Electrocyclization and Unexpected Reactions of NonStabilised $a, \beta: y, \delta-U n s a t u r a t e d ~ A z o m e t h i n e ~ Y l i d e s . ~$ Experimental and Theoretical Study.

Journal:	SYNTHESIS			
Manuscript ID	SS-2021-11-0713-ST.R1			
Date Submitted by the				
Author:		n/a	Complete List of Authors:	Molnar, Istvan; Westfalische Wilhelms Universitat Munster, Institute for Organic Chemistry Mucsi, Zoltán; Femtonics Inc., Chemistry; University of Miskolc, Department of Chemistry Kovács, Ervin; Research Centre for Natural Sciences Institute of Materials and Environmental Chemistry, Polymer Chemistry research group; Femtonics Inc., Nyerges, Miklós; Servier Research Institute of Medicinal Chemistry, Early Process Development
---:	:---			
Keywords:	alkaloids, azomethine ylide, dihydro-5H-dibenzo[c,e]azepine, electrocyclic reactions, NICS			
Abstract:	Versatile, two-step synthesis of dihydro-dibenzo[c,e]azepine, carbazole derivatives and other alkaloid type drug-like scaffolds, by in situ generated azomethine ylide induced intramolecular electrocyclization reaction from commercially available materials are presented. The reaction mechanisms of transition metal-free carbon-carbon bond formation and the role of the kinetic control, resulting in the good regioselectivity, were confirmed by theoretical calculations.			

Electrocyclization and Unexpected Reactions of Non-Stabilised $\alpha, \beta: \gamma, \delta$ Unsaturated Azomethine Ylides. Experimental and Theoretical Study.

István G. Molnár ${ }^{1}$
Zoltán Mucsi ${ }^{2,3}$
Ervin Kovács
Miklós Nyerges ${ }^{2,4}$

${ }^{1}$ Servier Research Institute of Medicinal Chemisrty, 7 Záhony
utca-, H-1031, Budapest, Hungary,
${ }^{2}$ Femtonics Research Institute, 59 Túzoltó utca, H-1094, Budapest, Hungary
${ }^{3}$ Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc, Hungary
${ }^{4}$ Institute of Materials and Environmental Chemistry, Research
Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117,
Budapest, Hungary
kovacs.ervin@ttk.hu, miklos.nyerges@servier.com
This paper is dedicated to professor Ferenc Fülöp.

Received:
Accepted:
Published online:
DOI:
Abstract Versatile, two-step synthesis of dihydro-dibenzo[c,e]azepine, carbazole derivatives and other alkaloid type drug-like scaffolds, by in situ generated azomethine ylide induced intramolecular electrocyclization reaction from commercially available materials are presented. The reaction mechanisms of transition-metal-_free carbon-carbon bond formation and the role of the kinetic control, resulting in the good regioselectivity, were confirmed by theoretical calculations.

Key words alkaloid, azomethine ylide, dihydro-5H-dibenzo[c,e]azepine, electrocyclization, NICS

The rigid key-lock hypothesis has been outdated in the course of the modern pharmaceutical research and is looking for looser and more flexible drug candidates. The rigid and constrained conformations of 4,5 and 6 membered unsaturated rings (containing a heteroatom) limits their effectivity for larger and more dynamic binging packets on the protein side. In most of the cases, these binding pockets were not "designed" for drug-like cyclic organic molecules, of that require adpoptancy to bind. On the other hand, the larger ring motifs (ring size larger than 10) have already exhibit too many flexible bonds and provides a too large available conformational space for a precise binding. The 7 and 8 membered unsaturated rings, like azepanes and azocanes, however, comply with these criteria, because they have limited number of rotatable bonds, but furnish the required flexibility. Heterocycles containing azepine ring anellated to indoles can be found in many important alkaloid families presented a few example in Figure 1 \underline{A}, while their synthetic variants are of uttermost importance to the pharmaceutical industry due to their diverse biological activities and larger freedom to operate. ${ }^{1}$

In spite of the pharmacological needs, the available synthetic methods are still not routine. The 1,3-dipolar cycloaddition of azomethine ylides is a versatile and efficient tool for the construction of five-membered nitrogen heterocycles. ${ }^{2}$ When the
azomethine ylide is conjugated with double bonds, other pericyclic pathways become available, including 1,5- or 1,7electrocyclizations, with the latter 8π-electron process having only recently emerged as a potentially useful method for the formation of seven-membered heterocycles. ${ }^{3}$

Figure 1 (A) Representative bioactive natural alkaloids and drug candidate molecules with a indolo-azepine scaffold. (B) Main types of scaffolds prepared in this project.

As a continuation of these studies, our aim was to show the generality of these methods as useful tools for the annelation of benzazepine ring to different heterocyclic derivatives in a single step (Figure 1B). Earlier we have already shown that this allows for a not only elegant but also efficient way of synthesizing isoquinoline, ${ }^{4} \beta$-carboline ${ }^{5}$ and some indole ${ }^{6}$ fused azepine ring systems. In this paper, we describe the synthesis of some hitherto unknown heterocycles using the 1,7-electrocyclisation of conjugated azomethine ylides on indole (Ind), benzofuran (BfF) and benzothiophene (Bth) along with the observations of alternative reaction pathways which also resulted in the formation of new heterocyclic scaffolds.

Herein we report new, two-step reactions to indole fused N heterocycles from bromo indoles, along with the results of quantum chemical calculations, for the confirmation of the proposed reaction mechanism.

The starting materials 3-5 were prepared from the commercially available bromoindoles, 5-bromobenzofuran and 5bromobenzothiophene derivatives (1a-f) using 2-formyl phenyboronic acid (2) via Suzuki coupling (Scheme 1).

Scheme 1 Synthesis of indolylbenzaldehydes and their analogues by Suzuki coupling reactions.

Our initial study applied the generation of non-stabilised azomethine ylide 6 by the decarboxylation method, involving the condensation step of the corresponding aldehyde with amino acid. In the first experiment, a mixture of sarcosine and 3a benzaldehyde was heated under reflux in p-xylene (the water formed was removed by a Dean-Stark trap) for three hours. (Scheme 2). ${ }^{7}$

Scheme 2 Plausible mechanism of the formation of 1,4,5,6-tetrahydrobenzo[5,6]azepino[3,4-e]indole (8a) from 3a and sarcosine.

Under these conditions the formed $\alpha, \beta: \gamma, \delta$-conjugated azomethine ylides 6 reacted in a 1,7-electrocyclisation followed by a 1,5-sigmatropic hydrogen shift giving rise to the formation of the expected benzazepine derivative 8a which was obtained after column chromatography in good yield (74%, Scheme 2).

Similar reactions were carried out using 3b-d aldehydes in the same conditions. In addition, N-benzylglycine as a reactant was also used. The formation of tThe desired benzazepine derivatives 8a-g which were obtained after chromatography in good yields (Scheme 3).

Scheme 3 Synthesis of azepines 8a-f via a 1,7-electrocyclisation of $\alpha, \beta: \gamma, \delta-$ conjugated azomethine ylides.

However, when 3a and N-benzyl glycine were reacted under the same conditions three products were formed ($8 \mathrm{~g}, \mathbf{9}, \mathbf{1 0}$) and isolated. The expected azepine derivative $\mathbf{8 g}$ were prepared as the major product in 41% yield, together with two regioisomeric byproducts 9 and 10 indeno[1,2-f]indoles ${ }^{8}$ in 8% and 4% isolated yields after preparative HPLC purification, respectively (Scheme 4) Reactions of 3a with secondary amino acids, such as proline, pipecolinic acid and 1,3-thiazolidine-4-carboxylic acid, gave a complex mixture of unidentified products.

Scheme 4. Proposed mechanism of the formation of 1,9-dihydroindeno[1,2-f]indole coproducts (9 and 10) from in situ generated azomethine ylide 11b

A very similar reactivity pattern was observed with the regioisomeric $2-(1 H$-indol-5-yl)benzaldehyde 4 . The reaction with sarcosine provided the expected product 12a in moderate yield and some interesting by-products 13a and 14a in traces. However interestingly in the presence of N -benzyl glycine, the 13b and 14b indeno[1,2-f]indoles became the main products (23% and 31%, respectively), while the expected benzazepine derivative 12b was only the minor component (9\%, Scheme 5).

Scheme 5 The reaction of 2-(1H-indol-5-yl)benzaldehyde with sarcosine, N -benzyl-glycine or 1,3-thiazolidine-4-carboxylic acid.

The reaction with the cyclic 1,3-thiazolidine-4-carboxylic acid again gave the benzazepine type product 15, albeit in poor isolated yield (7\%, Scheme 6).

Scheme 6 The reaction of 2-(1H-indol-5-yl)benzaldehyde with 1,3-thiazolidine-4-carboxylic acid

Most surprisingly, the 2-(1H-indol-4-yl)benzaldehyde 5 showed totally different behavior in the reactions with the above-applied amino acids, under the same conditions. N-benzyl-glycine provided only a complex mixture of products, which contained only traces of the expected product 16 (proved by HPLC-HRMS $\mathrm{MW}(\mathrm{M}+\mathrm{H})=325.1686 \mathrm{Da}$, but not isolated) from 1,7electrocyclisation process, while with the secondary amino acids regioselective formations of 17 and 18 were observed in good to moderate yields (65% and 37%), which are hitherto unknown heterocycles containing a very unusual eight-membered central core with four fused rings (Scheme 7).

Before attempting to propose any plausible explanation for the differences observed in the reactivity of aldehydes 3-5, we aimed
at proving whether or not the formation of the supposed azomethine intermediate can take place under the reaction conditions used. For this, we repeated the reactions with sarcosine in the presence of a dipolarophile trapping agent, N-phenylmaleimide, while keeping the reaction conditions unchanged

Scheme 7 Ring closing reaction of azomethin ylide formed in situ from 2-(1H-indol-4- y) benzaldehyde (5) and amino acids.

In all cases, various diastereomeric mixtures of the expected endoand exo-cycloadducts (19 and 20) were formed in good yields except for one: the $2-(1 \mathrm{H}$-Indol-4-yl)benzaldehyde (5) gave again a complex mixture of products in contrast to the other four analogues (Scheme 8).

Based on these observations, we can suggest that the formation of 8a-g, 12a-b goes evidently through a conjugated azomethine ylide intermediate stabilized by a 1,7-electrocyclisation pathway (as described in Scheme 2), which proceeds in all cases in a regioselective manner. The concurrent occurrence of the 1,5 electrocyclisation in such reactions is known, but not in this manner, with the exclusion of two atoms of the azomethine ylide. The pair of products $(9,10$ and 13,14$)$ most probably arise from a non-regioselective 1,5-electrocyclisation process (Scheme 8).

In the reactions of $2-(1 \mathrm{H}$-indol-4-yl)benzaldehyde (5) with amino acids even involvement of the azomethine ylide intermediate cannot be justified, most probably due to the steric proximity of the indol-3 position during the condensation reaction of the aldehyde function a cationic intermediate was trapped, resulting in the formation of the unexpected eight-membered ring.

3a,c,d, 4

p-xylene
reflux

45\%, 19a

42\%, 20a

42\%, 19b

44\%, 20b

46% 19c

45\%, 20c

38% 19d

39\%, 20d

Scheme 8 The reaction of N -phenylmaleimide and the corresponding ylides formed in situ from sarcosine and 2-arylbenzaldehydes.

Theoretical study

All the structures wimized by $16^{2}=$ at Mo6-2X/6-311/G/d, M) level of theory ${ }^{10}$ with IEF-PCM implicit solvent method $(\varepsilon=12.2)^{11} \overline{\bar{F}}$

In order to explain the surprising formation of some selected unexpectedthe 5 - and 8 -membered cyclic products t_{2}, such as $\mathbf{9 , 1 0}$ and 1817), the reaction mechanisms of the transformations offrom the azomethine ylide intermediates $\mathbf{1 1 b}(R=P h, S c h e m e 4)$ and 11a $(R=H)$ to all the theoretically possible products were discovered scouted systematically-by theoretical methods. Such an extensive and comprehensive theoretical study has not been published in the literature yet, comparing the alternate and competing routes. The formations of 9,10 and 17 avoid the general [1,7] pericyclic mechanism. All the structures were optimized by G16 ${ }^{9}$ at M06-2X /6$31++G(d, p)$ level of theory ${ }^{10}$ with IEF-PCM implicit solvent method $(\varepsilon$ $=12.2)^{11}$. Although, the rate determining step of the overall process is the formation of the azomethine ylide (the elimination of the CO_{z}), which demands the elevated reaction temperature, this part of the mechanism was skipped from this study, since it is already discussed widely and published in the literature ${ }^{12}$.

The product distribution of the process, however, is determined by the enthalphy difference between the transition states (TSs) of the various ring closure steps; starting form the conjugated azomethine \#lides from 11a, 11b. These species take part in a complex equilibria, as illustrated in Scheme 9. In this scheme, sStructures in type-A (11Aa; 11Ab) represent the usual structural variationstypical forms of azomethine ylides (11A-1, 2, 3). However, an alternate protonation equilibrium were-shlould be also considered, where the proton of the NH of-indole NH protonates-migrates to one of the side-chain carbon atoms at azomethin ylide, resulting 11Ba and 11Bb as zwitterionic structures (Type-B, 11B-1, 2, 3). Noteworthy, that in the case offor $\mathrm{R}=\mathrm{H}(11 \mathrm{a})$, the most stable form is 11Ba-1, in contrast to the expected form (11Aa-1 $\equiv \mathbf{1 1 A a}-2$), which is only the second lowest with a significant enthalpy difference (see Table 1). The situation is changed for the benzyl derivative $R=B n(11 b)$, where the two most stable forms are the expected to be 11Ab-2 and the zwitterionic form $\mathbf{1 1 B b}-1$ is less stable from the aspect of enthalpy
values. The-All the possible 7 - and 5 -membered products can be derived from the different forms of 11a and 11b via the corresponding ring closure steps through ROUTEs I-IV, represented by the arrows in Shcheme 11 and 12. Each of these routes involve the ring closure towards both the position 4 and 6 of the indole ring.

In the case of the reaction with sarcosine, the ROUTE-I represents the generally accepted mechanism of the $[1,7]$ pericyclic ring closure reaction, via low enthalpy transition states (TS) to position 4 and 6 . Subsequently, the forming intermediates 22A1 and 22A2 take place in $[1,5]$ sigmatrope hydride shifts, resulting the products (8a, 23a). The activation enthalpy of the ROUTE-1-4 is more preferred by ca. 25 $\mathrm{kJ} \mathrm{mol}^{-1}$, allowing the formation of the isomer 8a. Noteworthy, that the theoretically possible ROUTE-III provides somewhat higher but even low enthalpy transitions, which cannot be ignored beside ROUTE-1.

Scheme 9 The complex preequilibrium of the azomethine ylide intermediates of $11 \mathrm{Aa} / 11 \mathrm{Ab}$ and $11 \mathrm{Ba} / 11 \mathrm{Bb}$ formed from 3 a respectively. The thermodynamic data are given in Table 1.

Table 1. The ΔH and $\Delta G\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ values of the preequilibrium comp_uted for $11 \mathrm{Aa} / \mathbf{1 1} \mathrm{Ab}$ and $11 \mathrm{Ba} / \mathbf{1 1 B b}$. The energy values were calculated at M06$2 X / 6-31++G(d, p) / / P C M(T H F))$ level of theory level of theory.

		11A		11B	
		ΔH	ΔG	ΔH	ΔG
$\mathrm{a} ;$	1	17.3	18.3^{a}	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$
	2	17.3	18.3^{a}	26.3	29.7
	3	49.2	45.1	18.1	21.6
$\mathrm{~b} ;$	1	33.1	22.6	17.1	8.2
	2	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$	29.5	30.8
	3	33.4	22.1	34.9	34.8

Reaction with sarcosine (ROUTE-I in Scheme 10 and Table 2) represents the generally accepted mechanism of the [1,7] pericyclic ring closure reaction, via low enthalpy transition states (TS) to position 4 and 6. The calculated Nucleus Independent Chemical Shift (NICS) ${ }^{13}$ values are also confirming the aromatic character of the TSs. Subsequently, intermediates 22A1 and 22A2 take place in a $[1,5]$ sigmatrope hydride shifts, resulting the expected products (8a, 23a). From regioselectivity aspect, the activation enthalpy of the ROUTE-$\mathrm{I}-4$ is more preferred by ca. $25 \mathrm{~kJ} \mathrm{~mol}^{-1}$, allowing the selective formation of the isomer 8a against 23a, in agreement with the experiments. This regioselectivity can be explained by the more preserved aromaticity of the indole ring in the TS-A1a compared to TS-A2a. Noteworthy, that the analogues zwitterionic [1,7] pericyclic ring closure, ROUTE-III provides somewhat higher, but even low enthalpy transitions to the same products, which may be considered as an alternative of ROUTE-I. Comparing the standard formation of the pericyclic product $\mathbf{8 a}$ with the formation of the -5 -member isomers (24a and 25a), via ROUTE-II, all ROUTE-II and ROUTE-IV exhibit significantly higher enthalpies of activations (TSB), due to the non-aromatic character (see nearly zero NICS values). However, the zwitterionic ROUTE-IV exhibits lower TS values, but these are higher than ROUTE-I and III. for the related TSs, excluding their probability This is in agreement with in the mechanism and confirming again the experimental findings about the practically exclusive formation of 8 a .

In the case of the reaction with-benzyl glycine ($R=P h$), the ROUTE-I also represents the normal $[1,7]$ ring closure mechanism, which results analogue aromatic TS structures and related enthalpies, preferring the formation of product 8 g against the regioisomers 23 b , 9 and 10. The regioselectivity of the azepine formation (8 g өfvs 23 b) also depends on the transition statestwo TSs, preferring 8 g . The-he calculated enthalpies of the non-aromatic TSs via ROUTE-II from the zwitterionic 11B-1, belong to the formationtoward-of the two 5member products via ROUTE-II are quite high, as expected. However, here ROUTE-IV, which leadsleading also to -the 5-member products $(9,10)$ from the zwitterionic intermediate 11B-1, already provides equally-low enthalpies of activation and these values to really compete with ROUTE-I-_ and III. This result confirms the parallel formation of $8 \mathrm{~g}, 9$ and 10 . The formation (8 or 23) also depends on the transition states. In the case of Route $1-4$ with much lower activation energy $(\Delta G-+46.5 \mathrm{~kJ} / \mathrm{mol})$ the indole ring remains more aromatic than in Route $1-6$ ($\Delta G-+71.5$ $\mathrm{kJ} / \mathrm{mol})$, which explain the corresponding TSs (Scheme 10, Table 2).

ConsideringComparing the TSs of ROUTE-I- and $I+\underline{V}$, they undoubtedly finely explain the experimentally observed product distribution. The- somewhat higher activation enthalpies of TSs in ROUTE-III IV already represents somewhat higher activation enthalpies, but they could be consideredrepresent the minor products. Theoretically, the ring closure reaction at the benzylic C atom via ROUTE-V in Scheme 11 and Table 2 is also possibility, however, they showed somewhat higher activation enthalpies, then ROUTE-I and ROUTE-IV. According to the activation enthalpiesy, the related products $(\mathbf{2 6}, \mathbf{2 7})$ ean-may form as a small amount sideproducts, which were not identified experimentally form the complex reaction mixtures.
One of the most reliable confirmations of the pericyclic reaction is the probe of the aromatic character, which can be easily measured by the method of Nucleus Independent Chemical Shift (NICS) $)^{13}$. It places a probe atom (ghost atom) into the center of the ring of the TS structure and its calculated chemical shift (in ppm) indicates the existence of the aromatic ring current (it is -9.4 ppm for benzene at the given level of theory). Due to the fact, that in this case the rings in TSs is-are not planar, rather a cylinder shaped, so not one, but 11 probe atoms were placed on the axes of the cylinder, passing through the plane. The given NICS values represents the maximal value among them. For [1,7] pericyclic processes (ROUTE I and V), the NICS valueas are lower than -10 ppm , referring to their pure aromatic character as expected. In contrast to that, t t he moderate low values between 0 and -4 ppm , calculated for 5 -member ring formation in TSs (ROUTE II, ROUTE IV) prove the absence of the aromatic or pericyclic character. Here ${ }_{\iota j}$ the ring closure is rather a classical electrophilic attact of the carbocation. Not suprisinglyInterestingly, ROUTE III also belongs to the previous category. In summary, the pericyclic ring closure compete with the classic electrophilic ring closure.
In order to exclude the deprotonation of the indole NH and prove the hypothesis about the competing ROUTEs, the N-Me indole derivative (3b) was also studied experimentally. The The experimentally registeredobserved exclusive formation of $\mathbf{8 b}$ from the $\mathrm{N}-\mathrm{Me}$-indole derivative ($\mathbf{3} \mathbf{b}$) undoubtedly confirm that the absence of the zwitterionicour hypothesis about the unusual zwitterionic-type ring closure mechanism (ROUTE-IV) excludes the formation of 5-member productsfor benzyl glycine derivative. Due to the N -Me substitution of $\mathbf{8 b}$, there is no option for the indole
deprotonation, so the azomethine ylide remain the dominant intermediate, leading to exclusively to-the expected 7-member product 8b via ROUTE-I

For the sake of simplicity, only the ring closure reaction of compound 5 with pipecolinic acid was studiedis discussed by theoretical tools in a more straightforward manner(Scheme 12 and Table 33) $)_{L^{-}}$The the reaction with other amino acids, such as L-thiaproline- results leads to analogues conclusions. In this case, t7he preliminary forming azomethine ylides also takes part in an equilibrium, as showed earlier. The expected 7-member product (29) can be derived from the usual intermediate via [1,7] pericyclic ring closure reaction (ROUTE-VI-5), however, the calculated activation enthalpy was higher $+50 \mathrm{~kJ} \mathrm{~mol}^{-1}$), in contrast with the previous isomers. It can be explained with-by the higher enthalpy TS and intermediate, which are less stable, compared to their isomers (Table 3)lower aromatic character of the indole in the intermediate state. Interestingly enough, that the direct formation of the 8-membered product (17) via ROUTE-VI-3 can not be expectedexplain, due to the formation of a dead end stranged multicycle intermediate which leads to a dead end. The alternate route, which leads toproviding the 8-member
product (ROUTE-VII-3), starts from a-the stable zwitterionic intermediate 28B and goes through a very low activation barrier ($15.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$, Table 3), which undoubtedly explain the exclusive formation of the product 17 -, against 29 .

The calculated NICS values for the four routeROUTE-VI and VII also explain the aromatic character.; Obviously, ROUTE-VI-5 is-is firmly obviousaromatic, but noteworthy, that ROUTE-VI-3 also exhibit high NICS value for at the center of the ring in TSs, in spite of the fact that it does not belong strictly to the classical pericyclic reaction. It seems to be rather a -a doubleconsecutive [3+2]-[3+2] cycloaddition.

In conclusion, a versatile and selective synthetic procedure were developdeddeveloped to provide novel molecular scaffolds by [1,7] ring closure for flexible protein biding sites as medchem target. Unexpected and, formally $[1,5]$ ring closure products were observed in selected cases, which compete with the usual $[1,7]$ pericyclic route. In order to understand the switching between the two reaction mechanisms ofto the 7 and 5 ring-closure reaction of aryl indoles, theoretical methods were used, proving explanations to the outcaome of the synthetic work.

Scheme $\mathbf{1 0}$ Detailed reaction mechanism of the transformation of 11Ba via ROUTE I and H-IV to synthetically isolated ($\mathbf{8 a}, \mathbf{8 g}, \mathbf{9}$ and $\mathbf{1 0}$) and hypothetical products ($\mathbf{2 3 a} \mathbf{, ~ 2 3 b}, \mathbf{2 4}$ and 25) in the presence of sarcosine or N -benzyl glycine. For computed values see Table 2 . The energy values were calculated at M06-2X $/ 6$ $31++G(d, p) / / P C M(T H F))$ level of theory level of theory.

Table 2. The computed themodynamic $\Delta H, \Delta G\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and $\Delta S\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ values of transition states (TS), intermediates (INT) and product states for ROUTE-I-V.

[^0]| | IV-6 | 42.2 | 35.3 | 23.2 | -12.5 | -17.9 | 18.0 | -162.2 | -156.2 | -20.0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | V-4 | 41.7 | 44.8 | -10.4 | 15.2 | 16.5 | -4.2 | -158.9 | -153.3 | -18.8 |
| | V-6 | 72.1 | 74.6 | -8.4 | 71.4 | 69.0 | 7.8 | -162.1 | -157.2 | -16.6 | |

Scheme 11. Detailed reaction mechanism of the transformation of 11 via ROUTE III and IV to synthetically isolated ($8 \mathrm{a}, 8 \mathrm{~g}, 9$ and 10) and hypothetical products (23a, 236,24 and 25) in the presence of sarcesine or N benzyl glycine. For computed values see Table 2 . The energy values were caleulated at $M 06-2 X / 6-31++G(d, p)$ HPCM(THF)) level of theory level of theory.

Scheme 12-11 Detailed reaction mechanism of the transformation of $\mathbf{1 1}$ via ROUTE V to hypothetical products $(\mathbf{2 6}, \mathbf{2 7})$ in the presence of N-benzyl glycine. For computed values see Table 2. The energy values were calculated at M06-2X $/ 6-31++G(d, p) / / P C M(T H F))$ level of theory level of theory.

Scheme 13 - 12 Detailed reaction mechanism of the transformation of 5 via ROUTE VI and VII to synthetically isolated (17) and hypothetical product (29) in the presence pipecolic acid. For computed values see Table 3. The energy values were calculated at M06-2X $/ 6-31++G(d, p)$ level of theory.

Table 3. The computed themodynamic $\Delta H, \Delta G\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and $\Delta S\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ values of transition states (TS), intermediates (INT) and product states for ROUTE-VI and VII. The energy values were calculated at M06-2X /6-31++G(d,p//PCM(THF)) level of theory.

ROUTE	Start			TS			INT			Product		
	ΔH	ΔG	ΔS	ΔH	ΔG	ΔS	ΔH	ΔG	ΔS	ΔH	ΔG	ΔS
VI-5	47.0	41.8	17.3	88.6	94.4	-19.3	47.0	41.8	17.4	-91.4	-85.2	-20.6
VI-3	47.0	8	. 3	271.7	278.3	-22.2	240.4	243.2	-9.3	-54.7	-49.5	-17.6
VII-5		0	0	89.7	96.3	-21.9	68.0	74.3	-20.9	-91.4	-85.2	-20.6
VII-3	0.0	0.0	0.0	15.3	17.7	-8.1	-	-	-	-54.7	-49.5	-17.6

In conclusion, a versatile and selective synthetic procedure were developdedto provide novel molecular scaffolds by [1,7] ring closure for flexible protein biding sites as medchem target Unex and, formaly $[1,5]$ ring closure products were ebsed in seleces, which with the usual [1,7] pericyclic route. In order to understand the switching between the two reaction mechanism of the ring-closure reaction of aryl indoles, theoretical methods were used, proving the outcame of the sym the worl

The experimental section has no title; please leave this line here.
IR spectra were recorded with a Bruker Tensor 27 FT-IR spectrophotometer ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO-d6 using TMS as an internal reference with a Bruker Avance III. spectrometer operating at 600 MHz and 125 MHz respectively ($1 \mathrm{H}-$, DEPTQ-, HSQC-, HMBC-, NOE-NMR). Highresolution MS spectra were measured by Agilent 6230 TOF LC/MS spectrometer. Elemental analysis was performed on FlashEA 1112 Elemanalyzer.

Synthesis of the hetaryl-benzaldehydes (3a-d, 4 and 5) - General procedure:

 The mixture of 15 mmol of the corresponding bromoarene ($\mathbf{1 a - 1 f}$), 3.44 g (22.95 mmol) of (2-formylphenyl)boronic acid (2), $0.34 \mathrm{~g}(0.46 \mathrm{mmol})$ of 1,1' bis(diphenilphosphino)-ferrocene-palladium(II)-chloride and $15.3 \mathrm{ml}(30.6$ mmol) of a 2 M aqueous solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 78 \mathrm{ml}$ of toluene and 24 ml of ethanol was refluxed for 1.5 h . After cooling, the reaction mixture was filtered through a pad of Celite and concentrated. The residue was taken up in 150 ml of dichloromethane and washed with water and brine, dried, and concentrated. The crude product was purified by column chromatography on silica gel with ethyl acetate - heptane eluent.2-(1H-Indol-5-yl)benzaldehyde (3a): 2.72 g (80\%) pale brown solid; IR: $3257,1650 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): 11.31 (bs, $1 \mathrm{H},-\mathrm{NH}$), 9.90 (s,1H, HC=O), 7.89 (dd, $J=7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.73(\mathrm{td}, J=7.5 \mathrm{~Hz}$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.60-7.50$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$, Ind-4 and 7), $7.45(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, Ind-2), $7.15(\mathrm{dd}, \mathrm{J}=8.3$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}$, Ind-6), 6.52 (m, 1H, Ind-3).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d d_{6}): 192.8 (CH), 147.4 (q), 136.1 (q), 134.1 CH), 133.8 (q), 131.7 CH), 128.4 (q), 128.2 (q), 127.5 (CH), 127.4 (CH), 127.1 (CH), $123.8(\mathrm{CH}), 122.3(\mathrm{CH}), 111.9(\mathrm{CH}), 102.0(\mathrm{CH})$.

HRMS $[\mathrm{M}+\mathrm{H}]+_{\text {found }}=222.0905, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}$ required 222.0918 .
2-(1-Methylindol-5-yl)benzaldehyde (3b): 2.61 g (72\%) pale brown solid
IR: $1648 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 9.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}$), 7.90 ($\mathrm{dd}, \mathrm{J}=7.5$ and 1.5 Hz , $1 \mathrm{H}, \mathrm{H}-6), 7.73$ (td, J = 7.5 Hz and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.60-7.55 (m, 3H, Ind-2, 4 and 7), 7.54 (t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.43 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.22 (dd, J = 8.2 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ind-6), 6.54 (m, 1H, Ind-3), 3.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$): 192.7 (CH), 147.2 (q), 136.5 (q), 134.1 (CH), 134.0 (q), 133.8 (CH), 1129.25 (q), 129.2 (q), 128.55 (CH), 128.5 (CH), 127.5 $(\mathrm{CH}), 123.8(\mathrm{CH}), 122.6(\mathrm{CH}), 110.3(\mathrm{CH}), 101.2(\mathrm{CH}), 33.1\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=236.1070, \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$ required 236.1070.

2-(1-Benzofuran-5-yl)-benzaldehyde (3c): 2.70 g , (81\%); pale yellow oil;
IR: $1683 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.89$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC=O}$), 8.10 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{Bf}-$ 2), 7.93 (d, $1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-6$), 7.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), $7.75-7.72$ (m, 2H, Bf-4 and 6), 7.61-7.56 (m, 2H, H-3, Bf-5), 7.38 (dd, J = 8.5 and $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.04$ (dd, $J=2.2 \mathrm{~Hz}$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-3$).
${ }^{13}$ C NMR (125 MHz, DMSO-d ${ }_{6}$): 192.4 (CH), 154.5 (q), 147.6 (CH), 145.9 (q), 134.3 (CH), 133.9 (q), 132.7 (q), 131.8 (CH), 128.2 (CH), 128.0 (q), 127.8 (CH), $127.0(\mathrm{CH}), 123.3(\mathrm{CH}), 111.7$ (CH), 107.4 (CH).

HRMS $[\mathrm{M}+\mathrm{H}]_{+_{\text {found }}}=223.0749, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}$ required 223.0759.

2-(1-Benzothiophen-5-yl)-benzaldehyde (3d): 2.93 g , (82%); pale yellow solid;

IR: $1682 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 9.91$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC=O}$), $8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 7.96-7.93 (m, 2H, H-5 and Bt-2), 7.87 ($\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-5$), 7.78 (t, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bt}-3$ and 4$), 7.54(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-6)$, $7.46(\mathrm{dd}, \mathrm{J}=8.2$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 192.4 (CH), 145.7 (q), 140.1 (q), 139.4 (q), 134.4 (CH), 134.0 (q), 133.8 (q), 131.7 (CH), 129.2 (CH), 128.4 (CH), 127.9 (CH), 126.7 (CH), 125.5 (CH), 124.6 (CH), 123.1 (CH).

HRMS $[\mathrm{M}+\mathrm{H}]_{\mathrm{f}_{\text {found }}}=239.0521, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{OS}$ required 239.0530 .

2-(1H-Indol-6-yl)benzaldehyde (4): 2.45 g (72\%); pale brown solid;
IR: $3260,1678 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 11.28$ (br s, $1 \mathrm{H}, \mathrm{NH}$,), 9.91 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}$), 7.90 $(\mathrm{m}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8,0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H},), 7.46(\mathrm{dd}, \mathrm{J}=3.2 \mathrm{~Hz}$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{J}=$ 8.0 and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 192.8 (CH), 147.1 (q), 136.3 (q), 134.2 (CH), 133.9 (q), 131.6 (CH), 130.4 (CH), 127.9 (q), 127.7 (q), 127.5 (CH), 127.2 (CH), $121.9(\mathrm{CH}), 120.5(\mathrm{CH}), 113.6$ (CH), $101.5(\mathrm{CH})$.

HRMS $[\mathrm{M}+\mathrm{H}]]_{\text {found }}=222.0907, \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}$ required 222.0918.

2-(1H-Indol-4-yl)benzaldehyde (5): $2.31 \mathrm{~g}(68 \%)$; brown solid;
IR: 3339, $1681 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 11.40(1 \mathrm{H}, \mathrm{bs},-\mathrm{NH}), 9.71(1 \mathrm{H}, \mathrm{bs}, \mathrm{HC}=\mathrm{O}), 7.95$ (d, J = $77.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.78(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.62-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and 4), $7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}$, Ind-7), $7.42(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}$, Ind-2), $7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=8.1$ and 7.2 Hz , Ind-6), $6.98(1 \mathrm{H}, \mathrm{dd}, 7.2$ and 1.8 Hz , Ind-5), $6.13(\mathrm{~s}, 1 \mathrm{H}$, Ind3).
${ }^{13}$ C NMR (125 MHz, DMSO- d_{6}): $\delta 192.3$ (CH), 145.2 (q), 136.2 (q), 134.5 (CH), 133.9 (q), 131.5 (CH), 129.3 (q), 128.2 (CH), 128.2 (q), 127.2 (CH), 127.0 (CH), 121.6 (CH), 121.6 (CH), 112.2 (CH), 100.2 (CH).

HRMS $[\mathrm{M}+\mathrm{H}]_{\mathrm{f}_{\text {found }}}=222.0912, \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}$ required 222.0918.

Reactions the aldehydes (3a-d, 4, 5) with amino acids - General procedure

The mixture of 1 mmol of the corresponding aldehyde and 3 mmol of sarcosine, N-benzyl-glycine, pipecolinic acid or 1,3-thiazolidine-4-carboxylic acid in 30 ml of p-xylene was refluxed for two hours. After cooling, the reaction mixture was filtered through a pad of Celite and concentrated. The crude product was purified by column chromatography on silica gel with methanol-dichloromethane eluent.

9-Methyl-1,4,5,6-tetrahydro-indolo[4,5-d][2]benzazepine (8a): 183 mg (74\%);
IR: $1439 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 11.28$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.52 (dd, $J=7.8$ and 1.1 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.47(\mathrm{dd}, J=7.8$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.49(\mathrm{dd}, \mathrm{J}=7.5$ and 1.3 Hz , $1 \mathrm{H}, \mathrm{H}-2$), 7.41 (t, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $7.40(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.33$ (td, J $=7.3$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.27(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 3.62$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2}-10\right), 3.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2}-8\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 142.5$ (q), 136.0 (q), 134.6 (q), 131.2 (q), 130.2 (CH), 129.0 (q), 128.6 (CH), 128.2 (CH), 127.0 (CH), 126.6 (CH), 125.2 (q), $121.6(\mathrm{CH}), 111.6(\mathrm{CH}), 100.3(\mathrm{CH}), 57.7\left(\mathrm{CH}_{2}\right), 53.0\left(\mathrm{CH}_{2}\right), 43.7\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{+_{\text {found }}}=249.1381, \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2}$ required 249.1391.

1,9-Dimethyl-1,4,5,6-tetrahydro-indolo[4,5-d][2]benzazepine (8b):

IR: $1682 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $7.53(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.52(\mathrm{~d}, \mathrm{~J}=78.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.46(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} .7$ and $\mathrm{H}-12), 7.34(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} .6), 7.33(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.66(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 3.84$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N} 1-\mathrm{Me}$), $3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-10\right), 3.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-8\right), 2.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ng}-\mathrm{Me})$.
${ }^{13}$ C NMR (125 MHz, DMSO- d_{6}): 142.4 (q), 136.5 (q), 135.0 (q), 131.4 (q), 130.9 (CH), 130.1 (CH), 129.2 (q), 128.5 (CH), 128.2 (CH), 127.1 (CH), 125.8 (q), 121.7 $(\mathrm{CH}), 109.8(\mathrm{CH}), 99.5(\mathrm{CH}), 57.8\left(\mathrm{CH}_{2}\right), 43.8\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=263,1551, \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}$ required 263,1550.

9-Methyl-1,4,5,6-tetrahydro-benzfurano[4,5-d][2]benzazepine (8c): 135 mg (54\%); yellow solid;

IR: $2785 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): 8.07 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 7.68 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2$), $7.54(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.48(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.47(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.42(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.38(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.24$ (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 3.56 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}-10$), 3.24 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}-8$), 2.38 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 154.2 ($\mathrm{q}, \mathrm{C}-1 \mathrm{a}$), 147.2 (CH, C-12), 141.2 ($\mathrm{q}, \mathrm{C}-$ 3b), 135.5 ($q, C-3 a$), 135.1 ($q, C-7 a), 130.2$ (CH, C-7), 128.6 (CH, C-5), 128.5 (q, $\mathrm{C}-10 \mathrm{~b}), 128.3$ (CH, C-4), 127.8 (CH, C-6), 127.3 (q, C-10a), 124.6 (CH, C-3), $111.2(\mathrm{CH}, \mathrm{C}-2), 106.1(\mathrm{CH}, \mathrm{C}-11), 57.5\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 53.0\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 43.6\left(\mathrm{CH}_{3}\right)$. HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=250.1226, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}$ required 250.1231.

9-Methyl-1,4,5,6-tetrahydro-benzthiophen[4,5-d][2]benzazepine (8d): 167 mg (63\%), pale yellow solid;

IR: $2784 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): 8.06 ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $7.85(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-12$), 7.78 (dd, J = 5.5 Hz and $0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.57 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 7.53 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.49 (td, J = 7.7 Hz and $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.44 (dd, J = 7.7 Hz and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.40(\mathrm{td}, \mathrm{J}=7.7 \mathrm{~Hz}$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.67 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}-10$), 3.22 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}-8$), $2.38\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 141.2 ($\mathrm{q}, \mathrm{C}-3 \mathrm{~b}$), 140.2 ($\mathrm{q}, \mathrm{C}-10 \mathrm{~b}$), 139.2 ($\mathrm{q}, \mathrm{C}-$ 1b), 136.9 ($q, C-3 a), 135.5$ ($q, C-7 a), 130.1$ (CH, C-7), 129.2 ($q, C-10 a), 128.6$ (2 x CH, C-6 and C-12), 128.4 (CH, C-4), 128.0 (CH, C-6), 124.6 (CH, C-3), 123.1 ($\mathrm{CH}, \mathrm{C}-11$), $122.5(\mathrm{CH}, \mathrm{C}-2), 57.6\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 53.1\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 43.7\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=266.1001, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NS}$ required 266.1003.

9-Benzyl-1,4,5,6-tetrahydro-benzfurano[4,5-d][2]benzazepine (8e): 205 mg (63\%); pale yellow solid;

IR: $1452 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $8.08(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 7.69(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-12$), 7.55 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.49 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.48 (td, J $=7.5 \mathrm{~Hz}$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.43(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, \mathrm{Bn}-2$ and 6$), 7.39(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Bn}-3$ and 5), 7.39 (td, J = 7.5 Hz and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} \mathrm{J}$ $=7.5 \mathrm{~Hz}$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.30(\mathrm{t}, \mathrm{J}=7.0,1 \mathrm{H}, \mathrm{Bn}-4), 7.01(\mathrm{dd}, \mathrm{J}=2.2 \mathrm{~Hz}$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{BnCH}_{2}\right), 3.60$ (br s, $2 \mathrm{H}, \mathrm{CH}_{2}-10$), 3.22 (br s, 2H, $\mathrm{CH}_{2}-8$).
${ }^{13}$ C NMR (125 MHz, DMSO- d_{6}): 154.2 ($\mathrm{q}, \mathrm{C}-1 \mathrm{a}$), 147.3 (CH, C-12), 141.3 ($\mathrm{q}, \mathrm{C}-$ 3b), 139.6 ($q, B n-1^{\prime} C$), 135.6 ($q, C-3 a$), 135.3 ($q, C-7 a$), 130.1 (CH, C-7), 129.1 $\left(2 \times \mathrm{CH}, \mathrm{Bn}-2^{\prime}\right.$ and $\left.6^{\prime} \mathrm{C}\right), 128.9\left(2 \times \mathrm{CH}, \mathrm{Bn}-3^{\prime}\right.$ and $\left.5^{\prime} \mathrm{C}\right), 128.6(\mathrm{CH}, \mathrm{C}-5), 128.3$ (CH, C-4), 128.2 (CH, C-11a), 127.9 (CH, C-6), 127.7 ($q, \mathrm{C}-10 \mathrm{a}), 127.5$ (CH, Bn$\left.4^{\prime} \mathrm{C}\right), 124.6(\mathrm{CH}, \mathrm{C}-3), 111.2(\mathrm{CH}, \mathrm{C}-2), 105.8(\mathrm{CH}, \mathrm{C}-11), 59.9\left(\mathrm{CH}_{2}, \mathrm{Bn}\right), 55.4$ $\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 51.5\left(\mathrm{CH}_{2}, \mathrm{C}-10\right)$.
HRMS $[\mathrm{M}+\mathrm{H}]+_{\text {found }}=326.1526, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}$ required 326.1544.

9-Benzyl-1,4,5,6-tetrahydro-benzthiophen[4,5-d][2]benzazepine (8f): 249 mg (73\%); pale yellow solid;

IR: $1451 \mathrm{~cm}^{-1}$;

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): 8.10 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 7.86 (d, J = 5.5 Hz , $1 \mathrm{H}, \mathrm{H}-12$), 7.59 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.55 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.53 (d, J $=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.50 (td, J = 7.6 Hz and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.44 (d, J = 7.2 Hz , $2 \mathrm{H}, \mathrm{Bn}-2$ and 6), $7.41(\mathrm{td}, \mathrm{J}=7.6 \mathrm{~Hz}$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.39(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Bn}-3$ and 5), $7.37(\mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}-4$), 3.73 (s, 2H, $\mathrm{Bn}-\mathrm{CH}_{2}$), 3.71 (br s, 2H, CH $\mathrm{CH}_{2}-10$), 3.24 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}-8$).
${ }^{13}$ C NMR (125 MHz, DMSO-d d_{6}): $\delta 141.3$ ($q, \mathrm{C}-3 \mathrm{~b}$), 140.0 ($q, \mathrm{C}-10 \mathrm{~b}$), 139.6 (q , $\mathrm{Bn}-1^{\prime} \mathrm{C}$), 139.2 ($\mathrm{q}, \mathrm{C}-1 \mathrm{a}$), 137.1 ($\mathrm{q}, \mathrm{C}-3 \mathrm{a}$), 135.3 ($\left.\mathrm{q}, \mathrm{C}-7 \mathrm{a}\right), 130.1$ (CH, C-7), 129.5 ($\mathrm{q}, \mathrm{C}-10 \mathrm{a}$), $129.0\left(2 \times \mathrm{CH}, \mathrm{Bn}-2^{\prime}\right.$ and $\left.6^{\prime} \mathrm{C}\right), 128.9\left(2 \times \mathrm{CH}, \mathrm{Bn}-3^{\prime}\right.$ and $\left.5^{\prime} \mathrm{C}\right), 128.8$ (CH, C-12), 128.6 (CH, C-5), 128.3 (CH, C-4), 128.1 (CH, C-6), 127.5 (CH, Bn$\left.4^{\prime} \mathrm{C}\right), 124.6(\mathrm{CH}, \mathrm{C}-3), 122.6(\mathrm{CH}, \mathrm{C}-2), 122.6(\mathrm{CH}, \mathrm{C}-11), 59.9\left(\mathrm{CH}_{2}, \mathrm{Bn}\right), 55.4$ $\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 51.8\left(\mathrm{CH}_{2}, \mathrm{C}-10\right)$.
HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=342.1301, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NS}$ required 342.1316 .

9-Benzyl-1,4,5,6-tetrahydro-indolo[4,5- d][2]benzazepine (8 g):

IR: 2925, $1441 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): 11.25 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.51 ($\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 7.47 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $7.45(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.44(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Bn}-2$ and 6$), 7.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 7.397 .44(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-3$ and 5), $7.35(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.34(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.30(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}-4), 7.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{BnCH}_{2}\right)$, 3.58 (s, 2H, CH ${ }_{2}-10$), $3.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-8\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 142.7 ($\mathrm{q}, \mathrm{C}-3 \mathrm{~b}$), 140.0 ($\mathrm{q}, \mathrm{Bn}-\mathrm{l}^{\prime} \mathrm{C}$), 136.0 ($\mathrm{q}, \mathrm{C}-$ 1a), 135.4 ($q, C-7 a$), 131.3 ($q, C-3 a$), 130.0 (CH, C-7), 129.0 ($2 \times \mathrm{CH}, \mathrm{Bn}-2^{\prime}$ and $6^{\prime} \mathrm{C}$), 128.8 ($2 \mathrm{xCH}, \mathrm{Bn}-3^{\prime}$ and $5^{\prime} \mathrm{C}$), 128.8 ($\mathrm{q}, \mathrm{C}-10 \mathrm{~b}$), 128.3 (CH, C-5), 128.1 (CH, $\mathrm{C}-4), 127.4$ (CH, Bn-4’C), 127.0 (CH, C-6), 126.5 (CH, C-12), 126.1 (q, C-10a), $121.5(\mathrm{CH}, \mathrm{C}-3), 111.4(\mathrm{CH}, \mathrm{C}-2), 100.0(\mathrm{CH}, \mathrm{C}-11), 60.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{2}-8\right)$, $51.3\left(\mathrm{CH}_{2}-10\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{+_{\text {found }}}=325.1626, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2}$ required 325.1624.
N-Benzyl-N-methyl-1,9-dihydroindeno[1,2-f]indole-9-amine (9): 26 mg (8\%); pale yellow solid;

IR: 2922, $1602 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}): 11.13 (br s, 1H, -NH), 7.94 (s, $1 \mathrm{H}, \mathrm{H}-4$), 7.79 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-10), 7.67(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.42(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-2$ and 6$), 7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 7.35(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-6), 7.33(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-3$ and 5$), 7.23$ and $7.21(2 \mathrm{xt}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{Bn}-4), 6.76$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $5.03(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 3.81\left(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 3.67(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 144.3 ($\mathrm{q}, \mathrm{C}-9 \mathrm{a}$), 142.3 ($\mathrm{q}, \mathrm{C}-4 \mathrm{~b}$), 140.4 ($\mathrm{q}, \mathrm{Bn}-$ $1^{\prime} \mathrm{C}$), 138.4 ($\mathrm{q}, \mathrm{C}-9 \mathrm{a}$), 136.6 ($\mathrm{q}, \mathrm{C}-10 \mathrm{a}$), 133.0 ($\mathrm{q}, \mathrm{C}-4 \mathrm{a}$), 128.7 ($4 \times \mathrm{CH}, \mathrm{Bn}-$ $2^{\prime}, 3^{\prime}, 5^{\prime}$ and $6^{\prime} \mathrm{C}$), 128.5 (CH, C-6), 128.4 ($\mathrm{q}, \mathrm{C}-3 \mathrm{a}$), 127.3 (CH, $\left.\mathrm{Bn}-4^{\prime} \mathrm{C}\right), 126.3$ (CH, $\mathrm{C}-7), 126.2$ (CH, C-2), 126.0 (CH, C-8), 119.5 (CH, C-5), 111.4 (CH, C-4), 109.2 ($\mathrm{CH}, \mathrm{C}-10$), $102.0(\mathrm{CH}, \mathrm{C}-3), 68.6(\mathrm{CH}, \mathrm{C}-9), 57.9\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 38.0\left(\mathrm{NCH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=325.1684, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2}$ required 325.1704.
N-Benzyl- N-methyl-1,4-dihydro-indeno[1,2-e]indole-4-amine (10): 13 mg (4\%); pale yellow solid;

IR: $3378,1434 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}): 11.25 (br s, $1 \mathrm{H},-\mathrm{NH}$), 7.74 ($\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 8), 7.72 (d, J = $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.55 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), $7.45-7.40$ (m, 4H, $\mathrm{H}-2, \mathrm{H}-10, \mathrm{Bn}-2$ and 6), $7.37-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7, \mathrm{Bn}-3$ and 5), $7.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\mathrm{Bn}-4), 7.21(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.0,1 \mathrm{H}, \mathrm{H}-6), 6.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 3.81$ (d, J = $13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnCH}_{2}$), $3.67\left(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnCH}_{2}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13}$ C NMR (125 MHz, DMSO- d_{6}): 143.5 ($\mathrm{q}, \mathrm{C}-4 \mathrm{a}$), 143.2 ($\mathrm{q}, \mathrm{C}-8 \mathrm{a}$), 140.5 ($\mathrm{q}, \mathrm{Bn}-$ $4^{\prime} C$), 137.1 ($q, C-10 a$), 136.3 ($q, C-3 b$), 131.8 ($q, C-8 b$), 128.9 ($2 \times \mathrm{CH}, B n-2^{\prime}$ and
$6^{\prime} \mathrm{C}$), 128.7 ($2 \times \mathrm{CH}, \mathrm{Bn}-3^{\prime}$ and 5’C), 128.3 (CH, C-7), 127.3 (CH, Bn-4'C), 126.6 (CH, C-2), 126.2 (CH, C-5), 125.6 (q, C-4b), 125.4 (CH, C-6), 119.3 (CH, C-8), 113.7 (CH, C-9), 112.1 (CH, C-10), $101.1(\mathrm{CH}, \mathrm{C}-3), 69.5(\mathrm{CH}, \mathrm{C}-4), 58.6\left(\mathrm{CH}_{2}\right)$, $37.8\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=325.1699, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2}$ required 325.1704.

11-Methyl-1,10,11,12-tetrahydro-indolo[5,6-d][2]benzazepine (12a): 129 mg (52\%); pale yellow solid;

IR: v: 3161, $1512 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): 11.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.59 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.51 (dd, J $=7.5$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.44(\mathrm{td}, \mathrm{J}=7.5$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.41$ (d, J = $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 7.38 (dd, J = 7.5 and $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $7.33(\mathrm{td}, \mathrm{J}=7.5$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.17(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.50(\mathrm{dd}, \mathrm{J}=3.0$ and 1.5 Hz , $1 \mathrm{H}, \mathrm{H}-3$), $3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-12\right), 3.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-10\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 142.3 ($\mathrm{q}, \mathrm{C}-5 \mathrm{~b}$), 136.4 ($\mathrm{q}, \mathrm{C}-12 \mathrm{~b}$), 133.8 ($\mathrm{q}, \mathrm{C}-$ $5 \mathrm{a}), 135.4$ ($\mathrm{q}, \mathrm{C}-9 \mathrm{a}$), 130.0 (CH, C-4), 128.3 (CH, C-6), 128.2 (CH, C-7), 128.0 (q , $\mathrm{C}-3 \mathrm{a}), 127.1$ (CH, C-8), 126.6 (CH, C-2), 119.7 (CH, C-7), 119.6 (CH, C-5), 102.0 (CH, C-3), $58.14\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 51.14\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 44.0\left(\mathrm{NCH}_{3}\right)$.
$[\mathrm{M}+\mathrm{H}]_{\mathrm{f}_{\text {found }}}=249,1383, \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2}$ required 249.1391.

11-Benzyl-1,10,11,12-tetrahydro-indolo[5,6-d][2]benzazepine (12b): 29 mg (9\%); pale yellow solid;

IR: $1452 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 11.34 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.62 ($\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 7.53 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $7.44-7.36$ (m, 4H, H-2, H-7, Bn-3 and 5), 7.367.29 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-8, \mathrm{Bn}-3,4$ and 5), 7.22 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 7.18(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.54 (br s, $1 \mathrm{H}, \mathrm{H}-3$), 3.81 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-12$), 3.76 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), 3.13 (s, 2H, CH $\mathrm{CH}_{2}-10$).
${ }^{13}$ C NMR (125 MHz, DMSO- d_{6}): 142.5 ($\mathrm{q}, \mathrm{C}-5 \mathrm{~b}$), 139.7 ($\mathrm{q}, \mathrm{Bn}-\mathrm{l}^{\prime} \mathrm{C}$), 135.9 ($\mathrm{q}, \mathrm{C}-$ 12b), 134.9 ($q, C-9 a), 133.7$ ($q, C-5 a$), 130.0 (CH, C-9), 129.2 ($2 \times \mathrm{CH}, \mathrm{Bn}-2^{\prime}$ and $\left.6^{\prime} \mathrm{C}\right), 128.8\left(2 \times \mathrm{CH}, \mathrm{Bn}-3^{\prime}\right.$ and $\left.5^{\prime} \mathrm{C}\right), 128.3$ (CH, C-7), 128.2 (CH, C-6), 128.2 (q , $\mathrm{C}-3 \mathrm{a}), 127.7$ (CH, Bn-4'C), 127.1 (CH, C-8), 126.6 (CH, C-2), 119.9 (CH, C-4), 119.6 (CH, C-5), 118.5 (q, C-12a), $102.1(\mathrm{CH}, \mathrm{C}-3), 60.3\left(\mathrm{Bn}^{-} \mathrm{CH}_{2}\right), 54.5\left(\mathrm{CH}_{2}-10\right)$, $51.2\left(\mathrm{CH}_{2}-12\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]]_{\text {found }}=325.1703, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2}$ required 325.1704.
N, N-Dimethyl-1,5-dihydro-indeno[1,2-ffindole-5-amine (13a): 6 mg (2.4 \%); pale yellow solid;

IR: v: 3160, $1511 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 11.15 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.80 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 9), $7.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-10), 7.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.54(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.34(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-8$), 7.22 (d, $\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $6.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.88(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-5), 2.22(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me})$;
${ }^{13}$ C NMR (125 MHz, DMSO- d_{6}): 144.6 ($\mathrm{q}, \mathrm{C}-5 \mathrm{a}$), 142.0 ($\mathrm{q}, \mathrm{C}-9 \mathrm{a}$), 136.6 ($\mathrm{q}, \mathrm{C}-$ 10a), 135.4 ($q, C-4 a$), 135.1 ($q, C-9 b$), 128.4 (CH, C-8), 128.3 ($q, C-3 a), 126.5$ (CH, C-7), 126.3 (CH, C-2), 126.1 (CH, C-6), 119.7 (CH, C-9), 117.6 (CH, C-4), 102.9 (CH, C-10), 102.0 (CH, C-3), $69.3(\mathrm{CH}, \mathrm{C}-5), 41.2\left(2 \times \mathrm{CH}_{3}\right)$;

HRMS $[\mathrm{M}+\mathrm{H}]]_{\text {found }}=248.1315, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}$ required 248.1313 .
N-Benzyl-N-methyl-1,5-dihydro-indeno[1,2-f]indole-5-amine (13b): 75 mg (23\%); pale yellow solid;

IR v: 3405, $1447 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 11.16$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.84 (s, $1 \mathrm{H}, \mathrm{H}-4$), 7.82 (d, $\mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-10), 7.67(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.43(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-2^{\prime}$ and $\left.6^{\prime} \mathrm{H}\right), 7.38(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2)$, $7.33\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-3^{\prime}\right.$ and $\left.5^{\prime} \mathrm{H}\right), 7.27(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.23(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-4^{\prime} \mathrm{H}$), 6.49 (br s, 1H, H-3), $5.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.68(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.63 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 2.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$);
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 144.9$ (q, C-5a), 142.1 (q, C-9a), 140.4 (q, Bn$1^{\prime} C$), 136.7 ($q, C-10 a$), 135.7 ($\left.q, C-9 b\right), 135.1$ ($\left.q, C-4 a\right), 128.8$ ($2 x C H, B n-2^{\prime}$ and $6^{\prime} \mathrm{C}$), 128.6 ($2 x \mathrm{CH}, \mathrm{Bn}-3^{\prime}$ and $5^{\prime} \mathrm{C}$), 128.4 (CH, C-8), 127.2 (CH, Bn-4'C), 126.6 ($\mathrm{CH}, \mathrm{C}-7$), 126.4 ($\mathrm{CH}, \mathrm{C}-2$), $126.0(\mathrm{CH}, \mathrm{C}-6), 119.7$ (CH, C-9), $117.4(\mathrm{CH}, \mathrm{C}-4)$, $\left.103.0(\mathrm{CH}, \mathrm{C}-10), 102.0(\mathrm{CH}, \mathrm{C}-3), 68.4(\mathrm{CH}, \mathrm{C}-5), 58.0\left(\mathrm{CH}_{2}\right), 37.9 \mathrm{CH}_{3}\right)$

HRMS $[\mathrm{M}+\mathrm{H}]^{\text {found }}=325.1700, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2}$ required 325.1704.

N,N-Dimethyl-1,10-dihydro-indeno[1,2-g]indole-10-amine (14a)

11 mg (4.4 \%); colorless oil;
IR: $1451 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$): 10.78 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.75 (d, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ 6), 7.63 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 7.56 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 7.34(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.31(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.19$ (t, J=7.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.49$ (dd, J=3.0 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.11 (s, 1H, H-10), 2.26 (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$): 143.4 ($q, \mathrm{C}-5 b$), 142.7 (C-9a), 134.0 (q, C-5a), 133.1 (q, C-10b), 128.9 (q, C-3a), 128.4 (CH, C-7), 127.7 (q, C-10a), 126.5 (CH, $\mathrm{C}-2), 126.4(\mathrm{CH}, \mathrm{C}-9), 125.6(\mathrm{CH}, \mathrm{C}-8), 120.8(\mathrm{CH}, \mathrm{C}-4), 119.7(\mathrm{CH}, \mathrm{C}-6), 111.9$ (CH, C-5), $102.3(\mathrm{CH}, \mathrm{C}-3), 69.3(\mathrm{CH}, \mathrm{C}-10), 41.4\left(2 \times \mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]^{\text {found }}=248.1310, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}$ required 248.1313.
N-Benzyl- N-methyl-1,10-dihydro-indeno[1,2-g]indole-10-amine (14b): 100 mg (31\%); white solid;

IR: 2918, $1450 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 10.83$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.78(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ $\mathrm{H}-6), 7.73(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 7.60(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.49(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.42 (brs, 1H, H-2), 7.40-7.31 (m, 5H, H-7 and Bn-H), 7.24 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $7.18\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Bn}-4^{\prime} \mathrm{H}\right), 6.54$ (brs, $1 \mathrm{H}, \mathrm{H}-3$), $5.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 10), $3.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13,3 \mathrm{~Hz}, \mathrm{BnCH}_{2}\right), 3.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13,3 \mathrm{~Hz}, \mathrm{BnCH}_{2}\right), 2.22(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$);
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d $_{6}$): $\delta 143.3$ (q, C-9a), 143.0 (q, C-5b), 140.1 (q, Bn$1^{\prime} C$), 134.4 ($q, C-5 a$), 133.2 ($q, C-10 b$), 129.1 ($2 \mathrm{xCH}, \mathrm{Bn}-2^{\prime}$ and $6^{\prime} \mathrm{C}$), 128.9 (q C-3a), 128.5 ($2 \times \mathrm{xH}, \mathrm{Bn}-3^{\prime}$ and $5^{\prime} \mathrm{C}$), 128.4 (CH, C-7), 127.4 ($\mathrm{q}, \mathrm{C}-10 \mathrm{a}$), 127.2 (CH, Bn-4'C), 126.7 (CH, C-2), 126.4 (CH, C-9), 125.8 (CH, C-8), 120.9 (CH, C-4), $119.8 \mathrm{CH}, \mathrm{C}-6), 111.9(\mathrm{CH}, \mathrm{C}-5), 102.4(\mathrm{CH}, \mathrm{C}-3), 69.1(\mathrm{CH}, \mathrm{C}-10), 57.5\left(\mathrm{CH}_{2}\right)$ $38.7\left(\mathrm{CH}_{3}\right)$.
$\operatorname{HRMS}[\mathrm{M}+\mathrm{H}]+_{\text {found }}=325.1705, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2}$ required 325.1704

1,9,10,12,12a,13-Hexahydro-indolo[6,7-d]thiazolo[3,4-b][2]benzazepine (15): 20 mg (7\%); yellow solid;

IR: 2924, $1436 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 11.32$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ 4), 7.46 ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.42(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-7$ and $\mathrm{H}-9), 7.23(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.19(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.53$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-3), 4.88(\mathrm{dd}, \mathrm{J}=9.5 \mathrm{~Hz}$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}), 4.68$ (d, J = $9,8 \mathrm{Hz1H}, \mathrm{H}-12$), 4.47 (d, J = 9,8 Hz1H,H-12), 3.80 (d, J = $14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), $3.71(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 2.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5 \mathrm{~Hz}$ and $8.0 \mathrm{~Hz}, \mathrm{H}-13), 2.03$ (1H, dd, $\mathrm{J}=9.5 \mathrm{~Hz}$ and $8.0 \mathrm{~Hz}, \mathrm{H}-13$);
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 141.3$ (q, C-5b), 137.7 (q, C-9a), 135.9 (q, C 14c), 132.4 (q, C-6b), 130.1 (CH, C-9), 128.6 (CH, C-7), 128.2 (q, C-3a), 127.1 ($\mathrm{CH}, \mathrm{C}-8$) , 127.8 ($\mathrm{CH}, \mathrm{C}-6$), 126.7 ($\mathrm{CH}, \mathrm{C}-2$), 121.5 ($\mathrm{CH}, \mathrm{C}-5), 120.5(\mathrm{CH}, \mathrm{C}-4)$, 120.0 (q, C-14b), $102.3(\mathrm{CH}, \mathrm{C}-3), 64.8(\mathrm{CH}, \mathrm{C}-14 \mathrm{a}), 62.4\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 57.0\left(\mathrm{CH}_{2}\right.$ $\mathrm{C}-10), 37.5\left(\mathrm{CH}_{2}, \mathrm{C}-13\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]+_{\text {found }}=293.1099, \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S}$ required 293.1112.

2,3,4,5,5a,15-Hexahydro-1H-pyrido[1,2-b]indolo[2,3,4-k,I][2]benzazocine (17): 187 mg (65\%); brown-red solid;

IR: 2934, $1447 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 11.11$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.53 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ 11), $7.42(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8$ and $\mathrm{H}-13), 7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 6 and $\mathrm{H}-14), 7.15(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 6.87(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 4.29$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, \mathrm{H}-15$), 3.43 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, \mathrm{H}-15$), 3.12 (brs, $1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}$), 2.89 (br s, 1H,H-2), 1.93 (m, 1H, H-5), 1.80 -(m, 1H, H-5), 1.75 (m, 1H, H-4), 1.63 (m, 1H, H-3), 1.54 (m, 1H, H-3),1.10 (m, 1H, H-4)
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 142.2$ ($\mathrm{q}, \mathrm{C}-910 \mathrm{~b}$), 136.3 ($\mathrm{q}, \mathrm{C}-\underline{6} 7 \mathrm{a}$), 132.4 (q , C-910a), 131.8 (CH, C-134), 131.4 ($\mathrm{q}, \mathrm{C}-134 \mathrm{a}$), 129.7 (CH, C-101) 128.6 (CH, C112), 128.0 ($q, C-4 b 7 b 1), 126.8$ (CH, C-123 $), 123.7$ (CH, C-65 $), 122.1$ (CH, C899), 121.6 (CH, C-910), 116.8 (q, C-45b), 111.3 (CH, C-78), 56.9 ($\mathrm{CH}_{2}, \mathrm{C}-145$), 534.1_(CH, C-15a), $53.1\left(\mathrm{CH}_{2}, \mathrm{C}-2 \underline{1}\right)$, $30.9\left(\mathrm{CH}_{2}, \mathrm{C}-45\right), 26.4\left(\mathrm{CH}_{2}, \mathrm{C}-23\right), 24.9$ ($\mathrm{CH}_{2}, \mathrm{C}-34$).
HRMS $[\mathrm{M}+\mathrm{H}]_{\text {found }}=289.1703, \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2}$ required 289.1704.

2,3,4,5,5a,15-Hexahydro-1H-thiazolo[3,4-b]indolo[2,3,4-k,I][2]benzazocine (18): 108 mg (37\%); brown solid;

IR: v: $1411 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta 11.23$ (br s, 1H, NH), 7.52 (dd, J = 7.5 and 1.4 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.45$ (td, J = 7.5 and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.41(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 7.39 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), 7.38 (td, J = 7.5 and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 7.33 (dd, $\mathrm{J}=7.5$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.19(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 6.92(\mathrm{dm}, \mathrm{J}=7.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-12$), $3.99(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 b), 3.81(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.78(2$, $2 \mathrm{H}, 7-\mathrm{CH}_{2}$), $3.52(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.25(\mathrm{dd}, \mathrm{J}=9.8 \mathrm{~Hz}$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), 3.02 (dd, J = 9.8 Hz and $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$);
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 141.9$ ($\mathrm{q}, \mathrm{C}-11 \mathrm{a}$), 136.6 ($\mathrm{q}, \mathrm{C}-14 \mathrm{a}$), 133.2 (q , $\mathrm{C}-7 \mathrm{a}), 132.5$ ($\mathrm{q}, \mathrm{C}-11 \mathrm{~b}$), 131.8 (CH, C-8), 130.2 (CH, C-11), 129.0 (CH, C-10), 127.6 (CH, C-9), 127.4 (q, C-14b), 123.8 CH, C-2), 122.4 (CH, C-13), 121.5 (CH, $\mathrm{C}-12$), 111.5 ($\mathrm{CH}, \mathrm{C}-14$), 110.5 ($\mathrm{q}, \mathrm{C}-2 \mathrm{a}$), 57.1 ($\mathrm{CH}, \mathrm{C}-2 \mathrm{~b}), 32.7\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 52.9$ $\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 52.5\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]+_{\text {found }}=293.1103, \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S}$ required 293.1112.

Synthesis of 1,3-dipolar cycloadducts. General procedure:

The mixture of the corresponding aldehyde (3a,c,d, 4, 0.5 mmol), 136 mg (1.5 $\mathrm{mmol})$ of sarcosine and $89 \mathrm{mg}(0.5 \mathrm{mmol})$ of N-phenyl-maleimide in dry toluene (5 ml) was refluxed for 1 h . After cooling, the reaction mixture was filtered through a pad of Celite and concentrated. The crude product was purified by column chromatography on silica gel with ethyl acetate - heptane eluent.

4-[2-(1H-Indole-5-yl)-phenyl]-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-c]pyrrol-1,3-dione (19a): 95 mg (45%), white powder;

IR: v: 1708, $1382 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 Hz, DMSO, $-\mathrm{d}_{6}$): $\delta 11.18$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.59 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-$ $6^{\prime} \mathrm{H}$), 7.47-7.37 (m, 7H, Ind-2', 4^{\prime} and $7^{\prime} \mathrm{H}, \mathrm{NPh}-3^{\prime}, 4^{\prime}$ and $5^{\prime} \mathrm{H}, \mathrm{Ph}-5^{\prime} \mathrm{H}$), $7.35(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-4^{\prime} \mathrm{H}$), 7.23 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-3^{\prime} \mathrm{H}$), 7.03 (brd, $J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NPh}-2^{\prime}$ and $6^{\prime} \mathrm{H}$), 6.97 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ind $-6^{\prime} \mathrm{H}$), 6.41 (brs, 1 H , Ind $-3^{\prime} \mathrm{H}$), $3.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 3.66(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.52(\mathrm{dd}, \mathrm{J}=8.6 \mathrm{~Hz}$ and 7.8 Hz , $1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 3.45(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.27(\mathrm{dd}, \mathrm{J}=9.5 \mathrm{~Hz}$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), $1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 177.6$ ($\mathrm{q}, \mathrm{C}-1$), 176.1 ($\mathrm{q}, \mathrm{C}-3$), 145.1 ($\mathrm{q}, \mathrm{Ph}-$ $2^{\prime} \mathrm{C}$), 137.2 ($\mathrm{q}, \mathrm{Ph}-1^{\prime} \mathrm{C}$), 135.3 (q, Ind- $7^{\prime} \mathrm{C}$), 132.5 ($\mathrm{q}, N \mathrm{Nh}-1^{\prime} \mathrm{C}$), 131.6 (q , Ind$\left.5^{\prime} \mathrm{C}\right), 130.7$ (CH, Ph-3'C), 129.3 ($2 \times \mathrm{CH}, N \mathrm{Nh}-3^{\prime}$ and $5^{\prime} \mathrm{C}$), 128.8 (CH, NPh-4'C), 128.1 (CH, Ph-6’C), 127.9 (CH, Ph-5'C), 127.8 (q, Ind-3a'C), 127.5 (CH, Ph-4’C), $127.3\left(2 \times \mathrm{CH}, N \mathrm{NP}-2^{\prime}\right.$ and $6^{\prime} \mathrm{C}$), 126.4 (CH, Ind- $2^{\prime} \mathrm{C}$), 123.6 (CH, Ind- $6^{\prime} \mathrm{C}$), 121.5 (CH, Ind-4'C), 111.2 (CH, Ind-7’C), 101.6 (CH, Ind-3'C), 67.8 (CH, C-4), 57.1 $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 54.7(\mathrm{CH}, \mathrm{C}-3 a), 44.5(\mathrm{CH}, \mathrm{C}-6 a), 38.8\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{{ }_{\text {found }}}=422.1847, \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ required 422.1868.

4-[2-(1H-Indole-5-yl)-phenyl]-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-c]pyrrol-1,3-dione (20a): 89 mg (42%), white powder;

IR v: 1704, $1383 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO},-\mathrm{d}_{6}$): $\delta 11.21$ (s, $1 \mathrm{H}, \mathrm{NH}$), 7.53 (brs, 1 H , Ind-4'H), $7.48\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, N \mathrm{Nh}-3^{\prime}\right.$ and $\left.5^{\prime} \mathrm{H}\right), 7.46(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, Ind-7'H), 7.42-7.38 (m, 3H,NPh-4'H, Ph-6'H and Ind-2'H), 7.33 (t, J = $\left.7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-5^{\prime} \mathrm{H}\right), 7.26$ (t, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-4^{\prime} \mathrm{H}\right), 7.20-7.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-3^{\prime} \mathrm{H}, N \mathrm{Ph}-2^{\prime}\right.$ and $\left.6^{\prime} \mathrm{H}\right), 7.11$ (brd, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ind $-6^{\prime} \mathrm{H}$), 6.46 (br s, 1 H , Ind $\left.-3^{\prime} \mathrm{H}\right), 3.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, $3.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 3.28$ (dd, J = 9.2 and $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a})$, 2.37 (dd, J = $9.46 .6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 179.0$ ($\mathrm{q}, \mathrm{C}-1$), 175.7 ($\mathrm{q}, \mathrm{C}-3$), 144.5 ($\mathrm{q}, \mathrm{Ph}-$ $2^{\prime} \mathrm{C}$), 135.9 ($q, \mathrm{Ph}-2^{\prime} \mathrm{C}$), 135.6 (q, Ind $-7 a^{\prime} \mathrm{C}$), 133.0 ($\mathrm{q}, \mathrm{NPh}-1^{\prime} \mathrm{C}$), 132.1 (q , Ind$5^{\prime} \mathrm{C}$), 130.5 (CH, Ph-3'C), 129.4 ($2 \mathrm{xCH}, \mathrm{NPh}-3^{\prime}$ and $5^{\prime} \mathrm{C}$), 128.7 (CH, NPh-4’C), 127.9 (q, Ind $-3 \mathrm{a}^{\prime} \mathrm{C}$), $127.3\left(\mathrm{CH}, \mathrm{Ph}-5^{\prime} \mathrm{C}\right), 127.2$ ($3 \mathrm{xCH}, \mathrm{Ph}-4^{\prime} \mathrm{C}, \mathrm{NPh}-2^{\prime}$ and $6^{\prime} \mathrm{C}$), $127.0\left(\mathrm{CH}, \mathrm{Ph}-6^{\prime} \mathrm{C}\right), 126.5\left(\mathrm{CH}\right.$, Ind $\left.-2^{\prime} \mathrm{C}\right), 122.5\left(\mathrm{CH}\right.$, Ind $\left.-6^{\prime} \mathrm{C}\right), 120.3(\mathrm{CH}$, Ind$\left.4^{\prime} \mathrm{C}\right), 111.4\left(\mathrm{CH}\right.$, Ind-4'C), $101.7\left(\mathrm{CH}\right.$, Ind-3'C), $69.8(\mathrm{CH}, \mathrm{C}-4), 57.6\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, $51.1(\mathrm{CH}, \mathrm{C}-3 a), 45.3(\mathrm{CH}, \mathrm{C}-6 a), 39.9\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{+_{\text {found }}}=422.1857$, required $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} 422.1868$.

4-(2-Benzofuran-5-yl-phenyl)-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-
c]pyrrole-1,3-dione (19b): 88 mg (42 \%), white powder;
IR v: 1709, $1176 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{DMSO},-\mathrm{d}_{6}$): $\delta 8.07\left(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-2{ }^{\prime} \mathrm{H}\right), 7.62(\mathrm{~d}, J=8,3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Bf}-7$ and Ph-6'H), $7.51\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-4^{\prime} \mathrm{H}\right), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ph-5'H), 7.47-7.39 (m, 3H,NPh-3', 4' and $\left.5^{\prime} \mathrm{H}\right), 7.38\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-4^{\prime} \mathrm{H}\right)$, $7.24\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}-4^{\prime} \mathrm{H}\right), 7.19\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-6^{\prime} \mathrm{H}\right), 7.03(\mathrm{br} \mathrm{m}, 2 \mathrm{H}$, $N P h-2^{\prime}$ and $6^{\prime} \mathrm{H}$), $6.95\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-3^{\prime} \mathrm{H}\right), 3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 a), 3.55(\mathrm{~d}, \mathrm{~J}$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.51(\mathrm{dd}, J=7.8$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 a), 3.46(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 2.31(\mathrm{dd}, \mathrm{J}=9.4 \mathrm{~Hz}$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.87\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$): $\delta 177.4$ (q, C-1), 176.2 ($\mathrm{q}, \mathrm{C}-3$), 153.9 (q, Bf$7 a^{\prime} \mathrm{C}$), 147.2 ($\mathrm{CH}, \mathrm{Bf}-2^{\prime} \mathrm{C}$), 143.7 ($\mathrm{q}, \mathrm{Ph}-2^{\prime} \mathrm{C}$), 137.5 ($\left.\mathrm{q}, \mathrm{Ph}-1^{\prime} \mathrm{C}\right), 135.7$ (q, $\mathrm{Bf}-5^{\prime} \mathrm{C}$), 132.9 ($\mathrm{q}, N \mathrm{Nh}-1^{\prime} \mathrm{C}$), $130.5\left(\mathrm{CH}, \mathrm{Ph}-3^{\prime} \mathrm{C}\right), 129.4\left(2 x \mathrm{CH}, N P h-3^{\prime}\right.$ and $\left.5^{\prime} \mathrm{C}\right), 128.8$ ($\mathrm{CH}, N \mathrm{Nh}-4^{\prime} \mathrm{C}$), 128.5 (CH, Ph-5'C), 128.3 (CH, Ph-6'C), 127.7 (CH, $\mathrm{Ph}-4^{\prime} \mathrm{C}$), $127.3\left(2 \times \mathrm{CH}, N P h-2^{\prime}\right.$ and $\left.6^{\prime} \mathrm{C}\right), 126.7\left(\mathrm{CH}, \mathrm{Bf}-6^{\prime} \mathrm{C}\right), 122.8\left(\mathrm{CH}, \mathrm{Bf}-4^{\prime} \mathrm{C}\right), 111.0(\mathrm{CH}$, Bf-7'C), $107.3\left(\mathrm{CH}, \mathrm{Bf}-3^{\prime} \mathrm{C}\right), 67.8(\mathrm{CH}, \mathrm{C}-4), 57.1\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 54.9(\mathrm{CH}, \mathrm{C}-3 a), 44.5$ $(\mathrm{CH}, \mathrm{C}-6 a), 38.8\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]_{+_{\text {found }}}=423.1678, \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$ required 423.1708 .

4-(2-Benzofuran-5-yl-phenyl)-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-
c]pyrrole-1,3-dione (20b): 92 mg (44 \%), white powder;
IR v: 1709, $1180 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO, $-\mathrm{d}_{6}$): $\delta 8.07\left(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-\mathrm{L}^{\prime} \mathrm{H}\right.$), $7.69(\mathrm{~d}, \mathrm{~J}=$ $\left.8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-7^{\prime} \mathrm{H}\right), 7.66\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-4^{\prime} \mathrm{H}\right), 7.48\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, N \mathrm{Nh}-3^{\prime}\right.$ and $5^{\prime} \mathrm{H}$), $7.46\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-6^{\prime} \mathrm{H}\right), 7.40\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, N \mathrm{Nh}-4^{\prime} \mathrm{H}\right), 7.37$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-5^{\prime} \mathrm{H}$), $7.33\left(\mathrm{dd}, J=8.4 \mathrm{~Hz}\right.$ and $\left.1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-6^{\prime} \mathrm{H}\right), 7.29(\mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-4^{\prime} \mathrm{H}\right), 7.20\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-3^{\prime} \mathrm{H}\right), 7.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $N P h-2^{\prime}$ and $\left.6^{\prime} \mathrm{H}\right), 7.02\left(\mathrm{dd}, J=2.2\right.$ and $\left.0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bf}-3^{\prime} \mathrm{H}\right), 3.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$, $3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 a), 3.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.24$ (dd, $J=9.0$ and 8.2 Hz , $1 \mathrm{H}, \mathrm{H}-3 a), 2.41(\mathrm{dd}, J=9.5$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 a), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d 6): $\delta 178.9$ ($\mathrm{q}, \mathrm{C}-1$), 175.6 ($\mathrm{q}, \mathrm{C}-3$), 154.1 ($\mathrm{q}, \mathrm{Bf}-$ $7 a^{\prime} \mathrm{C}$), 147.2 ($\mathrm{CH}, \mathrm{Bf}-2^{\prime} \mathrm{C}$), 143.1 ($\mathrm{q}, \mathrm{Ph}-2^{\prime} \mathrm{C}$), 136.2 ($\left.\mathrm{q}, \mathrm{Bf}-5^{\prime} \mathrm{C}\right), 135.9$ ($\mathrm{q}, \mathrm{Ph}-1^{\prime} \mathrm{C}$), 132.9 ($\mathrm{q}, \mathrm{NPh}^{\prime} 1^{\prime} \mathrm{C}$), $130.3\left(\mathrm{CH}, \mathrm{Ph}-3^{\prime} \mathrm{C}\right), 129.4\left(2 \mathrm{xCH}, \mathrm{NPh}-3^{\prime}\right.$ and $\left.5^{\prime} \mathrm{H}\right), 128.7$ $\left(\mathrm{CH}, \mathrm{Ph}-4^{\prime} \mathrm{C}\right), 127.9\left(\mathrm{CH}, \mathrm{Ph}-5^{\prime} \mathrm{C}\right), 127.6$ ($\left.\mathrm{q}, \mathrm{Bf}-3 a^{\prime} \mathrm{C}\right), 127.4\left(\mathrm{CH}, \mathrm{Ph}-4^{\prime} \mathrm{C}\right), 127.2$ ($2 x \mathrm{CH}, \mathrm{NPh}-2^{\prime}$ and $6^{\prime} \mathrm{H}$), $127.0\left(\mathrm{CH}, \mathrm{Ph}-6^{\prime} \mathrm{C}\right), 125.7\left(\mathrm{CH}, \mathrm{Bf}-6^{\prime} \mathrm{C}\right), 121.6(\mathrm{CH}, \mathrm{Bf}-$ $\left.4^{\prime} \mathrm{C}\right), 111.3\left(\mathrm{CH}, \mathrm{Bf}-7^{\prime} \mathrm{C}\right), 107.4\left(\mathrm{CH}, \mathrm{Bf}-3^{\prime} \mathrm{C}\right), 69.6(\mathrm{CH}, \mathrm{C}-4), 57.5\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 50.9$ $(\mathrm{CH}, \mathrm{C}-3 a), 45.3(\mathrm{CH}, \mathrm{C}-6 a), 39.9\left(\mathrm{CH}_{3}\right)$.

HRMS $[\mathrm{M}+\mathrm{H}]+_{\text {found }}=423.1697, \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$ required 423.1708 .

4-(2-Benzo[b]thiophen-5-yl-phenyl)-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-c]pyrrole-1,3-dione (19c): $100 \mathrm{mg}(46 \%)$, white powder; IR, v: 1711, $1380 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO, $-\mathrm{d}_{6}$): $\delta 8.04$ ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-7{ }^{\prime} \mathrm{H}$), $7.84(\mathrm{~d}, \mathrm{~J}=$ $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-2^{\prime} \mathrm{H}\right), 7.76$ (d, $\left.J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-4^{\prime} \mathrm{H}\right), 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-$ $6^{\prime} \mathrm{H}$), 7.51 (t, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-5^{\prime} \mathrm{H}$), $7.44-7.37$ (m, 5H, NPh-3', 4^{\prime} and5 $5^{\prime} \mathrm{H}, \mathrm{Ph}-$ $4^{\prime} \mathrm{H}$ and $\left.\mathrm{Bt}-3^{\prime} \mathrm{H}\right), 7.27\left(\mathrm{dm}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-3^{\prime} \mathrm{H}\right.$ and $\left.\mathrm{Bt}-6^{\prime} \mathrm{H}\right), 6.97(\mathrm{br} \mathrm{m}, 2 \mathrm{H}$, $N P h-2^{\prime}$ and $6^{\prime} \mathrm{H}$), $3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 a), 3.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.51(\mathrm{dd}, J=$ 9.0 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 a), 3.46(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.34(\mathrm{dd}, J=9.5$ and 7.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 177.4$ (q, C-1), 176.2 ($\mathrm{q}, \mathrm{C}-3$), 143.5 ($\mathrm{q}, \mathrm{Ph}-$ $\left.2^{\prime} \mathrm{C}\right), 139.7$ ($\mathrm{q}, \mathrm{Bt}-3 a^{\prime} \mathrm{H}$), 138.4 ($\mathrm{q}, \mathrm{Bt}-7 a^{\prime} \mathrm{H}$), 137.5 ($\mathrm{q}, \mathrm{Ph}-1^{\prime} \mathrm{C}$), 137.1 ($\mathrm{q}, \mathrm{Bt}-5^{\prime} \mathrm{H}$), 132.5 (q, NPh- $1^{\prime} \mathrm{C}$), 130.4 (CH, Ph-3'H), 129.3 (2 xCH, NPh-3' and $5^{\prime} \mathrm{C}$), 128.8 (CH, NPh-4'C), 128.7 (CH, Bt-2 ${ }^{\prime} \mathrm{C}$), 128.6 (CH, $\mathrm{Ph}-5^{\prime} \mathrm{C}$), 128.3 (CH, $\mathrm{Ph}-6^{\prime} \mathrm{C}$), 127.8 (CH, Ph-4'C), 127.3 ($2 \times \mathrm{CH}, \mathrm{NPh}-2^{\prime}$ and $6^{\prime} \mathrm{C}$), 126.7 (CH, Bt- $\left.6^{\prime} \mathrm{C}\right), 125.1$ (CH, Bt$\left.4^{\prime} \mathrm{C}\right), 124.5\left(\mathrm{CH}, \mathrm{Bt}-3^{\prime} \mathrm{C}\right), 122.5\left(\mathrm{CH}, \mathrm{Bt}^{\prime} 7^{\prime} \mathrm{C}\right), 67.8(\mathrm{CH}, \mathrm{C}-4), 57.0\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 54.9$ (CH, C-3a), $44.5(\mathrm{CH}, \mathrm{C}-6 a), 38.8\left(\mathrm{CH}_{3}\right)$.
HRMS $[\mathrm{M}+\mathrm{H}]+_{\text {found }}=439.1468, \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ required 439.1480 .

4-(2-Benzo[b]thiophen-5-yl-phenyl)-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-c]pyrrole-1,3-dione (20c): $95 \mathrm{mg}(45 \%$), white powder; IR, v: $1708,1500 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO},-\mathrm{d}_{6}$): $\delta 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-7$ 'H), $7.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{Bt}-4^{\prime} \mathrm{H}$), 7.85 (d $, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-2^{\prime} \mathrm{H}$), $7.52\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bt}-3^{\prime} \mathrm{H}\right), 7.48(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, N \mathrm{Nh}-3^{\prime}$ and $5^{\prime} \mathrm{H}$), $7.47\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-6^{\prime} \mathrm{H}\right), 7.40(\mathrm{~m}, 3 \mathrm{H}$, N Ph-4'H, Ph-5'H, Bt-6'H), 7.3147 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-4^{\prime} \mathrm{H}$), 7.2247 ($\mathrm{d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ph}-3^{\prime} \mathrm{H}$), 7.17 (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}, N \mathrm{Nh}-2^{\prime}$ and $6^{\prime} \mathrm{H}$), $3.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-$ $6, \mathrm{H}-6 a), 3.28(\mathrm{dd}, \mathrm{J}=9.2$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 a), 2.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2$ and 6.9 $\mathrm{Hz}, \mathrm{H}-6), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d d_{6}): $\delta 178.9$ ($\mathrm{q}, \mathrm{C}-1$), 175.6 ($\mathrm{q}, \mathrm{C}-3$), 142.9 ($\mathrm{q}, \mathrm{Ph}-$ $2^{\prime} \mathrm{C}$), 139.9 ($\mathrm{q}, \mathrm{Bt}-3 a^{\prime} \mathrm{C}$), 138.6 ($\mathrm{q}, \mathrm{Bt}-7 a^{\prime} \mathrm{C}$), 137.6 ($\mathrm{q}, \mathrm{Bt}-5^{\prime} \mathrm{C}$), 135.8 ($\mathrm{q}, \mathrm{Ph}-1^{\prime} \mathrm{C}$), 132.9 ($\mathrm{q}, \mathrm{NPh}-1^{\prime} \mathrm{C}$), 130.3 (CH, $\mathrm{Ph}-3^{\prime} \mathrm{C}$), 129.4 (2 xCH, NPh-3' and $5^{\prime} \mathrm{C}$), 128.8 ($\mathrm{CH}, \mathrm{Bt}^{\prime} 2^{\prime} \mathrm{C}$), 128.7 (CH, NPh-4' C^{\prime}), 128.0 ($\mathrm{CH}, \mathrm{Ph}-5^{\prime} \mathrm{C}$), 127.4 (CH, $\left.\mathrm{Ph}-4^{\prime} \mathrm{C}\right), 127.2$ ($2 \mathrm{xCH}, N \mathrm{Ph}-2^{\prime}$ and $6^{\prime} \mathrm{C}$), 127.1 (CH, Ph- $6^{\prime} \mathrm{C}$), 126.7 (CH, Bt- $6^{\prime} \mathrm{C}$), 124.7 (CH, Bt$\left.3^{\prime} \mathrm{C}\right), 123.9\left(\mathrm{CH}, \mathrm{Bt}-4^{\prime} \mathrm{C}\right), 122.8\left(\mathrm{CH}, \mathrm{Bt}^{\prime} 7^{\prime} \mathrm{C}\right), 69.6(\mathrm{CH}, \mathrm{C}-4), 57.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 51.0$ (CH, C-3a), $45.3(\mathrm{CH}, \mathrm{C}-6 a), 39.9\left(\mathrm{CH}_{3}\right)$.
HRMS $[\mathrm{M}+\mathrm{H}]^{+}{ }_{\text {found }}=439.1471, \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ S required 439.1480.

4-[2-(1H-Indole-6-yl)-phenyl]-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-c]pyrrol-1,3-dione (19d): 78 mg (38%), white powder;
IR, v: $1706 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO, $-\mathrm{d}_{6}$): $\delta 11.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-$ $6^{\prime} \mathrm{H}$), 7.53 (d, J = $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ind}-4^{\prime} \mathrm{H}\right), 7.46\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-5^{\prime} \mathrm{H}\right), 7.38(\mathrm{~m}$, $4 \mathrm{H}, \operatorname{Ind}-2^{\prime} \mathrm{H}, N \mathrm{Ph}-3^{\prime}, 4^{\prime}$ and $5^{\prime} \mathrm{H}$), 7.36 ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-4^{\prime} \mathrm{H}$), $7.27(\mathrm{~s}, 1 \mathrm{H}$, Ind- $7^{\prime} \mathrm{H}$), 7.24 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ind- $-6^{\prime} \mathrm{H}$), 6.93 (br s, $2 \mathrm{H}, N$ Nh- 2^{\prime} and $6^{\prime} \mathrm{H}$), 6.88 ($d, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ind}-5^{\prime} \mathrm{H}$), $6.47\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ind}-3^{\prime} \mathrm{H}\right.$), $3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 3.67$ (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.47(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 a), 3.46(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, $2.31(\mathrm{dd}, J=9.1$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.92\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 177.5$ ($\mathrm{q}, \mathrm{C}-1$), 176.0 ($\mathrm{q}, \mathrm{C}-3$), 144.9 ($\mathrm{q}, \mathrm{Ph}-$ 2^{\prime} C), 137.3, 136.1, 133.7, 132.5, 130.6, 129.3, 128.7, 128.0, 128.0, 127.6, $127.3,127.0,126.3,121.6,119.6,113.1,101.4,67.8,57.0,54.8,44.5,38.9$.
HRMS $[\mathrm{M}+\mathrm{H}]]_{\text {found }}=422.1846, \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ required 422.1868.

4-[2-(1H-Indole-6-yl)-phenyl]-5-methyl-2-phenyl-octahydro-pyrrolo[3,4-c]pyrrol-1,3-dione (20d): $82 \mathrm{mg}(39 \%)$, white powder;
IR, v: 1703, $1383 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO, $-\mathrm{d}_{6}$): $\delta 11.17(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz})$, $7.49(2 \mathrm{H}, \mathrm{m}), 7.45-7.38(4 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}=$ $9.0 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}$, brd, J = 8.1 Hz$), 6.48(1 \mathrm{H}, \mathrm{brt}), 3.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $9.2 \mathrm{~Hz},-\mathrm{CH}-), 3.40\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.40(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}-), 3.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.2 \mathrm{~Hz}$ and $8,1 \mathrm{~Hz},-\mathrm{CH}-), 2.39\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.4 \mathrm{~Hz}\right.$ and $\left.6.6 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.01\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 179.0$ (q), 175.6 (q), 144.3 (q), 136.1 (q), 135.8 (q), 134.3 (q), 132.9 (q), 130.3 (CH), 129.4 ($2 \times \mathrm{CH}$), 128.7 (CH), 127.4 (2
xCH), 127.2 ($2 \times \mathrm{CH}$), 127.2 (q), 127.1 (CH), 126.3 (CH), 120.6 (CH), 120.0 (CH), $111.9(\mathrm{CH}), 101.5(\mathrm{CH}), 69.7(\mathrm{CH}), 57.6\left(\mathrm{CH}_{2}\right), 51.0(\mathrm{CH}), 45.3(\mathrm{CH}), 39.9\left(\mathrm{CH}_{3}\right)$, HRMS $[\mathrm{M}+\mathrm{H}]_{+_{\text {found }}}=422.1842, \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ required 422.1868 .

Computational method: All computations were carried out with the Gaussian16 program package $(\mathrm{G} 16)^{9}$, using convergence criteria of 3.0×10^{-4} $4.5 \times 10^{-4}, 1.2 \times 10^{-3}$ and 1.8×10^{-3}, for the gradients of the root mean square (RMS) force, maximum force, RMS displacement, and maximum displacement vectors, were used, respectively. Computation was carried out at at M06-2X/6-31++G(d,p) level of theory ${ }^{10}$, using integral equation formalism-polarisable continuum model (IEFPCM) method with the parameters of THF. ${ }^{14}$ The method and basis sets were chosen for their reliability shown in earlier studies. ${ }^{15}$ The vibrational frequencies were computed at the same levels of theory, as used for geometry optimisation, in order to properly confirm that all structures reside at minima on their potential energy hypersurfaces (PESs). Thermodynamic functions, such as energy (U), enthalpy (H), Gibbs free energy (G), and entropy (S) were computed for 298.15 K , using the quantum chemical, rather than the conventional thermodynamic reference state.

Acknowledgment

This project was supported by National Research, Development and Innovation Fund of Hungary, financed under the [OTKA PD128612] funding scheme. The authors are grateful for the Bolyai Research Scholarship of the Hungarian Academy of Sciences (BO/799/21/7) and the ÚNKP-21-5 new National Excellence Program of the Ministry for Innovation and Technology from the Source of the National Research, Development and Innovation Fund

Supporting Information

There is Supporting Information to be published.

Primary Data

There is no Primary Data to be associated with this manuscript.

References

(1) For reviews on 1,5- and 1,7-electrocyclizations of conjugated 1,3 dipoles, see: (a) Nyerges, M.; Tóth J.; Groundwater, P.W.; Synlett 2008, 1269-1278. (b) Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2873 (c) Groundwater, P. W.; Nyerges, M. Adv. Heterocycl. Chem. 1999, 73, 97. (d) Zecchi, G. Synthesis 1991, 181. (e) Huisgen, R. Angew. Chem.,Int. Ed. Engl. 1980, 19, 947. (f) Taylor, E. C.; Turchi, I. J. Chem. Rev. 1979, 79, 181.
(2) (a) Shun-ichi, N.; Yasumasa, H.; Tetsuhiro, N.; Tetrahedron Lett. 2018, 59, 760-762. (b) Pompeo, M.M.; Cheah, J. H.; Movassaghi, M.; J. Am. Chem. Soc. 2019, 141, 14411-14420. (c) Chaturvedula, P. V.; Mercer, S. E.; Fang, H.; Han, X.; Luo, G.; Dubowchik, G. M.; Poindexter, G. S. U.S. Pat. Appl. Publ. (2007), US 20070259851 A1. (d) Nguyen, T.N.T.; Saleem, R.S. Z.; Luderer, M.J.; Hovde, S.; Henry, R. W.; Tepe, J. J. ACS Chemical Biology 2012, 7, 172-184.
(3) (a) Kanemasa, S.; Heterocycles 2010, 82, 87. (b) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (c) Coldham, I.; Hufton, R Chem. Rev. 2005, 105, 2765. (d) Husinec, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 2047. (e) Najera, C.; Sansano, J. M. Curr. Org.

Chem. 2003, 7, 1105. (f) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H., Eds.; Wiley: New York, 2002. (g) Tsuge, O.; Kanemasa, S. Adv. Heterocycl. Chem. 1989, 45, 232.
(4) Tóth J.; Dancsó, A.; Blaskó G.; Tőke L.; Groundwater, P.W.; Nyerges, M.; Tetrahedron 2006, 62, 5725
(5) Nyerges, M.; Virányi, A.; Tóth, J.; Blaskó, G.; Tőke, L.; Synthesis 2006, 1273.
(6) (a) Nyerges M., Pintér, Á. Virányi A., Bitter I., Tőke L.; Tetrahedron Lett., 2005, 46, 377., (b) Urbina, K.; Tresp, D.; Sipps, K.; Szostak, M. Adv. Synth. Catal. 2021, 363, 2723.
(7) (a) Grigg, R.; Thianpatanagul, S. J. Chem. Soc., Chem. Commun. 1984, 180. (b) Joucla, M.; Mortier, J. J. Chem. Soc., Chem. Commun. 1985, 1566. (c) Tsuge, O.; Kanemasa, S.; Ohe, M.; Takenaka, S. Bull. Chem. Soc. Jpn. 1987, 60, 4079
(8) (a) Frolova, E. P.; Akhvlediani, R. N.; Suvorov, N. N. Khimiya Geterotsiklicheskikh Soedinenii 1982, 10, 1358-62. (b) St.-Ruf, G.; Hieu, H. T. Arzneimittel-Forschung 1975, 25(1), 66-8. (c) Buu-Hoi, N. P.; Saint-Ruf, G.; Deschamps, D.; Bigot, P.; Hieu, H. T. Journal of the Chemical Society [Section] C 1971, 15, 2606-9.
(9) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J, C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
(10) Zhao Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-41.
(11) Tomasi, J.; Mennucci, B.; Cammi, R.; Chem. Rev. 2005, 105, 2999-3093. Vivanco, S.; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden, A.; Cossío, F. P.; J. Am. Chem. Soc. 2000, 122, 6078-6092.
(12) Vivanco, S.; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden, A.; Cossío, F. P.; J. Am. Chem. Soc. 2000, 122, 6078-6092.
(13) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P.R.; Chem. Rev. 2005, 105, 3842-3888
(14) Barone, V.; Cossi, M.; J. Phys. Chem. A 1998, 102, 1995-2001
(15) (a) Kovács, E.; Faigl, F.; Mucsi, Z.; J. Org. Chem. 2020, 85, 1122611239. (b) Chiovini, B.; Pálfi, D.; Majoros,M.; Juhász, G.; Szalay, G.; Katona, G.; Szőri, M.; Frigyesi, O.; Lukácsné Haveland, C.; Szabó, G.; Erdélyi, F.; Máté, Z.; Szadai, Z.; Madarász, M.; Dékány, M.; Csizmadia I. G.; Kovács, E.; Rózsa, B.; Mucsi, Z.; ACS Omega 2021, 6, 1502915045. (c) Kovács, E.; Cseri, L.; Jancsó, A.; Terényi, F.; Fülöp, A.; Rózsa, B.; Galbács, G.; Mucsi, Z.; Eur. J. Org. Chem. 2021, 2021, 5649-5660 (d) Nagy, M.; Rácz, D.; Nagy, Z. L.; Nagy, T.; Fehér, P. P.; Purgel, M.; Zsuga, M.; Kéki, S. Dye. Pigment. 2016, 133, 445-457. (e) Nagy, M.; Rácz, D.; Nagy, Z. L.; Fehér, P. P.; Kalmár, J.; Fábián, I.; Kiss, A.; Zsuga, M.; Kéki, S. Sensors Actuators B Chem. 2018, 255, 2555-2567

Electrocyclization and Unexpected Reactions of Non-Stabilised $\alpha, \beta: \gamma, \delta$ Unsaturated Azomethine Ylides. Experimental and Theoretical Study.

I. G. Molnárr ${ }^{\mathrm{a}}$, Z. Mucsi ${ }^{\text {b,c }}$, E. Kovács ${ }^{\text {b,d,* }}$ and M. Nyerges ${ }^{\text {a,* }}$
${ }^{a}$ Servier Research Institute of Medicinal Chemisrty, 7 Záhony utca., H-1031, Budapest, Hungary
${ }^{b}$ Femtonics Research Institute, 59 Tüzoltó utca, H-1094, Budapest, Hungary
 3515 Miskolc, Hungary
${ }^{d}$ Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körút-ja, H-1117, Budapest, Hungary

Fax: +36(1)8812011; E-mail: kovacs.ervin@ttk.hu, miklos.nyerges@servier.com

SUPPORTING INFORMATION

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-APT Spectra of Synthesized Compounds

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 3 a in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{APT})$ spectra of $\mathbf{3 b}$ in DMSO- d_{6}

SUPPORTING INFORMATION

Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 3 c in DMSO- d_{6}

SUPPORTING INFORMATION

225 MOHz DN30	
ω	
\%	¢\% N- N-
$\stackrel{\sim}{*}$	
-	
\|	1 N

Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 3 d in DMSO- d_{6}

SUPPORTING INFORMATION

125 MHz DMSO

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 4 in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 5 in DMSO- d_{6}

SUPPORTING INFORMATION

Figure $\mathrm{S} 7 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 8 a in $\mathrm{DMSO}-\mathrm{d}_{6}$

SUPPORTING INFORMATION

Figure S8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of $\mathbf{8 b}$ in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 8 c in DMSO- d_{6}

SUPPORTING INFORMATION

500 MHz DMSO

Figure S10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 8 d in DMSO- d_{6}

SUPPORTING INFORMATION

500 MHz DMso

Figure S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{APT})$ spectra of $\mathbf{8 e}$ in DMSO- d_{6}

SUPPORTING INFORMATION

500MHz DMSO

125MHz DMSO

Figure S12. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 8 f in $\mathrm{DMSO}-\mathrm{d}_{6}$

SUPPORTING INFORMATION

Figure $\mathrm{S} 13 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{APT})$ spectra of $\mathbf{8 g}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$

SUPPORTING INFORMATION

Figure S14. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HRMS spectra of 9.

SUPPORTING INFORMATION

Event\#: $1 \mathrm{MS}(\mathrm{E}+)$ Ret. Time : 8.445 -> 8.500 Scan\# : 1708 -> 1720

Figure S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HRMS spectra of 10

SUPPORTING INFORMATION

125 MH2 DMSO

Figure S16. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of $\mathbf{1 2 a}$ in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S17. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of $\mathbf{1 2 b}$ in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S19. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HRMS spectra of 13b

SUPPORTING INFORMATION

Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HRMS spectra of $\mathbf{1 4 b}$

SUPPORTING INFORMATION

Event\#: 1 MS(E+) Ret. Time : 6.282 -> 6.300 Scan\# : 1266 -> 1270

Figure S22. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HRMS spectra of 15

SUPPORTING INFORMATION

Figure S23. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 17 in DMSO-d d_{6}

SUPPORTING INFORMATION

Figure S24. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (up), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT, middle) in DMSO- d_{6} and HRMS (bottom) spectra of 18

SUPPORTING INFORMATION

Figure $\mathrm{S} 25 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 19 a in DMSO- d_{6}

SUPPORTING INFORMATION

125 MHz DMSO

Figure S26. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{APT})$ spectra of 20a in DMSO- d_{6}

SUPPORTING INFORMATION

125 MHz DMso

Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 19 b in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S28. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of $\mathbf{2 0 b}$ in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S29. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 19 c in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S30. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of $\mathbf{2 0 c}$ in DMSO- d_{6}

SUPPORTING INFORMATION

Figure $\mathrm{S} 31 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 19 d in DMSO- d_{6}

SUPPORTING INFORMATION

Figure S32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra of 20 d in $\mathrm{DMSO}-\mathrm{d}_{6}$

[^0]: Template for SYNTHESIS © Thieme Stuttgart • New York

