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A B S T R A C T   

The stochastic growth of homogeneous bacterial populations in the wells of a microtiter plate was studied as a 
function of the random initial cell number and their random individual lag times. These significantly affected the 
population growth in the well, while the maximum specific growth rate of the population was constant (or its 
variance was negligible) for each well. 

We showed the advantages of the mathematical assumption that a transformation of the single cell lag time, 
called the single cell physiological state (or, more accurately, that of the sub-population generated by the single 
cell) follow the Beta distribution. Simulations demonstrated what patterns would such assumption generate for 
the distribution of the detection times observed in the wells. An estimation procedure was developed, based on 
the beta-assumption, that resulted in an explicit expression for the expected value of the single cell physiological 
state as a function of measured “time to detection” values using turbidity experiments. The method was illus
trated using laboratory data with Escherichia coli, Salmonella enterica subsp. enterica strains. The results gave a 
basis to quantify the difference between the studied organisms in terms of their single-cell kinetics.   

1. Introduction 

The field of food microbiology has been typically featured with ex
periments performed at population levels when many cells collective 
behaviour is measured. However, at lower cell concentrations, the 
randomness of the individual cell responses has much greater influence 
on the collective growth than it does at higher concentrations. It is 
therefore of foremost importance to use stochastic modelling ap
proaches to study bacterial growth in food matrices where pathogens 
usually occur at low concentrations (Koutsoumanis, 2008). 

Automated turbidimeters are convenient tools to assess bacterial 
growth kinetics (Francois et al., 2005; Guilier and Augustin, 2006). A 
main disadvantage of this method is that it only detects turbidity when 
the cells are at high concentrations (typically higher than 107 cells/mL). 
Accordingly, when authors use turbidity measurements to describe 
single cell kinetics, the results are more about single-cell-generated 
subpopulations than about single cells. For example, the single cell lag 
time observed this way is in fact the traditionally (geometrically) 
defined lag time of the single-cell-generated subpopulation, which is 
different from the physiological single cell of the original ancestor cell 

(Baranyi et al., 2009). The focus of this paper will also be the single cell 
lag time defined by the geometrical way, while assuming that the spe
cific growth rate of the generated subpopulation is constant, or at least 
its variability is negligible compared to that caused by the single cell lag 
time interpreted in the way above. 

The other random variable will be the number of initial cells in a 
well. Its expected value and variance can be estimated by means of the 
safe assumption that the initial cell number follows the Poisson distri
bution. In this case, the negative natural logarithm of the proportion of 
empty wells (in which no cells were inoculated) can be used to estimate 
the Poisson-parameter, which is the expected value of the initial number 
of cells per well. Strictly speaking, we should not claim that those wells 
for which no turbidity could be observed really did not receive cells at 
inoculation. It could have well happened that simply the growing cells 
did not reach the detection level during the observation time, either due 
to the very long lag time(s) of the initial cell(s), or because the cells did 
not divide at all but remained Viable but Non-culturable (VNC) cells. 

We show an experimental protocol and an estimation procedure for 
some suitable parameters that can describe the distribution of single cell 
lag times. We apply the parameter estimates to quantify the difference 
between the studied organisms in terms of their single cell kinetics. 
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2. Material and methods 

2.1. Organisms, inocula preparation and measuring their growth by a 
turbidimeter 

The foodborne isolate Escherichia coli VF 3584 was provided by the 
Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, 
Slovenia. The Bacterial cultures Escherichia coli ATCC 25922, Salmonella 
enterica subsp. enterica ATCC 14028 and ATCC 13311 strains were ob
tained from the National Collection of Agricultural and Industrial Mi
croorganisms, Budapest, Hungary. The cultures, which were derived 
from frozen stocks (− 80 ◦C), were cultivated twice on Tryptic Soy Agar 
plates (Basingstoke, Hampshire, UK), incubated at 37 ◦C for 24 h before 

preparing overnight cultures. The overnight cultures were prepared as 
4–5 bacterial colonies inoculated into 5 mL Mueller-Hinton II Broth 
(Biolab, Hungary) and grown at 37 ◦C for 24 h. 

Before the turbidity experiments, serial dilutions in Mueller-Hinton 
II Broth were applied to stationary phase cells. The aim was to obtain, 
via dilutions, ca. 1–3 cell/well for the lowest cell density on a microtiter 
plate. The final volume was 200 μL per well. The initial concentration of 
inocula was set at OD600 = 0.1 (Analytik Jena Specord 200 Plus Spec
trophotometer). From this, we made four consecutive decimal dilutions, 
then 11–13 binary dilutions as needed to reach the desired cell con
centration, to get ca. 1.6 cell/well, which was proven to be the optimum 
ρ* for experiments to study single cells kinetics by Buss da Silva et al. 
(2019). Note, that the dilution rate was strain-dependent, this is why the 
above range for the number of binary dilutions; to be closer to the 
desired average number of initial cells in a well. The initial number was 
estimated by the proportion of those wells, which did not become turbid 
during the observation time. 

Before each set of experiments, the concentrations of the binary 
diluted samples were also estimated by traditional plate counting. For 
Layout-1, we started the dilution series at ca.103 cell/well, then ten 
consecutive binary dilutions were inoculated into the wells of a micro
titer plate (Fig. 1). The design followed the idea of Baranyi and Pin 
(1999), expecting that the variance of the detection times decreases with 
inoculum level increasing. 

Fig. 2 shows another layout with more obvious separation of single 
cell and population kinetics. Samples of the lowest four concentrations 
were inoculated into four blocks, each consisting of 22 wells of the 
microtiter plate, aiming at ρ* = 1.6, 3.2, 6.4 and 12.8 cells per well 
inocula (single cell level). At the same time, the specific growth rates 
were also measured starting from ca.107; 5⋅106; 2.5⋅106 and 1.25⋅106 

cells per well (population level). This design was based on the idea that 
the maximum specific growth rate should be measured as accurately as 
possible, therefore at population level (S5–S8). On the other hand, the 
higher the inoculum, the higher its variance, so the number of replicate 
wells does not necessarily decrease with increasing inoculum level. 

The optical density readings were produced right after the appro
priate dilutions by an automated plate reader (Sunrise, Tecan Group 
Ltd., Switzerland). We recorded the time (called detection time, Tdet in 
what follows) that was needed for the cultures to reach ODdet = 0.15 
(detection level) at 590 nm, when the number of cells in a well was Ndet 
(detection level number of cells). The effect of individual cells on the 
variation of lag was investigated under optimum growth conditions at 
37 ◦C for 24 h. Readings were made in every 30 min, with 20 s of shaking 
time prior them. The distribution of Tdet was considered a shifted version 

Nomenclature 

Notation Meaning 
p, q, α* Parameters of the beta distribution, with α* as an 

expected value 
μ Maximum specific growth rate of the cell population; an 

environment- and species-determined constant 
w, W0 Total number of wells and the number of those wells 

that show no growth 
ρ, ρ* Initial number of cells in a well, following the Poisson 

distribution, and its expected value, estimated by ln((w- 
2)/W0) 

ρ+ Initial number of positive cells (i.e. with at least one 
cell) in a well, following the positive Poisson 
distribution. Its expected value is E(ρ+) = eρ*

eρ*
− 1 

ODdet, Ndet OD level and the Number of cells in a well when the 
turbidity detection level is reached 

Tdet(ρ) Time to reach the Ndet detection level for a cell 
population consisting of ρ cells 

Lg(ρ) Lag time of a cell population consisting of ρ cells 
α(ρ), α* Physiological state of a cell population consisting of ρ 

cells and its expected value (the same as for a single 
cell). α(ρ) = e− μ⋅Lg(ρ)

Sα =
∑ ρ

i=1 e− μ⋅Lg(1) the sum of the physiological states for 
single cells in an initial population consisting of ρ cells  

Fig. 1. Layout-1 of microtiter plates, prepared for turbidity measurements. The 
most replicates (64) were assigned to the lowest initial cell concentration 
(around 1.6 cell/well), then the number of replicate wells decreased with the 
inoculum level. 

Fig. 2. Layout-2 of the microtiter plates. Plates were divided into 4 big blocks 
(S1–S4) of wells for the single cell level (<20 cells per well) initial concentra
tions, and 4 small blocks (S5–S8) of wells for the population level (above ca.103 

cells per well) initial concentrations. 
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of the distribution of lag times in the wells, as the maximum specific 
growth rate was assumed to be the same for all wells. The Ndet of each 
strain were estimated by the traditional spread plate method as in 
George et al. (2015). 

2.2. Inoculum and single cell lag time as stochastic variables 

The number of initial cells in a well, ρ, is a Poisson-distributed 
random variable. Its expected value can be obtained (i) by an a-priori 
estimate, c*, based on the original cell concentration, the consecutive 
dilutions, and the volume of a well; and (ii) by an a-posteriori estimate as 
in Buss da Silva et al. (2019), who showed that ρ* = ln((w-2)/W0) is an 
efficient estimation for the expected number of initial cells in a well, 
where w is the total, W0 is the empty number of wells. The ρ*/c* ratio 
can be used to estimate the probability of growth for single cells, but 
only for values significantly less than 1 (George et al., 2015). 

The initial cells produce an exponentially growing subpopulation in 
the well, showing, after a lag phase, a linear trend on the log-scale 
(Fig. 3). The lag time of a single-cell-generated growth curve is tradi
tionally defined as the time where extension of this linear phase crosses 
the inoculum level. This geometrically interpreted lag time will be 
denoted by Lg(ρ), indicating that it depends on the Poissonian ρ initial 
cell number. The distribution of Lg(ρ) is a convolution of ρ and the Lg(1) 
single cell lag times. This latter variable was assumed by Métris et al. 
(2006) to follow the Gamma distribution. 

Because the specific growth rate is constant so, as long as the Tdet(ρ) 
detection time is in the exponential phase, it is just a shifted version of 
Lg(ρ). A central question of this paper is whether there is a simple way to 
draw conclusions, from the Tdet(ρ) measured values, for the distribution 
of the Lg(1) single cell lag time. 

2.3. Physiological-state-parameter and its distribution for individual cells 

Métris et al. (2006) and D’Arrigo et al. (2006) used the gamma dis
tribution with shape parameter 2 (as if Lg(1) was the sum of two expo
nentially distributed times) to model the single cell lag time. The novelty 
of our paper is to introduce a more advantageous approach. 

Baranyi and Pin (1999) demonstrated the usefulness of the quantity 
“physiological state” for the initial cell population consisting of N cells. 
Its definition is: 

α(N)= e− μLg(N)

with the interpretation as follows: if an α proportion of the N initial cells 
had grown immediately after inoculation, without lag, while the rest 
hadn’t grown at all, then their growth curve would have arrived at the 
same exponential phase trajectory that the observed full population 
exhibits. This interpretation lends itself to assuming the Beta distribu
tion for the α(1) single-cell physiological state, as this distribution is 
primarily used to describe random proportions. In our case, the lag can 
be calculated by inversing the above transformation: Lg(1) = -ln(α(1))/μ. 
It is easy to see that the lag obtained this way follows a distribution that 
is different from the gamma distribution; though, for a wide range of 
parameters, very close to it. 

The idea looks like just another option, among the possible mathe
matical assumptions; however, it has certain advantages. Namely, as the 
physiological state of the population was proven to be the average of the 
physiological states of its single cells, this property can be utilized to 
simplify the calculations, as the mean physiological state can be directly 
estimated from the detection times (see Appendix), generating the 
following estimation procedure:  

- Establish the μ exponential growth rate (measured on the natural log 
scale) via independent optical density readings at population level 
(greater than say 103 cell/ml inoculum - Figs. 1 and 2.)  

- Run turbidity experiments as above, with different ρ* expected cell/ 
well inocula, aiming at its lowest level to be between 1 and 3. For 
every ρ*, calculate 

h0(ρ*) = − ln
(

Ndet

ρ* ⋅ average
(
e− μTdet(ρi)

)
)

where the i indices belong to the wells with the ρ*>0 Poisson 
parameter. The average of these h0(ρ*) values, when ρ* is small (ca. 
ρ*≤10; see Fig. 2), is an estimation for h0* = -ln(α*)  

- Fix the sum of the two parameters (p, q) of the beta distribution at the 
value of Spq=5 as mentioned in the Appendix. This is equivalent to 
fixing the shape-parameter 2 of the Gamma distribution for the single 
cell lag time. Then p = Spq⋅α* and q = 1-p will complete the 
procedure. 

Fig. 3. Simulating the logarithm of cell numbers in the wells, assuming Poisson distributed initial cell numbers and beta-distributed single-cell physiological states. 
The design followed the one shown by Fig. 2; i.e. using 4 blocks of 22 wells, where the inoculum for the block of the lowest level consisted of 22 wells. The other ρ * 
Poisson parameters followed the rule ρ j* = 2ρ*j-1, (j = 1, 2, 3). Ndet was set to 107.8 cell/well as suggested by plate count estimations for the ODdet = 0.15 level. 
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3. Results 

3.1. Model simulation 

Fig. 3 was prepared with μ = 2.8 h− 1 and α* = 0.1. This value for the 
mean physiological state is typical for E. coli, in optimal conditions, 
assuming standard inoculation procedure (see www.ComBase.cc). The 
maximum population density was set to 109 cell/ml, with 0.5 log10 unit 
standard deviation, as this is also typical for batch cultures of E. coli. The 
Spq = p + q sum was set as Spq = 5, but also tested for values from 2 to 8 
(see the Appendix), only to see that it did not significantly affect the 
simulated growth patterns. 

As the specific growth rate significantly affects the estimation of the 
mean physiological state, when validating the estimation procedure by 
simulations, we fixed the μ parameter at the value used in the simula
tion. Laboratory results (see Fig. 4) demonstrates that μ = constant is a 
reasonable assumption. After repeating the simulation 100 times, with 
α* = 0.1, the developed estimation procedure proved to be ca. 5% ac
curate for h0* = -ln α* (the average of the 100 trials was 2.28, with a 
standard deviation of 0.1 and with a close-to-gamma distribution; recall 
that the real value was -ln(0.1)) = 2.3. This means that the mean 
physiological state was estimated at better than 20% accuracy. We also 
performed 100 simulations with Layout-1 (Fig. 1) and the accuracy of 
the mean physiological state estimate was similar. 

3.2. Experimental results 

The estimation procedure was tested on laboratory data using four 
organisms. To establish the maximum specific growth rate for each, we 
applied the binary dilution method to population level initial cell 
numbers per well (i.e. between 103 and 107). The experiments with low 
inocula, on the other hand, provided estimates for the α* mean physi
ological state for individual cells. 

Table 1 shows various strains’ cell numbers measured at ODdet level 
in Mueller-Hinton II Broth by the traditional plate count method. Note 
that, in the paper of George et al. (2015), the authors measured lower 
concentrations (Ndet = 107.2 cells at 0.15 OD). The difference could be 
explained by the uncertainty in the initial absorbance of the applied 
broths. 

On Fig. 4, the detection times of consecutive diluted samples are 
plotted against log(N) where N = ρ* is the expected initial cell number in 
a well, the highest being around N = 107 cell/well. The μ specific growth 
rates, i.e. growth rate in terms of ln(cell.no)/h, was calculated as μ = ln 
(10)/a, where a is the slope of the fitted line. Table 2 shows the specific 
growth rates calculated from the data of Fig. 4. As can be expected from 
the plots, the replicates, denoted by different symbols, generate practi
cally identical growth rates for the strains. 

Fig. 4. Detection times v. log(N) plots, where N ≈ 103, 105 and 107 cells per well. The plots demonstrate how well OD readings can be used to obtain robust estimates 
for the maximum specific growth rate via three independent replicates. Capital letters are to distinguish between the microorganisms (see also Table 2). 

Table 1 
Cell numbers of each strain per well at the detection level (ODdet = 0.15 at 590 
nm), measured by spread plate technique. The highlighted concentrations are 
average values of three independent replicates.  

Strains in Mueller-Hinton II Broth Ndet (ODdet = 0.15) 
(cell/well) 

Escherichia coli VF 3584 7.54⋅107 

Escherichia coli ATCC 25922 6.96⋅107 

Salmonella enterica subsp. enterica ATCC 14028 7.42⋅107 

Salmonella enterica subsp. enterica ATCC 13311 8.98⋅107  

Table 2 
Specific growth rates and doubling times for the studied strains as calculated 
from Fig. 4.   

Specific growth rate μ 
(h− 1) 

Doubling time 
60⋅ln(2)/μ 
(min) 

Escherichia coli VF 3584 2.40 ± 0.015 17.33 
Escherichia coli ATCC 25922 1.82 ± 0.011 22.85 
Salmonella enterica subsp. enterica 

ATCC 14028 
2.04 ± 0.023 20.38 

Salmonella enterica subsp. enterica 
ATCC 13311 

1.87 ± 0.010 22.34  
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A challenge we faced was to obtain ca. 1–3 initial cells per well 
concentration after the last binary dilution, as suggested by Buss da Silva 
et al. (2019). Table 3 contains the estimations for the initial cell/well 
numbers obtained via (1) combination of plate counts and dilutions (c*) 
and (2) by means of the proportion of empty wells (ρ*). Different rows 

represent independent measurements. The first column, c*, shows the 
estimated lowest cell number per well obtained via the first method. The 
starting point was the cell concentration obtained at OD600 = 0.1 (0 
dilution). First, 4 decimal, then 11 ± 2 binary dilutions were applied to 
reach the lowest cell number, The second column, ρ*, shows this inoc
ulum level calculated by means of the proportion of empty wells. No 
significant difference was found between the two methods (p = 0.97). 

In the case of Escherichia coli VF 3584, after a concentration decrease 
of log(conc) = 7.31 (obtained after the eleventh binary dilution), we had 
three replicates ρ* = 1.93; 1.90 and 1.64, which means that setting the 
initial cell number is well reproduceable. This is also supported by the 
fact that, at twice as high concentration (log(conc) = 7.01 decrease from 
the original one), we did measure about double as many cells (ρ* =
4.13). 

The last column of Table 3 shows the respective estimates of h0, from 
which α* = exp(-h0) is the mean single cell physiological state. 

According to Buss da Silva et al. (2019), the relative error when 
estimating the initial number of cells in a well is ca. 20%, in the 1< ρ* <
4 interval. The accuracy level is the same for h0 so it’s not surprising that 
the replicate experiments does not produce the same parameters. 
However, this inherent variability was not enhanced by the noise in the 
laboratory data. 

Remember that α can be conceived as a per cent measure how much 
ready the cells are for their new growth environment, while h0 = μ⋅λ is a 
quantification of the work-to-be-done during the λ lag time. The average 
of the h0-estimates (2.7) for E. coli in Table 2 shows that this organism 
was generally less prepared for the growth environment than S. enterica, 
for which the average of h0 was 1.7. This is also illustrated by Fig. 5C, on 
the scale of the physiological state, though the difference is not 95%- 
significant because of the relatively big variance of the replicate 
estimates. 

Fig. 5A and B shows that, at low level of ρ*, high variabilities can be 
observed in the detection time measurements. This is because both the 
initial cell number in a well, and the single cell lag times were random. 

Table 3 
Model parameter estimates obtained mainly via Layout-1, partly via Layout-2. 
The specific growth rate was estimated via population-level inocula. The h0 
estimates were generated by single cell level inocula. 

Fig. 5. Detection times generated by single cell level inocula for (A): E. coli ATCC 25922 and (B): Salmonella enterica subsp. enterica ATCC 14028. The lowest expected 
initial cell numbers per well were ρ* = 1.05 and ρ* = 1.61. Detection times were measured in 22 wells according to Layout-2 (see Fig. 2.). (C): The two respective 
probability density functions for the single cell physiological state (broken line: E. coli; continuous line: Salmonella enterica subsp. enterica), generated by our esti
mation procedure. 
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We found that, below ca. 20 cells per well concentration, the variance of 
the Tdet detection times of the Salmonella enterica strains was generally 
higher than that of the E. coli strains. This, could have well been due to 
the difference in the specific growth rates, but our method made it 
possible to confirm the difference at single cell level, too, by the distri
bution of the respective individual physiological states (Fig. 5C). 

4. Discussion 

Buss da Silva et al. (2019) proved that, to assess single cell lag times, 
it is not necessary to aim at single cell inoculation in a well, when OD 
detection times are the only available measurements, but the properties 
of the Poisson distribution can be utilized for an efficient estimation 
procedure. Those authors found that if ca. 20–30% of the wells remain 
empty, i.e. after diluting the samples to ca. 1.6 cell/well level, then the 
accuracy of the Poisson parameter is at its optimum. We demonstrated 
that this is feasible to achieve in the laboratory, at reasonable accuracy. 
This played a vital role to measure single cell kinetics via turbidity 
measurements. 

The present paper went one step further. When the Gamma- 
distribution was assumed for the distribution of single cell lag time 
(Métris et al., 2006; George et al., 2015), then the estimation procedure 
for the distribution parameters required a non-linear optimisation. We 
have shown here that the beta-distribution for the single cell physio
logical state is equally fitting, while the parameter estimation is reduced 
to an explicit formula, by which the mean physiological state can be 
directly calculated from the Tdet(ρ) measured detection times, even 
though the initial number of cells in a well, ρ, is also random. Fixing the 
shape-parameter of the Gamma distribution at 2 proved (by simulation) 
to be equivalent to fixing the sum of the two (shape-) parameters of the 
Beta-distribution: p+q = 5. The obtained parameters can be used to 
characterize the readiness of the cells to the new environment, this wat 
to quantify the difference between two organisms in terms of their 
adaptation ability (Fig. 5). 

As for the experimental design, it is reasonable to think that the more 
initial cells are in a well, the fewer replicate wells are enough for stable 
variance. This was utilized by Layout-1, following the design of Baranyi 
and Pin (1999). However, this reasoning becomes invalid if the factor 

between the two initial numbers is random, as in our case. Therefore, 
other practical considerations have become more important than sta
bilizing the variance; this led us to suggest Layout-2. 

We saw that the average initial cell number per well (ρ*) can be 
compared with the respective estimates obtained by the dilution method 
(c*). The deviation between them is partly because, even if cells get in 
the well, they may not grow. Theoretically, the ρ*/c* ratio could be used 
to estimate the probability of growth at single cell level. However, 
strictly speaking, this ratio is the probability of the following event: 
either no cell has arrived in the well or the lineage of initial cells did not 
reach the detection level. Besides as both variables are random, with 
relatively large variance, it is rather difficult to estimate the error in 
their ratio, especially if that is close to zero or one. 

The lower the initial cell concentration the more influence it has on 
the overall growth kinetics of the growing bacterial population due to 
the variability of single cell lag times. At very low initial cell numbers, 
under optimum growth conditions, the lag time variability of Salmonella 
enterica was higher than that of E. coli. This suggests that, under sub- 
optimal conditions, the difference between these time stretches would 
be even more significant. Quantification of this variability may have 
significance in the assessment of how long a specific food item can be 
stored while remaining safe. Our stochastic modelling technique and 
measurements with appropriate replicates at low initial cell numbers 
can help such assessments. 
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Appendix 

The beta distribution is frequently used to model random proportions between 0 and 1. Its formula is typically written up with two shape- 
parameters, p and q, from which its expected value is. 

E(α(1)) = p/(p + q) = α* 
while its variance is 

Var(α(1))= p
p + q

⋅
q

p + q
⋅

1
p + q + 1 

As our focus is the α* expected value of α(1), we use the (α*, q) parameterisation, so p = q⋅α*/(1-α*) and 

Var(α(1))=α*⋅(1 − α*)
2

q + 1 − α* (A1) 

Based on the idea of Métris et al. (2006), let the sum of the physiological states of positive (non-empty) wells 

Sα =
∑ρ

i=1
αi(1)

where i refers to the single cells in a well. This is a Poissonian sum, i.e. the number of terms, denoted by ρ+ below, is random, following the positive 
Poisson distribution (as i = 0 is excluded from Sα). Its expected value and variance are: 

E(ρ+)=α*⋅ρ*⋅
eρ*

eρ*
− 1

(A2)  

Var(ρ+)=E(ρ+)(1+ ρ* − E(ρ+)) (A3) 
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Recall that the physiological state of the cell population in a well is the average of the individual physiological states (Baranyi and Pin, 1999). Due 
to simple geometry, 

Sα = ρ⋅α(ρ) = Ndete− μTdet(ρ) (A4) 

From the properties of the Poissonian sum of random variables: 

E(Sα)=α*⋅E(ρ+) = α*⋅ρ*⋅
eρ*

eρ*
− 1

(A5)  

Var(Sα) = Var(ρ+)⋅(α*)2 + E(ρ+)⋅Var(α(1) ) (A6) 

As ρ* and Ndet are estimated from the proportion of empty wells and from plate counting, respectively, so α* can be estimated from (A4)-(A5). 
To estimate q, the sample variance for Var(Sα) could be used in (A6), giving an implicit equation for q. However, as this parameter defines the shape 

of the Beta distribution, it is more practical to recall that the Lg(1) = -ln(α(1))/μ. Numerical experience shows that, at our range of parameters, the 
logarithm of a Beta-distributed random variable can be well approximated by Gamma-distribution. Its shape parameter 2 (see Métris et al., 2006), is 
about equivalent to 2< p+q < 8. Fixing this at Spq = p+q = 5 is sufficient for practical applications considering the range of other data and parameters. 
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