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Abstract— In the analysis of uncertain systems, we often search
for a worst case perturbation that drives the H∞ gain of the
system to the maximum over the set of allowable uncertainties.
Employing the classical technique, an uncertainty sample is
obtained, which, indeed, maximizes the gain but only at the
single frequency where that maximum occurs. In contrast, this
article considers a method to calculate a worst case perturbation
that maximizes the gain of a system with mixed uncertainty
at multiple frequencies simultaneously. This approach involves
a nonlinear optimization that selects the worst case value of
the uncertain parameters and the application of the boundary
Nevanlinna–Pick interpolation to calculate the dynamic uncer-
tainty sample. Such a perturbation can be used to augment Monte
Carlo simulations of uncertain systems, especially if the system
has multiple resonance frequencies. The worst case analysis of
a flutter control system designed for a small flexible aircraft
is provided to demonstrate the applicability of the proposed
method.

Index Terms— Flutter control, mixed uncertainty, performance
analysis, uncertain systems, worst case uncertainty.

I. INTRODUCTION

THE worst case gain [1] is a useful metric for analyzing
the robustness of uncertain systems. This is defined as

the maximum H∞ norm of the uncertain system over the set
of allowable uncertainties. The uncertainties include dynamic
uncertainty that represents unmodeled dynamics in the system
and parametric uncertainty that accounts for the inaccuracies
of the physical parameters. This performance measure is often
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used in analysis and occasionally in control synthesis, e.g.,
[2] and [3]. The worst case gain can be assessed by a skewed
structured singular value (skewed-μ) calculation. This problem
is known to be NP-hard [4]; therefore, efficient techniques for
obtaining upper and lower bounds have been developed.

The upper bound calculation is turned into a convex opti-
mization problem using D-G scales [5], [6]. The lower bound
involves heuristics for constructing “bad” uncertainty samples,
i.e., those that achieve large gains for the uncertain system.
A common heuristic is the skewed-μ power iteration [7].
This yields the value of the uncertain parameters and a com-
plex (structured) matrix, which causes the uncertain system to
achieve the worst case gain lower bound at a given frequency.
A linear time-invariant (LTI) uncertainty sample corresponding
to the dynamic uncertainty is constructed by interpolating the
complex matrix at the given frequency. This single-frequency
interpolation is always possible using a stable LTI system with
norm bounded by that of the complex matrix [8, Th. 9.1]. The
upper and lower bound calculations are readily available in
MATLAB [9], [10].

Expanding our previous work in [11], this article presents
a new method to construct worst case mixed uncertainty
samples. The proposed algorithm maximizes the gain of the
uncertain system at multiple (given) frequency points. This is
in contrast to the existing method that computes an uncertainty
to maximize the worst case gain lower bound at a single
frequency (often the peak frequency). The proposed method
consists of performing a nonlinear optimization to find the
worst case value of the uncertain parameters and the complex
matrix uncertainty samples computed by the worst case gain
lower bound power iteration at multiple frequencies. Next,
the boundary Nevanlinna–Pick (BNP) method [12] is used to
create a stable, norm-bounded LTI uncertainty that interpolates
the collection of matrix samples.

This uncertainty sample is useful for further time and fre-
quency domain analyses. For example, it can be incorporated
in a higher fidelity nonlinear simulation [13], especially for
systems with multiple resonance frequencies, such as hard
disk drives [14] and flexible aircraft [15]. In addition, it can
be useful as part of control design methods that require bad
samples of dynamic uncertainty [2]. Selecting uncertainty
samples that provide large gain at multiple frequencies could
improve the convergence speed of such synthesis methods.
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The most closely related work is [16], which considers
sample construction for randomly sampling an uncertainty set.
The Nevanlinna–Pick theorem is employed to sample unit
H∞ norm systems. The approach involves randomly chosen
frequencies and data that are interpolated while constraining
the resulting interpolant to be stable and norm bounded by one.
The construction in [16] is similar to the one presented in this
article. The main difference is that random uncertainty samples
are created in [16], while our method aims to maximize gain
at multiple frequencies.

The worst case analysis of a real-life flutter control example
is provided to demonstrate the use of the algorithm. The con-
troller and the aircraft model are taken from our previous work
in [17]. Time-domain simulations with the worst case uncer-
tainty sample are conducted to investigate the applicability
of the flutter controller. The MATLAB implementation of the
algorithm along with all the examples presented in this article
can be downloaded from [18]. A short video presentation
explaining our preliminary work is available at [11].

The rest of this article has the following outline. Section II
details the problem and introduces the classical approach to
solve it. In Section III, the worst case uncertainty construction
is described for the purely parametric, purely dynamic, and the
mixed uncertainty cases. The flutter control analysis problem is
elaborated in Section IV. Conclusions are drawn in Section V.

II. PROBLEM STATEMENT

A. Notation

Let X ∈ rX ×cX and Y ∈ rY ×cY be matrices with cY < rX

and rY < cX . Partition X such that

X =
[

X11 X12

X21 X22

]

and X11 is rY × cY . The upper linear fractional transforma-
tion (LFT) is FU (X, Y ) = X22 + X21Y (IrY − X11Y )−1 X12,
where IrY is an rY × rY identity matrix.

Denote the elementwise conjugate of Y by Y , its conjugate
transpose by Y ∗, and its largest singular value by σ̄ (Y ). If X
and Y are the same size, then X > Y (or <, ≥, ≤) denotes
the elementwise inequality. For X = X∗ and Y = Y ∗, the
expression X � Y means that X − Y is positive definite.
The symbols ≺, 	, and 
 are to be understood accordingly.
The block diagonal concatenation of Y1, . . . , Yn is denoted by
diag(Y1, . . . , Yn).

If G(s) is an LTI system, �G(s)�∞ is its H∞-norm. That is,
�G(s)�∞ is the supremum of σ̄ (G( jω)) over all frequencies
if G(s) is stable and ∞ otherwise.

B. Worst Case Gain

Consider the block diagram in Fig. 1. This is an inter-
connection of a stable, multi-input–multi-output (MIMO) LTI
system M(s) and a structured dynamic uncertainty �(s). The
uncertain system is

P�(s) = FU (M(s), �(s)). (1)

Fig. 1. Uncertain system interconnection.

Define the set of structured and unit norm bounded parametric
and dynamic uncertainties, respectively, as

p :=
{

diag
(
δ1 Ir1 , . . . , δNp IrNp

)
, δi ∈ ,

|δi | ≤ 1, i = 1, . . . , Np

}

d := {
diag

(
�1(s), . . . ,�Nd (s)

)
, �i (s) is LTI,

��i (s)�∞ ≤ 1, i = 1, . . . , Nd
}
.

Notice that �d(s) ∈ d implies that �d(s) is stable, and
��d(s)�∞ ≤ 1. The block �i(s) can be MIMO and has
dimensions rd,i × cd,i . Also, if �p ∈ p, then σ̄

(
�p

) ≤ 1.
The mixed uncertainty set is

:= {
diag

(
�p, �d(s)

)
, �p ∈ p, �d(s) ∈ d

}
. (2)

Again, �(s) ∈ means ��(s)�∞ ≤ 1.
The worst case gain of the uncertain system is the maximum

induced L2 gain (i.e., H∞ norm) of P�(s) over the set of
allowable uncertainties

γ̂ := max
�(s)∈

�FU (M(s), �(s))�∞. (3)

The interconnection in Fig. 1 is assumed to be robustly stable,
i.e., P�(s) is stable for all �(s) ∈ . This implies that γ̂ < ∞.
The worst case gain defined in (3) is equivalent to calculating
the peak gain of the system frequency by frequency. To make
this statement precise, note that the response of �d(s) ∈
at any frequency is a block structured, complex matrix. It is
sufficient to define the set of block structured, unit norm
bounded complex uncertainties as

d :=
{

diag
(
Q1, . . . , QNd

)
, Qi ∈ ri ×ci , σ̄ (Qi ) = 1,

rank(Qi ) = 1, i = 1, . . . , Nd}.
Note that Qd ∈ d implies σ̄ (Qd) = 1. In addition, note that
it is sufficient to restrict the complex matrices to be rank one
as in the definition of d [5], [8]. The set of mixed uncertainty
samples at a fixed frequency is

= {
diag

(
�p, Qd

)
, �p ∈ p, Qd ∈ d

}
. (4)

The worst case gain calculation in (3) is equivalent to

γ̂ = max
ω∈ ∪{∞}

γ (ω) (5)

where γ (ω) is the peak gain of FU (M(s), �(s)) at ω, i.e.,

γ (ω) = max
Q∈

σ̄ (FU (M( jω), Q)). (6)
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Note that, in Q ∈ , the parametric uncertainty �p ∈ p is
allowed to vary from frequency to frequency.

A standard approach is to approximate γ̂ by performing
the calculation in (6) on a finite frequency grid. Specifically,
a sufficiently dense grid {ωk}Nω

k=1 is chosen. At each frequency,
γ (ωk) is the result of a skewed-μ analysis, which, for many
cases, is known to be NP-hard [4]. Instead, lower bounds
{Lk}Nω

k=1 and upper bounds {Uk}Nω

k=1 are computed such that
Lk ≤ γ (ωk) ≤ Uk , k = 1, . . . , Nω .

The upper bounds are computed via semidefinite program-
ming involving scaling matrices to account for the structure of

[6]. The lower bounds are obtained employing a skewed-μ
power iteration [7]. The power iteration at ωk yields Qk ∈
such that

σ̄ (FU (M( jωk), Qk)) = Lk . (7)

Finally, the worst case gain is bounded by maxk Lk ≤ γ̂ ≤
maxk Uk . This computation is performed in the MATLAB
function wcgain [9]. Similar calculations are done by the
MATLAB-Simulink Systems Modeling, Analysis and Con-
trol (SMAC) toolbox [10].

C. Limitations of Maximizing the Gain at
a Single Frequency

Suppose that the lower bound power iteration at ω0 yields
the lower bound L0 and worst case perturbation Q0 =
diag

(
�p,0, Qd,0

) ∈ , where Qd,0 = diag
(
Q1, . . . , QNd

) ∈ d.
�p,0 can be substituted into P�(s) directly, but Qd,0 is a
complex matrix at this point. Therefore, the goal is to find
an LTI uncertainty, which interpolates Qd,0 at the single
frequency ω0. The uncertainty must be stable, unit norm
bounded and have the correct block structure, i.e., we want to
find �d,s(s) ∈ d (the “s” subscript refers to single peak). The
uncertainty �s(s) = diag

(
�p,0, �d,s

)
drives the gain of the

uncertain system to the power iteration lower bound at ω0; in
other words, it satisfies σ̄ (FU (M( jω0), �s( jω0))) = L0. The
construction of �d,s(s) is given in the proof of Theorem 9.1
(small gain theorem) in [8] and is summarized in the following.

Each block Qi ∈ ri ×ci of Qd,0 is rank-one with unit
maximum singular value, i.e., each block can be expressed
as Qi = uv∗ for some vectors �u�2 = �v�2 = 1. Let
ul ∈ denote the lth element of the vector u. It is possible to
find an SISO transfer function ûl(s) such that ûl( jω0) = ul

and �ûl(s)�∞ ≤ |ul |. This SISO interpolation can be per-
formed with a constant or first-order transfer function ûl(s),
as described in [8]. Each entry of u can be interpolated to
obtain an ri × 1 stable system û(s) with �û(s)�∞ ≤ 1.
Similarly, each entry of v∗ can be interpolated to obtain a 1×ci

and stable system v̂(s) with �v̂(s)�∞ ≤ 1. Finally, the block
�i(s) = û(s)v̂(s) is stable and satisfies �i( jω0) = Qi and
��i�∞ ≤ 1. As a result, �d,s(s) = diag

(
�1(s), . . . ,�Nd(s)

) ∈
interpolates Qd,0 at frequency ω0.
The wcgain function computes the worst case uncertainty

using this method. In the implementation, a bandpass filter is
added to the uncertainty. This bandpass filter is omitted from
the discussions in this article.

One entry of u can be normalized in each block of
Qi = uv∗. Specifically, �u�2 = 1 implies that u has at

Fig. 2. Gain of the uncertain system P�(s) for different values of the
uncertainty. The boundary of the shaded area is L(ω).

least one nonzero entry, say ul 
= 0. Then, Qi = ũṽ∗, where
ũ := u/ul and ṽ := ulv. This normalizes the lth entry, i.e.,
ũl = 1. Therefore, if Qd,0 ∈ rQ×cQ , then, in general, �d,s(s)
has rQ + cQ − Nd states. The number of states can be less if
there are real numbers in the rank-one decomposition of the
blocks of Qd,0. The most notable situations when that happens
is when ω0 = 0 or ω0 = ∞. In those cases, M( jω0) is a real
matrix; therefore, in some cases, the power iteration results in
a real Qd,0.

Typically, this method is used to interpolate the matrix
Qd,0 that achieves the maximal lower bound at frequency ω0.
Therefore, �s(s) achieves the largest gain found by the power
iteration over all frequencies in the grid. However, the gain
σ̄ (FU (M( jω), �s( jω))) may not be large at other frequencies
(ω 
= ω0). A simple example is presented to demonstrate this.

Example 1: Consider two bandpass filters with peak at
1 and 100 rad/s, respectively,

F1(s) = 2s

(s + 1)2 , F2(s) = 200s

(s + 100)2 . (8)

Let δ1 ∈ with |δ1| ≤ 1 and �1(s) with ��1(s)�∞ ≤ 1. The
uncertain system is given as

P�(s) = [2(0.2 + δ1)F1(s) + (0.9 − δ1)F2(s)]

· (1 + Wd(s)�1(s))

where

Wd(s) = 0.2
s + 7

s + 14
.

That is, P�(s) is the weighted sum of F1(s) and F2(s) with
10% dynamic uncertainty on low frequencies and 20% on high
frequencies. The uncertainty sets are

p = {δ1 I2, δ1 ∈ , |δ1| ≤ 1}
d = {�1(s) is LTI, ��1�∞ ≤ 1}

= {
diag

(
�p, �d(s)

)
,�p ∈ p, �d(s) ∈ }

.

Due to the construction of P�(s), it is sensitive to excitation
at 1 and 100 rad/s. This is illustrated in Fig. 2 in which
the gain of the nominal system P0(s) and the worst case
gain lower bound L(ω) are depicted. The maximum of L(ω)
is at ω0 = 1 rad/s. The skewed-μ power iteration yields
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Q0 = diag(I2, 0.998 − 0.071 j). The dynamic uncertainty
constructed with the classical interpolation is

�1(s) = − s − 28.32

s + 28.32
.

Thus, �s(s) = diag(I2, �1(s)). As depicted in Fig. 2, this
uncertainty sample drives the magnitude of P�s(s) to its
maximum at ω0. However, the gain of P�s(s) at the second
peak is less than the gain of the nominal system P0(s).

D. Objective: Gain Maximization at Multiple Frequencies

The example from Section II-C motivates the need to
move beyond the typical single-frequency interpolation in the
worst case gain analysis. This section provides a concrete
formulation for the multiple frequency interpolation problem
addressed by this article.

Assume that the following are given: a robustly stable uncer-
tain system1 in (1) with �(s) ∈ , a collection of frequencies
{ωk}Nω

k=1, and worst case gain lower bounds {Lk}Nω

k=1. Define
the objective function J : → such that

J (�(s)) =
Nω∑

k=1

σ̄ (FU (M( jωk), �( jωk))). (9)

Find �m(s) ∈ for which J (�m(s)) is maximal. The
“m” subscript stands for multiple peak. For any �(s) ∈ ,
J (�(s)) ≤ JU, where

JU =
Nω∑

k=1

Lk . (10)

If the system only has dynamic uncertainty ( = d), then it is
possible to find a �m(s) such that J (�m(s)) = JU. This fol-
lows from the BNP results in Section III-B. Specifically, a sin-
gle �m(s) ∈ d can be constructed to interpolate the complex
matrices found by the power iteration at the given collection
of frequencies. However, in the mixed case, it is generally
not possible to find a �m(s) such that J (�m(s)) = JU. The
parametric uncertainty �p couples the frequencies together,
and different values of the same parameter may be required
to achieve the lower bound at each frequency.

To address these issues, we propose a search over the para-
metric uncertainty and an interpolation of the dynamic uncer-
tainty. Specifically, a nonlinear optimization is performed,
which yields �p,m ∈ p and the samples of the complex
uncertainty {Qd,k}Nω

k=1 at frequencies {ωk}Nω

k=1. The interpolant
�d,m(s) ∈ d is obtained by the application of the BNP
interpolation method.

III. MIXED UNCERTAINTY CONSTRUCTION TO MAXIMIZE

THE GAIN AT MULTIPLE FREQUENCIES

This section describes the solution of the problem formu-
lated in Section II-D. First, the case is treated when there is

1We remark that, if the system is not robustly stable, then we can use the
structured singular value lower bound power iteration to obtain a destabilizing
complex matrix sample of the uncertainty. The state-space realization of this
sample is then the result of the single-frequency interpolation in Section II-C.
This calculation is performed by the MATLAB function robstab.

only dynamic uncertainty in the system (i.e., when = d).
This is a restatement of the results in [11]. The overview of the
method is given in Algorithm 1. Then, the purely parametric
uncertainty case ( = p) is handled. These two methods are
combined in Algorithm 2 to construct the worst case mixed
uncertainty. Finally, Section III-E presents how the algorithm
is validated using an array of example systems. The main
theoretical contribution of this article compared to [11] is in
Sections III-C and III-D and also in Appendix A.

A. Boundary Nevanlinna–Pick Interpolation

The BNP interpolation method is detailed next. The algo-
rithm is given in [12, Example 21.3.1 and Corollary 21.4.2]
and is repeated here for ease of reference.

Theorem 1: Let {ϑk}Nϑ

k=1 be given, distinct numbers on
the imaginary axis. In addition, let {uk}Nϑ

k=1 ⊂ q and
{vk}Nϑ

k=1 ⊂ q be given unit-length vectors. The following
statements hold for any such interpolation data.

1) There exist nonnegative real numbers {ρk}Nϑ

k=1 such that
the boundary Pick matrix H (ρ) ∈ Nϑ ×Nϑ defined by

Hik(ρ) =
⎧⎨
⎩

v∗
i vk − u∗

i uk

ϑ∗
i + ϑk

, i 
= k

ρk, i = k
(11)

satisfies H (ρ) � 0.
2) Assume that H (ρ) � 0, and define

C0− := [
v1 . . . vNϑ

] ∈ q×Nϑ (12)

C0+ := [
u1 . . . uNϑ

] ∈ q×Nϑ (13)

A0 := diag
(
w1, . . . , wNϑ

) ∈ Nϑ ×Nϑ (14)

	(s) := I +
[

C0+
C0−

]
(s I − A0)

−1 H (ρ)−1

[−C0+
C0−

]∗
.

(15)

Let G(s) be any q × q rational function analytic on the
closed right-half-plane with �G(s)�∞ ≤ 1. Define

�d(s) := (	11(s)G(s) + 	12(s))

· (	21(s)G(s) + 	22(s))
−1

where 	(s) :=
[
	11 (s) 	12 (s)
	21 (s) 	22 (s)

]
is partitioned into

q×q blocks. Then, �d(s) is analytic on the closed right-
half-plane, and ��d(s)�∞ ≤ 1. Moreover, �d(ϑk)vk =
uk , u∗

k�d(ϑk) = v∗
k , and −u∗

k�
�
d(ϑk)vk = ρk for

k = 1, . . . , Nϑ .2

Proof: See [12]. �
In the rest of this section, several modifications are added

to the basic BNP interpolation result in Theorem 1 that makes
it applicable to worst case dynamic uncertainty construction.
First, the theorem assumes that the interpolation vectors are
both of the same dimension. Zero-padding is used if the
dimensions are not equal. For example, assume that {uk}Nϑ

k=1
and {vk}Nϑ

k=1 have dimensions r and c, respectively, with
r > c. In this case, the vectors {vk}Nϑ

k=1 are augmented with

2The ()� superscript denotes derivative with respect to the independent
variable.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PATARTICS et al.: WORST CASE UNCERTAINTY CONSTRUCTION VIA MULTIFREQUENCY GAIN MAXIMIZATION 5

r − c zeros so that ṽ∗
k = [

v∗
k 0

]
. The resulting interpolant is

�̃d(s) = [
�d(s) �0(s)

]
, where �̃d(s) satisfies the inter-

polation conditions with {uk}Nϑ

k=1 and {ṽk}Nϑ

k=1. Then, �d(s)
satisfies the interpolation conditions with {uk}Nϑ

k=1 and {vk}Nϑ

k=1.
Similarly, {uk}Nϑ

k=1 are augmented with zeros when r < c.
Next, the interpolant provided by Theorem 1 is not neces-

sarily a real system, i.e., its coefficients in transfer function
or state-space form can be complex. A system with real
coefficients is obtained by interpolating the given data and
its complex conjugate. Specifically, assume that the given
interpolation data are {uk}Nω

k=1, {vk}Nω

k=1, and a collection of

nonnegative frequencies {ωk}Nω

k=1. The interpolant in Theorem 1
is constructed with the data

ϑk : − jω1 . . . − jωNω
jω1 . . . jωNω

uk : u1 . . . uNω
u1 . . . uNω

vk : v1 . . . vNω
v1 . . . vNω

. (16)

If zero is among the frequency points, then it is not duplicated.
This makes Nϑ = 2Nω or Nϑ = 2Nω − 1 if the zero
frequency is included. Interpolating such conjugate data yields
an interpolant �d(s) with real coefficients. See Appendix A
for the proof of this statement. We remark that a minimal
realization of the interpolant is always obtainable by Kalman
decomposition. Since this transformation does not affect the
frequency response of the interpolant, the interpolation criteria
(given in the frequency domain) are still met by the minimal
interpolant.

Finally, Theorem 1 provides a set of interpolants depending
on the choices for the nonnegative numbers {ρk}Nϑ

k=1 and ratio-
nal function G(s). An all-pass �d(s) is obtained if G(s) is cho-
sen to be all-pass [19]. For simplicity, we always pick G(s) =
I . In addition, the interpolant satisfies −u∗

k�
�
d(ϑk)vk = ρk ,

and hence, smaller values of {ρk}Nϑ

k=1 are related to smaller
derivatives of interpolant. Specifically, if �d(s) is SISO,
smaller ρk values mean that the phase of �d(s) varies
more gradually with frequency (see Example 2). Because
of the construction of the data in (16), there are only
Nω independent variables in {ρk}Nϑ

k=1 since, for negative
frequencies

−u∗
k�

�
d(− jωk)vk = −u∗

k�
�
d( jωk)vk = −u∗

k�
�
d( jωk)vk

= −u∗
k�

�
d( jωk)vk = ρk .

The following optimization is formulated to minimize ρk .
Let R := diag

(
ρ1, . . . , ρNω

)
so that diag(R, R) is the main

diagonal of the boundary Pick matrix H (ρ) defined in (11).
Define H0 := H (ρ) − diag(R, R), and solve the optimization

min ρ̂ + trace(R)

s.t.: ρ̂ I ≥ R ≥ 0

κ I 	 H0 + diag(R, R) 	 1

κ
I (17)

to obtain {ρk}Nω

k=1. The objective function ρ̂ + trace(R) com-
bines a bound on the peak value and the sum of {ρk}Nω

k=1.
The two terms are weighted equally in this formulation,
but alternative weightings could be used. The optimization
also includes an upper bound constraint on the condition

Fig. 3. Effect of the values of the derivatives when using the BNP
interpolation.

number κ of the boundary Pick matrix H (ρ). This constraint
improves the conditioning of the matrix inversion H (ρ)−1 that
appears in (15). The condition number bound is selected as
κ = 104. The following example illustrates the effect of this
optimization on the phase of the interpolant.

Example 2 (Role of the Derivatives): Interpolate the com-
plex numbers e− j (π/4) and e− j (5π/2) at the frequencies of 1 and
100 rad/s, respectively. When using the optimization in (17),
the derivatives become 0.72 and 0.02. Perform the interpola-
tion two more times, but, instead of minimizing the derivatives,
set them both to 1 and then 10. Because of the BNP construc-
tion, the magnitude of the resulting transfer functions is one
at all frequencies. The phase of these three transfer functions
is depicted in Fig. 3. The figure clearly illustrates the effect
of the derivatives on the interpolant.

B. Interpolation of the Dynamic Uncertainty

Using the method detailed in Section III-A, the worst
case dynamic uncertainty construction is described next. The
following are given: a robustly stable uncertain system in (1)
along with a block structure , distinct frequencies {ωk}Nω

k=1,
and worst case gain lower bounds {Lk}Nω

k=1 at those frequencies.
We want to find a �d,m(s) ∈ d such that

σ̄
(FU

(
M( jωk), �d,m( jωk)

)) = Lk (18)

for k = 1, . . . , Nω . To achieve this, we first compute the
complex uncertainty samples at {ωk}Nω

k=1 and use the BNP
interpolation block by block to obtain the interpolant �d,m(s).
The method is summarized in Algorithm 1.

The worst case uncertainty samples {Qd,k}Nω

k=1 ⊂ d are
complex matrices computed on the frequency grid {ωk}Nω

k=1
using the existing worst case gain lower bound power iter-
ation [7]. The uncertainty �d,m(s) ∈ d is the result of inter-
polation between these matrices. The uncertainty samples have
block diagonal structure, i.e., Qd,k = diag

(
Q1,k, . . . , QNb ,k

) ∈
d has block-diagonal structure. Thus, the interpolation proce-

dure in Theorem 1 and Section III-A is repeated for each block
separately. For the block Qk of the sample Qd,k , compute
rank-one decomposition at each frequency so that Qk = ukv

∗
k ,

k = 1, . . . , Nω . If Qk is not square, add zeros at the end of
uk or vk , whichever has fewer elements, so that they have the
same size. Form the input of the BNP procedure as in (16).
Apply the BNP interpolation as described in Section III-A.
This procedure interpolates through the rank-one blocks of
the uncertainty sample. Every block of the resulting �d(s)
will interpolate the {uk}Nϑ

k=1 and {vk}Nϑ

k=1 corresponding to that
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Algorithm 1 Worst Case Dynamic Uncertainty Construction

block, but they can, in general, be full rank matrices at the
interpolation frequencies.

In Theorem 1, �d(s) interpolates the vectors uk and vk

in the sense that �d( jωk)vk = uk for k = 1, . . . , Nω .
At ωk , the lower bound power iteration yields Qd,k for which
σ̄
(FU

(
M( jωk), Qd,k

)) = Lk . This means that there exist
unit vectors up,k and vp,k such that FU

(
M( jωk), Qd,k

)
up,k =

Lkvp,k . (The “p” subscript refers to the word performance,
since in skewed-μ analysis, e and d are usually called perfor-
mance channels, and the fictitious uncertainty block associated
with them is call the performance block.) The interpolation
means that �d,m( jωk)vk = uk . This is sufficient since the
uncertainty satisfies the equations

M( jωk)

[
uk

u p,k

]
=

[
vk

Lkv p,k

]

�d,m( jωk)vk = uk

which implies (18). This applies for when �(s) is a full block
uncertainty. The generalization to the case when �(s) has a
block structure is straightforward but is omitted for notational
simplicity.

Note that, because of the definition of A0 in (14) and our
choice of G(s) = I , the state order of the interpolant in
Theorem 1 is Nϑ . Because the interpolation is repeated for
every block, the number of states in �d,m(s) is Nϑ Nd =
2 Nω Nd (or (2 Nω − 1)Nd). Thus, if Nω = 1, this method
generally provides a lower dimensional uncertainty sample
than the classical solution in Section II-C.

C. Optimization of the Parametric Uncertainty

Before we study the construction of the mixed uncertainty
sample, let us consider the case when there is only parametric
uncertainty in the system, i.e., = p. In this case, the
objective function in (9) is

J
(
�p

) =
Nω∑

k=1

σ̄
(FU

(
M( jω), �p

))

and the goal is to find

�p,m = arg max
�p∈ p

J
(
�p

)
.

Since the parametric uncertainty couples the frequencies
together, it is not possible to maximize J in the given fre-
quency points independently. Therefore, there is no guarantee
that a �p ∈ p exists such that

J
(
�p

) = JU =
Nω∑

k=1

Lk .

Even if such a �p does exist, J is nonlinear and nonconvex;
therefore, there is no guarantee that it can be found.

To perform the optimization in (20), a multidimensional
version of the interval search is performed combined with
a gradient ascent algorithm. We take advantage of the fact
that the independent variables of p form an Np-dimensional
hypercube. First, J is evaluated at the center and at the corners
of the hypercube. Then, the hypercube is split into 2Np smaller
cubes that all have the center and one of the corners as their
respective corners. Finally, the small hypercube is selected,
which contains the two points with the highest objective
value. This process is repeated until convergence or until the
maximum number of objective function evaluations is reached.
A gradient ascent search implemented in the MATLAB func-
tion fmincon with the “interior-point” solver is then
run starting from the resulting point.

Another solution could be to simply run a nonlinear opti-
mization algorithm starting from the center of the hypercube.
We use 37 example systems to test our method and compare
it to potential alternatives (see Section III-E for more informa-
tion). Based on our test results with the 30 examples that have
uncertain parameters, the cube splitting algorithm combined
with a gradient ascent performs better than a simple nonlinear
optimization. The advantage of our solution arises from the
fact that �p,m is often close to one of the corners (or to
the border) of p. On the other hand, the number of corner
points of each hypercube grows exponentially with Np. Due
to constraints on computation time, this limits the accuracy
of the result for problems with a high number of uncertain
parameters.

The following example illustrates this solution.
Example 3: Consider the second-order system with reso-

nance frequency ωr and damping ξ

P�(s) = ω2
r

s2 + 2ξωrs + ω2
r
. (19)

The parameters of this system are uncertain such that ωr = 1+
0.3δ1 and ξ = (1/

√
2)(1 + 0.5δ2), where δ1, δ2 ∈ , |δ1| ≤ 1,
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Fig. 4. Value of the objective function and the hypercubes of the consecutive
iterations during the optimization.

and |δ2| ≤ 1. The uncertainty set corresponding to P�(s) is

= p = {diag(δ1 I2, δ2), δ1, δ2 ∈ , |δ1| ≤ 1, |δ2| ≤ 1}.
Let us maximize the gain of P�(s) at ω1 = 0.75 rad/s and
ω2 = 1 rad/s simultaneously. Fig. 4 shows a contour plot
of the objective function. The figure also shows the points
where the objective function was evaluated (black-x) during
the hypercube refinement. The optimization yields �p,m =
diag(0.25 I2, −1) that is the maximum on p with J

(
�p,m

) =
2.89. The upper bound of the objective function is JU = 3.02,
which is clearly unattainable for this system.

D. Construction of Worst case Mixed Uncertainty

If the system has dynamic uncertainty only, the interpolation
method in Section III-B yields an uncertainty sample, which
ensures that the worst case lower bound is reached at the
given frequencies. As demonstrated in Section III-C, this is
not necessarily possible for the mixed uncertainty case.

To maximize the objective function J in (9), consider the
function J̃ : p → such that

J̃
(
�p

) = max
Qd,k∈ d

Nω∑
k=1

σ̄
(FU

(
M( jωk), diag

(
�p, Qd,k

)))
.

(20)

To evaluate J̃ , substitute �p into P�(s) and perform the lower
bound power iteration on d at the given frequencies {ωk}Nω

k=1.
This yields the complex uncertainty samples {Qd,k}Nω

k=1 that
maximize the largest singular values at the given frequen-
cies. The interpolation method in Section III-B ensures that,
if �d,m(s) interpolates {Qd,k}Nω

k=1, then

J̃
(
�p,m

) = J
(
diag

(
�p,m, �d,m(s)

))
. (21)

Therefore,

�p,m = arg max
�p∈ p

J̃
(
�p

)
. (22)

Algorithm 2 Worst Case Mixed Uncertainty Construction

Fig. 5. Value of the objective function as a function of the uncertain
parameter.

To find the maximum of J̃ , the optimization in Section III-C
is employed. Aside from �p,m, this optimization also yields the
samples of the complex uncertainty {Qd,k}Nω

k=1. These samples
are interpolated using Algorithm 1 to obtain �d,m(s). The
worst case uncertainty is �m(s) = diag

(
�p,m, �d,m(s)

)
. This

method is summarized in Algorithm 2. Finally, the demonstra-
tive example in Section II-C is continued.

Example 4 (Example 1 Continued): The worst case gain
lower bound in Fig. 2 has two peaks at ω1 = 1 rad/s and ω2 =
100 rad/s. The proposed algorithm is used to find the worst
case uncertainty �m(s) that maximizes the gain of P�(s) at
ω1 and ω2 simultaneously. The value of the objective function
J̃(δ1 I2) as a function of the uncertain parameter δ1 is depicted
in Fig. 5. The maximum of J̃(δ1 I2) occurs at δ1 = −1, which
makes �p,m = −I2. The skewed-μ power iteration yields
Qd,1 = 0.998 − 0.07 j at ω1 and Qd,2 = 0.998 − 0.069 j at ω2.
Applying the BNP interpolation in Section III-B, we get

�d,m(s) =
(
s − 1.78 · 104

)
(s − 1406)

(
s2 − 4.15 s + 121.2

)
(
s + 1.78 · 104

)
(s + 1406)

(
s2 + 4.15 s + 121.2

) .

As shown in Fig. 6, the gain of P�m (s) is large at both ω1 and
ω2. The worst case gain lower bounds are L1 = 2.64 and L2 =
2.28, which makes the upper bound of the objective function
JU = 4.92. As depicted in Fig. 5, the objective function does
not reach this theoretical upper bound for any �p ∈ p. The
gain of P�m (s) attains L2 at ω2 but only at the cost of some
drop at ω1.

E. Basic Validation of the Method

We use 37 example systems to test our method and compare
it to potential alternatives. Thirty of these examples are based
on [2]. The rest are composed of randomly generated systems
and physical systems that we encountered in our research.
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Fig. 6. Gain of the uncertain system P�(s) for different values of the
uncertainty. The boundary of the shaded area is L(ω).

Almost all the examples are closed-loop systems with a con-
troller designed using the method in [3]. The state dimension
of M(s) varies between 4 and 57 (with an average of 14).
The systems have between zero and 11 uncertain parameters
and between zero and three dynamic uncertainty blocks.
Various components of the algorithm were chosen based on
the test results with these examples, e.g., the weighting in (17)
and the nonlinear search method in Section III-C.

The computations are performed on a computer that runs
Ubuntu 18.04 LTS and features a four-core 2.6 GHz Intel
Core i5 processor with 8-GB memory. The algorithm is run on
MATLAB R2016b. For our examples, the computation takes
no more than 2 min and approximately 20 s on average.

IV. WORST CASE ANALYSIS OF A

FLUTTER CONTROL LOOP

In this section, we analyze a flutter suppression controller
for a small flexible aircraft. Flutter is an aerodynamic insta-
bility caused by the resonance between the flexible structure
of an aircraft and the surrounding airflow. The flutter speed,
at which the resulting vibrations become unstable, can be
pushed outside the operational regime using active control as
shown in [17]. The details of the modeling, flutter control
design, and closed-loop performance evaluation are found
in [17]. In this article, we conduct worst case time- and
frequency-domain analyses based on the uncertain control-
oriented model of the aircraft.

A. Uncertain Model of the Flutter Control Loop

The closed flutter control loop is illustrated in Fig. 7.
Here, K (s) is the MIMO flutter controller, and G�(s) is the
uncertain model of the aircraft. Fig. 8 provides the interpre-
tation of the sensor and actuator signals. The control input
u = [ua,L ua,R]T consists of the two aileron deflections, and
the measured output ym = [q ry,L ry,R]T consists of angular
rates measured in the center of gravity and close to the wing
tips. The output âz is included for the time-domain simulation,
and it is defined as âz = [âz,L âz,R]T = [az,L−az,C az,R−az,C].

The control oriented model of the flexible aircraft is devel-
oped on a grid of three parameters. The parameters are the
speed of the aircraft varying between 30 m/s and 65 m/s (V ),

Fig. 7. Closed flutter control loop with the uncertain flexible aircraft model.

Fig. 8. Sensor and control surface positions on the flexible aircraft.

Fig. 9. Gain of the uncertain flexible aircraft model for samples of the
uncertainty.

the natural frequency of the structural dynamics varying within
1% of the nominal (ω0), and the damping of the structural
dynamics varying within 10% of the nominal (ξ ). The state-
space representation of the system dynamics is of the form

ẋ = A(p)x + B(p)u[
âz

ym

]
= C(p)x + D(p)u

where p = [V ω0 ξ ]T is the vector of parameters. The state of
the system consists of the velocity components along the three
coordinate axes in the body frame (u, v, w); roll pitch and yaw
angular rates (p, q , r ); pitch angle (θ ); nine modal coordinates
and their derivatives; two lag states; and four actuator states
(two for each actuator on both wings). The model also contains
the fourth-order Padé approximation of 15-ms output delay.
Altogether, this results in a state order of 35. For further
details, see [17] and references therein.

Let us p0 denote the nominal (mean) value of the parameter
vector p, and �p denote a diagonal matrix with the ranges of
the parameters in p on the main diagonal. Then, p = p0 +
�p · δ, where δ = [δV δω0 δξ ]T is the vector of uncertain
parameters. All entries of δ are real numbers allowed to vary
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Fig. 10. Largest singular value of the closed flutter control loop sensitivity function for different samples of the uncertainty. The boundary of the shaded
area is L(ω).

between ±1. The state-space matrices of the uncertain system
are assumed to have the form

A(δ) = A(p0) + A1δV + A2δ
2
V + A3δω0 + A4δ

2
ω0

+ A5δξ

(for B(δ), C(δ), and D(δ) similarly). Least-squares fitting is
used to obtain the coefficient matrices, and the generalized
Morton method is applied to reduce the repetition of the
uncertain parameters [20]. The latter is achieved with the
function gmorton in the Linear Fractional Representation
Toolbox [21] in MATLAB. Input multiplicative uncertainty
is added to the system to account for neglected dynamics
and cross coupling between the input channels. The dynamic
uncertainty �d(s) is a stable LTI system with two inputs and
outputs with ��d(s)�∞ ≤ 1. The uncertain systems is of the
form

G�(s) = [
C(δ)(s I − A(δ))−1 B(δ) + D(δ)

]
· [I + Wd(s)�d(s)].

The fourth-order weight Wd(s) is obtained by comparing the
singular values of C(δ)(s I − A(δ))−1 B(δ) + D(δ) to a high
fidelity model. The system dynamics are assumed to be well-
represented by G�(s) up to 100 rad/s beyond which the
magnitude of Wd(s) grows beyond 1, indicating more than
100% uncertainty. The gain of the resulting uncertain system
is depicted in Fig. 9. The two resonance peaks observable in
the vicinity of 50 rad/s correspond to the two flutter modes.

B. Worst case Analysis of the Closed Loop

The controller K (s) is designed with fixed bandwidth to
minimize the closed-loop sensitivity function

S�(s) = (I + G�(s)K (s))−1.

This aims to achieve robust stabilization and avoid the exci-
tation of uncertain high-frequency dynamics. The controller
excites the system at low frequencies and rolls at around
100 rad/s where the uncertainty in the dynamics is high. The
resulting S�(s) is robustly stable. In the remainder of this
section, we analyze how well the sensitivity minimization is
achieved and how well the controller performs in the time
domain.

The uncertainty sets of S�(s) are

p = {
diag

(
δV I42, δω0 I32, δξ I6

)
, δV , δω0 , δξ ∈ ,

|δV |, ∣∣δω0

∣∣, ∣∣δξ

∣∣ ≤ 1
}

d = {�d(s),�d(s) is 2 × 2 LTI, ��d(s)�∞ ≤ 1}.
The worst case gain lower bound of S�(s) is depicted in
Fig. 10. The gain is high around the flutter frequencies
(50 rad/s), but the controller clearly provides damping. Two
peaks are observable in the gain, L1 = 4.228 at ω1 =
26.59 rad/s, and a slightly higher L2 = 4.229 at ω2 =
61.09 rad/s. The classical worst case uncertainty �s(s) maxi-
mizes the gain of the system at ω2 only. Based on Fig. 10, the
gain of S�s(s), indeed, reaches L2 at ω2, but it is very close
to the nominal gain at the rest of the frequencies. Algorithm 2
finds an uncertainty sample; however, that drives the gain
of S�m (s) to L1 at ω1 and also produces high gain at ω2,
as illustrated in Fig. 10.3

The Bode sensitivity integral provides insight for this exam-
ple. For our MIMO control system with an unstable open loop,
the integral is of the form∫ ∞

0
ln|det S�( jω)| dω = π

∑
RHP

Re(pk) (23)

where all the right half-plane poles pk of the open-loop system
G�(s)K (s) are summed [22, Sec. 6.2.3]. The right-hand
side of (23) depends on the uncertainty since the uncertain
parameters in S�(s) move the poles of G�(s). G0(s) is stable;
therefore, the integral of S0(s) evaluates to zero. The classical
uncertainty also produces a stable G�s(s), which means that
the integral of S�s(s) is also zero. The multipeak uncertainty
pushes the poles corresponding to the flutter modes to the
right-hand side of the complex plane, which makes∫ ∞

0
ln

∣∣det S�m ( jω)
∣∣ dω = 96.95.

This is why such a sizable difference is observed between the
gain of S�s(s) and S�m (s) in Fig. 10.

Since we are interested in the damping the flutter control
provides, we study the closed-loop transfer function from the
input disturbance du = [du,L du,R]T to the relative acceleration
of the wing tips âz in Fig. 7. More specifically, let us denote

3The computation takes 61 s. For details about our setup, see Section III-E.
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Fig. 11. Response of the closed loop to a 1◦ step input disturbance for
different samples of the uncertainty.

the transfer function from du,L to az,L by T�(s). The step
response of T�(s) is illustrated in Fig. 11 for the nominal
value and the two worst case uncertainties. Notice that, next
to the high-frequency harmonic observable in both worst
cases, there is an additional low-frequency harmonic due to
�m(s). The relative acceleration also clearly assumes higher
values for this uncertainty; therefore, the use of Algorithm 2
is deemed necessary in the evaluation of the closed-loop
performance. The response of the closed-loop from any input
in du to any output ym or âz is considerably worse due to the
uncertainty sample �m(s) compared to �s(s). The relative
vertical acceleration was chosen for demonstration because it
is related to the forces acting on the wing.

V. CONCLUSION

A worst case perturbation construction method is provided
in this article for systems with mixed uncertainty. As opposed
to the classical approach, our technique maximizes the gain
of the system at multiple frequency points simultaneously.
A nonlinear multidimensional interval search is combined with
a gradient ascent algorithm to find the value of the uncertain
parameters that maximize the sum of the largest singular val-
ues of the system at the given frequencies. The corresponding
complex matrix samples of the dynamic uncertainty are inter-
polated using the BNP theorem. The resulting uncertainty is
stable, has the correct block structure, and is norm bounded by
one. In the flexible aircraft control example, this construction
method yields considerably worse time-domain behavior than
the classical approach.

APPENDIX

A. Realization of �d(s) With Real Coefficients

Lemma 1: The interpolation data {ωk}Nω

k=1, {uk}Nω

k=1, and
{vk}Nω

k=1 are given. If Theorem 1 is applied with the input in
(16), there exists a realization of the interpolant �d(s) with
real coefficients.

Proof: We provide a state-space transformation that yields
	(s) with real coefficients. This implies the statement of

the lemma. Let 	(s) = C0(s I − A0)
−1 B0 + D0, where,

according to Theorem 1

A0 = diag
(− jω1, . . . , − jωNω

, jω1, . . . , jωNω

)
B0 = H (ρ)−1

[−C0+
C0−

]∗
, C0 =

[
C0+
C0−

]
, D0 = I.

Applying the state-space transformation

T = 1

2

[
I I
j I − j I

]
, T −1 =

[
I − j I
I j I

]

yields 	(s) = Creal(s I − Areal)
−1 Breal+ Dreal where Areal, Breal,

Creal, and Dreal = D0 = I are real-valued matrices.
Because of the construction of A0, it can be written as

A0 = diag(− j�, j�), where � = diag
(
ω1, . . . , ωNω

)
. The

transformation results in

Areal = T A0T −1 =
[

0 −�
� 0

]
.

Define

F1 =
[

u1 . . . uNω

v1 . . . vNω

]
.

Then, C0 = [
F1 F1

]
, which makes

Creal = C0T −1 = 2
[
Re(F1) Im(F1)

]
. (24)

To prove that Breal = T B0 is a real-valued matrix, we establish
that, because of the definition of H (ρ) in (11), it can be
written as

H (ρ) =
[

H 0 S
S H0

]

where S = S∗, and H0 = H ∗
0 . (H0 is the boundary Pick

matrix corresponding to the interpolation data without the
conjugation.) Using both expansions of the block matrix
inverse lemma, we obtain that the inverse is of the form

H (ρ)−1 =
[

X Y
Y X

]

where Y = Y ∗ and X∗ = X . Defining

F2 =
[−u1 . . . −uNω

v1 . . . vNω

]

we can write [−C0+
C0−

]
= [

F2 F2
]
.

Also,

B∗
0 =

[−C0+
C0−

]
H (ρ)−∗ = [

F2 F2
]
H (ρ)−1

= [
F2 X + F2Y F2 X + F2Y

]
which has the structure [F3 F3] with F3 = F2 X + F2Y .
Because T ∗ = (1/2)T −1, Breal = (1/2)(B∗

0 T −1)∗, and since
B∗

0 T −1 has the same structure as Creal in (24)

Breal =
[

Re
(
F∗

3

)
Im

(
F∗

3

)
]
.

If zero is among the frequency points, delete the first row
and column of Areal and Dreal, the first row of Breal, and the
first column of Creal. With that, the elements corresponding to
the data duplicated by the conjugation are removed. �
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