Growing up as twins: the perspectives of twin researchers

7

Adam D. Tárnoki^a, David L. Tárnoki^a, Júlia Métneki^b, Nancy L. Segal^c

 a Medical Imaging Centre, Semmelweis University, Hungarian Twin Registry, Budapest, Hungary b Hungarian Twin Registry, Budapest, Hungary

^cCalifornia State University, Fullerton and Director of the Twin Studies Center, CA, USA

7.1 Introduction

The investigators who have contributed short papers to this chapter are all twins. In addition, four of the five board members of the Hungarian Twin Registry (HTR) are identical twins. The investigators include identical twins, Drs. Ádám Tárnoki and Dávid Tárnoki, the founding members of the HTR, as well as Dr. Júlia Métneki, one of the pioneers of Hungarian twin research. Some twin researchers are fraternal, such as Dr. Nancy L. Segal who has a fraternal twin sister. These individuals highlight the importance of twin research as twins, based on their personal perspectives.

7.2 Adam & David Tarnoki (MZ twins or Identical Twins)

The motivation to become a twin researcher arose during our academic years, when we gave a lecture on the diseases of twins and the heritability calculation using twin research design. This event took place in Sarasota, FL, USA, in 2007. The lecture caught the attention of Istvan Luczek M.D., a gynecologist of Hungarian descent practicing in Ohio, who recommended that we visit the Twins Days Festival in Ohio, in 2008, where we conducted our first questionnaire-based data collection. The rest is history.

When our mother learned that she would deliver twins, she was very surprised. This happened during her academic years when she was studying medicine. Adam was in a vertex position (head down), and David was in a breech position (feet down). Luckily, since our mother studied gynecology at that time, she was aware that her obstetrician preferred to deliver babies naturally. However, she was adamant that she have a Cesarean section as per textbook indications, which considered natural delivery as a contraindication in such cases due to its risk. Accordingly, Adam and David were born three minutes apart with a C-section, Adam was the firstborn twin (Fig. 7.1).

FIG. 7.1 Adam (L) and David (R) Tarnoki, at about age one year.

Courtesy: Drs. Adam and David Tarnoki.

We studied in the same class except for one semester, when the teachers tried to separate us. One semester later we were back in the same group, and our efficiency showed no difference due to being apart. According to psychologists, it is worth considering having twins in separate classes if they have very different abilities. Thus, the negative effects of constant comparison are less pronounced, and they are less likely to fail. However, our abilities were closely matched, and we enjoyed being together (Fig. 7.2).

It was not easy to prepare for our application to universities. We applied to the same specialties, and, after successful written and oral exams—with similar points—we were both admitted to medical university. During the first years, we wanted to start student scientific work. Due to our twinship, we chose the following topic: "Twins' diseases." We began looking for a mentor who was a twin researcher from Hungary, and thanks to the Internet, we found Dr. Júlia Métneki, who was a twin

FIG. 7.2 Adam (L) and David (R) Tarnoki in kindergarten.

Courtesy: Drs. Adam and David Tarnoki.

herself. Our first twin study was on the heritability of how weather changes affect Hungarian twins. Later, we gave our first scientific presentation in the United States. As previously mentioned, Dr. Luczek, a famous gynecologist from Ohio, attended the presentation, and subsequently invited us to the Twins Festival, which was very close to his home in Solon, OH. A few years later, we returned to Twinsburg with some Hungarian researchers, to conduct a comprehensive cardiovascular twin study on atherosclerosis. Since 2007, we have been working with Dr. Métneki. We suppose that, as twins, daily work as twin researchers is much more meaningful for them than itis for non-twins. ¹

We discussed everything with each other, and we spent the daytime mostly with each other, except when we had to work separately. Adam (the firstborn twin) was the "leader," while David, the second born twin, has always had more practical skills. Therefore, we can work very well together because we complement each other during the whole day (Fig. 7.3).

Twins have a constant companion from the very beginning, and they develop close relationships with each other. After marriage, the relationship between us naturally became a little less involved, as more attention was paid to the spouse at the expense of the twin brother. Finding a partner was not easy for us as we had spent a lot of time together during our childhood as well as our university years. Due to our similar taste, our choice fell on two ladies of the same occupation, who had graduated from the same law school but did not know each other. However, it tells a lot about the kind of relationship, including our taste in partners. We both met our wives online a few months apart because they look different, there was no problem distinguishing between them. The extant research presents a mixed picture regarding whether or not identical twins choose similar mates.^{2,3} When Adam's little daughter

FIG. 7.3 Adam (L) and David (R) Tarnoki, at about age three years.

Courtesy: Drs. Adam and David Tarnoki.

was born, she often had trouble figuring out who her father was when we stood next to each other—this is a situation that many young twins confront. However, by the age of several months, she could differentiate between us.

As university teachers, we have worked with several twin medical students who were also interested in twin research. One of them became a pediatrician and another is a PhD student. A Japanese twin pair, who studied medicine in the English faculty of Semmelweis University in Hungary, wrote their theses on twin research under our supervision. They returned to Japan after graduation and are in contact with the Osaka Twin Registry (Fig. 4).

FIG. 7.4 Adam (L) and David (R) Tarnoki at Semmelweis University, Budapest.

Courtesy: Drs. Adam and David Tarnoki.

In Hungary, experience shows that it is much easier for twins to recruit twins for research, as it seems more credible for them to be invited to a twin study by twins. This way, it is easier to inform potential participants about how we the researchers saw the research, for example, what kind of examinations/tasks need to be done, how long they will take, and what the purpose/outcome of the study is.

As part of a cardiovascular twin study performed in 2009, we wanted to involve a dizygotic female twin pair; however, only the older sister's phone number was available. She was willing to come for the research but only alone. Surprisingly to us, she did not know her sister's phone number. The reason why she wanted to come alone was that she and her twin sister had quarreled before and had not talked to each other for many years. Shortly afterward, her sister's phone number was found and she asked to arrange for her sister to come on a separate day as she did not wish to meet her. Her sister also wanted to participate, but on a separate day. Several years later, fortunately, they reconciled thanks to the research and they participated in subsequent studies together.

The great advantage of being twins during research is that they can share tasks with each other. During the research, the brother or sister can always assist and help, thus the examination time can be reduced. We find that this is always true for us.

7.3 Julia Metneki (MZ twin)

I am working on twin research as a biologist, but I am also a twin myself. In elementary school, I took part in a twin study with my sister Esther, having been the subject of extremely exciting twin studies. This event made a great impact on me.

I was born after World War II, in 1946—it was only while giving birth, after I was born, that my mother found out that she had been pregnant with twins. My parents were flabbergasted, not knowing whether to be happy or worried about the double 'child-blessing.' We were born underweight at just 1700 g each. The incubator was replaced by hot water bottles in our cradle, and in the absence of infusion, we received mother's milk with an eyedropper every half hour, which we sometimes threw up. It was not until the age of 3 months when we reached the average birth weight of healthy babies. Our parents planned to name Esther for their future baby girl, but since I had a less favorable life expectancy as a firstborn, my second-born sister got the previously planned name (Fig. 5).

I have some visual memories from my childhood, and in those, I never see my-self alone, but always with my sister. Usually, we referred to ourselves as "us," even when the other was not present. (The same thing happened with Adam and David.) As identical twins, we were extremely similar to each other, so much so, that even our father, relatives, and the family's best friends confused us quite often. The feeling of discomfort caused by the similarity was obviously increased by the fact that our parents dressed us in exactly the same way.

As the only pair of twins at our school, we undeniably aroused interest from our peers. In class, we often sat in the double desk, side by side, and had the same

FIG. 7.5 Julia Métneki (L) and her twin sister (R), Esther at age 4 years (1950) and 67 years later (2017).

Courtesy: Julia Métneki.

friends. We were anxious girls, but the constant presence of the other twin gave us a tremendous sense of security and reassurance. Therefore, if one of us was ill, the other one often simulated illness, so neither of us would have to go to school alone. Sometimes we changed roles, and when called to answer, we responded instead of the other, which initially seemed like fun, but it did not really make much sense, because whatever I knew, so did Esther, and vice versa.

While we were young, we did not recognize this high degree of similarity, but now we often cannot identify who is who in childhood photos. We were confused on several occasions and in certain situations. For example, as adults, at the first twin ball organized in Budapest, in 1983. Esther went to the restroom and saw me come face to face with her. Esther was just about to tell me something, when she hit the wall mirror. It was shocking for her not to recognize her own reflection.

What was so typical of our childhood was that we internalized each other's experiences as our own, as if those things had happened to us, as well. For example, when Esther was called to answer at school, I was almost more excited about her success than she was. If she got a bad grade, it hurt me even more, and when Esther cried, my eyes filled with tears, too. Our hope for each other's success was mutual.

Another family legend demonstrates the commitment of my sister. At the age of 10, Esther had warts on her hands that were to be burned off by a dermatologist. During the treatment, while she was quietly enduring the pain like a real hero, I was screaming outside the door, feeling Esther's pain. (Later, interviews with twins confirmed my earlier guess that empathy is much stronger for twins than for siblings and for singletons.) Not all researchers, such as Dr. Nancy Segal, find persuasive evidence that twins feel each other's physical pain at the same time without knowing that the brother of sister is in real pain. Of course, I knew that Esther was going through a difficult procedure which may explain my response.

We were used to the same things happening to us, whether we were good or bad. When I was unexpectedly operated on with appendicitis at the age of 14 years, Esther hardly found her place during my one-week absence. She felt it was "unfair" to miss out on something.

Beyond the similarities in our looks, our thoughts and interests were also the same. We both played the piano (there were several four-handed pieces in our repertoire), we liked the same dishes, and we were passionate about the same poems, actors, and music. Our father was a medical doctor who orientated our interest toward healthcare and medicine. In our most common childhood games, we played at being doctors, examining toy dolls, injecting them, and operating on them. Later in life, we both ended up working with diseases, just in different professional areas.

Esther and I understood each other almost without words. From each other's eyes and movements, we discerned what the other one wanted or needed. Of course, we sometimes quarreled and even hit each other, but after our mother separated us. Then, we started looking for each other's company within minutes. As I remember vividly, we laughed a lot and were often suffocating with laughter. Today, we spend time together much less frequently, but we cannot giggle with anyone as much as we used to with each other, and we sometimes relive this carefree part of our childhood.

Typically for most firstborns, I was the dominant twin, the one who initiated our games and activities, that is, the 'spokesperson'. The more peaceful and accepting Esther did not resent me in any way since it was convenient for her to have me handle everything, as if I were her secretary.

This close relationship was natural for us until our final exams and high school graduation, and we had a wonderful time in this symbiotic relationship. We mostly

enjoyed the benefits of twinning and noticed its drawbacks less that may result from constant comparisons. Despite our idyllic relationship, our parents clearly saw the disadvantages of this twin situation. They advised us to continue our studies at different schools, a decision that came to us unexpectedly. We simply could not imagine our lives without each other's constant presence. Sadly, we finally resigned to the situation. My more practical sister applied to the Faculty of Dentistry at the Medical University, and I started my studies at the Faculty of Biology at the University of Sciences. At that time, I was already thinking that this training in biology could give me a good foundation for realizing my dream: to carry out twin research in the future.

In time, I finally agreed with my parents' decision. It was the right time to start our independent lives. But then, at the age of 18, I felt as if I was one half of a human being cut in two. I felt the lack of my sister physically, too. She was not walking alongside with me on the street, and she was not there to confirm my decisions. Half a century has passed since then, but in a sense, I feel her absence even today.

After completing our university studies, Esther began practicing as a dentist in a small rural town, 120 km away from Budapest. Her decision scared me—I did not understand why my twin sister wanted to leave our common home to move to a strange city where she did not know anyone. "How will she do it alone?" I asked. I was also thinking that all of this may have happened due to my dominant nature. In the end, it was proven that our separation became beneficial in all respects.

It was only in the 1990s that—by studying the twin literature—that I could finally understand what must have been behind Esther's decision. Regine Billot, the French author of *Les Jumeaux* (1991), wrote about the difficulty of separating twins.⁴ She supposed it was logical that the suppressed twin wanted to become independent, and therefore exited from the close twin relationship to avoid situations that were often disadvantageous. Paradoxically, twins would be looking for a partner earlier, would get married sooner than their twin sibling, perhaps because stronger emotions were at work to gain their freedom. I believe this refers mostly to identical twins.

Returning to my career choice, my childhood dream was finally fulfilled, and over the past nearly half-century, I have done a number of national and international twin studies with my mentor, Professor Andrew Czeizel. Initially, my research work was mostly theoretical, so, in fact, I rarely had any personal contact with twins—this gave rise to a strong feeling that something was missing. Change did not occur until the early 1980s when 100 twin pairs were involved in an international adult twin study concerning the heritability of lactose intolerance. On the day of the examination, the twins showed an amazing amount of enthusiasm—in fact, the atmosphere resembled that of a folk celebration. Following up on the initiative of the participants, we created a "twin club," and the atmosphere of the monthly gatherings was intimate and family friendly from the start. The most successful and attractive events were the "twin festivals" and the "twin balls," where the stars of the party were, of course, twins. These successful events further increased interest in twin research (Figs. 6 and 7).

In 1989, at the Twin Congress in Rome, I met Dr. Elizabeth M. Bryan, a British pediatrician, and I purchased her book *Twins in the Family*. While reading this book, I realized how important it would be to write a similar handbook in Hungarian that

FIG. 7.6 A group of identical twins at the foundation of the Budapest Twin Club. Budapest, (1982).

(Photo credit; Imre Benkő).

FIG. 7.7 Leaders of the Hungarian Twin Club (Ildikó Busi and Teresa) with the Presidents of the American Twins Association (Judy Stillwagon and Julie Kirk, and Lew and Lee Vaughn), at the Twin Ball held in Budapest, in 1983)

would provide theoretical and practical knowledge from conception to adulthood for parents expecting and raising twins. After a long "labor," my *Book of Twins* was published in 1997, and the revised version was released with up-to-date information in 2005.⁷

In 2006, I published another book about conjoined twins, in cooperation with a physician. In the book, nearly 200 such Hungarian cases detected from the 14th century until the early 2000s are described and evaluated. This work is an overview of the ethical, legal and religious aspects of conjoined twins, documented with interesting illustrations.⁸

Finally, one more thought about the twin situation. Most psychologists agree that the twins must eventually separate. However, since I met the radiologist twins, Ádám and Dávid Tárnoki, I am not sure of this advice, because they have been extremely successful in their field of expertise and in twin studies, following a common path, helping and complementing each other. "One and one is not always two, sometimes the double"—as their example shows.

7.4 Nancy L. Segal (DZ twin)

7.4.1 Personal background

I am passionate about twin research. Twin studies offer many elegant ways for examining the interplay between genetic and environmental influences as they affect human development. I am also intrigued by twinning as a phenomenon—what it is like to be an identical or a fraternal twin, how we can best raise and educate twins, and why there is universal interest in twins.

My fraternal twin sister, Anne, and I were born in Boston, Massachusetts, the only children in the family. My mother was shocked to discover that she was carrying twins when she went for her five-month pregnancy checkup. Part of her surprise came from the fact that there are no twins on the maternal side of our family. However, one of my father's uncles had been born a twin, although his twin brother died shortly after birth. Of course, the twin type of his singleton twin uncle is unknown, because zygosity testing was not routinely performed (and still is not done unless twins are enrolled in research) and DNA analysis had not been developed, given that. In addition, my father had first cousins who were identical female twins; they were considered to be identical based on their matching physcial appearance. Even today, the transmission of twinning in families has not been fully worked out by geneticists. We do know that fraternal twinning seems to run in families, and that identical twinning seems to run in some families. Fraternal twinning has also been positively associated with factors such as older maternal age, heavier maternal weight, taller maternal height, African ancestry, and increased coital frequency. 10

My family lived in Boston for a very short time before moving to Philadelphia when I was less than one year old. At age four, my sister and I were assigned to different kindergarten classes at the local elementary school—Anne adjusted easily,

while I was traumatized and missed her terribly. Today, at least in the United States, most educators believe that young twins should be placed apart in school or they will not develop separate identities. However, research does not support this claim and many studies indicate that young twins perform better together. Given the foregoing and my own experience as a young twin, I believe that each pairs' school placement should be considered on a case-by-case-basis, and that parents deserve to contribute to this decision. A year later, when I was five, my family moved to New York City and remained there for the rest of my growing up years. My sister and I were placed together in kindergarten, first grade and second grade. We were then placed in separate classes from the third grade on and attended different schools from the seventh through twelfth grades, but we were ready to be apart (Fig. 8).

An assignment in a senior-level psychology class at Boston University drew my attention to twin studies. The professor asked for an essay on personal adjustment and I immediately thought about my experiences at school as a twin. The studies I read for this assignment were informative, insightful and enjoyable like no other

FIG. 7.8 Dr. Nancy L. Segal (R) and twin sister with their mother, at about age four years.

topic I had previously investigated. I knew that twin research would be the focus of my future academic career.

Upon graduating from Boston University, I completed a master's degree in Social Sciences at the University of Chicago, in 1974. My thesis was an overview of methods and findings in twin research. I went on to obtain my doctoral degree at the University of Chicago, in 1982, with a dissertation on cooperation and competition between young twins. Some summers and semesters during my graduate school years were devoted to twin studies. I spent the summer of 1974 at the National Institutes of Health, in Bethesda, Maryland, working on follow-up data from an earlier study of the identical Genain quadruplets—all four sisters suffered from schizophrenia. ¹² I was a visiting student at Indiana University in Bloomington, Indiana in the spring of 1975, working on twin studies with Drs. Richard J. Rose and Walter E. Nance. In the summer of 1975, I attended a National Institute of Mental Health-sponsored program at the University of Colorado's Institute for Behavioral Genetics.

7.4.2 Professional history

After graduating from the University of Chicago I became a post-doctoral fellow and research associate at the University of Minnesota (1982–1991). During this time, I worked on the Minnesota Study of Twins Reared Apart (MISTRA), directed by Professor Thomas J. Bouchard, Jr. In 1985, I was appointed Assistant Director of the Minnesota Center for Twin and Adoption Research. Those 9 years were a highpoint of my career because I was so fortunate to meet the separated twins—I learned their personal stories at the same time that I helped gather their behavioral and physical data. In 1991, I joined the psychology department at California State University, Fullerton. One of my first tasks was establishing the Twin Studies Center to support student and faculty research with twins. Over the years, several individuals have donated books, journals, photographs and funds, making this center, especially its library, a unique resource.

My current twin studies address tacit coordination, social closeness, twin loss, personality and appearance, genetic and environmental influences on ability, personality, adjustment, and sexual orientation and identity. I study MZ and DZ twins, young Chinese twins reared apart, virtual twins (same-age unrelated children reared-together), twin-families, twins switched at birth, and unrelated look-alikes.

7.4.3 Professional activities

I have written seven books on twins¹³ and have co-edited a conference volume.¹⁴ My book, *Born Together-Reared Apart: The Landmark Minnesota Twin Study* (2012), describes the origins, methods, findings, and implications of the Minnesota Study of Twins Reared Apart. My seventh book about twins is titled, *Deliberately Divided: Inside the Controversial Study of Twins and Triplets Adopted Apart.*¹⁵ This book is a detailed investigation of the 1960s and 1970s study conducted in New York City, in which twins and triplets were purposefully placed apart and studied until they turned

twelve. The twins' adoptive parents were never told that they were raising a singleton twin child. This study was featured in two documentary films, *The Twinning Reaction* (2017) and *Three Identical Strangers* (2018). ¹⁶

I strongly believe that twin researchers have a responsibility to maintain close ties with the public, and not publish their findings solely in the scientific literature. It is for this reason that I write a regular column for the journal *Twin Research and Human Genetics*. Each of my contributions surveys an area of interest to twin studies, summarizes findings from several timely twin studies and reports a number of human interest stories about twins, of which there are many. These articles are sometimes adapted for publication in my *Psychology Today* magazine blog, *Twofold*. I have authored or co-authored three articles for the *New York Times's* Gray Matter column, two of them on twins. One of them concerned the social ties between twins and the other concerned the breastfeeding of twins in male-female pairs.¹⁷

One of the greatest pleasures of being in twin research is watching separated twins meet for the first time. Most memorable is my witnessing of reunions between two 6-year-old identical twin girls and two 78-year-old fraternal twin women. One of the young twins had been adopted by a family in the lively capital city of Sacramento, California, while her twin sister had been adopted by a family from the tiny village of Fresvik, Norway. Their adoptive parents met in China when they went to pick up their daughters. The mothers immediately recognized the physical resemblance between their babies and stayed in touch. They decided to have the girls' DNA tested and compared, and the results revealed that they were identical twins. One of the mothers contacted me and I arranged for the *BBC* to have the twins meet and to film their meeting. It was heartwarming to watch the twins jump up and down at the first sight of each other. Despite speaking different languages, the two girls got along beautifully with one another.

The older pair, which I wrote about in one of the Gray Matter columns, also lived in different countries—England and the United States. I was able to obtain funds to fly both twins to California where they met each other in a hotel room near my campus. It was lovely to see them recognize some common features, even though they looked fairly different. Unfortunately, one of the twins passed away approximately eight months after they had met.

A recent twin project of great fascination for me involved two sets of identical male twins, from Colombia, South America. It happened that one twin in each pair had been inadvertently exchanged with a twin in the other pair when the babies were less than one week old. Each pair of boys grew up thinking that they were fraternal twins when, in fact, they each had an identical twin brother they did not know about. The truth was revealed when the twins living in the country moved to the city and one of the twins was mistaken for his identical brother. They were twenty-five years of age at the time—the revelation was shocking and disturbing at first, but all four brothers and their families have come to terms with it. The twins now regard themselves as a group of four—one family. I traveled to Bogotá twice to test and interview the four young men. I wrote about my research and the story of their lives in my 2018 book, *Accidental Brothers*. ¹⁸

7.4.4 Closing statement

Twin research has undergone significant change in that many researchers are turning their attention to the molecular bases of behavior. A question of great interest is why one identical twin may become affected with a disease and the other will not. Another question concerns how such information can be used to help the general public. However, twin research remains as vibrant today as it was in 1875 when Sir Francis Galton first recognized the power of twin research to tell us how we come to be the people that we are. ¹⁷

I am very happy to be a twin for a number of reasons. At an early age, twinship gave me appreciation for genetic influences on development. Being a twin has also helped me invite twins as participants in research, as we come to the task knowing that we share something very important. Finally, twinship has given me my sister Anne, whose friendship and support I treasure above all others. This accident of birth has made me aware of what I have enjoyed and what has been lost by twins who did not grow up together.

References

- 1. Tarnoki AD, Tarnoki DL, Littvay L, Métneki J, Melicher D, Pari A. *Twin research and epigenetics: Medicina*. In Hungarian; 2020.
- 2. Lykken DT, Tellegen A. Is human mating adventitious or the result of lawful choice? A twin study of mate selection. *J Pers Soc Psychol*. 1993;65:56–68.
- 3. Rushton JP, Bons TA. Mate choice and friendship in twins: evidence for genetic similarity. *Psychol Sci.* 2005;16:555–559.
- 4. Billot R. Les Jumeaux de la conception a l'école. (In French) Twins from the conception to school age: Éditions Balland; 1991.
- 5. Métneki J, Czeizel A, Flatz SD, Flatz G. A study of lactose absorption capacity in twins. *Hum Genet*. 1984;67:296–300. https://pubmed.ncbi.nlm.nih.gov/6432676/.
- 6. Bryan EM. Twins in the family—a parent's guide: Constable London; 1984.
- Métneki J, Fogamzástól a felnőtté válásig. (In Hungarian) (From the conception to adulthood). *Ikrek könyve*. Melánia. I. 1997. Second edition: 2005. https://www. antikvarium.hu/konyv/metneki-julia-ikrek-konyve-102838.
- 8. Varjassy P, Métneki J. Egy vagy kettő? Összenőtt ikrek Magyarországon. (In Hungarian) *One or two? Kossuth Kiadó*. 2008. https://moly.hu/konyvek/varjassy-peter-metneki-julia-egy-vagy-ketto.
- Segal NL. Twin Mythconceptions: False Beliefs, Fables, and Facts About Twins. San Diego, CA: Elsevier; 2017.
- 10. Segal NL. Entwined Lives: Twins and What They Tell Us About Human Behavior. New York, NY: Plume; 2000.
- 11. Rosenthal D, ed. The Genain Quadruplets. New York, NY: Basic Books; 1963.
- 12. (a) Segal NL. Indivisible by Two: Lives of Extraordinary Twins. Cambridge, MA: Harvard University Press; 2005/2007; (b) Segal NL. Someone Else's Twin: The True Story of Babies Switched at Birth. Amherst, NY: Prometheus Books; 2011; (c) Segal NL. Born Together-Reared Apart: The Landmark Minnesota Twin Study. Cambridge, MA: Harvard University Press; 2012.

- 13. Segal NL, Weisfeld GE, Weisfeld CC, eds. *Uniting Psychology and Biology: Integrative Perspectives on Human Development*. Washington, D.C.: American Psychological Association Press; 1997.
- 14. Segal NL. Deliberately Divided: Inside the Controversial Study of Twins and Triplets Adopted Apart. Lanham, Maryland: Rowman & Littlefield; 2021.
- 15. (a) Shinseki L. *The Twinning Reaction*. U.S.: Fire Horse Pictures; 2017; (b) Wardle T. *Three Identical Strangers*. London, UK: Raw Films; 2018.
- 16. (a) Segal NL. *The Closest of Strangers*: New York Times, Sunday Review (Gray Matter), SR12; 25, May 2014; (b) Segal NL, Kanazawa S. *Does Breast Milk Have a Sex Bias?*: New York Times, Sunday Review (Gray Matter); 20, January 2017:8.
- 17. Segal NL, Montoya YS. Accidental Brothers: The Story of Twins Exchanged at Birth and the Power of Nature and Nurture. New York, NY: St. Martin's Press; 2018.
- 18. Galton F. The history of twins as a criterion of the relative powers of nature and nurture. *J Anthropol Inst.* 1875;5:391–406.

TWIN RESEARCH FOR EVERYONE

From Biology to Health, Epigenetics, and Psychology

Edited by Adam D. Tarnoki, David L. Tarnoki, Jennifer R. Harris, and Nancy L. Segal

Twin Research for Everyone

From Biology to Health, Epigenetics, and Psychology

Twin Research for Everyone

From Biology to Health, Epigenetics, and Psychology

Edited by

Adam D. Tarnoki

Medical Imaging Centre, Semmelweis University, Hungarian Twin Registry, Budapest, Hungary

David L. Tarnoki

Medical Imaging Centre, Semmelweis University, Hungarian Twin Registry, Budapest, Hungary

Jennifer R. Harris

Centre for Fertility and Health, The Norwegian Institute of Public Health, Oslo, Norway

Nancy L. Segal

Department of Psychology, California State University, Fullerton, CA, United States

Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1650, San Diego, CA 92101, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-821514-2

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Stacy Masucci
Acquisitions Editor: Peter B. Linsley
Editorial Project Manager: Samantha Allard
Production Project Manager: Omer Mukthar
Cover Designer: Vicky Pearson Esser

Typeset by Aptara, New Delhi, India

Contents

Contributor	s		xxiii
Editor Biog	raph	ies	xxxi
Preface			xxxiii
Introduction	ı to t	win research for everyone: From biology	
to health, ep	oigen	etics, and psychology	xxxv
SECTION	<u> 1</u>	Background	1
CHAPTER	1	History of Twin Studies	3
		ı C. Loehlin	
	1.1	Twins	3
	1.2	Twin studies	3
	1.3	History of twin studies	4
	1.4	Early twin studies of cognition and personality	5
		Combining other relatives with twins	
	1.6	Heritability over age	5
	1.7	Increasing sample sizes	6
		Twin studies nowadays	
		Summary	
	Ref	erences	6
CHAPTER	2	Prevalence of twinning worldwide	9
	And	rás Pári	
	2.1	How is that possible? One delivery and two childbirths at le	east 9
	2.2	Questions of the methodology of twinning rate	13
	2.3	Effect of assisted reproductive treatment	14
	2.4	One out of twenty-eight births	15
	Ack	nowledgments	19
	Ref	erences	19
	Fur	ther readings	21
CHAPTER	3	Twin family registries worldwide	23
		n-Mi Hur, Veronika V. Odintsova, Juan R. Ordoñana,	
		ri Silventoinen, Gonneke Willemsen	
		Introduction	
	3.2	Twin family registries across the continents	
		3.2.1 Europe	
		3.2.2 North America	
		3 2 3 Australia	30

		3.2.4 Asia and Middle East	40
		3.2.5 Africa	41
		3.2.6 Latin America and the Caribbean	42
	3.3	International consortia	42
	3.4	Concluding remarks	43
	Ref	erences	44
SECTION	12	Phenomenon of Twinning	.51
CHAPTER		Biology of natural twinning	
	Gar	y Steinman	
	4.1	Introduction	53
	4.2	Defining factors	54
	4.3	Conception issues	55
	4.4	Maternal dietary factors affecting the frequency	
		of multifetal gestations	57
	4.5	Maternal physical factors and the rate of twinning	58
	4.6	Biological factors tending to increase twinning	59
	4.7	Some unique complications in twin pregnancies	61
		Maternal risks with a twin pregnancy	
		Conclusions and prospectus	
		cnowledgments	
	Ref	erences	66
CHAPTER	5	Management and outcome of twin pregnancies	67
	Gian	n Carlo Di Renzo, Valentina Tosto, Irene Giardina, Valentina Tsibizov	а
	5.1	Introduction	67
	5.2	Antenatal care	
		5.2.1 Diagnosis and chorionicity	67
		5.2.2 Nutritional advice	68
		5.2.3 Chromosomal screening: new challenges?	69
		5.2.4 Monitoring: timing and frequency	69
		5.2.5 Laboratory investigations	70
	5.3	Antenatal complications	
		5.3.1 Chorionicity	70
		5.3.2 Fetal growth restriction (FGR)	71
	5.4	Specific monochorionic pregnancy complications	
		5.4.1 Fetal-fetal transfusion syndrome (TTTS)	
		5.4.2 Anemia-polycythemia sequence (TAPS)	
		5.4.3 Inverted arterial perfusion sequence (TRAP sequence)	
		5.4.4 Monoamniotic twins and cord entanglement	
		5.4.5 Cerebral palsy risk	
		5.4.6 Antenatal preventive interventions	76

	5.5	Peripartum care	76
		5.5.1 Timing of birth	77
		5.5.2 Mode of delivery and induction of labor	77
	5.6	Peri-conceptional period: a "key window" of intervention?	79
	5.7	Conclusion	81
	Ref	erences	81
CHAPTER	6	Conjoined twins	85
	Julio	a Métneki, Peter Varjassy	
	6.1	Introduction	85
	6.2	History of conjoined twins	85
	6.3	Conjoined status in plants and animals	91
	6.4	Development of conjoined twins	92
	6.5	Embryology of conjoined twins, mechanism	
		of their development	
		Classification of conjoined twins	
		Etiology	102
	6.8	Epidemiology of conjoined twins, genetic	
		and demographic risk factors	
		Ethnicity	
		0 Summary	
	Ref	erences	108
SECTION	13	Twin Families	113
CHAPTER	7	Growing up as twins: the perspectives of twin	
		researchers	115
		m D. Tárnoki, David L. Tárnoki, Júlia Métneki, Nancy L. Segal	
		Introduction	
		Adam & David Tarnoki (MZ twins or Identical Twins)	
		Julia Metneki (MZ twin)	
	1.4	Nancy L. Segal (DZ twin)	
		7.4.1 Personal background	
		7.4.2 Professional history	
		7.4.3 Professional activities	
	ъ с	7.4.4 Closing statement	
	Ref	erences	
CHAPTER		Parenting twins, triplets, or more	131
	8.1	Parenting twins, triplets, or more	131
		Pregnancy	
		Dinth	122

	8.4 Early months	133
	8.5 Toddler	134
	8.6 School years	134
	8.7 Adolescence	135
	8.8 Special situations	136
	8.9 Adult twins	136
CHAPTER	9 Reared apart twins: Background, research,	
	case studies and what they reveal about	
	human development1	139
	Nancy L. Segal, Francisca J. Niculae	
	9.1 Introduction	139
	9.2 Twins raised apart: Past, present, and future	
	9.3 Fullerton study of Chinese twins reared apart	
	9.4 Unique case studies	
	9.5 Twin study controversy	149
	9.6 Research directions	150
	9.7 A quote that will endure	151
	References	151
CHAPTER	10 Opposite-sex twins in medical research 1	155
011/XI 1 EIX	Lucas Calais-Ferreira, Sue Malta, John L. Hopper	
	Lucas Catais-rerretra. Sue Matia, John L. Hobber	
	10.1 Introduction	155
	10.1 Introduction	
	10.1 Introduction10.2 Sharing more than a womb	156
	10.1 Introduction	156 156
	10.1 Introduction	156 156 157
	10.1 Introduction	156 156 157 158
	 10.1 Introduction	156 156 157 158 158
	 10.1 Introduction	156 156 157 158 158
SECTION	 10.1 Introduction	156 156 157 158 158 159
	10.1 Introduction	156 156 157 158 158 159 61
	10.1 Introduction	156 156 157 158 158 159 61
	10.1 Introduction	156 157 158 158 159 61
	10.1 Introduction	156 156 157 158 158 159 61 al,
	10.1 Introduction	156 156 157 158 158 159 61 al,
	10.1 Introduction	156 156 157 158 158 159 61 al,
	10.1 Introduction	156 156 157 158 158 159 61 al, 163 165 167
	10.1 Introduction	156 157 158 158 159 61 al, 163 <i>mga</i> , <i>asma</i> 165 167
	10.1 Introduction	156 157 158 158 159 61 al, 163 <i>mga</i> , <i>asma</i> 165 167
	10.1 Introduction	156 157 158 158 159 61 al, 163 nnga, nssma 165 167 167

	11.3.4 Phenotyping: from survey to record linkage	173
	11.3.5 Possibilities for biobanking in twin registers	174
	11.3.6 Databases for twin registers	176
	11.3.7 Data analyses issues in twin studies: batch effects	
	and family clustering	177
	11.3.8 Retaining the twins	178
	11.4 Conclusion	179
	Appendix	180
	Acknowledgments	183
	Disclosure of Interests	183
	References	183
CHAPTER	12 Methodology of twin studies	. 189
	José J. Morosoli, Brittany L. Mitchell, Sarah E. Medland	
	12.1 Introduction	189
	12.2 A brief note on the biometrical model	189
	12.3 Classical twin study	191
	12.4 Methodological assumptions	195
	12.4.1 The equal environments assumption	195
	12.4.2 The representativeness assumption	196
	12.4.3 The assumption of random mating	196
	12.5 Use of structural equation modeling in twin analysis	197
	12.6 Analysis of discrete traits	199
	12.6.1 Binary data	200
	12.6.2 Threshold approaches	
	12.7 Extension of the classical twin model	204
	12.8 Gene–environment correlation vs interaction	205
	12.8.1 Genotype–environment correlation and	
	assortative mating	205
	12.8.2 Gene–environment interaction	
	12.9 Structural equation modeling for rGE and $G \times E$ interaction	
	12.9.1 Analysis of sex differences	
	12.9.2 G \times E with continuous moderators	
	12.10 Final remarks	
	References	211
CHAPTER	13 Twin studies of complex traits and diseases	. 215
	Christopher R. Beam, Alice J. Kim, Tinca J.C. Polderman	
	13.1 All traits are heritable	216
	13.2 Landmark study in twin research: MATCH	216
	13.3 Sex differences in heritability	
	13.4 Are twin designs the holy grail in heritability studies?	218

	13.5 Psychiatric disorders, comorbidity, and genetic overlap	219
	13.6 Gene-environment interplay	220
	13.6.1 Gene-environment correlation and gene-environment	
	interaction	220
	13.6.2 Gene-environment correlation (<i>r</i> GE)	220
	13.6.3 Gene-environment interaction (GxE)	222
	13.7 Mechanisms that lead to <i>r</i> GE and GxE	223
	13.7.1 Cognitive ability	223
	13.7.2 Personality	224
	13.7.3 Externalizing behaviors	225
	13.8 Future directions of twin studies of traits and diseases	227
	References	228
CHAPTER	14 Use of twin studies to make inference about	
• · · · · · · · · · · · · · · · · · · ·	causation for measured exposures by examining	
	familial confounding	235
	Vivienne F.C. Esser, Shuai Li, Minh Bui, John L. Hopper	
	14.1 Introduction	235
	14.1.1 The importance of understanding causation	235
	14.1.2 Association is not necessarily evidence for causation	236
	14.1.3 Proof of causation	236
	14.1.4 A implies B does not imply B implies A	237
	14.1.5 Bradford Hill's so-called criteria for causation	237
	14.1.6 Randomized controlled trials	237
	14.1.7 Mendelian randomization	238
	14.2 Previous twin and family study approaches to address	
	causation	238
	14.2.1 Within-family designs: differences versus differences.	238
	14.2.2 RCTs involving twins	239
	14.2.3 Classic multivariate twin model (CMTM)	
	and components of covariance	239
	14.2.4 The direction of causation (DoC) model and the	
	MR-DoC model	240
	14.3 Inference about causation from examination of familial	
	confounding (ICE FALCON)	241
	14.3.1 Model description	241
	14.3.2 Formal model description	242
	14.3.3 Interpretation of changes in regression coefficients	242
	14.3.4 Statistical inference for ICE FALCON estimates	244
	14.4 Comparison of the CMTM, DoC model, and ICE FALCON	246
	14.5 Applications of ICE FALCON	247
	14 6 Further developments	248

	Funding	249
	References	
CHAPTER	15 Twins in clinical trials	253
	Athula Sumathipala, Kaushalya Jayaweera	
	15.1 What is a randomized controlled trial?	253
	15.2 Role of twins in RCTs	
	15.3 Zygosity and twin assignment across the randomized	
	controlled trials	255
	15.3.1 The impact of twins on sample size and power	256
	15.3.2 Implications for future work and directions	257
	Acknowledgments	258
	References	258
SECTION	N 5 Behavior	. 259
CHAPTER	16 Twin studies in social science	261
	Elena Cristina Mitrea, Levente Littvay	
	16.1 Introduction	261
	16.2 Findings from the literature	262
	16.3 The classical twin design	
	16.4 Assumptions of the twin model	264
	16.4.1 Type I error for heritability	265
	16.4.2 Type II error for heritability	266
	16.5 The future of twin research in the social sciences	267
	16.6 Conclusions	270
	References	271
CHAPTER	17 Childhood development of psychiatric disorders	
	and related traits	277
	Isabell Brikell, Paul Lichtenstein, Henrik Larsson	
	17.1 Introduction	277
	17.2 Heritability of childhood psychiatric disorders and traits	277
	17.3 Childhood psychiatric disorder and population traits have	
	shared genetic origins	279
	17.4 Genetic contributions to comorbidity across childhood	
	psychiatric disorders and traits	280
	17.5 Stability and change in the development of childhood	
	psychiatric disorders and traits	282
	17.6 Environmental influences on the developmental of	
	childhood psychiatric disorders and traits	284
	17.7 Implications & concluding remarks	
	Deferences	200

CHAPTER	18 Happiness and well-being: The value and findings from genetic studies	05
	Margot P. van de Weijer, Lianne P. de Vries, Meike Bartels	3 J
	18.1 What is well-being?	05
	18.2 Earlier reviews on twin studies on well-being	
	18.3 New findings of twin studies on well-being2	
	18.4 Related phenotypes	
	18.4.1 Optimism	
	18.4.2 Meaning in life	
	18.4.3 Self-esteem	
	18.4.4 Resilience	
	18.4.5 Multivariate models of positive psychological traits 3	
	18.5 Specific molecular genetic and environmental influences 3	
	18.6 Future directions	
	18.6.1 Well-being fluctuations 3	
	18.6.2 MZ difference/causality	
	18.6.3 Nuclear twin family design 3	
	18.7 Conclusion	
	References 3	
CHAPTER	19 Twin study of personality	23
	Juko Ando	2.4
	19.1 Description of personality	
	19.2 Twin studies of personality traits	
	19.3 Development trends of personality	
	19.4 Genetic structure of personality	
	19.5 Personality as a social behavior	
	19.6 Discordant identical twin method	
	References 3	
CHAPTER	20 Twin research in psychopathology	37
	Lisabeth Fisher DiLalla, Matthew R. Jamnik, Riley L. Marshall, Emily Pali,	
	David L. DiLalla	. 2.0
	20.1 Schizophrenia	
	20.2 Depression and bipolar disorders	
	20.2.1 Depressive disorders	
	20.2.2 Bipolar disorders	
	20.2.3 Depression and bipolar disorder	
	20.3 Antisocial personality disorder (ASPD)	
	20.3.1 Antisocial behavior (AB)	
	20.3.2 Antisocial personality disorder	
	20.4 Implications and future directions	346 348
	Keterences	ZLX

CHAPTER 21	Cognitive aging: the role of genes and environm	
	in patterns of change	351
	orah Finkel, Nancy L. Pedersen, Chandra A. Reynolds	2.7.1
	1 General cognitive ability	
21.3	2 Specific cognitive abilities	
	21.2.1 Age changes in genetic variance	
	21.2.2 Traditional cognitive domains	
	21.2.3 Emerging cognitive domains	
	21.2.4 Summary	
21.3	Molecular genetics	356
	21.3.1 Missing heritability?	358
	21.3.2 Gene environment interplay	359
	21.3.3 Summary	360
21.4	4 Cognitive aging in context	361
	21.4.1 Lung function and cognitive aging	361
	21.4.2 Socioeconomic status and cognitive aging	361
21.	5 Future directions	363
Ref	erences	364
CHAPTER 22	Twin studies of smoking and tobacco use	371
	kko Kaprio	•
	1 Introduction	371
	Natural history of smoking behavior	
	3 Twin studies past and present—the aim of the review	
	4 Genetic and environmental influences on smoking behav	
	5 Beyond twins	
	6 Causes and consequences of tobacco use	
	7 Conclusion	
	erences	
SECTION 6	Health	385
CHAPTER 23	Anthropometric twin studies	387
	ri Silventoinen	
23.	1 Introduction	387
	2 Genetic and environmental variation in anthropometric	
	measures	
23.	3 Birth outcomes	389
	4 Height	
	5 Body mass index	
	6 Other anthropometric measures	
	7 Genetics of growth and development	

	23.8 Growth in height	395
	23.9 Development of body mass index	395
	23.10 Gene–environment interactions	396
	23.11 Height	397
	23.12 Body mass index	
	23.13 Conclusions	
	References	
CHADTED	24 Twin studies of cardiorespiratory disease, daily	
CHAPTER	cardiovascular activity and imaging	403
	Adam D. Tarnoki, Gonneke Willemsen, Eco de Geus, David L. Tarnoki	403
	24.1 Introduction	402
	24.2 Cardiorespiratory twin studies	
	24.2.1 Heritability of the most common cardiovascular diseases.	
	24.2.2 Twin studies in frequent respiratory diseases	
	24.3 Twin studies of common chronic lung diseases	
	24.3.1 Chronic obstructive pulmonary disease (COPD)	
	24.3.2 Chronic bronchitis	
	24.3.3 Asthma	
	24.3.4 Lung cancer	
	24.3.5 Exhaled biomarkers	
	24.3.6 Obstructive sleep apnoea (OSA)	
	24.3.7 In conclusion	409
	24.4 Gaining insight into the heritability of everyday	
	cardiovascular function by twin studies	409
	24.4.1 Introduction	409
	24.4.2 Ambulatory studies of blood pressure and heart rate	410
	24.4.3 Ambulatory monitoring of other cardiovascular	
	parameters	415
	24.4.4 In conclusion	420
	25.5 Imaging of twins	420
	25.5.1 X-ray	421
	25.5.2 Breast mammography	421
	25.5.3 Ultrasound	422
	25.5.4 Computed tomography (CT)	423
	25.5.5 Magnetic resonance imaging (MRI)	
	25.5.6 Neuroimaging	
	25.6 Future directions: radiogenomics and imaging epigenetics	
	Deferences	

CHAPTER 25 Pediatric twin studies	431
Catarina Almqvist, Paul Lichtenstein	404
25.1 Introduction	
25.2 Respiratory and allergic diseases	
25.2.1 Causes	
25.2.2 Consequences	
25.3 Autoimmune disorders	
25.4 Hemato-oncological disorders	
25.5 Comorbidity	
25.6 Conclusion	
References	434
CHAPTER 26 Twin-singleton differences	439
Kaare Christensen, Matt McGue	
26.1 Why are twin-singleton differences of interest to twin	
research generally?	
26.2 Intrauterine and perinatal twin-singleton differences	
26.2.1 Intrauterine growth	440
26.2.2 Intrauterine risk factors occurring in twins but not	
in singletons	
26.2.3 Congenital malformations	
26.2.4 Perinatal mortality	
26.3 Twin-singleton differences in development	
26.3.1 Neurodevelopment	
26.3.2 Anthropometric development	
26.4 Twin-singleton differences in behavior and personality	
26.4.1 Lifestyle factors	
26.4.2 Behavior	
26.4.3 Personality	447
26.4.4 Divorce	447
26.5 Twin-singleton differences in morbidity and survival	447
26.5.1 Early life morbidity and survival	447
26.5.2 Adulthood morbidity and survival	448
26.6 Twin-singleton differences in genetic studies	450
26.7 Conclusion	450
References	450
CHAPTER 27 Twin studies of puberty and behavior	457
Holly T. Pham, Adriene M. Beltz, Robin P. Corley, Sheri A. Berenbaum	
27.1 What is puberty?	457
27.2 Measuring puberty	458

	27.3 Variations in puberty: Gene and environment
	27.4 Twin studies of puberty
	27.4.1 Heritability of pubertal timing463
	27.4.2 Twin studies of links between puberty and behavior464
	27.5 Other uses of twin data on puberty when studying behavior466
	27.5.1 Replication analyses466
	27.5.2 Examining sex differences
	27.6 Methodological issues
	27.7 Future directions
	27.7.1 Studying links between puberty and the brain
	27.7.2 Potential impact of cultural differences
	27.7.3 Continued use of the discordant design
	27.7.4 Addressing limitations
	27.8 Conclusion
	27.9 Takeaways
	References
CHAPTER	28 Musculoskeletal twin studies
· · · · · · · · · · · · · · · · · · ·	Munkh-Erdene Bayartai, Paulo H. Ferreira
	28.1 Introduction (MSK conditions)475
	28.2 How twins can help musculoskeletal research
	28.2.1 The classical twin design in musculoskeletal research476
	28.2.2 The cotwin control design in musculoskeletal research479
	References
CHAPTER	29 Contributions of twin studies to cancer
OHAI ILK	epidemiology
	Wendy Cozen, Esther Lam, Maryam Salehi, Victoria K. Cortessis, Tuong L.
	Nguyen, James G. Dowty, John L. Hopper, Shuai Li, Thomas M. Mack
	29.1 Introduction
	Wendy Cozen and Victoria K. Cortessis
	29.2 Risk of cancer in twins compared to singletons
	Thomas Mack
	29.3 Patterns of occurrence of cancer in twins
	Thomas Mack and Wendy Cozen
	29.4 Studies of acquired risk factors for cancer in twins
	Wendy Cozen and Thomas Mack
	29.5 Intraplacental metastasis of infantile leukemia
	Wendy Cozen and Esther Lam
	29.6 Cancer treatment, screening and survivorship in twins497
	Esther Lam and Maryam Salehi

	29.7 A novel epidemiological approach to quantify the familial and non-familial, genetic and non-genetic, measured and	
	unmeasured causes of variation in risk	400
	John L. Hopper, James G. Dowty, Shuai Li, Tuong L. Nguyen	т//
	29.7.1 Variance of Age-specific Log Incidence Decomposition	n
	(VALID)	
	29.7.2 Measuring risk discrimination	
	29.7.3 The familial risk ratio caused by the familial aspects of a risk factor	
	29.7.4 Modeling the familial causes of variance in risk	
	29.7.5 Application of variance of age-specific incidence	
	decomposition (VALID)	501
	29.8 Summary	
	References	
CHARTER		
CHAPIER	30 Epigenetic studies of neurodevelopment in twins	วบษ
	Namitha Mohandas, Yuk Jing Loke, Yen Ting Wong, Garth Stephenson, Jeffrey M. Craig	
	30.1 Introduction	500
	30.2 The role of epigenetics in neurodevelopmental disorders	
	30.2.1 The developmental origins of health and disease	510
	(DOHaD) hypothesis	510
	30.2.2 Epigenetic mechanisms	
	30.3 The role of twins in studying epigenetics of NDDs	
	30.3.1 Twin models	
	30.3.2 The use of twin models in epigenetic studies	
	30.4 Epigenetic twin studies in autism spectrum disorder	
	30.5 Epigenetic twin studies in attention-deficit hyperactivity	515
	disorder	514
	30.6 Epigenetic twin studies of dimensions of cognitive	514
	development	515
	30.7 Epigenetic twin studies in cerebral palsy	
	30.8 Epigenetic twin studies in epilepsy	
	30.9 Current issues for study of NDDs in twins	
	30.9.1 Can twin studies tease out cause versus effect?	
	30.9.2 Incidence of neurodevelopmental disorders in twins	
	versus singletons	520
	30.9.3 Choice and availability of tissue samples	
	30.9.4 Study sample sizes and power of epigenetic analyses	
	30.10 The future of twin studies in contributing to understanding	521
	the role of epigenetics in neurodevelopmental disorders	521
	References	521 522

CHAPTER 31	Contributions of twin research to the study of Alzheimer's disease and related dementias	529
Ма	tthew S. Panizzon, Jeremy A. Elman, Eero Vuoksimaa	
31.	.1 Genetic and environmental influences of ADRD	530
	31.1.1 Sex differences	531
	31.1.2 Age at onset	532
	31.1.3 Intermediate ADRD phenotypes	533
31.	.2 Evaluating ADRD risk and protective factors	534
	31.2.1 Co-twin control studies	534
	31.2.2 Opposite sex twins	537
31.	.3 A new conceptualization of Alzheimer's disease and	
	related dementias	538
31.	.4 Summary and future directions	540
	ferences	
SECTION 7	Twin Research: Genetics, Epigenetics, Microbiome, and Environmental	
	Adaptation	545
CHAPTER 32	Twins and omics: the role of twin studies	
	in multi-omics	547
Fio	na A. Hagenbeek, Jenny van Dongen, René Pool, Dorret I. Booms	ma
32	.1 Introduction	547
32	.2 Genomics	549
	32.2.1 What is genomics and how do we measure	
	the genome?	549
	32.2.2 Sequence differences between monozygotic twins	550
	32.2.3 Sequence differences between dizygotic twins	
32	.3 Epigenomics	
	32.3.1 What is epigenomics and how do we measure	
	the epigenome?	553
	32.3.2 Causes of epigenetic variation	
	32.3.3 MZ discordant design applied to epigenomics studi	
32	.4 Transcriptomics	
	32.4.1 What is transcriptomics and how do we measure	
	the transcriptome?	557
	32.4.2 Causes of variation in gene expression levels	
	32.4.3 MZ discordant design applied to transcriptomics	
	studies	559
	32.4.4 Other applications of twin research in transcriptom	
	studies	

	32.5 Metabolomics	562
	32.5.1 What is metabolomics and how do we measure	
	the metabolome?	562
	32.5.2 Causes of variation in metabolite levels	563
	32.5.3 MZ discordant design applied to metabolomics	
	studies	566
	32.5.4 Other application of twin research in metabolomics	
	studies	566
	32.6 Twin studies in other omics domains	567
	32.7 Discussion	569
	32.8 Conclusion	572
	Acknowledgments	572
	References	572
CHAPTER	33 Epigenetics	585
OIIAI IEK	Aino Heikkinen, Sara Lundgren, Miina Ollikainen	. 505
	33.1 Introduction to epigenetics and epigenomics	585
	33.1.1 DNA methylation	
	33.1.2 Histone modifications	
	33.1.3 Noncoding RNAs	
	33.1.4 Complex interactions between epigenetic marks	
	33.2 Challenges in epigenetic research	
	33.3 Value of twins in epigenetic research	
	33.3.1 Classical twin model	
	33.3.2 Within-pair comparisons	
	33.3.3 Inferring causality	
	33.4 Key findings from epigenetic studies involving twins	
	33.4.1 The contribution of the genome and environment	
	to the establishment and maintenance of	
	DNA methylation	594
	33.4.2 The contribution of epigenetic variation to	
	phenotypic variation	596
	33.4.3 Stability and drift of methylation in time	596
	33.4.4 Inferring causality for epigenetic associations	
	by using twins	602
	33.4.5 Epigenetic aging	
	33.5 Technical and statistical methods in epigenetics	603
	33.5.1 Methods to measure DNA methylation	603
	33.5.2 Methods to analyze DNA methylation data	604
	33.5.3 DNA methylation as a surrogate measure	605
	33.6 Future of epigenetic twin studies	607
	Deferences	600

CHAPTER 34 An experiment in cotwin control: Adaptation	
to space travel	. 617
Carole Tafforin, Nancy L. Segal	
34.1 Introduction	
34.2 Twins reared apart and together	
34.3 Space travel: effects on adaptive systems	
34.4 Review of findings: a twin in space	
34.5 Discussion	
Acknowledgments	
References	623
CHAPTER 35 Environmental risk factors for neurodevelopmenta	al
disorders: Evidence from twin studies	. 625
Garth Stephenson, Jeffrey M. Craig	
35.1 Rationale and aims	625
35.2 Introduction	625
35.3 Zygosity and chorionicity	
35.4 Twins as a model for developmental variation	628
35.5 The intrauterine environment	628
35.6 Twin to twin transfusion syndrome (TTTS)	629
35.7 Selective fetal growth restriction (sFGR)	631
35.8 Twin anemia–polycythemia sequence (TAPS)	632
35.9 Neurodevelopmental disorders	632
35.10 Attention-deficit hyperactivity disorder	632
35.11 Autism spectrum disorder	633
35.12 Cerebral palsy	633
35.13 Schizophrenia	633
35.14 Epilepsy	634
35.15 Environmental influences on neurodevelopment in twins.	
35.16 Maternal immune activation	634
35.17 Maternal obesity and gestational diabetes	635
35.18 Maternal hypertension	
35.19 Maternal smoking	636
35.20 Alcohol	637
35.21 The female reproductive microbiome	
35.22 Conclusion	
Dafarances	

	Microbiome studies and twin research 649 on Sung, Hang A. Park, Soo Ji Lee
	Basic concepts of the microbiome and microbial analysis:
	what are the differences between classical microbiology
	and microbiome studies?649
36.2	Analytic approaches in microbiome studies652
36.3	Assessing taxonomic composition, function, and diversity
	of microbial community652
36.4	Microbiome associations with human diseases and
	the application of the knowledge to the treatment654
36.5	Twin research for microbiome studies
36.6	Summary and conclusion660
Refe	rences660
CHAPTER 37	Chromosomal anomalies, monogenetic diseases,
Olivi IER O	and leukaemia in twins
	Haltrich, Anna Lengyel
	Genetic background
	Mechanisms of twin discordance
	Postzygotic chromosomal nondisjunction and chromosomal
	mosaicism
37.4	Different levels of triplet repeat expansion
	Postzygotic point mutations
	Skewed X-inactivation
	Other epigenetic mechanisms
	Copy number variations (CNVs)674
	The value of twin studies in leukaemia research
	e abbreviation list
	rences
SECTION 8	Conclusion687
Adam D. Tarnoki	, David L. Tarnoki, Jennifer R. Harris, Nancy L. Segal
Summary and co	ncluding statement689
•	urces
* *	693

Contributors

Catarina Almqvist

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden

Juko Ando

Keio Univerity, Tokyo, Japan

Meike Bartels

Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands

Munkh-Erdene Bayartai

The University of Sydney, Charles Perkins Centre, Sydney School of Health Sciences, Faculty of Medicine and Health

Christopher R. Beam

University of Southern California, Department of Psychology

Adriene M. Beltz

Department of Psychology, University of Michigan, MI, United States

Sheri A. Berenbaum

Department of Psychology, The Pennsylvania State University, University Park, PA, United States; Department of Pediatrics, The Pennsylvania State University, Hershey, PA, United States

Dorret I. Boomsma

Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands

Isabell Brikell

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden

Minh Bui

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia

Lucas Calais-Ferreira

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia

Kaare Christensen

The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark

Robin P. Corley

Institute for Behavioral Genetics, University of Colorado Boulder, CO, United States

Victoria K. Cortessis

Department of Population and Public Health Science, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Obstetrics & Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States

Wendy Cozen

Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California at Irvine, Orange, CA, United States; Department of Pathology, School of Medicine, University of California at Irvine, Orange, CA, United States; Chao Family Comprehensive Cancer Center, University of California at Irvine, Orange, CA, United States

Jeffrey M. Craig

Environmental & Genetic Epidemiology Research, Molecular Immunity, Royal Children's Hospital, Parkville, VIC, Australia; IMPACT Institute, School of Medicine, Deakin University, Geelong, VIC, Australia

Lisabeth Fisher DiLalla

Southern Illinois University School of Medicine

David L. DiLalla

Southern Illinois University Carbondale

Conor V. Dolan

Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, and Amsterdam Public Health (APH), Amsterdam, The Netherlands

James G. Dowty

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia

Jeremy A. Elman

Department of Psychiatry, University of California San Diego; Center for Behavior Genetics of Aging, University of California San Diego

Vivienne F.C. Esser

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia

Paulo H. Ferreira

The University of Sydney, Charles Perkins Centre, Sydney School of Health Sciences, Faculty of Medicine and Health

Deborah Finkel

Department of Psychology, Indiana University Southeast, United States; Institute for Gerontology, School of Health and Welfare, Jönköping University, Sweden

Irene Giardina

Department of Obstetrics and Gynecology, Centre of Perinatal and Reproductive, Medicine, University of Perugia, Italy

Fiona A. Hagenbeek

Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

Irén Haltrich

2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary

Aino Heikkinen

Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland

John L. Hopper

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia

Jouke-Jan Hottenga

Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, and Amsterdam Public Health (APH), Amsterdam, The Netherlands

Yoon-Mi Hur

College of General Education, Kookmin University, Seoul, South Korea

Matthew R. Jamnik

Southern Illinois University Carbondale

Kaushalva Javaweera

Institute for Research & Development in Health & Social Care

Jaakko Kaprio

Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland

Alice J. Kim

University of Southern California, Department of Psychology

Esther Lam

Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California at Irvine, Orange, CA, United States; Chao Family Comprehensive Cancer Center, University of California at Irvine, Orange, CA, United States

Henrik Larsson

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden; School of Medical Sciences, Örebro University, Sweden

Soo Ji Lee

Genome and Health Big Data Lab, Graduate School of Public Health, Seoul National University, Seoul, Korea; Institute of Health and Environment, Seoul National University, Seoul, Korea

Anna Lengyel

2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary

Shuai Li

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia

Paul Lichtenstein

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

Levente Littvay

Central European University

John C. Loehlin

University of Texas at Austin, Department of Psychology, Austin, TX, USA

Yuk Jing Loke

Environmental & Genetic Epidemiology Research, Molecular Immunity, Royal Children's Hospital, Parkville, VIC, Australia

Sara Lundgren

Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland

Thomas M. Mack

Department of Population and Public Health Science, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States

Sue Malta

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia

Riley L. Marshall

Southern Illinois University Carbondale

Nicholas G. Martin

Genetic Epidemiology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia

Matt McGue

The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Psychology, University of Minnesota, Minneapolis, MN, United States

Sarah E. Medland

Mental Health & Neuroscience Department, QIMR Berghofer Medical Research Institute, QLD, Australia

Brittany L. Mitchell

Mental Health & Neuroscience Department, QIMR Berghofer Medical Research Institute, QLD, Australia

Elena Cristina Mitrea

Lucian Blaga University of Sibiu

Namitha Mohandas

Environmental & Genetic Epidemiology Research, Molecular Immunity, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; IMPACT Institute, School of Medicine, Deakin University, Geelong, VIC, Australia

José J. Morosoli

Mental Health & Neuroscience Department, QIMR Berghofer Medical Research Institute, QLD, Australia

Julia Métneki

Retired, Twin Researcher, Foundation of Hungarian Twin Registry; Hungarian Twin Registry, Budapest, Hungary

Tuong L. Nguyen

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia

Francisca J. Niculae

Department of Psychology, California State University, Fullerton, CA, United States

Veronika Odintsova

Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, and Amsterdam Public Health (APH), Amsterdam, The Netherlands; National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of the Russian Federation, Moscow, Russia

Miina Ollikainen

Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland

Juan R. Ordoñana

Department of Human Anatomy and Psychobiology, University of Murcia, Murcia Institute for BioHealth Research (IMIB-Arrixaca-UMU), Murcia, Spain

Emily Pali

Southern Illinois University Carbondale

Matthew S. Panizzon

Department of Psychiatry, University of California San Diego; Center for Behavior Genetics of Aging, University of California San Diego

Hang A. Park

Genome and Health Big Data Lab, Graduate School of Public Health, Seoul National University, Seoul, Korea; Department of Emergency Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Korea

Nancy L. Pedersen

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden; Department of Psychology, University of Southern California, United States

Holly T. Pham

Department of Psychology, The Pennsylvania State University, University Park, PA, United States

Tinca J.C. Polderman

Amsterdam UMC, Vrije Universiteit Amsterdam, Child and Adolescent, Psychiatry & Psychosocial Care, Amsterdam Public Health; Vrije Universiteit Amsterdam, Clinical and Developmental Psychology, Amsterdam, The Netherlands

René Pool

Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

András Pári

Pázmány Péter Catholic University (PPKE), Maria Kopp Institute for Demography and Families (KINCS), Budapest, Hungary

Monica Rankin

International Council of Multiple Birth Organisations (ICOMBO)

Gian Carlo Di Renzo

Department of Obstetrics and Gynecology, Centre of Perinatal and Reproductive, Medicine, University of Perugia, Italy

Chandra A. Reynolds

Department of Psychology, University of California – Riverside, United States

Maryam Salehi

Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California at Irvine, Orange, CA, United States; Chao Family Comprehensive Cancer Center, University of California at Irvine, Orange, CA, United States

Nancy L. Segal

California State University, Fullerton and Director of the Twin Studies Center, CA, USA; Department of Psychology, California State University, Fullerton, CA, United States

Karri Silventoinen

Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland

P. Eline Slagboom

Leiden University Medical Centre, Leiden, The Netherlands

Gary Steinman

Department of Obstetrics & Gynecology, Hadassah Hospital—Hebrew University, Jerusalem, Israel

Garth Stephenson

IMPACT Institute, School of Medicine, Deakin University, Geelong, VIC, Australia

Athula Sumathipala

Institute for Research & Development in Health & Social Care; School of Medicine, Faculty of Medicine & Health Sciences, Keele University

Joohon Sung

Genome and Health Big Data Lab, Graduate School of Public Health, Seoul National University, Seoul, Korea; Institute of Health and Environment, Seoul National University, Seoul, Korea

Carole Tafforin

Ethospace, Research and Study Group in Human and Space Ethology, Toulouse, France

Adam D. Tarnoki

Medical Imaging Centre, Semmelweis University, Hungarian Twin Registry, Budapest, Hungary

David L. Tarnoki

Medical Imaging Centre, Semmelweis University, Hungarian Twin Registry, Budapest, Hungary

Valentina Tosto

Department of Obstetrics and Gynecology, Centre of Perinatal and Reproductive, Medicine, University of Perugia, Italy; Department of Obstetrics and Gynecology, Giannina Gaslini Children's Hospital, Genova, Italy

Valentina Tsibizova

Almazov State Perinatal Research Centre, St Petersburg, Russia

Peter Variassy

Retired, Chief Physician, Medical Historian

Eero Vuoksimaa

Institute for Molecular Medicine Finland, University of Helsinki, Finland

Gonneke Willemsen

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

Yen Ting Wong

IMPACT Institute, School of Medicine, Deakin University, Geelong, VIC, Australia

Eco de Geus

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

Lianne P. de Vries

Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands

Jenny van Dongen

Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands

Margot P. van de Weijer

Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands

Editor Biographies

Dr Adam D. Tarnoki is an assistant professor, radiologist, and twin researcher at Semmelweis University Medical Imaging Center and Department Head, Department of Radiology at National Institute of Oncology, Budapest, Hungary. He is a founding member of the Hungarian Twin Registry. He has presented more than 200 international lectures and has authored over 150 publications. He is a board member of the Hungarian Society of Radiologists and teaches radiology in English, German, and Hungarian at Semmelweis University. Dr. Tarnoki serves as vice-president of the Hungarian Medical Association of America Hungary Chapter. He has also served as a member of the local organizing committee and Faculty of the 3rd World Congress on Twin Pregnancy and the 15th Congress of the International Society for Twin Studies (ISTS) in Budapest, Hungary, 2014, and the local host of the 19th International Congress on Twin Studies hold online in November 2021. He serves as deputy editor-in-chief of the *Hungarian Radiology Journal*, and he is the president of the International Society of Twin Studies (ISTS) since 2022.

Dr David L. Tarnoki is an assistant professor, radiologist, and twin researcher at Semmelweis University Medical Imaging Center and Head of Oncologic Imaging Diagnostic Center, National Institute of Oncology, Budapest, Hungary. He is a founding member of the Hungarian Twin Registry and has presented more than 200 international lectures and authored over 150 publications. He is the board member of the Hungarian Society of Radiologists and teaches radiology in English, German, and Hungarian at Semmelweis University. Dr. Tarnoki serves as secretary of the Hungarian Medical Association of America Hungary Chapter and is a member of the Academy of Young Researchers, Hungarian Academy of Sciences. He has also served as a member of the local organizing committee and Faculty of the 3rd World Congress on Twin Pregnancy and the 15th Congress of the International Society for Twin Studies (ISTS) in Budapest, Hungary, 2014, and the local host of the 19th International Congress on Twin Studies hold online in November 2021. He is the secretary of the International Society of Twin Studies (ISTS) since 2022.

Dr Jennifer R. Harris is currently a research director at the Centre for Fertility and Health at the Norwegian Institute of Public Health in Oslo, Norway. She has interdisciplinary training in life-span development and genetics. She has been conducting twin research throughout her academic career. She is the past president of the International Society for Twin Studies, a recipient of the James Shields Award for outstanding research in behavioral genetics, and is the scientific director of the Norwegian Twin Registry. Dr. Harris has a broad commitment to the wider scientific community and serves on several expert panels, boards, steering groups, scientific advisory committees, and editorial boards.

xxxii Editor Biographies

Dr Nancy L. Segal is currently a professor of psychology at California State University, Fullerton, and Director of the Twin Studies Center. She has authored over 250 scientific articles and book chapters, as well as seven books on twins, most recently, Deliberately Divided: Inside the Controversial Study of Twins and Triplets Adopted Apart. Her 2012 book, Born Together-Reared Apart: The Landmark Minnesota Twin Study, won the 2013 William James Award from the American Psychological Association. Dr. Segal has received several international awards including the James Shields Award for Lifetime Contributions to Twin Research (International Society for Twin Studies) and the International Making a Difference Award (Multiple Births Canada). She is also the 2016 recipient of the prestigious Wang Family Excellence Award from California State University. Dr. Segal has contributed to national and international media, including the New York Times and the Washington Post. She has been a frequent guest on national and international television and radio programs, such as the Today Show, Good Morning America, The Martha Stewart Show, the Oprah Winfrey Show, The Forum (BBC), and the Hidden Brain National Public Radio.