules should be packaged together into those? We make 399

these statements in the following and provide hints on their 400

proofs. 401

Lemma 1: For any given number of scaling units, the scal- 402

ing cost is minimized by grouping the modules together into 403

scaling units following the order of their scaling factors. 404
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Proof: The proof is indirect. Let us assume an optimal405

arrangement of modules into scaling units in terms of mini-406

mal scaling cost. Without the loss of generality, let the scaling407

units operate at increasingly ordered sg1, s
g
2, . . . , s

g
x scaling408

rates. Furthermore, let module i have si scaling rate and409

belong to scaling unit j with si < sgj−1 < sgj . In this case the410

scaling cost can be decreased by re-arranging module i (that411

does not hold the largest scaling factor in its own group j) into412

another scaling unit for which the scaling factor is higher than413

its value, but lower than its original group’s scaling factor,414

e.g., into group j − 1, contradicting the initial assumption415

about optimal arrangement.416

In Figure 3 we depict the modules of an illustrative exam-417

ple application, ordered by their scaling factors and grouped418

into scaling units along the ordering.419

Lemma 2: For any given number of scaling units withmin-420

imized scaling cost, for the scaling factor sb of the modules b421

on group borders422

sb ≥
sgj rb + s

g
j−1

∑
i∈j−1 ri

rb +
∑

i∈j−1 ri
∀j < x (1)423

holds.424

Proof: In an increasing ordered setting of the modules425

as suggested by Lemma 1, the borders of scaling groups are426

left to such modules b for which the jump in scaling factor427

is larger than the scaling factor increment (relative to the428

module’s) of the right hand side groupmultiplied by the width429

of the module, and divided by the width of the left hand430

side group. Specifically, assuming x scaling units, for any431

neighboring scaling unit pair j−1, j for which 1 < j < x, the432

following inequality must hold:433 (
sb − s

g
j−1

) ∑
i∈j−1

ri ≥
(
sgj − sb

)
rb. (2)434

It is straightforward to see that in case this inequality does435

not hold, then the area of the e.g., left hand side rectangle436

depicted by dashed lines in Figure 2, which is expressed437

by
(
sb − s

g
j−1

)∑
i∈j−1 ri, would be greater than that of the438

right hand side rectangle, which is equal to
(
sgj − sb

)
rb,439

resulting in higher scaling cost, thus contradicting with the440

initial assumption of being at the border of optimal grouping.441

Equation 1 is then derived from Equation 2 by rearranging442

the terms.443

In summary, there is a relatively large jump between the444

scaling groups’ scaling factors in a setting that is optimized445

for scaling cost. The authors of [19] and [20] found that446

a small percentage of microservices are hot-spots in call447

graphs, specifically, about 5% of microservices are multi-448

plexed by more than 90% of online services in Alibaba449

clusters, which creates such large differences between scaling450

factor values, ideal for marking the borders of scaling groups.451

For an analytically tractable model, in the next statement the452

modules are assumed to be infinitesimally small, and the453

scaling factor is interpreted as a differentiable continuous454

function over the variable that depicts the cumulative resource 455

demand of the modules sorted in the increasing order of their 456

scaling factors. 457

Theorem 1: In the continuous model of module resource 458

demand ρ and the scaling factor as its function σ (ρ), 459

dσ
dρ
ρL + σ − σR = 0 (3) 460

must hold for the scaling group borders, i.e., the points on the 461

x-axis that fall on the borders of neighboring scaling groups. 462

ρL denotes the width of the scaling group to the left, σ is the 463

scaling factor value that belongs to the scaling group on the 464

left, and σR denotes the scaling factor of the scaling group to 465

the right. 466

Proof: Based on Lemmas 1 and 2 and the assumption 467

of modules being infinitesimally small in resource demand, 468

σ (ρ) is a monotone increasing function and similarly to 469

Equation 2, 470

dσρL ≥ (σR − σ) dρ (4) 471

also holds, since
∑

i∈j−1 ri translates to ρL and sgj−1, s
g
j are 472

denoted as σ, σR, respectively. Therefore, the solutions to the 473

given differential equation provide the possible scaling group 474

borders in the proposed continuous model. Equation 3 is then 475

derived from Equation 4 by rearranging the terms and fixing 476

equality. 477

Lemma 3: The scaling cost decreases monotonically when 478

the modules are grouped into more scaling units. 479

Proof: The statement holds since any group that consists 480

of at least 2 modules with different scaling factors can be 481

split into 2 groups that have a lower overall scaling cost. 482

As the superfluous resource footprint of the individual scaling 483

units gets smaller, in case of scaling them out, the amount 484

of memory consumption scaled out unnecessarily is also 485

smaller. 486

In contrast to the statement in Lemma 3, the communica- 487

tion costs increase monotonically with the number of scaling 488

units due to the resource overhead of virtualization and to 489

the higher number of inter-module invocation delays. These 490

opposing effects call for an optimization exercise in order to 491

find the sweet spot in operational costs of polylithic appli- 492

cations. However, hindered by the complexity of the model, 493

for a joint optimization of all the listed costs, i.e., scaling and 494

communication, we propose a 2-step heuristic approach: in 495

the first step the minimal scaling cost is calculated for a set of 496

scaling group numbers, in the second step the communication 497

costs are calculated for the same set of scaling group num- 498

bers, then the overall cost is minimized by summing those 499

respectively, and seeking the group number with the lowest 500

total cost. In the next section we present such a calculation 501

for an illustrative example. 502

The limitation of the model is that it ignores the call graph 503

among the modules: it groups those modules together that are 504

close in scaling factor, not necessarily those that frequently 505

invoke each other, or whose lifetime overlaps the most. 506
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FIGURE 3. Modules of an illustrative example application, ordered by
their scaling factor, and grouped (denoted by various colors and dashed
line contours).

Therefore, workload affinity is not considered in consolidat-507

ing software components into scaling units.508

IV. RESULTS AND DISCUSSION: A COMPREHENSIVE509

COST ESTIMATION510

We evaluate the cost model and the related optimization on511

typical polylithic applications recently collected from within512

the realms of Microsoft Azure. We take an illustrative513

case from the statistics reported in [21] and we optimize its514

packaging (scaling units) and deployment (CaaS vs. FaaS)515

depending on the scaling vs. communication cost interplay516

and the scale-out intensity of the operation. Also in this517

section, we apply the continuous approximation model pro-518

posed by Theorem 1 on a large-scale example inspired by519

reports on microservices in eBay and Alibaba clusters.520

A. AN ILLUSTRATIVE EXAMPLE FROM MICROSOFT AZURE521

Microsoft Research has recently published important statis-522

tics of Microsoft’s cloud services [3]: VM allocation [22]523

and FaaS usage characteristics [21]. In the latter, the authors524

focus on the challenge of serverless platforms: the added525

latency due to cold starts. After a thorough analysis of usage526

data, the authors arrive at the conclusion that the resources527

the provider has to dedicate to each application are highly528

variable, and therefore the cost of keeping these applications529

warm, relative to their total execution (billable) time, can be 530

prohibitively high, since the functions are very short lived 531

compared to other cloud workloads, e.g., VMs. 50% of the 532

functions run for less than 1 s on average, and 50% of the 533

functions have maximum execution time shorter than 3 s; 534

90% of the functions take at most 60 s, and 96% of the 535

functions take less than 60 s on average; while [22] shows 536

that 63% of all VM allocations last longer than 15 minutes, 537

and only ≈ 8% of the VMs last 5 minutes or less. 538

Building on the statistics published in [21], we provide a 539

numerical evaluation of the model presented in Section III. 540

We need the following types of data for our scaling vs. 541

communication costs. 542

1) NUMBER OF FUNCTIONS PER APPLICATION 543

Reference [21] reports that half of the applications have a 544

single function, i.e., monoliths. 5% and 0.04% of the appli- 545

cations have more than 10 and 100 functions, respectively. 546

2) DYNAMICS OF FUNCTION INVOCATIONS 547

The number of function invocations per day scatters over an 548

8 order of magnitude wide range. Half of the functions are 549

invoked infrequently, i.e., once per hour or less; the fifth of 550

them are invoked more than once per minute [21]. The inter- 551

arrival times of invocations show an extremely high variation, 552

i.e., a coefficient of variation higher than 5, for 20% of the 553

functions, which means that the invocation rate is hectic for 554

many functions [21]. 555

3) MEMORY FOOTPRINT OF FUNCTIONS 556

The authors of [21] found that 90% of the functions consume 557

less than 400MB of memory, and half of them consume less 558

than 170MB. 559

We build an illustrative example on the measurement 560

data set of [21] for showcasing our model’s usability. First, 561

we assume that all public cloud providers experience similar 562

usage characteristics; second and more importantly, we sup- 563

pose that modern and future applications will follow a similar 564

design in terms of modularity and deployment. In the next 565

cost calculations, we take an imaginary example application 566

for which we draw the following attribute values from the 567

empirical distributions of [21]. We make the case of an appli- 568

cation consisting of 10 modules, each of them having the 569

same memory footprint of ri = 200MB for ∀i ∈ {1, . . . , 10}. 570

As per scaling dynamics, for simplicity, we distinguish off- 571

peak hours and peak hours: during the former each module 572

runs at a steady pace with a scaling factor of 1, during peak 573

hours however we assume 4 modules at scaling factor 1, 574

2 modules at factor 2, 1 module at factor 4, 8, 16, and 64 each. 575

With our model’s notation: s1 = s2 = s3 = s4 = 1, s5 = 576

s6 = 2, s7 = 4, s8 = 8, s9 = 16, s10 = 64. The logarithmic 577

steps in the modules’ scaling factors are meant to reflect the 578

high dynamics of invocations reported in [21]. 579

B. OPTIMIZED MODULE FUSION FOR THE LOWEST COST 580

We evaluate the scaling and communication cost terms indi- 581

vidually and in total. The scaling cost is a function of the 582
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memory allocated to the deployed software, as defined in583

Section III. Communication cost stands for the invocation584

delay. The communication rate is an inherent feature of585

deployment resources that strongly follows the actual interde-586

pendencies of software modules in the application. Whether587

modules that interact, hence produce high communication588

rate between each other, are packaged together has a large589

impact on the actual response time performance.590

In order to make these cost terms comparable and591

summable, one must define the monetary value of the degra-592

dation in service quality caused by inter-module invocation593

latency. We simply use the added latency value in millisec-594

onds for this purpose (to be compared with the memory595

footprint overhead in megabytes). We assume 10 ms added596

latency for the invocation of a scaling unit based on measure-597

ment studies [4], [23], [24]. We show the numerical results598

for 3 different call graph densities so that we try and cover599

a wide range of scenarios of inter-module communication.600

In the case when the call graph density is low, marked with601

Sparse in Table 1, the communication cost equals the average602

delay accessing a scaling unit multiplied by the square root of603

the number of scaling units. In the Medium and Dense cases604

in Table 1, however, we assume that the communication cost605

is equivalent to the access delay multiplied further with the606

square root of the number of scaling groups once and twice,607

respectively.608

In Table 1 we organize the cost results by call graph609

density and fusion factor categories. The three labels in610

the latter cover the monolithic and fully polylithic scenar-611

ios under Low and High, respectively, while the Optimal612

label is assigned to the case in which the Total cost is613

minimized by selecting the most appropriate packaging of614

modules. The cost figures express the trade-off tackled in615

our model: the optimal setting is always between the two616

extremes, and as the delay becomes more critical, the more617

fusion takes place. The scaling groups (modules are depicted618

by their scaling factors, groups are defined by parenthesis)619

for Sparse, Medium and Dense call graph density cases620

are: (1,1,1,1)(2,2)(4)(8)(16)(64), (1,1,1,1,2,2)(4,8)(16)(64)621

as depicted in Figure 3, and (1,1,1,1,2,2)(4,8,16)(64). Hin-622

dered by the complexity of the model, the groups are deter-623

mined by a brute-force search that consists of systemati-624

cally enumerating all possible candidates for the solution and625

selecting the one with the lowest total cost. The enumeration626

is however shortlisted based on Lemmas 1 and 3.627

The results in Table 1 show that when the fusion factor is628

high, then the scaling cost term becomes dominant, which is629

in line with the statement of Lemma 3. The optimal fusion630

factor counteracts this phenomenon, bringing down the scal-631

ing, and therefore the total cost into an acceptable range.632

On the other hand, the communication cost term decreases633

with the growth of the fusion factor. The optimal operation634

point depends on how we relate the two types of cost to each635

other: Table 1 depicts three specific scenarios in the rows636

of Sparse, Medium and Dense call graph density cases as637

mentioned above, e.g., in the Medium case with the optimal638

TABLE 1. Cost terms (in abstract units) for different call graph density
and module fusion scenarios.

fusion factor the communication cost is 40, as there are 639

4 groups each imposing 10 ms of invocation delay. In the 640

same scenario, the scaling cost is 8, because in the optimal 641

grouping (1,1,1,1,2,2)(4,8)(16)(64) there is a 4 × 1 scaling 642

overhead in the first group, and a 1 × 4 scaling overhead in 643

the second group from the left. 644

C. LARGE SCALE EXAMPLE BASED ON eBay AND 645

ALIBABA TRACES 646

In order to translate the presented cost values into a real- 647

world example, let us take the microservice statistics of eBay, 648

reported in [25], and that of Alibaba [19], [20]. The microser- 649

vice system in eBay [25] includes around 3000 services 650

(called as modules in this paper); these services work together 651

to serve more than 10 business domains and form thousands 652

of call paths. A regular application’s call path may include 653

up to 100 dependent services. The microservice system pro- 654

cesses around 26 billion requests per day, i.e., 300 thousand 655

requests per second. Luo et al. [19], [20] put more emphasis 656

on the interconnection of the separate microservices, and pre- 657

sented an in-depth study of call graphs within the large-scale 658

deployments of microservices at Alibaba clusters. Their main 659

findings are that i) the size ofmicroservice call graphs follows 660

a heavy-tail distribution: around 10% of call graphs consist 661

of more than 40 unique microservices (they have found that 662

the largest call graph can even consist of 1500+ microser- 663

vices), ii) a small percentage of microservices are hot-spots 664

in call graphs, specifically, about 5% of microservices are 665

multiplexed by more than 90% of online services and handle 666

95% of total invocations in Alibaba traces. 667

Based on the reported numbers, let us take a considerably 668

large application, consisting of 100 microservices (the 95th 669

percentile in the cumulative distribution of the number of 670

microservices in each call graph reported in [20]). Further- 671

more, let us assume an exponential skewness in the invocation 672

rate by combining the findings in [20] and [25]: a 400-fold 673

difference between the most and least frequently called 674

microservice, averaging to 100 calls per second. For sim- 675

plicity, we assume a balanced memory footprint over the 676

modules, each microservice instance taking 256MB mem- 677

ory. Following these assumptions, we approximate the 678

scaling factor vs. memory footprint relationship by 679

σ (ρ) = a exp (bρ), such that σ (100×256)
σ (0) = 400 and 680∫ 100×256

0 σ (ρ) dρ
100×256 = 100. Solving this simple system of 681
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FIGURE 4. Scaling factor and memory footprint input to the large scale
problem setup.

equations, the coefficients are a = 1.5, b = 0.000234.682

We depict discrete scaling factor values and the continu-683

ous approximation in Figure 4. In summary, we consider a684

microservices-based application, consisting of 100 compo-685

nents each taking 256MB of memory, and following an expo-686

nential curve in terms of scaling factor ranging from 1 to 600,687

averaging to 100.688

As the next step we leverage Theorem 1, and solve the689

differential Equation 3 for various numbers of scaling groups.690

With the assumed exponential function, the equation that691

must stand for scaling group borders is692

ab exp(bρ)ρL + a exp(bρ)− σR = 0. (5)693

In order to avoid an exhaustive search for the set of values of694

ρL and σR that satisfy the equation, we apply the following695

heuristic approach. We note, however, that other approaches696

might be applied as well, e.g., [26], [27], [28]. We iteratively697

look for the ρ values for which698

ρ =
log (σR)− log (abρL + a)

b
(6)699

starting with σR being the largest scaling factor among the700

modules (e.g., the rightmost point on the curve of Figure 4)701

and ρL being the memory footprint (the whole range on the702

x-axis of Figure 4) divided by the number of groups we are703

striving to pinpoint. In the next round we re-set the value of704

σR to the resulting ρ, and we divide ρ with the decremented705

number of remaining scaling groups to get the new ρL .706

We repeat this step until the desired number of scaling groups707

are identified. The pseudo-code of the heuristics is shown708

in Algorithm 1.709

The results are shown in Figure 5; the curves show the710

scaling (solid line on the left y-axis) and communication711

costs (dashed and dotted lines on the right y-axis) at vari-712

ous numbers of scaling groups found by Algorithm 1. The713

results validate Lemma 3, and show that with optimized714

packaging the achievable cost cut factor is significant in715

terms of scaling cost compared to a monolithic scenario.716

Contrarily, the rise of communication costs is observable as717

we move from a monolith towards a fully polylithic scenario718

in which software modules are all separately placed in the719

Algorithm 1Heuristic Algorithm for Finding ScalingGroups
for Large Microservices-Based Applications
Require: σ (ρ), n F n: range of numbers of scaling groups
Ensure: P ∈ R that satisfy dσ

dρ ρL + σ − σR = 0
for i ∈ n do

R← ∅
ρL ←

ρmax
i

σR← σmax
j← i
while j > 1 do

P← log (σR)−log (abρL+a)
b F assuming

σ (ρ) = a exp (bρ)
R← R ∪ P
j← j− 1
ρL ←

ρmax
j

σR← σ (P)
end while

end for

FIGURE 5. Scaling (solid line on the left y-axis) and communication costs
(dashed and dotted lines on the right y-axis) in function of the number of
scaling groups in the large scale problem setup. Communication costs are
depicted for 3 different scenarios: sparse, medium (depicted as linear),
and dense call graph densities determine the cost in function of the
number of scaling groups.

cloud, potentially resulting in additional delays during service 720

invocations. As [20] reports, end-to-end latency of online 721

services increases linearly in the length of critical path, which 722

is usually proportional to the number of microservices of the 723

cloud-native application. The reason behind this phenomenon 724

is that invocation between a pair of microservices is usually 725

performed via HTTP REST API, RPC calls or Message 726

Queues, and this can lead to a large communication overhead 727

when many instances of these dependent microservices are 728

located far away from each other. Indeed, various measure- 729

ment studies [4], [23], [24] report non-negligible additional 730

delays in end-to-end service response times due to invocation 731

path of separately deployed virtualized components. In [20] 732

the authors state that co-location of dependent microser- 733

vices could improve response time performance by 22% on 734

average. For demonstrative purposes we depict 3 different 735

communication cost scenarios in Figure 5. The ‘‘sparse’’ 736

scenario stands for the case in which the additional delay 737

of inter-scaling group invocation increases with the square 738
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FIGURE 6. Scaling cost comparison between the optimized and the
uniform grouping policies.

root of the number of groups; in this case the added delay739

is not significant because calls are relatively infrequent. The740

‘‘linear’’ shows the case in which this added delay is more741

prominent as such invocations happen frequently, i.e., as a742

linear function of the number of groups. Obviously in the743

latter case the overall minimum cost is achieved with fewer744

scaling groups. The third scenario, i.e., ‘‘dense’’, represents745

the case in which invocations represent almost a full mesh746

between scaling groups: in such a setup the overall added747

latency due to the invocations will grow super-linearly with748

the number of scaling groups, shifting the optimal number of749

scaling groups towards the low extreme. We calculated with750

10 ms added delay per scaling group in each scenario.751

In order to demonstrate how the scaling cost is affected752

by the chosen strategy, we show a comparison with uniform753

grouping: the modules are grouped in equally sized groups754

along the order of their scaling factors, e.g., if 5 groups755

are built, then 20 modules with the lowest scaling factors756

are grouped together, then the next 20 modules, and so757

on. In Figure 6 we depict the scaling costs for the optimal758

and uniform grouping policies in function of the number of759

groups. The results show that the ‘‘uniform’’ policy is only760

slightly overperformed by the optimal setup. This experiment761

demonstrates the message of Lemma 1, i.e., if the minimiza-762

tion of scaling cost drives the grouping, modules should be763

grouped together based on the order of their scaling factor.764

The optimized solution yields savings in terms of memory765

only in the case of a low number of scaling groups: the766

algorithm moves the scaling group borders away from the767

‘‘uniform’’ cuts and the saved overhead is less likely to be768

high when there are many groups, i.e., when ‘‘uniform’’ cuts769

are dense.770

The grouping strategy proposed in this paper focuses solely771

on the scaling cost, however one might consider a grouping772

strategy that builds the scaling groups with awareness to773

the call graph, further decreasing the communication costs.774

Several related work, e.g., [4], [19], [29], propose co-locating775

such microservices that frequently invoke one another in776

order to decrease the overall response time of the application.777

In a set of experiments, we co-locate couples, triples, quadru-778

ples and quintuples of microservices into scaling groups with779

no regard to their scaling factor, and look at the resulting780

FIGURE 7. Scaling cost comparison between the co-locating policy and
the optimized grouping.

costs in terms of scaling memory overhead. For compari- 781

son, we calculate the scaling cost yielded by our optimiza- 782

tion algorithm. The results are depicted in Figure 7. On the 783

x-axiswe show the number of microservices that are assigned 784

into groups, the remaining components are assumed to be 785

deployed as singletons. We see an increasing scaling cost as 786

the fraction of co-located microservices grow which is inline 787

with Lemma 3. In fact the larger groups we create by co- 788

locating components, the faster the memory overhead grows. 789

Both phenomena are due to the fact that the scaling factors 790

of the grouped microservices are not necessarily similar. For 791

comparison, we depict the result of our proposed algorithm 792

for the couples and quintuples cases, i.e., ‘‘couples-opt’’ and 793

‘‘quints-opt’’, respectively, in which the number and the sizes 794

of scaling groups are the same as in the co-locating policy, but 795

the grouping is performed along the scaling factor order of 796

the microservices. The scaling cost is only a fraction of those 797

of the co-locating setups. The reason for the significant dif- 798

ference is clear: while our proposed algorithm minimizes the 799

scaling cost irrespective to its effects on the communications 800

costs, the co-locating policy focuses only on the invocation 801

graph, thus minimizing communications costs by grouping 802

together modules with potentially diverse scaling factors. 803

Then the more and larger groups of components with ran- 804

domly picked scaling factors lead to increased scaling costs. 805

The drawback of co-locating microservices with similar 806

scaling factors, and not those that are tightly connected in 807

the call graph of the application, is visible in Figure 8. 808

We take the couples and quintuples cases from the 809

previous experiments, and calculate the communication cost 810

by assuming medium density call graph among the groups 811

after co-locating the microservices that are frequently invok- 812

ing one another. As more microservices are grouped together 813

and as larger those groups are, the communication cost is 814

lower. The trend is exactly the opposite as with the scaling 815

cost in Figure 7. However, when our algorithm sorts the 816

microservices again into the same number of groups with 817

the same sizes, those strongly coupled components might 818

end up in separate scaling groups (assuming no correlation 819

between the scaling factors and network positions in the call 820

graph), making the call graph of groups dense. Therefore the 821

communication costs resulted by our grouping algorithm are 822
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FIGURE 8. Communication cost comparison between the co-locating and
the optimized grouping policies.

potentially higher, depicted by ‘‘couples-dense’’ and ‘‘quints-823

dense’’ in the chart.824

One must ponder the relative importance of these cost825

terms, i.e., scaling and communication costs, in order to find826

the optimal arrangement of the microservices. As stated in827

Section IV-B, in order to make these cost terms comparable,828

one must define the monetary value of the degradation in829

service quality caused by inter-module invocation latency,830

as the price of memory allocation, i.e., the scaling cost, has831

already a definite price tag. Then the application designer832

may apply our proposed optimized grouping for the desired833

sweet spot in this trade-off dimension instead of option i) that834

considers co-locating microservice components frequently835

invoking each other for a low response time, or option ii)836

which is a fully polylithic scenario for the lowest scaling cost.837

In the next section we follow the cost conversion applied in838

Section IV-B and we calculate the operational costs of the839

illustrative example in various cloud deployments.840

D. THE COST OF EXTENDED SCALE-OUT PERIODS841

Finally, we put a real price tag on the deployment of the842

illustrative application in scale out episodes. We have col-843

lected the service fees of 3 major public cloud providers in844

both CaaS and FaaS. In Table 2 we calculate the hourly fee845

in those cloud services in the optimal fusion factor scenario846

under the medium call graph density regime (middle row of847

Table 1 in bold, as depicted in Figure 3). In the rightmost848

column we provide the price of a hybrid setup in which the849

grouped modules are being run in containers, i.e., CaaS, and850

the rest of the modules run in FaaS. As a reminder, each851

module has a 200MB memory footprint, and the number of852

instances is defined by the highest scaling factor in a group.853

So the grouping we consider is (1,1,1,1,2,2)(4,8)(16)(64)854

with scaling factors 2, 8, 16, and 64, respectively, as depicted855

in Figure 3.856

We consider data center prices at the cheapest locations,857

and we take into account memory and, where it is applicable,858

processor fees. In order to keep the comparison fair, we do859

not consider edge computing scenarios with the involve-860

ment of accelerators including, but not limited to, GPUs861

and FPGAs. We consider the option of keeping functions862

TABLE 2. Price (in USD) of running the example application in various
public clouds for an hour in scale-out regime.

warm, a premium feature available at Amazon (called Provi- 863

sioned Concurrency) and Microsoft (called Premium Plan). 864

However, we omit invocation fees (negligible in this setting, 865

less than 1% of total price assuming an invocation every 10s), 866

free tiers (offered by Google), data traffic fees, and manage- 867

ment fees of CaaS (charged by Google). In order to give a 868

basis for the processor fee calculation, we assume that the 869

code is continuously running for an hour, each module taking 870

1 vCPU. As Amazon does not allow to provision memory and 871

CPU independently, we consider allocating the memory [30] 872

that is necessary to reach 1 vCPU dedicated to it, i.e., 1800 873

MB instead of 200 MB for each module. 874

We show the total cost in Table 2 for each selected provider. 875

Memory consumption is computed as the total memory foot- 876

print of all modules multiplied by their respective group’s 877

scaling factor. In contrast, CPU fee is calculated as the num- 878

ber of modules multiplied by their own scaling factor. Both 879

memory and CPU unit prices have been collected from [1], 880

[2], and [3]. 881

Summarizing the figures of Table 2, we have 3 main obser- 882

vations. Comparing CaaS to FaaS, we can firmly state that 883

deploying the application in CaaS is 2-fold cheaper, but it 884

is widely known that reacting to hectic demand with scale 885

out events is slower than doing the same with pre-warmed 886

FaaS [30]. This aspect does not show in our analysis. Sec- 887

ond, the FaaS offering of Amazon and Microsoft come with 888

warm starts, hence the price difference compared to Google’s 889

service, which is cheaper but lacks the pre-warm feature. 890

The cost is therefore expected to appear on the application 891

QoS side when customers suffer from prolonged response 892

times. Finally, the hybrid proposal, in which single modules 893

(outliers regarding their scaling factors) are run in FaaS, 894

while modules that are similar in scaling factor are pack- 895

aged together in CaaS, yields a 10% saving compared to the 896

FaaS-only scenario. The cost cut is due to efficient memory 897

provisioning, and the hybrid solution does not compromise 898

on fast scaling dynamics as low scaling factor modules are 899

grouped for which scale-out rarely happens. 900

V. CONCLUSION 901

While the choice of cloud computing is unquestionable 902

when it comes to deploying an application, as public cloud 903

providers spoil the tenants with more and more service 904

models, it has become a difficult question for application 905

architects which service to use. The two major choices 906

are CaaS and FaaS, the latter being originally tailored to 907

running short-lived tasks serverless. We investigated this 908

question from the perspective of the cost vs. latency trade- 909

off, for which the stressful situations are scale out periods. 910

We proposed an analytical model that incorporates the 911
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memory footprint during these episodes in case the appli-912

cation design does not allow for ample granularity of code913

scaling. On the other hand, the model also accounts for914

function invocation delays introduced by a highly distributed915

application design. Thus, we provided an analytical model for916

tackling the efficient scaling vs. communication cost trade-917

off, we evaluated several scenarios with an analysis built918

on real FaaS traces, and, finally, we proposed an optimal919

deployment setup for an illustrative example application with920

today’s cloud pricing quotes. The analysis carried out on real921

CaaS and FaaS traces give some useful hints on how to dis-922

tribute the application modules on cloud resources based on923

their scaling features and latency constraints. The proposed924

model can be useful for application designers that are building925

their cloud-based solutions for extremely tight delay con-926

straints and hectic scaling events, e.g., telecommunications927

operators. The proposed approach can be fruitfully used in an928

actual design process once estimated or measured values for929

scaling factors and memory footprint have been obtained for930

the application under study in order to be able to take optimal931

decisions regarding its packing and deployment.932
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