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ABSTRACT
The field of Automated Program Repair (APR) has received increas-
ing attention in recent years both from the academic world and
from leading IT companies. Its main goal is to repair software bugs
automatically, thus reducing the cost of development and mainte-
nance significantly. Recent works use state-of-the-art deep learning
models to predict correct patches, for these teaching on a large
amount of data is inevitable almost in every scenarios. Despite this,
readily accessible data on the field is very scarce. To contribute to
related research, we present FixJS, a dataset containing bug-fixing
information of ~2 million commits. The commits were gathered
from GitHub and processed locally to have both the buggy (before
bug fixing commit) and fixed (after fix) version of the same program.
We focused on JavaScript functions, as it is one of the most pop-
ular programming language globally and functions are first class
objects there. The data includes more than 300,000 samples of such
functions, including commit information, before/after states and 3
source code representations.
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1 INTRODUCTION
Data-driven repair approaches [21] recently reached promising
results [2, 4, 14, 20, 27]. Such tools usually require a large dataset and
split it in train-test-validate subsets to be able to train and evaluate.
The most commonly used datasets for APR research (Defects4J [15],
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QuixBugs [26], ManyBugs [17]) are not constructed for such kind
of approaches: they include too few programs (in terms of deep
learning) and the data is not preprocessed. We hypothesize that this
may be the reason why data-driven approaches prefer to use their
own datasets, which is often not publicly available. Unfortunately,
thus the evaluation and comparison of such repair tools is almost
impossible.

The paper of Tufano et al. [24] introduced a large dataset from
mined GitHub commits and trained a Neural-Machine Transla-
tion model on it. Their seminal work has been encased in the
CodeXGLUE benchmark [19], which includes diverse programming
language tasks covering code-code, text-code, code-text and text-
text scenarios. The dataset is highly successful among researchers,
although it have not become a de-facto evaluation platforms as De-
fects4J has become. As the existing public benchmarks are designed
for the Java programming language, we ought to gain ground for
JavaScript (JS) in the APR field as well.

For the eighth year in a row, JavaScript is the most commonly
used programming language [23]. It is the de-facto web program-
ming language globally and themost adopted language onGitHub [8].
JavaScript is massively used in the client-side of web applications
to achieve high responsiveness and user friendliness. In recent
years, due to its flexibility and effectiveness, it has been increas-
ingly adopted also for server-side development, leading to full-stack
web applications [13].

Lacking sufficient commit information, the evaluation of the
proposed APR methods is always difficult. Our aim was to ease this
burden by providing a dataset that can contribute to the efforts of
the community. This paper introduces the FixJS dataset, describes
its properties and structure. The proposed dataset is available on
GitHub 1 and have a DOI to make it easily citable 2. It contains
roughly two million bug-fixing commits from GitHub. From these
commits, the modified functions were extracted (the state before
and after the bug fix happened). These functions are then tokenized
and abstracted, resulting in three different source code representa-
tions. After that, the samples are divided in three categories based
on the number of tokens presented in them. The original commits
are also preserved, along with the files that are included in the
commits. The resulted dataset contains overall ~300k samples. Com-
pared to data used in related research, this dataset is a big step
forward in detailedness, in volume and in supplying the context to
the fixes. FixJS can be used to train and evaluate a deep learning
model that predicts correct fixes without any further processing
steps.

1https://github.com/RGAI-USZ/FixJS
210.5281/zenodo.6340207
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app.get("/forgot", function(req, res) {

res.render('forgot.ejs’, {

title: 'Forgot Password’,

fullpage: false,

});

});

app.get("/forgot", function(req, res) {

res.render('forgot.ejs’, {

title: 'Forgot Password’,

fullpage: false,

enable_dev_menu: config.get('dev_menu')

});

});

git add add_email.js

git commit -m "Merge branch 

'origin/dev’ into issue_1240“

git push

GH ARCHIVE
d61319d551a02…

Figure 1: Relevant aspects of software development.

2 BACKGROUND
In Figure 1 we highlighted the relevant aspects of the bug-fixing
process. As a bug is discovered, the developer creates a patch for it
and writes a description (i.e. commit message) about the applied
changes. As can be seen on the figure, this process is recorded by GH
Archive [7]. There are other source code hosts as well, but GitHub
is the largest, having more than 28 million public repositories [10].
This vast amount of source code available online is a good starting
point for data mining.

We designed our process with great care to identify bug-fixing
commits on JavaScript files and fetch their before-and after states.
The approach of this paper technically consists of two main parts:
(1) bug-fix mining and (2) abstraction. On Figure 2 we illustrated
the high-level steps which were carried out during the work. The
thick red boxes represent the main phases, the black (right-directed)
arrows indicate data flows, the dashed (upward pointing) arrows
denote dependencies on external tools, while the blue (faced down)
arrows show the by-product of each step. In this section we describe
each phase in details, starting from the bug-fix mining process.

2.1 Bug-fix mining
We used two external tools in this phase: GH Archive [7] to retrieve
commits from a specific time range and GitHub REST API [9] to get
detailed information about a commit. To start off, we fetched every
push event from GH Archive from ranging between 01.01.2012 and
30.12.2012. The reason we have chosen this time interval is quite
simple: GH Archive stores required information from 2012, and
because of time and resource constraints we could only fetch one
year of data. Since GH Archive stores the commit hash and the
commit message as well, we could filter on bug-fixing commits
in this step. All commit messages containing one of the following

keywords are identified as a bug-fix: ["fix", "solve", "bug",
"issue", "problem", "error"]. The same patterns are used in
the work of Tufano et al. [24] and a similar approach in [6]. We
were able to retrieve 2,129,715 bug-fixing commits. These commits
are saved in a csv file contating the date, event type, commit hash
(sha), message and url in a monthly breakdown.

Next, files are being fetched that are affected by the commit.
Using GitHub API [9], we were able to filter out non-JavaScript
files (files with not ".js" extension) and download the before- (i.e.
buggy program) and after (i.e. fixed program) state of it. During the
process some of the commits were ignored because their repository
were renamed or deleted. At the end of this phase we identified
103,115 commits containing 201,198 files overall. These commits
are saved in a folder named by their sha, containing three files:
before.js (the JS file before the bug-fix) after.js (the JS file after the
fix) and diff (the git diff of these files).

2.2 Abstraction
The goal of this phase is to (1) identify the modified functions and
(2) create a representation of it that can be fed into an AI model.
Functions are extracted without their names. Function expressions
and arrow functions do not have names by definition in JavaScript,
while function statement andmember functions do have (see Listing
1). The overwhelming majority of bug-fixes take place at the body
of a function, thus ignoring names does not result with significant
data loss.

1 function foo() { } // function statement

2 var foo = function () { } // function expression

3 var foo = () => { } // arrow function

4 var o = { f: function () { } } // member function

Listing 1: Function declaration differences in JavaScript

We created three different representation of each raw function.
To retrieve the Abstract Syntax Tree (AST) of the observed function,
we relied on the Esprima library [5]. During this phase syntactical
errors are filtered out. Part of the following representations are
adapted from [24], while others are introduced here. We depict
a small example on the right part Figure 2. Note that, in an AI-
model point of view the main difference is in vocabulary size. While
in the tokenized function every kind of identifier and literal can
occur (resulting in a vocabulary of arbitrary size), in the other
two representations the vocabulary size is fixed. We created three
datasets with different token lengths: small (#tokens <50), medium
(50 <= #tokens <100) and large (100 <= #tokens).

2.2.1 Tokenization. In this representation the function is split into
tokens without any further modifications. Each token is separated
by a space in the dataset. The vocabulary size is arbitrary.

2.2.2 Full-mapping. We call mapping the process in which identi-
fiers and literals are mapped to generic IDs. Every ID follows the
pattern TYPE_INDEX, where TYPE is the corresponding token type,
while index ensures that each ID is unique in a before/after function
pair. The indexing is sequential: when the parser finds e.g. an iden-
tifier, it will assign the ID METHOD_0 to it, the second method will
have the ID METHOD_1, and so on. The used types are the following:
[STRING, NUMERIC, BOOLEAN, REGULAREXPRESSION] for literals
and [VAR, METHOD] for identifiers. Vocabulary size <130 + I (where
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GH ARCHIVE

2 million commits JavaScript bug-fixes

ba77d170bd5d14226b11f924d5d6f3b37324a732

a7a58f5da8ab8a077e7f5008c3357f576623c31d

511060ecff032c06ca14466085725b63e4548b2c

buggy code

fixed code

{

url: https:api.git…

sha: 51100ecff0356…

message: Some fixs.

files: [

filename: app.js

]

…

}

function ( ) {

return { ok: 'OK’,

timeout: 500 };

}

PRIMA

~200k
JS files

FUNCTION EXTRACTION

IDIOMS

MAPPING

Idiomized function Mapped function

SMALL
MEDIUM

LARGE
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function ( ) {

return { ok: 'OK’,

timeout: 0 };

}

function ( ) {

return{VAR_0:STRING_0,

VAR_1:NUMERIC_0};

}

function ( ) {

return{ok: STRING_0,

VAR_1:NUMERIC_0};

}

IDIOMS

~2m 
commits

2012-01.csv

date,        event_type, sha,    message, url

2012-01-01-0,PushEvent,  51...2c,Add some fixs., https://api.github.com/...

2012-01-01-0,PushEvent,  a7...1d,bug:2496 ...,   https://api.github.com/...

2012-01-01-0,PushEvent,  ba...32,merge...,       https://api.github.com/...

2012-01-01-0,PushEvent,  92...96,bug:2503 in ...,https://api.github.com/...

...

511060ecff032c06ca14466085725b63e4548b2c

0

after.js

before.js

diff

a7a58f5da8ab8a077e7f5008c3357f576623c31d

map.txt

{'METHOD_0': 'incoming', 'VAR_0': 

'valfn', 'METHOD_1': 'unwrap', 

'VAR_1': 'translateTo', 'VAR_2': 

'validators', 'METHOD_2': 'push’}

...

50

after

00a51123392afb459c29dfceecb8725726601676_0_1.js

00cbc1f36e16afc6b5b940e43b6d4c1bb257c16a_0_1.js

before

00a51123392afb459c29dfceecb8725726601676_0_1.js

...

...

...

after_[idiom/mapped/tokenized].txt

before_[idiom/mapped/tokenized].txt

50-100
...

~300k
samples

function ( ) { return { ok : 'OK' , timeout : 5000 } ; }

function ( ) { return { ok : STRING_0 , VAR_1 : NUMERIC_0 } ; }

function ( ) { return { VAR_0 : STRING_0 , VAR_1 : NUMERIC_0 } ; }

function ( ) { return { ok : 'OK' , timeout : 0 } ; }

function ( ) { return { ok : STRING_0 , VAR_1 : 0 } ; }

function ( ) { return { VAR_0 : STRING_0 , VAR_1 : NUMERIC_1 } ; }

BUGGY

FIXED

Figure 2: A high level overview of the dataset creation approach

I is the sum of the largest index in each of the mapped keywords,
130 = 6 defined types + 63 JS keywords + ~60 special characters).

2.2.3 Idiomization. Idiomization is the generalization of the full-
mapping representation. Frequent identifiers and literals are often
referred to as idioms [1]. In some cases they appear so often in the
code that, they can almost be treated as keywords of the language
(e.g. i, j, 0, -1). To retrieve these common keywords we counted
the frequency of every token present in the fetched commits. From
this then we picked the TOP-N idioms (N is arbitrary), let us call it
the idiom-set. When parsing, and a token occurs, the parser first
examines whether it is present in the idiom-set. If yes, the token
value is being used, otherwise the samemapping process is executed
as in full-mapping. Vocabulary size <N + I + 130 (where N is the
number of idioms, other same as before).

3 DATASET
3.1 Structure
FixJS distinguishes three source code representations in three dif-
ferent sized setting. We separated the functions based on token
numbers and organized the files in different directories. Each of
the folders contain 7 text files: a mapping file, 3 before and 3 af-
ter files. In the latter mentioned files each line corresponds to a
function of a specific representation. For example the 6th line in
after_idiom.txt is the 6th bug-fix in 2012 that affects a JavaScript
file and is preprocessed as described in Section 2.2.3, it’s correspond-
ing buggy function can be found in before_idiom.txt in the 6th
line. The same applies to the tokenized and mapped representations
as well, the before/after state of the functions can be connected
using their index in the files.

The map.txt is the mapping files which contains the real world
identifiers that are replaced in the tokenized and idiomized rep-
resentations. Each line contains a dictionary where the keys are
the IDs from the parsed function, while the values are the real
world namings. So if one would like to map e.g. the 4th line in
after_mapped.txt to get back the real function, the only thing
needs to be done is to map the IDs from the 4th line in map.txt
to the ones present in the sample. We extracted 3 before and after
functions from the idiomized representation into Listing 2.

// before_idiom.txt:

function ( ) { \ $ ( STRING_0 , VAR_0 ) . removeClass ( STRING_1 ) ; }
function ( ) { VAR_0 . METHOD_0 ( STRING_0 ) ; }
function ( ) { METHOD_0 ( − 1 ) }
// after_idiom.txt:

function ( ) { \ $ ( STRING_0 ) . removeClass ( STRING_1 ) ; }
function ( ) { METHOD_1 ( VAR_1 ) ; VAR_0 . METHOD_0 ( STRING_0 ) ; }
function ( ) { METHOD_0 ( − 1 ) ; s e l f . METHOD_1 ( VAR_1 ) ; }

Listing 2: An extract from the idiomized representation.

3.2 Data
The dataset contains information on every publicly available bug-
fixing commit that affected JavaScript files in the first half of 2012.
We started from scratch, and created 300k samples in three set-
tings including different source code representations. In Table 1
we summarize the assembled datasets. Here we can see that the
Large subset contains the majority of the samples, this and the sheer
size of the functions implies that its size in megabytes is also the
greatest.

FixJS contains both single- and multi-line bugs. Before- and after
state of the mined functions are differentiated using their Abstract
Syntax Tree, meaning that if only comments have changed the
samples are filtered out.
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The dataset is available onGitHub, containing a detailed README
of the featured files. To use the resulting dataset one should carry
out the following steps:

(1) Clone the repository and pick a dataset size (50, 100 or 100+)
(2) Load the before_rep.txt and after_rep.txt (where rep can be

[idiom, mapped, tokenized])
(3) Split the dataset (e.g. 80-10-10) and train the model
(4) Evaluate the model on the test set

Table 1: Summary of the constructed datasets.

# Tokens # Samples Size (mb)
Small #tokens <50 67,070 78
Medium 50 <= #tokens <100 70,816 180
Large 100 <= #tokens 186,021 5,350

Overall 323,907 5,608
The token number (#tokens) determined using the Esprima [5] standard parser. Note that
in #tokens each literal counts as one token. This can be confusing especially for string
literals if they are not mapped (since they typically consist of multiple syllables).

3.3 Possible Uses
The possible uses of FixJS is quite generic and similar to existing
datasets like Defects4J or BugsJS. However, these databases are
small in size to teach a deep learning model, and their preparation
requires a serious development effort. On the other hand, the bug-
fixes in FixJS are already extracted and organized in quite large
quantities. Real world bug-fixing commit information facilitates
automatical software refactoring and may improve software evolu-
tion. It can enable seamless integration between continuous code
changes and serve as a ground to better understand the software de-
velopment cycle. The proposed dataset serves these goals, it can pro-
vide a common ground in evaluating data-driven repair solutions,
potentially contributing to a better understanding of the strengths
and weaknesses of different source code extraction methods and
lead to their best combination. The dataset is mainly intended for
Automated Program Repair research evaluation purposes. It pro-
vides more detailed data than the currently available alternatives
and can also be used in different representation evaluations.

3.4 Limitations
FixJS features 3 dataset sizes, but Large can only be used with
advanced models where the sequence length is not restricted. How-
ever, Defects4J or BugsJS is excellent for test-based patch genera-
tion approaches FixJS cannot be used for this cause, since it lacks
testing features. During the mining process we did not filter on
GitHub repositories (e.g. number of stars, forks, etc.), thus low-
quality projects are also included. We know that not all the changes
in a bug-fixing commit are related to bug-fixing and tangled changes
might also occur [12], in future releases we plan to address these
limitations by manual verification and careful data collection.

4 RELATEDWORK
We based our study on the seminal work of Tufano et al. [24], where
they created a dataset for Java program repair and evaluated a NMT
(Neural Machine Translation) model on it, althoughweworkedwith
JavaScript. Their small dataset contains 58,350 samples, while their

medium dataset 65,465 samples. Our small dataset consists of 67,070,
while the medium 70,816 buggy-fixed function pairs, thus the size of
the two datasets are of similar magnitude. Additionally we created
a large dataset that contains functions with more than 100 tokens,
in this we included 186,021 samples. The dataset presented above is
included in the CodeXGLUE benchmark [19] which is a collection
of code-related tasks and a platform for model evaluation.

Other than [24], several datasets have been introduced for the
APR field. Defects4J [15] is a popular dataset consisting 395 Java
bugs. The ManyBugs [17] dataset contains bugs in C, it were used to
evaluate many well-known APR tools (Genprog [25], Prophet [18],
etc.). Bugs.jar [22] is comprised of 1,158 Java bugs and their patches,
while BugsJS [11] contains reproducible JavaScript bugs from 10
open-source Github projects. These datasets contains both single-
and multi-line bugs. All of these datasets can be used for a wide
range of tasks, though their relatively small size makes them inap-
propriate for deep learning.

A few datasets of larger-scale is also available publicly. Co-
dRep [3] aims at being a common playground onwhich the machine
learning and the software engineering research communities can
interact. It contains 58,069 one-liner commits. A more recent work
of Karampatsis et al. [16] introduce a dataset of similar size consist-
ing of 153,652 single-statement bugs mined from open-source Java
projects. The authors of [16] focused on estimating the frequency
of SStuB templates rather than creating a general-purpose dataset.
In contrast FixJS is generic and contains information of JavaScript
bugs. Lastly, unlike previous datasets, we provide three representa-
tions of the mined bug-fixes and additional commit information.

5 CONCLUSIONS AND FUTUREWORK
APR tools create software patches without human intervention.
State-of-the-art approaches are typically evaluated on their own
datasets which are often not publicly available, which hampers
the comparative evaluation of novel methods. In this paper, we de-
scribed the FixJS dataset, which includes ~300k samples containing
separately the buggy and fixed codes. During the process we ex-
amined ~2 million commits and mined ~200k JavaScript files. From
this massive amount of data we created three datasets of different
size: small, medium and large. In each of these datasets three source
code representations with different abstraction levels are present.

We plan to extend the dataset in future work. It is of similar size
like in [24], but note it only contains commit info for a limited time
interval. Although the two datasets operate on different program-
ming languages, tools evaluated on them are might be comparable.
Constructing the database is a very time consuming task, but we
still plan to include all commits to date.
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